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Abstract: Coherent multi-band splicing is an optimal solution for extending existing band-limited communication systems to
support high-precision sensing applications. Conceptually, the communication system performs narrow-band measurements at
different center frequencies, which are then concatenated to increase the effective bandwidth without altering the sampling rate.
This can be done in parallel for multiple non-contiguous subbands or by hopping across the different bands. However, multi-band
splicing poses significant challenges, particularly in compensating for phase offsets and hardware distortions before stitching the
acquired samples, which can be distributed in contiguous or non-contiguous manners. In this survey paper, we study the state of
the art in coherent multi-band splicing and identify open research questions. For beginners in the field, this review serves as a
guide to the most relevant literature, enabling them to quickly catch up with the current achievements. For experts, we highlight
open research questions that require further investigation.

1 Introduction

The integration of communication and sensing has recently attracted
significant interest in both industry and academia [1]. The main ob-
jective of joint communication and sensing (JCAS) is to achieve
accurate sensing, by reusing the communication resources. This is
both relevant for the widely deployed WiFi infrastructure [2] as well
as upcoming 6G networks, which will inherently support JCAS [3].
For example, WiFi devices collect channel state information (CSI),
which is extensively utilized for sensing applications. However, in
most usage scenarios, bandwidth is limited, and the channel is es-
timated primarily for equalization purposes without the need for
precise multi path component (MPC) parameter estimation [4].

At the same time, sensing applications demand ultra-wideband
and highly accurate estimation of MPC parameters, such as delay
and amplitude, posing a substantial research challenge for the ex-
isting, band-limited infrastructure [4, 5]. One potential solution to
virtually increase the bandwidth without changing the sample rate
is to use multi-band splicing. In the literature, multi-band splicing is
also found as channel splicing, or multi-band sensing. This technique
combines multiple narrow frequency bands to form a wider band-
width, thereby increasing the channel resolution in the time domain
(illustrated in Figure 1).

In principle, the radio system comprising of the transmitter and
receiver hops at different center frequencies to perform narrow-band
measurements in time domain. The estimated channel frequency
responses (CFRs) from each narrow-band measurement are then
concatenated in the frequency domain to generate a wider bandwidth
and a high-resolution channel impulse response (CIR). The resolu-
tion in the delay domain is inversely proportional to the bandwidth
(resolution ∼ 1/B) [6]. This means that higher bandwidth allows
for better differentiation between two distinct paths in proximity, as
the product of delay resolution and the speed of light determines the
necessary separation between paths.

However, there are several challenges associated with the con-
cept of multi-band splicing [1, 4, 7]. Firstly, narrow-band channels
might not always be available for sensing due to their potential
use by other co-channel devices. As a result, sensing the narrow-
band channel before transmission is required, and sequential bands
might not always be accessible. Secondly, hardware distortions in-
troduce a phase offset in each narrow-band measurement, making
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Fig. 1: Illustration of the concept of multi-band splicing

the stitching process on the raw data impossible. Such distortions
require overlapped channel measurements to eliminate the issue
of the phase offset. Another solution has been identifying each
source of the phase offset, estimating and compensating their impact.
Thirdly, the channel coherence time limits the number of chan-
nel hops or narrow-band measurements that can be conducted. For
instance, in an indoor environment at a frequency of 2GHz, the
channel coherence time is several hundred milliseconds when the
user is static, and decreases as the user’s mobility speed increases.
Nevertheless, several works have integrated and applied multi-band
splicing, addressing the aforementioned challenges, for applications
such as localization [1, 4–6, 8–12], human [13] and respiratory
sensing [14, 15].

Based on the way the channel is estimated, a first classification
divides the multi-band systems into two groups, non-coherent or
coherent systems [16]. Non-coherent estimators improve channel
estimates by averaging the results from all narrow bands. With M
narrow bands, the non-coherent estimator [17, 18] averages these
estimates from all the M narrow bands to produce a refined mea-
surement. According to Cramer-Rao lower bound (CRLB) [19, 20],
the variance of the time-delay error decreases only by a factor M
in the non-coherent systems, and by a factor M3 in the coherent
system. Coherent estimators combine simultaneously the estimation
results from all the narrow bands, yielding a higher resolution CIR.

In addition to multi-band splicing, alternative approaches are de-
veloped to address bandwidth limitations. For example, Wizoom
has been introduced [21] using the MUSIC algorithm to estimate
the time-delay of the multipath components and combining multi-
ple antennas to improve the resolution. Another approach, detailed
in [22], proposes a super-resolution angle of arrival (AoA) algorithm
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Table 1 Summary of works on multi-band splicing.

Ref Application Frequency Validation

[1] localization 2.4GHz to 7.1GHz experimental data
[2] localization 5GHz experimental data
[4] ranging 6GHz simulations and experimental data
[5] ranging 60GHz experimental data
[7] power delay profile (PDP) 5GHz experimental data
[8] ToA 2.4GHz and 5GHz experimental data
[9] CIR - simulations
[10] time of arrival (ToA) 2.4GHz experimental data
[11] ToA 3GHz simulations
[12] ranging, ToA - simulations
[6] CIR 2.4GHz and 5GHz simulations
[13] human sensing 5GHz experimental data
[14] respiration monitoring 5GHz experimental data
[15] respiration monitoring 5GHz experimental data
[16] ToA 802.15.3a/802.15.4a simulations
[23] ToA 2.6GHz simulations
[24] CIR 60GHz experimental data
[25] channel reconstruction 28GHz simulations
[26] CSI 2.4GHz experimental data
[27] line of sight (LoS) time-delay 60MHz, 180MHz, 290MHz and 400MHz simulations
[28] ToA 806MHz/816MHz simulations and experimental data
[29] ranging, CSI 10MHz, 70MHz, 130MHz and 280MHz simulations
[30] ToA 1.8GHz/2.02GHz simulations
[31] CIR 2.4GHz simulations and experimental data
[32] ranging 5GHz simulations
[33] localization 2.4GHz, 6GHz simulations
[34] localization 2GHz simulations
[35] localisation 2.4GHz, 5GHz simulations
[36] ranging 3.5GHz experimental data

for decimeter level localization, using multiple APs and the multiple
signal classification (MUSIC) algorithm.

Following many theoretical works on channel splicing [6, 9, 16,
23], the concept is now getting more mature and experimental pro-
totypes have been presented. Most of the current research in multi-
band splicing is centered around low-frequency bands, i.e., 2.4GHz
and 5GHz. Only recently, the feasibility to apply the multi-band
concept in mmWave frequency bands has been explored [5, 24, 25].

In this survey paper, we review the current state of the art of co-
herent multi-band splicing techniques. To the best of our knowledge,
this is the first paper looking at and offering a summary of the exist-
ing research work. We aim to providing a quick get into the concept
of multi-band splicing as well as its applications and properties. Fur-
thermore, we give an in-depth description of the hardware distortions
and some of the existing approaches in compensating them. We also
identify the main observations from all the experimental studies.

The remainder of this paper is organized as follows: Section 2
provides an overview of primary applications of coherent multi-band
splicing. A brief description of three methods for delay estimation
in multi-band splicing along with an example for each case and an
overview on the CRLB is given in Section 3. This is followed by a
detailed description of the sources of the hardware distortions and
all the proposed techniques for estimating and compensating these
errors in Section 4. We discuss open research questions in Section 5.
Finally, we conclude this survey in Section 6.

2 Applications

Multi-band splicing is designed to enable communication systems
to support sensing functionalities by precisely estimating the CSI.
Accurate CSI estimation is essential for enhancing the performance
of various sensing applications. Although multi-band splicing has
predominantly been used for localization, it has also found applica-
tions in channel sounding and human sensing. Table 1 summarizes
the state of the art in these areas. In the following, we provide an
overview of each application built upon multi-band splicing.

2.1 Ranging and Localization

Over the past two decades, transmitting the same orthogonal
frequency-division multiplexing (OFDM) signal over multiple fre-
quency bands to enhance channel estimation for ranging applications
has become widespread. The earliest algorithm we could find in the
literature that coherently combines contiguous multi-band signals to
improve the resolution of ToA estimation is presented in [16]. This
algorithm first recovers the CIR with equally spaced taps, then mit-
igates energy leakage from the first channel path to approximately
locate the first path. Its performance is analyzed through simula-
tions and compared with the classical space-alternating generalized
expectation-maximization (SAGE) algorithm. An extension of this
algorithm is proposed in [23], where non-contiguous, non-equal
multiple bands are concatenated to enhance the ToA estimation.
Here, cognitive radio is used to sense and select available narrow
bands for active range estimation. Performance comparisons be-
tween fusion-based and concatenation-based spectra for range esti-
mation show that the concatenated approach offers lower complexity
and better performance in resolving closely spaced multipaths.

In [10], the well known indoor localization mechanism, Tone-
Track was presented. ToneTrack employs multiple access points
(APs) to localize a mobile user, achieving sub-meter accuracy by
using contiguous sub-bands and performing amplitude and phase
alignment before stitching the spectrum. Subsequently, Chronos [8]
was developed, which now allows a single WiFi AP to localize
clients to within tens of centimeter, by addressing frequency off-
set issues between transmitter and receiver and separating time of
flight (ToF) from packet detection delay. Another localization tech-
nique presented in [9], evaluated through simulations, overcomes the
issue of the hardware phase offset by using a phase retrieval scheme
that only utilizes the CSI magnitude values to estimate the CIR.

Splicer [7] is a software-based system that splices CSI from mul-
tiple contiguous frequency bands to derive high-resolution power
delay profiles, focusing particularly on identifying and addressing
the source of the hardware distortions within the channel coherence
time to support mobility. Integrated into a single AP localization
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approach, Splicer achieved a median localization error of 0.95m.
In [11, 27], the authors exploit the multiple shift invariance nature
of the Hankel matrices formed from the acquired samples from mul-
tiple frequency bands, estimating ToA using the ESPRIT algorithm
and the MPC’s time-delay using weighted subspace fitting.

In [6], a three step algorithm is proposed for estimating high-
resolution CIR for localization purposes. It first performs a per-band
processing to estimate and remove linear phase distortions using
atomic norm denoising. Then the “clean” samples are concate-
nated and the sparse recovery orthogonal matching pursuit (OMP)
algorithm is applied to estimate the high resolution CIR. Finally, a
handshaking protocol resolves ambiguity between the communica-
tion nodes.

Moving away from compressed sensing, in [28] an evolution of
the SAGE algorithm for the multi-band cases is proposed, exploiting
multiple LTE signals simultaneously received on different frequency
bands from the base station. A mechanism performing blind joint
calibration of multi-band transceivers and time-delay estimation of
the MPCs is given in [29], formulated as a covariance matching
problem, solved using a group Lasso algorithm. An extension of
the algorithm in [27] for solving the multiple shift-invariance nature
of the Hankel matrices is presented in [4], acquiring CSI samples
from arbitrary frequency bands. CRLB is derived as a benchmark
to study the algorithm performance. A two-stage delay estimation
technique is developed and enhanced over the years, using non-
continuous frequency bands [30, 33–35, 37]. The first stage of the
algorithm produces a coarse estimate of the scattering parameters,
which is then followed by a refined stage for precise estimation.

Another approach, detailed in [2], concatenates non-adjacent
channels to increase time resolution and accuracy in estimating
channel parameters (i.e., AoA, angle of departure (AoD) and ToF),
performing localization using a single AP and a geometry method
that uses multipath channel parameters. A two-stage algorithm is
proposed in [32], performing indoor ranging using non-contiguous
bands at 5GHz. UWB-Fi [1] is a sensing system that acquires dis-
crete and irregular channel sampling across 4.7GHz bandwidth (i.e.,
2.4GHz to 7.1GHz) on commodity Wi-Fi hardware. To handle
such irregular samples, a deep learning technique is proposed that
translates the discrete channel samples to high-dimensional spectral
parameters.

HiSAC [5], is e recently developed JCAS system that combines
diverse subsystems and technologies (i.e., 5G-NR and WiGig) and
non-contiguous frequency bands to achieve passive ranging. Unlike
the aforementioned works operating at low frequencies (2.4GHz to
7.1GHz), HiSAC operates at 60GHz, achieving a 20-fold improve-
ment in resolution compared to single-band scenarios.

2.2 Respiration monitoring and human sensing

Channel switching and aggregation to increase the effective band-
width has been utilized in applications such as respiration moni-
toring [14, 15] and human sensing [13]. CSI is prone of the envi-
ronmental changes, making it useful for capturing human activities.
In [13] the authors introduce WiRIM, a mechanism for human sens-
ing. WiRIM consists of three steps. First, it employs an algorithm for
channel switching and aggregation. Next, the captured CSI is used
to construct feature images that contain rich frequency, temporal and
spatial characteristics. Finally, a deep learning method processes the
extracted features. WiRIM can recognize human activity (i.e., walk-
ing, running, sitting, standing activity, picking), even with slight
changes in human location. Experimental comparison with another
existing approach for human activity recognition and show 96.4%
recognition accuracy, compared with 88.6% from the state of the art.

The authors in [14, 15] apply multi frequency bands concatena-
tion to increase the temporal resolution for monitoring respiration.
RespiRadio [15] is a respiration monitoring mechanism that utilizes
multi-frequency bands with commercial off-the shelf (COTS) WiFi
based devices, achieving an overall estimation error of 0.152 bpm.
ExRadio [14] is another mechanism that performs real-time respira-
tion monitoring using COTS devices for high dynamic environment.

To eliminate the challenge of the hardware-related noises, an ad-
ditional wire direct connect in constructed. Experiments show that
ExRadio achieves an overall detection error of less than 0.5 bpm in
a high dynamic environment, outperforming RespiRadio under the
same conditions.

2.3 Channel sounding

Channel sounding, or PDP derivation, is yet another application tar-
geted by multiband sensing. In [26], the authors propose a calibration
scheme for both linear and non-linear CSI phase errors, applying
this scheme in CSI splicing to generate accurate PDPs. In [24],
the authors present mmSplicer, a channel sounder at 60GHz, that
leverages multi-band splicing and sparse recovery techniques for
scanning the communication channel. The system utilizes univer-
sal software radio peripheral (USRP) software defined radio (SDR)
components, and aims estimating a wide channel using only 50%
of the narrow frequency bands, to address the issue of the chan-
nel coherence time in high frequencies. A multi-band channel
reconstruction scheme is presented in [25], for time division duplex
(TDD) wideband mmWave multiple-input multiple-output (MIMO)
systems under hybrid analog/digital architecture. This approach
leverages spatial reciprocity across different frequency bands, re-
quiring only the central sub-band channel to be estimated. The side
sub-band channels are then extrapolated from the central one, ac-
companied by a low-complexity path gain estimation process. To
the best of our knowledge, this is the first study to apply multi-band
sensing within a MIMO system.

3 Multi-Band Splicing Algorithms

Many studies have attempted to address the challenge of coherent
multi-band delay estimation. These existing techniques can be cate-
gorized into three main approaches [30]: maximum likelihood-based
methods, subspace-based estimation methods, and compressed sens-
ing techniques. Below, we first provide the necessary theoretical
background and then a brief overview of each category along with
an example algorithm from each. Table 2 provides a short summary
of each approach, along with the corresponding pros and cons.

3.1 Theoretical Background

Most experimental research has utilized multi-band splicing within
the existing Wi-Fi infrastructure, leveraging the IEEE 802.11 stan-
dard and OFDM waveforms to conduct measurements. Therefore, in
the following, we assume a 802.11 OFDM communication system,
comprised of a transmitter and a receiver, communicating over M
frequency bands, each with N subcarriers. The received signal can
be expressed as [6]:

y[m,n] = H[m,n]Sm,n + z[m,n], m ∈ [M ], n ∈ N,

where Sm,n is the symbol transmitted over the n-th subcarrier of
subband m. For simplicity, we assume that the symbol Sm,n = 1.
H[m,n] represent the CFR characterizing the channel in the fre-
quency domain, and z[m,n] ∼ CN

(
0, 1

SNR
)

stands for the additive
white gaussian noise (AWGN). According to the literature [6, 26,
38], the CFR in a multipath environment is given as:

H[m,n] = F{h(τ)}
∣∣
f=fm,n

=
∑K
k=1 cke

−j2πfm,nτk , m ∈ [M ], n ∈ N ,
(1)

where K is the number of multipath components, τk ∈ [0, 1
fs
) and

ck ∈ C are the delays and gain for each path k, and fs is the sub-
carrier spacing. The CFR being a complex value, can be expressed
in terms of amplitude and phase. Figure 2a depicts an example of
a measured CFR, with channel bandwidth B = Nfs. In case of a
single antenna device the CSI is equivalent to the CFR, whereas
in MIMO system, the CSI is represented as a set of CFR matri-
ces, providing the frequency response between each transmit/receive
antenna pair.

IET Research Journals, pp. 1–12
© The Institution of Engineering and Technology 2015 3



−200 −100 0 100 200
Subcarrier index

−200

−150

−100

−50

0

M
ag

ni
tu

de

(a) Measured CFR

IFFT

0 50 100 150 200 250 300
Time (ns)

0.00

0.01

0.02

0.03

0.04

M
ag

n
it

ud
e

(b) Measured CIR

Fig. 2: CIR and CFR in an OFDM system.

The CIR, characterizing the channel in time domain, is obtained
transforming the CSI by inverse fast Fourier transformation (IFFT)
(as shown in Figure 2), and is represented as:

h(τ) =

K∑
k=1

ckδ(τ − τk), (2)

where δ(·) stands for the Dirac’s delta function. Figure 2b shows the
CIR obtained from the IFFT transformed CFR, with time resolution
∆τ = 1/Nfs = 1/B. This relation indicates that larger channel
bandwidth leads to higher resolution CIR.

Two multipath components with propagation delays, respectively,
τ1 and τ2, are indistinguishable in the receiver if |τ1 − τ2| < 1/B.
For instance, a channel bandwidth of 20MHz leads to a time resolu-
tion of 50 ns, allowing to distinguish paths that are coming 15m
apart. This distance difference is large for applications such that
localization and object mobility tracking.

The received signal in a communication system is subject to sev-
eral phase distortions due to the hardware imperfections. Section 4
provides a detailed description of the sources of phase distortion in
the receiver chain and the existing methods to address them. The
phase term from these distortions can be represented as:

ψ[m,n] = −2π(δmnfs + ϕm), m ∈ [M ], n ∈ N, (3)

where δm ∈
[
0, 1
fs

)
depicts the receiver timing offset due to the

packet detection delay (PDD) and the receiver sampling frequency
offset (SFO). The phase offset term ϕm ∈ [0, 1) accounts for the ef-
fect of the random phase offset introduced by the phase-locked loop
(PLL) when hopping to different frequency bands, along with the
accumulated phase offset due to the channel frequency offset (CFO)
between the transmitter and receiver. According to [6], δm and ϕm
differ from band to band, making ψ[m,n] a piecewise linear func-
tion. On each band, it is a linear function of the subcarrier index with
different slope and constant terms. Including the phase distortion, the
expression of the received signal can be transformed to [6, Eq. 5]:

y[m,n] = ejψ[m,n]H[m,n] + z[m,n]

= ejψ[m,n]
K∑
k=1

cke
−j2πfm,nτk + z[m,n]

=
K∑
k=1

cke
−j2π(fm,0τk+ϕm)e−j2πnfs(δm+τk) + z[m,n],

where fm,0 is the center frequency of band m. Assuming that the
subcarrier spacing is equal, it can be written: fm,n = fm,0 + nfs.
Given the noisy distorted signal, direct concatenation of samples
over different frequency bands is not feasible, hence addressing the
challenge of phase distortion is crucial.

3.2 Maximum Likelihood-based Methods

The classical approach for estimating delay parameters typically
involves maximum likelihood (ML)-based methods. Consider the

following received signal [39]:

x[n] = A+ w[n], n = 0, 1, ..., N − 1, (4)

where A is the unknown parameter to be estimated and w[n] is the
white Gausian noise. To estimateA using ML, we first determine the
probability density function:

L(A) = p(x,A) =
1

(2πA)N/2
exp[

−1

2A

N−1∑
n=0

(x[n]−A)2] (5)

This expression represents the likelihood function as a function
of A. Differentiating the log-likelihood function produces: ∂p(x,A)

∂A .
The goal is to find the value of A that maximizes the likelihood
function, denoted as:

Â = argmax
A

L(A) (6)

However, for a set of parameters, solving the ML problem di-
rectly can be challenging due to the large dimensionality of the
search space. In such cases, the SAGE algorithm is often employed.
The SAGE algorithm is preferred as it decomposes the problem into
smaller, more manageable subproblems.

In [28], a SAGE-based solution is proposed for estimating the
ToA in the downlink LTE networks. However, as noted in [16], a key
drawback of the ML algorithms (including SAGE), is their tendency
to converge to the local optima. To address this issue, the authors
propose a model for estimating the ToA based on equally spaced
taps and mitigation of energy leakage from the first channel path.
Yet, the estimation of the first path’s delay remains coarse, and leads
to limited performance improvement.

To overcome the local optima issue, a two stage estimation
scheme as been introduced [30, 34]. The two-stage global esti-
mation technique (TSGE) method aims to enhance the estimation
accuracy in ToA-based location systems, in the presence of the hard-
ware distortions, leveraging multi-band splicing. The algorithm is
designed for a single-input single-output (SISO) system transmitting
an OFDM signal overM frequency bands, each withNm orthogonal
subcarriers and fs subcarrier spacing. The TSGE method consists of
two stages:

Stage 1: Coarse estimation using Turbo-BI algorithm In the first
stage, the authors construct the coarse signal model from the original
signal to reduce complexity and address the issue of local optima (re-
fer to [30, Eq. 4]). The sparse representation of the signal in the delay
domain is then used with the turbo Bayesian inference (Turbo-BI)
algorithm. The proposed Turbo-BI algorithm exchanges information
between the sparse recovery (estimating the significant paths) and
the channel estimation, iteratively refining the delay estimates.

Stage 2: Refined Estimation using particle swarm optimization-
least square (PSO-LS) In the second stage, a refined delay estimation
is performed within a smaller search space, enhancing the compu-
tation efficiency. Particle swarm optimization (PSO) is first used
to explore the search space for global optimization. Subsequently,
a least square (LS) algorithm minimizes the error between the
observed and predicted CSI, given the delay estimates from PSO.

An enhanced version of the algorithm was later developed [33,
35, 37]. The algorithm again is composed of two stages. In the
first stage, a coarse signal model is derived and the weighted root-
MUSIC (WR-MUSIC) algorithm along with the LS method, is used
to obtain an initial estimation of the amplitude and delay of the
scattering coefficients. A range of the refined estimation is deter-
mined using the empirical error from the first stage. In the second
stage, a refined signal model and a stochastic particle-based varia-
tional Bayesian inference (SPVBI) algorithm is applied for the final
parameter estimation.

3.3 Subspace-based Estimation Methods

An alternative approach for estimating the MPC’s time-delay us-
ing multi-band splicing involves subspace-based methods. In [10],
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Fig. 3: Block diagram of the ToneTrack algorithm [10].

the authors present ToneTrack, which employs the classical MUSIC
algorithm to estimate the time-delays by analyzing the correlation
between incoming signals on different subcarrier in frequency do-
main. However, the presence of multiple shift-invariance structure
in the Hankel matrices formed by stitching the multi-band CSI mea-
surements has been identified [4, 11, 27]. These works propose
an algorithm that leverages this property and improve the perfor-
mance. Nonetheless, it has been highlighted in [40, 41] that the
subspace estimation methods perform well only with large number
of snapshots.

In more detail, the ToneTrack [10] system aims estimating the lo-
cation of a mobile user using multiple APs. The system is comprised
of the following steps: super-resolution ToA processing, channel
combination, spectrum identification, and multi-AP data fusion,
illustrated in Figure 3. These steps are realized as follows:

Super-resolution ToA estimation ToneTrack uses the MUSIC
algorithm, typically known as a super-resolution algorithm. While
traditionally applied to time-domain samples, [10] adapts it in fre-
quency domain. Per subcarrier channel response in the frequency
domain is expressed as (see [10, Eq. 2]):

H[fn] =

D∑
k=1

αke
−j2π(f0+n∆f)τk . (7)

whereD is the number of the MPCs, fn and ∆f stand for the carrier
frequency and the subcarrier spacing, respectively. The estimated
channel response Ĥ[fn], from the 802.11 long training field, is used
to compute the subcarrier correlation matrix RHH , capturing the
phase changes between different subcarriers, as follows:

RHH = E{Ĥ[fn]Ĥ
∗[fn]} (8)

where the expectation is taken across multiple OFDM symbols in
time. With N subcarriers, which is larger than the number of the

MPCs, the Eigenanalysis of the matrix RHH results in N Eigen-
values. The eigenvalues are sorted in a non-decreasing order, and
then are classified into noise (M-D Eigenvalues) and signal sub-
space (D Eigenvalues). Next, a time steering vector a(τ) in the signal
subspace, is defined as (see [10, Eq. 5]):

a(τ) =


1

exp(−j2πτ∆f)
...

exp(−j2π(N − 1)τ∆f)

 (9)

where τ represents the MPC time-delays. Finally, the time of arrival
of the multiple signals is computed as:

P(τ) =
1

a(τ)HENEHNa(τ)
(10)

where P (τ) generates peaks when the steering vector is orthogo-
nal to the noise subspace, indicating the arrival times of incoming
signals.

However, the MUSIC algorithm struggles resolving paths with
small time-delay differences. It has been shown that the resolution
still depends on the background noise and the frequency bandwidth
of the transmission [10].

Channel combination To overcome the resolution limitation of the
MUSIC algorithm, ToneTrack combines multiple frequency bands
to virtually form a wider bandwidth. In order to perform multi-
band concatenation, first, time and frequency alignment is applied
in the collected samples. Amplitude alignment uses fractional inter-
polation methods to match peaks across spectra, aligning sub-carrier
phases and ensuring consistent phase measurements. Frequency do-
main alignment involves estimating the phase of the last subcarrier
of the first channel and aligning the first subcarrier of the second
channel by subtracting the phase offset.

Spectrum identification For accurate ToA estimation, spectrum
identification isolates and analyses the first two peaks. If the dis-
tance between these peaks is larger than the resolution limits than the
estimation from MUSIC algorithm is considered correct, otherwise
further investigation is necessary. Peaks amplitude are observed: In
case the amplitude of the first peak is stronger than the reflection sig-
nal then the direct path position is more accurate. If this condition is
not fulfilled and the first peak is a merged peak, then the direction
of the peak’s skew is analysed. If the direction if the peak’s skew
merges towards the direct path, only then the algorithm proceeds to
the last step.

Multi-AP data fusion In the final step, ToneTrack uses the ToA es-
timations from each AP, and converts them to distance differences to
correctly identify the location of the user. The system applies triangle
inequality, clustering and outlier rejection, to identify and remove
the non-line of sight (NLoS) scenarios. The user’s location can be
determined from the intersection of the hyperbolas formed by each
AP-user pair.

3.4 Compressed Sensing-based Methods

Compressed sensing (CS) aims recovering signals from fewer mea-
surements than the Nyquist rate, under the assumptions that the
signals are sparse, meaning that only a few coefficients are non-zero
or close to zero [42]. Research has demonstrated that the wireless
multipath channel [43], specially in ultra-wideband (UWB) [44] and
OFDM [45] systems, exhibit sparsity, making CS applicable for
time-delay estimation. Inspired by this concept, several studies lever-
age CS for time-delay estimation in a multi-band system [5, 6, 8, 9,
24, 25, 31, 32, 36] .

For instance, Chronos [8] is an algorithm that computes the ToF
using multi-band splicing and sparse recovery techniques. Yet, re-
quiring a substantial number of bands for optimal performance. A
sparse signal for ranging is estimated using the li norm in [36] and
multiple sparse located signal bands. In [32], a two-stage ToF esti-
mation algorithm is introduced. The first stage uses the sparsity of
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Fig. 4: Flowchart of the compressed sensing algorithm [6].

the CIR to solve the inverse inverse non-uniform discrete Fourier
transform (INDFT) for converting CSI samples to CIR. The second
stage employs OMP concept to extract ToF. In [6, 9], the OMP
grid-based sparse recovery technique is utilized to estimate the full
CIR. Despite it low complexity, this method has only been validated
through simulations. Nevertheless, the algorithm was successfully
integrated into a real communication system and validated it with in-
door experimental data [31]. Additionally, OMP was extended into
a two stage multi-band splicing technique for scanning the mmWave
channel [24]. Finally, HiSAC [5] is a multi-band JCAS system that
combines subbands across wide frequency range to achieve high
resolution passive ranging, and uses the grid-based OMP algorithm
for time-delay and amplitude estimation. In the scope of mmWave
MIMO, the authors in [25] propose the beam training-based New-
tonized OMP (BT-NOMP) algorithm, which combines the principles
of beamtracking with the NOMP algorithm, which is an extension of
the OMP method, enhanced for beamforming operation.

Describing multi-band splicing in more detail, we focus on the
algorithm presented in [6], which illustrates the use of compressed
sensing in multi-band splicing. It involves three steps to recover the
wide CIR by combining multiple consecutive frequency bands. The
flowchart of the algorithm is presented in Figure 4. Different colors
are utilized to represent the different steps of the algorithm.

Step 1: The first step estimates and removes the distortion pa-
rameters δm, ϕm for each frequency band m ∈ [M ], as depicted in
Equation (3). Here, δm denotes the timing offset due to the PDD
and SFO, and ϕm represents the phase offset from the CFO and
PLL; a detailed description of each source of offsets is provided in
Section 4. Hardware imperfections introduce a time and phase offset,
which must be estimated and compensated before the CFR samples
acquired from different frequency bands are concatenated. The au-
thors use the sparse recovery technique of atomic norm de-noising
to estimate these parameters, providing “clean” CFR samples for the
next step.

Step 2: The second step employs the OMP greedy algorithm,
known for its low complexity and its iterative manner in recover-
ing the sparse signal. The signal can be represented in the following
form:

ỹ ≈ Dh0 + z̃ (11)

where

(a) ỹ is a vector containing the CFR samples for all the bands, ỹ =
[ỹ(1)T , ..., ỹ(M)T ]T ∈ CMN . In the case when only a set of sub-
channels are used, then the rest of the entries are defined as zero.
(b) a uniform grid of size G is defined over the delay domain
as G = {0, 1/G, ..., G− 1/G}/fs, and a dictionary D as D =
[d(0), ..., d(G− 1)] ∈ CMN×G, where G >> MN and each col-
umn d(i) given as

d(i) = 1√
MN

[e
−j2π[f]1(

i

G
)/fs

, ..., e
−j2π[f]MN (

i

G
)/fs

]T ∈ CMN ,

(12)
where i = 0, 1, ..., G− 1. In practice the grid is required to be
sparse, in the range G = 2MN or G = 3MN .
(c) z̃i represents the AWGN
(d) h0 ∈ CG is the estimated CIR using the OMP sparse recovery
method and the given ỹ samples.

OMP selects a column of the dictionary D, at each iteration, such
that it has the highest correlation with the current residual and it
repeats until a convergence condition is met. For each selected col-
umn, the non-zero coefficients are computed using the least-square
method, such that they approximate the measurement vector ỹ. This
step defines the matching part of the OMP algorithm. The effect of
each selected column has to be removed from the residual, such that
it can not be selected again, and this defines the orthogonality of the
OMP method [42]. The algorithm stops once the number of the se-
lected dictionary columns reaches the sparsity order of h0, which is
given as input.

Step 3: The third step addresses the issue of ambiguity, causing a
circular shift of the CIR over the delay domain and a global phase
shift in the coefficients. An illustration of the ambiguity concept is
given in Section 4.2. In order to resolve ambiguities the authors pro-
pose a handshaking procedure, during which they exploit the fact
that the zero subcarrier in each band is only affected by the phase
offset ϕm indicating the CFO and the PLL phase offset. This compo-
nent is constant but has different signs on the transmitter and receiver
side, assuming channel reciprocity:

ytx[m, 0] = ejϕmH[m, 0] + ztx[m, 0] (13)

yrx[m, 0] = e−jϕmH[m, 0] + zrx[m, 0], (14)

During the frequency hopping procedure, the receiver collects for
each band the ytx[m, 0] and yrx[m, 0], and then multiplies them to
obtain the squared CFR samples in the zero subcarrier for each band.
Next using the relative CIR estimated from the previous step and an
optimization function, the correct ToF is estimated.

3.5 Cramer-Rao Lower Bound

Many studies derive the CRLB as a benchmark to evaluate the
performance of developed algorithms, primarily in estimating the
ToA [4, 11, 12, 23, 27]. The CRLB represents the absolute lower
bound on the variance of an unbiased estimator [23] and is computed
as the inverse of the Fisher information matrix (FIM). In [4], the FIM
is derived from the partial derivatives of the likelihood function with
respect to the delay parameters. The authors aim improving ranging
and localization using multi-band CSI. Under certain assumptions,
the CRLB for the AWGN channel is expressed in closed form as
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Table 2 Summary of multi-band splicing methods.

Method Summary Publications Pros Cons

Maximum likelihood Maximizes the likelihood of the
observed data for parameter
estimation

[16, 28, 30,
33, 34, 37]

1. High precision
parameter estimation;
2. Robust to noise

1. Tendency to converge to local
optima; 2. High computational
complexity

Subspace-based Utilizes the multi-band signal
structure for estimation

[4, 10, 11,
27, 40, 41]

Lower computational
complexity

Requires large number of
snapshots

Compressed sensing Exploits the sparse nature of the
wireless channel for estimation

[5, 6, 8, 9,
24, 31, 32,
36]

Requires fewer
samples than the
Nyquist rate

1. Requires dense grids; 2. High
computation complexity

(see [4, Eq. 43]):

CRB(τ̂k) =
1

2M · SNRk
, (15)

where M is the number of snapshot measurements. This formula
highlights the impact of the number of snapshots and the signal-to-
noise ration (SNR) on the CRLB. Similarly, a simplified expression
of the CRLB for ToA estimation has been derived [23, Eq. 27]:

CRB(τ1) = CRB0 · 1

1− ρ2(|τ1 − τ2|)
, (16)

where CRB0 is defined as the CRLB for a single reflection and is a
function of the center frequency, bandwidth, and SNR, whereas the
second term is a function of the time difference between two multi
paths (resolution). Based on the CRLB derivations, simulations and
experimental data results, the following observations were made:

Frequency aperture: In [4, 23], simulations show the root mean
square error (RMSE) of the LoS delay estimation or the variance
of the ToA estimation error as a function of SNR, for different
frequency band apertures (illustrated in Figure 5). Results indicate
that larger frequency aperture outperforms consecutive bands, ap-
proaching CRLB. The derivation of CRLB as well depicts that large
frequency aperture, higher center frequency, reduce the CRLB, but
at low SNR, errors increase with a larger frequency aperture. Fur-
thermore, large frequency aperture can introduce modelling errors
due to the frequency dependency of multipath channels. As noted
by the authors in [46], the effects of frequency dependence become
significant when the frequency band aperture exceeds 20% of the
carrier frequency. Additionally, while the impact of frequency aper-
ture has been empirically studied through numerical simulations, it
still requires rigorous theoretical analysis.

MPC spacing: In [11] the authors analyze the impact of MPCs
spacing in the algorithm performance for different SNR values. The
findings suggest that performance is optimal when strong paths are
well-separated, but degrades as the paths get closer. Conversely,
it was shown that non-continuous subbands yield better results
will small subspace, but the performance degrades as the subspace
increases [23].

Number of snapshots: The number of CSI snapshots is another
factor impacting the algorithm’s outcome. As depicted in [4, 27] for a

Subband 1 Subband 2 Subband 3

Channel-hopping

fc,1 fc,2 fc,3
Frequency band aperture

Fig. 5: Frequency distribution in multi-band splicing.

fixed SNR value, the RMSE decreases with the number of snapshots.
The authors primarily focus on deriving the CRLB as a metric for
delay estimation accuracy.

In [46] the authors study the delay resolution limit in multi-band
systems, and introduce another performance metric called the sta-
tistical resolution limit (SRL). The SRL is defined as the delay
separation that equals its own root squared Cramer-Rao bound:

SRL ≜ ∆τ subject to ∆τ =
√
CRB∆τ (17)

Essentially, the delay resolution limit measures the ability to distin-
guish between two closely spaced signal paths. The numerical results
presented in the study reveal the following insights:

(1) As the frequency band aperture increases (i.e., the difference
in carrier frequency between adjacent subbands), the SRL decreases,
illustrating the frequency band aperture gain in multi-band sensing.

(2) The impact of phase distortion on the SRL is minor and can be
mitigated by increasing the frequency band aperture. Yet, the impact
of the phase distortion on the delay estimation accuracy remains still
unexplored.

(3) A small difference in the amplitude of the scattering coeffi-
cients improves the suppression of phase distortion interference.

4 Hardware Distortions

Concatenating the acquired CFR samples across multiple frequency
bands faces the major challenge of the hardware imperfections,
which yield to a time and phase offset for each subband. Therefore,
estimating and compensating the offsets is crucial, before stitching
the narrow bands to obtain a higher resolution CSI. Various stud-
ies have tackled this problem [14, 37, 47], and these approaches can
be classified into two categories based on the arrangement of sub-
bands: contiguous [6–10, 26] and non-contiguous [2, 4, 5, 30]. In this
section, we first outline the sources of phase errors in the receiver
chain and then review how existing research has addressed hard-
ware distortions in both contiguous and non-contiguous subband
scenarios.

4.1 IEEE 802.11 Receiver

The 802.11 receiver’s chain is comprised of several blocks, as illus-
trated in Figure 6. The received RF signal is first down-converted
to baseband signal x(t), which is next sampled by the analogue to
digital converter (ADC) to x[n]. The pre-defined 802.11 preamble is
used to perform correlation with the received signal s[n] in order to
identify the presence of a possible packet. Once a packet is detected,
the signal center frequency is calibrated using the CFO estimation
and correction block. The calibrated signal is sent for further post-
processing, including OFDM demodulation and channel estimation.
The estimated CSI is used by the equalization block to compensate
the channel impact on the propagating signal. The equalized signal is
finally recovered. The blocks in the receiver chain introduces several
distortions in the estimated CSI.
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Table 3 Summary of amplitude and phase offset compensation techniques, for contiguous subbands scenario.

Technique Strengths Weaknesses Use Cases

Amplitude offset
compensation (Averaging CSI
measurements)

Frequency independent; Easy
to implement

Ineffective in highly dynamic
environments, where coherence
time is shorter

Suitable when dealing with
frequency-independent CSI
amplitude errors over
coherence time

Non-linear phase error
correction (Least square linear
fitting or controlled
environment)

Corrects the phase offset due to
IQ imbalance; The offset is
stable over time and RSSI
condition

Non-feasible in all the
environments

Applicable in the cases when
connecting the transmission
pair with coaxial cable in
feasible, or in a controlled
environment

PLL phase offset correction
(Handshaking procedure)

Constant term; Exploit the zero
subcarrier in each subband

Requires coordination between
devices; Complex procedure

Requires a devices with
capabilities to switch between
Tx/Rx mode

PDD correction (Gaussian
distribution modeling)

Averaging over multiple CSI
phase; Simple implementation

Requires multiple samples for
accurate averaging

Suitable for scenarios where
multiple packets are collected

SFO compensation (PDP
matching across subbands)

Effective compensation of the
clock drifts

Requires careful alignment of
the PDP; Assuming clocks
offsets are stable during
splicing period

Applicable in the cases when
the offset is stable during the
measurements

CFO compensation
(Reference subband)

Frequency independent; Phase
of one subband is used for
calibration

Small subcarrier spaced
systems are more impacted

Applicable in the environments
with closely placed subbands

Ambiguities (Handshaking
procedure)

Resolving the ambiguities Requires coordination between
devices; Complex procedure

Requires a devices with
capabilities to switch between
Tx/Rx mode
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Packet Boundary
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Fig. 6: Illustration of phase error sources in the receiver chain.

4.2 Contiguous Subbands

Several studies apply the concept of multiband splicing over adja-
cent [8, 10, 17] or overlapping subbands [26]. As with non-adjacent
subbands, the impact of the hardware distortions needs to be iden-
tified and removed before stitching together samples from all sub-
bands. These distortions can be classified into two main categories:
amplitude and phase errors. The latter can be further narrow down
into linear and non-linear phase errors. A brief description along
with the corresponding sources of these errors, and the proposed
solutions, is given below. Furthermore, a summary of all the solu-
tion methods, along with their strength, weakness and use cases is
provided in Table 3.

4.2.1 Amplitude error: Findings in [7, 26] indicate that CSI
traces collected within a frequency band experience an amplitude
offset. The root source of the amplitude offset is the power control
uncertainty, specifically the automatic gain controller (AGC) in the
receiver cannot perfectly compensate the signal amplitude attenua-
tion to the transmitted power level. Consequently, the measured CSI
amplitude is the compensated power level, which is mixed with the
power control uncertainty error that has to be removed.

Solution: According to [7], the power control uncertainty is fre-
quency independent. Therefore, the author propose averaging all

the collected CSI during the channel coherence time, in order to
compensate for the amplitude offset.

4.2.2 Non-linear phase error: In theory, the end-to-end Wifi
transmission is modeled as a linear system. However, narrow-band
measurements (i.e., 20MHz) conducted over different frequency
bands show that the phase of the sub-carriers, particularly at the
sides of each band are non-linearly distorted [7, 26]. Recent re-
search [26] has shown that the non-linear CSI phase errors are
prevalent within the commodity WiFi devices, and propose that the
source of this offset is a consequence of the IQ imbalance from
the direct down-conversion in the receiver [48]. A direct conversion
receiver employs two quadrature sinusoidal signals for quadrature
down conversion. This involves shifting the local oscillator (LO) sig-
nal by 90 degrees to generate a quadrature sinusoidal component.
If mismatches occur in the gain and phase of these two sinusoidal
signals or within the two branches of down-conversion mixers, am-
plifiers, and low-pass filters, it leads to corruption in the quadrature
baseband signals. In the presence of I/Q imbalance, subsequent to
sampling and fast Fourier transformation (FFT), the estimated and
reported CSI is distorted. The conducted studies have observed that
the non-linear phase errors are stable over time and different received
signal strength indication (RSSI) conditions, but highly depend of
the transmission frequency band.

Solution: Considering that the non-linearity is constant for one de-
vice, a possible proposed solution to remove its impact is to measure
it off-line and to subtract it in order to obtain linear CSI. The non-
linear phase error is measured by connecting the radio chain of the
two WiFi devices through a coaxial cable to eliminate the multipath
effect. Theoretically, the phase of the sub-carriers changes linearly
with its frequency, and the slope is determined by the length of the
communication distance d, as [7]:

ϕk = 2π (f0 + k∆f)
d

c
=

(
2π∆f

d

c

)
k + 2πf0

d

c
, (18)

where c is the speed of the signal, k is the subcarrier, ∆f stands for
the bandwidth of one sub-carrier with frequency f = f0 + k∆f .
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The authors in [7], utilize a least square linear fitting algorithm
through the central sub-carriers (15 to 44), which experience a linear
phase to estimate the slope that is used to predict the phase of all the
sub-carriers. Next, the non-linearity is computed as the difference
between the theoretical linear phase and the measured phase, and
then is subtracted in order to generate the linear CSI. The authors
claim that the measurements conducted for different devices, reveal
that the linear region is in the range of 10MHz (sub-carriers 15-
44) in the commodity WiFi devices and can reach up to 30MHz
(sub-carriers 16-112) for WARP software-define-radio.

However, as mentioned in [26], connecting the transmission pair
using a coaxial cable, is not always feasible. The authors [26] aim
estimating and compensating the following parameters: ϵi,A (gain
mismatch) and ϵi,Θ (phase mismatch) for a specific band (i) respec-
tively due to the IQ imbalance problem, and ζ (an unknown timing
offset). To estimate these parameters, the transmission pair is located
in a strong LoS and weak multipath environment.

PLL phase offset: In a system, the PLL is responsible for generating
the center frequency for the transmitter and the receiver, starting at a
random phase. Hence, jumping at different center frequencies, leads
to a random phase offset, which needs to be compensated before
splicing the CSI samples.

Solution: The authors in [6, 8] propose a handshaking procedure
to eliminate the offset due to the PLL and CFO. According to the au-
thors, the zero sub-carrier in each band is not polluted by any other
kind of phase offset, beside the offset induced by PLL and CFO.
This constant error term has the same absolute value in the trans-
mitter and the receiver but with different sign, whereas the CFR is
the same on both ends due to channel reciprocity. The author exploit
this characteristic to multiply the CSI measurements at the receiver
and the transmitter, to recover the wireless channel and eliminate the
impact of the offset.

4.2.3 Linear phase error: Once the nonlinearity in the CSI
phase is estimated and compensated, the residual CSI phase value
from any subcarrier n ∈ N can be expressed as [7, 26]:

ϕn = θn + n · (λb + λ0) + β,

where θn is identified as the subcarrier phase rotation due to the
propagation, λb is the phase error coming from the packet detection
delay, λ0 is the phase error caused by the sampling frequency offset,
and finally β is the phase error introduced by the central frequency
offset. A brief introduction of the source error and the proposed
solution of each of the aforementioned components is presented
below.

PDD: Once the received signal is downconverted and transformed
in the digital domain, using the ADC, the process of packet detection
takes place. This process identifies the presence of a packet through
energy or correlation detection. Whenever a packet is detected, a
time shift (τb) is also introduced between the identified starting point
of the packet and the ground truth. This time shift is packet-based
and leads to a phase rotation error λb.

Solution: According to [7], the time shift τb, leads to a phase error
per subcarrier k: 2πkτb/N , hence the phase shift can be written as:
λb = 2πτb/N . Considering that the time shift τb follows a Gaussian
distribution with mean zero, the error λb as well follows the same
distribution λb ∼ N(0, σ2). Based on the law of large number, to
remove the impact of the phase error from the PDD, the authors pro-
pose averaging over multiple CSI phases. Nevertheless, according
to [26], averaging over a small number of acquired CSI within chan-
nel coherence time does not help to get the mean, considering that
the variance of distribution is large and leads to a residual phase rota-
tion. The authors combine the phase offset due to the PDD and SFO
as one term, following Gaussian distribution. They use overlapping
bands and represent the phase error mathematically, solving for the
unknown phase offset using ordinary least squares [26, Eq. 6]).

SFO: The sampling frequency offset comes as a result of the mis-
match between the sampling interval at the transmitter and that at the
receiver [7, 26, 49]. Due to the mismatch, the received signal experi-
ence a time shift after the ADC block with respect to the transmitted
signal, which translates to a phase rotation λ0. According to [26],
the SFO can be considered nearly constant, since the clock offsets
are stable withing short times.

Solution: The authors in [7] express the fractional difference in the
sampling frequency between transmitter and receiver as ζ = fs

fr
− 1.

The SFO is defined as λ0 = ζ′, where ζ′ indicate ζ multiplied
with a constant. Since the clocks offsets are stable in the order of
minutes [50], the SFO is considered constant during the process
of multiband splicing. To remove the impact of SFO, the authors
rely on the assumption that the PDP from different frequency bands
should look the same after the SFO is compensated, since the char-
acterized channel is the same. For each frequency band, the CSI
phases from all the subcarriers are stacked into a vector. Next for
each two bands, the vectors are gradually rotated into the frequency
domain, until the PDPs best match each other. The authors define
the similarities of two PDPs by computing the power level differ-
ences (P1andP2) as follows: ρ(P1, P2) =

1
∥P1−P2∥2 . A high value

of ρ(P1, P2) indicates that the PDPs are similar.

CFO: The carrier frequency offset is a result of the misalignment
between the transmitter and receiver’s local oscillators. According
to [51], factors such as temperature changes and aging, influence
the oscillator frequency to drift slowly, resulting in a slowly varying
CFO between a communication pair. Even though the CFO estima-
tion and compensation is part of the receiver block, due to these
errors this compensation is performed partially leading to a residual
phase offset β that is fast time-varying. According to [49], compared
to the single carrier systems, OFDM systems are more sensitive to
frequency offsets, particularly when using small subcarrier space.

Solution: According to the authors in [7], the CFO is frequency
independent, and has no influence in the per-subband derived PDP.
Given this observation, they do not derive the CFO β, but when apply
the multiband splicing, the phase obtained from any band is used as
a reference to calibrate the phases of the other bands.

Ambiguities: The inherent ambiguity is an important factor that in-
fluences the correct estimation of the ToF. According to [8], a ∆f
separation in the frequencies of measured CSI, translates into an am-
biguity of multiplies of 1

∆f in the time domain. To understand the
concept of ambiguities, we consider the following example [6]: two
CIRs for the same channel are defines as given in Equation (2):

h(1)(τ) =

K∑
k=1

c
(1)
k δ(τ − τ

(1)
k ) (19)

h(2)(τ) =

K∑
k=1

c
(2)
k δ(τ − τ

(2)
k ), (20)

where each CIR comes along with a corresponding set of phase
distortion parameters: δim, ϕim, i ∈ {1, 2},m ∈ [M ], where in this
case δim denotes the timing offset due to the PDD and SFO, and
ϕim represents the phase offset from the CFO and PLL. Assume the
parameters from the two CIRs are related as follows:

τ
(2)
k = τ

(1)
k − δ,

c
(2)
k = c

(1)
k ej2πϕ, for all k,

δ
(2)
m = δ

(1)
m + δ,

ϕ
(2)
m = ϕ

(1)
m + ϕ, for all m,

where δ and ϕ are arbitrary values. In these circumstances, the two
received signals will match: y(2)[m,n] = y(1)[m,n] for all m,n.
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Table 4 Summary of phase offset compensation techniques, for non-contiguous subbands scenario.

Technique Strengths Weaknesses Use Cases

Phase offset compensation
through handshaking
procedure

Frequency independent;
Hardware imperfections are
represented by a single
component

Assuming channel reciprocity Suitable in the cases when
channel reciprocity applies

AoA/AoD calibration Eliminates PLL offset using
local calibration RF cables;
Reduces complexity by using
an additional WiFi card
dedicated for calibration

Requires additional hardware
(i.e., WiFi card)

Suitable for precise AoA/AoD
estimation

ToF sanitation (Linear phase
subtracting)

Removes the offset due to
symbol timing offset (STO)

Limited to synchronized RF
chains

Suitable for ToF estimation in
systems with synchronized RF
chains

Anchor-based
synchronization

Addresses the issue of
non-idealises

Requires an anchor path Applicable in multi-band
system

Hence it can observed that it exists two ambiguities when estimating
CIR; the first one is a circular shift of the CIR in the delay domain,
and the second one is a global phase shift of the CIR coefficients. In
the case of ToF estimation, the delay shift is crucial.

Solution: The authors in [6] propose a handshaking mechanism
for resolving the ambiguities described in the third step of the
algorithm given in Section 3.4.

Other works take different approaches in addressing the impact
of the hardware distortions. As described in Section 3.3, ToneTrack
performs amplitude and frequency alignment, and it does not take
into consideration the impact of ambiguities. In Chronos [8], the au-
thors use the assumption that the zero subcarrier is not impacted by
the PDD, hence is identical in phase to the true channel, to resolve
the issue of PDD. Furthermore, channel reciprocity is exploit to ad-
dress the problem of the phase offset. The authors do not consider
the issue of ambiguity since it corresponds to a multiply distance of
60m, which is not typical distance for an indoor environment.

4.3 Non-Contiguous Subbands

Applying the multiband splicing technique over adjacent subbands
is not always feasible, as closely spaced channels might be occupied
by other applications. In such cases, the amplitude and phase off-
set can not be removed using the same techniques as in the case the
subbands are contiguous. Table 4 summarizes the methods address-
ing the issue of phase offset in the case of non-contiguous subbands,
along with theirs strength, weakness and use cases.

In [4], the authors consider a scenario composed of a mobile node
and an anchor. The phase offset from the hardware imperfection is
represented by a single component ψ. Assuming that the nodes are
not phased synchronized ψM,i ̸≈ ψA,i, then the CSI acquired at the
mobile node will look as following: hM,i = Ψihi, where hi is the
CSI vector and Ψi = e−jψiIN , where N is the number of the
subcarriers, IN is the NXN identity matrix, and ψi = ψM,i −
ψA,i is the unknown phase offset at the ith carrier frequency. The
authors assume that the phase ψi remains the same for a fixed carrier
frequency, and it has opposite signs when estimated at the anchor and
mobile node. Assuming channel reciprocity, one can write the CSI
collected at the anchor as following: hA,i = Ψ∗

ihi. Next, the square
root of the point-wise product between the collected CSIs is derived
as: hD,i = (hM,i ⊙ hA,i)

1/2 = ±hi eliminating the phase offset.
Similarly, in [2] a scenario consisting of an AP and a user is

considered. The authors present M3, a mechanism that performs
device localization using the ToF information of the LoS path and
the reflection signals. For higher resolution ToF estimation multiple
channels are utilized to increase the spectrum. Nevertheless, the is-
sue of the phase offset is addressed before estimating the parameters
of AoA,AoD and ToF, as following:

Calibration for AoA and AoD: The PLL generates a phase offset for
each RF chain, which does not change unless the WiFi device is re-
set. To eliminate the PLL offset, the authors use the local calibration
technique, where the devices are connected via RF cables to com-
pute the phase offset [2]. A phase matrix is establish, including the
phase at each end node and the phase rotation between the anten-
nas, aiming to calibrate the unknown phases at the transmitter and
receiver. To reduce the computation complexity, a additional WiFi
card is used dedicated for calibration purposes.

Sanitizing ToF: According to [2], the ToF estimation is influenced
by the random phase offset due to the STO and PDD. The algorithm
applied for the sanitation of the ToF is similar to the one applied
in [22]. Considering that all the RF chains in the WiFi card are
synchronized, then the STO is the same for all the antennas for a
particular subcarrier. The STO is represented as a linear frequency
component in the channel’s phase response. The authors in [22] show
that subtracting the linear fit that is common to the unwrapped phase
response of all antennas before estimating multipath parameters
removes the variance caused by varying STO.

HiSAC [5] is another mechanism operating on multiple non-
contiguous channels, that addresses the issue of unwanted offsets in
the receiving signal. These unwanted offsets are specific to a com-
munication pair and are a consequence of the time-varying drifts of
the LOs from their normal oscillating frequency, and a random initial
offset. The authors categorize them into three main groups: carrier
frequency offset, timing offset, and random phase offset. CFO re-
sults from time-varying differences between transmitter and receiver
local oscillators. Generally, systems attempt to estimate and correct
for CFO, but this results in residual errors causing fast-varying CFO,
leading to cumulative phase shifts across packets or OFDM slots.
Time offset is due to the lack of time synchronization between the
communication nodes, and is time-varying causing a phase term that
increases linearly with the subcarriers in the case of an OFDM wave-
form. The random phase offset is a result of the non-idealities in a
communication pair and the phase noise. It might be present even
between different multibands in the same subsystem LO. In order to
achieve phase synchronization between the communication nodes,
the authors exploit an anchor path, which is a LoS or NLoS path
seen by all the subsystems. The anchor path is used by each subsys-
tem to initialize the time offset accurately, and then compensate for
the time offset and phase offset. Nevertheless, the algorithm assumes
that the time difference between CFR estimates at different time in-
stances and in different subsystems is short enough to consider the
channel parameters to be constant.
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5 Open Research Directions

Coherent multi-band splicing is a rather novel technology. The re-
search community has primarily focused on identifying fundamental
limitations, such as hardware distortions, subband spacing, and num-
ber of snapshots. In the following, we summarize several open
challenges and possible future research directions, which are classi-
fied into three groups: hardware challenges, antenna beamforming,
and algorithm design.

5.1 Hardware Challenges

The issue of the phase offset introduced by hardware distortions has
already been studied in the literature with respect to the multi-band
splicing systems. Several sources of these distortions are identified
and algorithms have been developed to estimate and compensate
their impact, before the measurements from different subbands are
concatenated. However, the following aspects have not yet been
investigated.

Mobility: Mobility and the Doppler effect are another aspect that
remain unexplored in multi-band concatenation. Doppler effect in-
troduces additional phase shift in the subbands CFRs, due to the
frequency spread. The impact of these shifts on the stitching process
has not yet been analyzed.

Phase Noise: When moving to high frequencies, one of the primary
challenges is high phase noise [52]. Oscillators at high frequencies
exhibit higher noise power spectral density, and the increased band-
width contributes to phase distortion. Channel coherence time also
reduces significantly, becoming a bottleneck for the number of hops
and measurements that can be obtained. Further investigations are
necessary to study the impact of the phase noise on the performance
of the algorithms and the limitations introduced by the coherence
time.

5.2 Antenna Beamforming

Most research has concentrated on the frequency range between
2.4GHz to 7GHz, leaving higher frequency bands like 60GHz
largely unexplored. WiGig, and specifically 802.11ay operates at
60GHz and supports 2.16GHz bandwidth per band. By combin-
ing four channels, it can achieve a total bandwidth of up to 8.64
GHz, reaching cm level resolution. Although a few recent works
have focused on high frequencies (i.e., 60GHz [5, 24]), many as-
pects remain under investigated, such as the phase noise and the
channel coherence time. While concatenating frequency bands that
are very further apart (i.e., sub-6GHz and 60GHz) is not feasible
due to the different signal propagation characteristics, smarter ap-
proaches that combines knowledge obtained from the PDP of each
frequency bands might be useful. Further research is this direction is
strongly required.

Additionally, communication in higher frequency bands is usu-
ally linked to beamforming, which is crucial for overcoming high
attenuation and extending communication range. However, such an-
tennas are characterized by very narrow beams, which provide a
limited view of the environment (mostly LoS component and a very
few reflections). In these circumstances, we can distinguish between
omnidirectional sensing at low frequencies and non-omnidirectional
sensing at millimeter wave frequencies. Non-omnidirectional sens-
ing looks to be particularly interesting for applications such as active
ranging and localization, but it is less suitable for human sensing or
passive sensing, where a broader characterization of the channel is
necessary.

When integrating new technologies such as reflecting intelligent
surfaces (RIS) in the communication systems, the system will ben-
efit the splicing concept for calibration of the artificially created
multipath environment. The same holds for applications like local-
ization, ranging, and human sensing. Here RIS may help to obtain a
wider view on the environment despite very narrowband antennas in
mmWave systems.

5.3 Algorithm Design

Despite the enhancements in existing multi-band splicing algo-
rithms, several aspects still require further investigation from our
perspective.

Available Bandwidth: As mentioned, multi-band splicing extends a
communication system to support sensing applications with high
accuracy, such as localization, ranging, and human sensing. To
achieve high accuracy, the effective bandwidth is increased virtually
by concatenating multiple contiguous or non-contiguous narrow-
band samples. Existing studies have shown good accuracy results;
however, the issue of spectrum availability over time has not been
addressed. Considering that the spectrum is shared among several
users, the amount of available bandwidth might not always be suffi-
cient for the sensing application to reach the same level of accuracy.
None of the existing studies so far have addressed this issue, which
requires dynamic adjustments to handle this situation effectively.

Design: One of the main bottlenecks when moving to high fre-
quencies is addressing the data storage issue while providing high
accuracy and real time processing. Enhanced models that allow
quick measurements throughout several narrow frequency bands,
within coherence time, and online postprocess the data, without
leading to data storage issues are necessary.

6 Conclusions

Multi-band splicing is gaining increasing attention, particularly with
the transition from 5G to 6G and from WiFi6 to WiFi7. By lever-
aging existing infrastructure, it expands classical communication
systems to also support highly accurate sensing applications. Nev-
ertheless, there are still many open questions that need to be investi-
gated to mature the technology. In this survey, we revisited the state
of the art in multi-band splicing and highlighted challenges which
need to be studied from the research community. We see this survey
as a reference for beginners in the field as well as for practitioners
who aim using multi-band splicing for sensing applications.
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