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Abstract—Detecting abnormalities early by deploying a network
of mobile nanosensors within the human body remains a
challenging task. Current methods for abnormality detection
rely on placing gateways at arbitrary locations. Given the critical
importance of timely monitoring and detection in severe infections,
relying on arbitrary gateway locations introduces delays in
detection. In this work, we conducted an analysis of the impact
of gateway placement and infection locations on detection time,
detection ratio, and the average Peak Age of Information (PAoI).
Furthermore, we also added decay of nanosensors similar to
operation in the human body. We investigated its implications
on both the detection ratio of abnormalities and the average
PAoI. We employed a Monte Carlo simulation involving 1000
nanosensors circulating in the HCS for 500 seconds. The results
revealed that the favorable gateway position is at the heart,
minimizing detection time and enhancing the detection ratio
for various infection locations. Furthermore, we observed that
the detection ratio exhibited reduced variance with increased
decay rates in nanosensors. Analyzing the PAoI across varying
decay rates highlighted the importance of nanosensor quantity in
relation to decay rate in ensuring accurate and timely infection
localization.

Index Terms—Nanosensors, Nano Communication, Human
Circulatory System, Abnormality Detection, Nanosensors Decay

I. INTRODUCTION

IN recent years, nanocommunication has revolutionized the
field of healthcare, opening up new frontiers in disease

detection and treatment. One promising application lies in
deploying nanosensors within the Human Circulatory System
(HCS), which can detect biomarkers released by abnormalities,
particularly cancerous tissues [1]. These nanosensors are
engineered to recognize and respond to specific biomarkers
indicative of cancerous tissue abnormalities [2]. The injected
nanosensors monitor the bloodstream, collect data from adja-
cent body regions, and report their information to an external
monitoring device through a gateway, as depicted in Fig. 1.

The implementation of Internet of Bio-Nano-Things (IoBNT)
illustrates the use of a gateway to forward the reported
information to healthcare professionals. A biohybrid implant
comprising 3D engineered skeletal muscle that is capable of
performing sensing at a molecular level and forming a wireless
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Fig. 1. Nanocommunication-based abnormality detection system. a) Human
circulatory system. b) Communication between nanosensor and the gateway.
c) Nanosensors detecting biomarkers at the target location.

link is described in [3]. The device utilizes a combination of
3D-printed scaffolding, an implant antenna, and engineered
skeletal muscle tissue to enable a novel form of bio-sensing.
A target molecule triggers the bio-nanosensor, causing it to
reconfigure the antenna. The design and performance analysis
of such a wireless implant antenna for in-body sensors is
presented in [4]; which creates a wireless link with a wearable
antenna (external gateway) [5].

Prior works on nanosensor-to-gateway communication have
explored various gateway placements within the human body,
such as the heart, wrist, hip, and ankle [6], [7]. However, in
the context of serious infections, where timely monitoring and
detection are critical, relying on randomly chosen gateway
locations contributes to delays in the detection process. To
address this, we focus our analysis on a single gateway,
which serves several purposes. Firstly, it aligns with real-world
constraints where cost and resource limitations might make
deploying multiple gateways infeasible. Secondly, it allows us
to precisely analyze the impact of a gateway’s placement on
detection time and ratio, offering insights into optimization.
Finally, it simplifies the evaluation process, enabling us to focus
on this crucial design aspect without additional complexities.
We acknowledge the potential benefits of multiple gateways
and plan to explore the complexities and trade-offs of such
systems in future.

In this context, we extend our previous work of abnormality
detection [8] to analyze the strategic placement of the gateway
in various locations, aiming to ensure that this placement does
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not compromise either the detection time or the detection
ratio. Accounting for timely detection, the metric Age of
Information (AoI) is utilized to assess the freshness of in-
formation originating from a source (here, infection location)
and analyze timely updates, taking into account the constraints
of the molecular communication channel [9]. Leveraging the
Peak Age of Information (PAoI) metric, we gain insights into
the temporal dynamics of information flow at the receiver (here,
gateway). In healthcare scenarios, especially in the dynamic
environment of the circulatory system, having the most up-to-
date information is crucial for prompt responses to emerging
infections or abnormalities.

In this work, we analyze the optimal location of the gateway
and develop a methodology to evaluate the detection time
and detection ratio of the abnormalities. The nanosensors are
more likely to undergo exponential decay over time due to the
degradation processes within the human body [10, Eq. (60)].
Consequently, the decay of nanosensors over the course of their
mobility introduces uncertainties in detecting abnormalities,
presenting a challenge to the early detection associated with
conditions like cancer. Therefore, it is crucial to understand
the influence of nanosensor decay on the detection ratio. This
comprehension is essential for recognizing the significance of
incorporating the lifespan and stability of nanosensors when
devising strategies for abnormality monitoring and diagnostics.
Consequently, to analyze the timely identification of abnormal-
ities, we investigate the dynamics of AoI concerning the decay
of nanosensors. In this directions, our major contributions can
be summarized as follows:

• We develop a methodology to evaluate the detection
time and detection ratio of the abnormalities for optimal
localization of the gateway;

• We implement the decay of nanosensors within the HCS
and analyze its impact on the detection metrics;

• We evaluate the average PAoI metric for nanosensor to
gateway communication for different scenarios.

Since molecular communication is an interdisciplinary
domain, developing models supported by simulations and
analysis is crucial to drive progress and harness the potential
of nanosensor networks for healthcare applications. Our work
focuses on analysing optimal gateway placement and the impact
of nanosensor decay for timely and reliable transmission of
critical health data collected within the human circulatory
system.

II. RELATED WORK

To enhance nanocommunication-based healthcare applica-
tions, several research works have emerged, focusing on
deploying nanosensors into the HCS for the early detection,
precise localization, and continuous monitoring of abnormali-
ties, such as infected cancerous tissues [1], [11]. The premise of
abnormality detection has been on inserting mobile nanosensors
into the blood vessels of the HCS to detect biomarkers secreted
by infected cells [12]. For instance, Mosayebi et al. [13]
proposed a model where nanosensor reading is captured by
a static Fusion Center (FC) to measure activation levels,
indicating the presence of abnormalities. They also explored the

detection of biomarkers by reactive nanosensors throughout the
tissue, activating upon encountering biomarkers and signaling
the presence of the target to a FC.

In their pursuit of early abnormality detection, Simonjan et al.
[14] concentrated on identifying specific regions within the
body that manifest abnormalities. The system comprises anchor
nodes, macroscale devices attached to the skin, and nanosensors
floating in the bloodstream. To overcome communication range
limitations and high sensor mobility, the nanosensors are
equipped with inertial measurement units (IMUs). The gathered
information is then communicated to the anchor nodes to report
the detected abnormalities. A Markov model is utilized in [8] to
compute the distribution of mobile nanosensors within human
blood vessels. They integrated a machine learning (ML)-based
method to assess the transition probabilities of the Markov
model and determine the location of abnormalities in the blood
vessels. Another method for detecting abnormalities include
a two-tier network, where artificial cells (ACs) in the first
tier monitor changes in biomarker concentrations to identify
abnormalities [15]. For enhanced detection, Solak and Oner
[16] employ a sequential probability ratio test, combining
decisions from various sensors in a centralized network.
They optimize the average sample size for decision-making
by using an adjustable observation window size. Semantic
and subjective information could significantly impact how
freshness is interpreted within the AoI framework. While AoI
focuses on the time since information was generated, semantic
information could provide insight into the context and continued
relevance of the data. For example, information regarding an
infection may lose semantic relevance over time if the body’s
immune response has addressed it. Furthermore, semantic
and subjective information could enable the prioritization or
categorization of data from nanosensors. Understanding how
biological systems use semantic information [17], [18] could
inspire ways to optimize AoI-based communication strategies
within synthetic molecular communication (MC) systems. The
subjective measure could evaluate the frequency with which
transmissions from nanosensors result in appropriate responses
from the external gateway. Thus, it is essential to assess
the average PAoI metric in the context of communication
from nanosensors to the gateway for comprehending timely
information delivery [6]. Despite numerous studies on detecting
abnormalities, the impact of the decay of nanosensors on the
detection quality was rarely considered so far. The decay of
nanosensors has a significant impact. As chemical reactions
will degrade the nanosensors, it is crucial to analyze the impact
on the detection performance with time. In the context of
decaying nanosensors, analyzing AoI quantifies the decline in
data reliability, enabling timely abnormality detection.

III. SYSTEM MODEL

The AoI-based abnormality detection system model essen-
tially includes the following components:

• Nanosensors: Nanosensors constantly patrol the blood-
stream and are designed to detect specific biomarkers
released by infection location. When a nanosensor en-
counters the biomarkers, it gets activated and prepared to
report the detection at gateway. The detection is reported
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Fig. 2. HCS as represented in BVS framework.

at the gateway and the nanosensor is reset to fetch fresh
status updates on the infection location.

• Gateway: A gateway is an on-body computing device
placed at different locations on the human body, such as
a wearable antenna [5]. It collects data from nanosensors,
analyzes this data, alerting external monitoring devices
about potential health risks.

• Communication: The nanosensors communicate with the
gateway within the human body through commonly
considered intra-body communication link, such as ter-
ahertz or ultrasonic channels [8]. We assume that the
communication link is error-free.

Following the model in our previous work [8], we consider
the nanosensors move along passively within the HCS. The
nanosensors flowing through the vessels activate upon detecting
the biomarkers released by the infection location. These
traveling nanosensors report the detection of an infection when
they encounter the gateway along their path. We utilize the
data generated from the BloodVoyagerS (BVS) [19] framework,
which simulates the mobility of nanosensors in the bloodstream
within all major vessels of the HCS. Each vessel and organ
included in the simulator is assigned a distinct identifier
(vesselID), the details of which can be found in our previous
work [8]. The raw data from BVS provides the global position
of the nanosensors randomly visiting vessels within the HCS.

IV. MODELING DETECTION METRICS AND DECAY

In this Section, we introduce the detection metrics, such as
detection ratio, detection time, and average PAoI, and provide
insights into the modeling of nanosensors decay over time. We
compute the detection ratio with the classical approach through
the ratio between the total of successes and the total of attempts.
In the context of nanobot flow within the HCS, they exhibit
varied trajectories as they navigate a loop, as depicted in Fig. 2.
For example, a nanobot traveling along a specific circuit may
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Fig. 3. Decay of nanosensors over time.

encounter random changes at intersections along its path. We
determine the total of successes by identifying the total number
of nanosensors moving in a loop through the infection location.
Implicitly, here we assume that the nanosensor detects the
presence of biomarkers whenever it flows through the infection
location. For the denominator, we identify the total number of
nanosensors traveling through the loops that also enclose the
gateway’s location (more illustration on loops can be found in
[8]) as

δ =
Σi∈Li

Ni

Σi∈Li,gNi
, (1)

where Ni is the total of nanosensors flowing through the human
body, Li represents the set of loops including the infection
location, and Li,g represents the set of loops including both the
infection location and gateway. These nanosensors individually
communicate with the gateway to report the presence of
infections. The gateway processes data from each nanosensor n
separately and then computes the detection time Tn as

Tn = t′n − tn, (2)

where tn is the time instant of the nanosensor flowing across the
infection location and t′n represents the time instant when the
nanosensor travels across the gateway. To compute the average
PAoI, we record two time metrics [20]. The generation time
per nanosensor, denoted as τj , which refers to the time instant
when the nanosensor travels through the infection location,
and the travelling time from the infection location to the
gateway, denoted as gj . Using these two metrics, the PAoI
can be computed as

Aj = τj + gj − gj−1, (3)

where gj − gj−1 is the time interval between two consecutive
receptions, and j ∈ N. The average PAoI can be computed as
E[Aj ].

We implement information decay using an exponential
function to model the natural degradation process resulting
from chemical reactions, as described in [10, Eq. (60)]. This
decay simulates the realistic impact on the nanosensors flowing
within the HCS and is expressed as follows.

N(t) = N0 · e−rt, (4)

where N(t) is the number of nanosensors at time t, N0 is the
nanosensor quantity at t = 0 s, and r is the decay rate. For
the purpose of illustration, as depicted in Fig. 3, we consider
the following percentage decay of nanosensors over time: 50,
70, 90, and 99, which corresponds to four distinct decay rates
r: 0.0014, 0.0024, 0.0046, and 0.0092. Initially, at t = 1 s,
1000 nanosensors within the HCS are subject to exponential
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Fig. 4. Detection time vs. gateway locations (note the different y-axis scale).
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Fig. 5. Detection ratio for varying decay % corresponding to decay rates
0.0014, 0.0024, 0.0046, and 0.0092 (gateway location: Heart; infection
location: Head).

decay. This is implemented by using the corresponding values
from the decay curve at each time instant to estimate the total
number of nanosensors to be removed within the HCS. We
randomly select nanosensors from the dataset generated by the
BVS at each time instant and remove associated data entries.
This aligns the data with the simulated decay, reflecting the
gradual reduction in nanosensors within the HCS over time
according to the decay rates. The introduction of decay is
expected to maintain average values for metrics like detection
time. This is because the metric is primarily determined by the
time it takes for a nanosensor to report the abnormality upon
encountering specific biomarkers.

The decay of nanosensors may pose a challenge by poten-
tially affecting the number of samples reported at the gateway,
although its direct influence on the detection time remains
limited. Since decay over time results in the reduced number of
nanosensors, it becomes more likely that it affects the detection
of abnormalities. The dynamic and stochastic nature of the
detection process, introduced by varying lifetimes of decaying
nanosensors, can contribute to increased variability in the timing
of detection events. Thus, it is crucial to analyze the impact of
the system as decay progresses, which we discuss in the next
section.

V. RESULTS AND DISCUSSION

We performed a Monte Carlo simulation with 1000 nanosen-
sors traveling in the HCS for 500 seconds and computed
the detection time, detection ratio, and average PAoI. We

Fig. 6. Average detection ratio vs. decay in nanosensors (note distinct y-axis).

considered three different locations of the gateway, such as
the heart, left wrist, and left femoralis, and four different
infection locations, such as the head, thorax, kidneys, and
foot. Fig. 4 illustrates the normalized histogram depicting the
time elapsed for nanosensors in the successful detection of
various infection locations. The detection time is shorter when
placing the gateway at the heart compared to locating it at
the wrist for infections in the upper regions of the human
body. This is attributed to the higher frequency of heartbeats,
averaging 60 to 100 times per minute. The central position
of the heart ensures more rapid access and transmission of
information, enhancing the efficiency of the detection system.
The gateway at femoralis incurs the lowest detection time for
an infection at the lowest body part. To ensure timely detection
across diverse body regions, prioritizing the heart for gateway
placement emerges as a favorable choice due to its consistent
efficiency and reduced delays. In Fig. 5, we can observe how
the detection ratio at the gateway for an infection location at
head changes as decay progresses. As decay rates increase, a
relatively more number of nanosensors are eliminated over time
within the HCS, resulting in a decrease in the overall detection
ratio. We notice that slower decay rates may maintain detection
capabilities at the gateway for a more extended period.

Fig. 6 illustrates the average detection ratio with the varying
rates of decay in nanosensors. We show the results for different
infection locations while gateway is located at the heart. The
reduced variance in the detection ratio in scenarios with
increased decay rates is attributed to the diminished number
of samples in the system, a consequence of the decay process.
Fig. 7 depicts the variation of average PAoI with respect to
increasing decay rates of nanosensors. We observe a notable
increase in the average PAoI with the rise in nanosensor decay,
indicating that as nanosensors decay more rapidly, the time
for information to reach its peak freshness at the gateway
also increases on average. Lower PAoI signifies more accurate
information about the infection location, reducing the likelihood
of delays and enhancing the precision of infection localization.
Our analysis emphasizes the critical role of the quantity of
nanosensors in the HCS. A too small number leads to delayed
transmission of infection detection status updates.
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Fig. 7. Average PAoI vs. decay in nanosensors (note distinct y-axis).

VI. CONCLUSIONS

This work analyzed the effects of gateway placement and
nanosensor decay on the detection of abnormalities. Our
findings emphasize that placing the gateway at the heart
enhances the efficiency of abnormality detection in the complex
network of the human body. We observed that the decay of
nanosensors has a significant impact on both the detection ratio
and the average PAoI. Optimizing gateway placement reduces
the time for receiving fresh status updates from infection
locations, enhancing the overall effectiveness of monitoring
systems with mobile nanosensors. The placement of the
gateway indeed influences the detection time; however, finding
the optimal trade-off between detection time and detection ratio
is challenging. The best balance depends on the nature of the
abnormality being detected, with some conditions allowing for
a short delay while others necessitate early detection. Achieving
an optimal balance is context-dependent, involving a careful
consideration of the importance of timely detection against the
detection ratio.

While our analysis demonstrates the potential impact of
optimized gateway placement and highlight the importance
of considering nanosensor decay, translating this system into
real-world healthcare presents several significant challenges.
These include developing nanosensors with appropriate bio-
compatibility, longevity, and reliable sensing mechanisms
within the complex bodily environment, establishing robust,
low-power communication and networking protocols for a large
number of nanosensors within the body, addressing potential
adverse effects such as immune response or interference with
biological processes, and ensuring data privacy and security
within a dynamic, distributed system. Future work will require
collaborations across various disciplines to address these
challenges and move this concept closer to clinical applications.
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