
1

Flexible Training and Uploading Strategy for
Asynchronous Federated Learning in Dynamic

Environments
Mengfan Wu, Student Member, IEEE , Mate Boban, Senior Member, IEEE ,

and Falko Dressler Fellow, IEEE

Abstract—Federated learning is a fast-developing distributed learning scheme with promising applications in vertical domains such as
industrial automation and connected automated driving. The heterogeneity of devices in data distribution, communication, and
computation, when deployed in dynamic environments typically with wireless communication, poses challenges to traditional federated
learning solutions, where successful learning depends on balanced contribution from participants. In this paper, we propose a flexible
communication strategy for devices in asynchronous federated learning, which adapts the training and uploading actions based on the
condition of the communication link. We propose a novel method of computing aggregation weight based on model distances and
number of local optimizations, to control errors introduced in asynchronous aggregation while maximizing learning speed. We prove
the convergence of the learning tasks analytically under the new scheme. The improved performance is rooted in the increased
number of optimizations during training, which grows by 12% through opportunistically condensing model uploading during good link
condition periods. By facilitating timely communication between devices and server, combined with the novel aggregation weight
design, our method reduces the communication resources in dynamic environments by at least 5% while even slightly increasing the
learning accuracy.

Index Terms—Asynchronous federated learning, flexible communication strategy, flexible training and uploading, dynamic
environments, wireless communications

✦

1 INTRODUCTION

Given the continuous increase in computing power of end
devices, connecting at the edge and utilizing this computing
capacity together has been a promising technical direction to
enable fast and ubiquitous computing [1], [2]. To this end,
federated learning (FL), in which participating devices learn
local machine learning models and then exchange them with
other devices to achieve a global model applicable for all
devices, is developed and widely applied [3]. Specifically,
FL is preferred due to its privacy-preserving nature by
sharing learned model rather than local data. Moreover,
requirements on communication resources are also reduced,
due to the smaller size of model compared with the dataset
they are trained on [4].

As FL is deployed in a wider range of scenarios, the
heterogeneity of devices’ computing and communication
capabilities becomes prominent. Heterogeneity in commu-

• M. Wu (Corresponding Author) is with the Munich Research Center,
Huawei Technologies Duesseldorf GmbH, Munich, Germany as well as
with the School of Electrical Engineering and Computer Science, TU
Berlin, Berlin, Germany. E-mail: mengfan.wu@huawei.com.

• M. Boban is with the Munich Research Center, Huawei Technologies
Duesseldorf GmbH, Munich, Germany. E-mail: mate.boban@huawei.com.

• F. Dressler is with the School of Electrical Engineering and Computer
Science, TU Berlin, Berlin, Germany. E-mail: dressler@ccs-labs.org.

• This work was supported in part by the Federal Ministry of Education
and Research (BMBF, Germany) within the 6G Research and Innovation
Cluster 6G-RIC under Grant 16KISK020K and within the framework of
the HORIZON-JU-SNS-2022 project TIMES, co-funded by the European
Union. The views expressed are those of the authors and do not necessarily
represent the project.

nication conditions could originate from different commu-
nication capabilities as well as from the propagation envi-
ronments of wireless communication where the devices find
themselves in [5]. In scenarios where devices communicate
over wireless channels to enable mobility, the variability
of the devices’ link capacity thus poses challenges to the
traditional synchronization stage in FL [6], [7]. For example,
in case high frequency bands (e.g., mmWave or THz) are
used, signal blockage is especially prominent in affecting
link capacity [8]. Therefore, FL devices within the line-of-
sight (LoS) region will be quick to share the learned models
while those in the Non-line-of-sight (NLoS) region will be
constrained to share and receive learned knowledge. Be-
sides variability in link condition, the participating devices
in FL are often designed with multi-tasking purposes which
results in the variability of computing capacity as well.
Safety-critical tasks are assigned with higher priority and
demand computational resources to be allocated timely [9],
which later results in the deceleration of learning tasks for
FL. Common strategies to deal with heterogeneity in FL
include adaptive resource allocation [10], model compres-
sion [11], and stratified client clustering as in hierarchical
FL [12]. However, most of the works do not include specific
modelling of heterogeneous communication and computa-
tion resources. Moreover, when considered, the modelling of
communication resources is usually performed coarsely (as
in [13]–[15] where resource-related variable possible to be
changed per round of learning), thus keeping the adapted
actions of clients fixed during the corresponding time period
[7].

2

To this end, in our previous work [16], a step-wise FL
platform is introduced and allows for accurate realizations
of heterogeneity on communication and computation re-
sources. In this paper, to address the heterogeneity issues
and promote learning efficiency, we propose a flexible learn-
ing and uploading strategy for FL devices to capture a good
communication time window and upload the learned model
efficiently. In case of a prolonged poor communication con-
ditions, the devices are allowed to extend their training
process and wait for better uploading opportunities. The
learning progress of devices will also be uneven as a result
of the flexible learning strategy. To tackle this problem, we
analyze the loss evolution of a global model considering
heterogeneous training progress of each uploaded model.
Based on the analysis, we propose a new way for computing
the aggregation weight at the server, aiming to strike a
balance between assimilating knowledge fast as well as
limiting the error introduced in aggregation heterogeneous
model updates. To the best of our knowledge, our method
is the first study to i) opportunistically adapt the training
and uploading in asynchronous FL based on the commu-
nications constraints while also dynamically computing ag-
gregation weight based on model distances and number of
local optimizations, whose increased heterogeneity results
from the opportunistic approach; and ii) analytically prove
the convergence of the proposed dynamic asynchronous FL
task.

We conduct extensive experiments to show that the
flexible training and uploading strategy combined with the
novel weight design method facilitates the FL tasks in terms
of reaching high accuracy in dynamic environments after a
fixed learning time. Moreover, the communication resource
usage is reduced by more than 5% with the flexibility en-
abled. When learning MNIST with different learning models
(multi-layer perceptron (MLP), convolutional neural net-
work (CNN)), our method with flexibility and customized
weight design outperforms the benchmarks in 29 out of 48
cases. When learning CIFAR10 with CNN, flexible strategy
always helps to improve the performance of various meth-
ods by around 3% in dynamic communication environment.

Our work contributes to the deployment of FL in dy-
namic scenarios as follows:

1) We design and evaluate a flexible training and
uploading strategy for FL devices in time-varying
communication environments with non-stationary
computation resources.

2) We propose a novel method for computing aggre-
gation weight to address the challenges brought
by heterogeneous model updates caused by imbal-
anced data distribution and dynamic computation
and communication resources and further aggra-
vated by our flexible communication strategy;

3) We show through experiments that the flexible
learning scheme is effective in facilitating asyn-
chronous FL in dynamic environments by shorten-
ing the required communication time and improv-
ing the utilization of computation resources.

The rest of the paper is organized as follows.
In Section 2, we elaborate on previous work related to

heterogeneity in FL as well as the proof of learning conver-

gence in FL. In Section 3, the components and algorithms of
our FL system are presented. We provide a theoretic analysis
of the loss convergence with our method in Section 4. In
Section 5, results of experiments are discussed. We conclude
the paper in Section 6.

2 RELATED WORK

2.1 Modelling Heterogeneity
Heterogeneity of data distribution and potential commu-
nication constraints have been highlighted in one of the
first papers proposing FL: FedAvg [17], where the authors
conducted experiments of different tasks with independent
and identically distributed (IID) data and non-IID data.
Although the communication between the server and clients
is assumed to be steady, the client-selection step of [17] can
be interpreted as working with the varying availability of
clients, which is caused by limitations of either computa-
tion or communication resources. Qu et al. [18] and Jin
et al. [19] and Li et al. [20] also adopted such process of
client selection. Specifically in [20], a portion of clients are
simulated to be underperforming, but allowed to upload
incomplete training results to the server within the round
time, so as to mitigate the bias of global model towards
fast workers. The previously mentioned work simulated
the effect of heterogeneity, e.g. the limited participation of
clients and partially trained models. The underlying factor
causing the heterogeneity of clients’ contribution is not
presented in the experiment process. Therefore, whether the
heterogeneity effect is close to reality is to be investigated.
In some other work, the limitations of clients’ resources
are realistically modelled. Wu et al. [21] defines a variable,
following an exponential distribution, to set the number
of batch optimizations processed by a FL client. In FedCS
[10], the uplink throughput for clients to upload models
is drawn from a simulated LTE environment with time-
division resource blocks. Nishio and Yonetani [10] and Wu
et al. [21] focus on the computation and communication
conditions of FL clients respectively. In our previous work
[16], we developed a simulation scheme that models both
constraints with possibility of further customization. In this
paper, we continue to adopt this simulation scheme and
thus model both aspects of the heterogeneity explicitly.

2.2 Approaches to Address Heterogeneity
2.2.1 Data Pruning and Partial Transmission
In [22], the authors experimented with pruning method
to accelerate the training of deep neural network. Such
experiments confirm the redundancy of information in the
neural network, which is possible to be pruned/compressed
in FL as well. By pruning models in either training or
uploading stage, the corresponding resource consumption
can be reduced and thus facilitating the process. Pfeiffer
et al. [23] conducted experiments on partial training and
transmission of quantized model which is adapted along
the resources available to FL clients. Similar approach of
compressing models by quantization can be found in [14],
[24], where quantization of model parameters into fewer bits
is conducted to save communication resources. Moreover,
it is also possible for FL clients to transmit an incomplete

3

part of the model. A common method is to apply matrix
sparsification as in [25], [26] so that only the weights with
greater numerical importance are transmitted. Data pruning
and partial transmission methods can greatly reduce the
communication overhead in FL. Nevertheless, for most of
the case, the scheme of pruning/compression need to be
decided and fixed for the whole training/communication
stage of a round, therefore lacking the agility to respond
to fast-changing conditions of resources. Besides, the com-
putational overhead and time delay introduced in the data
pruning process also need to be weighted with the benefits
depending on the specific scenarios.

2.2.2 Flexible Strategies for Client Participation
A multitude of research has been conducted on the flexible
participation of clients in FL, e.g. allowing partially trained
model updates or stale updates out of the designated syn-
chronization round, and target-driven selection of partici-
pants.

Variable Local Progress: To allow incomplete progress of
local training as a result of computational limitation, Li et al.
[20] designed a parameter of inexactness to set threshold
on the number of local optimization, which is then to be
customized based on the individual availability of resources
of each client in FL. However, the model updates after dif-
ferent number of optimizations are treated homogeneously
with identical weights in model aggregation. In [13], an
offloading scheme, in which FL clients’ computing tasks can
be partially offloaded to the associated small base station, is
proposed to speed up the training process which otherwise
is delayed by slow FL clients. The model heterogeneity
resulted from varying training progress is not discussed. In
our previous work [16], we also allow model updates of dif-
ferent training progress to be aggregated. The aggregation
weights are computed based on clients’ data size, staleness
of the model, and the number of optimizations performed
to train the model. While such method works well in our
settings, theoretical analysis on the convergence of learning
is to be developed. In this paper, we design a method of
computing aggregation weight based on the convergence
analysis and thus provide theoretical support for the success
of the method.

Easing Synchronization Constraints We often use the
term staleness, usually related to the interval between the
two consecutive updates of a client, to distinguish fast
and slow clients in the FL task. For a FL scenario with
clients of heterogeneous computation and communication
capacity, synchronized federated learning could suffer from
low computation efficiency if it aims to collect stale model
updates from slow clients by setting a longer round time.
On the other hand, when setting the round time too short,
the global model would be biased towards fast workers. The
computational resources invested by slow devices are likely
to be discarded if not uploaded to server timely. To address
the dilemma in setting a suitable round time for synchro-
nization, multiple researchers have worked on relaxing the
stringent requirements of round time for synchronization.
While still retaining the global clock for round timing, Wu
et al. [21], Wang et al. [27], and Ma et al. [28] all adopt a
scheme where the stale updates from slow clients are ac-
cepted for model aggregation in later rounds, which is often

named semi-asynchronous FL or buffered asynchronous FL.
They can be further classified by the criteria for the global
clock to step forward, including the time-based synchro-
nization [21] and buffer-based synchronization [5], [28], [29].
While it is beneficial to aggregate multiple model updates
in the buffer to improve the stability of FL, clients, whose
model updates are in the buffer, stay idle and wait for the
distribution of global model. The computational resources
of these clients are therefore not fully utilized. To maximize
the utilization of computational resources, the concept of
synchronization round, together with the global clock to
time it, can be cancelled. In this case, the corresponding
FL scheme becomes fully asynchronous [30]. While Xie
et al. [30] provided an effective weight computing method
(polynomially-decreasing weight w.r.t. model staleness as
), the superiority of it is not explained in the convergence
analysis. We elaborate more on this issue in Section 2.2.3.

Target-Driven Selection of Participants: In both syn-
chronous and asynchronous FL, it is possible to select a
subset of fast or reliable clients to achieve fast convergence
or fairness. For example, Nishio and Yonetani [10] aim
to maximize the number of participants in one round of
aggregation by assigning early time-division resource blocks
to fast participants. Imteaj and Amini [31] propose a scoring
scheme to evaluate the participants’ activity and contribu-
tion and select the most reliable ones. Wang et al. [14] use
a reinforcement-learning-based scheme to perform client
selection as well as bitwidth for compressing models in each
round of synchronous FL. In selection algorithm taking
clients’ status of resource as inputs, clients are often required
to exchange their system information, thus creating addi-
tional communication overhead. Moreover, such exchange
might not even be successful in extreme communication
conditions, e.g. when the FL clients are only able to connect
to the server at sporadically distributed time windows.

2.2.3 Aggregation Weight Design for Mitigating the Adver-
sarial Effect of Stale Model Updates
Stale model updates in FL has been a prominent effect when
synchronization requirements are eased or client selection is
performed. Due to the lack of new information of global
model, stale model updates are deemed to be risky to be
aggregated into global model since the optimization direc-
tion might differ from the direction to optimize the latest
global model. Numerous work has identified this issue and
proposed corresponding solutions. From the beginning of
asynchronous FL, Xie et al. [30] experimented with polyno-
mial and Hinge functions to decrease the weight of stale
model updates. FedBuf in [5] is a semi-synchronous FL
scheme which use a buffer to save the model updates from
a certain number of clients. In the basic scheme, the model
updates inside the buffer are assigned equal weights. For
improvements, Nguyen et al. [5] also adopted the scal-
ing function as in [30]. Polynomially-decreasing function
generally works well but concrete analysis on its good
performance is yet to be developed. KAFL in [29] is also
a FL scheme with buffered model updates for aggregation.
The authors modify the classical datasize-based weight de-
sign with adaptation dependent on the clients’ updating
frequency and the similarity between clients’ model updates
and the global model. Zhou et al. [32] present a weight

4

adaptation method for buffered synchronized FL where
the gradient updates from clients are adjusted based on
their similarity to the average gradient. The learning rate
is adapted with a reciprocal function of the staleness. Wang
et al. [27] designed a weighting scheme when aggregating
updates with different staleness, with a goal to match each
clients’ overall contribution proportionally to the size of
their local data.

We note that in these methods, adapting the aggregation
weights for stale updates usually entails an attenuation
function, which needs to be carefully tuned in trial runs so
as to achieve good performance. There exists methods other
than adjusting aggregation weight based on a deterministic
function. Bäckström et al. [33] introduced a way of adapting
the step size in asynchronous stochastic gradient descent
(SGD) based on the statistical distribution of staleness ob-
served in the learning process.

2.3 Proof of Convergence in the Analysis of FL

Convexity or smoothness is often assumed to facilitate the
derivation of convergence bounds. Nevertheless, there is
a multitude of work [34], [35] pointing out that assum-
ing convexity is unfit for the architecture of most of the
modern machine learning models, therefore leading to the
deterioration of performance of applying such models in
FL. Yu et al. [36] analyzed the neural network structure
in FL and identified that nonconvexity in the final layers
of neural networks caused the performance degrade in
federated optimization. They further proposed solution to
convexify the models and improved the FL performance.
Similar techniques can be adopted to other FL schemes and
thus allowing the assumption of convexity in analyzing
convergence in FL. Normally, we convert the difference
of loss values between two models into the scale of the
difference of the two models by assuming the gradient of the
loss function is Lipschitz-continuous as in [27]. However,
after the conversion, bounding the scale of the difference of
two models is not well-investigated yet in asynchronous FL.
In [30], [37], the difference of two neighboring global models
are directly bounded by the scale of changes obtained from
local optimization, ignoring the errors introduced in aggre-
gating stale updates. On the other hand, without converting
difference of loss values using Lipschitz-smoothness, there
exist other simplified approaches (e.g., [38], [39]) to directly
assume an upper limit of the difference of loss between of
two models, Since the general target of proof of convergence
is to derive a bound of loss difference between the initialized
model and the (imaginary) optimal model resulting in the
least loss, directly bounding the loss difference between two
random models is practically too strong of an assumption
that fails to consider the scale of proximity of two models.

In general, despite the challenges posed by application
conditions, allowing flexible participation suits the charac-
teristics of FL in dynamic environments. Our work follows
this direction and aims to build a system that maximizes
flexibility and also address the heterogeneity issue resulting
from it.

TABLE 1: Variables, parameters, and acronyms used in algo-
rithms, theoretical analysis, and experiments

Notation Definition

k
version of global model, also used as subscript
for terminology related to the k-th model up-
date/aggregation

xk global model after k aggregations

αk aggregation weight for the kth aggregation

τk
index of global model on which that the model used
for the k-th aggregation is trained

hk
number of optimizations performed to yield the k-th
model update

i
index of a FL client, also used as superscript for
terminology related to client i

xi the latest model uploaded by client i

τ i
index of global model on which the client i’s newly
uploaded model is trained

hi number of optimizations performed by client i to
yield its latest model update

xk,h the model trained based on xk after h optimizations

γ, B learning rate and batch size for all FL clients

µ
convexity factor of the model, to be tested for each
task

Emin,
Ed,
Emax

the low, middle and high thresholds for optimization
epochs

g Used as superscript for any terminology related to
global model at the server

αmax maximum value that αk can take

3 SYSTEM DESIGN

In this section, we elaborate on the learning algorithms, the
functions of system components with early stopping and ex-
tended training actions, and the model aggregation scheme
with specific weight design method. Variables, parameters
and acronyms are shown in Table 1.

3.1 Learning Objective

We consider a FL task performed by N devices together
with a model aggregator (server). Data used for training
and testing is distributed as the vector D =

〈
D1, . . . , DN

〉
.

The local dataset Di is only visible to device i. The overall
target of the FL task is to find a model that minimizes
the evaluation loss on the combined dataset D = ∪Ni=1D

i.
Mathematically, with the loss function f , we define the
centralized global task as finding the optimal model x∗

which results in the minimum global loss:

x∗ = argmin
x∈Rd

[F (x) := Ed∼Df(x, d)]

With local loss function defined as f i(x) := Ed∼Dif(x, d),
devices perform local training task aiming to minimize the
local loss x∗

i = argminx f
i(x) via mini-batch gradient-

descent method: x′ ← x − γ · 1
B

∑
d∈Di

B
∇xf(x, d), where

γ is the local learning rate and Di
B is the batch of sampled

data in each optimization of client i.

5

Algorithm 1 Learning System Simulation

Input: N,T, γ,B,Emin, Ed, Emax,D,m // Input parame-
ters: number of clients, total steps, local learning rate,
batch size, three thresholds of optimization number,
dataset distribution, size of model, function fitting thresh-
old

Output: xk

Initialization
Initialize and distribute x0 to all clients
Set parameters: γ,B,Emin, Ed, Emax on each client
Assign local dataset Di to client i, ∀i ∈ {1, 2, . . . , N}
TA← ∅

Optimization
1: k ← 0
2: for t = 1, . . . , T do
3: for i ∈ [N] do
4: client[i].step()
5: if client[i].state == wait then
6: TA← TA ∪ {(i, τ i, hi,xi, ticut)}
7: end if
8: end for

9: while TA ̸= ∅ do
10: pick from TA the model xi with smallest tcut
11: αk ← ComputeWeight(k, hi, τ i, i)
12: xg

k+1 ← (1− αk) · xg
k + αk · xτ i,hi

13: k ← k + 1
14: distribute xg

k to client i
15: client[i].state← distributed
16: end while

17: end for
18: return xk

3.2 Learning Systems

We orchestrate a learning task in T time steps as described
in Algorithm 1. The system starts by defining learning pa-
rameters and initializing models on clients. At each step, the
clients and the server take actions sequentially. The compu-
tation token sit and the communication token cit are used to
control the local learning and uploading speed, respectively.
Currently, both tokens are drawn from an offline sampling
and set at the beginning of learning; in future work, we
will consider extending the work to connect with real-time
measurement from a mobile computing system. We simpli-
fied the modelling of communication and only consider the
transmission from client to server. The reasoning behind
focusing on upload as opposed to download is that, in
a typical communication system, the available resources
for upload (uplink) are lower than those for download
(downlink), thus making the uplink the bottleneck. If cases
where downlink is expected to have limitations comparable
do uplink, the transmission in the reverse direction can be
modelled in the same way.

Algorithm 2 ComputeWeight: Aggregation Weight Compu-
tation
Input: k, h, τk, i // current version of global model, num-

ber of optimizations, older version of global model on
which the received model is trained, client index

Output: αk

Initialization
αmax, a, b, c distributed from server

Computation
1: if all clients have uploaded once then
2: qk ← exp (a · ebk + c)
3: lopt ← (1− γµ)h · ∥xk − xτk∥2
4: αk ← qk/lopt
5: return min{αk, αmax}
6: else
7: return αmax

8: end if

3.3 System Components

3.3.1 Server

The server maintains a global model and receives model
updates from clients. It tracks and indexes the uploaded
models from clients, and keeps a list of the global models
based on which the clients are performing training.

The server keeps an index k to denote the version of
the global model. At each time step, if a model update is
received from client (xk), the server logs the model, the
corresponding number of batch optimizations performed
by the client (hk), as well as the index of global model
on which the uploaded model is trained (τk). The model
aggregation is performed as weighted average of older ver-
sion of global model and the received model from a client.
Our proposed approach to designing aggregation weights
is described in Algorithm 2. The motivation of such design
is that αk · (1 − γµ)hk · ∥xk − xτk∥2 is a major indicator of
error introduced in the federated learning process as shown
in Section 4.2 and Section 4.3. We perform trial experiments
in Section 4.2 and confirm that αk · (1− γµ)hk · ∥xk − xτk∥2
decreases in a asymptotic way to exp (a · ebk + c) with a > 0
and b < 0. Note that such weight design is only applied
after all clients have uploaded model at least once. For
clients uploading for the first time, τk = 0, ∥xk − xτk∥2 does
not necessarily follow the trend of decreasing as described
above.

3.3.2 Client

Clients are modelled as deterministic finite-state machines
(cf. Algorithm 3). In each time step, a client performs actions
such as training and uploading, or it stays idle. If one
time step starts at the states of distributed or training,
the client i performs sit number of batch optimizations as-
signed by the external controller. Once triggered by function
DetermineUpload which observes communication condi-
tions and local optimization progress, the client transitions
to the uploading state, where it transmit data of size cit+1

in the next time step. Upon finishing transmission, the client

6

Algorithm 3 Step: Client i Actions

Initialization
ToUpload← m, state← initialized
OptimizedEpochs← 0

Step function when state ∈ {distributed, training}
Input: t, sit

1: xk distributed from server, xk,0 ← xk

2: τ i ← k
3: for h = {1, . . . , sit} do
4: Take B samples from local dataset and train the model

xk,h ← xk,h−1 − γ
|B|

∑
d∈Di

B

∇xf(xk,h−1, d)

5: OptimizedEpochs+ = 1 if dataset iterated
6: if DetermineUpload(ct,...,t+Tpred

) == True then
7: state← uploading
8: ToUpload← m
9: break

10: end if
11: end for

Step function when state == uploading

Input: t, cit
1: if ToUpload− cit ≤ 0 then
2: tcut ← ToUpload/cit
3: state← wait
4: return i, τ i, h,xk,h, tcut
5: else
6: ToUpload← ToUpload− cit
7: end if

enters wait mode. The distribution of global model from the
server triggers distributed mode.

3.4 Triggering Algorithm for Uploading
We propose an algorithm that aims to utilize good link
conditions and triggers the devices to stop training and
start uploading, as described in Algorithm 4. The action of
the clients is dependent on the local training progress E
as well as communication conditions. Compared with the
fixed progress in classic solutions, denoted as the desig-
nated number of epochs Ed, a range of acceptable progress
bounded by Emin and Emax is used. The clients are trig-
gered to upload model only when link condition is good
and the local progress is in the acceptable range. Function
TxT in Algorithm 4 is defined as:

TxT(t,m, tend) =

(
argmin

q∈{t, ...tend}

q∑
p=t

cp ≥ m

)
− t+ 1 (1)

Given the predicted/detected communication tokens until
time step tend, Function TxT aims to find uploading duration
if the client starts uploading at time t. When E is in the
range of [Emin, Ed), the client is triggered to upload only
when it takes the shortest uploading time if starting at the
current time step t. Otherwise, the upload is delayed so that
the uploading time is further reduced. The attempt to delay
transmission is deactivated when local training progress
exceeds Ed. At this stage, clients will transition to upload
if the expected upload duration is shorter than a threshold

Algorithm 4 DetermineUpload: Determine Uploading Ac-
tion Based on Communication Conditions
Emin, Ed, Emax received from server during initialization

Input: ct, . . . , ct+Tpred
// forseeable/predicted communi-

cation token of the next Tpred steps starting from current
time t, current optimization epochs

1: E ← B · h/Di

2: if E < Emin then
3: return False
4: else if Emin ≤ E < Ed then
5: tmin ← min

p∈{t,...t+Tpred}
TxT(p,m, t+ Tpred)

6: return TxT(t,m, t+ Tpred) == tmin and
TxT(t,m, t+ Tpred) ≤ Tdesired

7: else if Ed ≤ E < Emax then
8: return TxT(t,m, t+ Tpred) ≤ Tdesired

9: else
10: return False
11: end if

Tdesired. If a client does not capture a good uploading time
and the optimization progress reaches the highest thresh-
old Emax, the client stops the training process to prevent
model divergence, and transitions to upload even if the
link condition is not ideal. Currently, we assume all devices
have knowledge of their local link conditions over T steps
starting from the current time stamp t: ct+1, . . . , ct+Tpred

.
Such overview of the link condition can be achieved by the
devices’ local prediction based on the observed patterns [40]
or by receiving information from an entity with predicted
quality of service enabled [41] for monitoring link condi-
tions.

4 AGGREGATION WEIGHT DESIGN AND CONVER-
GENCE ANALYSIS

With the flexible uploading and training process enabled
by Algorithm 4, the model updates provided by FL clients
exhibit greater heterogeneity, as we show later in Section 5
Table 5. The staleness 1 of model updates varies, depending
on whether upload action is triggered or delayed in Algo-
rithm 4. Moreover, the number of optimizations performed
by FL clients are no longer strictly proportional to the size
of their local data. As a result, an aggregation scheme that
is carefully tuned by staleness and optimization numbers is
needed to address the challenges brought by more hetero-
geneous model updates. In this section, we start by stating
the assumptions of the loss function of our learning tasks in
Section 4.1. A brief analysis of the loss evolution is provided
in Section 4.2. Furthermore, we introduce the motivation
of our method of aggregation weight design based on the
analysis. Lastly, in Section 4.3, we provide an asymptotic
bound for the loss function based on our method.

4.1 Assumptions of Function Properties

We made the following assumptions commonly used in
the analysis of distributed optimization [5], [20], [30] to

1. We define staleness as the time interval between the last model
update of a client and its latest model update

7

facilitate our analysis of the loss evolution of the global
model through the learning process.

Assumption 4.1. (L-smoothness) Let function F satisfy L-
Lipschitz smooth, so ∃L > 0, ∀x1,x2 ∈ model space

F (x1)− F (x2)− ⟨∇F (x2),x1 − x2⟩ ≤
L

2
∥x1 − x2∥2

Assumption 4.2. (Convexity) Let function F be convex. As
a result, ∀α ∈ [0, 1] and ∀x1,x2 ∈ model space

F (αx1 + (1− α)x2) ≤ αF (x1) + (1− α)F (x2)

Assumptions 4.1 and 4.2 are reasonable because the
properties of smoothness and convexity of a function are
preserved with operations like addition and affine projec-
tion (common operations in the machine learning models
adopted in our experiments), and can be tested with tech-
niques in Section 5.2.1.

Assumption 4.3. When sampling data points in batch from
local dataset Di, the difference between the averaged
gradient and the true gradient of the local loss function
is bounded.∥∥∥ 1

B

∑
d∈Di

B

∇xf(x, d)−∇xf
i(x)

∥∥∥2
2
≤ σ2,

∀x ∈ model space, d ∼ Di ∀d ∈ Di
B

Assumption 4.3 holds in case of reasonably large batch
size B of samples taken in one local gradient optimization.

Assumption 4.4. The difference of local target and global
target, caused by imbalanced data distribution (feature
imbalance), is bounded. Therefore, the difference of their
gradients w.r.t. the same model is also bounded.

∥∇F (x)−∇f i(x)∥ ≤ ϕ, ∀x ∈ model space

ϕ is directly related to the difference of local dataset w.r.t.
the global dataset. Since the local dataset is a subset of the
global dataset and, therefore, ϕ is limited, thus, Assumption
4.4 is valid.

Assumption 4.5. The gradient of global loss function w.r.t.
any model is bounded.

∥∇F (x)∥22 ≤ G2, ∀x ∈ model space

Assumption 4.5 provides a rough estimation of the scale
of gradients, which is a relatively loose bound.

Furthermore, we list Polyak-Łojasiewicz (PL) inequality
here, which has a weaker quality than strong convexity. We
show later that such property is verifiable through testing
the convexity of a function. If F is µ-strongly convex, then
F also satisfy µ-PL condition.

Assumption 4.6. Let function F satisfy the PL inequality. As
a result, ∃µ > 0,

1

2
∥∇F (x)∥22 ≥ µ (F (x)− F (x∗))

With Assumptions 4.1, 4.6, and 4.4 and setting γL ≤ 1,
we derive the following corollary about the evolution of loss
evaluated during the local optimization process.

Corollary 4.1. The expectation of the difference of loss
between the h-time locally-optimized model and the
optimal global model can be expressed as

E [F (xτk,hk
)− F (x∗)]

≤(1− γµ)hk ·E [F (xτk,0)− F (x∗)] +
ϕ2 + σ2

µ

4.2 Motivation of Weight Design

We start by analyzing the loss evolution of the global model
after an aggregation step at the server.

E[F (xk+1)− F (x∗)]

=E[F ((1− αk) · xk + αk · xτk,hk
)− F (x∗)]

≤(1− αk) · E[F (xk)− F (x∗)] + αk · E[F (xτk,hk
)− F (x∗)]

≤(1− αk) · E[F (xk)− F (x∗)]

+αk ·
[
(1− γµ)hk ·E[F (xτk)− F (x∗)] +

ϕ2 + σ2

µ

]
≤
[
(1− αk) + αk · (1− γµ)hk

]
· E[F (xk)− F (x∗)]︸ ︷︷ ︸

S1

+αk ·
[
(1− γµ)hk ·E[F (xτk)− F (xk)] +

ϕ2 + σ2

µ

]
︸ ︷︷ ︸

S2

(2)

The difference of loss F (xτk)−F (xk) is hard to obtain in
FL settings since the loss needs to be evaluated on all clients.
To this end, Assumption 4.1 (L-smooth) is used to convert it
into terms of gradient scales ∥∇F (xk)∥2 and the difference
of models ∥xτk − xk∥2:

F (xτk)− F (xk) ≤
1

2
∥∇F (xk)∥2 +

1 + L

2
· ∥xτk − xk∥2

We then obtain:

S2 ≤αk · (1− γµ)hk · G
2

2
+

ϕ2 + σ2

µ

+αk · (1− γµ)hk · ∥xτk − xk∥2︸ ︷︷ ︸
e1

·1 + L

2

We set the error term apart from gradient scale G and
gradient difference ϕ as e1 = αk · (1−γµ)hk · ∥xτk −xk∥2. It
corresponds to the common concept in FL weight design
([17], [42]) where models from clients with larger share
of data (that also perform more local optimizations) get
assigned larger weights, while stale updates get assigned
smaller weights. To support this in theory, we state that a
bigger aggregation weight αk is always desired, as shown
in S1 in Inequality 2, where bigger αk leads to a greater
decrease of loss. Since hk ∝ Di and E, we can assign bigger
weights αk to updates with higher hk under the same error
limitation e1 ≤ elimit. Similarly, stale updates tend to differ
from the latest version of global model and result in greater
distance ∥xτk − xk∥. A smaller weight αk is then needed to
satisfy the error constraints.

In a learning task with a converging trend, the loss
of global model will drop and gradually converge to a

8

0 200 400 600 800 1000
Time step

0.65

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

8

7

6

5

4

3

2

lo
g

e 1

conv. e1 polynomial
fitted e1 polynomial
acc. polynomial
conv. e1 data weight
fitted e1 data weight
acc. data weight

Fig. 1: Value evolution of smoothed log e1 and testing accura-
cies in trial experiment with MLP learning MNIST

steady value, ideally close to F (x∗). Moreover, as the learn-
ing goes on, the difference of global models ∥xτk − xk∥2
also decreases. As a component of the upper bound for
F (xτk)−F (xk), we suspect e1 also follows the decrease-flat
trend. In a trial run of experiments (in Figure 1) with aggre-
gation weight αk = |Di|∑

i∈[N] |Di| and αk = β · (k − τk + 1)−λ,
both adopted in our experiments as benchmarks, we obtain
values of e1 with respect to k, which can be approximated
by function exp (a · ebk + c)

To enable a smooth learning progress, we set an upper
bound for αk as exp (a·ebk+c)

(1−γµ)hk ·∥xτk
−xk∥2 . Another upper limit

αmax is later added to prevent unreasonably large aggre-
gation weight (e.g. greater than 1) resulting from small
∥xk−xτk∥2. Adding αmax is close to set a fixed aggregation
weight or the simplified case of β ·(k−τk+1)−λ when λ = 0
and β = αmax in [5], [30]. Our method avoids multiple
trial runs to find suitable settings of β and λ. Furthermore,
We show that this method leads to analytically asymptotic
convergence in Section 4.3. In experiments in Section 5.3, it
is also verified to work well especially with training and
transmission flexibility (in Algorithm 3) enabled.

4.3 Proof of Convergence

For each set of parameter setting of a learning
task, we conduct one trial experiment (with aggrega-
tion weight computed as αk = |Di|∑

i∈[N] |Di|) regard-
less of environment scenario and obtain a fitted curve
of e1: exp

(
a · ebk + c

)
; the weight for aggregation αk

upon each received model in subsequent formal ex-

periment is min
{

exp(a·ebk+c)
(1−γµ)hk ·∥xk−xτk

∥2 , αmax

}
. Take Q1 =

maxj∈{0, ..., k}
{
(1− αj) + αj · (1− γµ)hj

}
and use As-

sumption 4.5, we further derive Inequality 2 as follows:

E[F (xk+1)− F (x∗)] ≤ Qk+1
1 · E[F (x0)− F (x∗)]+

k∑
j=0

Qk−j
1

{
αj

[
(1− γµ)hjG2

2
+

ϕ2 + σ2

µ

]
+

(1 + L)eae
bj+c

2

}
(3)

Set I(k) = exp
(
aebk + c

)
. Since b < 0, I(k) decreases

when k increases. We can construct a geometric progression

J(k):

J(0) = ea+c = I(0)

J(k) = ec+ϵ ≥ I(k), choose ϵ ≥ aebk

J(κ) = J(κ− 1) · e(ϵ−a)/k, ∀κ ∈ {1, . . . , k}
J(κ) ≥ I(κ), ∀κ ∈ {0, . . . , k}
Qk−j

1 · I(j) ≤ Qk−j
1 · J(j) = J(0)· Qk−j

1 · (e(ϵ−a)/k)j

I decrease faster than J . With the factor of geometric
progression r = e(ϵ−a)/k, and set Q2 = max{r,Q1},
αmax = maxj∈{1,...,k} αj , we can derive Inequality 3 fur-
ther:

E[F (xk+1)− F (x∗)] ≤ Qk+1
1 · E[F (x0)− F (x∗)]

+

(
G2Q1

2
+

(ϕ2 + σ2)αmax

µ

)
· 1−Qk+1

1

1−Q1

+
Qk

2(1 + L)ea+c

2
· (k + 1)

≤O
(
D0Q

k+1
1

)
+O

(
Q1

1−Q1

)
+O

(
1

1−Q1

)
+O

(
(k + 1)Qk

2

)
(4)

The complete derivation from Inequality 2 to 4 can be found
in Appendix A.2.

Q1 and Q2 need to be smaller than 1 to ensure finte
loss. In our task settings, both γ and µ are ≥ 0 (because
of convexity). We also made sure that γµ < 1 during
derivation. Therefore, Q1 = 1 + αk · ((1 − γµ)h − 1) ≤ 1.
To ensure Q2 ≤ 1, we need to set r = e(ϵ−a)/k ≤ 1, which
indicates ϵ ≤ a.

5 EXPERIMENTS

We initiate experiments with flexibility dependent on link
condition, therefore the varying condition in the experi-
ments is the link profile/behavior.

With functions SetComputationCapacity(t) and
SetLinkStatus(t) in Algorithm 1, we can now experiment
with various application scenarios. Moreover, we also
experiment with different data distribution on devices. The
size of the local dataset, the computational capacity, and
the link throughput have intertwined impacts the updating
interval of clients. We experiment with three learning
tasks: classification tasks with MLP and CNN on MNIST
[43], classification task with CNN on CIFAR10 [44], and
classification task with SqueezeNet [45] on CIFAR100 [44].
The details of the model structures are shown in Appendix
B: Table 11 and Table 12. We perform a centralized training
with these models on the corresponding dataset and
achieve prediction accuracy of 95% for MLP on MNIST,
98% for CNN on MNIST, 62% for CNN on CIFAR10, 57%
for SqueezeNet on CIFAR100.

5.1 Scenarios
5.1.1 Data Distribution
For classification datasets like MNIST and CIFAR with fixed
number of data points, we aim to derive scenarios with
different data distribution over the clients, in terms of the
number of data samples and the number of available classes
at one client. We construct two stages of optimization tasks
to assign the samples in the dataset to each client.

9

TABLE 2: Link throughput profiles used in experiments.

Index mean of
tx. time

std. of
tx. time distribution

1 20.5 4.5 Poisson
2 40.5 6.5 Poisson
3 29.6 14.0 log-normal
4 7.3 0.5 from measurements in Figure 2

Fig. 2: Driving route and uplink throughput of Link Profile 5.
The base station is located at ▲. The height of the base station
antenna is 21 meters above ground level, whereas the vehicle
antenna is at approximately 1.5 meter height, mounted on the
vehicle roof. The test vehicle traversed the double loop shown
by the overlay 10 times.

The first stage is to assign specific numbers of samples
to each client so that the standard deviation is close to a
designed value. To this end, for ni, i ∈ [N] and with target
standard deviation σd and condition

∑N
i=1 n

i = ntotal, the
error to be minimized is | 1N

∑N
i=1(n

i − µD)2 − σ2
d|. Here

µD = |D|
N since the complete dataset is distributed. The

optimization for ni does not aim for a fix solution, but for
finding a data distribution in accordance with the desired
heterogeneity on data samples.

The second stage is to assign samples of specific classes
to each client. The classes available at a client Ci is ran-
domly chosen in [C]. Therefore we have conditions: ni

c ≥
θc · ni/|Ci| if c ∈ Ci , otherwise ni

c = 0. Then we construct
conditions on the number of samples per client and per
class:

∑N
i=1 n

i
c ≤ Nc,∀c ∈ [C] and

∑C
c=1 n

i
c ≤ ni,∀i ∈ [N].

The target to be minimized is then ntotal −
∑N

i=1

∑C
c=1 n

i
c.

θc controls the class imbalance in a client’s local dataset and
is gradually decreased if no solution is found. Results from
both stages ni and ni

c are rounded up to the closest integer.

5.1.2 Link Variability
The variability on link throughput of clients is controlled via
cit in Algorithm 3. We list four different scenarios where the
link throughput having different characteristics as shown in
Table 2, see also Figure 2. The distribution of transmission
time under these scenarios are plotted in Figure 3. All the
link profiles ci0, . . . , c

i
T are pre-generated individually for

each client i.
In experiments assuming perfect predictions on link

throughput, cit, . . . , c
i
t+Tpred

are fed to the client i for de-
termining whether to stop training and upload model to
the server. To show the robustness of our algorithm, we
also add perturbations to the generated communication
tokens at each time step t and use (c̃it, . . . , c̃

i
t+Tpred

) fed to
the client as imperfect predictions (Line 6 of Algorithm 3):
c̃it+p = cit+p + eip, where eip ∼ N

(
0, σi · p/Tpred

)
.

1 2 3 4
Link throughput profile index

0

20

40

60

80

tra
ns

m
iss

io
n

tim
e

Fig. 3: Distribution plot of transmission time under four differ-
ent link profile in Table 2. Profile 4 is sampled from measure-
ments shown in Figure 2.

TABLE 3: Variability of computation resources for FL clients in
three scenarios

Index pmin pmax scale

a 10 10 1 for MNIST
2 for CIFAR10b 5 15

c 3 17

d 5 5
1e 3 7

f 1 9

The motivation of adding perturbation to predictions
based on the time difference is that predictions for later time
steps are less reliable. When reaching the maximum predict-
ing time step, the predicted communication throughput will
exhibit an uncertainty (eiTpred

) of the same level as the link
throughput of all time (σi).

5.1.3 Dynamic Computation Resources

The dynamics of computation resources for each client
to perform learning tasks is simulated via sit ∼
uniform {pmin, . . . pmax} · scale in Algorithm 3. Unlike the
communication resource token cit which can change every
time step, we keep sit steady for every 32 steps. This is to
simulate the periodic change in the total work load for a
FL client. We simulated with three different scenarios with
different range of variety as shown in Table 3.

5.2 Experiment Settings

5.2.1 Testing Strong Convexity

In our analysis, the loss evolution during local optimization
in Corollary 4.1 involves the convexity factor µ which is
related to Assumption 4.6. We conduct the following test to
get a estimated value of µ so that the aggregation weight
design is valid. We test µ in strong-convex setting, which is
a stronger requirement than PL inequality. Given the three
following strong convexity properties:

10

F (λx+ (1− λ)y) ≤λF (x) + (1− λ)F (y)

−1

2
µt(1− λ)∥x− y∥22, ∀λ ∈ (0, 1) (5)

µ∥x− y∥22 ≤⟨x− y,∇F (x)−∇F (y)⟩ (6)

F (y)− F (x) ≥⟨∇F (x),y − x⟩+ µ

2
∥x− y∥22 (7)

By sampling x and y in the model space, and taking a
range of λ, we can obtain a set of upper bound values that µ
should be smaller than or equal to. Note that for models like
CNN wherein there are pooling layers, we can still test the
convexity of other layers such as convolutional layer and
fully-connected layer. We show the settings of µ in different
tasks in Table 4 after observing the upper bounds computed
through Inequalities 5 to 7.

5.2.2 Hyperparameters and Benchmark
The hyper-parameter and scenario settings of experiments
are listed in Table 4. Due to the different time required
for transmission in various communication scenarios, we
customize Tdesired and assume that the prediction for Tpred

steps are available in all cases, which aims to maximize the
benefits of the flexible-uploading algorithm. αmax is limited
to be smaller than 1 in experiments for aggregation stability.
During model aggregation, the case of αk > 1 means that
all of the parameters of a model are scaled up numerically
and the output value of the model is scaled up exponentially
based on the number of layers of the model. Therefore, αmax

is set to be ≤ 1 to bound each αk so that the aggregated
model does not yield unreasonable outputs.

The benchmark to evaluate our solution with are de-
noted as 1. polynomial attenuation method (abbr. polyn.)
with αk in Algorithm 2 alternated as β · (k − τk + 1)−λ,
which is adopted in [5], [30]; 2. data weight (abbr. dw) ag-
gregation adopted in [42], with αk in Algorithm 2 alternated
as |Di|∑N

j=1 |Dj | , where i is the index of client uploading at the
k-th round. Both are tested with and without flexibility in
Algorithm 4 enabled.

There are in total 12 combinations of different link
throughput profile and computation resource variations, we
choose 2 representative scenarios for each of the tasks (learn-
ing MNSIT with MLP, learning MNIST with CNN, learning
CIFAR10 with CNN, learning CIFAR100 with SqueezeNet).
For each scenario, we experiment with Algorithm 4 enabled
(abbr. with f.) and disabled (abbr. w/o f.) to verify the
effect of the flexible uploading scheme for clients. When
Algorithm 4 is disabled, function DetermineUpload returns
E ≥ Ed. Moreover, we also experiment with uncertainties
in link predictions (abbr. with unc.) as described in Sec-
tion 5.1.2.

Each experiment (of one setting) is done multiple times
with 6 different random seeds, except for CIFAR100 with
3 different random seeds. The results are then averaged.
For each random seed, the data distribution mentioned in
Section 5.1.1 is also randomly distributed with the corre-
sponding seed.

5.3 Results
Heterogeneity of Model Updates: We show the heterogene-
ity of model updates in terms of the variation of the number

TABLE 4: Parameter settings in learning and flexibility algo-
rithm, and in benchmark methods.

Parameter
Group Notation Value

Common

γ 0.004

T

10000 for CIFAR100,
8000 for CIFAR10 slow,
1000 for others

Ed

1 for MNIST,
4 for CIFAR10 fast, 0.5 for CIFAR10 slow,
1 for CIFAR100

Emin 0.75 Ed

Emax 1.50 Ed

B 8 for MNIST, 16 for other datasets

αmax 0.25

Algorithm
2

a, b,
c, µ

MNIST MLP 5.42, -0.0185, -6.53, 0.002

MNIST CNN 5.34, -0.0112, -7.22, 0.1

CIFAR10 fast 1.74, -0.0165, -5.39, 2.0

CIFAR10 slow 6.93, -0.0057, -7.65, 2.0

Algorithm
4

Tpred

Tdesired

Profile 1 20, 16

Profile 2 40, 34

Profile 3 30, 16

Profile 4 8, 6

Other’s
method

β 1

λ 0.8

TABLE 5: Standard Deviation of the Num. of Optimizations
before and after enabling Training and Uploading Flexibility in
various Scenarios of Classifying MNIST

Scenarios std. of Num. Optim. per update

with f. with unc. w/o f.

Link Profile 1
Comp. Profile c 167.7 153.5 124.8

Link Profile 2
Comp. Profile b 185.0 168.7 126.4

Link Profile 3
Comp. Profile a 183.2 165.2 129.0

of optimizations to yield a model. In Table 5, we observe
that after enabling flexibility, the standard deviation of the
number of optimizations increased in each scenario, which
is caused by allowing flexible training progress in Algo-
rithm 4. When prediction for flexible actions are uncertain,
the standard deviation of the number of optimizations still
increases.

Resource Consumption: We show the changes brought
by enabling flexible actions in terms of invested compu-
tation resources and time spent on transmission/training.
In Figure 4, we show the distribution of the training time
and transmission time of clients’ individual update in three
different scenarios in which experiments are conducted. We
saw an increase of training time and reduced transmission
time when enabling flexibility.

In Table 6, we show the statistics related to time and
resource usage of the communication and training stage in
FL tasks of learning MNIST. The trend of decreasing trans-

11

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5
Lin

k
Pr

of
ile

 1
 C

om
p.

 P
ro

fil
e

c
ra

tio

Transmission Time

with f.
w/o f.

0 50 100 150
0.00

0.05

0.10

0.15

0.20

0.25

Training Time

with f.
w/o f.

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

Lin
k

Pr
of

ile
 2

 C
om

p.
 P

ro
fil

e
b

ra
tio

with f.
w/o f.

0 50 100 150
0.00

0.05

0.10

0.15

0.20

0.25 with f.
w/o f.

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

Lin
k

Pr
of

ile
 3

 C
om

p.
 P

ro
fil

e
a

ra
tio

with f.
w/o f.

0 50 100 150
0.00

0.05

0.10

0.15

0.20

0.25 with f.
w/o f.

Fig. 4: Histogram of training time and transmission time of
clients’ updates under difference scenarios.

mission time and increasing training time after enabling
flexibility is also confirmed by the average value. Besides,
we observe a reduction in communication resource usage,
which is computed by m·Nupdates∑T

t=1

∑
i∈[N] c

i
t
, where Nupdates is

summed number of model updates of all clients. Specifically,
we achieve a reduction of communication resources (used
by the clients for uploading models to server) of 6.0%,
8.5%, and 4.6%, in three scenarios respectively. Such effect is
achieved by the generally reduced number of uploads (the
last k) of each client and also the summed number Nupdate.
Equally as important, introduced flexibility results in the
average transmission time reduction by 12.7%, 5.6%, and
21.0%, respectively, for the three scenarios. Finally, owing to
the flexibility, the clients can spend additional time training
the models, resulting in increased computational resource
invested and thus 0.32% to 1.15% increase in averaged final
testing accuracy for learning MNIST, 1.5% to 4.5% increase
for learning CIFAR10, and 2.7% to 9.7% increase for learning
CIFAR100. We also provide the statistics of used resources
of CIFAR10 task in Appendix C Table 14. Details related to
testing accuracy are elaborated on in the following sections.

Learning MNIST: We show that in Table 7 and 8,
for learning MNIST in asynchronous FL, our solution
(exponential-decay weight design combined with flexible
training and transmission) outperforms other methods in
more that half of the different data distributions (in terms
of data std. and number of classes per client). Moreover,
our solution also performs the best in terms of the averaged
accuracy over all data distribution in each scenario. It is also
noticeable that CNN always performs better than MLP in
the same scenario (Link Profile 1 and Computation Profile
c).

TABLE 6: Comparison of Statistics of Time and Resource Usage
of FL clients in various Scenarios of Classifying MNIST

Average Trans-
mission Time

Communication Re-
source Usage

with
f.

with
unc.

w/o
f.

with
f.

with
unc.

w/o
f.

Link P. 1
Comp. P. c 17.8 18.1 20.4 0.312 0.323 0.332

Link P. 2
Comp. P. b 38.6 38.5 40.9 0.453 0.477 0.495

Link P. 3
Comp. P. a 22.9 22.8 29.0 0.309 0.327 0.324

Average Training
Time

Avg. Num. Optimi-
zation per client

with
f.

with
unc.

w/o
f.

with
f.

with
unc.

w/o
f.

Link P. 1
Comp. P. c 43.8 41.5 37.7 4388.8 4296.0 3919.0

Link P. 2
Comp. P. b 46.2 42.2 37.3 3398.9 3260.9 2948.1

Link P. 3
Comp. P. a 44.3 41.0 35.2 4231.0 4134.9 3525.0

Moreover, to investigate the effect of clients’ flexible
actions, we compare the performance of each method with
and without flexibility enabled, under different data dis-
tribution and environments. When learning MNIST either
with MLP or CNN, the method with flexibility outperforms
that without flexibility in 62 out of 72 comparisons.

One sample accuracy evolution of MLP learning MN-
SIT with Link Profile 3, Computation Profile a, and data
distribution std. 750 is plotted in Figure 5. Our method is
generally less effective during the starting stage of the learn-
ing process, especially when class imbalance is prominent,
having lower accuracies than others. Nevertheless, it is fast
to catch up and outperforms ours in 3 cases in the end.

Learning CIFAR10: We show in Table 9 the final ac-
curacy of learning CIFAR10 with CNN. When learning
CIFAR10 with relatively fast pace, extreme class imbalance
cause great fluctuation in the learning progress. Thus, we
only show the learning results with relatively balanced
data distribution with number of classes being 7 and 10
when learning CIFAR10 fast. We conducted experiments
with slow speed settings (computation profiles d, e, and f)
and longer time (8000 steps) to investigate the performance
of learning CIFAR10 under more unbalanced data distribu-
tions with number of classes available at clients being 4 and
7.

In slow learning settings, our solution outperforms the
other two methods. In fast learning settings performs worse
than using polynomial weight attenuation and better than
using data weight. Moreover, when comparing methods
with and without flexibility, we see that methods with flexi-
bility has a dominant advantage over those without flexibil-
ity in scenarios where link throughput varies prominently
(Link Profile 1 and 3). In experiments with Link Profile 4,
the advantage of enabling flexibility is less obvious. The
weakened effect of our strategy originates from the stable
link throughput of Link Profile 4, as shown in Figure 3.
Therefore, the number of optimizations are not increased by

12

TABLE 7: Test accuracy after 1000 steps learning MNIST with 2-layer perceptron

Data Distr. D std. 300 750 1000 avg.

Scenario
classes
p. client 4 6 8 10 4 6 8 10 4 6 8 10

Link
Profile 1
Comp.
Profile c

dw with f. 0.850 0.885 0.864 0.870 0.845 0.887 0.882 0.870 0.850 0.885 0.898 0.870 0.871
dw with unc. 0.837 0.886 0.864 0.887 0.851 0.885 0.863 0.886 0.860 0.869 0.897 0.886 0.873
dw w/o f. 0.847 0.867 0.861 0.868 0.855 0.887 0.881 0.867 0.846 0.863 0.879 0.853 0.864
polyn. with f. 0.859 0.890 0.869 0.875 0.841 0.891 0.885 0.875 0.848 0.888 0.883 0.874 0.873
polyn. with unc. 0.841 0.892 0.868 0.893 0.855 0.890 0.866 0.891 0.856 0.872 0.900 0.890 0.876
polyn. w/o f. 0.850 0.870 0.865 0.873 0.854 0.890 0.885 0.873 0.838 0.864 0.881 0.872 0.868
ours with f. 0.863 0.892 0.869 0.894 0.857 0.889 0.868 0.892 0.851 0.870 0.901 0.891 0.878
ours with unc. 0.848 0.892 0.868 0.894 0.856 0.886 0.866 0.892 0.855 0.873 0.901 0.891 0.877
ours w/o f. 0.844 0.870 0.867 0.892 0.835 0.885 0.866 0.891 0.832 0.865 0.884 0.890 0.868

Link
Profile 3
Comp.
Profile a

dw with f. 0.874 0.914 0.918 0.925 0.873 0.913 0.917 0.926 0.865 0.912 0.918 0.927 0.907
dw with unc. 0.873 0.912 0.918 0.925 0.871 0.912 0.917 0.925 0.871 0.911 0.918 0.926 0.907
dw w/o f. 0.870 0.909 0.916 0.922 0.873 0.908 0.915 0.922 0.867 0.907 0.915 0.923 0.904
polyn. with f. 0.883 0.918 0.924 0.931 0.880 0.917 0.922 0.931 0.866 0.915 0.921 0.931 0.911
polyn. with unc. 0.886 0.916 0.924 0.930 0.880 0.915 0.921 0.930 0.874 0.914 0.920 0.930 0.912
polyn. w/o f. 0.878 0.913 0.922 0.928 0.877 0.912 0.919 0.928 0.871 0.909 0.918 0.927 0.908
ours with f. 0.884 0.915 0.923 0.931 0.883 0.914 0.922 0.932 0.869 0.914 0.921 0.930 0.912
ours with unc. 0.890 0.912 0.925 0.931 0.874 0.914 0.922 0.931 0.874 0.914 0.921 0.931 0.911
ours w/o f. 0.866 0.909 0.922 0.930 0.873 0.911 0.918 0.929 0.872 0.910 0.917 0.928 0.907

TABLE 8: Test accuracy after 1000 steps learning MNIST with CNN

Data Distr. D std. 300 750 1000 avg.

Scenario
classes
p. client 4 6 8 10 4 6 8 10 4 6 8 10

Link
Profile 1
Comp.
Profile c

dw with f. 0.885 0.930 0.933 0.939 0.889 0.932 0.932 0.939 0.889 0.930 0.930 0.940 0.922
dw with unc. 0.885 0.932 0.932 0.938 0.892 0.929 0.933 0.940 0.894 0.930 0.914 0.940 0.921
dw w/o f. 0.887 0.928 0.930 0.934 0.886 0.924 0.930 0.936 0.892 0.927 0.913 0.936 0.918
polyn. with f. 0.893 0.942 0.940 0.964 0.898 0.941 0.939 0.946 0.900 0.941 0.921 0.962 0.932
polyn. with unc. 0.898 0.941 0.949 0.963 0.906 0.940 0.939 0.945 0.907 0.941 0.954 0.961 0.937
polyn. w/o f. 0.904 0.940 0.938 0.944 0.900 0.934 0.937 0.961 0.899 0.936 0.919 0.942 0.929
ours with f. 0.896 0.943 0.957 0.963 0.902 0.942 0.939 0.945 0.902 0.941 0.937 0.961 0.936
ours with unc. 0.901 0.942 0.956 0.945 0.907 0.940 0.938 0.946 0.906 0.941 0.953 0.959 0.936
ours w/o f. 0.908 0.940 0.938 0.944 0.899 0.934 0.937 0.944 0.903 0.937 0.952 0.942 0.931

Link
Profile 2
Comp.
Profile b

dw with f. 0.859 0.922 0.928 0.930 0.851 0.918 0.929 0.935 0.848 0.915 0.929 0.935 0.908
dw with unc. 0.852 0.922 0.927 0.932 0.854 0.918 0.928 0.933 0.855 0.912 0.927 0.933 0.908
dw w/o f. 0.847 0.919 0.924 0.914 0.850 0.918 0.924 0.927 0.851 0.914 0.925 0.928 0.903
polyn. with f. 0.881 0.935 0.937 0.941 0.876 0.935 0.935 0.941 0.882 0.934 0.935 0.940 0.923
polyn. with unc. 0.865 0.934 0.935 0.941 0.871 0.932 0.935 0.940 0.874 0.931 0.933 0.938 0.919
polyn. w/o f. 0.863 0.931 0.932 0.937 0.865 0.932 0.931 0.936 0.870 0.929 0.931 0.935 0.916
ours with f. 0.882 0.938 0.954 0.940 0.882 0.937 0.935 0.940 0.879 0.935 0.934 0.939 0.925
ours with unc. 0.862 0.934 0.935 0.939 0.873 0.935 0.935 0.939 0.874 0.933 0.932 0.938 0.919
ours w/o f. 0.865 0.932 0.949 0.936 0.867 0.934 0.931 0.936 0.872 0.930 0.930 0.934 0.918

a big scale as in other scenarios (7% increase in Link Profile
4 vs. 13% and 21% increase in Link Profile 1 and 2 shown in
Appendix C Table 14).

One sample accuracy evolution of slow CIFAR10 learn-
ing with Link Profile 1, Computation Profile f is plotted in
Figure 6. For each way of computing aggregation weight,
we see a clear elevation of accuracy when flexible strategy
is enabled.

Learning CIFAR100:
We show in Figure 7 of the testing accuracy evolu-

tion of learning CIFAR100 with SqueezeNet. SqueezeNet
is non-convex and therefore we do not apply our weight-
computing method in Algorithm 2. Instead, we focus on
the effect of flexible training/uploading actions. From Fig-
ure 7 we see that the testing accuracy of the global model
increase faster when the flexible strategy is enabled. More-
over, uncertainties in the prediction of link status does not
deteriorate the benefits brought by flexible strategy.

Verification of Proof of Convergence: Greater aggrega-
tion weight αk leads to a smaller Q1 and Q2, and thus re-
duces the gap between the initialized model and the optimal
model F (xk+1)−F (x∗) more quickly. However, smaller Q1

also increases the term O
(

1
1−Q1

)
in Inequality 4. Therefore,

the effect of aggregation weight cannot be determined ex-
plicitly. The number of aggregations k also have impact on
multiple terms and its effect cannot be determined simply
either. For example, when flexibility of training/uploading
actions is enabled on clients, we noticed a decrease of total
aggregations (k) throughout the FL tasks, which increases
the loss term such as O

(
D0 ·Qk+1

1

)
if Q1 is kept steady.

At the same time, the number of local optimizations (h)
increases, thus reducing Q1 and decreasing the loss. The
improved performance of FL concludes that the increased h
has stronger impact on the loss.

We instead focus on other indicators that have a single-
directional impact on the loss and accuracy. The first one

13

0 200 400 600 800 1000

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

4 classes p. client
0.883 ours with f.
0.880 polyn. with f.
0.877 polyn w/o f.
0.873 dw w/o f.
0.873 dw with f.
0.873 ours w/o f.

0 200 400 600 800 1000

6 classes p. client

0.917 polyn. with f.
0.914 ours with f.
0.913 dw with f.
0.912 polyn w/o f.
0.911 ours w/o f.
0.908 dw w/o f.

0 200 400 600 800 1000

8 classes p. client

0.922 ours with f.
0.922 polyn. with f.
0.919 polyn w/o f.
0.918 ours w/o f.
0.917 dw with f.
0.915 dw w/o f.

0 200 400 600 800 1000
Time steps

10 classes p. client

0.932 ours with f.
0.931 polyn. with f.
0.929 ours w/o f.
0.928 polyn w/o f.
0.926 dw with f.
0.922 dw w/o f.

Fig. 5: FL tasks with MLP learning MNIST, in scenario with link profile 3 and computation profile a. Sampled evolving accuracy
of different methods with data distribution std. 750 and different number of classes available at clients.

TABLE 9: Test accuracy after 1000 steps learning CIFAR10 with
CNN in fast learning settings with Comp. Prof. a-c.

Data
Distr. D std. 750 1250 avg.
Scena
-rio

classes
p. client 7 10 7 10

Link
Prof. 1
Comp.
Prof. c

dw with f. 0.421 0.486 0.423 0.488 0.455
dw with unc. 0.423 0.483 0.420 0.486 0.453
dw w/o f. 0.410 0.472 0.407 0.475 0.441
polyn. with f. 0.438 0.508 0.422 0.487 0.464
polyn. with unc. 0.442 0.506 0.422 0.487 0.464
polyn. w/o f. 0.422 0.493 0.415 0.477 0.452
ours with f. 0.437 0.500 0.422 0.485 0.461
ours with unc. 0.437 0.500 0.422 0.485 0.461
ours w/o f. 0.422 0.494 0.422 0.480 0.454

Link
Prof. 3
Comp.
Prof. a

dw with f. 0.423 0.480 0.424 0.485 0.453
dw with unc. 0.426 0.477 0.428 0.481 0.453
dw w/o f. 0.408 0.462 0.409 0.464 0.436
polyn. with f. 0.446 0.504 0.434 0.491 0.469
polyn. with unc. 0.449 0.500 0.442 0.489 0.470
polyn. w/o f. 0.428 0.483 0.421 0.471 0.451
ours with f. 0.437 0.495 0.433 0.487 0.463
ours with unc. 0.440 0.494 0.435 0.485 0.464
ours w/o f. 0.426 0.483 0.423 0.473 0.451

Link
Prof. 4
Comp.
Prof. b

dw with f. 0.458 0.512 0.457 0.514 0.485
dw with unc. 0.453 0.500 0.444 0.503 0.475
dw w/o f. 0.456 0.501 0.455 0.504 0.479
polyn. with f. 0.482 0.531 0.465 0.500 0.495
polyn. with unc. 0.479 0.523 0.457 0.503 0.491
polyn. w/o f. 0.478 0.521 0.467 0.503 0.492
ours with f. 0.471 0.517 0.464 0.495 0.487
ours with unc. 0.479 0.523 0.464 0.512 0.495
ours w/o f. 0.476 0.521 0.467 0.509 0.493

is ϕ, which is related to the data imbalance. From Table 7,
Table 8, Table 9, and Table 10, we observe that there is
a general trend of increasing testing accuracy when data
is more balanced, where there are more classes available
at a client and thus smaller ϕ leading to smaller loss in
Inequality 4.

The other indicators are a and c, which are the param-
eters of function fitted from trial run before each set of
experiments. By comparing the settings in Table 4, we notice
that the value ea+c is lower when learning MNIST with
CNN. Considering that we have identical settings of αmax

for both tasks leading to similar Q1, we infer that the better
learning capability of CNN is manifested in the lower values
of ea+c (the last term of Inequality 4), which in turn results
in fewer errors and higher evaluation accuracy.

TABLE 10: Test accuracy after 8000 steps learning CIFAR10
with CNN in slow learning settings with Comp. Prof. d-f.

Data
Distr. D std. 750 1250 avg.
Scena
-rio

classes
p. client 4 7 4 7

Link
Prof. 1
Comp.
Prof. f

dw with f. 0.441 0.484 0.437 0.483 0.461
dw with unc. 0.439 0.478 0.437 0.481 0.459
dw w/o f. 0.425 0.465 0.428 0.470 0.447
polyn. with f. 0.448 0.510 0.433 0.492 0.471
polyn. with unc. 0.440 0.503 0.430 0.494 0.467
polyn. w/o f. 0.428 0.486 0.426 0.481 0.455
ours with f. 0.443 0.513 0.430 0.500 0.472
ours with unc. 0.434 0.506 0.437 0.500 0.469
ours w/o f. 0.433 0.491 0.426 0.492 0.460

Link
Prof. 3
Comp.
Prof. d

dw with f. 0.442 0.474 0.451 0.480 0.462
dw with unc. 0.442 0.473 0.452 0.482 0.462
dw w/o f. 0.425 0.454 0.430 0.459 0.442
polyn. with f. 0.440 0.502 0.416 0.488 0.461
polyn. with unc. 0.452 0.503 0.426 0.494 0.469
polyn. w/o f. 0.430 0.481 0.411 0.479 0.450
ours with f. 0.449 0.504 0.417 0.493 0.465
ours with unc. 0.460 0.506 0.435 0.497 0.474
ours w/o f. 0.441 0.486 0.424 0.481 0.458

Link
Prof. 4
Comp.
Prof. e

dw with f. 0.485 0.534 0.490 0.530 0.510
dw with unc. 0.480 0.529 0.481 0.531 0.505
dw w/o f. 0.476 0.525 0.475 0.528 0.501
polyn. with f. 0.483 0.554 0.459 0.541 0.509
polyn. with unc. 0.464 0.550 0.466 0.543 0.506
polyn. w/o f. 0.466 0.546 0.450 0.535 0.499
ours with f. 0.489 0.558 0.480 0.549 0.519
ours with unc. 0.471 0.554 0.488 0.552 0.516
ours w/o f. 0.477 0.552 0.464 0.546 0.510

6 CONCLUSION

We propose a scheme that adapts the actions of FL clients
to match their learning and model transmission actions to
the status of link resources in the environment, aiming to
save the time spent on communication and allow more time
for training the local models. Moreover, the FL process is
analyzed from the perspective of distributed convex opti-
mization. The evolution of loss function during the learning
process is decomposed into the reduction of initial error
and the extra errors introduced during the aggregation of
client updates. Based on the theoretic analysis, we customize
the computation of aggregation weight based on model
distances and the number of optimizations performed to
get a client update, aiming to strike a balance between

14

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

4 classes p. client, std.=750

0.448 polyn. with f.
0.443 ours with f.
0.441 dw with f.
0.433 ours w/o f.
0.428 polyn w/o f.
0.425 dw w/o f.

7 classes p. client, std.=750

0.513 ours with f.
0.510 polyn. with f.
0.491 ours w/o f.
0.486 polyn w/o f.
0.484 dw with f.
0.465 dw w/o f.

0 2000 4000 6000 8000
0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

4 classes p. client, std.=1250

0.437 dw with f.
0.433 polyn. with f.
0.430 ours with f.
0.428 dw w/o f.
0.426 polyn w/o f.
0.426 ours w/o f.

0 2000 4000 6000 8000

7 classes p. client, std.=1250

0.500 ours with f.
0.492 polyn. with f.
0.492 ours w/o f.
0.483 dw with f.
0.481 polyn w/o f.
0.470 dw w/o f.

Fig. 6: FL tasks with CNN learning CIFAR10, in scenario with
link profile 1 and computation profile f. Sampled evolving
accuracy of different methods with data distribution std. 750
and 1250, 4 and 7 classes available at clients.

0 2000 4000 6000 8000 10000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

75 classes p. client

0.361 polyn. with unc.
0.354 polyn. with f.
0.352 polyn. w/o f.
0.337 dw with f.
0.332 dw with unc.
0.321 dw w/o f.

0 2000 4000 6000 8000 10000
Time steps

100 classes p. client

0.369 polyn. with f.
0.369 polyn. with unc.
0.359 polyn. w/o f.
0.336 dw with f.
0.334 dw with unc.
0.322 dw w/o f.

(a) Link Prof. 1, Comp. Prof. f

0 2000 4000 6000 8000 10000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

75 classes p. client

0.352 polyn. with unc.
0.352 polyn. with f.
0.330 polyn. w/o f.
0.329 dw with f.
0.321 dw with unc.
0.300 dw w/o f.

0 2000 4000 6000 8000 10000
Time steps

100 classes p. client

0.364 polyn. with unc.
0.362 polyn. with f.
0.340 polyn. w/o f.
0.331 dw with f.
0.329 dw with unc.
0.302 dw w/o f.

(b) Link Prof. 3, Comp. Prof. d

Fig. 7: FL tasks with SqueezeNet learning CIFAR100, in scenario
with (a) link profile 1 and computation profile f (b) link profile
3 and computation profile d. Sampled evolving accuracy of
different methods with data distribution std. 750, either 75 and
100 classes available at clients.

controlling the aggregation error and minimizing the initial
loss.

We show through experiments that our solution is more
effective in dynamic communication environments. Statisti-
cal analysis on training and uploading actions shows that
our solution – by targeting opportune link conditions –
measurably decreases the overall consumption of commu-

nication resources by at least 5%, reduces the transmission
time by 13% on average. Thanks to the decrease in com-
munication time, the computational resources invested are
generally increased by 10%, which in turn improves the
predicting accuracy of the learned model by 3% and 0.5%
for CIFAR10 and MNIST respectively. The improvement
brought by the flexibility is especially prominent when
the task is more computationally resource-demanding (CI-
FAR10). When combined with our newly-proposed method
for computing aggregation weight, the FL with flexibility
has improved performance by 3.8% for learning CIFAR10
and 1% for learning MNIST.

Our solution is especially suitable for scenarios with am-
ple computational resources and dynamic communication
conditions. Future research directions include adding data
imbalance factors into aggregation weight design, adapting
FL clients’ training speed based on learning progress, and
more accurate estimation of task loss to enable a more
accurate aggregation weight design.

REFERENCES
[1] J. Chen and X. Ran, “Deep Learning With Edge Computing: A

Review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674,
Aug. 2019.

[2] F. Dressler, C. F. Chiasserini, F. H. P. Fitzek, et al., “V-Edge: Virtual
Edge Computing as an Enabler for Novel Microservices and
Cooperative Computing,” IEEE Network, vol. 36, no. 3, pp. 24–31,
May 2022.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, et al., “Federated Learn-
ing in Mobile Edge Networks: A Comprehensive Survey,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063,
2020.

[4] J. C. Mertens, L. Galluccio, and G. Morabito, “Federated learning
through model gossiping in wireless sensor networks,” in 9th
IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom 2021), Bucharest, Romania: IEEE, May
2021, pp. 1–6.

[5] J. Nguyen, K. Malik, H. Zhan, et al., “Federated Learning with
Buffered Asynchronous Aggregation,” in 25th International Con-
ference on Artificial Intelligence and Statistics (AISTATS 2022), G.
Camps-Valls, F. Ruiz, and I. Valera, Eds., vol. 151, Valencia, Spain:
PMLR, Mar. 2022, pp. 3581–3607.

[6] T. H. Nguyen, W. Bao, A. Y. Zomaya, M. N. H. Nguyen, and
C. S. Hong, “Federated Learning over Wireless Networks: Opti-
mization Model Design and Analysis,” in 38th IEEE Conference on
Computer Communications (INFOCOM 2019), Paris, France: IEEE,
Apr. 2019, pp. 1387–1395.

[7] H. Sun, X. Ma, and R. Q. Hu, “Adaptive Federated Learning With
Gradient Compression in Uplink NOMA,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 12, pp. 16 325–16 329, Dec. 2020.

[8] M. Boban, D. Dupleich, N. Iqbal, et al., “Multi-Band Vehicle-
to-Vehicle Channel Characterization in the Presence of Vehicle
Blockage,” IEEE Access, vol. 7, pp. 9724–9735, Jan. 2019.

[9] Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, and G. K. Karagiannidis,
“Distributed Machine Learning for Multiuser Mobile Edge Com-
puting Systems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 16, no. 3, pp. 460–473, 2022.

[10] T. Nishio and R. Yonetani, “Client Selection for Federated Learn-
ing with Heterogeneous Resources in Mobile Edge,” in IEEE
International Conference on Communications (ICC 2019), Shanghai,
China: IEEE, May 2019.

[11] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust
and Communication-Efficient Federated Learning From Non-i.i.d.
Data,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 9, pp. 3400–3413, Sep. 2020.

[12] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical SGD,” in
36th AAAI Conference on Artificial Intelligence (AAAI-22), vol. 36,
Virtual Conference: AAAI Press, Feb. 2022, pp. 8548–8556.

15

[13] Y. He, M. Yang, Z. He, and M. Guizani, “Computation Offloading
and Resource Allocation Based on DT-MEC-Assisted Federated
Learning Framework,” IEEE Transactions on Cognitive Communica-
tions and Networking, vol. 9, no. 6, pp. 1707–1720, Dec. 2023.

[14] S. Wang, M. Chen, C. G. Brinton, C. Yin, W. Saad, and S. Cui, “Per-
formance Optimization for Variable Bitwidth Federated Learning
in Wireless Networks,” IEEE Transactions on Wireless Communica-
tions, vol. 23, no. 3, pp. 2340–2356, Mar. 2024.

[15] J. Feng, W. Zhang, Q. Pei, J. Wu, and X. Lin, “Heterogeneous Com-
putation and Resource Allocation for Wireless Powered Federated
Edge Learning Systems,” IEEE Transactions on Communications,
vol. 70, no. 5, pp. 3220–3233, 2022.

[16] M. Wu, M. Boban, and F. Dressler, “Parameter-less Asynchronous
Federated Learning under Computation and Communication
Constraints,” in 97th IEEE Vehicular Technology Conference (VTC
2023-Spring), Florence, Italy: IEEE, Jun. 2023, pp. 1–7.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in International Conference on Artificial Intelli-
gence and Statistics (AISTATS 2017), Fort Lauderdale, FL: PMLR,
Apr. 2017, pp. 1273–1282.

[18] Z. Qu, K. Lin, J. Kalagnanam, Z. Li, J. Zhou, and Z. Zhou,
“Federated Learning’s Blessing: FedAvg has Linear Speedup,”
arXiv, cs.LG 2007.05690, Jul. 2020.

[19] H. Jin, N. Yan, and M. Mortazavi, “Simulating Aggregation Algo-
rithms for Empirical Verification of Resilient and Adaptive Feder-
ated Learning,” in IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT 2020), Leicester,
United Kingdom: IEEE, Dec. 2020.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
in 3rd Conference on Machine Learning and Systems (MLSys 2020),
Austin, TX, Mar. 2020.

[21] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA:
A Semi-Asynchronous Protocol for Fast Federated Learning With
Low Overhead,” IEEE Transactions on Computers, vol. 70, no. 5,
pp. 655–668, May 2021.

[22] H. Guo, S. Li, B. Li, Y. Ma, and X. Ren, “A New Learning
Automata-Based Pruning Method to Train Deep Neural Net-
works,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3263–3269,
Oct. 2018.

[23] K. Pfeiffer, M. Rapp, R. Khalili, and J. Henkel, “CoCoFL:
Communication- and Computation-Aware Federated Learning
via Partial NN Freezing and Quantization,” Transactions on Ma-
chine Learning Research, Jun. 2023.

[24] J. Mills, J. Hu, and G. Min, “Communication-Efficient Federated
Learning for Wireless Edge Intelligence in IoT,” IEEE Internet of
Things Journal, vol. 7, no. 7, pp. 5986–5994, Jul. 2020.

[25] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, and D. B.
Ananda Theertha Suresh and, “Federated Learning: Strategies for
Improving Communication Efficiency,” arXiv, cs.LG 1610.05492,
Oct. 2016.

[26] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse
Binary Compression: Towards Distributed Deep Learning with
minimal Communication,” in International Joint Conference on Neu-
ral Networks (IJCNN 2019), Budapest, Hungary: IEEE, Jul. 2019.

[27] Z. Wang, Z. Zhang, Y. Tian, et al., “Asynchronous Federated
Learning Over Wireless Communication Networks,” IEEE Trans-
actions on Wireless Communications, vol. 21, no. 9, pp. 6961–6978,
Sep. 2022.

[28] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA:
A Semi-Asynchronous Federated Learning Mechanism in Het-
erogeneous Edge Computing,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 12, pp. 3654–3672, Dec. 2021.

[29] X. Wu and C.-L. Wang, “KAFL: Achieving High Training Effi-
ciency for Fast-K Asynchronous Federated Learning,” in 42nd
IEEE International Conference on Distributed Computing Systems
(ICDCS 2022), Bologna, Italy: IEEE, Jul. 2022, pp. 873–883.

[30] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated Opti-
mization,” arXiv, cs.DC 1903.03934, Mar. 2019.

[31] A. Imteaj and M. H. Amini, “FedPARL: Client Activity and
Resource-Oriented Lightweight Federated Learning Model for
Resource-Constrained Heterogeneous IoT Environment,” Frontiers
in Communications and Networks, vol. 2, Apr. 2021.

[32] Z. Zhou, Y. Li, X. Ren, and S. Yang, “Towards Efficient and Sta-
ble K-Asynchronous Federated Learning With Unbounded Stale

Gradients on Non-IID Data,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 3291–3305, Dec. 2022.

[33] K. Bäckström, M. Papatriantafilou, and P. Tsigas, “ASAP.SGD:
Instance-based Adaptiveness to Staleness in Asynchronous SGD,”
in 39th International Conference on Machine Learning (ICML 2022),
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, Eds., ser. Proceedings of Machine Learning Research,
vol. 162, Baltimore, MD: PMLR, Jul. 2022, pp. 1261–1276.

[34] S. P. Singh and M. Jaggi, “Model Fusion via Optimal Transport,” in
34th Conference on Neural Information Processing Systems (NeurIPS
2020), M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., Virtual Conference: Curran Associates Inc., Dec.
2020, pp. 22 045–22 055.

[35] Q. Li, B. He, and D. Song, “Model-Contrastive Federated Learn-
ing,” in IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR 2021), Nashville, TN: IEEE, Jun. 2021, pp. 10 708–
10 717.

[36] Y. Yu, A. Wei, S. P. Karimireddy, Y. Ma, and M. Jordan, “TCT: Con-
vexifying Federated Learning using Bootstrapped Neural Tan-
gent Kernels,” in 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), S. Koyejo, S. Mohamed, A. Agarwal, D.
Belgrave, K. Cho, and A. Oh, Eds., vol. 35, New Orleans, LA:
Curran Associates Inc., Nov. 2022, pp. 30 882–30 897.

[37] C. Xie, S. Koyejo, and I. Gupta, “Zeno++: Robust Fully Asyn-
chronous SGD,” in 37th International Conference on Machine Learn-
ing (PMLR 2020), Virtual Conference, Jul. 2020, pp. 10 495–10 503.

[38] T. Zeng, O. Semiari, W. Saad, and M. Bennis, “Wireless-Enabled
Asynchronous Federated Fourier Neural Network for Turbulence
Prediction in Urban Air Mobility (UAM),” IEEE Transactions on
Wireless Communications, pp. 1–1, 2023.

[39] J. Park, D.-J. Han, M. Choi, and J. Moon, “Sageflow: Robust
Federated Learning against Both Stragglers and Adversaries,” in
35th International Conference on Neural Information Processing Sys-
tems (NeurIPS 2021), M. a. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., vol. 34, Virtual Conference:
Curran Associates Inc., Dec. 2021, pp. 840–851.

[40] S. Park and O. Simeone, “Predicting Flat-Fading Channels via
Meta-Learned Closed-Form Linear Filters and Equilibrium Prop-
agation,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2022), Singapore, Singapore: IEEE, May
2022, pp. 8817–8821.

[41] M. Boban, M. Giordani, and M. Zorzi, “Predictive Quality of
Service: The Next Frontier for Fully Autonomous Systems,” IEEE
Network, vol. 35, no. 6, pp. 104–110, Nov. 2021.

[42] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous
Online Federated Learning for Edge Devices with Non-IID Data,”
in IEEE International Conference on Big Data (BigData 2020), Virtual
Conference: IEEE, Dec. 2020, pp. 15–24.

[43] L. Deng, “The MNIST Database of Handwritten Digit Images
for Machine Learning Researc,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, Nov. 2012.

[44] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” University of Toronto, Toronto, Canada, Technical Report
TR-2009, Apr. 2009.

[45] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” DeepScale, arXiv, Nov.
2016. [Online]. Available: https://arxiv.org/abs/1602.07360.

16

APPENDIX A
DETAILS OF PROOF OF INEQUALITIES

A.1 Proof of Corollary 4.1
E [F (xτk,hk

)− F (x∗)]

= E [F (xτk,hk
)− F (xτk,hk−1) + F (xτk,hk−1)− F (x∗)]

≤ E [F (xτk,hk−1)− F (x∗)] + E
[
⟨∇F (xτk,hk−1) ,xτk,hk

− xτk,hk−1⟩+
L

2
∥xτk,hk

− xτk,hk−1∥2
]

= E [F (xτk,hk−1)− F (x∗)] + E

〈
∇F (xτk,hk−1) ,−γ

1

B

∑
d∈DB

∇f(xτk,hk−1, d)

〉
+

L

2

∥∥∥∥∥∥γ 1

B

∑
d∈DB

∇f(xτk,hk−1, d)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Set γ≤ 1

L

= E [F (xτk,hk−1)− F (x∗)] +
1

2
γ · E

∥∇F (xτk,hk−1)−
1

B

∑
d∈DB

∇f(xτk,hk−1, d)∥2︸ ︷︷ ︸
Bounded data imbalance

− ∥∇F (xτk,hk−1) ∥2︸ ︷︷ ︸
Convert with PL inequality

≤ E [(1− γµ) · [F (xτk,hk−1)− F (x∗)]]

+
1

2
γ · E

∥∇F (xτk,hk−1)−∇f(xτk,hk−1) +∇f(xτk,hk−1)−
1

B

∑
d∈DB

∇f(xτk,hk−1, d)∥2

≤ E [(1− γµ) · [F (xτk,hk−1)− F (x∗)]]

+ γ · E

∥∇F (xτk,hk−1)−∇f(xτk,hk−1)∥2 + ∥∇f(xτk,hk−1)−
1

B

∑
d∈DB

∇f(xτk,hk−1, d)∥2

≤ E [(1− γµ) · [F (xτk,hk−1)− F (x∗)]] + γ(ϕ2 + σ2)

≤ (1− γµ)hk ·E [F (xτk,0)− F (x∗)] +
hk−1∑
i=0

γ(ϕ2 + σ2)(1− γµ)i

≤ (1− γµ)hk ·E [F (xτk,0)− F (x∗)] + (ϕ2 + σ2) · 1
µ

17

A.2 Complete Inequality Derivation
E[F (xk+1)− F (x∗)]

= E[F ((1− αk) · xk + αk · xτk,hk
)− F (x∗)]

≤ (1− αk) · E[F (xk)− F (x∗)] + αk · E[F (xτk,hk
)− F (x∗)]

≤ (1− αk) · E[F (xk)− F (x∗)] + αk ·
[
(1− γµ)hk ·E[F (xτk)− F (x∗)] +

ϕ2 + σ2

µ

]
= (1− αk) · E[F (xk)− F (x∗)] + αk ·

[
(1− γµ)hk ·E[F (xτk)− F (xk) + F (xk)− F (x∗)] +

ϕ2 + σ2

µ

]
≤
[
(1− αk) + αk · (1− γµ)hk

]
· E[F (xk)− F (x∗)] + αk ·

[
(1− γµ)hk ·E[F (xτk)− F (xk)] +

ϕ2 + σ2

µ

]
≤
[
(1− αk) + αk · (1− γµ)hk

]
· E[F (xk)− F (x∗)] + αk ·

[
(1− γµ)hk

2
· E
[
∥∇F (xk)∥2 + (1 + L) · ∥xτk − xk∥2

]
+

ϕ2 + σ2

µ

]

≤
[
(1− αk) + αk · (1− γµ)hk

]
· E[F (xk)− F (x∗)] + αk ·

[
(1− γµ)hk

2
· E
[
G2 + (1 + L) · ∥xτk − xk∥2

]
+

ϕ2 + σ2

µ

]
Inquality 2 proved

≤ Q1 · E[F (xk)− F (x∗)] +
1

2
αk · (1− γµ)hk ·G2 +

1 + L

2
αk · (1− γµ)hk · ∥xτk − xk∥2 + αk ·

ϕ2 + σ2

µ

≤ Q1 · E[F (xk)− F (x∗)] + αk ·
(
(1− γµ)hk

2
G2 +

ϕ2 + σ2

µ

)
+

1 + L

2
ea·e

bk+c

Use αk ≤
exp (a · ebk + c)

(1− γµ)hk · ∥xτk − xk∥2

≤ Q1 ·
{
Q1 · E[F (xk−1)− F (x∗)] + αk−1 ·

(
(1− γµ)hk−1

2
·G2 +

ϕ2 + σ2

µ

)
+

1 + L

2
ea·e

b(k−1)+c

}

+ αk ·
(
(1− γµ)hk

2
·G2 +

ϕ2 + σ2

µ

)
+

1 + L

2
ea·e

bk+c

Expand F (xk)− F (x∗) in similar way

= Q2
1 · E[F (xk−1)− F (x∗)] +

k∑
j=k−1

Qk−j
1 ·

{
αj ·

(
(1− γµ)hj

2
·G2 +

ϕ2 + σ2

µ

)
+

1 + L

2
ea·e

bj+c

}

≤ Qk+1
1 · E[F (x0)− F (x∗)] +

k∑
j=0

Qk−j
1 ·

{
αj ·

(
(1− γµ)hj

2
·G2 +

ϕ2 + σ2

µ

)
+

1 + L

2
I(j)

}

≤ Qk+1
1 · E[F (x0)− F (x∗)] +

k∑
j=0

Qk−j
1 ·

{
(Q1 − 1 + αj) ·G2

2
+ αj ·

ϕ2 + σ2

µ

}
+

k∑
j=0

Qk−j
1 · 1 + L

2
J(j)

Use Q1 ≥ (1− αk) + αk · (1− γµ)hk

Substitute I(·) with constructed geometric progression J(·)

≤ Qk+1
1 · E[F (x0)− F (x∗)] +

1−Qk+1
1

1−Q1
·
{
Q1 ·G2

2
+

αmax ·
(
ϕ2 + σ2

)
µ

}
+

k∑
j=0

Qk−j
1 · 1 + L

2
· J(0) · rj

Take upper bound: Q1 − 1 + αj ≤ Q1, αj ≤ αmax

≤ Qk+1
1 · E[F (x0)− F (x∗)] +

1−Qk+1
1

1−Q1
·
{
Q1 ·G2

2
+

αmax ·
(
ϕ2 + σ2

)
µ

}
+

k∑
j=0

Qk
2 ·

1 + L

2
· ea+c

Use Q2 = max{Q1, r}

= Qk+1
1 · E[F (x0)− F (x∗)] +

1−Qk+1
1

1−Q1
·
{
Q1 ·G2

2
+

αmax ·
(
ϕ2 + σ2

)
µ

}
+ (1 + k) · Q

k
2 · (1 + L) · ea+c

2

18

APPENDIX B
MACHINE LEARNING MODEL STRUCTURE

B.1 2-Layer Perceptron for Convex Classification of MNIST

TABLE 11: Model Structure for 2-Layer Perceptron for MNIST classification

Layer Parameters Input Layer

flatten / data
fully connected1 output=1024 flatten
activation1 ReLU fully connected1
fully connected2 output=1024 activation1
activation2 ReLU fully connected2
fully connected3 output=10 activation2
activation3 ReLU fully connected3

B.2 Convolutional Neural Network for MNIST Classification

TABLE 12: Model Structure for CNN used for MNIST classification

Layer Parameters Input Layer

conv1 out channel=10, kernel size=5, padding=0 data
activation1 ReLU conv1
pooling1 pool size=2, stride=2 activation1
conv2 out channel=20, kernel size=5, padding=0 pooling1
activation2 ReLU conv2
pooling2 pool size=2, stride=2 activation2
flatten / pooling2
fully connected1 output=50 flatten
activation3 ReLU fully connected1
fully connected2 output=10 activation3
activation4 ReLU fully connected2

B.3 Convolutional Neural Network for CIFAR10 Classification

TABLE 13: Model Structure for CNN used for CIFAR10 classification

Layer Parameters Input Layer

conv1 out channel=6, kernel size=5, padding=0 data
activation1 ReLU conv1
pooling1 pool size=2, stride=2 activation1
conv2 out channel=16, kernel size=5, padding=0 pooling1
activation2 ReLU conv2
pooling2 pool size=2, stride=2 activation2
flatten / pooling2
fully connected1 output=120 flatten
activation3 ReLU fully connected1
fully connected2 output=84 activation3
activation4 ReLU fully connected2
fully connected3 output=10 activation4

19

APPENDIX C
EXPERIMENT RESULTS

C.1 Resource Usage of FL tasks with CIFAR10

TABLE 14: Comparison of Statistics of Time and Resource Usage of FL clients in various Scenarios of Classifying CIFAR10

Avg. Trans-
mission Time

Comm. Re-
source Usage

with f. w/o f. with f. w/o f.

Link Profile 1
Comp. Profile c 18.3 20.4 0.373 0.394

Link Profile 2
Comp. Profile b 25.4 30.0 0.355 0.377

Link Profile 3
Comp. Profile a 7.6 7.6 0.152 0.200

Avg. Training
Time

Avg. Num. Optimi-
zation per client

with f. w/o f. with f. w/o f.

Link Profile 1
Comp. Profile c 33.2 28.6 26665 23652

Link Profile 2
Comp. Profile b 35.1 27.4 25114 20800

Link Profile 3
Comp. Profile a 34.1 24.4 35248 32917

