
Plan and Goal Recognition as HTN Planning
Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo

Institute of Artificial Intelligence
Ulm University

D-89069 Ulm, Germany
{daniel.hoeller, gregor.behnke, pascal.bercher, susanne.biundo}@uni-ulm.de

Abstract—Plan- and Goal Recognition (PGR) is the task of
inferring the goals and plans of an agent based on its actions.
Traditional approaches in PGR are based on a plan library
including pairs of plans and corresponding goals. In recent
years, the field successfully exploited the performance of planning
systems for PGR. The main benefits are the presence of efficient
solvers and well-established, compact formalisms for behavior
representation. However, the expressivity of the STRIPS planning
models used so far is limited, and models in PGR are often
structured in a hierarchical way. We present the approach Plan
and Goal Recognition as HTN Planning that combines the expres-
sive but still compact grammar-like HTN representation with the
advantage of using unmodified, off-the-shelf planning systems for
PGR. Our evaluation shows that – using our approach – current
planning systems are able to handle large models with thousands
of possible goals, that the approach results in high recognition
rates, and that it works even when the environment is partially
observable, i.e., if the observer might miss observations.

Index Terms—Plan Recognition, Plan Recognition as Planning,
HTN Planning

I. INTRODUCTION

For systems that interact with other agents, it may be im-
portant to know which goals their counterparts want to achieve
and what actions might be performed next, e.g. for planning
their own behavior, or to decide when to trigger own behavior
(e.g. when to offer help to a user in an assistance system).
The task is commonly known as Plan and Goal Recognition
(PGR) and it is usually solved based on a sequence of actions
that the observed agent performed. There have been different
approaches to solve it, e.g., rule-based, based on abduction,
probabilistic inference, or techniques from parsing [1].

A more recent approach called Plan Recognition as Plan-
ning introduced by Ramı́rez and Geffner in 2009 exploits
the performance of classical planning systems to solve it [2].
The main advantages are the presence of efficient solvers
and well-established, compact formalisms. Since the models
in PGR express the behavior of observed agents, formalisms
from planning seem well-suited. However, the STRIPS models
used in existing work can only express simple behavior struc-
tures similar to the regular languages known from theoretical
computer science [3]. PGR is often based on hierarchical,
grammar-like models (see e.g. [4]). Such models are also
common in planning: the most widely used hierarchical for-
malism is Hierarchical Task Network (HTN) planning (see

e.g. [5]). HTN models have also been proposed to be used in
PGR [6], though it has been shown that the problem becomes
undecidable in this setting [7]. Cardona-Rivera and Young
argue that hierarchical planning formalisms bridge the gap
between traditional PGR approaches and PGR as Planning [8].

HTN models combine STRIPS-like state transition with
grammar-like decomposition that can express context-sensitive
structures [9], combining the benefits of both. The hierarchy
is often seen as means to represent advice in STRIPS models
that represent the physics of a domain [10]. But it forms a
second, general means of modeling (we further discuss this
issue in Sec. III). The combination enables a compact yet
expressive behavior representation. Sometimes it also enables
a more natural model: it might e.g. be known that a certain
medical treatment (that can be modeled in terms of a recipe via
decomposition) leads to a good outcome, but it is difficult to
model the causality behind it in terms of state transition [11].
In PGR, the hierarchy enables a natural definition of the
agent’s goals as the top-most tasks. These may be partially
ordered, enabling the recognition of several goals of an agent
with interleaving plans, or the goals of several agents.

In this paper, we present the first PGR as Planning approach
in the HTN setting. It enables the recognition of complex agent
behavior by using unmodified HTN planners. Our approach
combines the benefits of recent work in the field like (1) recog-
nition of non-optimal behavior, (2) planning only once instead
of once for every possible goal, (3) recognizing plans as well
as goals, (4) and the ability to deal with missed observations.
Our evaluation shows that it works well on large plan and goal
recognition corpora including thousands of goals the agent
may pursue, even when the observer might miss actions.

We first summarize related work (Section II), then introduce
the formal framework (Section III), before we give the formal
problem definition and our approach (Section IV) that is
evaluated in Section V.

II. RELATED WORK

The first work on plan recognition as planning was in-
troduced by Ramı́rez and Geffner [2] in 2009. It is based
on a STRIPS model and a set of goals the observed agent
may pursue. By using a (slightly modified) planning system,
the approach determines those goals for which the observed
actions can be part of an optimal solution. The observations
are thereby “. . . replaced by extra goals that must be achieved
at no extra cost.” [2, p. 3]. The approach relies on optimal©2018 IEEE

behavior of the agent and results in a set of goals the agent
may pursue. Ramı́rez and Geffner introduced an improved
approach in 2010 with less restrictive assumptions about agent
behavior [12]. The new measure is based on the cost difference
between the two plans (with/without observed prefix). So
the agent needs to approach the goal, but not necessarily in
an optimal way. Now, the approach works with unmodified
planning systems and outputs likelihoods for each goal. Like
before, the planner needs to plan twice for each possible goal.

The approach of Sohrabi et al. [13] can deal with unreliable
observations (e.g. missed observations) and recognizes not
only goals, but also plans. Ramı́rez and Geffner assumed ob-
servations over actions. Sohrabi et al. also support observations
over fluents. By using top-k planning and action costs, the
approach does not run the planner for each goal separately.

The work by Cardona-Rivera and Young [8] is yet prelimi-
nary, but it shows that the extension to hierarchical formalisms
is appealing to be able to combine recipe-like and state-based
reasoning in plan recognition [8]. It introduces a PGR as
Planning approach in decompositional planning (DP). Though
it is also a hierarchical approach, it is quite different from HTN
planning. In DP, the hierarchy is pure advice and solutions do
not need to be included in the decomposition hierarchy. DP
is equally expressive as STRIPS. Therefore they can choose
the tasks to start the search from freely and integrate the
observations in the starting point of their search. As a result,
their overall problem class as well as approach are quite
different from ours presented in this paper.

Our work introduces PGR as Planning in the setting of HTN
planning and combines several advantages of related work.
Like all of them, we benefit from a compact, well-established
planning formalism and – using unmodified planners – do not
need specialized solvers like traditional PGR approaches. Our
approach does not rely on optimal agent behavior and needs
to plan only once instead of once for every goal. It recognizes
both goals and plans and can deal with missed observations.

III. HTN PLANNING

Hierarchical structures in planning are often seen as a
means of introducing advice to non-hierarchical problems that
represent physics, not advice [10, p. 37]. Using a hierarchy,
the search space can be restricted severely, resulting in very
efficient domain-configurable planners [14] like SHOP2 [15].
But the hierarchy adds a second, general means of modeling.
Consider e.g. a transport domain: In a non-hierarchical model,
state features describe where a transporter is located and
actions change this location until it is at its desired location.
The model depicted in Figure 1 shows that the same can be
represented in the hierarchy: When a transporter is located
at location A and shall move to C, this can be done either
(1) by using a direct connection (a road between A and C)
or (2) via an intermediate location B. By using these two
rules (the latter being recursive), the entire part of the state
representing locations can be deleted. Obviously, this hierarchy
models physics, not advice. Just like state, the hierarchy can
represent physics or advice. Thus, we consider HTN planning

move(A,C)

move(A,B) drive(B ,C)

move(A,C)

drive(A,C)

Fig. 1. The left method decomposes the abstract task move into a drive
action that enables direct movement between two locations connected with a
road. The right method is recursive and enables movement between locations
without direct road connection.

a domain-independent approach used with heuristic planning
systems. This is important, since it reduces the modeling effort
significantly. Though such problems are harder to solve, there
is a number of systems available, e.g. based on plan space [16]
and progression search [17] or on compilation [18]–[20].

Plans in HTN planning must satisfy the constraints intro-
duced by the hierarchy as well as the ones introduced by state
(unlike e.g. DP). This results in a high expressivity: When
interpreting the set of solutions to a planning problem as a
formal language and comparing it to the Chomsky hierarchy,
HTN models can express (non-context-free) context-sensitive
languages, whereas STRIPS is limited to regular languages [3],
[9]. So even simple bracket structures or the constraint of
having one action as many times as another one can easily
be represented in HTN models, but not in STRIPS.

We now introduce the HTN formalism of Geier and
Bercher [21]. In HTN planning, there are two types of tasks,
compound (or abstract) and primitive tasks (or actions). Ab-
stract tasks are successively decomposed into other (abstract
or primitive) tasks until only primitive tasks are left. These
can be directly executed and are similar to actions in STRIPS.

The sets of primitive task names (actions) and compound
task names are denoted as A and C. Tasks are organized in
task networks. A task network tn is a triple (T ,≺, α). T
is the (possibly empty) set of unique task identifiers. These
are mapped to task names by the function α : T → C ∪ A.
This enables a single task name (e.g. move-a-b) to appear
multiple times in a task network. The set ≺ ⊆ T ×T defines
a partial order on the task identifiers. Two task networks tn =
(T ,≺, α) and tn ′ = (T ′,≺′, α′) are called isomorphic (tn ∼=
tn ′) if they differ solely in their identifiers, i.e., if there is
a bijection σ : T → T ′ so that for all t, t′ ∈ T holds that
[(t, t′) ∈ ≺]⇔ [(σ(t), σ(t′)) ∈ ≺′] and α(t) = α′(σ(t)).

Abstract tasks are decomposed by using (decomposition)
methods. Let M be the set of all methods. A method m ∈M
is a pair (c, tn) that maps an abstract task c ∈ C to a task
network tn , which specifies the (primitive or abstract) subtasks
of c and their ordering. A decomposed task is deleted from the
network, the subtasks of the method are inserted and inherit
its ordering relations. Formally, a method (c, tn) decomposes
a task network tn1 = (T1,≺1, α1) into a task network tn2 =
(T2,≺2, α2) if t ∈ T1 with α1(t) = c and there is a task
network tn ′ = (T ′,≺′, α′) with tn ′ ∼= tn and T1 ∩ T ′ = ∅.

The resulting task network tn2 is defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

To denote that the task network tn can be decomposed
into the task network tn ′ by the application of zero or more
decompositions, we write tn →∗ tn ′.

The state-based part of the problem is defined over a set
of propositional environment facts L. Primitive tasks hold
preconditions and effects that change the current state. These
are given by the functions in the triple δ = (prec, add , del),
defining their preconditions, the positive and negative effects.
All these functions are defined as f : A → 2L. The relation
τ : A × 2L returns whether an action is applicable in a state
with τ(a, s)⇔ prec(a) ⊆ s. When an action is applicable, the
state resulting from its application is defined by the function
γ : A × 2L → 2L with γ(a, s) = [s \ del(a)] ∪ add(a).
An action sequence 〈a0a1 . . . an〉 is applicable to a state s0
when each action ai with 1 ≤ i ≤ n is applicable to the state
si = γ(ai−1, si−1).

An HTN planning domain is a tuple D = (L,C,A,M, δ).
A planning problem P = (D, s0, tnI) includes a domain D,
the initial state s0 ∈ 2L and an initial task network tnI . A
task network tnS = (TS ,≺S , αS) is a solution to a planning
problem P if and only if the following conditions hold:

1) ∀t ∈ TS : αS(t) ∈ A, i.e., all tasks are primitive.
2) There is a sequence 〈t1t2 . . . tn〉 of the task identifiers

in TS in line with ≺S and 〈αS(t1)αS(t2) . . . αS(tn)〉 is
applicable in s0, i.e., the solution is executable.

3) tnI →∗ tnS , i.e., the solution is a refinement of the initial
task network.

Sol(P) denotes the set of all solutions to a problem P .

IV. PLAN & GOAL RECOGNITION AS HTN PLANNING

Based on the formal framework of HTN planning, we spec-
ify the PGR problem and introduce our approach afterwards.

A. Problem Definition

Let D = (L,C,A,M, δ) be an HTN planning domain that
defines the behavior of the observed agent(s).

Having a hierarchical behavior model, goals of an agent
are commonly defined as the top-most tasks in that hierarchy.
Since an agent may pursue more than one of these tasks,
we define goals in terms of a task network. This enables a
flexible definition of goals, including multiple tasks that may
or may not include the same task more than once. They may
be ordered to each other. If they are not, the definition allows
the plans of several goals to be interleaved. In a kitchen
domain, an agent may pursue a single goal Gp = ({t},
∅, {(t 7→ makePasta)}) or two goals Gps = ({t, t′}, ∅,
{(t 7→ makePasta), (t′ 7→ makeSauce)}). In the latter case,
the subtasks of t and t′ may be interleaved.

Like related work, we assume a set of possible goals, a
sequence of observed actions, and the initial state to be given.

Definition 1 (PGR Problem): A PGR problem (D, s0, ō,G)
extends the HTN domain model by an initial state s0 ∈ 2L,
the observations ō, and a set of possible goals G. Let ō =
〈o1, o2, . . . , om〉 be the sequence of observed primitive task
names. We define G to be a (finite) set of task networks G =
{G1, G2, . . . , Gr} where each element is defined as Gi =
({t0, t1, . . . , tn},≺, α) with α(tj) ∈ C ∪A and n ∈ N0.
In HTN planning, only primitive tasks are executable directly,
so we assume the observations to be primitive tasks. Since ō
needs to be placed at the beginning of the solutions, we call
it the prefix of observations. G contains possible combinations
of top-most tasks (like Gp and Gps given above).

Let 〈a, b, c〉 be the sequence of observed actions. When
the environment is partially observable, a plan starting with
〈a, y, b, z, c〉 can also be considered a solution because the
observer may have missed some performed actions.

Definition 2 (Goals and Plans): Given a PGR problem
(D, s0, ō,G), some goal G ∈ G explains the observations
〈o1, o2, . . . , om〉 if and only if there is a task network
(T ,≺, α) ∈ Sol((D , s0 ,G)) and an executable linearization
〈t1, t2, . . . , tn〉 of the tasks in T with n ≥ m and
• for fully observable environments oi = α(ti) for 1 ≤ i ≤
m, or

• for partially observable environments, there must be a
strictly increasing sequence of indices 〈j1, . . . , jm〉 with
1 ≤ j1, jm ≤ n and oi = α(tji) for 1 ≤ i ≤ m.

The sequence 〈α(t1), α(t2), . . . , α(tn)〉 of primitive tasks is
called the recognized plan.

So when an agent is executing the plan 〈a, b, . . . , z〉 and
has already performed the actions 〈a, b, c〉, the sequence of
observations in a fully observable environment will be 〈a, b, c〉.
In a partially observable environment, actions may be missed,
so the observations may be, e.g., 〈a, c〉 or 〈b, c〉.

B. Approach

This section presents our approach that, like related work,
is based on a problem transformation. However, due to the
HTN setting, the overall approaches differ and enforcing a
prefix is more complicated. Figure 2 illustrates the overall
approach. The transformation is a two-stage process, a first
step introduces a new task name tI that can be decomposed
into one of the original goal-networks G1 . . . Gr. Every call
of the planner starts with tI in the initial task network.
For a certain goal, there may be more than one solution.
The transformation makes all solutions belonging to all goals
reachable. After decomposing tI into some Gi, the system
needs to find a solution by using the decompositions defined in
the original model (indicated by the cloud). A second transfor-
mation guarantees that any solution includes the observations.

The planning problem that results from the overall trans-
formation is an ordinary HTN planning problem that can be
solved by any HTN planner. Solving the planning problem
also solves the PGR problem: Any solution includes as first
decomposition the goal Gi the planner has selected as well

tI

G1 G2 G3

. . .
Gr

. . .
.

. . .

. . .

o1 o2 . . . on pn+1 . . . pm

. . .

Fig. 2. Schema of the overall approach. The planner starts with a task network
that contains a newly introduced task tI that is decomposed into one of
the original goal-networks Gi. Afterwards, Gi is further decomposed until a
solution is found. A second transformation ensures that every solution starts
with the observed prefix.

as the plan that was generated – i.e., it provides a goal that
explains the observation and it recognizes the plan.

Our first transformation integrates the goal selection into
the planning process and makes it possible to solve the
PGR problem with a single run of the planner. The second
transformation that enforces the prefix is more difficult in HTN
planning. Beside modifying and extending the set of actions,
we need to adapt the decomposition hierarchy. Otherwise,
the new actions are not reachable for the planner. We now
introduce the two transformations in more detail.

1) Selecting a Goal: Based on a given plan and goal
recognition problem PGR = (D, s0, ō,G) with D = (L, C,
A, M, δ), we define a planning problem

P = ((L,C ∪ {tI}, A,M ′, δ) , s0, tn′I)

M ′ = M ∪ {(tI , tn) | tn ∈ G}

where {tI} ∩ C = ∅ is a new initial task and tn′I =
{{t}, ∅, {(t 7→ tI)}}. In the original model, G formed the set
of possible initial task networks. Now exactly those networks
can be decomposed from the newly introduced task. Therefore
the following lemma holds:

Lemma 1: The set of solutions Sol(P) contains exactly the
solutions to all goals given in the original model PGR.

Next, the problem is transformed so that the set of solutions
includes only those that include the given prefix.

2) Enforcing a Prefix: We build on a transformation of
the actions similar to that known from classical planning.
Then we show how to integrate the new actions into the
decomposition hierarchy to make them reachable from the
initial task network.

Based on a given HTN planning problem P =
((L,C,A,M, δ), s0, tnI) with δ = (prec, add , del), we define
a problem P ′ = ((L′, C ′, A′,M ′, δ′), s′0, tn

′
I) with δ′ =

(prec′, add ′, del ′). Let ō = 〈o1, o2, . . . , om〉 be the sequence
of observations.

To enforce the given plan prefix, we introduce new propo-
sitional symbols and duplicates of the actions with modified
preconditions and effects. Let li with 0 ≤ i ≤ m and li 6∈ L
be propositional symbols that are used to place some oi at its

position in a generated plan, i.e. L′ = L ∪ {li | 0 ≤ i ≤ m}.
For each task name oi in the prefix, we introduce a new task
name o′i and define the preconditions and effects as

prec′(o′i) 7→ prec(oi) ∪ {li−1},
add ′(o′i) 7→ add(oi) ∪ {li} and
del ′(o′i) 7→ del(oi) ∪ {li−1}.

When the environment is fully observable, every action in
the original problem needs to be executed after the prefix,
i.e., ∀a ∈ A holds that prec′(a) 7→ prec(a) ∪ {lm}. When
the environment is partially observable, these actions remain
unchanged. The new set of actions is defined as A′ = A∪{o′i |
1 ≤ i ≤ m}. To make the first action of the prefix applicable
in the initial state, the symbol l0 is added, i.e., s′0 = s0∪{l0}.

We want every solution to include the entire prefix. There-
fore we enforce lm to be true at the end of each plan.
Due to the lack of a goal description in the HTN for-
malism, we introduce a new primitive task name tG with
prec′(tG) 7→ {lm}, add ′(tG) 7→ ∅ and del ′(tG) 7→ ∅. We
place this task via the initial task network after all other tasks
tn ′I = ({t1, t2}, {(t1, t2)}, {(t1 7→ tI), (t2 7→ tG)}). Now, the
HTN system is forced to search for plans that end with this
action that holds our new goal as precondition.

So far we adapted the non-hierarchical part of the problem,
but the newly introduced actions would never be reachable
through decomposition, and due to the new precondition, the
original actions would never be executable.

Regarding the newly introduced actions o′i as equal to
the actions they are duplicates of, it should be possible to
place them at any position in the plan where oi could have
been. Therefore we introduce new abstract tasks that replace
the primitive tasks in the original problem. New methods
decompose these tasks either into (1) the original primitive
task, or, (2) one of the new primitive tasks in the prefix.

C ′ = C ∪ {c′a | a ∈ A}, c′a 6∈ C ∪A,
M c = {(c, (T ,≺, α′)) | (c, (T ,≺, α)) ∈M}, where

∀t ∈ T with α(t) = n, α′(t) =

{
n, if n ∈ C
c′n, else.

Ma = {(c′a, ({t}, ∅, {t 7→ a})) | ∀a ∈ A},

Now we have to introduce a new method for every action
in the sequence of observations ō = 〈o1, o2, . . . , om〉. This
method decomposes the respective new compound task c′oi
into the observed action oi:

Mo = {(c′oi , ({t}, ∅, {t 7→ o′i})) | oi ∈ ō}

By defining the new set of methods M ′ = M c∪Ma∪Mo,
the new planning problem P ′ is fully specified.

Given that (1) the original primitive tasks and their cor-
responding duplicates are regarded equal and (2) the last
artificial goal task tG is deleted from the solution, Thm. 1
holds.

Theorem 1: Let P be an HTN planning problem, ō a prefix
of actions, and P ′ the transformed HTN problem that enforces

the prefix. Both with and without partial observability, we get
that Sol(P ′) contains exactly the solutions of P containing ō.
Proof: We first show that every solution in Sol(P ′) contains
ō (in the right order). The occurrence of the tasks o =
〈o1, . . . , om〉 is enforced by the precondition lm of the last
task tG. It can only be achieved by om, which requires lm−1
that is provided by om−1, and so forth.

In case of full observability, the original actions are intended
to occur after om, which is enforced by its newly introduced
precondition lm.

We need to show that all solutions in Sol(P) containing ō
are also in Sol(P ′). The set of primitive task networks that
are reachable does not change (when considering an observed
action and its duplicate equal): We replaced the actions in P
by new compound tasks, but also introduced two methods for
it; one decomposes the task into the original action and the
other into its duplicate encoding the observation.

If a (primitive) solution task network of P contains the
observed (original) actions in the correct order, then clearly
there is an isomorphic solution in P ′, where these actions are
substituted by their duplicate pendent. The duplicates perfectly
mimic the original effects, but additionally ensure that they are
executed in the right order. For full observability, the encoding
ensures that all original actions are executed after the prefix. �

3) Overall Transformation: Given a PGR problem
(D, s0, ō,G), we compile D, s0, and G into a planning problem
P by using the first transformation and enforce ō by the
second transformation, resulting in P ′. Taking Lemma 1 and
Theorem 1 together, we get:

Corollary 1: Let PGR be a plan and goal recognition
problem and P ′ an HTN planning problem resulting from
applying the transformations. Then, Sol(P ′) contains exactly
the solutions given in Definition 2.

Instead of constructing a specialized plan and goal recogni-
tion system to solve the task, we can create the corresponding
HTN problem and pass it on to any HTN planning system.

In HTN planning, the planner is not allowed to insert actions
apart from the hierarchy, it has to choose a goal with a plan
that includes an observed action in the first place. Among
plans in line with the observations, the planner will tend
to choose a cheap plan according to its cost measure. The
agent is assumed to act according to the HTN model, but not
necessarily optimal. The hierarchy is often regarded to specify
combinations of actions that are helpful strategies to reach a
goal, i.e., that are rational behavior. So the assumptions about
goal-directed behavior are given in the domain.

Like related work, we rely on full information about the ini-
tial state and deterministic actions. We use our transformation
to generate a single solution. Our evaluation shows that the
strategy of finding a goal with a short plan that includes the
observations in the first place works quite well in practice.
However, we consider it the natural next step to generate
a distribution of probabilities, e.g. by using top-k planning
like Sohrabi et al. [13].

V. EMPIRICAL EVALUATION

a) Domains: There are only few evaluation corpora for
PGR available. Beside the actual model for recognition, pairs
of goals and plans that belong to each other are needed and
the domain should incorporate a set of qualitatively different
goals. As first evaluation domain we have chosen the Monroe
domain1. It is a disaster management domain and was built
by Blaylock and Allen [22] to generate a corpus of 5000
plan/goal combinations. They generated the plans by using
a modified SHOP2 planning system that was adapted to
randomly generate different possible plans for a given goal.
It includes 10 different lifted goals, 46 lifted methods and
30 lifted actions and a huge set of constants that result in
nearly 2000 distinct groundings of the goals in the generated
corpus. For details, we refer to their paper given above. From
a computational complexity view, the domain is neither totally
ordered, nor (lifted/grounded) acyclic, nor tail-recursive, i.e.,
properties that would make it decidable [5], [23], are not
fulfilled. We use an HTN domain that is widely based on their
SHOP2 domain.

To contribute to the portfolio of available benchmark cor-
pora, we created a new corpus2. We wanted to model a
problem with the following characteristics:

1) It should intrinsically incorporate multiple goals that are
pursued by the agent, i.e. that contribute to a single plan,

2) it should include partial ordering between tasks, and
3) it should be difficult to recognize because plans for

several goals share a common prefix.
We created a Kitchen domain including 5 distinct starters,

30 distinct main dishes, and distinct 5 desserts. The main
dishes itself are combinations of different food (i.e. a main
dish implies several goals), e.g., making noodles and a pasta
sauce. This means that even two main dishes might share a
common prefix of actions. The overall goal is to either create
• a main dish, • a starter and a main dish, • a main dish and
a dessert, or • a starter, a main dish and a dessert.

This leads to more than 1000 different goal combinations in
the corpus (without counting just grounding matters like which
cooking pan is used for which food). By construction, many
of them share the same prefix and many steps are partially
ordered. Consider e.g. seeing a cook making a certain starter
and a certain main dish, then the plan recognizer can never be
sure if it has observed the full plan (cooking these two things)
or the prefix of making a meal that additionally contains a
dessert. The mean number of goals included in each instance is
4.27. The used domain intrinsically incorporates tasks that are
partially ordered. We analyzed the overall domain and found
a combination of starter, main dish, and dessert that results in
more than 2× 1037 distinct linearizations of the solution.

When using the same planning system to generate the
corpus and for plan recognition, there might be a bias in
the results. Since we use a search-based planner to solve
the recognition task, we used our SAT-based planner [19] to

1https://www.cs.rochester.edu/research/speech/monroe-plan/
2Our software is available online at www.uni-ulm.de/en/in/ki/panda.

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

length of observed prefix in % of the plan

c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 i
n

 %

no parameter recognition

full experiment set

without provide−temp−heat

(a) Over all goals.

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

length of observed prefix in % of the plan

c
o
rr

e
c
tl
y
 c

la
s
s
if
ie

d
 i
n
 %

set−up−shelter

fix−water−main

clear−road−hazard

clear−road−wreck

clear−road−tree

plow−road

quell−riot

provide−temp−heat

fix−power−line

provide−med.−attention

(b) Split by (ground-truth) goal.

Fig. 3. Goal recognition in the Monroe domain (fully observable setting). Curves represent the percentage of correctly classified goals given a certain percentage
of the prefix has been seen. Each point represents the ratio between instances with correctly recognized goal and instances with wrongly recognized goal in
an interval of 12.5% of the prefix length. Consider, e.g., the right-most triangle in the left plot at position (93.75, 86.4). It means that, from instances with
an enforced prefix of a length between 87.5% and 100% of the ground-truth plan, 86.4% of the goals are classified correctly.

generate the corpus. It is a satisficing planner, i.e. the plans
may be sub-optimal. The generated plans include a mean value
of 35.4 actions.

b) Experiment Setup: We implemented a lifted version of
the transformation2 and used 100 instances of each corpus. In
the Monroe domain, the plans of these instances have a length
of 4 to 29 actions (mean value 10.7); in the Kitchen domain
a length of 16 to 50 (mean value 36.7). For each instance,
we generated one planning problem with enforced prefix of
length 0, 1, 2, and so on, until the whole original plan has
been enforced. The planner was started with the transformed
problem and a single solution was generated. From this result,
the goal and the generated plan was extracted as the recognized
goal and plan.

In principle, the planning system that is used is of minor
importance for our approach. We used the most recent version
of our heuristic search system PANDA [17] to solve the
resulting PGR problems. It ran on Xeon E5-2660 v3 CPUs
with 2.60 GHz base frequency, 16 GB memory, and a time
limit of 10 minutes.

A. Fully Observable Environments

In the Monroe domain, the planner solved 84% of the
instances. Due to the large set of constants, the median of

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

length of observed prefix in % of the plan

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

Fig. 4. False positive rate, split by type of goal, ignoring parameters (labels
as given in Figure 3b).

the peak memory for grounding was 2.12 GB, but only 0.17
GB for search. The median runtime was 43 seconds. In the
Kitchen domain, the planner solved 99% of the instances. The
median of the peak memory (grounding and search) was 0.47
GB. The median runtime was 3.7 seconds. I.e., from a planning
perspective, the Kitchen domain is easier to solve. This is due
to the large set of constants in the Monroe domain that made
grounding costly.

1) Goal Recognition: Figure 3a shows the performance of
the goal recognition over all solved instances and all goals in
the Monroe domain. On the x-axis it shows the length of the
observed prefix, on the y-axis the percentage of instances with
correctly classified goal. Due to the different plan lengths, the
length of the prefix is given as percentage of the overall plan.

The bottom curve shows the recognition rate on the full
tasks, i.e., the result is correct when the task and all parameters
have been recognized correctly. This results in thousands of
possible classifications (nearly 2000 of them are included
in the corpus). To further investigate the cause of incorrect
classifications, we analyzed whether the task was classified
correctly (i.e., incorrect parameters were ignored, this results
in 10 possible classifications). The percentage of correctly
classified tasks is given in top-most curve. Then, the goal is
recognized correctly after a short prefix. We come back to the
third curve later.

Studying the first plots, we were wondering why the system
could detect the tasks, but not the correct parameters in so
many cases. So we had a look at the performance on distinct
goals. Naturally, there are goals that result in sequences of
actions that are more unique than others, revealing the goal.
Other goals may result in plans that do not really distinguish
one goal from another. So one might assume that some goals
are recognized after a short prefix, others might need a longer
prefix to be recognized.

We split the data on the full recognition (task and pa-
rameters) by the different goal tasks. The results are given
in Figure 3b. Some of the goals are recognized quite well
after observing a short prefix, others only when the half or

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

length of observed prefix in % of the plan

c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 i
n

 %

fully observable

partially observable

(a) Kitchen domain.

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

length of observed prefix in % of the plan

c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 i
n

 %

fully observable

partially observable

(b) Monroe domain.

Fig. 5. Comparison of the goal recognition results in the fully and partially observable setting.

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

length of observed prefix in % of the plan

c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 i
n

 %

Fig. 6. False positive rate.

even three quarters of the overall plan have been observed.
Quite notable is the poor recognition performance on the goal
provide-temp-heat. We identified the following method in the
domain used for generation that does cause it:

(:method m-provide-temp-heat-1
:parameters (?person - person

?ploc - point)
:task (provide-temp-heat ?person)
:precondition (and

(atloc ?person ?ploc))
:ordered-subtasks (and
(generate-temp-electricity ?ploc)
(turn-on-heat ?ploc)))

It decomposes the task (provide-temp-heat ?person) into two
subtasks and includes a method precondition3 that binds the
parameter ?ploc to the location of the person to treat. The
subtasks ensure that this location is provided with electricity
and heat, but the person itself does not appear in the plan.
Given that more than one person may be at this location, it
is impossible for a PGR system to infer the right one. Surely,
such structures should be avoided when designing a model
for PGR (though it is totally fine for planning, the purpose
the domain was designed for by Blaylock and Allen).

Now we can come back to Figure 3a. The curve in the
middle gives the performance over all goals except for provide-
temp-heat. Now the overall performance of recognizing the
goal with all parameters nearly reaches the performance of
recognizing only the goal task without parameters.

We want to have a look at the false positive rate. Obviously,
this can not be provided for each single grounding of the goals.
Instead, Figure 4 shows it separate for each goal task, ignoring
all parameters. In the first interval (including the case with no
observed prefix), the planning system tends to choose set-up-
shelter as goal. This is in line with Figure 3b, where the result
for this task is very high from the start. So the plans for this
goal might be easy to find for the planner.

Figure 5a and 6 show the goal recognition results for
the Kitchen domain. The dotted curves show the recognition
results for the fully observable setting that is discussed here
(be will come back to the other curves later on). Figure 5a

3Method preconditions are a feature of the planner SHOP that is commonly
compiled away before planning.

shows the percentage of ground-truth goals that have been
recognized correctly. It can be seen that the recognition in
this domain is more difficult than the Monroe domain. In this
domain, the planner has to choose the number of goals, e.g. if
there is solely a main dish, or an extra dessert. This can result
in false positives. Figure 6 gives the false positives, i.e., the
percentage of goals that have been returned by the recognition
system but are not included in the set of ground-truth goals.
The dotted curve gives, again, the totally observable setting.
It can be seen that the false positive rates decrease quite fast
when the number of observations increases.

2) Plan Recognition: Plan recognition provides further
information about the observed agent’s behavior. The ground-
truth plan and the recognized plan have necessarily the en-
forced prefix of observations in common. Figure 7 and 8 give
the percentage of actions after the enforced prefix (denoted the
postfix) that are identical (over all runs, regardless on whether
the goal was recognized correctly or not). For both domains, it
gives (1) the percentage of the remaining ground-truth actions
that are included in the recognized plan and (2) the percent
of the remaining actions in the recognized plan are included
in the ground-truth plan. It can be seen that the results for the
second value are better – we think that this is caused by the
planner’s tendency to find short plans. Though the evaluated
domains enable a large set of possibilities on how to achieve a
goal, the system finds plans with a large percentage of actions
included both in the generated and in the ground-truth plan.

B. Partially Observable Environments
An interesting question is if our approach can deal with

partially observable environments, causing the observer to
miss actions. Therefore we performed a second series of
experiments. We generated partially observable experiments
by randomly deleting 20% of the observations. In the Monroe
domain, we used the set excluding provide-temp-heat and
15 minutes time limit. However, the median solving time
increased only slightly to 49 seconds for Monroe and it stays
under 4 seconds in the Kitchen domain. The coverage in the
Monroe domain decreased to 61%, in the Kitchen domain to
85%.

1) Goal Recognition: Figure 5b shows a comparison be-
tween the recognition rate in the fully and partially observable

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

length of observed prefix in % of the plan

o
v
e
rl
a
p
 a

ft
e
r

p
re

fi
x

fully observable

partially observable

(a) Monroe domain.

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

length of observed prefix in % of the plan

o
v
e
rl
a
p
 a

ft
e
r

p
re

fi
x

fully observable

partially observable

(b) Kitchen domain.

Fig. 7. Percentage of the postfix ground-truth actions that are included in the
recognized plan.

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

length of observed prefix in % of the plan

o
v
e
rl
a
p
 a

ft
e
r

p
re

fi
x

fully observable

partially observable

(a) Monroe domain.

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

length of observed prefix in % of the plan

o
v
e
rl
a
p
 a

ft
e
r

p
re

fi
x

fully observable

partially observable

(b) Kitchen domain.

Fig. 8. Percentage of the postfix actions of the recognized plan that are
included in the ground-truth plan.

environment for the Monroe domain. It is lower in the begin-
ning, but becomes nearly as accurate as in the fully observable
setting when the observed prefix becomes longer. A similar
result can be seen in the Kitchen domain (Figure 5a).

2) Plan Recognition: Figure 7 and 8 include the plan
recognition results for the partially observable setting (the non-
dotted lines). Most notably is the drop of the plan recognition
results in the Kitchen domain. We think that this is caused by
the higher false positive rate causing more non-ground-truth
actions in the generated plan.

Overall, it can be seen that the approach can handle missed
observations, especially in goal recognition.

VI. CONCLUSION

Plan and Goal Recognition as Planning exploits efficient
solvers and well-established, compact formalisms for behavior
representation from planning in the field of plan and goal
recognition. We are the first who introduced the approach in
the field of HTN planning. The use of HTN instead of STRIPS
models enables the recognition of far more complex behavior
(context-sensitive instead of regular structures), thereby com-
bining widely-used grammar-like models with state-transition
as given in STRIPS. Our approach combines several advan-
tages from recent work in the field: (1) Recognition of non-
optimal behavior, (2) planning only once instead of once for
every possible goal, (3) recognizing plans as well as goals,
(4) and the ability to deal with missed observations. Our
evaluation shows that (1) our approach works well on corpora
containing a large set of possible goals; that (2) unmodified,
off-the-shelf HTN planners can solve the resulting PGR prob-
lems and that (3) the approach results in good recognition
rates, even in partially observable environments, i.e. when the
observer might not see all executed actions.

REFERENCES

[1] G. Sukthankar, R. P. Goldman, C. Geib, D. V. Pynadath, and H. H. Bui,
An Introduction to Plan, Activity, and Intent Recognition. Elsevier, 2014.

[2] M. Ramı́rez and H. Geffner, “Plan recognition as planning,” in Proc. of
IJCAI. IJCAI/AAAI Press, 2009, pp. 1778–1783.

[3] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Assessing the
expressivity of planning formalisms through the comparison to formal
languages,” in Proc. of ICAPS. AAAI Press, 2016, pp. 158–165.

[4] C. W. Geib and R. P. Goldman, “Recognizing plans with loops rep-
resented in a lexicalized grammar,” in Proc. of AAAI. AAAI Press,
2011.

[5] K. Erol, J. A. Hendler, and D. S. Nau, “Complexity results for HTN
planning,” Annals of Mathematics and Artificial Intelligence, vol. 18,
no. 1, pp. 69–93, 1996.

[6] C. W. Geib, “Assessing the complexity of plan recognition,” in Proc. of
AAAI. AAAI Press/The MIT Press, 2004, pp. 507–512.

[7] G. Behnke, D. Höller, and S. Biundo, “On the complexity of HTN plan
verification and its implications for plan recognition,” in Proc. of ICAPS,
2015, pp. 25–33.

[8] R. E. Cardona-Rivera and R. M. Young, “Toward combining domain
theory and recipes in plan recognition,” in Proc. of the AAAI Workshop
on Plan, Activity, and Intent Recognition, 2017.

[9] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Language classifica-
tion of hierarchical planning problems,” in Proc. of ECAI. IOS Press,
2014, pp. 447–452.

[10] D. V. McDermott, “The 1998 AI planning systems competition,” AI
Magazine, vol. 21, no. 2, pp. 35–55, 2000.

[11] R. Goldman, “A semantics for HTN methods,” in Proc. of ICAPS.
AAAI Press, 2009, pp. 146–153.

[12] M. Ramı́rez and H. Geffner, “Probabilistic plan recognition using off-
the-shelf classical planners,” in Proc. of AAAI. AAAI Press, 2010.

[13] S. Sohrabi, A. V. Riabov, and O. Udrea, “Plan recognition as planning
revisited,” in Proc. of IJCAI. IJCAI/AAAI Press, 2016, pp. 3258–3264.

[14] D. S. Nau, “Current trends in automated planning,” AI Magazine, vol. 28,
no. 4, pp. 43–58, 2007.

[15] D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “SHOP2: An HTN planning system,” Journal of Artificial
Intelligence Research, vol. 20, pp. 379–404, 2003.

[16] P. Bercher, G. Behnke, D. Höller, and S. Biundo, “An admissible HTN
planning heuristic,” in Proc. of IJCAI. ijcai.org, 2017, pp. 480–488.

[17] D. Höller, P. Bercher, G. Behnke, and S. Biundo, “A generic method
to guide HTN progression search with classical heuristics,” in Proc. of
ICAPS. AAAI Press, 2018, pp. 114–122.

[18] A. D. Mali and S. Kambhampati, “Encoding HTN planning in propo-
sitional logic,” in Proc. of the 4th Int. Conf. on Artificial Intelligence
Planning Systems. AAAI Press, 1998, pp. 190–198.

[19] G. Behnke, D. Höller, and S. Biundo, “Tracking branches in trees –
A propositional encoding for solving partially-ordered HTN planning
problems,” in Proc. of ICTAI. IEEE Computer Society, 2018.

[20] R. Alford, G. Behnke, D. Höller, P. Bercher, S. Biundo, and D. W. Aha,
“Bound to plan: Exploiting classical heuristics via automatic translations
of tail-recursive HTN problems,” in Proc. of ICAPS, 2016, pp. 20–28.

[21] T. Geier and P. Bercher, “On the decidability of HTN planning with task
insertion,” in Proc. of IJCAI. AAAI Press, 2011, pp. 1955–1961.

[22] N. Blaylock and J. F. Allen, “Generating artificial corpora for plan
recognition,” in Proc. of the 10th Int. Conf. on User Modeling (UM).
Springer, 2005, pp. 179–188.

[23] R. Alford, P. Bercher, and D. W. Aha, “Tight bounds for HTN planning,”
in Proc. of ICAPS. AAAI Press, 2015, pp. 7–15.

