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ON PURE REFUTATION FORMULATIONS
OF SENTENTIAL LOGICS

In [1] J. Lukasiewicz introduced the following refutation rule: “If @ —
[ is not provable and [ is refutable then « is refutable”, which employs the
notion of provability as well as that of refutability. In this paper we give
refutation formulations for a large class of logics using only pure refutation
rules, i.e. rules of the form: “If « is refutable then 3 is refutable”. This
syntactical way of presenting a logic is similar to the semantic one in that
both methods are negative: A formula is a theorem if it cannot be refuted
by a syntactical (semantical) device.

Because of the generality of the result we are using sequents rather
than formulas.

Let F be a fixed algebra of formulas, i.e. F = (For, f1,..., fr), where
For is the set of all formulas generated from the set Var of sentential
variables by the connectives f1,..., fr. For every a € For, the symbol
S(«) will denote the set of all subformulas of «, and for any X C For,
S(X) =U{S(a) : a € X}. With every set Y Cy For (“X C; Y” stands
for “X is a finite subset of Y”) we associate a one-to-one mapping gy from
S(Y) into Var in such a way that gy (p) = p for each p € S(Y)NVar. For
every € S(Y), gy (8) will be denoted by pg. If v = f(B1,...,0n), where
f is a connective, then we write F'(y) instead of f(pgs,,...,p3s,)-

A sequent is a pair (X, «), where X U{a} Cy For. A rule is a subset
of the set {(3,5) : XU {S} is a finite set of sequents}. Let @ be a set of
sequents and let R be a set of rules. Then a sequent (X, «) is said to be
derivable from @ by R iff there is a finite sequence of sequents St, ..., Sy,
such that S, = (X,«) and for each 1 < i < m, either S; € Q or S; is
obtained from some preceding sequents by a rule of R.
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By a sentential logic we mean a structural consequence operation on F,
i.e. a function C : {X : X C For} — For such that for all X, Y C For the
following conditions are satisfied: X C C(X);C(C(X)) C C(X);C(X) C
C(Y) whenever X C Y; and e(C(X)) C C(e(X)) for every substitution
e : For — For. A sequent (X, «) is said to be provable in a logic C' iff
a € C(X).

A matrix is a pair M = (A, D), where A is an algebra similar to F and
D C A. We say that a matrix is countable iff its algebra is countable. A set
K of matrices (called a matrix semantics) is countable iff K is a countable
set of countable matrices. Every matrix induces a consequence operation
Cnyps defined thus: a € Cny(X) iff for every valuation v : For — A in
M, if v(X) C D then v(a) € D. If K is a matrix semantics then Cnk is
defined as follows: a € Cnk(X) iff @ € Cnp(X) for every M € K. With
every countable matrix semantics K we associate a one-to-one mapping gk
from Z = |J{A : (A,D) € K} into Var. For every x € Z, gk (z) will be
denoted by p.

A logic C is said to be equivalential (cf. [2]) iff there is a finite set
E(p,q) of formulas in two distinct variables such that the following condi-
tions are satisfied:

(i) E(a,a) CCO),

(i) E(8,a) C C(E(a, B)),

(i) E(a,y) € C(E(a,B), E(8,7)),

(iv) B € C(E(e,B) U{a}),

(v) E(f(ar,...,an), f(B1,...,0)) CC(E(a1,B1)U...UE(an, L)),
where f is a connective and n is the arity of f.

For every countable algebra A similar to F and for every finite set
E(p,q) of wifs in two variables we define the description of A in terms of
E (cf. [5], [4]) as follows: Dg(A) = {E(f(Peys- -1 Pen)sPi(ar,ean)) © f
is a connective, n in the arity of f, z1,...,2, € A}. Moreover for every
countable matrix M = (A, D), we define the following sets of sequents:

Qe(M) ={(JX.pa) : X Sy Dp(A),a € A— D},
QE(M) = {(UXUZ7pa) 1 X gf DE(A)>Z§f {pd rde D}7a’€ A_D}

Further if K is a countable matrix semantics then we put

Qe(K) = H{Qr(M): M € K},
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Observe that if K is a recursive matrix semantics then the sets Q5 (K),
Qr(K) are recursive.
We will consider the following rules:

(e(X), e(a))

Tsb X.a) (e is a substitution)

(BB UX, a)
Ter (X (3/7), (/7)) where X U {a, 3,7} Cy For.
As usual a(3/7) is the formula obtained from « by replacing some occur-
rences of § with v. Of course X(8/v) = {a(8/7) : @ € X}.

For every sequent (X, @) we define the normal form of (X, «) (cf. [3])
thus:

N((X; @) = (AX Ufa}) U{py : v € X}, pa),
where A(Y) = {E(F(8),pg) : 8 € S(Y) —Var} for every Y Cy For.

LEMMA. If (X, «) is a sequent then the rule

N((X, a))
(X, a)

1s derivable from the rule re;.

Proor. If S(X U{a})— Var =0 the N((X,a)) = (X, a), so we assume
that

S(XU{a})—Var={11,-..,7m}
for some 1 < m and 7; # 7, for all 1 <4 # j < m. Consider the sequence
of sequents: Sp, S, ..., Sm, where Sy = N((X,a)),S; = t;(/Si—1/) (1 <
i <m) and

(i) For 0 < i < m, t; is the substitution defined thus: to(p) =p (p €
Var), and for 1 <i <m,

oy ticio.ote(f(v) ifp=0p,,
tilp) = { P otherwise.

(i) For every sequent (Y,3) and 1 < i < m, the symbol /(Y,f3)/!
denotes the sequent (Y — E(t;(py,); Dy )s 5)-
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By an easy induction on ¢ it can be shown that for each i > 0, S;
has E(t; o ...o0to(F(Vk)),Dy,.) as its part for all ¢ < k < m. Therefore
it is clear that for every 1 < i < m,S; is obtained from S;_; by deleting
E(t;(py,),p,) and replacing all occurrences of p,, with ¢;(p,,), which is
clearly an application of the rule r.,. We should show that S,, = (X, ) it
is easily to see that

S =tmo...0ot1(({py: v € X}, pa))-
Now we note the following

PROPOSITION.  For any 0 <k <m, if 1 <i <m and py € S(tpo...o0
to(F (i) then ¢ € S(vi) — {vi}-

PRrROOF. Indeed, Proposition is true for & = 0.
Assume that k& > 0.

CASE 1. Py € S(tk,1 0...0 to(F(’yl))) So if
Do S S(tk 0...0 tO(F(’Yz))) = S(tk;_l 0...0 to(F(’}/l))),

then by ind. hyp. ¢ € S(v;) — {v:}-

CASE 2. py, € S(tg—10...0%(F(v))). Then by ind. hyp. v, €

S(vi) — {vi}. Assume that py, € S(txo...0to(F(v))). If py & S(tk(pye))
then pgy € S(tr—10...0t0(F(v:))) and ¢ € S(v;) — {7} by ind. hyp. If

Py € S(te(pyy)) = S(th-10... o to(F(7:)))

then by ind. hyp. ¢ € S(v) € S(vi) — {vi}-

Since, by Proposition, p,, & S(t:(p,)), it is easy to show by induction
on the complexity of 8 that for every 8 € S(X U {a}) we have t,, 0...0
to(ps) = B. Hence S, = (X,a). O

For any logics C,C’ we write C' =5 C" instead of C(X) = C'(X) for
every X Cy For.

THEOREM 1. Let C be an equivalential logic such that C' =¢ Cnk for
some countable matriz semantics K. Then for every sequent (X, a) we
have (X, ) is not provable in C iff (X, a) is derivable from Qg (K) by the

rules rsp, resp.
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PROOF. («) It is easy to see that Q;(K) C {(Y,(3) is a sequent: (3 &
C(Y)}. (E is the set existing by the definition of an equivalential logic.)
Moreover the set of unprovable sequents of C' is closed under rules rg, 7ey-
(—) Assume that a ¢ C(X). Then v(X) C D,v(a) ¢ D for some valuation
v in some (A, D) € K. Let x = (T'U {py(y) : 7 € X}, Pu(a)), Where

T= U{E(f(pv(ﬁl)a e 7pv(ﬁn)),pf(y(ﬂ1)7,,_,y(,(3n))) : f is a connective, n
is the arity of f, f(B1,...,0) € S(X U{a})}.

Obviously x € Qg(K). Now let e be a substitution such that e(pg) =
Du(B) (B e S(XU{a})). Then

e(N((X, ) = e((AX U{a}) U{py : v € X}, pa)) = X-

Hence N((X,w)) is derivable from Qg (K) by rg from . Therefore by
Lemma (X, «) is derivable from Qg (K) by rgp, ree. O

If we identify a logic C with the set C'(0) of its theorems then we have
the following

THEOREM 2. Let C be an equivalential logic such that C(0) = Cnxk (0) for
some countable matriz semantics K. Then a & C(D) iff the sequent (0, a)
is derivable from Qr(K) by the rules rep, Tey-

PROOF. Similar to that of Theorem 1.
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