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ON PURE REFUTATION FORMULATIONS
OF SENTENTIAL LOGICS

In [1] J.  Lukasiewicz introduced the following refutation rule: “If α→
β is not provable and β is refutable then α is refutable”, which employs the
notion of provability as well as that of refutability. In this paper we give
refutation formulations for a large class of logics using only pure refutation
rules, i.e. rules of the form: “If α is refutable then β is refutable”. This
syntactical way of presenting a logic is similar to the semantic one in that
both methods are negative: A formula is a theorem if it cannot be refuted
by a syntactical (semantical) device.

Because of the generality of the result we are using sequents rather
than formulas.

Let F be a fixed algebra of formulas, i.e. F = (For, f1, . . . , fk), where
For is the set of all formulas generated from the set V ar of sentential
variables by the connectives f1, . . . , fk. For every α ∈ For, the symbol
S(α) will denote the set of all subformulas of α, and for any X ⊆ For,
S(X) =

⋃
{S(α) : α ∈ X}. With every set Y ⊆f For (“X ⊆f Y ” stands

for “X is a finite subset of Y ”) we associate a one-to-one mapping gY from
S(Y ) into V ar in such a way that gY (p) = p for each p ∈ S(Y )∩ V ar. For
every β ∈ S(Y ), gY (β) will be denoted by pβ . If γ = f(β1, . . . , βn), where
f is a connective, then we write F (γ) instead of f(pβ1 , . . . , pβn

).
A sequent is a pair (X, α), where X ∪ {α} ⊂f For. A rule is a subset

of the set {(Σ, S) : Σ ∪ {S} is a finite set of sequents}. Let Q be a set of
sequents and let R be a set of rules. Then a sequent (X, α) is said to be
derivable from Q by R iff there is a finite sequence of sequents S1, . . . , Sm

such that Sm = (X, α) and for each 1 ≤ i ≤ m, either Si ∈ Q or Si is
obtained from some preceding sequents by a rule of R.
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By a sentential logic we mean a structural consequence operation on F ,
i.e. a function C : {X : X ⊆ For} → For such that for all X, Y ⊆ For the
following conditions are satisfied: X ⊆ C(X); C(C(X)) ⊆ C(X); C(X) ⊆
C(Y ) whenever X ⊆ Y ; and e(C(X)) ⊆ C(e(X)) for every substitution
e : For → For. A sequent (X, α) is said to be provable in a logic C iff
α ∈ C(X).

A matrix is a pair M = (A, D), where A is an algebra similar to F and
D ⊆ A. We say that a matrix is countable iff its algebra is countable. A set
K of matrices (called a matrix semantics) is countable iff K is a countable
set of countable matrices. Every matrix induces a consequence operation
CnM defined thus: α ∈ CnM (X) iff for every valuation v : For → A in
M , if v(X) ⊆ D then v(α) ∈ D. If K is a matrix semantics then CnK is
defined as follows: α ∈ CnK(X) iff α ∈ CnM (X) for every M ∈ K. With
every countable matrix semantics K we associate a one-to-one mapping gK

from Z =
⋃
{A : (A, D) ∈ K} into V ar. For every x ∈ Z, gK(x) will be

denoted by px.
A logic C is said to be equivalential (cf. [2]) iff there is a finite set

E(p, q) of formulas in two distinct variables such that the following condi-
tions are satisfied:

(i) E(α, α) ⊆ C(∅),
(ii) E(β, α) ⊆ C(E(α, β)),
(iii) E(α, γ) ⊆ C(E(α, β), E(β, γ)),
(iv) β ∈ C(E(α, β) ∪ {α}),
(v) E(f(α1, . . . , αn), f(β1, . . . , βn)) ⊆ C(E(α1, β1)∪ . . .∪E(αn, βn)),

where f is a connective and n is the arity of f .
For every countable algebra A similar to F and for every finite set

E(p, q) of wffs in two variables we define the description of A in terms of
E (cf. [5], [4]) as follows: DE(A) = {E(f(px1 , . . . , pxn

), pf(x1,...,xn)) : f
is a connective, n in the arity of f , x1, . . . , xn ∈ A}. Moreover for every
countable matrix M = (A, D), we define the following sets of sequents:

QE(M) = {(
⋃

X, pa) : X ⊆f DE(A), a ∈ A−D},

QE(M) = {(
⋃

X ∪ Z, pa) : X ⊆f DE(A), Z ⊆f {pd : d ∈ D}, a ∈ A−D}.

Further if K is a countable matrix semantics then we put

QE(K) =
⋃
{QE(M) : M ∈ K},
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QE(K) =
⋃
{QE(M) : M ∈ K}.

Observe that if K is a recursive matrix semantics then the sets QE(K),
QE(K) are recursive.

We will consider the following rules:

rsb
(e(X), e(α))

(X, α) (e is a substitution)

rex
(E(β, γ) ∪X, α)

(X(β/γ), α(β/γ)) where X ∪ {α, β, γ} ⊆f For.

As usual α(β/γ) is the formula obtained from α by replacing some occur-
rences of β with γ. Of course X(β/γ) = {α(β/γ) : α ∈ X}.

For every sequent (X, α) we define the normal form of (X, α) (cf. [3])
thus:

N((X, α)) = (∆(X ∪ {α}) ∪ {pγ : γ ∈ X}, pα),

where ∆(Y ) =
⋃
{E(F (β), pβ) : β ∈ S(Y )− V ar} for every Y ⊆f For.

Lemma. If (X, α) is a sequent then the rule

N((X, α))
(X, α)

is derivable from the rule rex.

Proof. If S(X ∪ {α})− V ar = ∅ the N((X, α)) = (X, α), so we assume
that

S(X ∪ {α})− V ar = {γ1, . . . , γm}
for some 1 ≤ m and γi 6= γj for all 1 ≤ i 6= j ≤ m. Consider the sequence
of sequents: S0, S1, . . . , Sm, where S0 = N((X, α)), Si = ti(/Si−1/

i) (1 ≤
i ≤ m) and

(i) For 0 ≤ i ≤ m, ti is the substitution defined thus: t0(p) = p (p ∈
V ar), and for 1 ≤ i ≤ m,

ti(p) =
{

ti−1 ◦ . . . ◦ t0(f(γi)) if p = pγi

p otherwise.

(ii) For every sequent (Y, β) and 1 ≤ i ≤ m, the symbol /(Y, β)/i

denotes the sequent (Y − E(ti(pγi
), pγi

), β).
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By an easy induction on i it can be shown that for each i ≥ 0, Si

has E(ti ◦ . . . ◦ t0(F (γk)), pγk
) as its part for all i < k ≤ m. Therefore

it is clear that for every 1 ≤ i ≤ m,Si is obtained from Si−1 by deleting
E(ti(pγi

), pγi
) and replacing all occurrences of pγi

with ti(pγi
), which is

clearly an application of the rule rex. We should show that Sm = (X, α) it
is easily to see that

Sm = tm ◦ . . . ◦ t1(({pγ : γ ∈ X}, pα)).

Now we note the following

Proposition. For any 0 ≤ k ≤ m, if 1 ≤ i ≤ m and pφ ∈ S(tk ◦ . . . ◦
t0(F (γi))) then φ ∈ S(γi)− {γi}.

Proof. Indeed, Proposition is true for k = 0.
Assume that k > 0.

Case 1. pγk
6∈ S(tk−1 ◦ . . . ◦ t0(F (γi))). So if

pφ ∈ S(tk ◦ . . . ◦ t0(F (γi))) = S(tk−1 ◦ . . . ◦ t0(F (γi))),

then by ind. hyp. φ ∈ S(γi)− {γi}.

Case 2. pγk
∈ S(tk−1 ◦ . . . ◦ t0(F (γi))). Then by ind. hyp. γk ∈

S(γi) − {γi}. Assume that pφ ∈ S(tk ◦ . . . ◦ t0(F (γi))). If pφ 6∈ S(tk(pγk
))

then pφ ∈ S(tk−1 ◦ . . . ◦ t0(F (γi))) and φ ∈ S(γi)− {γi} by ind. hyp. If

pφ ∈ S(tk(pγk
)) = S(tk−1 ◦ . . . ◦ t0(F (γi)))

then by ind. hyp. φ ∈ S(γk) ⊆ S(γi)− {γi}.

Since, by Proposition, pγi
6∈ S(ti(pγi

)), it is easy to show by induction
on the complexity of β that for every β ∈ S(X ∪ {α}) we have tm ◦ . . . ◦
t0(pβ) = β. Hence Sm = (X, α). 2

For any logics C,C ′ we write C =f C ′ instead of C(X) = C ′(X) for
every X ⊆f For.

Theorem 1. Let C be an equivalential logic such that C =f CnK for
some countable matrix semantics K. Then for every sequent (X, α) we
have (X, α) is not provable in C iff (X, α) is derivable from QE(K) by the
rules rsb, rex.
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Proof. (←) It is easy to see that QE(K) ⊆ {(Y, β) is a sequent: β 6∈
C(Y )}. (E is the set existing by the definition of an equivalential logic.)
Moreover the set of unprovable sequents of C is closed under rules rsb, rex.
(→) Assume that α 6∈ C(X). Then v(X) ⊆ D, v(α) 6∈ D for some valuation
v in some (A, D) ∈ K. Let χ = (T ∪ {pv(γ) : γ ∈ X}, pv(α)), where

T =
⋃
{E(f(pv(β1), . . . , pv(βn)), pf(v(β1),...,v(βn))) : f is a connective, n

is the arity of f, f(β1, . . . , βn) ∈ S(X ∪ {α})}.

Obviously χ ∈ QE(K). Now let e be a substitution such that e(pβ) =
pv(β) (β ∈ S(X ∪ {α})). Then

e(N((X, α))) = e((∆(X ∪ {α}) ∪ {pγ : γ ∈ X}, pα)) = χ.

Hence N((X, α)) is derivable from QE(K) by rsb from χ. Therefore by
Lemma (X, α) is derivable from QE(K) by rsb, rex. 2

If we identify a logic C with the set C(∅) of its theorems then we have
the following

Theorem 2. Let C be an equivalential logic such that C(∅) = CnK(∅) for
some countable matrix semantics K. Then α 6∈ C(∅) iff the sequent (∅, α)
is derivable from QE(K) by the rules rsb, rex.

Proof. Similar to that of Theorem 1.
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