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This paper surveys the state-of-the-art automatic object extrac-
tion techniques from aerial imagery. It focuses on building extrac-
tion approaches, which present the majority of the work in this area.
After proposing well-defined criteria for their assessment, charac-
teristic approaches are selected and assessed, based on their mod-
els and strategies. The assessment gives rise to a combined model
and strategy covering the current knowledge in the field. The model
comprises: the derivation of characteristic properties from the func-
tion of objects; three-dimensional geometry and material properties;
scales and levels of abstraction/aggregation; local and global con-
text. The strategy consists of grouping, focusing on different scales,
context-based control and generation of evidence from structures
of parts, and fusion of data and algorithms. Many ideas which have
not been explored in depth lead to promising directions for further
research. c© 1999 Academic Press
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Automatic extraction of objects such as buildings or ro
from digital aerial imagery is not only scientifically challengin
but also of major practical importance for data acquisition
update of geographic information system (GIS) databases o
models.

In this paper, the term “extraction” is used for the detection
well as for the reconstruction, of objects. “Detection” means
objects are found, based on simpler features and camera mo
resulting in simple two- (2D) or three-dimensional (3D) mo
els. On the other hand, for a highly accurate “reconstructi
knowledge about the object’s geometry and especially its to
ogy is assumed to be given and more complex camera mode
well as high quality data, are used. The basic reason why the
terms are combined in this paper is their interdependence
semantics of an object (detection) depends directly on its
metric extent (reconstruction). More practically speaking, so
recent approaches give an indication that, only by a precis
construction of an object, enough evidence can be achieve
exclude wrong object types.

The paper surveys the state-of-the-art automatic objec
traction techniques from (digital) aerial imagery. The surve
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give an overview of the whole area [1, 2], whereas others
view only building extraction techniques [3, 4], or the role
artificial intelligence (AI) [5]. This survey includes approach
for object extraction from satellite images, which influence
extraction from aerial imagery. It only covers models and str
gies. Specific algorithms or techniques derived from them
not reviewed, to limit the extent of the survey. Though the co
bination and integration of the models and strategies with hu
interaction to build semi-automatic systems [6–11] is of ma
practical importance, the survey only deals with the autom
parts of the extraction. This is due to the fact that the probl
linked to human–computer interaction constitute a challeng
their own right.

The basic idea of the survey is to present a combined m
and strategy covering the knowledge in the field. To give
sight into how it arose, some approaches for building extrac
were selected which are described in more detail and ass
according to some well-defined criteria. The detailed analys
given only for the building extraction approaches, because
present the majority of the work.

The survey consists of four parts: In Section 2 criteria
introduced which allow for an assessment of the approa
according to their complexity. Then, characteristic approac
selected according to their relevance at the time of their de
opment, exemplifying various ways to extract buildings fr
aerial imagery are assessed, starting with the complexity of
an approach can handle (cf. Section 3). The actual assessm
split into a characterization of the models and strategies, as
as a classification of the approaches.

The assessment of the approaches gives rise to the com
model and strategy representing the current knowledge in
field (cf. Section 4). Because of the diversity of the approac
the combined model and strategy is based on the state-o
art derived from buildings and other object types. “Combin
expresses that, at least potentially, all objects which are dep
in the given data are modeled. The section is compleme
with outstanding issues whose importance has become clea
recently. Finally, after a short summary several highly promis
directions of further research are explored in Section 5.
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2. CRITERIA FOR THE ASSESSMENT
OF THE APPROACHES

This section proposes criteria, which allow for an assessm
of different approaches according to their complexity. Af
showing the link between assessment and complexity, the
and their complexity are treated in more detail. The criteria
the assessment of the complexity of images, models, and s
gies conclude the section.

2.1. Assessment and Complexity

The assessment of the approaches is based on the id
[12] to distinguish strategies according to their suitability
data, i.e., images, and models of different complexity. For ae
imagery this has the consequence that the complexity of
content is relatively high (cf. Subsection 2.2). Additionally,
models, for example, the model for a building, are quite comp
They possess high variability and exhibit many details. Beca
of this double complexity, the so-called “combined strate
[12], i.e., a combination of other strategies, is suited best. N
ertheless, not all approaches use the same strategy and the
the complexity of the strategy is assessed in this paper, too

The suitability of the combined strategy does not exclude
use of simpler strategies for parts of the problem. In the m
simple case a “feature vector classification” of a pixel or a reg
is enough. If one wants to find, e.g., cars as evidence for a r
possibly fitting simple models to radiometry might be promisi

Another way of assessment which distinguishes a sig
or feature-based representation of the images and a geom
physics-based or biologic/semantics-based representation
models, is presented in [13]. It is similar to the one chosen h
as the signal- or feature-based representation of images c
seen as expressing low or high complexity.

2.2. Data and Its Complexity

Thecomplexity of aerial imagery is mostly due to the larg
number of different objects depicted. Problems which arise f
the dynamics of the scene, e.g., by moving objects, the sea
e
tral
etc., are not considered here. The number of objects depends
mainly on two factors. The first iscontent(cf. Fig. 1). An old

lution of about 6 m in thenadir view and about 18 m in th
forward and backward looking views, as well as multispec
FIG. 1. Resolution and content (a) low resolution (>1 m)—simple content; (b
resolution (<0.2 m)—medium to complex content [83].
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European city center is considerably more complex than a r
part of the midwest of the United States. A further classifi
tion of the content according to density (rural, suburban, urb
object complexity (residential, industrial, military), architectu
(elaborate, plain, none), terrain (flat, hilly, mountainous), or v
etation (none, moderate, heavy) is not considered in this pa
though it might be useful for future attempts to evaluate the
formance of object extraction approaches. The second fac
theobservabilityof the different objects. It depends on seve
prerequisites. The most important is resolution. It can be
i.e.,>1 m, medium, i.e.,≥0.2 m and≤1 m, or high, i.e.,<0.2 m.
Other prerequisites are image quality, in terms of contrast
noise, and the season. Both are not taken into account fo
remainder of the paper, as they are assumed to be optimize
the given task.

Since digital aerial imagery is generated in most cases
scanning an analog film, the resolution is also dependent o
image scale which can be small, medium, or large. Typical im
scales vary between approximately 1 : 70,000 and about 1 : 4
A scanning of the latter ones with a resolution of 15µm results
in a ground resolution of 6 cm. This high resolution is especi
needed for the extraction of buildings which may comprise sm
details such as gutters not visible in larger ground pixels.
other objects such as roads, a ground pixel size of 20 cm or
more is enough which can be gained by scanning images
scales like 1 : 12,000.

Another important prerequisite for observability is the num
of images a scene can be found in. Mono, stereo-, and mu
images can be distinguished. The more images an object c
seen in, the better its 3D-geometry can be reconstructed.
is especially important for buildings. What is more, multip
images also reduce problems with occlusion. Color is also
helpful to extract buildings and vegetation. For vegetation
many cases color infrared images are used.

There is a multitude of other data besides aerial imag
which can be used for object extraction. According to its res
tion, satellite imagery, for instance, is approaching medium s
aerial imagery. Besides three-line scanners such as MOMS
D2 [14] with fore and aft along track stereo, a ground re
) medium resolution (≥0.2 m and≤1 m)—medium to complex content; (c) high
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TABLE 1
Visual Recognizability of Various Object Types Depending

on the Minimum Ground Pixel Size and Mono/Stereo in Satellite
Images Based on [14]

Object type Ground pixel size and Mono/stere

Building 2 m, stereo
Path 2 m, stereo for occlusion by vegeta
Minor road 5 m, stereo for occlusion by vegeta
Hydrology 5 m, stereo for occlusion by vegeta
Main road 10 m
Building block 10 m

capabilities, sensors with less than 1-m ground resolution fo
pan-chromatic and less than 4 m for the multispectral chan
are planned for the near future [15]. Especially the latter ca
more suitable for some applications than aerial imagery.

Extremely interesting for an automatic interpretation are
proaches which directly measure range/height data by m
of laser scanning [16]. The ground resolution can be dow
0.25 m with a precision for the height of about 0.1 m.

For an empirical examination of the complexity, content a
resolution are linked. The question is: Which objects can
mapped at which resolution? Basically, analogously to
Nyquist theorem, an object has to be sampled with a sp
resolution which is half the size of the object to be distinguis
from other objects. Though much smaller objects can be
when their contrast to the surroundings is relatively high. M
specifically, [14] presents the visual recognizability of differ
object types for satellite imagery, depending on the minim
ground pixel size (cf. Table 1) which should be mostly trans
able to aerial imagery. Recognizability means that the loca
as well as the object type, can be determined. For acquiring
data there are higher demands concerning resolution if attrib
of the objects are to be acquired, too.

In summary, the complexity of images depends on the s
content and on the observability of objects and, therefore
the resolution. Avoiding unnecessary complexity which co
disturb the extraction is especially important for automatic

traction. Basically, there is a minimum complexity to solve th
problem (cf. Fig. 2).

to
of the problem: “multiple
If the problem is solvable, the complexityuse only one technique for the solution
FIG. 2. Necessary complex
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may not be optimum in two ways: either the optimum solution
not reached, or it is achieved inefficiently by using too comp
data, model, or strategy.

Since the complexity of the data depends strongly on the
olution, the latter should be chosen sufficiently small so that
important details of the objects can be recognized. It is also p
sible that there is more than one optimum solution. For road
coarse resolution of about 10 m is, for instance, ideal to de
hypotheses for highways, a medium resolution of 3 to 5 m to
detect the different traffic lanes, and a high resolution down
10 cm to extract the borders of the pavements and the marki
In [17] it is shown how, based on different scale-spaces [1
values for the resolution/scales can be determined analytic
What is more, it is also shown analytically how disturbing o
jects like cars can be eliminated from the road by means of sc
spaces.

2.3. Complexity Criteria for the Assessment of Images,
Models, and Strategies

Before presenting the complexity criteria, the criticism of t
current state-of-the-art image analysis [19–21] is considered
combination with the more specific criticism of the approach
for object extraction from aerial imagery in [22] and the po
tulated “enlarging the peephole,” in terms of spatial, spect
temporal, and contextual components of [23], results in the
lowing points of special importance:

1. The performance of the extraction should be evaluated
general validity using as many images as possible. This sh
not only be done visually, but also based on performance m
sures.

2. Spatial resolution should be appropriate for the proble
3. Knowledge is important as not all information is contain

in the image.
4. The extraction should be done in object-space, as o

there can much of the knowledge about the real world be u
It is, for instance, hard to compare the width of a road in pix
with the model. For this, knowledge about the sensor and
orientation is a must.

5. It is better to integrate different kinds of methods than
ity of data, model, and strategy.
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TABLE 2
Criteria for the Assessment of Models and Strategies

Criterion Assessment

Complexity of data Low / medium / high
Resolution Low / medium / high
Content Simple / medium / complex

Complexity of model Low / medium / high
Representation formalisms Implicit / type
Geometry and radiometry Geometric+ / radiometric
Kind of representation 2D/3D; fixed values / parametric / generic
Sensor model Simplified / detailed
Object model Weak / medium / detailed
Scene model None / weak / medium / detailed
Function Not modeled / weak / strong; implicit / explic

Complexity of strategy Low / medium / high
Fusion Type
Grouping 2D+ / 3D; simple / complex
Control Type
Search Type
Evaluation None / simple / complex; type

Note.“;” separates different assessments; “+” means “and”; “/” means “or.”

methods are found along the path to enlightenment; there ar
silver bullets” [22]. The use of spectral or temporal informati
is of special importance.

6. Object extraction should be done in a highly integra
fashion. More specifically, the context of the extraction sho
be adapted; as soon as new information is available it is use
simplify the extraction.

The first and the second points correspond to the key p
complexity of data(an approach can handle) in Table 2. It
subdivided into resolution and content, according to Subsec
2.2. The first point is more implicitly contained, as the perfo
mance of object extraction is admittedly of first interest for t
application, but it is not evaluated for most approaches up
now.

The third point agrees with the key pointcomplexity of model.
It is split first into the representation formalisms (“implicit” in
Table 2 means that the knowledge is hidden in the program c
and the focusing on geometry and/or radiometry. The last
are, according to [23], important ways to use spatial knowled
Further points are the type of representation formalism and
sensor model. Only by means of a detailed sensor model is
transition from image to object space addressed in the fo
point possible. By clarifying the degree of detail of the scene a
of the object model, deficits of the model are shown which
due to the restriction to only one or a few object types and th
relations, or due to a too unspecific modeling of the individu
objects. A modeling of the function of the objects which is do
as explicitly as possibly can help for a further improvement
the extraction.

The fifth and the sixth points both belong to the key pointcom-

plexity of strategy. The integration of methods corresponds to th
fusion of different techniques or data. Grouping is quite comm
CT EXTRACTION 141
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for many approaches. Object extraction done in a highly in
grated manner corresponds to the different levels of comple
and types of control and search. The criteria for the assessme
the approaches are concluded by the complexity of the (inter
evaluation.

3. SELECTED APPROACHES FOR BUILDING
EXTRACTION AND THEIR ASSESSMENT

The goal of this section is to introduce and assess sev
characteristic examples of approaches for building extrac
from aerial imagery. Together with the presentation of the
proaches the complexity of data they can handle is assesse
Subsection 3.1). Only then, the “relative” assessment of the
proaches is presented in Subsections 3.2 and 3.3, according
complexity of modeland thecomplexity of strategyas motivated
in Subsection 2.3. “Relative” means that only the compari
between the approaches is important. The assessment ac
ing to an “absolute” goal is carried out by a classification
the models and strategies (cf. Subsection 3.4), only so far
very coarse estimate of the distance to the most important g
the extraction of objects for GIS databases or site model
given.

3.1. Complexity of Data

Herman and Kanade’s approach [24] was selected as it
often cited early approach for the extraction of buildings wh
uses AI-focused 3D-reasoning, in combination with heuris
about the vertical and horizontal directions of lines to extr
buildings as rectangular prisms. Some years later buildings
were modeled as rectangular prisms, but the 3D-structure
generated by matching higher level structures such as recta
in stereo images found by grouping rectangular or parallel ed
[25]. What can be done in single, possibly oblique, images
extract flat and peaked roof buildings using shadows and vis
vertical edges based on vanishing points is exemplified by [
Wanget al. [27] demonstrate that the semantics of buildings
not restricted to the geometry. From several images optim
rectified images of walls are calculated and used to extract
structures of windows and doors in the walls which can help
raise the probability of the extraction. That prismatic as wel
parameterized buildings, like peaked ones, can be detected
extracted from a digital surface model (DSM) is shown by [2
Some of the most recent and sophisticated approaches m
primitives such as edges or corners in several images, base
a detailed image model, and a complex strategy as present
[29, 30]. Whereas [30] only tries to find parts of the roof, in [2
a generic model for buildings was elaborated which consist
a combination of parameterized building parts. Table 3 gives
complexity of data an approach can handle that is split, accor
to Subsection 2.3, into resolution and content. It can be seen

e

on
the most recent approaches are the ones which can handle the
most complicated scenes.
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TABLE 3
Complexity of Data for Building Extraction

Complexity
Approach of data Resolution Content

3D reasoning, Low–medium Medium Simple
Herman and Kanade,
1984 [24]

Matching of grouping-based Medium Medium Medium
structures in stereo images,
Mohan and Nevatia,
1989 [25]

3D-interpretation of mono Medium Medium Medium
images using shadows and,
vertical edges, Shufelt,
1996 [26]

Evidence from building parts, Medium Medium Medium
Wanget al., 1997 [27]

Building extraction from digital Medium Medium Simple–
surface models, Weidner, (DSM) medium
1997 [28]

Matching of primitives in High High Medium–
multiimages, Fischeret al., complex
1998 [29]

Matching of primitives in High High Medium–
multiimages, Henricsson, comple
1998 [30]

3.2. Characterization of Models

The models for building extraction show only a weak te

dency to use knowledge-based representation formalisms (cf.
Table 4).

del

This leads to the problem of updating, for which the approach
nd a DSM
Concerning radiometry and geometry there is a signif-

TABLE 4
Characterization of the Models for Building Extraction I

Representation Geometry and Kind of
Approach formalisms radiometry representation Sensor mo

3D reasoning, Implicit Geometric 3D; generic Simplified
Herman and Kanade, 1984 [24] (rectangular prism)

Matching of grouping-based Constraints Geometric 2D+ 3D; generic Simplified
structures in stereo images, (rectangular prism)
Mohan and Nevatia, 1989 [25]

3D interpretation of mono images Implicit Geometric 3D; parametric Detailed
using shadows and vertical (flat+ peaked roof)
edges, Shufelt, 1996 [26]

Evidence from building-parts, Implicit Geo-+ radiometric 2D+ 3D; walls Detailed
Wanget al., 1997 [27]

Building extraction from digital Implicit Geometric 3D; parametric+ generic —
surface models, Weidner,
1997 [28]

Matching of primitives in multi- Constraints Geometric 3D; generic, based Detailed
images, Fischeret al., 1998 [29] on basic types

Matching of primitives in multi- Implicit Geometric 3D; generic (roof) Detailed

taken is relatively simple. In [30] colored images a
images, Henricsson, 1998 [30]
MAYER

n-

icant trend to use edges, i.e., a geometric representation, fo
extraction. Since buildings are 3D objects, mostly 3D repres
tations, partly supported by 2D representations, are explo
Generic, as well as parametric models, are utilized. While
former have the advantage of generality, for the latter it can
more easily checked whether the extracted object is a build
For the first approaches the sensor model was often simpli
and it is only a recent tendency to use a detailed photogram
ric sensor model for 3D reconstruction. The object models
becoming more and more detailed, based on complex, gen
and parametric 3D structures (cf. Table 5) and they are part
extended by part structures. The height of the buildings is m
eled in oblique views by an object model comprising verti
walls and in nadir-looking views with a scene model includ
shadows. Shadows are considered to be a part of the scene m
as they include information beyond the object. The function
objects is only used implicitly when gaining evidence from
structure of building parts, such as doors, windows, or vent

In summary there is an evolution from general technique
approaches customized for the object type, i.e., the buildin
is considered to be very important to utilize the specific kno
edge, i.e., the models and strategies, as completely as pos
Though, if it is possible without too much effort, an approa
will still be designed for as many object types as possible. O
all there is also a trend to focus on 3D geometry.

3.3. Characterization of Strategies

Many approaches fuse two (stereo) or more images
Table 6). Additionally in [24] multitemporal images are use
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TABLE 5
Characterization of the Models for Building Extraction II

Approach Object model Scene model Function

3D reasoning, Weak (prism) None Not modeled
Herman and Kanade, 1984 [24]

Matching of grouping-based Weak (prism) None Not modeled
structures in stereo images,
Mohan and Nevatia, 1989 [25]

3D interpretation of mono images Medium (flat+ Weak (shadow) Not modeled
using shadows and vertical edges, peaked roof, wall)
Shufelt, 1996 [26]

Evidence from building parts, Medium (3D blocks+ Weak (shadow) Weak; implicit
Wanget al., 1997 [27] structures of parts) (doors, windows

Building extraction from digital Medium (standard None Not modeled
surface models, Weidner, building types+
1997 [28] complex flat roofed)

Matching of primitives in multi- Detailed (complex None Not modeled
images, Fischeret al., 1998 [29] 3D structure, aspects)

Matching of primitives in multi- Detailed (complex None Not modeled

images, Henricsson, 1998 [30] 3D structure)

a-
a-
th

lex
ges,
[31] are exploited to generate hypotheses for buildings. Gro
ing is of significant importance and relatively complex schem
are used. It is done in the 2D image as well as in the 3D sc
and [30] even combines both. The control of the approache
mostly data-driven. Only [29] is based on “hypothesize and v
ify,” where grouping is used for the hypotheses. Wanget al.’s
] is model-driven as the walls can only be extrac
ge using already existing information. Constraint

d is
toward complex grouping in 2D as well as in 3D. The tendency
TABLE 6
Characterization of the Strategies for Building Extraction

Approach Fusion Grouping Control/search Evaluation

3D reasoning, Stereo at different times 3D, simple Data-driven; — No
Herman and Kanade, 1984 [24]

Matching of grouping-based Stereo 2D; complex Data-driven; constraint Simple
structures in stereo images, satisfaction
Mohan and Nevatia, 1989 [25]

3D interpretation of mono images — 3D; complex Data-driven; — Simple
using shadows and vertical edges,
Shufelt, 1996 [26]

Evidence from building parts, Several images — Model-driven; — No
Wanget al., 1997 [27]

Building extraction from digital — — Data-driven; — Complex; MDL
surface models, Weidner,
1997 [28]

Matching of primitives in multi- Several images 3D; complex Hypothesize and verify; Complex
images, Fischeret al., 1998 [29] constraint satisfaction

Matching of primitives in multi- Several images, 2D+ 3D; Data-driven; — Simple

es, Henricsson, 1998 [30] color, DSM
up-
es
ene
s is
er-

ted

satisfaction is used in [25, 29]. If it is there at all, internal evalu
tion is mostly simple. Only [29, 28] use a more complex evalu
tion, based on probability theory or minimum description leng
(MDL).

In summary there is a change from simpler to more comp
strategies. There is a tendency to use more than two ima
also color images or DSM. Grouping is focused on. The tren
complex
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goes toward mixed strategies. Some recent approaches u
more general strategy of hypothesize and verify. For inte
evaluation more and more complex modeling is used.

3.4. Classification of Models and Strategies

The classification of the different approaches regarding t
models and strategies is done in two ways: first, by compari
with the ultimate goal, the extraction of objects for GIS databa
or for site models, and second, by showing the most sophistic
approaches.

Compared to the ultimate goal, the results based on the m
els and strategies of all presented approaches are for imag
different characteristics and complex contents far from be
useful in practice. Nevertheless, for restricted domains the m
recent approaches are getting closer to being useful in prac
This might be the reason why quantitative performance e
uation has received much interest recently [26, 32–34]. A
to be expected, the most sophisticated approaches for bui
extraction are the newest ones [29, 30].

4. A COMBINED MODEL AND STRATEGY FOR
OBJECT EXTRACTION IN AERIAL IMAGERY

The combined model and strategy condenses, on one h
the results of the assessment in Section 3. On the other h
knowledge about the extraction of object types other than bu
ings is included here, because there is a big overlap in the m
as well as in the strategy, and the overlap can be used to wide
scope without too much effort. The combined model and st
egy is subdivided into model and strategy (cf. Subsections
and 4.2). References to additional approaches are g
which utilize a part of the model or the strategy especially w
Their order shows how well they make use of it in relation
each other. Finally, in Subsection 4.3 outstanding issues fo
combined model and strategy are presented whose impor
has become clear only recently.

4.1. Model

The model is organized into general parts and specific p
for buildings. The fact that the general parts are much larger
the specific parts illustrates that the model is for the most
generic.

Thegeneral parts of the modelare:

• Characteristic properties are often the consequence of
function of objects[35, 36]. Very importantly, they integrat
knowledge about the 3D real world into the model. Typical
amples for knowledge sources are, apart from constraints
cerning the usefulness for humans [37], construction inst
tions for different types of buildings or roads. For large pa
of the knowledge about function it seems to be enough to

them into consideration for modeling. I.e., it is not necessary
integrate them into the system.
MAYER
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• Modeling of material properties[38] causes the interpreta
tion to be not so much affected by sensor characteristics. Th
especially important when different kinds of sensors, like opt
and radar, are utilized.
• 2D geometric/topologic regularities[39, 26, 33, 25, 40] are

used for buildings as well as for road pavements (parallel edg
For buildings they are especially suited for simple types, e
with perpendicular outlines and flat roofs, and the constructio
hypotheses for more complex buildings. Though, for model
of the latter ones they are not sophisticated enough.
• A detailed image model[4, 41, 30, 42–44] with rich at-

tributes and a feature adjacency graph exploits much bette
information contained in the image. Especially for matching
more than one image, the probability can be raised significa
compared to approaches based only on one feature type (m
edges).
• Levels of abstraction and scale[35, 45–47] are especially

useful for roads and vegetation but might be also useful to de
building blocks. For roads in coarse scale, many disturbance
eliminated (cf. Subsection 2.2). The elimination of disturban
helps to bridge gaps and to get a more complete road netw
Coarse scales can be generated artificially using scale-sp
The local modeling of single objects such as trees by us
appearance-based approaches [48] is exploited in fine scale
avoids the transition from image space to object space.
• The geometric/topologic neighborhood[49, 50, 38, 51],

i.e., the spatial context, describes the spatial arrangeme
objects. For example, shadows can be used to detect build
Intersections or cars have a direct relation to a road, whereas
or buildings are needed because they cast shadows or oc
roads on one hand and because they form rows parallel to
road, on the other hand.
• Global and local context[35, 52] subdivides the geome

ric/topologic neighborhood by a spatial partitioning. Very loc
structures like a tree casting a shadow or a building occlud
a road are distinguished from global structures such assub-
urb urban, forest, or openrural. The latter ones restrict the fre
quency and the characteristics of the former ones: For insta
in openrural areas there are only few buildings, located oft
well separated.
• Structures of parts[27, 53, 35, 49, 54], also called sub

structures, can be used as local evidence for objects. Typ
examples comprise cars on the road, doors or windows in
wall, as well as dormer windows or vents on the roof. The
objects show a characteristic arrangement with each other
regarding the object they are part of. Often it is useful to rec
the images before the extraction of the part structures to g
standardized situation.
• Statistic modeling[55, 56] extends the widely used, mo

or less functional and deterministic modeling. With probabilis
methods the uncertainty of the data as well as of the model
be propagated and used for controling the analysis.
toSpecific parts of the model for building extraction com-
prise:
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• Shadows[34, 57, 26, 58] andwalls (vertical edges)[26,
34, 57, 59] are very good evidence for the 3D interpretat
of mono images. Nevertheless, in some cases there are
lems: for shadows they emerge from nonplanar terrain clos
the building, from shadows cast on buildings close-by, or fr
the fact that shadows could be occluded by the object it
in oblique views. On the other hand, vertical walls are mai
visible in oblique views but can be occluded by other obje
Nevertheless, it is not clear, why shadows and, especially,
tical edges are used so seldom for building extraction from
or more images.
• The 3D geometry in≥2 images[29, 30, 42, 33, 60–63]

based on a camera model and given orientations, gives a valu
indication for the existence of the 3D structure characteristic
buildings. The more images from different directions are us
the higher is the chance to exclude wrong matches.
• A generic 3D model[29] which consists of surfaces and

constructive solid geometry (CSG) modeling may be the b
starting point for a more generic building extraction. All oth
representations either cannot describe a complex building p
erly, or it seems difficult to decide that a structure cannot b
building [30]. As a restrictive comment it has to be added that
not yet clear if there are structures which “cannot be a buildin
• Aspects[4, 29] derived from a generic description consi

ing of building terminals and connectors allow for a paral
modeling in a 2D image and a 3D object model by enabling
explicit transition between these two.

4.2. Strategy

The parts of the strategy are organized in the same way
Subsection 4.1.

Thegeneral parts of the strategyare:

• Appearance-based approaches[53, 45] avoid the explicit
transition from an image model to an object model [48]. W
them, objects like trees can be extracted, for which the mode
is quite difficult by other means because they have a relati
varying appearance. They also can be used for the extractio
details on the rooftop or cars on roads when the resolutio
close to the point where these objects cannot be extracted
more.
• Grouping[39, 26, 33, 25, 64, 40], i.e., the search for ge

metric/topologic regularities, allows for focusing on parts of o
jects and therefore limits the search space. An often encoun
problem is that the regularities specified are not strict eno
to ensure a reliable extraction. Grouping should therefore
accompanied by verification.
• By means of thefocus on different scales[35, 65] the ex-

traction is at the same time accelerated, as well as impro
By using multiple scales one can start with reliable structure
coarse scale and use them to focus the extraction on the sp
areas and object types in fine scale. In many cases, inste
changing the scale in the image by means of scale-spaces

image pyramids can be used. This significantly accelerates
processing of the small scale.
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• Hypotheses generation and search/resegmentation b
on spatial context[49, 1] is done by predicting an object give
another object with a spatial relation to it. Many objects rece
their semantics only in this way, which is especially true if th
cannot be recognized, or are at least hard to extract by th
selves.
• When focusing on contexts[35] the distinction between

global and local context is used for a further improvement of
potheses generation and search/resegmentation. In many
it is useful to first segment the image into the global conte
and only then to start the extraction of the objects in the e
est or most promising global context. For roads, these are
instance, theopenrural areas, in which the objects and the
cal contexts made up from them are analyzed. Objects in
local context such as trees or shadows can prevent the ex
tion of roads. Other objects such as cars can help to vali
roads.
• The generation of evidence from structures of parts/s

structures[53, 35, 27, 49, 54] improves the probability of h
potheses. Here, it is assumed that part structures cannot b
tracted directly in many cases. However, if there is an hypoth
about the object to be extracted, its spatial constraint make
extraction of the part structures possible. For buildings, sin
objects such as doors or windows cannot be interpreted by th
selves (e.g., black blobs), but their arrangement makes the
mantics and, at the same time, the semantics of the object
clear.
• Balancing image information versus the geometric mo

in an automatic process[8, 66, 42, 67] enables a geometric im
provement of objects with already clear semantics, but we
defined outlines. Typical examples are snakes [68] or “mo
based optimization” [8]. Recent results on the extraction of ro
in shadowed regions [66] show that snakes are also usef
extract objects when only a stabilized geometry makes the
traction of useful image features possible.
• Thefusion of data and of algorithms[49, 28, 30, 42] com-

prises not only color but also multispectral images and ima
from different sensors. Although, the color in images is not
ble due to the indirect lighting of shadowed objects, color ima
are, for instance, useful for limiting the search space of build
extraction by using the fact that many roofs are red. Additi
ally, there can be, more or less, unexpected colors of the ro
for example, old green copper roofs. The fusion of algorithm
a very general technique which can be used for different ar
Examples are the treatment of scale-transitions or of diffe
kinds of viewpoint of the image function, e.g., various types
definition of edges or regions.

Thespecific parts of the strategy for buildingsconsist of:

• By matching of primitives in several images[29, 30, 42,
33, 61, 62, 43, 69] valuable information about the 3D geom
of parts of buildings can be gained, especially when using m

theimages from different directions. To get a good approximation,
and therefore to improve the probability of the matching, a DSM
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should be used when available. Methods to produce dense a
liable DSM for urban areas by image matching are, e.g., [70,
• The use of aspects[29], i.e., the sequence 3D points⇒

building part⇒ building⇒ matching of building parts to im
age primitives, allows for a direct transition from image to obj
model and vice versa. A modeling based on aspects as desc
in Subsection 4.1 is a prerequisite for this.
• The results of theextraction of hypotheses for building

from DSM[28, 72, 70, 16, 73–78] are a little imprecise and u
reliable, especially as vegetation is often mistaken for buildin
Therefore, the results are used for applications with not too
requirements, such as telecommunication planning or as ro
approximation for further extraction using image informatio

4.3. Outstanding Issues for Model and Strategy

The importance of three outstanding issues has become
only recently:

First, scaleor resolution of an image are not only importa
due to their link to the observability of objects or parts of o
jects. More importantly, by the abstraction in the coarse sc
generated by scale-spaces, features in the image such as
can be linked directly to objects like roads [65, 35, 17].

Second, thecontext and its spatial organization renders
highly effective means to impose structure on the knowle
[38, 35, 52]. This makes it possible to construct large consis
models and strategies tackling the complexity of the object

Third, the3D structure of objects such as vegetation a
especially buildings is the key to their recognition. There
two ways which ideally should be combined:

• DSM are quite effective for detecting vegetation and bu
ings [28, 70, 73]. The reliability is improved considerably if
DSM from active laser scanning is used [72, 16, 79].
• The matching of features in more than two passive ima

using the information from the DSM as an approximation a
a detailed image model results in highly reliable 3D structu
[41, 30]. These can be combined with the knowledge from
model [29].

5. SUMMARY AND DIRECTIONS FOR
FURTHER RESEARCH

This paper has surveyed the state-of-the-art automatic o
extraction techniques from aerial imagery. Characteristic
proaches were assessed, based on their models and stra
using well-defined criteria. From the assessment a model a
strategy representing the knowledge in the field were conden

Nevertheless, there are many ideas which have not bee
plored in depth in the combined model and strategy, pointin
several promising directions for further research:

• Different kinds of objects should be investigated conce
ing their scale-space behavior in various scale-spaces. C

acteristic textures in different scales are a closely related p
nomenon.
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• Local contexts can be modeled more in depth. It could
analyzed which objects should be treated, which relations
of highest importance, and how objects and relations shoul
formalized best.
• For the structures of parts it could be investigated how r

vant details such as cars, dormer windows, doors, and wind
are for their extraction, as well as how important they are for
verification of hypotheses.
• The function of objects should be used more explici

This could be done, for instance, by autonomous agents,
ulating pedestrians or cars, which are checking the functi
plausibility of the result of the extraction.
• Concerning fusion it could be investigated which ad

tional sensors are useful. The investigation should be acc
panied by a further exploration of sophisticated algorithms,
pecially evaluating their performance for different applicatio
• Other sensors could aid to make more use of the m

rial properties. In particular, data from future imaging, possi
multispectral laser scanners is of interest [79], as they m
available reflection information, more or less, independen
lighting conditions.
• To improve the versatility of object extraction, machi

learning techniques [80], such as evolutionary algorithms
or storing sets of parameters, e.g., for textures, or width
roads come to mind. An example for learning parts of the mo
for buildings is presented in [82]. The reference data nee
for learning could come from a GIS. Storing the sets of
rameters could, for instance, be made dependent on loc
global context and on even more general types of surrou
ings, like rural areas close to the mountains and industrial la
scape. For the time being it is assumed that the basic s
tures have to be formulated before learning can help with
details.
• The variability of the objects is treated insufficiently. Th

is, most approaches assume that an object has only one ki
appearance. For example, buildings are mostly assumed
polyhedra. Roof gardens or highly nonplanar shapes of bu
ings designed by modern architects are not considered. He
“multimodel” is proposed for the appearance which takes
variability into account. A strategy might be to tackle the a
pearance which is most prominent in an area first and onl
use other ones if this fails.
• Of utmost importance is a more detailed modeling. To

tract more general types of buildings, not only dormer w
dows or gutters, but also knowledge about architecture sh
be incorporated. For a more detailed modeling, again, mac
learning could be used (see above).
• Internal evaluation is closely related to the previous item

many cases it is not enough to construct a deterministic mo
but it has to be complemented by a statistical component,
probabilistic methods, to decide about the semantics of the
jects. For every object and its relations there must be a sep

he-evaluation. For determining the a priori and conditional proba-
bilities, again, machine learning could be helpful.
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• Apart from its importance for the decision about the sem
tics the internal evaluation of objects is also needed for con
It depends not only on the knowledge about the local or glo
context (model and strategy) but also on the data, i.e., the
jects to be extracted and their surroundings. In an additio
the missing evaluation of the individual local or global contex
it is not clear how—given these quite complex conditions—
consistent evaluation can be achieved at all.

Altogether, there are several promising directions to go, ma
some which have not been thought of yet. Data from imag
laser scanners have opened up ways which few people c
imagine some years ago. Since object extraction in aerial
agery has received much attraction recently, there is a ch
to make good progress and to reach the point where autom
object extraction becomes feasible for practical applications
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