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This paper surveys the state-of-the-art automatic object extrac-
tion techniques from aerial imagery. It focuses on building extrac-
tion approaches, which present the majority of the work in this area.
After proposing well-defined criteria for their assessment, charac-
teristic approaches are selected and assessed, based on their mod-
els and strategies. The assessment gives rise to a combined model
and strategy covering the current knowledge in the field. The model
comprises: the derivation of characteristic properties from the func-
tion of objects; three-dimensional geometry and material properties;
scales and levels of abstraction/aggregation; local and global con-
text. The strategy consists of grouping, focusing on different scales,
context-based control and generation of evidence from structures
of parts, and fusion of data and algorithms. Many ideas which have
not been explored in depth lead to promising directions for further
research. (© 1999 Academic Press

1. INTRODUCTION

extensive, but it does not claim to be complete. Some surve
give an overview of the whole area [1, 2], whereas others r
view only building extraction techniques [3, 4], or the role o
artificial intelligence (Al) [5]. This survey includes approache
for object extraction from satellite images, which influence tt
extraction from aerial imagery. It only covers models and strat
gies. Specific algorithms or techniques derived from them a
not reviewed, to limit the extent of the survey. Though the con
bination and integration of the models and strategies with hum
interaction to build semi-automatic systems [6—11] is of majc
practical importance, the survey only deals with the automat
parts of the extraction. This is due to the fact that the probler
linked to human—computer interaction constitute a challenge
their own right.

The basic idea of the survey is to present a combined mo
and strategy covering the knowledge in the field. To give ir
sight into how it arose, some approaches for building extractit
were selected which are described in more detail and asses
according to some well-defined criteria. The detailed analysis

Automatic extraction of objects such as buildings or roadgven only for the building extraction approaches, because th
from digital aerial imagery is not only scientifically challengingpresent the majority of the work.

but also of major practical importance for data acquisition and The survey consists of four parts: In Section 2 criteria al
update of geographic information system (GIS) databases or sitttoduced which allow for an assessment of the approact
models. according to their complexity. Then, characteristic approacht
In this paper, the term “extraction” is used for the detection, aelected according to their relevance at the time of their dev
well as for the reconstruction, of objects. “Detection” means thapment, exemplifying various ways to extract buildings fror
objects are found, based on simpler features and camera mod®sial imagery are assessed, starting with the complexity of d
resulting in simple two- (2D) or three-dimensional (3D) modan approach can handle (cf. Section 3). The actual assessme
els. On the other hand, for a highly accurate “reconstructiorsplit into a characterization of the models and strategies, as w
knowledge about the object’s geometry and especially its topals a classification of the approaches.
ogy is assumed to be given and more complex camera models, aéhe assessment of the approaches gives rise to the combi
well as high quality data, are used. The basic reason why the tmodel and strategy representing the current knowledge in |
terms are combined in this paper is their interdependence; fredd (cf. Section 4). Because of the diversity of the approache
semantics of an object (detection) depends directly on its geabe combined model and strategy is based on the state-of-t
metric extent (reconstruction). More practically speaking, soragt derived from buildings and other object types. “Combinec
recent approaches give an indication that, only by a precise expresses that, at least potentially, all objects which are depic
construction of an object, enough evidence can be achievedrntdhe given data are modeled. The section is complement
exclude wrong object types. with outstanding issues whose importance has become clearc
The paper surveys the state-of-the-art automatic object @geently. Finally, after a short summary several highly promisir
traction techniques from (digital) aerial imagery. The survey directions of further research are explored in Section 5.
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AUTOMATIC OBJECT EXTRACTION 139

2. CRITERIA FOR THE ASSESSMENT European city center is considerably more complex than a rul

OF THE APPROACHES part of the midwest of the United States. A further classifica

tion of the content according to density (rural, suburban, urbar

This section proposes criteria, which allow for an assessmejtfject complexity (residential, industrial, military), architecture
of different approaches according to their complexity. Aftefelaborate, plain, none), terrain (flat, hilly, mountainous), or vec
Showing the link between assessment and Complexity, the dé‘éﬂon (none, moderate, heavy) is not considered in this pap
and their Complexity are treated in more detail. The criteria f(ﬁﬁough it m|ght be useful for future attempts to evaluate the pe
the assessment of the complexity of images, models, and strggemance of object extraction approaches. The second factor

gies conclude the section. the observabilityof the different objects. It depends on severa
prerequisites. The most important is resolution. It can be lov
2.1. Assessment and Complexity i.e.,>1m, medium,i.e>0.2 mand<1lm,orhigh,i.e.<0.2m.

gt&er prerequisites are image quality, in terms of contrast ai
poise, and the season. Both are not taken into account for t
mainder of the paper, as they are assumed to be optimized
£ given task.
Since digital aerial imagery is generated in most cases |
canning an analog film, the resolution is also dependent on t

They possess high variability and exhibit many details. Becadg?ealge scalebw[uch can be Sma”*t”:efl“_“%- ggléirg% T)t;plcta 1' '_rzgf
of this double complexity, the so-called “combined strateg?Ca esvary (?tvr\]/e?nt;clpprommqt(;y ' I’ i anf abou It.
[12], i.e., a combination of other strategies, is suited best. Né%_scanmng ofthe latter ones with a resolution ofu results

ertheless, not all approaches use the same strategy and theré?o?@round resolut|0n.of 6 Cm'.Th'S high _resolutlon 'S espeuall
the complexity of the strategy is assessed in this paper, t0o. needed for the extraction of buildings which may comprise sme

The suitability of the combined strategy does not exclude thgta'ls such as gutters not visible in larger ground pixels. F

use of simpler strategies for parts of the problem. In the mo%qﬂ'er objects such as roads, a ground pixel size of 20 ¢cm or ev

simple case a “feature vector classification” of a pixel or a regicmorle Iﬁ'sniq%gvgggh can be gained by scanning images w
is enough. If one wants to find, e.g., cars as evidence for aro gaies ke L 12,000

possibly fitting simple models to radiometry might be promisin§ Another|mp0rtantprebrec2w5|tde forl\o/lbservatblllty|sthednum|?e
Another way of assessment which distinguishes a sign f_lmagesascene_can_ € found in. Mono, stereo-, and MUt
es can be distinguished. The more images an object can

or feature-based representation of the images and ageomé " the better its 3D N b ructed. Tl
physics-based or biologic/semantics-based representation oftfien ' IT etter tl S Cf _gEO.rITf ry c?/r\}h et reconstruc elt'. |

models, is presented in [13]. Itis similar to the one chosen he}%,espeua y important for bulldings. at1s more, muitiple
es also reduce problems with occlusion. Color is also ve

as the signal- or feature-based representation of images carlﬂlni])%gf l t tract buildi q tati E tation |
seen as expressing low or high complexity. elpful to extract buildings and vegetation. For vegetation i

many cases color infrared images are used.

There is a multitude of other data besides aerial image
which can be used for object extraction. According to its resolt

The complexity of aerial imagery is mostly due to the largetion, satellite imagery, for instance, is approaching medium sca
number of different objects depicted. Problems which arise froaerial imagery. Besides three-line scanners such as MOMS-(
the dynamics of the scene, e.g., by moving objects, the seasdi,[14] with fore and aft along track stereo, a ground resc
etc., are not considered here. The number of objects depehdi®n of abod 6 m in thenadir view and about 18 m in the
mainly on two factors. The first isontent(cf. Fig. 1). An old forward and backward looking views, as well as multispectre

The assessment of the approaches is based on the ide
[12] to distinguish strategies according to their suitability fo
data, i.e., images, and models of different complexity. For aerl
imagery this has the consequence that the complexity of th
content is relatively high (cf. Subsection 2.2). Additionally, all
models, forexample, the model for a building, are quite compl

2.2. Data and Its Complexity

FIG. 1. Resolution and content (a) low resolutiorl(m)—simple content; (b) medium resolution@.2 m and<1 m)—medium to complex content; (c) high
resolution 0.2 m)—medium to complex content [83].
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TABLE 1 may not be optimum in two ways: either the optimum solution is

Visual Recognizability of Various Object Types Depending notreached, or it is achieved inefficiently by using too comple»
on the Minimum Ground Pixel Size and Mono/Stereo in Satellite  data, model, or strategy.

Images Based on [14] Since the complexity of the data depends strongly on the re:

olution, the latter should be chosen sufficiently small so that th

Object t G d pixel size and Mono/stereo . . . . .
jectype round pixe important details of the objects can be recognized. It is also po:
Building 2'm, stereo sible that there_ is more than one _optimL!m solutior_w. For roads,
Path 2 m, stereo for occlusion by vegetatiogoarse resolution of about 10 m is, for instance, ideal to detec
Minor road 5m, stereo for occlusion by vegetationypotheses for highways, a medium resolution 06 $tm to
uyqrologé/ 150 m, stereo for occlusion by vegetatiogjetect the different traffic lanes, and a high resolution down t
ain roa m

10 cm to extract the borders of the pavements and the marking
In [17] it is shown how, based on different scale-spaces [18]
values for the resolution/scales can be determined analyticall
What is more, it is also shown analytically how disturbing ob-

capabilities, sensors with less than 1-m ground resolution for tfé%ts like cars can be eliminated from the road by means of scal
pan-chromatic and less than 4 m for the multispectral channgbsdces_

are planned for the near future [15]. Especially the latter can be
more suitable for some applications than aerial imagery.

Extremely interesting for an automatic interpretation are ag-3. Complexity Criteria for the Assessment of Images,
proaches which directly measure range/height data by meandodels, and Strategies

of laser scanning [16]. The ground resolution can be down t0gefqre presenting the complexity criteria, the criticism of the

0.25mwitha precision fgr the height of about Q'l m. current state-of-the-artimage analysis [19-21] is considered. |
For an empirical examination of the complexity, content ang, ,ination with the more specific criticism of the approache:
resolution are linked. The question is: Which objects can beg. object extraction from aerial imagery in [22] and the pos-

mapped at which resolution? Basically, analogously to thgiateq “enlarging the peephole;” in terms of spatial, spectral
Nyquist theorem, an object has to be sampled with a spaligl, 4| and contextual components of [23], results in the fol
resolution which is half the size of the object to be dlst|ngmsh%\Ning points of special importance:

from other objects. Though much smaller objects can be seen

when their contrast to the surroundings is relatively high. More 1. The performance of the extraction should be evaluated fc

specifically, [14] presents the visual recognizability of differergeneral validity using as many images as possible. This shou

object types for satellite imagery, depending on the minimunt only be done visually, but also based on performance me:

ground pixel size (cf. Table 1) which should be mostly transfesures.

able to aerial imagery. Recognizability means that the location,2. Spatial resolution should be appropriate for the problem.

as well as the object type, can be determined. For acquiring GIS8. Knowledge is important as not all information is contained

data there are higher demands concerning resolution if attribuiteshe image.

of the objects are to be acquired, too. 4. The extraction should be done in object-space, as onl
In summary, the complexity of images depends on the scethere can much of the knowledge about the real world be use

content and on the observability of objects and, therefore, tiris, for instance, hard to compare the width of a road in pixels

the resolution. Avoiding unnecessary complexity which coultith the model. For this, knowledge about the sensor and it

disturb the extraction is especially important for automatic ewrientation is a must.

traction. Basically, there is a minimum complexity to solve the 5. It is better to integrate different kinds of methods than tc

problem (cf. Fig. 2). If the problem is solvable, the complexityise only one technique for the solution of the problem: “multiple

Building block 10m

low high Necessary Complexity
- > of Data, Model and
Strategy
too simple too complex
(solution not optimum) optimum (too inefficient)
problem ‘ problem
notsolvable ... o solvable

FIG. 2. Necessary complexity of data, model, and strategy.
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TABLE 2 for many approaches. Object extraction done in a highly inte
Criteria for the Assessment of Models and Strategies grated manner corresponds to the different levels of complexi
— and types of control and search. The criteria for the assessmen
Criterion Assessment the approaches are concluded by the complexity of the (intern:
Complexity of data Low/medium/high evaluation.
Resolution Low/medium/high
Content Simple /medium/complex
Complexity of model Low/medium/ high 3. SELECTED APPROACHES FOR BUILDING
Representation formalisms  Implicit/ type EXTRACTION AND THEIR ASSESSMENT
Geometry and radiometry Geometiid radiometric
Kind of representation 2D/3D; fixed values / parametric/ generic The goal of this section is to introduce and assess seve
Sensor model Simplified/ detailed characteristic examples of approaches for building extractic
Object model Weak/medium/detailed from aerial imagery. Together with the presentation of the aj
Scene model None /weak/ medium/ detailed

Not modeled /weak /strong; implicit/ explicitProaches the complexity of data they can handle is assessed

Function

Complexity of strategy Low/medium /high Subsectlo_n 3.1). Only _then, the relatlve assessment of_the 8
Fusion Type proachesis presented in Subsections 3.2 and 3.3, according to
Grouping 2D+ /3D; simple / complex complexity of modednd thecomplexity of strateggs motivated
Control Type in Subsection 2.3. “Relative” means that only the comparisc
Search Type between the approaches is important. The assessment acc
Evaluation None/simple/complex; type

ing to an “absolute” goal is carried out by a classification o
Note.":” separates different assessments? ‘means “and”; /" means “or” the models and_ strategies (CT- Subsection 3.4), me so far a:
very coarse estimate of the distance to the most important go

methods are found along the path to enlightenment; there aref® extraction of objects for GIS databases or site models,
silver bullets” [22]. The use of spectral or temporal informatiof!ven.
is of special importance.

6. Object extraction should be done in a highly integrate3l1. Complexity of Data

fashion. More specifically, the context of the extraction should

be adapted; as soon as new information is available it is usedo}gﬁr?{ig 22?' K;”i%iihaf% '?rt%aecz [tfg]cxisosfegeﬁge_g as Ithl'scl
simplify the extraction. : y app Xtractl uildings whi

uses Al-focused 3D-reasoning, in combination with heuristic

The first and the second points correspond to the key poatiout the vertical and horizontal directions of lines to extrac
complexity of datgan approach can handle) in Table 2. It iduildings as rectangular prisms. Some years later buildings st
subdivided into resolution and content, according to Subsectimere modeled as rectangular prisms, but the 3D-structure w
2.2. The first point is more implicitly contained, as the perfoigenerated by matching higher level structures such as rectancg
mance of object extraction is admittedly of first interest for thie stereo images found by grouping rectangular or parallel edg
application, but it is not evaluated for most approaches up [@6]. What can be done in single, possibly oblique, images t
now. extract flat and peaked roof buildings using shadows and visib

The third point agrees with the key posamplexity of model vertical edges based on vanishing points is exemplified by [2€
It is split first into the representation formalisms (“implicit” inWanget al. [27] demonstrate that the semantics of buildings i
Table 2 means that the knowledge is hidden in the program codej restricted to the geometry. From several images optimal
and the focusing on geometry and/or radiometry. The last twectified images of walls are calculated and used to extract p:
are, according to [23], important ways to use spatial knowledgatructures of windows and doors in the walls which can help t
Further points are the type of representation formalism and tregse the probability of the extraction. That prismatic as well a
sensor model. Only by means of a detailed sensor model is arameterized buildings, like peaked ones, can be detected :
transition from image to object space addressed in the fougktracted from a digital surface model (DSM) is shown by [28]
point possible. By clarifying the degree of detail of the scene asbme of the most recent and sophisticated approaches ma
of the object model, deficits of the model are shown which apgimitives such as edges or corners in several images, based
due to the restriction to only one or a few object types and theirdetailed image model, and a complex strategy as presentec
relations, or due to a too unspecific modeling of the individu§29, 30]. Whereas [30] only tries to find parts of the roof, in [29]
objects. A modeling of the function of the objects which is dong generic model for buildings was elaborated which consists
as explicitly as possibly can help for a further improvement @ combination of parameterized building parts. Table 3 gives tl
the extraction. complexity of data an approach can handle thatis split, accordil

The fifth and the sixth points both belong to the key poorh-  to Subsection 2.3, into resolution and content. It can be seen tl
plexity of strategyThe integration of methods corresponds to théhe most recent approaches are the ones which can handle
fusion of different techniques or data. Grouping is quite commanost complicated scenes.
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TABLE 3

Complexity of Data for Building Extraction

HELMUT MAYER

icant trend to use edges, i.e., a geometric representation, for t
extraction. Since buildings are 3D objects, mostly 3D represer

tations, partly supported by 2D representations, are exploite

Complexity . Generic, as well as parametric models, are utilized. While th
Approach of data Resolution Content . .
former have the advantage of generality, for the latter it can b
3D reasoning, Low-medium  Medium  Simple More easily checked whether the extracted object is a buildin
Herman and Kanade, For the first approaches the sensor model was often simplifiel
1984 [24] and it is only a recent tendency to use a detailed photogramme
Matching of grouping-based Medium Medium  Medium ric sensor model for 3D reconstruction. The object models ar
structures in stereo images, becoming more and more detailed, based on complex, gener
gﬂgoshga{‘zg]nd Nevatia, and parametric 3D structures (cf. Table 5) and they are partiall
. , . _ _ extended by part structures. The height of the buildings is moc
3D-interpretation of mono Medium Medium Medium . . . . .. .
images using shadows and, eled in ob]lque views py an objec_t model comprising vert|_cal
vertical edges, Shufelt, walls and in nadir-looking views with a scene model including
1996 [26] shadows. Shadows are considered to be a part of the scene mo
Evidence from building parts, Medium Medium  Medium as they include information beyond the object. The function o
Wanget al, 1997 [27] objects is only used implicitly when gaining evidence from the
Building extraction from digital ~ Medium Medium  Simple— structure of building parts, such as doors, windows, or vents.
surface models, Weidner, (DsSm) medium  |n summary there is an evolution from general techniques t
1997 [28] approaches customized for the object type, i.e., the building.
Matching of primitives in High High Medium- 5 considered to be very important to utilize the specific knowl-
Tguég"[g";?es’ Fischeet al. complex e dge, i.e., the models and strategies, as completely as possik
. o . , _ Though, if it is possible without too much effort, an approach
Matching of primitives in High High Medium— . : . . .
multimages, Henricsson, COmpleanl still be designed for as many object types as possible. Ovel

1998 [30]

all there is also a trend to focus on 3D geometry.

3.2. Characterization of Models

3.3. Characterization of Strategies

Many approaches fuse two (stereo) or more images (C

The models for building extraction show only a weak tenfable 6). Additionally in [24] multitemporal images are used.
dency to use knowledge-based representation formalisms {idfis leads to the problem of updating, for which the approacl
Table 4). Concerning radiometry and geometry there is a sigriiéken is relatively simple. In [30] colored images and a DSM

TABLE 4
Characterization of the Models for Building Extraction |
Representation Geometry and Kind of
Approach formalisms radiometry representation Sensor model
3D reasoning, Implicit Geometric 3D; generic Simplified
Herman and Kanade, 1984 [24] (rectangular prism)
Matching of grouping-based Constraints Geometric +28D; generic Simplified
structures in stereo images, (rectangular prism)
Mohan and Nevatia, 1989 [25]
3D interpretation of mono images Implicit Geometric 3D; parametric Detailed
using shadows and vertical (flatpeaked roof)
edges, Shufelt, 1996 [26]
Evidence from building-parts, Implicit Geea- radiometric 2D+ 3D; walls Detailed
Wanget al., 1997 [27]
Building extraction from digital Implicit Geometric 3D; parametsicgeneric —
surface models, Weidner,
1997 [28]
Matching of primitives in multi- Constraints Geometric 3D; generic, based Detailed
images, Fischeet al., 1998 [29] on basic types
Matching of primitives in multi- Implicit Geometric 3D; generic (roof) Detailed

images, Henricsson, 1998 [30]
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TABLE 5

Characterization of the Models for Building Extraction 11

Approach Object model Scene model Function
3D reasoning, Weak (prism) None Not modeled
Herman and Kanade, 1984 [24]
Matching of grouping-based Weak (prism) None Not modeled
structures in stereo images,
Mohan and Nevatia, 1989 [25]
3D interpretation of mono images Medium (ftat Weak (shadow) Not modeled
using shadows and vertical edges, peaked roof, wall)
Shufelt, 1996 [26]
Evidence from building parts, Medium (3D blocks Weak (shadow) Weak; implicit
Wanget al, 1997 [27] structures of parts) (doors, windows)
Building extraction from digital Medium (standard None Not modeled
surface models, Weidner, building types
1997 [28] complex flat roofed)
Matching of primitives in multi- Detailed (complex None Not modeled
images, Fischeet al, 1998 [29] 3D structure, aspects)
Matching of primitives in multi- Detailed (complex None Not modeled

images, Henricsson, 1998 [30]

3D structure)

ify,” where grouping is used for the hypotheses. Wan@l's

TABLE 6

Characterization of the Strategies for Building Extraction

Approach Fusion Grouping Control/search Evaluation

3D reasoning, Stereo at different times 3D, simple Data-driven; — No
Herman and Kanade, 1984 [24]

Matching of grouping-based Stereo 2D; complex Data-driven; constraint Simple
structures in stereo images, satisfaction
Mohan and Nevatia, 1989 [25]

3D interpretation of mono images — 3D; complex Data-driven; — Simple
using shadows and vertical edges,
Shufelt, 1996 [26]

Evidence from building parts, Several images — Model-driven; — No
Wanget al, 1997 [27]

Building extraction from digital — — Data-driven; — Complex; MDL
surface models, Weidner,
1997 [28]

Matching of primitives in multi- Several images 3D; complex Hypothesize and verify; Complex
images, Fischeet al., 1998 [29] constraint satisfaction

Matching of primitives in multi- Several images, 2P3D; Data-driven; — Simple
images, Henricsson, 1998 [30] color, DSM complex
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[31] are exploited to generate hypotheses for buildings. Growgatisfaction is used in [25, 29]. If itis there at all, internal evalua
ing is of significant importance and relatively complex schemdisn is mostly simple. Only [29, 28] use a more complex evalue
are used. It is done in the 2D image as well as in the 3D scetiwn, based on probability theory or minimum description lengt|
and [30] even combines both. The control of the approachegi4DL).
mostly data-driven. Only [29] is based on “hypothesize and ver-In summary there is a change from simpler to more comple
strategies. There is a tendency to use more than two imag
approach [27] is model-driven as the walls can only be extractaldo color images or DSM. Grouping is focused on. The trend
from the image using already existing information. Constraitward complex grouping in 2D as well as in 3D. The tendenc
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goes toward mixed strategies. Some recent approaches use tkeModeling of material propertieg88] causes the interpreta-
more general strategy of hypothesize and verify. For interrtédn to be not so much affected by sensor characteristics. This

evaluation more and more complex modeling is used. especially important when different kinds of sensors, like optica
and radar, are utilized.
3.4. Classification of Models and Strategies e 2D geometric/topologic regulariti€89, 26, 33, 25, 40] are

o ) ) used for buildings as well as for road pavements (parallel edges
The classification of the different approaches regarding thqﬁ_{)r buildings they are especially suited for simple types, e.g

models and strategies is done in two ways: first, by comparingjiiy perpendicular outlines and flat roofs, and the construction ¢
with the ultimate goal, the extraction of objects for GIS databasﬁ?potheses for more complex buildings. Though, for modeling

or for site models, and second, by showing the most sophisticaigqe |atter ones they are not sophisticated enough.
approaches. _ e A detailed image modd#, 41, 30, 42—44] with rich at-
Compared to the ultimate goal, the results based on the M@k tes and a feature adjacency graph exploits much better tt
els and strategies of all presented approaches are for imagesRfrmation contained in the image. Especially for matching in
different characteristics and complex contents far from beiRgore than one image, the probability can be raised significantl
useful in practice. Nevertheless, for restricted domains the m%?npared to approaches based only on one feature type (mos
recent approaches are getting closer to being useful in practiggges).
This might be the reason why quantitative performance eval-, | ayels of abstraction and scal@5, 45-47] are especially
uation has received much interest recently [26, 32-34]. As\{8efy| for roads and vegetation but might be also useful to dete
to be expected, the most sophisticated approaches for buildifygiging blocks. For roads in coarse scale, many disturbances a
extraction are the newest ones [29, 30]. eliminated (cf. Subsection 2.2). The elimination of disturbance:
helps to bridge gaps and to get a more complete road networ
Coarse scales can be generated artificially using scale-spac
The local modeling of single objects such as trees by usin
appearance-based approaches [48]is exploitedin fine scale. Tl
The combined model and strategy condenses, on one ha%vd),'ds the transmpn from Image space to object space.
the results of the assessment in Section 3. On the other hand, Thhe geo_mletnc/topolc()jgm ru_gghbr(])rhoq)dg, I50, 38, 51,
knowledge about the extraction of object types other than build :é(t:tse Eg?giagopr:;e)ghadejv(\:/g czsn tbee usslﬁi“?c) c?éﬁggﬁmﬁj?r:c
ingsisincluded here, because there is a big overlap in the moqer, ” ' : ) )
aswellasin the strategy, and the overlap can be used to widen {H%rs.%(?t'ons orcars ga\éeba direct re:]atlon toa rr? aéj, whereas t:e
scope without too much effort. The combined model and strgll PUlldings are needed because they cast shadows or occlu
egy is subdivided into model and strategy (cf. Subsections J%ds on one hand and because they form rows parallel to 1
and 4.2). References to additional approaches are gi ﬁd’ on the other hand.

which utilize a part of the model or the strategy especially well. Globa! and_ local contexi35, 52] .SUbd'V'.d.eS.the geomet-
Their order shows how well they make use of it in relation tgc/topologm neighborhood by a spatial partitioning. Very local

each other. Finally, in Subsection 4.3 outstanding issues for t%téuctures I'k(.a a}treg casting a shadow or a building occludin
road are distinguished from global structures suclsus

combined model and strategy are presented whose importaﬂ e ,
has become clear only recently. uﬁ)_urban, forest oropenrural. The latter ones restrict the fre-

gquency and the characteristics of the former ones: For instanc
in openrural areas there are only few buildings, located often
4.1. Model well separated.

The model is organized into general parts and specific parte Structures of part27, 53, 35, 49, 54], also called sub-
for buildings. The fact that the general parts are much larger théffuctures, can be used as local evidence for objects. Typic

the specific parts illustrates that the model is for the most p&ftamples comprise cars on the road, doors or windows in th
generic. wall, as well as dormer windows or vents on the roof. These

Thegeneral parts of the modelare: objects show a characteristic arrangement with each other ai

regarding the object they are part of. Often it is useful to rectify

o Characteristic properties are often the consequence of the, jmages before the extraction of the part structures to get
function of objectd35, 36]. Very importantly, they integrate g;onqardized situation.

knowledge about the 3D real world into the model. Typical ex- | giatistic modeling55, 56] extends the widely used, more

amples for knowledge sources are, apart from constraints cpess functional and deterministic modeling. With probabilistic

cerning the usefulness for humans [37], construction instrygiathods the uncertainty of the data as well as of the model cz
tions for different types of buildings or roads. For large paris, propagated and used for controling the analysis.
of the knowledge about function it seems to be enough to take

them into consideration for modeling. l.e., it is not necessary to Specific parts of the model for building extraction com-
integrate them into the system. prise:

4. A COMBINED MODEL AND STRATEGY FOR
OBJECT EXTRACTION IN AERIAL IMAGERY

r



AUTOMATIC OBJECT EXTRACTION 145

e Shadowq34, 57, 26, 58] andvalls (vertical edges)26, e Hypotheses generation and search/resegmentation bas
34, 57, 59] are very good evidence for the 3D interpretatiam spatial contex{49, 1] is done by predicting an object given
of mono images. Nevertheless, in some cases there are pmantwther object with a spatial relation to it. Many objects receiv
lems: for shadows they emerge from nonplanar terrain closethb@ir semantics only in this way, which is especially true if the!
the building, from shadows cast on buildings close-by, or frogannot be recognized, or are at least hard to extract by the
the fact that shadows could be occluded by the object itssHlves.
in oblique views. On the other hand, vertical walls are mainly e Whenfocusing on contextf35] the distinction between
visible in oblique views but can be occluded by other objectglobal and local context is used for a further improvement of hy
Nevertheless, it is not clear, why shadows and, especially, vpotheses generation and search/resegmentation. In many c:
tical edges are used so seldom for building extraction from tvitois useful to first segment the image into the global contex
or more images. and only then to start the extraction of the objects in the eas

e The 3D geometry in-2 images29, 30, 42, 33, 60—63], est or most promising global context. For roads, these are, f
based on a camera model and given orientations, gives a valuaté¢ance, th@penrural areas, in which the objects and the lo-
indication for the existence of the 3D structure characteristic foal contexts made up from them are analyzed. Objects in tl
buildings. The more images from different directions are usdldcal context such as trees or shadows can prevent the extr
the higher is the chance to exclude wrong matches. tion of roads. Other objects such as cars can help to valide

¢ A generic 3D modgR9] which consists of surfaces and aoads.
constructive solid geometry (CSG) modeling may be the beste The generation of evidence from structures of parts/sub
starting point for a more generic building extraction. All othestructures[53, 35, 27, 49, 54] improves the probability of hy-
representations either cannot describe a complex building prgptheses. Here, it is assumed that part structures cannot be
erly, or it seems difficult to decide that a structure cannot betracted directly in many cases. However, if there is an hypothes
building [30]. As arestrictive commentit has to be added thatitébout the object to be extracted, its spatial constraint makes t
not yet clear if there are structures which “cannot be a buildinggtraction of the part structures possible. For buildings, sing

e Aspectdg4, 29] derived from a generic description consistebjects such as doors or windows cannot be interpreted by the
ing of building terminals and connectors allow for a paralledelves (e.g., black blobs), but their arrangement makes their -
modeling in a 2D image and a 3D object model by enabling amantics and, at the same time, the semantics of the object its
explicit transition between these two. clear.

e Balancing image information versus the geometric mod
in an automatic proceg8, 66, 42, 67] enables a geometric im-

The parts of the strategy are organized in the same way apiavement of objects with already clear semantics, but weak
Subsection 4.1. defined outlines. Typical examples are snakes [68] or “mode

Thegeneral parts of the strategyare: based optimization” [8]. Recentresults on the extraction of roac

. .. in shadowed regions [66] show that snakes are also useful

* Appearance-based approachiés, 45] avoid the explicit oot ohjects when only a stabilized geometry makes the ¢
transmoq from. an image model to an object mpdel [48]. W't,ﬂaction of useful image features possible.

'them', objggts like trees can be extracted, for which the modglmg. Thefusion of data and of algorithrg9, 28, 30, 42] com-
is qu_lte difficult by other means because they have a rEIat_'V%Mses not only color but also multispectral images and imag
varying appearance. They also can be used for the extractiogh, gifterent sensors. Although, the color in images is not st

details on the rooftop or cars on roads when the resolutionyg, 4,e to the indirect lighting of shadowed objects, colorimage
close to the point where these objects cannot be extracted g tor instance, useful for limiting the search space of buildin
more. ) . extraction by using the fact that many roofs are red. Additior

* Grouping[39, 26, 33, 25, 64, 40], i.e., the search for gedg\y, there can be, more or less, unexpected colors of the roo
metric/topologic regularities, allows for focusing on parts of oy, . example, old green copper roofs. The fusion of algorithms
jects and therefore limits the search space. An often encounteée\%ry general technique which can be used for different are:
problem is that the regularities specified are not strict enouglg(ammes are the treatment of scale-transitions or of differe

to ensure a reIiabIelgxtrgction. Grouping should therefore pe 4o of viewpoint of the image function, e.g., various types o
accompanied by verification. definition of edges or regions.
¢ By means of thdocus on different scalg85, 65] the ex-

traction is at the same time accelerated, as well as improved
By using multiple scales one can start with reliable structures in
coarse scale and use them to focus the extraction on the specifie By matching of primitives in several imag9, 30, 42,

areas and object types in fine scale. In many cases, instea@3f61, 62, 43, 69] valuable information about the 3D geomett
changing the scale in the image by means of scale-spaces [b8harts of buildings can be gained, especially when using mau
image pyramids can be used. This significantly accelerates theges from different directions. To get a good approximatior
processing of the small scale. and therefore to improve the probability of the matching, a DSI

4.2. Strategy

The specific parts of the strategy for buildingsconsist of:
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should be used when available. Methods to produce dense and r@- Local contexts can be modeled more in depth. It could b
liable DSM for urban areas by image matching are, e.g., [70, 7@halyzed which objects should be treated, which relations at
e The use of aspectf29], i.e., the sequence 3D points of highest importance, and how objects and relations should k&
building part=- building = matching of building parts to im- formalized best.
age primitives, allows for a direct transition from image to object e For the structures of parts it could be investigated how rele
model and vice versa. A modeling based on aspects as descrizertt details such as cars, dormer windows, doors, and window
in Subsection 4.1 is a prerequisite for this. are for their extraction, as well as how important they are for the
e The results of theextraction of hypotheses for buildingsverification of hypotheses.
from DSM[28, 72, 70, 16, 73—78] are a little imprecise and un- e The function of objects should be used more explicitly.
reliable, especially as vegetation is often mistaken for buildingbhis could be done, for instance, by autonomous agents, sin
Therefore, the results are used for applications with not too highating pedestrians or cars, which are checking the functione
requirements, such as telecommunication planning or as robpistusibility of the result of the extraction.
approximation for further extraction using image information. e Concerning fusion it could be investigated which addi-
tional sensors are useful. The investigation should be accor
panied by a further exploration of sophisticated algorithms, es
The importance of three outstanding issues has become cleggially evaluating their performance for different applications.
only recently: e Other sensors could aid to make more use of the mate
First, scaleor resolution of an image are not only importantial properties. In particular, data from future imaging, possibly
due to their link to the observability of objects or parts of obmultispectral laser scanners is of interest [79], as they mak
jects. More importantly, by the abstraction in the coarse scaRéilable reflection information, more or less, independent o
generated by scale-spaces, features in the image such as ligé§ng conditions.
can be linked directly to objects like roads [65, 35, 17]. e To improve the versatility of object extraction, machine
Second, thecontext and its spatial organization renders dearning techniques [80], such as evolutionary algorithms [81
highly effective means to impose structure on the knowledgé storing sets of parameters, e.g., for textures, or widths ¢
[38, 35, 52]. This makes it possible to construct large consisté@ads come to mind. An example for learning parts of the mode
models and strategies tackling the complexity of the objects.for buildings is presented in [82]. The reference data neede
Third, the 3D structure of objects such as vegetation andor learning could come from a GIS. Storing the sets of pa-
especially buildings is the key to their recognition. There arameters could, for instance, be made dependent on local -
two ways which ideally should be combined: global context and on even more general types of surrounc
ings, like rural areas close to the mountains and industrial lanc

* DSMare quite effective for detecting vegetation and bu”%’cape. For the time being it is assumed that the basic stru

ings [28, 70, 73]. The reliability is improved considerably if Qures have to be formulated before learning can help with th
DSM from active laser scanning is used [72, 16, 79]. details

e The matching of features in more than two passive images

ing the i ion f h o e The variability of the objects is treated insufficiently. That
using the information from the DSM as an approximation and )¢t approaches assume that an object has only one kind

a detailed image model results in highly reliable 3D structurey pearance. For example, buildings are mostly assumed to

[41, 30]. These can be combined with the knowledge from trﬂ)‘%lyhedra. Roof gardens or highly nonplanar shapes of builc
model [29]. ings designed by modern architects are not considered. Here

“multimodel” is proposed for the appearance which takes thi
variability into account. A strategy might be to tackle the ap-
pearance which is most prominent in an area first and only t

This paper has surveyed the state-of-the-art automatic objgﬁ? other ones_lf this fails. . . .
extraction techniques from aerial imagery. Characteristic a| _* Ofutmost importance is a more detailed modeling. To ex
proaches were assessed, based on their models and strat gk more general types of buildings, not only_ dormer win-
using well-defined criteria. From the assessment a model an s or gutterz, but also knc()jwlet_jlgz abodutlgrchnec.ture Sh‘;‘ﬂ'
strategy representing the knowledge in the field were condensI g Incorporated. Fora more detailed modeling, again, machir

Nevertheless, there are many ideas which have not been &grning could be used (see above).

plored in depth in the combined model and strategy, pointing to® Internal evaluation is closely related to the previous item. Ir
several promising directions for further research: ' many cases it is not enough to construct a deterministic mode

but it has to be complemented by a statistical component, i.e

o Different kinds of objects should be investigated concerprobabilistic methods, to decide about the semantics of the ol
ing their scale-space behavior in various scale-spaces. Chects. For every object and its relations there must be a separe
acteristic textures in different scales are a closely related plaluation. For determining the a priori and conditional proba
nomenon. bilities, again, machine learning could be helpful.

4.3. Outstanding Issues for Model and Strategy

5. SUMMARY AND DIRECTIONS FOR
FURTHER RESEARCH
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e Apartfromitsimportance for the decision aboutthe semamz. J.J.PearsonandL.A. Oddo, Atestbed for the evalution of feature extracti

tics the internal evaluation of objects is also needed for control. techniques in a time constrained environmenfinceedings, Automatic
It depends not only on the knowledge about the local or global Extraction of Man-Made Objects from Aerial and Space Imageg)13-

context (model and strategy) but also on the data, i.e., the gb-

jects to be extracted and their surroundings. In an addition G

the missing evaluation of the individual local or global context

3.

22, Birkhduser, Basel, Switzerland, 1997.

P. Suetens, P. Fua, and A. J. Hanson, Computational strategies for ob,
recognition ACM Comput. Sun24(1), 1992, 5-60.

W. Forstner, A future of photogrammetric researblGT Geodesi®3-8,

it is not clear how—given these quite complex conditions—a 1993 372-383.

consistent evaluation can be achieved at all.

14.

Altogether, there are several promising directions to go, maybe
some which have not been thought of yet. Data from imagin

G. Konecny and J. Schiewe, Mapping from digital satellite image dat
with special reference to MOMS-0SPRS J. Photogrammetry & Remote
Sensing1, 1996, 173-181.

. L. W. Fritz, The era of commercial earth observation satellRestogram-

laser scanners have opened up ways which few people could yeyic Engineering & Remote Sensi6g(1), 1996, 39—45.

imagine some years ago. Since object extraction in aerial i} p axelsson, Integrated sensors for improved 3D interpretatitoireed-
agery has received much attraction recently, there is a chanceings, International Archives of Photogrammetry and Remote Sensing, 19¢
to make good progress and to reach the point where automaticVol. (32) 4/1, pp. 27-34.

object extraction becomes feasible for practical applications.17. H. Mayer and C. Steger, Scale-space events and their link to abstract
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