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Scale-spaces for generalization of 3D buildings

H. MAYER*

Institute for Photogrammetry and Cartography, Bundeswehr University Munich,

D-85577 Neubiberg, Germany

This paper presents a means for automatic generation of a level of detail (LOD)

representation of three-dimensional (3D) building data, with the formally well-

defined scale-spaces as the underlying theory. More specifically, we propose an

approach that employs vector-based mathematical morphology and discrete

curvature-space to generalize two-dimensional (2D) building outlines as well as

3D building surfaces. Scale-space events that are related to the semantics of

objects are the major triggers of the generalization. The implemented approach

preserves right angles. Additionally, more heuristic means to square buildings are

presented. The test results have validated the approach.
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1. Introduction

Developments such as the VRL ’97 (the virtual reality modelling language,

ISO/IEC 14772-1:1997) standard allow an easy visualization of complex three-

dimensional (3D) data such as buildings. However, acquisition of building data is

quite labour-intensive. For applications such as visualization or analysis in a

geographical information system (GIS), the aggregation level of the acquired data is

often unnecessarily low. That is, the data are too complex, or at least one would like

to have additionally a less detailed representation. A typical example using such less

detailed representations is the level of detail (LOD) concept from computer

graphics. This has been employed to reduce the effort for visualization of objects at

a larger viewing distance.

Many approaches that serve the purpose of data simplification already exist in

computer graphics, computational geometry, and computer vision. They often yield

multi-resolution surfaces by means of surface simplification. Common to all these

approaches is that they are generally applicable, not regarding specific properties of

the objects. Yet to obtain a high quality, it is desirable to develop a simplification

procedure adapted to the specific object, in this case the building. Generalization

research in cartography and GIS has so far been mostly focused on two dimensions

(2D), with the main objective to transform data into the right level of abstraction for

a particular analysis task.

In this paper, we propose basing the geometric generalization of building outlines

in 2D and 3D on the formally well-defined scale-space theory from image analysis

and image processing initiated by Witkin (1983) and Koenderink (1984). Scale-space

theory deals with the formal definition of the concept ‘scale’ in terms of signals or
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images with the scale-parameter describing the current level of scale. The image is

smoothed, for example with a 2D Gaussian kernel, but the original resolution

is retained. The smoothing can result in the split and merge of features in the

image causing the elimination of details, or information with high frequency. Scale-

space theory defines mathematical constraints for these split and merge events.

We call the latter ‘scale-space events’ and propose employing them as a basis for

generalization.

Mathematical morphology (Serra 1982) and discrete curvature-space derived

from the reaction-diffusion space of Kimia et al. (1995) are the main scale-spaces

used in this paper. Mathematical morphology has been used for the generalization

of raster data, for example by Li (1996), and proved to be suitable for the

generalization of buildings by Su et al. (1997) and Cámara and López (2000). We

extend these works as follows:

N By widening the scope from mathematical morphology to general scale-space

theory, we extend not only the theoretical background but also the set of

operators available for generalization.

N As a vector representation with polygons in 2D and polyhedra in 3D is adopted,

the generalization becomes independent of the orientation of the objects.

Moreover, vector data make it easy to preserve right angles or enforce them.

N The generalization of buildings is extended to 3D.

The scale-spaces are generated incrementally: the outline is shifted in small steps,

and the scale-parameter is determined as step-size times the number of steps. An

important reason for an incremental processing is that scale-space events occur, for

example, when parts of the building such as an annex are eliminated, when a

building is split into parts, when an inner courtyard arises, or when two buildings

are aggregated. The events are classified into internal and external events.

The most important findings of generalization based on scale-spaces are that:

N only relatively few parameters are required that have a precisely defined

semantics, namely the step-size, the number of steps for opening, the number of

steps for closing, and the number of steps for discrete curvature-space as well

as a flag defining if the building should be squared, that is, if right angles

should be enforced.

N by using incremental processing, the emerging scale-space events can be

handled (at least in 2D) by simple basic operators.

Section 2 gives an overview, beginning with an introduction to scale-space theory, as

it is not assumed to be well known in GIS. The relation between scale-space events

in an image or a geometrical representation and the abstraction in an object

representation is addressed. Then, the state of the art of surface simplification and

generalization is outlined. Section 3 presents mathematical morphology for 2D

building outlines in the form of opening and closing along with a description of

internal and external events. After the definition of the discrete curvature-space, the

combination of opening, closing, and discrete curvature-space is presented together

with results, and more heuristic means to square building outlines are shown.

Section 4 comprises the main part of our work. Following a description of our goals,

the methods for generating LOD representations in 3D, data structures and input of

data are discussed. Opening and closing as well as discrete curvature-space are

presented for the 3D case including various examples. Finally, the combination of
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the different operators with squaring is shown. In section 5, the approach is

discussed, and section 6 draws conclusions.

2. State of the art

2.1 Scale-spaces

Scale-space theory deals with the formal definition of the concept ‘scale’ (Witkin

1983, Koenderink 1984, Lindeberg 1994) in terms of signals or images. The basic

idea is to generate multiscale-representations from a one-parameter family of

derived signals. Data are systematically simplified, and details, or information with

high frequency, are eliminated. The scale-parameter, often named s[Rz, is intended

to describe the current level of scale.

A significant prerequisite for a particular scale-space is the so-called ‘causality’

according to Koenderink (1984): any feature in a coarse scale (large scale-

parameter), be it point, line, or region, needs to have a (not necessarily unique) cause

in a fine scale (small scale-parameter). More intuitively, this means that every

feature at a certain scale is constructed of possibly weaker features at finer scales. It

also means that features are not allowed to pop up at places where nothing has been

before at finer scales.

The semantics of the scale-parameter additionally depends on the definition of a

particular scale-space. If isotropy (independence of direction) and homogeneity

(independence of location) are combined with causality and a continuous scale-

parameter, the scale-space family necessarily satisfies the diffusion equation

(Koenderink 1984) utilized for instance in physics to describe heat transfer. The

convolution of the image with the 2D Gaussian Kernel is the solution of the

diffusion equation for an infinite domain. This results in the so-called ‘linear scale-

space’ of Lindeberg (1994).

Another way to define a scale-space is based on mathematical morphology (Serra

1982). Mathematical morphology can be defined for grey-scale imagery, but here we

narrow our scope to binary images. Li (1996) has introduced mathematical

morphology for the generalization of raster data. Erosion and dilation are the basic

operators of mathematical morphology. For binary images, the morphological

scale-space is generated by ‘filtering’ the image with often circular or square-shaped

structuring elements whose size varies with the scale-parameter. Intuitively, the

erosion operator means that the structuring element is shifted over the whole image

and is compared with the corresponding part of the image. At all locations where all

set (black) pixels of the structuring element coincide with black pixels in the given

image, the reference point of the structuring element, usually its centre, is written as

a black pixel into a new blank image. As this image consists of only the centres,

regions in the image are thinned, or in other words eroded. Contrary to this, the

dilation operator writes out the black pixels of the structuring element translated by

the reference point into a new blank image at all locations of black pixels in the

given image. This leads to an expansion, or a dilation of regions. Opening and

closing are the two important operators constructed from erosion and dilation using

the same structuring element for both operators. Opening consists of erosion

followed by dilation, and closing is realized with dilation followed by erosion. While

opening is used to eliminate small isolated groups of pixels and narrow parts as well

as to broaden rifts, closing is employed to smooth outlines as well as to eliminate

small holes and rifts.
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The so-called ‘reaction-diffusion’ space of Kimia et al. (1995) combines linear and

morphological scale-space. It comprises an inhomogeneous diffusion as well as a

morphological component and is defined on closed outlines. Basically, the outline of

a region is shifted in the normal direction controlled by two parameters. The first

parameter is multiplied with the curvature and describes the strength of the

curvature-dependent smoothing (diffusion). The second parameter controls the

strength of the reaction. Kimia et al. (1995) show that the reaction is equivalent to

erosion or dilation, with circles as structuring functions. The diffusion part is termed

curvature flow by Malladi and Sethian (1996) and ‘curvature-space’ in this paper.

To avoid problems at points with high curvature, the outline is sampled with a small

step-size, normals and curvatures are computed for all points on this outline, and

the shift is realized in small incremental steps. In figure 1, the characteristics of

reaction and diffusion are demonstrated for an elongated object. The object is

eroded in the reaction (morphological) part with the same speed from all sides,

finally leading to the medial axis of the object. Opposed to this, by inhomogeneous

diffusion, the parts of the outline are moved with a different speed depending on the

curvature. This results in the tendency to preserve elongated objects, for they are

only eroded from their high-curvature ends.

The introduced scale-spaces have different characteristics. While the linear scale-

space smoothes the image function more or less continuously, the morphological

scale-space eliminates regions with a spatial extent that is too small. The reaction-

diffusion space integrates the above two scale-spaces. Yet, compared with linear

scale-space, its inhomogeneous diffusion component (curvature-space) has the

interesting property of preserving elongated regions. This is due to the fact that the

curvature-space takes into account the curvature of the outline.

2.2 Scale-space events and abstraction

For this paper, scale-spaces are of special interest in combination with an object

representation. The latter means that not only is an object, such as a building, visible

(for a human) in an image, but there is a representation linked for instance to labels

of the image pixels making up the building. Two components are considered for the

link of scale-space and the object representation.

On the one hand, features such as edges can be tracked over different scales, and

features in different scales can be linked. For instance, a line in a coarse scale can be

matched to two bounding edges in a fine scale. Kosslyn (1994) elucidates the

usefulness of this linkage from a psychological point of view: the behaviour of

features when scale changes is important for the recognition of their corresponding

objects. Bobick and Bolles (1992) show the representation of an object approaching

a sensor. The object becomes larger and larger while the features which can be

Figure 1. Elongated object under reaction and diffusion. (a) Reaction (morphology). Object
is eroded with the same speed from all sides. Finally, the medial axis is obtained. (b)
Inhomogeneous diffusion. The outline is moved with the speed depending on the curvature,
which is zero for the straight parts. (Colour versions of all figures, where appropriate, are
available online.)
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extracted change. When, for instance, a leafless bush is approached, the features

change from a dark point through a dark region to several dark lines representing

the branches.

On the other hand, objects merge at certain scales according to their spatial

proximity or similar properties, thus generating a more compact representation or

making the analysis easier. When using spatial proximity, this is called part or

aggregation hierarchy (Timpf 1999). When similar properties are employed, it is

termed class hierarchy (Molenaar 1996) or generalization hierarchy (Timpf 1999).

Both hierarchies describe the behaviour of objects with a spatial extent dependent

on how they can be represented and analysed. Here, an implicit scale is inherent.

This scale becomes explicit as soon as the object is visualized for example in a map.

The connection of scale-spaces and object representations was the focus of Mayer

(1996) and Mayer and Steger (1998), according to which essentially two things

happen simultaneously, when an image comprising characteristic object features is

transformed in scale-space from a finer to a coarser scale:

N The information density of the image is reduced by means of scale-space events

by eliminating points, edges, lines, and regions. Not only noise, but also

meaningful information, is removed.

N The elimination of meaningful information can be considered equivalent to the

elimination of parts of objects. In addition, it results in a simplification, that is

an abstraction, and therefore an improved performance of object extraction.

The simplification makes it possible to link an object representation based on an

aggregation hierarchy with the outcome of a scale change in the image. In many

cases, also the geometrical representation of an object simultaneously changes with

the elimination of parts. A road is typically represented as a region in a fine scale.

Yet, in a coarse scale, it is more reasonable to represent it as a line. The term

abstraction and its link to different hierarchies are discussed in detail by Timpf

(1999), though without presenting practical means for the abstraction.

Scale-space events can be classified into annihilation, merge, split, and creation.

Figure 2 presents an example of split and merge. Linear scale-space, i.e. Gaussian

kernels with a different value for the scale-parameter, was used. While the narrow

connection between the two squares is a detail that can be omitted at an

intermediate scale, a more compact region is a reasonable approximation at a coarse

scale. Note that figure 2(b) is only a ‘split’ when looking at a series of different scales.

Figure 2. Split and merge for smoothing in linear scale-space (2D Gaussian kernel). s of the
Gaussian is given in pixels with the size of the images 2566256 pixels and one building block
consisting of 64664 pixels: (a) to (d ) images; (e)–(h) images after thresholding; (a) and (e)
input image; (b) and ( f ) s52—smoothing of the outline; (c) and (g) s55—split into two
regions; (d ) and (h). s520—merge into one region.
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Here, it was directly obtained by means of the particular Gaussian kernel. The

‘merge’ can be seen as an instance of the change in geometry type presented by

Schoppmeyer and Heisser (1995). A region becomes a line or a point during

generalization. The new geometry has to be delineated, and a treatment of the

neighbourhood might be necessary. Annihilation and creation are analogous to the

appearance and disappearance of objects when zooming in or out or, in other words,

when the scale is changed, as conceptually analysed by Timpf and Frank (1997).

Timpf (1999) discusses the general relationship between abstraction, different

hierarchies, and levels of detail.

The abstraction capability of scale-spaces and results as demonstrated in figure 2

suggest that scale-spaces be employed for generalization. Their feasibility has

already been proved by Li (1996) for the morphological scale-space.

2.3 Surface simplification

There are many approaches from computer graphics, computational geometry,

computer vision, and cartography dealing with the problem of surface simplifica-

tion, which can be regarded as a part of the generalization of 3D buildings

represented, for instance, by polyhedra. A survey on surface simplification is given

by Heckbert and Garland (1997). Typically, the approaches focus on general objects

made up of triangles. Many of these approaches have the goal of constructing a

LOD representation, which can consist of different levels but also of a sequence of

refinement transformations (Popović and Hoppe 1997). Garland and Heckbert

(1997) present an approach to simplify surfaces and to generate a LOD

representation which tries to balance mathematical soundness, speed, and quality.

Short edges are contracted, and nearby points are merged. The so-called ‘E-offset

surfaces’ (parallel surfaces with distance E) by Varshney et al. (1995) guarantee that

the approximation is closer to the original than E. Schmalstieg (1996) presents an

approach to produce a LOD representation for VRML 1, the predecessor of VRML

’97, based on octree-clustering. A study that is most relevant to our approach is

described by Ribelles et al. (2001). This treats the problem of finding and removing

features from polyhedra. The goal is to coarsen computer-aided design (CAD)

models for finite element analysis. Common to all the approaches presented in this

section is that they try to be general, not using the specific nature of objects such as

buildings.

2.4 Generalization

Generalization aims at scale transition either for maps or for topographical or

geographical information. The latter can also be interpreted as the generation of a

LOD representation. In the context of generalization the term ‘scale’ is usually

defined as the ratio of the length between two points in the analogous representation

such as the map and the length between the corresponding points in reality.

For decades, relentless efforts have been made towards automation in general-

ization. This paper is devoted to the simplification of geometry, topology, and (by

these means also indirectly) the semantics of objects, rather than their graphical

representation. Our endeavour results in a modelling of geographic information on

different levels of abstraction, which facilitates data analysis as it can be done on the

level at which the spatial processes are understood best (Müller et al. 1995). The

information could be stored in a multiple representation database where links
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between the levels make an incremental update possible as proposed by Kilpeläinen

(2000).

The main topic of this paper is the automatic generalization of buildings. It has a

long tradition at least in 2D. A classic approach that works on building outlines was

developed by Staufenbiel (1973). First, threshold values for area, length, and spacing

are derived from graphical minimum dimensions on maps. A fixed processing

scheme is then determined to remove edges below the threshold, which is realized by

simplifying or eliminating corners and by eliminating or emphasizing small outward

pointing annexes or inward pointing notches. Neighbouring buildings are merged if

their distance falls below the threshold. The smaller of two buildings would be

displaced and aligned with the larger building. The overall approach is limited in

that it works mainly locally. Neither the global shape of the building nor the context

in terms of the characteristics of neighbouring buildings is considered. Meyer (1989)

goes one step further by classifying the building shapes. Classes besides the rectangle

are for instance L-, T-, U-, and Z-shaped regions. The classification is based on the

correlation of the rasterized buildings with a template. If a classification is not

possible, a simplification according to Staufenbiel (1973) is employed. Though the

classification is important for suburban areas with relatively simple buildings, for

more complex areas the same deficiencies exist as for the work of Staufenbiel (1973).

Regnauld et al. (1999) show how a suitably defined sequence of three simple

algorithms for simplification, squaring, and local enlargement can bring about

desired results of building generalization. According to an empirical study, the

determination of an appropriate sequence depends on the target scale and the type of

building (large vs. small). Though this is a step forward, there is still much to do

concerning the improvement of the operators, especially for the development of an

automatic control. A production net consisting of hierarchically organized rules

which construct a hierarchy of parts is used by Stilla et al. (1998) to generalize

relatively simple building outlines from different information sources. In this context,

productions refer to the elimination of annexes as well as inward pointing notches

with the goal to compare and combine the information from different sources.

Ruas (1999) proposes a model based on autonomy, constraints, and a hierarchical

presentation for the generalization of urban areas. It is shown that groups of objects,

termed ‘meso situations’, are of particular importance: They render context to

delimit the values of parameters and control the processing according to the regional

characteristics. This work has provided a means for a more global control. Recently,

least-squares adjustment was introduced by Sester (2000) as a technique for

generalization. Observations are introduced in terms of competing constraints. Via

least-squares adjustment a holistic solution is obtained. Even though this gives good

results for squaring, aggregation, and displacement of building ground plans, there

are still weaknesses in dense areas for which, for example, a preceding typification is

proposed.

Li (1996) deals with scale-spaces, particularly binary mathematical morphology

on raster data. Opening and closing based on simple structuring elements are

employed for the generalization of regions with smooth outlines. That mathematical

morphology can be used for conflict detection, cartographic displacement, and

region to line collapse (skeletonization), is documented by Li and Su (1997), Su and

Li (1997), and Su et al. (1998).

Most relevant to our approach are the works of Su et al. (1997) and Cámara and

López (2000) which employ mathematical morphology on raster data for the
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generalization of buildings in 2D. Su et al. (1997) focus on aggregation and compute

the size of the structuring element from a minimal distance between different regions

given for a map and the ratio of source scale and target scale. The two-step

procedure begins with the so-called ‘natural combination’ which is dilation followed

by erosion. The same structuring element is used for both operators, in most cases

leading to the closing operator. The second step is shape refinement where either the

convex hull is computed or the so-called ‘irregularity filtering’ consisting of opening,

convex hull computation, and the computation of the complementary sets is

employed. While the latter is somehow more heuristic, the results are more realistic

than for the convex hull which, in the definition used here for raster data, always

leads to rectangles. As a whole, the paper confirms the basic feasibility of the

generalization of buildings based on mathematical morphology on raster data. In a

more production-oriented paper, Cámara and López (2000) employ five different

363 structuring elements and up to four erosion or dilation operations to generalize

urban city blocks. To find the optimal combination of erosion and dilation and the

structuring elements, they have computed results for all possible options and

compared them with manually generated ground plans as ground data . The optimal

combination depends not only on the data used but also strongly on the different

indices used to compare the automatic and the manual result such as the percentage

of agreement or entropy. As usually no ground data are available, developing

convincing control algorithms is quite a challenge. Because the buildings are

discretized in the raster data, the results for Su et al. (1997) and Cámara and López

(2000) both depend on the angle of the buildings to the coordinate axis.

To this end, one would ask how well scale-spaces could fit into a generalization

task based on expert knowledge presented at the beginning of this section. To

answer the question, a basic experience from image analysis can be stressed: expert

knowledge in the form of heuristics is not suitable for low-level methods. It is of

fundamental importance to employ low-level methods which are mathematically

sound and which have only a few, well-defined parameters, such as a scale-

parameter constructed from step-size times the number of steps, directly

corresponding to the shift of the outline.

In the remainder of this paper, we focus on the extension of the formal methods

or, more precisely, the set of available operators for generalization, by widening the

scope from mathematical morphology to general scale-space theory. The acquisi-

tion, representation, and use of expert knowledge are therefore beyond the goal of

this paper, but still we acknowledge its importance for controlling the proposed

operators for a practical application. The only expert knowledge implicitly

employed here is that we model our objects to be made up mostly of straight

edges and right angles, and that larger structures should be kept when using a small

scale-parameter. The subsequent section shows how mathematical morphology can

be employed on 2D vector data, how abstraction occurs by internal and external

events, how a discrete curvature-space can be defined in 2D, and how buildings can

be squared.

3. Generalization of 2D building outlines

This section focuses on the generalization of 2D building outlines or the generation

of a 2D LOD representation. The generalization in 2D based on scale-spaces

provides not only a means to implement 2D mathematical morphology on vector

data but also a fundamental understanding of its extension in 3D.
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3.1 Opening, closing, internal events, and external events

In image analysis, scale-space operators are mostly employed in a raster-based way.

The rounding up of the right angles in figure 2 is not suitable for the generalization

of man-made objects such as buildings. It is preferable to use a vector-based

representation, where discontinuities, particularly right angles, can be represented

easily. The scale-space operators to be utilized should have basic properties such as

causality, which is the case for opening and closing. The vector outlines are shifted

inward or outward as in the reaction part of the reaction-diffusion space (cf.

figure 3(b)). It was shown by Kimia et al. (1995) that shifting the outlines inward or

outward corresponds to erosion and dilation with a circle (ball for higher

dimensions) as a structuring element. Taking into account our expert knowledge,

we have modified these operators by intersecting straight lines, for the purpose of

retaining corners. For buildings with right angles, our modification results in the

equivalence of erosion or dilation of the building outline with a square structuring

element with a side parallel to the building outlines.

The shift of the outline is made incrementally in small steps, as shown in

figure 3(b) and (c). The scale-parameter is determined as the step-size times the

number of the steps. The incremental shift is adopted in accordance with Kimia et al.

(1995). While they also employ it to deal with highly curved portions of their general

outline, the main point is the treatment of scale-space events or ‘shocks’ in the

notation of Kimia et al. (1995). In figure 3(b) and (c), the scale-space event results in

the elimination of the inward pointing notch in the middle of the upper part of the

building. We classify scale-space events into internal and external.

Internal events occur in topologically local areas. They are synonymous with one

or more unnecessary points or very short segments which are shorter than the half

step-size. These points or very short segments emerge when incremental displace-

ment is employed. The internal events can be further classified into U, Z, and L (cf.

figure 4), for which simple basic operators exist: for U events, small inward or

outward pointing structures are eliminated. Z events are solved by averaging

straight lines. For L events, two or more very short segments are eliminated, and one

point is generated by intersecting the longer segments neighbouring the very short

segments. For opening and closing, only U events occur. In other words, only

structures with inward going notches or outward going annexes can be treated.

Figure 3. Result of the application of different scale-space operators based on vector data:
(a) input data; (b) closing; (c) discrete curvature-space; (b) and (c) intermediate steps5dashed
lines; result5thick lines; in (b), the segments are shifted first outward and then in one large
step inward again.
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External events emerge when topologically non-local segments (segments which

are not directly connected by a vertex or by one or many very short segments) of a

building or any segments of different buildings touch or overlap. They lead to a

significant change in topology. Since we use an incremental approach, events can be

detected as follows: a vertex is less than half the step-size away from non-local

segments of the building itself or any segments of another building. As all the

vertices have to be checked for their distances to all segments, this has a relatively

high complexity. However, one can reduce the computing intensity considerably by

employing bounding boxes or efficient data structures. Typical examples for

external events are the split of objects connected by narrow connections in the

course of opening, and the elimination of small gaps such as a passage, when closing

(cf. figure 5). Likewise, two or more buildings can be merged.

3.2 Discrete curvature-space

After introducing mathematical morphology in the form of opening and closing in

the preceding section, this section is dedicated to another scale-space operator,

namely discrete curvature-space. This is obtained when only segments under a

certain minimal length are shifted. This leads to results like in those in figure 3(c).

The procedure for the discrete curvature-space is as follows:

1. For one short segment that is perpendicularly located between two longer

segments, we identify two cases:

N If the two longer segments lie to the same side of the short one, thus

forming an inward or outward pointing U-shape (cf. figure 6(a)), we shift

the short segment outward or inward, respectively.

N If the short segment is flanked by two longer ones (Z-shaped structure; cf.

figure 6(b)), we shift the two long segments in such a way that the short

segment is getting even shorter.

2. For more than one short segment, we shift two segments which are locally L-

shaped, inward or outward. The direction depends on the angle in the building

interior connecting the short segment to the longer neighbouring segments or

another L-shape. If this angle is 90u (quarter circle; cf. figure 6(c)), the short

segments are shifted outward; if it is 270u (three-quarter circle; cf. figure 6(d )),

they are shifted inward. When the calculation of the shift-values is done in one

direction of the building outline (for figure 6(c) and (d ), it is assumed that the

Figure 4. Internal scale-space events: (a) U event; (b) Z event; (c) L event.

Figure 5. External scale-space events. (a) Opening: the thin horizontal connection is
eliminated after the inward going segments meet. (b) Closing: the vertical gap is closed after
the outward going segments meet; thick lines in (a) and (b): external scale-space event.
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direction of the building outline goes downward as indicated by an arrow), it

is guaranteed that also for more than one L shape, a meaningful result is

obtained.

This procedure is similar to curvature-space (cf. section 2.1). The problem is that

for straight lines, the curvature is zero, and for the corners, the curvature can be seen

to be either undefined or infinite. Here, again expert knowledge is used. Looking at

a building outline, the intuition is that when approximating it with a smooth

contour, parts with shorter segments would be approximated with higher curvature.

Therefore, we take as the curvature radius half the length of the shorter segment

connected to a vertex. Examples can be seen in figure 7(a) for the U-shape and (b)

for the Z-shape. In the reaction-diffusion space of Kimia et al. (1995), points are

shifted according to the curvature. As described in section 2.1, the outline is sampled

with a small step-size, resulting in a rounded outcome such as in figure 1. Instead of

this, here only short segments below a certain length, or in other words points with

high curvature, are shifted. Thus, the minimum curvature radius is eventually

enlarged to half of the minimum length of the segment. This is the reason why we

term this procedure ‘discrete curvature-space’.

3.3 Combination of operators and results in 2D

In the following, a sequence of opening, closing, and discrete curvature-space with

10 successive steps for each operator and for all four examples was employed. The

step-size was 0.5 units, and typical smaller building parts measure 2–5 units. For

discrete curvature-space, the minimum length was chosen to be 6 units. After the

application of the scale-space operators, the buildings were re-scaled to their original

size. Figure 8 presents our results for two reasonably complex buildings. Since we

start with opening and closing, all U events (annexes and notches) are treated by

opening or closing, and only the Z and L events (step- or stair-structures) are

handled by the discrete curvature-space.

Figure 7. Discrete curvature-space. Curvature radius for (a) U-shape and (b) Z-shape.

Figure 6. Procedure for discrete curvature-space: (a) U-shape, 1 short segment; (b) Z-shape,
1 short segment; (c) L-shape, 2 and more short segments 90u; (d) L-shape, 2 and more short
segments 270u; (c) and (d) quarter or three-quarter circle indicates the 90u or 270u angle,
respectively, in the building interior represented in grey connecting the pair of short segments
(thick lines) to the long neighbouring segment or another L-shape. For the building outline, it
is assumed that the direction of the building outline goes downwards as indicated by arrows.
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Figure 9 presents two examples of external events: segments which are not directly

connected are merged when the distance becomes smaller than the half step-size.

Figure 9(a) shows the external scale-space event in which a building with a narrow

connection is split into two separate buildings. In figure 9(b), an inner courtyard

arises after eliminating a narrow passage. The external scale-space events only occur

in morphological scale-space, as the discrete curvature-space with its shifting of

short segments only causes internal events. In figure 9(a), the boundaries of the

narrow connection meet during closing, while in figure 9(b), the boundaries of the

narrow passage collide during opening (cf. also figure 5). The deletion of the

corresponding segments leads to a change in topology (split and generation of hole),

which is characteristic for external events.

Practically, we start with shifting the segments inward step by step for the

opening. At each step, we check if a segment becomes shorter than the half step-size

or if the distance of a vertex to a non-local part of the outline or another building

becomes smaller than the half step-size. We treat the corresponding topology

changes induced by the corresponding internal or external events. After the given

number of steps, we reset by shifting the remaining outline back in one large step of

step-size times number of steps. Then, we start going outward for the closing, again

step by step and checking for short segments and distances. We again reset after the

given number of steps. For the discrete curvature-space, which is the last part, we

only shift segments shorter than the minimal length. We only check for very short

segments and not for distances as, in discrete curvature-space, no external events

arise. Finally, we rescale the resulting outline so that the original area is preserved.

We do so by connecting the vertices to the centre of gravity, then scaling the

Figure 8. (a) and (b) Results for two reasonably complex buildings. A sequence of opening,
closing, and discrete curvature-space with a step-size of 0.5 units, 10 steps, and a minimum
length of 6 units were used for all three procedures. Typical small building parts measure 2–5
units.

Figure 9. Examples for external events: (a) narrow connection between buildings)two
buildings; (b) narrow passage) Inner courtyard; for (a) and (b), the same sequence of
operators and same parameters as for figure 8 were used.
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resulting vectors to obtain the original area. Additionally, we shift the centre of

gravity of the resulting object to the centre of gravity of the original object. This re-

scaling explains the fact that in all the above figures, most notably in figure 8(b), the

outline of the building is slightly shifted.

Without shifting, the elimination of parts can give the impression that free space

exists where there actually have been parts of the building. Shifting moves the

building to an average position which, in many instances, suitably represents the

building. For re-scaling, it is less clear whether the original area (or volume in 3D) or

the area after scale-space-based generalization is more suitable, though we prefer the

original area.

3.4 Squaring of non-orthogonal structures in 2D

In many cases, the angles between segments in the given input data are close to 90u
or 180u. Based on the incremental processing necessary for the treatment of the

scale-space events, a stepwise squaring of angles in the intervals [45u, 90u) and (90u,
135u] or an elimination of angles in the intervals (0u, 45u) and (135u, 180u) can be

achieved.

We use a semi-circle or a straight line, respectively. Connecting the end-points of a

semicircle with an arbitrary point on the semi-circle always results in a right angle at

this arbitrary point. We make use of this fact as follows (cf. figure 10 a)): The

preceding point Pi21 and the subsequent point Pi + 1 of a point Pi with the non-right

angle are connected Pi{1Piz1

� �
. The centre point PM of Pi{1Piz1 is connected to

the point to be shifted, thus obtaining a vector PMPi
���!

. Pi is shifted incrementally with

a given step-size in the direction PMPi
���!

such that the distance to PM approaches

|Pi21Pi + 1|/2. Figure 10(b) illustrates how non-orthogonal angles are incrementally

squared.

4. Generalization of building outlines in 3D

In this paper, we assume that 3D buildings are polyhedra composed of orientable

planar surfaces. Additionally, we expect that buildings are often orthogonal. This

means that when structures of a building are not rectangular at the beginning of the

generalization, they have to be squared (cf. section 4.4). Though this is a restricted

model for buildings, it is still general enough to reveal the potential of scale-space-

based generalization.

Modelling the geometry and especially the topology of polyhedra is a highly

intricate task. Therefore, a computational geometry tool box, particularly the

Computational Geometry Algorithm Library (CGAL; www.cgal.org), was used.

For the representation of input and output data, the VRML ’97 standard and the

Figure 10. (a) Squaring of angles based on a semi-circle; (b) result for squaring a building
with non-right angles.
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vrwave viewer were used. This makes it possible to present not only the resulting

images but also the complete 3D building data on the Internet (serv.photo.verm.tu-

muenchen.de/b3d/).

4.1 Generation of a 3D LOD representation

The ultimate goal of our generalization in 3D is the automatic generation of a LOD

representation for the visualization of buildings. An example is given in figure 11. A

narrow connection between two parts of a building is eliminated at a medium scale,

and the two buildings are merged into one building at a coarse scale (left building).

Different step- or stair-structures as well as inward and outward pointing box-

structures are eliminated (centre building). Finally, the non-rectangular roof of a

building is squared while eliminating an inward pointing box and an annex (right

building).

The CGAL structure for polyhedra relies on a half-edge data structure. It is based

on vertices, halfedges, and facets. On the other hand, the VRML ’97 data structure

‘IndexedFaceSet’ consists of 3D points and facets defined by lists of connected

points. Therefore, the input is straightforward. Only the orientation of the facets

might be inconsistent: some might point inward and some outward. As the halfedges

by definition have to be oriented in opposite directions, a contradicting orientation

of a facet is immediately discovered, and the facet is reversed.

One of the most important features of the half-edge data structure in CGAL is

that it provides Euler operators which enable incremental topological modifications

of an object when scale-space events occur. Important Euler operators are, for

instance, split of a facet into two new facets, join of two facets, split of a vertex, join

of two vertices, split of a loop, and join of two loops. The first four operators are

mainly useful to deal with internal events, while the latter two are very important to

handle the external events. The split of a loop makes it possible, for instance, to split

a polyhedron along a cycle of edges into two new polyhedra. Last but not least,

there are also Euler operators that can deal with holes such as to create and fill

them.

In the following sections, a uniform step-size of 0.5 units was used for all

examples. The sequence of operators for the examples on mathematical morphology

(a)

(b)

(c) (d )

Figure 11. 3D level of detail (LOD) representation: (a) input data; (b)–(d ) first to third level.
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was always opening followed by closing, and the same number of steps (54) was

used when not stated otherwise. For the discrete curvature-space presented from

figure 16 onwards, a larger number of steps, namely 12, was used, and the minimal

length was set to 5 units. Here, analogously to 2D (cf. section 3.3), the volumes of

buildings are re-scaled at the end.

4.2 Opening and closing

Transferring opening and closing from 2D to 3D is straightforward. Opening or

closing in 3D is synonymous with starting to move the facets in the direction of the
normals inward or outward, respectively. As all the normals are oriented outward,

this is fairly easy as long as a building is orthogonal. For problems with non-

orthogonal buildings, see section 4.4. An example is given in figure 12. In

figure 12(c), the input is presented as a white wire frame, and the four steps of

incremental inward-going opening and outward-going closing are drawn as red wire

frames. The final result is shown as a green solid (cf. also figure 12(b)) where the gap

in the centre is closed. The scale-space event that occurs when the facets collide while

closing is marked by the blue facet in figure 12(c).

Examples for events while opening are presented in figure 13 as well as figure 14(b)
and (c). Figure 13 shows how the facets of the annex collide, and therefore the latter

is abandoned. In figure 14, the connecting part is removed, resulting in two separate

buildings in figure 14(b) (external event).

Figures 14(d ) and (e) show, in addition to the split, which also happens in this

case, another external event which occurs when closing the building with the

doubled number of steps, which also means a doubled scale-parameter compared

with figure 14(b) and (c). While the height of the connection was 2 units, which

corresponds to 4 steps of 0.5 units, the distance between the buildings is 4 units, that
is 8 steps times 0.5 units. The event in figures 14(d ) and (e) is similar to what happens

with the building in Figure 15. However, for the latter, the external event results in a

hole in the building (‘Doughnut’), while for the former, the two buildings are

merged.

(a)

(b) (c)

Figure 12. Event while closing: (a) input data; (b) result; (c) four steps of incremental
processing. Input: white; opening and closing: red; scale-space event: blue facet; result: green
solid.
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4.3 Discrete curvature-space

The basic consideration for discrete curvature-space in 3D is how to shift the facets.
Figure 16 can be seen as the result of figure 13. Like in 2D, a Z-shaped structure,

which we call ‘stair’, has to be eliminated. This is done by averaging the lower part

(a)

(b)
(c)

Figure 13. Event while opening: Elimination of the annex on the right side: (a) input data;
(b) result; (c) four steps of incremental processing; explanation: cf. figure 12.

(a)

(b)

(d )

(c)

(e)

Figure 14. External events while opening when using four steps and while closing when
using eight steps, that is doubled scale-parameter: split and merge. (a) Input data; (b) result
split; (c) four steps of incremental processing for split; (d ) final result (merge); (e) eight steps
of incremental processing for split and merge; explanation for (c) and (e): cf. figure 12.
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on the left side and the higher part on the right side. Figure 17(a) illustrates a closer

view of the stair. In principle, the shift of the facets is controlled by the relations of

their 3D normals. Here, these depend on the 2D polygon defining the neighbouring

facet (cf. figure 17(b)).

Moreover, as can be seen from figure 18(a), the detection of a stair can be based

on concave segments. These can be determined by comparing the orientation of the

triangle constructed from three successive points in the ordered list of polygon

(a)

(b)

(c)

Figure 15. External event while closing: doughnut (a) input data; (b) result; (c) four steps of
incremental processing; explanation: cf. figure 12.

(a)

(b)
(c)

Figure 16. Event in discrete curvature-space: stair (a) input data; (b) result; (c) 12 steps of
incremental processing of which only four have been effective because then the short concave
segments cease to exist; explanation: cf. figure 12.

(a) (b)

Figure 17. (a) Normals of stair in 3D (red cylinders) directly depend on (b) the polygon
defining the neighbouring facet.
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points with the orientation of the whole polygon (cf. figure 18(b)): if the orientations

are different from each other, the three points define two concave segments, which

indicates a stair existing in 3D.

In figure 19, three different kinds of structures, which can only be eliminated by

discrete curvature-space, are shown: (1) the small stair at the upper left side; (2) the

inward pointing box at the right side bounded from three sides; and (3) an outward

pointing box in the centre. On this occasion, we had to introduce the first

modification compared with 2D: in figure 19(c), there is a ‘short concave segment’

indicated by an arrow. As this segment is shorter than the minimum length, the

corresponding facet, which is the facet marked as ‘ground plane’ of the inward

pointing box, will be shifted according to the definition of discrete curvature-space.

Yet we know from expert knowledge that it is desirable to preserve large structures

with a small value of the scale-parameter, that is a small number of steps. In order to

keep the shift small for the ground plane, the shift is weighted with the inverse of the

Figure 18. Determination of concave segments: the orientation of the triangle in (a)
constructed from the successive points 0, 1, 2 defining two concave segments is clockwise as
indicated in (b). Opposed to this, the orientation of the triangle constructed from the
successive points 3, 4, 5 defining two convex segments is counterclockwise, which is the same
as the orientation of the whole polygon.

(a)

(b)
(c)

Figure 19. Events in discrete curvature-space: one stair and two boxes: (a) input data; (b)
result; (c) 12 processing steps of discrete curvature-space; explanation: cf. figure 12.
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area of the facet. Thus, small facets move fast, while large facets move little or not at

all. Because the weighting affects the effective step-size, the number of steps for

discrete curvature-space is higher than for opening and closing in 3D.

4.4 Combination of opening, closing, discrete curvature-space, and squaring

We use 2D heuristic squaring to treat non-rectangular corners or obtuse angles

between facets in 3D. Unfortunately, if opposite facets to be squared are not mirror

symmetrical, points are shifted differently, and the whole object becomes sheared.

This is due to the different side lengths of the triangle inscribed to the semi-circle

used for squaring in section 3.4, leading to different directions of movement. This

problem can be partially alleviated by moving the points in the direction of the

bisector of the enclosing segments.

To avoid manual selection, it is very useful to keep the same order of operations.

For this it should be noted that in the examples for discrete curvature-space (cf.

section 4.3) the same results are obtained by a combination of opening, closing, and

discrete curvature-space in exactly that order. This order of operations has also been

kept for the next example and for all the examples presented in figure 11.

In figure 20, a combination of the proposed scale-spaces with squaring is

presented. The squaring is done in parallel with opening and closing. The annex in

the centre and the inward pointing box of the entrance at the left side are eliminated

by opening and discrete curvature space, respectively. In parallel with opening and

closing, the sloping roof is squared.

To give an idea about the dependence of the results on parameter values, table 1

presents the parameters and their values used for the generation of the LOD

representation shown in figure 11. One can see that the minimal length is

proportional to the number of steps used for discrete curvature-space. While for

figure 11(b) the effects of generalization are small, with increasing scale-parameter,

or number of steps, the buildings are considerably simplified in 11(c) and especially

11(d), where the number of steps for all operators is again doubled.

Finally, also the complexity of the algorithm is of interest. Here, we restrict

ourselves to time complexity. Basically, the complexity of shifting varies linearly

with the number of segments in 2D and facets in 3D. The most critical part in terms

(a)

(c)
(b)

Figure 20. Squaring of the roof, elimination of the annex and the inward pointing box of the
entrance: (a) input data; (b) result; (c) four steps for opening and closing and 12 steps for
discrete curvature-space; explanation: cf. figure 12.
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of complexity is the check for distances of vertices to non-local segments or facets of

a building or distances between vertices of a building to another building needed

for the determination of external events. The complexity of this task grows

exponentially, though it can be reduced considerably by using elaborate data
structures. The complexity of handling the events varies linearly with the involved

segments or facets, the number of which is usually small.

5. Discussion

This paper demonstrates a variety of techniques which can be used to generalize

different types of 2D and 3D vector building data. Some ideas have been developed

that can overcome known weaknesses of the proposed approach.

We found that a fixed sequence of opening, closing, and discrete curvature-space

with fixed parameters leads to acceptable results for a variety of buildings. The most

important reason for this is that mathematical morphology and discrete curvature-

space are complementary: while discrete curvature-space is the only means to

eliminate stair- or (inward-pointing) box structures, it cannot be used to aggregate
or split objects which is the strength of mathematical morphology. In spite of the

mostly satisfying results, the modification of the sequence and the parameters (cf.

section 4.4) in conjunction with a high-level, e.g. rule-based, control is of high

importance to make our operators useful for practical applications.

Squaring is the geometrical problem least understood in this paper: When one

makes one facet orthogonal in 2D, there is a strong tendency for the neighbouring

facets to become sheared. A 3D version based on the idea of making the angles at

the vertices orthogonal was tested. Yet we discarded it because of the same
shortcomings as for the initial 2D solution. The outcome of the analysis mostly

points to an all too local treatment of the problem. The final idea, which was not

implemented, involves using the facets as the basic element of the squaring.

Depending on their area, neighbouring facets can be incrementally rotated until they

are finally parallel or orthogonal.

A major design criterion, but a weakness of the approach, is its focus on

rectangular structures. This is useful for many buildings and their aggregations in

Europe and North America. However, different models are needed for other parts
of the world and for specific buildings; in particular, the scale-space operators have

to be adapted. For instance, the generalization of steps of stairs into bigger steps,

thereby maintaining the characteristics of a building, is appropriate for modern

block-structures. For a Roman amphitheatre with its long stairs, however, a

sloped surface is a better approximation. These kinds of problem stimulate us to

acquire higher-level knowledge of the object semantics that should control the

generalization.

In our recent research, we try to avoid the additional artificial parameter in the
form of the threshold for discrete curvature-space. The goal is to generate a

continuous version of curvature space on the basis of a simpler theory that can be

Table 1. Parameters used to generate figure 11 (step-size in all cases: 0.5 units).

Part Steps opening and closing Steps discrete curvature-space Minimal length

b 2 6 2.5
c 4 12 5
d 8 24 10
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implemented more easily. As no constraint for the shift of the facets is available, we

let all facets move. The basic movement goes inward, so we add the morphological

component, in this case erosion, as in the reaction-diffusion space of Kimia et al.

(1995). In the same way as for the discrete curvature-space (cf. section 4.3) it is

desirable to preserve large structures with a small scale-parameter. We found that

we can control the shift of the facets fairly well by a weighting function depending

on the length of the concave segments and the area of a facet (for instance

length26area). The results are comparable with those for discrete curvature-space

with an appropriately selected threshold, yet with the advantage that one less

parameter value has to be specified. Finally, it is noteworthy that the continuous

curvature-space can generate results at arbitrary scales without having to run it

several times with different thresholds. This feature is useful for a smooth transition

during visualization.

The work presented here was hindered considerably by the laborious effort

needed to manipulate the 3D geometry based on the Euler operators of CGAL.

Recently, we have started a project which will follow the lines of this paper based on

the 3D modelling system ACIS (www.spatial.com). In ACIS and similar systems, the
incremental modifications can be handled much more efficiently. To avoid the

lessons we had to learn, this kind of system is therefore highly recommended for

research in 3D generalization.

6. Conclusions

In summary, the mathematical morphology which was introduced for generalization

by Li (1996), and has been applied for the generalization of building data most
notably by Su et al. (1997) and Cámara and López (2000), was implemented for

vector data in 2D as well as 3D.

We have also shown that from the point of view of scale-spaces, generalization

takes place by means of internal and external scale-space events (for instance, the

elimination of an annex and the split of a building in two parts) which can be

handled by (at least in 2D) simple basic operators when using incremental

processing.

We only use relatively few parameters with a precisely defined semantics, namely

the step size, the number of steps for opening, closing, and discrete curvature-space

as well as one flag defining if right angles should be enforced.

By and large, a major advantage of our approach to generalization is that it is

based on mathematically sound scale-space theory. This is true with mathematical

morphology for which the correspondence to raster-based mathematical morphol-

ogy was shown by Kimia et al. (1995). For discrete curvature-space, the connection

is weaker, as we have made some modifications there.

Above all, basing generalization on scale-spaces contributes to the detection and

development of the ‘missing’ operators for generalization (Mackaness et al. 1997)

particularly for 3D. Besides, generalization is at least an implicit step for the

development of methods for the recognition of structures: objects are more

comparable after simplification. Again, here we contribute operators for 3D.
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