There’s Less Dark Matter at the Core of the Milky Way

A study by MIT physicists suggest the Milky Way’s gravitational core may be lighter in mass, and contain less dark matter, than previously thought. Credits:Credit: ESA/Gaia/DPAC, Edited by MIT News

Science really does keep you on your toes. First there was matter and then there were galaxies. Then those galaxies had more stuff in the middle so stars further out were expected to move slowly, then there was dark matter as they actually seemed to move faster but now they seem to be moving slower in our Galaxy so perhaps there is less dark matter than we thought after all! 

Continue reading “There’s Less Dark Matter at the Core of the Milky Way”

Will Wide Binaries Be the End of MOND?

Artist view of an orbiting binary star. Credit: ESO/L. Calçada

It’s a fact that many of us have churned out during public engagement events; that at least 50% of all stars are part of binary star systems. Some of them are simply stunning to look at, others present headaches with complex orbits in multiple star systems. Now it seems wide binary stars are starting to shake the foundations of physics as they question the very theory of gravity. 

Continue reading “Will Wide Binaries Be the End of MOND?”

For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe

Artist impression of ESA's Gaia satellite observing the Milky Way. The background image of the sky is compiled from data from more than 1.8 billion stars. It shows the total brightness and colour of stars observed by Gaia
Artist impression of ESA's Gaia satellite observing the Milky Way (Credit : ESA/ATG medialab; Milky Way: ESA/Gaia/DPAC)

Ripples in a pond can be captivating on a nice sunny day as can ripples in the very fabric of space, although the latter are a little harder to observe.  Using the highly tuned Gaia probe, a team of astronomers propose that it might just be possible to detect gravitational waves through the disturbance they impart on the movement of asteroids in our Solar System!

Continue reading “For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe”

Astronomers Find Dozens of Massive Stars Fleeing the Milky Way

This is Zeta Ophiuchi, a runaway star observed by Spitzer. The star is creating a bow shock as it travels through an interstellar dust cloud. A new study found dozens of new runaway stars in the Milky Way. Image Credit: NASA/JPL-Caltech

The Milky Way can’t hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

Continue reading “Astronomers Find Dozens of Massive Stars Fleeing the Milky Way”

Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?

This artist's concept illustrates a red dwarf star surrounded by exoplanets. Credit: NASA/JPL-Caltech

Earth is our only example of a habitable planet, so it makes sense to search for Earth-size worlds when we’re hunting for potentially-habitable exoplanets. When astronomers found seven of them orbiting a red dwarf star in the TRAPPIST-1 system, people wondered if Earth-size planets are more common around red dwarfs than Sun-like stars.

But are they? Maybe not.

Continue reading “Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?”

A Huge New Gaia Data Release: More Stars, Gravitational Lenses and Asteroids

The ESA's Gaia observatory expanded its targets to include the tightly-packed center of Omega Centauri, an ancient globular cluster. Image Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO. Acknowedgements: Michele Trabucchi, Nami Mowlavi and Thomas Lebzelter

The ESA’s Gaia mission is releasing a new tranche of astronomical data. The mission has released three regular, massive hauls of data since it launched in 2013, named Gaia DR1, DR2, and DR3. The ESA is calling this one a ‘focused product release,’ and while it’s smaller than the previous three releases, it’s still impactful.

Continue reading “A Huge New Gaia Data Release: More Stars, Gravitational Lenses and Asteroids”

The Milky Way has Trapped the Large Magellanic Cloud With its Gravity. What Comes Next?

Our galaxy’s largest nearby companion is the Large Magellanic Cloud (LMC), a dwarf galaxy visible to the naked eye in the Southern Hemisphere. In recent years, new theoretical research and better observational capabilities have taught astronomers a great deal about our (not-so-little) neighbour. It’s becoming increasingly clear that the LMC is helping shape the Milky Way’s evolution.

Continue reading “The Milky Way has Trapped the Large Magellanic Cloud With its Gravity. What Comes Next?”

Not Just Stars. Gaia Mapped a Diverse and Shifting Universe of Variable Objects

We’ve reported on Gaia’s incredible data-collection abilities in the past. Recently, it released DR3, its latest data set, with over 1.8 billion objects in it. That’s a lot of data to sift through, and one of the most effective ways to do so is through machine learning. A group of researchers did just that by using a supervised learning algorithm to classify a particular type of object found in the data set. The result is one of the world’s most comprehensive catalogs of the type of astronomical object known as variables.

Continue reading “Not Just Stars. Gaia Mapped a Diverse and Shifting Universe of Variable Objects”

Gaia Could Detect Free-Floating Black Holes Passing Near Stars in the Milky Way

The thing with black holes is they’re hard to see. Typically we can only detect their presence when we can detect their gravitational pull. And if there are rogue black holes simply traveling throughout the galaxy and not tied to another luminous astronomical, it would be fiendishly hard to detect them. But now we have a new potential data set to do so.  

Gaia just released its massive 3rd data set that contains astrometry data for over 1.5 billion stars, about 1% of the total number of stars in the galaxy. According to a new paper by Jeff Andrews of the University of Florida and Northwestern University, it might be possible for Gaia to detect perturbances caused by a rogue black hole briefly interacting with one of the 1.5 billion stars in the catalog. Unfortunately, it’s just not very likely that any such interaction actually took place during Gaia’s observing time.

Continue reading “Gaia Could Detect Free-Floating Black Holes Passing Near Stars in the Milky Way”

ESA’s Gaia Just Took a Picture of L2 Neighbor JWST

Gaia snaps photo of Webb. Credit: ESA

Oh, hello there new neighbor!  In February, the Gaia spacecraft took a picture of its new closest companion in space at the second Lagrangian point, the James Webb Space Telescope.

Gaia is an optical telescope that is mapping out our galaxy by surveying the motions of more than a thousand million stars. Astronomers for the mission realized that once JWST reached L2, it would be in Gaia’s field of view.  It spied JWST when the two spacecraft were a million km apart.

Continue reading “ESA’s Gaia Just Took a Picture of L2 Neighbor JWST”