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Abstract
The need to identify correlated traffic bursts at various,

and especially fine-grain, time scales has become press-
ing in modern data centers. The combination of Giga-

bit link speeds and small switch buffers have led to “mi-

crobursts”, which cause packet drops and large increases
in latency. Our paper describes the design and imple-

mentation of an efficient and flexible end-host bandwidth

measurement tool that can identify such bursts in addi-
tion to providing a number of other features. Managers

can query the tool for bandwidth measurements at reso-

lutions chosen after the traffic was measured. The algo-
rithmic challenge is to support such a posteriori queries

without retaining the entire trace or keeping state for all
time scales. We introduce two aggregation algorithms,

Dynamic Bucket Merge (DBM) and Exponential Buck-

eting (EXPB). We show experimentally that DBM and
EXPB implementations in the Linux kernel introduce

minimal overhead on applications running at 10 Gbps,

consume orders of magnitude less memory than event
logging (hundreds of bytes per second versus Megabytes

per second), but still provide good accuracy for band-
width measures at any time scale. Our techniques can be

implemented in routers and generalized to detect spikes

in the usage of any resource at fine time scales.

1 Introduction

How can a manager of a computing resource detect

bursts in resource usage that cause performance degra-

dation without keeping a complete log? The problem
is one of extracting a needle from a haystack; the prob-

lem gets worse as the needle gets smaller (as finer-grain

bursts cause drops in performance) and the haystack gets
bigger (as the consumption rate increases). While our

paper addresses this general problem, we focus on de-
tecting bursts of bandwidth usage, a problem that has re-

ceived much attention [6, 16, 18] in modern data centers.

The simplest definition of a microburst is the transmis-
sion of more than B bytes of data in a time interval t on a

single link, where t is in the order of 100’s of microsec-

onds. For input and output links of the same speed, bursts
must occur on several links at the same time to overrun

a switch buffer, as in the Incast problem [8, 16]. Thus,
a more useful definition is the sending of more than B
bytes in time t over several input links that are destined

to the same output switch port. This general definition re-
quires detecting bursts that are correlated in time across

several input links.

Microbursts cause problems because data center link

speeds have moved to 10 Gbps while commodity switch
buffers use comparatively small amounts of memory

(Mbytes). Since high-speed buffer memory contributes

significantly to switch cost, commodity switches con-
tinue to provision shallow buffers, which are vulnerable

to overflowing and dropping packets. Dropped packets
lead to TCP retransmissions which can cause millisecond

latency increases that are unacceptable in data centers.

Administrators of financial trading data centers, for in-
stance, are concerned with the microburst phenomena [4]

because even a latency advantage of 1 millisecond over

the competition may translate to profit differentials of
$100 million per year [14]. While financial networks

are a niche application, high-performance computing is
not. Expensive, special-purpose switching equipment

used in high-performance computing (e.g. Infiniband

and FiberChannel) is being replaced by commodity Eth-
ernet switches. In order for Ethernet networks to com-

pete, managers need to identify and address the fine-

grained variations in latencies and losses caused by mi-
crobursts. At the core of this problem is the need to iden-

tify the bandwidth patterns and corresponding applica-

tions causing these latency spikes so that corrective ac-
tion can be taken.

Efficient and effective monitoring becomes increas-
ingly difficult as faster links allow very short-lived phe-

nomenon to overwhelm buffers. For a commodity 24-

port 10 Gbps switch with 4 MB of shared buffer, the
buffer can be filled (assuming no draining) in 3.2 msec by

a single link. However, given that bursts are often corre-

lated across several links and buffers must be shared, the
time scales at which interesting bursts occur can be ten

times smaller, down to 100’s of µs. Instead of 3.2 msec,
the buffer can overflow in 320 µs if 10 input ports each

receive 0.4 MB in parallel. Assume that the strategy to

identify correlated bursts across links is to first identify
bursts on single links and then to observe that they are

correlated in time. The single link problem is then to ef-

ficiently identify periods of length t where more than B
bytes of data occur. Currently, t can vary from hundreds

of microseconds to milliseconds and B can vary from
100’s of Kbytes to a few Mbytes. Solving this problem

efficiently using minimal CPU processing and logging

bandwidth is one of the main concerns of this paper.

Although identifying “bursts” on a single link for a

range of possible time scales and byte thresholds is chal-
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lenging, the ideal solution should do two more things.

First, the solution should efficiently extract flows respon-
sible for such bursts so that a manger can reschedule or

rate limit them. Second, the tool should allow a manager

to detect bursts correlated in time across links. While
the first problem can be solved using heavy-hitter tech-

niques [15], we briefly describe some new ideas for this
problem in our context. The second problem can be

solved by archiving bandwidth measurement records in-

dexed by link and time to a relational database which
can then be queried for persistent patterns. This requires

an efficient summarization technique so that the archival

storage required by the database is manageable.
Generalizing to Bandwidth Queries: Beyond identify-

ing microbursts, we believe that modeling traffic at fine
time scales is of fundamental importance. Such model-

ing could form the basis for provisioning NIC and switch

buffers, and for load balancing and traffic engineering at
fine time scales. While powerful, coarse-grain tools are

available, the ability to flexibly and efficiently measure

traffic at different, and especially fine-grain, resolutions
is limited or non-existent.

For instance, we are unable to answer basic ques-

tions such as: what is the distribution of traffic bursts?
At which time-scale did the traffic exhibit burstiness?

With the identification of long-range dependence (LRD)
in network traffic [9], the research community has un-

dergone a mental shift from Poisson and memory-less

processes to LRD and bursty processes. Despite its
widespread use, however, LRD analysis is hindered by

our inability to estimate its parameters unambiguously.

Thus, our larger goal is to use fine-grain measurement
techniques for fine-grain traffic modeling.

While it is not difficult to choose a small number of
preset resolutions and perform measurements for those,

the more difficult and useful problem is to support traffic

measurements for all time scales. Not only do measure-
ment resolutions of interest vary with time (as in burst

detection), but in many applications they only become

critical after the fact, that is, after the measurements have
already been performed. Our paper describes an end-host

bandwidth measurement tool that succinctly summarizes

bandwidth information and yet answers general queries
at arbitrary resolutions without maintaining state for all

time scales.
Some representative queries (among many) that we

wish such a tool to support are the following:

1. What is the maximum bandwidth used at time scale

t?

2. What is the standard deviation and 95th percentile
of the bandwidth at time scale t?

3. What is the coarsest time scale at which bandwidth

exceeds threshold L?

In these queries, the query parameters t or L are cho-

sen a posteriori — after all the measurements have been
performed, and thus require supporting all possible reso-

lutions and bandwidths.

Existing techniques: All the above queries above can

be easily answered by keeping the entire packet trace.

However, our data structures take an order of magni-
tude less storage than a packet trace (even a sampled

packet trace) and yet can answer flexible queries with

good accuracy. Note that standard summarization tech-
niques (including simple ones like SNMP packet coun-

ters [1]) and more complex ones (e.g., heavy-hitter de-

termination [13]) are very efficient in storage but must
be targeted towards a particular purpose and at a fixed

time scale. Hence, they cannot answer flexible queries
for arbitrary time scales.

Note that sampling 1 in N packets, as in Cisco Net-

Flow [2], does not provide a good solution for bandwidth
measurement queries. Consider a 10 Gbps link with an

average packet size of 1000 bytes. This link can produce
10 million packets per second. Suppose the scheme does

1 in 1000 packet sampling. It can still produce 10,000

samples per second with say 6 bytes per sample for time-
stamp and packet size. To identify bursts of 1000 pack-

ets of 1500 bytes each (1.5 MB), any algorithm would

look for intervals containing 1 packet and scale up by the
down sampling factor of 1000. The major problem is that

this causes false positives. If the trace is well-behaved

and has no bursts in any specified period (say 10 msec),
the scaling scheme will still falsely identify 1 in 1000

packets as being part of bursts because of the large scal-
ing factor needed for data reduction. Packet sampling,

fundamentally, takes no account of the passage of time.

From an information-theoretic sense, packet traces,
are inefficient representations for bandwidth queries.

Viewing a trace as a time series of point masses (bytes in
each packet), it is more memory-efficient to represent the

trace as a series of time intervals with bytes sent per in-

terval. But this introduces the new problem of choosing
the intervals for representation so that bandwidth queries

on any interval (chosen after the trace has been summa-

rized) can be answered with minimal error.

Our first scheme builds on the simple idea that for any

fixed sampling interval, say 100 microseconds, one can
easily compute traffic statistics such as max or Standard
Deviation by a few counters each. By exponentially in-

creasing the sampling interval, we can span an aggre-
gation period of length T , and still compute statistics at

all time scales from microseconds to milliseconds, using

only O(log T ) counters. We call this approach Expo-
nential Bucketing (EXPB). The challenge in EXPB is to

avoid updating all log T counters on each packet arrival
and to prove error bounds.

Our second idea, dubbed Dynamic Bucket Merge
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Figure 1: Example Deployment. End hosts and network

devices implementing EXPB and DBM push output data

over the network to a log server. Data at the server can
be monitored and visualized by administrators then col-

lapsed and archived to long-term, persistent storage.

(DBM), constructs an approximate streaming histogram
of the traffic so that bursts stand out as peaks in this his-

togram. Specifically, we adaptively partition the traffic

into k intervals/buckets, in such a way that the periods
of heavy traffic map to more refined buckets than those

of low traffic. The time-scales of these buckets provide a

“visual history” of the burstiness of the traffic—the nar-
rower the bucket in time, the burstier the traffic. In partic-

ular, DBM is well-suited for identifying not only whether
a burst occurred, but how many bursts, and when.

System Deployment: Exponential Bucketing and Dy-

namic Bucket Merge have low computational and stor-
age overheads, and can be implemented at multi-gigabit

speeds in software or hardware. As shown in Figure 1,

we envision a deployment scenario where both end hosts
and network devices record fine-grain bandwidth sum-

maries to a centralized log server. We argue that even

archiving to a single commodity hard disk, administra-
tors could pinpoint, to the second, the time at which cor-

related bursts occurred on given links, even up to a year
after the fact.

This data can be indexed using a relational database,

allowing administrators to query bandwidth statistics
across links and time. For example, administrators could

issue queries to “Find all bursts that occurred between

10 and 11 AM on all links in Set S”. Set S could be the
set of input links to a single switch (which can reveal In-

cast problems) or the path between two machines. Band-

width for particular links can then be visualized to further
delineate burst behavior. The foundation for answering

such queries is the ability to efficiently and succinctly
summarize the bandwidth usage of a trace in real-time,

the topic of this paper.

We break down the remainder of our work as fol-
lows. We begin with a discussion of related algorithms

and systems in Section 2. Section 3 illustrates the Dy-

namic Bucket Merge and Exponential Bucketing algo-

rithms, both formally and with examples. We follow
with our evaluations in Section 4, describe the implica-

tions for a system like Figure 1 in Section 5, and con-

clude in Section 6.

2 Related Work

Tcpdump [5] is a mature tool that captures a full log of

packets at the endhost, which can be used for a wide va-
riety of statistics, including bandwidth at any time scale.

While flexible, tcpdump consumes too much memory for

continuous monitoring at high speeds across every link
and for periods of days. Netflow [2] can capture packet

headers in routers but has the same issues. While sam-

pled Netflow reduces storage, configurations with sub-
stantial memory savings cannot detect bursts without re-

sulting in serious false positives. SNMP counters [1], on
the other hand, provide packet and byte counts but can

only return values at coarse and fixed time scales.

There are a wide variety of summarization data struc-

tures for traffic streams, many of which are surveyed
in [15]. None of these can directly be adapted to solve

the bandwidth problem at all time scales, though solu-
tions to quantile detection do solve some aspects of the

problem [15]. For example, classical heavy-hitters [13]

measures the heaviest traffic flows during an interval.
By contrast, we wish to measure “heavy-hitting sub-

intervals across time”, so to speak. However, heavy-

hitter solutions are complementary in order to identify
flows that cause the problem. The LDA data struc-

ture [12] is for a related problem – that of measuring
average latency. LDA is useful for directly measuring

latency violations. Our algorithms are complementary in

that they help analyze the bandwidth patterns that cause

latency violations.

DBM is inspired by the adaptive space partitioning

scheme of [11], but is greatly simplified, and also con-
siderably more efficient, due to the time-series nature of

packet arrivals.

3 Algorithms

Suppose we wish to perform bandwidth measurements
during a time window [0, T ], assuming, without loss of

generality, that the window begins at time zero. We as-

sume that during this period N packets are sent, with pi

being the byte size of the ith packet and ti being the time

at which this packet is logged by our monitoring system,
for i = 1, 2, . . . , N . These packets are received and pro-

cessed by our system as a stream, meaning that the ith
packet arrives before the jth packet, for any i < j.

The bandwidth is a rate, and so converting our ob-

served sequence of N packets into a quantifiable band-

width usage requires a time scale. Since we wish to
measure bandwidth at different time scales, let us first

make precise what we mean by this. Given a time

3



scale (or granularity) ∆, where 0 < ∆ < T , we di-

vide the measurement window [0, T ] into sub-intervals
of length ∆, and aggregate all those packets that are sent

within the same interval. In this way, we arrive at a se-

quence S∆ = 〈s1, s2, . . . , sk〉, where si is the sum of
the bytes sent during the sub-interval ((i−1)∆, i∆], and

k = ⌈T/∆⌉ is the number of such intervals.1

Therefore, every choice of ∆ leads to a corresponding

sequence S∆, which we interpret as the bandwidth use at

the temporal granularity ∆. All statistical measurements

of bandwidth usage at time scale ∆ correspond to statis-
tics over this sequence S∆. For instance, we can quantify

the statistical behavior of the bandwidth at time scale ∆
by measuring the mean, standard deviation, maximum,

median, quantiles, etc. of S∆.

In the following, we describe two schemes that can

estimate these statistics for every a posteriori choice of

the time scale ∆. That is, after the packet stream has
been processed by our algorithms, the users can query for

an arbitrary granularity ∆ and receive provable quality
approximations of the statistics for the sequence S∆.

Our first scheme, DBM, is time scale agnostic, and

essentially maintains a streaming histogram of the val-

ues s1, s2, . . . , sk, by adaptively partitioning the period
[0, T ]. Our second scheme EXPB explicitly computes

statistics for a priori settings of ∆, and then uses them

to approximate the statistics for the queried value of ∆.

Since the two schemes are quite orthogonal to each
other, it is also possible to use them both in conjunc-

tion. We give worst-case error guarantees for both of

the schemes. Both schemes are able to compute the
mean with perfect accuracy and estimate the other statis-

tics, such as the maximum or standard deviation, with
a bounded error. The approximation error for the DBM

scheme is expressed as an additive error, while the EXPB

scheme offers a multiplicative relative error. In particu-
lar, for the DBM scheme, the estimation of the maximum

or standard deviation is bounded by an error term of the

form O(εB), where 0 < ε < 1 is a user-specified pa-
rameter dependent on the memory used by the data struc-

ture, and B =
∑N

i=1
pi is the total packet mass over the

measurement window. In the following, we describe and
analyze the DBM scheme, followed by a description and

analysis of the EXPB scheme.

3.1 Dynamic Bucket Merge

DBM maintains a partition of the measurement window

[0, T ] into what we call buckets. In particular, a m-

bucket partition {b1, b2, . . . , bm}, is specified by a se-
quence of time instants t(bi), with 0 < t(bi) ≤ T ,

1To deal with the boundary problem properly, we assume that each
sub-interval includes its right boundary, but not the left boundary. If we
assume assume that no packet arrives at time 0, we can form a proper
non-overlapping partition this way.

with the interpretation that the bucket bi spans the inter-

val (t(bi−1), t(bi)]. That is, t(bi) marks the time when
the ith bucket ends, with the convention that t(b0) = 0,

and t(bm) = T . The number of buckets m is controlled

by the memory available to the algorithm and, as we
will show, the approximation quality of the algorithm im-

proves linearly with m. In the following, our description
and analysis of the scheme is expressed in terms of m.

Each bucket maintains O(1) information, typically the

statistics we are interested in maintaining, such as the
total number of bytes sent during the bucket. In particu-

lar, in the following, we use the notation p(b) to denote

the total number of data bytes sent during the interval
spanned by a bucket b.

The algorithm processes the packet stream p1, p2, . . .,
pN in arrival time order, always maintaining a partition

of [0, T ] into at most m buckets. (In fact, after the first m
packets have been processed, the number of buckets will
be exactly m, and the most recently processed packet lies

in the last bucket, namely, bm.) The basic algorithm is

quite straightforward. When the next packet pj is pro-
cessed, we place it into a new bucket bm+1, with time in-

terval (tj−1, T )—recall that tj−1 is the time stamp asso-

ciated with the preceding packet pj−1. We also note that
the right boundary of the predecessor bucket bm now be-

comes tj−1 due to the addition of the bucket bm+1. Since
we now have m + 1 buckets, we merge two adjacent

buckets to reduce the bucket count down to m. Several

different criteria can be used for deciding which buckets
to merge, and we consider some alternatives later, but in

our basic scheme we merge the buckets based on their

packet mass. That is, we merge two adjacent buckets
whose sum of the packet mass is the smallest over all

such adjacent pairs. A pseudo-code description of DBM
is presented in Algorithm 1.

Algorithm 1: DBM

foreach pj ∈ S do1

Allocate a new bucket bi and set p(bi) = pj2

if i == m + 1 then3

Merge the two adjacent bw, bw+1 for which55

p(bw) + p(bw+1) is minimum;
end6

end7

3.1.1 DBM Example

To clarify the operation of DBM we give the following

example, illustrated in Figure 2.
Suppose that we run DBM with 4 buckets (m = 4),

each of which stores a count of the number of buckets

that have been merged into it, the sum of all bytes be-
longing to it, and the max number of bytes of any bucket

merged into it. Now suppose that 4 packets have arrived
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Pkt. Size: 10

Count: 1

Sum: 10
...

20

Count: 1

Sum: 20
...

35

Count: 1

Sum: 35
...

5

Count: 1

Sum: 5
...

Buckets:

Min Heap 30 55 40

10 20 35 5 40

Count: 1

Sum: 40
...

30 55 40

Count: 1

Sum: 10
...

Count: 1

Sum: 20
...

Count: 1

Sum: 35
...

Count: 1

Sum: 5
...

10

Count: 2

Sum: 30
...

20 35

Count: 1

Sum: 35
...

5

Count: 1

Sum: 5
...

65

40

Count: 1

Sum: 40
...

40 45

Figure 2: Dynamic Bucket Merge with 4 buckets. Ini-

tially each bucket contains a single packet and the min
heap holds the sums of adjacent bucket pairs. When a

new packet (value = 40) arrives, a 5th bucket is allocated
and a new entry added to the heap. In the merge step, the

smallest value (30) is popped from the heap and the two

associated buckets are merged. Last, we update the heap
values that depended on either of the merged buckets.

with masses 10, 20, 35, and 5, respectively. The state of

DBM at this point is shown at the top of Figure 2. Note

that Algorithm 1 required that we merge the buckets with
the minimum combined sum. Hence, we maintain a min

heap which stores the sums of adjacent buckets.

When a fifth packet with a mass of 40 arrives, DBM
allocates a new bucket for it and updates the heap with

the sum of the new bucket and its neighbor.
In the final step, the minimum sum is pulled from the

heap and the buckets contributing to that sum are merged.

In this example, the bucket containing mass 10 and 20 are
merged into a single bucket with a new mass of 30 and

a max bucket value of 20. Note that we also update the

values in the heap which included the mass of either of
the merge buckets.

3.1.2 DBM Analysis

The key property of DBM is that it can estimate the total

number of bytes sent during any time interval. In particu-
lar, let [t, t′] be an arbitrary interval, where 0 ≤ t, t′ ≤ T ,

and let p(t, t′) be the total number of bytes sent during

it, meaning p(t, t′) =
∑N

i=1
{pi | t ≤ ti ≤ t′}. Then we

have the following result.

Lemma 1. The data structure DBM estimates p(t, t′)
within an additive error O(B/m), for any interval [t, t′],

where m is the number of buckets used by DBM and

B =
∑N

i=1
pi is the total packet mass over the measure-

ment window [0, T ].

Proof. We first note that in DBM each bucket’s packet
mass is at most 2B/(m−1), unless the bucket contains a

single packet whose mass is strictly larger than 2B/(m−
1). In particular, we argue that whenever two buckets
need to be merged, there always exists an adjacent pair

with total packet mass less than 2B/(m − 1). Suppose
not. Then, summing the sizes of all (m − 1) pairs of

adjacent buckets must produce a total mass strictly larger

than 2(m − 1)B/(m − 1) = 2B, which is impossible
since in this sum each bucket is counted at most twice,

so the total mass must be less than 2B.

With this fact established, the rest of the lemma fol-
lows easily. In order to estimate p(t, t′), we simply add

up the buckets whose time spans intersect the interval

[t, t′]. Any bucket whose interval lies entirely inside
[t, t′] is accurately counted, and so the only error of esti-

mation comes from the two buckets whose intervals only

partially intersect [t, t′]—these are the buckets contain-
ing the endpoints t and t′. If these buckets have mass

less than 2B/(m − 1) each, then the total error in esti-
mation is less than 4B/m, which is O( B

m
). If, on the

other hand, either of the end buckets contains a single

packet with large mass, then that packet is correctly in-
cluded or excluded from the estimation, depending on

its time stamp, and so there is no estimation error. This

completes the proof.

Theorem 1. With DBM we can estimate the maximum

or the standard deviation of S∆ within an additive error

εB, using memory O(1/ε).

Proof. The proof for the maximum follows easily from

the preceding lemma. We simply query DBM for time
windows of length ∆, namely, (i∆, (i + 1)∆], for i =
0, 1, . . . , ⌈T/∆⌉, and output the maximum packet mass

estimated in any of those intervals. In order to achieve
the target error bound, we use m = 4

ε
+ 1 buckets.

We now analyze the approximation of the standard de-

viation. Recall that the sequence under consideration is
S∆ = 〈s1, s2, . . . , sk〉, for some time scale ∆, where

si is the sum of the bytes sent during the sub-interval

((i−1)∆, i∆], and k = ⌈T/∆⌉ is the number of such in-
tervals. Let V ar(S∆), E(S∆), and E(S2

∆), respectively,

denote the variance, mean, and mean of the squares for
S∆. Then, by definition, we have

V ar(S∆) = E(S2
∆)−E(S∆)2 =

∑k

i=1
si

2

k
−E(S∆)2

Since DBM estimates each si within an additive error of

εB, our estimated variance respects the following bound:
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≤
∑

(si + εB)2

k
− E(S∆)2

However, we can compute E(S∆)2 exactly, because it is

just the square of the mean. In order to derive a bound on
the error of the variance, we assume that k > m, that is,

the size of the sequence S∆ is at least as large as the num-
ber of buckets in DBM. (Naturally, statistical measure-

ments are meaningless when the sample size becomes

too small.) With this assumption, we have 2/k < 2/m,

and since ε = 4/(m − 1), we get that 2
P

si

k
≤ εB,

which, considering k ≥ 1, yields the following upper

bound for the estimated variance:

≤
∑

s2
i

k
−E(S∆)2 +

k + 1

k
ε2B2 ≤ V ar(S∆)+2ε2B2

which implies the claim.

Similarly, we can show the following result for ap-
proximating quantiles of the sequence S∆.

Theorem 2. With DBM we can estimate any quantile of

S∆ within an additive error εB, using memory O(1/ε).

Proof. Let s1, s2, . . . , sk be the sequence of data in the
intervals (i∆, (i + 1)∆], for i = 1, 2, . . . , k = ⌈T/∆⌉,

sorted in increasing order, and let ŝ1, ŝ2, . . . , ŝk be the
sorted estimated sequence for the same intervals. We

now compute the desired quantile, for instance the 95th

percentile, in this sequence. Supposing the index of the
quantile is q, we return ŝq. We argue that the error of

this approximation is O(εB). We do this by estimating

bounds on the si values that are erroneously (due to ap-
proximation) misclassified, meaning reported below or

equal the quantile when they are actually larger or vice

versa. If no si have been misclassified then ŝq and sq

correspond to the same sample, and by Lemma 1 the es-

timated value ŝq − sq ≤ εB, hence the claim follows.
On the other hand, if a misclassification occurred, then

the sample sq is reported at an index different than q in

the estimated sequence. Assume without loss of gener-
ality that the sample sq has been reported as ŝu where

u > q. Then, by the pigeonhole principle, there is at

least a sample sh (h > q) that is reported as ŝd, d ≤ q.
By Lemma 1, ŝd − sh ≤ εB. Since sq and sh switched

ranks in the estimated sequence ŝ, by Lemma 1 it holds
that sh − sq ≤ εB and ŝu − ŝd ≤ εB. By assump-

tion u > q ≥ d, then it follows that ŝu ≥ ŝq ≥ ŝd in the

sorted sequence ŝ, which implies that ŝq − ŝd ≤ εB. The
chain of inequalities implies that ŝq − sq ≤ 3εB, which

completes the proof.

Algorithm 1 can be implemented at the worst-case cost

of O(log m) per packet, with the heap operation being
the dominant step. The memory usage of DBM is Θ(m)
as each bucket maintains O(1) information.

3.1.3 Extensions to DBM for better burst detection

Generic DBM is a useful oracle for estimating bandwidth

in any interval (chosen after the fact) with bounded addi-

tive error. However, one can tune the merge rule of DBM
if the goal is to pick out the bursts only. Intuitively, if

we have an aggregation period with k bursts for small k
(say 10) spread out in a large interval, then ideally we
would like to compress the large trace to k high-density

intervals. Of course, we would like to also represent the
comparatively low traffic adjacent intervals as well, so an

ideal algorithm would partition the trace into 2k + 1 in-

tervals where the bursts and ideal periods are clearly and
even visually identified. We refer to the generic scheme

discussed earlier that uses merge-by-mass as DBM-mm,

and describe two new variants as follows.

• merge-by-variance (DBM-mv): merges the two ad-

jacent buckets that have the minimum aggregated
packet mass variance

• merge-by-range (DBM-mr): merges the two ad-

jacent buckets that have the minimum aggregated

packet mass range (defined as the difference be-
tween maximum and minimum packet masses

within the bucket)

These merge variants can also be implemented in log-

arithmic time, and require storing O(1) additional infor-

mation for each bucket (in addition to p(bi)).
One minor detail is that DBM-mv and DBM-mr

are sensitive to null packet mass in an interval while
DBM-mm is not. For these reasons, we make the DBM-mr

and DBM-mv algorithms work on the sequence defined

by S∆, where ∆ is the minimum time scale at which
bandwidth measurements can be queried. Then DBM-mr

and DBM-mv represents S∆ as a histogram on m buck-

ets, where each bucket has a discrete value for the signal.
The goal of a good approximation is to minimize its pre-

dicted value versus the true under some error metric. We

consider both the L2 norm and the L∞ norm for the ap-
proximation error.

E2 = (

n
∑

i=1

|si − ŝi|2)
1

2 (1)

where ŝi is the approximation for value si.

E∞ = maxn
i=1|si − ŝi| (2)

We compare the performance of DBM-mr and

DBM-mv algorithms with the optimal offline algorithms,
that is, a bucketing scheme that would find the optimal

partition of S∆ to minimize the E2 or the E∞ metric.

Then, the analysis of [7, 10] can be adapted to yield the
following results that formally state our intuitive goal of

picking out m bursts with 2m + 1 pieces of memory.
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Theorem 3. The L∞ approximation error of the m-

bucket DBM-mr is never worse than the corresponding

error of an optimal m/2-bucket partition.

Theorem 4. The L2 approximation error of the m-

bucket DBM-mv is at most
√

2 times the corresponding

error of an optimal m/4-bucket partition.

3.2 Exponential Bucketing

Our second scheme, which we call Exponential Buck-

eting (EXPB), explicitly computes statistics for a priori

settings of ∆1, . . . , ∆m, and then uses them to approx-
imate the statistics for the queried value for any ∆, for

∆1 ≤ ∆ ≤ ∆m. We assume that the time scales grow in
powers of two, meaning that ∆i = 2i−1∆1. Therefore,

we can assume that the scheme processes data at the time

scale ∆1, namely, the sequence S∆1
= (s1, s2, . . . , sk).

Conceptually, EXPB maintains bandwidth statistics
for all m time scales ∆1, . . . , ∆m. A naı̈ve implemen-

tation would require updating O(m) counters per (ag-
gregated) packet si. However, by carefully orchestrating

the accumulator update when a new si is available it is

possible to avoid spending m updates per measurement
as shown in Algorithm 2.

The intuition is as follows. Suppose one is maintaining

statistics at 100 µs and 200 µs intervals. When a packet
arrives, we update the 100 µs counter but not the 200

µs counter. Instead, the 200 µs counter is updated only

when the 100 µs counter is zeroed. In other words, only
the lowest granularity counter is updated on every packet,

and coarser granularity counters are only updated when
all the finer granularity counters are zeroed.

Algorithm 2: EXPB

sum=< 0, . . . , 0 > (m times) ;1

foreach si do2

sum[0]=si;3

j=0;4

repeat66

updatestat(j,sum[j]);88

if j < m then9

sum[j+1]+=sum[j];10

end11

sum[j]=0;12

j++;13

until i mod 2j 6= 0 or j ≥ m ;14

end15

3.2.1 EXPB Example

To better understand the EXPB algorithm we now present

the example illustrated in Figure 3.
In this example, we maintain 3 buckets (m = 3) each

of which stores statistics at time scales of 1, 2 and 4

Count:

Sum:

Sum^2:

Max:

1

2

...

Buckets

10 20Samples: 35 5

Time: 1 2 3 4

Count: 1

Sum: 10

...

Count: 2

Sum: 20

...

Count: 1

Sum: 30

...

Count: 3

Sum: 35

...

Count: 4

Sum: 5

...

Count: 2

Sum: 40

...

Count: 1

Sum: 70

...3

Count:

Sum:

Sum^2:

Max:

Count:

Sum:

Sum^2:

Max:

Figure 3: Exponential Bucketing Example. Each of the

m buckets collects statistics at 2i−1 times the finest time

scale. At the end of each time scale, ∆i, buckets 1 to i
must be updated. Before storing the new sum in a bucket

j, we first add the old sum into bucket j + 1, if it exists.

time units. Each bucket stores the count of the intervals
elapsed, the sum of the bytes seen in the current interval,

and fields to compute max and standard deviation. We la-

bel the time units along the top and the number of bytes
accumulated during each interval along the bottom.

In the first time interval 10 bytes are recorded in the
first bucket and 10 is pushed to the sum of the second

bucket. We repeat this operation when 20 is recorded

in the second interval. Since 2 time units have elapsed,
we also update the statistics for the ∆2 time scale, and

add bucket two’s sum to bucket 3. In the third interval

we update bucket 1 as before. Finally, at time 4 we up-
date bucket 2 with the current sum from bucket 1, up-

date bucket two’s statistics, and push bucket two’s sum
to bucket 3. Finally, we update the statistics for ∆3 with

bucket three’s sum.

3.2.2 EXPB Analysis

Algorithm 2 uses O(m) memory and runs in O(k) worst-

case time, where k = ⌈T/∆1⌉ is the number of inter-
vals at the lowest time scale of the algorithm. The per-

interval processing time is amortized constant, since the
repeat loop starting at Line 6 simply counts the num-

ber of trailing zeros in the binary representation of i, for

all 0 < i < k = T/∆. The procedure updatestat()
called at Line 8 updates in constant time the O(1) infor-

mation necessary to maintain the statistics for each ∆i,

for 1 ≤ i ≤ m.

We now describe and analyze the bandwidth estima-

tion using EXPB. Given any query time scale ∆, we out-
put the maximum of the bandwidth corresponding to the

smallest index j for which ∆j ≥ ∆, and use the sum

of squared packet masses stored for granularity ∆j to
compute the standard deviation. The following lemma

bounds the error of such an approximation.
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Lemma 2. With EXPB we can return an estimation of

the maximum or standard deviation of S∆ that is be-

tween factor 1/2 and 3 from the true value. The bound on

the standard deviation holds in the limit when the ratio

E(S2
∆)/E(S∆)2 is large.

Proof. We first prove the result for the statistic maxi-

mum, and then address the standard deviation. Let I
be the interval ((i − 1)∆, i∆] corresponding to the time

scale ∆ in which the maximum value is achieved, and let
p(I) be this value. Since ∆j ≥ ∆, there are at two most

consecutive intervals Ij
i , Ij

i+1 at time scale ∆j that to-

gether cover I . By the pigeonhole principle, either Ij
i or

Ij
i+1 must contain at least half the mass of I , and there-

fore the maximum value at time scale ∆j is at least 1/2 of

the maximum value at ∆. This proves the lower bound
side of the approximation. In order to obtain a corre-

sponding upper bound, we simply observe that if Ij
i is

the interval at time scale ∆j with the maximum value,

then Ij
i overlaps with at most 3 intervals of time scale

∆. Thus, the maximum value at time scale ∆j cannot be
more than 3 times the maximum at ∆ proving an upper

bound on the approximation.

The analysis for the standard deviation follows along

the same lines, using the observation that stddev∆ =
√

E(S2
∆) − E(S∆)2. An argument similar to the one

used for the maximum value holds for the approximation

of E(S2
∆). Then assuming the ratio E(S2

∆)/E(S∆)2

to be a constant sufficiently greater than 1 implies the

claim. We omit the simple algebra from this extended

abstract.

We note that there is a non-trivial extension of EXPB

which allows it to work with a set of exponentially in-
creasing time granularities whose common ratio can be

any α > 1. This can reduce average error. For a gen-

eral α > 1, Algorithm 2 cannot be easily adapted, so
we need a generalization of it that uses an event queue

while processing measurements to schedule when in the

future a new measurement of length ∆j must be sent to
updatestat(). The details are omitted for lack of space.

3.3 Culprit Identification

As mentioned earlier, we do not want to simply identify

bursts but also to identify the flow (e.g., TCP connection,

or source IP address, protocol) that caused the burst so
that the network manager can reschedule or move the of-

fending station or application. The naive approach would
be to add a heavy-hitters [13] data structure to each DBM

bucket, which seems expensive in storage. Instead, we

modify DBM to include two extra variables per bucket: a
flowID and a flow count for the flowID.

The simple heuristic we suggest is as follows. Initially,
each packet is placed in a bucket, and the bucket’s flowID

is set to the flowID of its packet. When merging two

buckets, if the buckets have the same flowID, then that

flowID becomes the flowID of the merged bucket and
the flow counts are summed. If not, then one of the two

flowIDs is picked with probability proportional to their

flow counts. Intuitively, the higher count flows are more
likely to be picked as the main contributor in each bucket

as they are more likely to survive merges.

For EXPB, a simple idea is to use a standard heavy-
hitters structure [13] corresponding to each of the loga-

rithmic time scales. When each counter is reset, we up-
date the flowID if the maximum value has changed and

reinitialize the heavy-hitters structure for the next inter-

val. This requires only a logarithmic number of heavy-
hitters structures. Since there appears to be redundancy

across the structures at each time scale, more compres-

sion appears feasible but we leave this for future work.

4 Evaluation

We now evaluate the performance and accuracy of DBM
and EXPB to show that they fulfill our goal of a tool

that efficiently utilizes memory and processing resources

to faithfully capture and display key bandwidth mea-
sures. We will show that DBM and EXPB use significantly

fewer resources than packet tracing and are suitable for

network-wide measurement and visualization.

4.1 Measurement Accuracy

We implemented EXPB and the three variants of DBM as
user-space programs and evaluated them with real traffic

traces. Our traces consisted of a packets captured from

the 1 Gigabit switch that connects several infrastructure
servers used by the Systems and Networking group at

U.C. San Diego, and socket-level send data produced by

the record-breaking TritonSort sorting cluster [17].

Our “rsync” trace captured individual packets from

an 11-hour period during which our NFS server ran its
monthly backup to a remote machine using rsync. This

trace recorded the transfer of 76.2 GB of data in 60.6

million packets, of which 66.6 GB was due to the backup
operation. The average throughput was 15.4 Mbps with

a maximum of 782 Mbps for a single second.

The “tritonsort” trace contains time-stamped byte
counts from successful send system calls on a single

host during the sorting of 500 GB of data using 23 nodes

connected by a 10 Gbps network. This trace contains an
average of 92,488 send events per second, with a peak of

123,322 events recorded in a single 1-second interval. In

total, 20.8 GB were transferred over 34.24 seconds for
an average throughput of 4.9 Gbps.

Ideally, our evaluation would include traffic from a
mix of production applications running over a 10 Gbps

network. While we do not have access to such a deploy-

ment, our traces provide insight into how DBM and EXPB
might perform given the high bandwidth and network uti-

lization of the “tritonsort” trace and the large variance in
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bandwidth from second to second in the “rsync” trace.

For our accuracy evaluation, we used an aggregation

period of 2 seconds. To avoid problems with incom-
plete sampling periods in EXPB, we must choose our

time scales such that they all evenly divide our aggre-

gation period. Since the prime factors of 2 seconds in
nsec are 211 and 510 nsec, EXPB can use up to 11 buck-

ets. Thus for EXPB, we choose the finest time scale to
be ∆ = 78.125 µs (57 nsec) and the coarsest to be ∆ =
80 msec (21157 nsec), which is consistent with the time

scales for interesting bursts in data centers. For consis-
tency, we also configure DBM to use a base sampling in-

terval of 78.125 µs, but note that it can answer queries

up to ∆ = 2 seconds.

To provide a baseline measurement, we computed
bandwidth statistics for all of our traces at various time

scales where ∆ ≥ 78.125 µs. To ensure that all measure-
ments in S∆ are equal, we only evaluated time scales that

evenly divided 2 seconds. In total, this provided us with

ground-truth statistics at 52 different time scales rang-
ing from 78.125 µs to 2 seconds. In the following sec-

tions we report accuracy in terms of error relative to these

ground-truth measurements. While any number of val-
ues could be used for ∆ and T in practice, we used these

values across our experiments for the sake of a consistent
and representative evaluation between algorithms.

4.1.1 Accuracy vs. Memory

We begin by investigating the tradeoff between memory

and accuracy. At one extreme, SNMP can calculate av-
erage bandwidth using only a single counter. In contrast,

packet tracing with tcpdump can calculate a wide range
of statistics with perfect accuracy, but with storage cost

scaling linearly with the number of packets. Both DBM

and EXPB provide a tradeoff between these two extremes
by supporting complex queries with bounded error, but

with orders of magnitude less memory.

For comparison, consider the simplest event trace

which captures a 64-bit timestamp and a 16-bit byte
length for each packet sent or received. Using this data,

one could calculate bandwidth statistics for the trace with
perfect accuracy at a memory cost of 6 bytes per event.

In contrast, DBM and EXPB require 8 and 16 bytes of stor-

age per bucket used, respectively, along with a few bytes
of meta data for each aggregation period.

To quantify these differences, we queried our traces

for max, standard deviation, and 95th percentile (DBM

only). For each statistic, we compute the average rela-
tive error of the measurements at each of our reference

time scales and report the worst-case. To avoid spurious
errors due to low sample counts, we omit accuracy data

for standard deviations with fewer than 10 samples per

aggregation period and 95th percentiles with fewer than
20 samples per aggregation period. We show the tradeoff

between storage and accuracy in Table 1.

Max of Avg. Rel. Error

Output Max S.Dev. 95th

trace (avg) 9.2 KBps

(peak) 396 KBps 0% 0% 0%

DBM-mr 4 KBps 7.6% 14.7% 14.9%

EXPB 96 Bps 14.2% 5.9% N/A

Table 2: We repeated our evaluation with the “rsync”
trace and report accuracy results for our two best per-

forming algorithms — DBM-mr and EXPB. We calcu-

lated the average relative error for each of our reference
time scale and show the worst case.

While the simple packet trace gives perfectly accu-

rate statistics, both DBM and EXPB consume memory at
a fixed rate which can be configured by specifying the

number of buckets and the aggregation period. In the

presented configuration, both DBM and EXPB generate 4
KBps and 96 Bps, respectively — orders of magnitude

less memory than the simple trace.

The cost of reduced storage overhead in DBM and

EXPB is the error introduced in our measurements. How-
ever, we see that the range of average relative error rates

is reasonable for max, standard deviation, and 95th per-

centile measurements. Further, of the DBM algorithms,
DBM-mr gives the lowest errors throughout. While not

shown, DBM’s errors are largely due to under-estimation,
but its accuracy improves as the query interval grows.

EXPB gives consistent estimation errors for max across

all of our reference points, but gradually degrades for
standard deviation estimates as query intervals increase.

Thus, for this trace, EXPB achieves the lowest error for

query intervals less than 2msec. We have divided Table 1
to show the worst-case errors in these regions.

In Table 2 , we show the accuracy of DBM-mr and

EXPB when run on the “rsync” trace with the same pa-

rameters as before. We note that again DBM-mr gives
the most accurate results for larger query intervals, but

now out-performs EXPB for query intervals greater than

160µs for max and 1msec for standard deviation.

To see the effect of scaling the number of buckets,
we picked a representative query interval of 400 µs and

investigated the accuracy of DBM-mr as the number of

buckets were varied. The results of measuring the max,
standard deviation and 95th percentile on the “tritonsort”

trace are shown in Figure 4. We see that the relative error

for all measurements decreases as the number of buck-
ets is increased. However, at 4,000 buckets the curves

flatten significantly and additional buckets beyond this
do not produce any significant improvement in accuracy.

While one might expect the error to drop to zero when

the number of buckets is equal to the number of samples
at S∆ (5000 samples for 400µs), we do not see this since

the trace is sampled at a finer granularity (78.125 µs) and
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Max of Avg. Relative Error

≤ 2 msec > 2msec

Output Rate Max S.Dev. 95th Max S.Dev. 95th

packet trace (avg) 555 KBps
(peak) 740 KBps 0% 0% 0% 0% 0% 0%

DBM-mm, 1000 buckets 4 KBps 25.9% 43.3% 18.3% 2.2% 5.7% 1.1%

DBM-mv, 1000 buckets 4 KBps 16.7% 58.9% 26.7% 7.2% 39.0% 10.4%
DBM-mr, 1000 buckets 4 KBps 14.0% 35.0% 16.1% 2.0% 4.1% 0.9%

EXPB, 11 buckets 96 Bps 2.7% 2.5% N/A 2.8% 8.1% N/A

Table 1: Memory vs. Accuracy. We evaluate the “tritonsort” trace with a base time scale of ∆ =78.125 µs and a 2
second aggregation period. Data output rate is reported for a simple packet trace compared with the DBM and EXPB

algorithms. For each statistic, we compute the max of the average relative error of measurements for each of our

reference time scales.
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(c) 95th Percentile measurements

Figure 4: Relative error for DBM-mr algorithm shown for the 400 µs time scale with a varying number of buckets. The

box plots show the range of relative errors from the 25th to 75th percentiles, with the median indicated in between.

The box whiskers indicate the min and max errors.

the buckets are merged online. There is no guarantee that

DBM will merge the buckets such that each spans exactly
400µs of the trace.

With approximations of the max and standard devia-

tion with this degree of accuracy, we see both DBM and

EXPB as an excellent, low-overhead alternative to packet
tracing.

4.1.2 DBM Visualization

One unique property of the DBM algorithms is that they
can be visualized to show users the shape of the band-

width curves. Note that we proved earlier that DBM-mr
is optimal in some sense in picking out bursts. We now

investigate experimentally how all DBM variants do in

burst detection.

In Figures 5 we show the output for a single, 2 sec-
ond aggregation period from the “rsync” trace using

DBM-mr. For visual clarity, we configured DBM-mr to
aggregate measurements at a 4 msec base time scale (250

data points) using 9 buckets. Figure 5 shows the raw

data points (bandwidth use in each 4 msec interval of
the 2 second trace) with the DBM-mr output superim-

posed. Notice that DBM-mr picks out four bursts (the

vertical lines). The fourth burst looks smaller than the

3.1 Mbps burst observable in the raw trace. This is be-
cause there were two adjacent measurement intervals in

the raw trace with bandwidths of 3.1 and 2.2 Mbps, re-

spectively. DBM-mr merged these measurements into a
single bucket of with an average bandwidth of 2.65 Mbps

for 8 msec.

We show the output for all DBM algorithms in a more

clean visual form in Figures 6a, 6b and 6c. We have
normalized the width of the buckets and list their start

and end times on the x-axis. Additionally, we label each

bucket with its mass (byte count). This representation
compresses periods of low traffic and highlights short-

lived, high-bandwidth events. From the visualization of

DBM-mr in Figure 6c, we can quickly see that there were
four periods of time, each lasting between 4 and 8 msec

where the bandwidth exceeded 2.3 Mbps. Note that in
Figure 6a, DBM-mm picks out only two bursts. The re-

maining bursts have been merged into the three buckets

spanning the period from 1440 to 1636 msec, thereby re-
ducing the bandwidth (the y-axis) because the total time

of the combined bucket increases.

In practice, a network administrator might want to
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Figure 5: Visualization of events from a 2 second aggre-
gation period overlaid with the output of DBM-mr using

9 buckets and a 4 msec measurement time scale.

quickly scan such a visualization and look for microburst
events. To simulate such a scenario, we randomly in-

serted three bursts, each lasting 4 msec and transmitting

between 4.0 and 4.4 MB of data. We show the DBM visu-
alization for this augmented trace in bottom of Figure 6.

DBM-mr and DBM-mm both allocate their memory re-

sources to capture all three of these important events,
even though they only represent 12 msec of a 2 second

aggregation period. Again, DBM-mr cleanly picks out
the three bursts.

4.1.3 Accuracy at High Load

As mentioned in Lemma 1, the error associated with the
DBM algorithms increases with the ratio of total packet

mass (total bytes) to number of buckets within an ag-

gregation period. We now investigate to what extent in-
creasing the mass within an aggregation period affects

the measurement accuracy of DBM. To evaluate this, we

first configured DBM to use a base time scale of ∆ =
78.125 µs and 1000 buckets, as before, but vary the

mass stored in DBM by changing the aggregation period.

Figures 7a & 7b show the change in average relative
error for both max and standard deviation statistics in

our high-bandwidth “tritonsort” trace at a representative
query time scale (400 µs) as the aggregation period is

varied between 1 and 16 seconds.

For DBM-mm and DBM-mvwith 1000 buckets the rela-

tive error diverges significantly as the aggregation period
is increased. In contrast, DBM-mr shows only a subtle

degradation for max from 5.9% to 12.3%. For standard

deviation, DBM-mv show consistently poor performance
with average relative errors increasing from 32% to 64%,

while both DBM-mm and DBM-mr trend together with

DBM-mr’s errors ranging from 9.8 to 31.7%.

We contrast DBM-mr’s performance for these exper-
iments with that of EXPB. We see that EXPB’s average

relative error in the max measurement gradually falls

from 2.8% to 1.9% as the aggregation period increases.

Further, the error in standard deviation falls from 1.4%
at a 1 second aggregation period to 0.5% at 16 seconds.

These results indicate that degradation in accuracy

does occur as the ratio of the total packet mass to bucket
count increases, as predicted by Lemma 1. While DBM

must be configured correctly to bound the ratio of packet

mass to bucket count, EXPB’s accuracy is largely unaf-
fected by the packet mass or aggregation period.

4.2 Performance Overhead

As previously stated, we seek to provide an efficient al-

ternative to packet capture tools. Hence we compare
the performance overhead of DBM and EXPB to that of

an unmodified vanilla kernel, and to the well-established

tcpdump[5].
We implemented our algorithms in the Linux 2.6.34

kernel along with a userspace program to read the cap-

tured statistics and write them to disk. To provide greater
computational efficiency we constrained the base time

scale and the aggregation period to be powers of 2. The

following experiments were run on 2.27 GHz, quad-core
Intel Xeon servers with 24 GB of memory. Each server

is connected to a top-of-rack switch via 10 Gbps ethernet

and has a round trip latency of approximately 100 µs.
To quantify the impact of our monitoring on perfor-

mance, we first ran iperf [3] to send TCP traffic between

two machines on our 10 Gbps network for 10 seconds.
In addition, we instrumented our code to report the time

spent in our routines during the test. We first ran the
vanilla kernel source, then added different versions of

our monitoring to aggregate 64 µs intervals over 1 sec-

ond periods. We report both the bandwidth achieved by
iperf and the average latency added to each packet at the

sending server in Table 3. For comparison, we also re-

port performance numbers for tcpdump when run with
the default settings and writing the TCP and IP head-

ers (52 bytes) of each packet directly to local disk. As

DBM-mr is nearly identical to DBM-mm with respect to
implementation, we omit DBM-mr’s results.

As discussed in section 3.1, we see that the latency

overhead per packet increases roughly as the log of the
number of buckets. However, iperf’s maximum through-

put is not degraded by the latency added to each packet.

Since the added latency per packet is several orders of
magnitude less than the RTT, the overhead of DBM should

not affect TCP’s ability to quickly grow its congestion
window. In contrast to DBM, tcpdump achieves 3.5%

less throughput.

To observe the overhead of our monitoring on an ap-
plication, we transferred a 1GB file using scp. We

measured the wall-clock time necessary to complete the

transfer by running scp within the Linux’s time utility.
To quantify the affects of our measurement on the to-

tal completion time, we measured the total overhead im-
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(a) DBM-mm visualization
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(b) DBM-mv visualization
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(c) DBM-mr visualization
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(d) DBM-mm visualization of bursty traffic
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(e) DBM-mv visualization of bursty traffic
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(f) DBM-mr visualization of bursty traffic

Figure 6: Visualization of DBM with 9 buckets over a single 2 second aggregation period. The start and end times for

each bucket are shown on the x-axis, and each bucket is labeled with its mass (byte count). The top figures show the
various DBM approximations of a single aggregation period, while the lower graphs show the same period with three

short-lived, high bandwidth bursts randomly inserted.

posed on packets as they moved up and down the network
stack. We report this overhead as a percentage of each

experiment’s average completion time (monitoring time

divided by scp completion time). Each experiment was
replicated 60 times and results are reported in Table 4.

We see that although the cumulative overhead added by
DBM grows logarithmically with the number of buckets,

the time for scp to complete increases by at most 4.5%.

We see that our implementations of DBM and EXPB

have a negligible impact on application performance,
even while monitoring traffic at 10 Gbps.

4.3 Evaluation Summary

Our experiments indicate DBM-mr consistently provides

better burst detection and has reasonable average case

and worst case error for various statistics. When mea-
suring at arbitrary time scales, EXPB has comparable or

better average and worst-case error than DBM while us-

ing less memory. In addition, EXPB is unaffected by
high mass in a given aggregation period. On other hand,

DBM can approximate time series, which is useful for see-
ing how burst are distributed in time and for calculating

more advanced statistics (i.e. percentiles). We recom-

mend a parallel implementation where EXPB is used for
Max and Standard Deviation and DBM-mr is used for all

other queries.

5 System Implications

So far, we have described DBM and EXPB as part of an

end host monitoring tool that can aggregate and visual-

ize bandwidth data with good accuracy. However, we see
these algorithms a part of a larger infrastructure monitor-

ing system.

Long-term Archival and Database Support It is use-
ful for administrators to retrospectively troubleshoot

problems that are reported by customers days after the

fact. At slightly more than 4 KBps, the data produced by
both DBM and EXPB for a week (2.4 GB per link) could

easily be stored to a commodity disk. With this data,

an administrator can pinpoint traffic abnormalities at mi-
crosecond timescales and look for patterns across links.

The data can be compacted for larger time scales by re-
ducing granularity for older data. For example, one hour

of EXPB data could be collapsed into one set of buckets

containing max and standard deviation information at the
original resolutions but aggregated across the hour.

With such techniques, fine-grain network statistics for
hundreds of links over an entire year could be stored to a

single server. The data could be keyed by link and time

and stored in a relational database to allow queries across
time (is the traffic on a single link becoming more bursty

with time?) or across links (did a number of bursts cor-
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Figure 7: Average relative error for the DBM with 1000 buckets and EXPB with 11 buckets shown on the “tritonsort”

trace for a 400 µs query interval and various aggregation periods.

Version Buckets Avg. BW Overhead/Pkt

vanilla N/A 9.053 Gbps 0.0 nsec

DBM-mm 10 9.057 Gbps 256.5 nsec
100 9.010 Gbps 335.7 nsec

1000 9.104 Gbps 237.5 nsec

10000 8.970 Gbps 560.4 nsec

DBM-mv 10 9.043 Gbps 205.7 nsec
100 8.986 Gbps 327.9 nsec

1000 9.067 Gbps 432.2 nsec
10000 9.067 Gbps 457.2 nsec

EXPB 14 9.109 Gbps 169.4 nsec

tcpdump N/A 8.732 Gbps N/A

Table 3: Average TCP bandwidth reported by iperf over
60 10-second runs. We also show the average time spent

in the kernel-level monitoring functions for each packet

sent. DBM and EXPB were run with a base time scale of
∆ = 64 µs and T = 1 second aggregation period.

relate on multiple switch input ports?).

Hardware Implementation Both DBM and EXPB al-
gorithms can be implemented in hardware for use in

switches and routers. EXPB has an amortized cost of two

bucket updates per measurement interval. Since bucket
updates are only needed at the frequency of the measure-

ment time scale, these operations could be put on a work

queue and serviced asynchronously from the main packet
pipeline. The key complication for implementing DBM

in hardware is maintaining a binary heap. However, a
1000 bucket heap can be maintained in hardware using

a 2-level radix-32 heap that uses 32-way comparators at

10 Gbps. Higher bucket sizes and speeds will require
pipelining the heap. The extra hardware overhead for

these algorithms in gates is minimal. Finally, the log-

Version Buckets Time Overhead

vanilla N/A 14.133 sec N/A

DBM-mm 10 14.334 sec 1.3%
100 14.765 sec 1.9%

1000 14.483 sec 2.7%

10000 14.527 sec 2.5%

DBM-mv 10 14.320 sec 1.7%
100 14.344 sec 2.3%

1000 14.645 sec 2.9%
10000 14.482 sec 3.1%

EXPB 14 14.230 sec 0.4%

tcpdump N/A 15.253 sec 7.9%

Table 4: The time needed to transfer a 1GB file overscp.
We measured the cumulative overhead incurred by our

monitoring routines for all send and receive events. We

report this overhead as a percentage of each experiment’s
total running time.

ging overhead is very small, especially when compared
to NetFlow.

6 Conclusions

Picking out bursts in a large amount of resource usage

data is a fundamental problem and applies to all re-
sources, whether power, cooling, bandwidth, memory,

CPU, or even financial markets. However, in the do-

main of data center networks, the increase of network
speeds beyond 1 Gigabit per second and the decrease of

in-network buffering has made the problem one of great
interest.

Managers today have little information about how mi-

crobursts are caused. In some cases they have identi-
fied paradigms such as InCast, but managers need better

visibility into bandwidth usage and the perpetrators of
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microbursts. They would also like better understanding

of the temporal dynamics of such bursts. For instance,
do they happen occasionally or often? Do bursts linger

below a tipping point for a long period or do they arise

suddenly like tsunamis? Further, correlated bursts across
links lead to packet drops. A database of bandwidth in-

formation from across an administrative domain would
be valuable in identifying such patterns. Of course, this

could be done by logging a record for every packet, but

this is too expensive to contemplate today.

Our paper provides the first step to realizing such a vi-
sion for a cheap network-wide bandwidth usage database

by showing efficient summarization techniques at links

(∼4 KB per second, for example, for running DBM and
EXPB on 10 Gbps links) that can feed a database backend

as shown in Figure 1. Ideally, this can be supplemented

by algorithms that also identify the flows responsible for
bursts and techniques to join information across multiple

links to detect offending applications and their timing.
Of the two algorithms we introduce, Exponential Bucket-

ing offers accurate measurement of the average, max and

standard deviation of bandwidths at arbitrary sampling
resolutions with very low memory. In contrast, Dynamic

Bucket Merge approximates a time-series of bandwidth

measurements that can visualized or used to compute ad-
vanced statistics, such as quantiles.

While we have shown the application of DBM and

EXPB to bandwidth measurements in endhosts, these al-

gorithms could be easily ported to in-network monitor-
ing devices or switches. Further, these algorithms can be

generally applied to any time-series data, and will be par-
ticularly useful in environments where resource spikes

must be detected at fine time scales but logging through-

put and archival memory is constrained.
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