
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

BIT: A Tool for Instrumenting Java Bytecodes

Han Bok Lee and Benjamin G. Zorn
University of Colorado, Boulder

BIT: A Tool for Instrumenting Java Bytecodes1

Han Bok Lee
hanlee@cs.colorado.edu

Department of Computer Science
University of Colorado, Boulder 80309

Benjamin G. Zorn
zorn@cs.colorado.edu

Department of Computer Science
University of Colorado, Boulder 80309

1 This work was supported in part by the National Science Foundation under grant IRI-95-21046.

Abstract

BIT (Bytecode Instrumenting Tool) is a collection of
Java classes that allow one to build customized tools to
instrument Java Virtual Machine (JVM) bytecodes.
Because understanding program behavior is an essential
part of developing effective optimization algorithms,
researchers and software developers have built
numerous tools that carry out program analysis.
Although there are existing tools that analyze and
modify executables on a variety of operating systems
and machine architectures, there currently is no
framework for carrying out the same task for JVM
bytecodes. In this paper, we describe BIT, which
allows the user to insert calls to analysis methods
anywhere in the bytecode, so that information can be
extracted from the user program while it is being
executed. In this paper, we describe several simple
tools built using BIT and also report on BIT’s
performance. We found that the overhead for the
execution speed and size were between 23% to 150%.

1. Introduction

It is often important for software developers and
researchers to be able to measure and understand both
the static structure and dynamic behavior of a program.
Such information is used to identify critical pieces of
code; for debugging purposes; to evaluate and compare
the performance of different software or hardware
implementations such as branch prediction, cache
replacement, and instruction scheduling; and in support
of profile-driven optimizations [31]. Over the years,
researchers have built numerous tools that allow them
to obtain this information.

This paper describes BIT (Bytecode Instrumenting
Tool) [20], a tool that allows JVM bytecodes to be

instrumented for the purpose of extracting
measurements of their dynamic behavior. The JVM is
an abstract machine specification designed to support
the Java programming language, and JVM bytecodes
are equivalent to binaries on other machines [21].
Although there are tools that allow binary
instrumentation on a number of different operating
systems and machine architectures, BIT is the first
framework of which we are aware that supports JVM
bytecode instrumentation. BIT is a set of Java classes
that allow the user to observe the dynamic behavior of
programs by inserting calls to user analysis methods at
any point in the bytecode execution. Because BIT is
written in Java, tools written using it are portable across
platforms. Also, there are other programming
languages that can be compiled into JVM bytecodes
such as Kawa [6], which compiles Scheme code into
JVM bytecodes and AppletMagic [17], which translates
Ada 95 to JVM bytecodes. Furthermore, Hardwick and
Sipelstein studied the feasibility of using Java as an
intermediate language [14]. Because BIT instruments
JVM bytecodes, it can be used to instrument programs
written in any language that has been compiled to the
JVM, and instrumentation does not require that the
program source code be available.

In this paper we describe the design and
implementation of BIT, present example tools built
using BIT, and describe results based on measuring
BIT’s overhead on five Java programs, including BIT
itself. BIT’s instrumentation makes the instrumented
JVM executables both larger and longer running. We
found that the overhead for the execution speed and
code size ranged from 23% to 150%.

This paper has the following organization. In Section 2,
we discuss related work. In Section 3, we describe
BIT’s design and introduce a sample tool written using

BIT. In Section 4, we discuss some details of the
implementation and in Section 5 we present
performance results based on instrumenting several
Java applications. Finally, in Section 6, we summarize
the paper and discuss future directions for research.

2. Related Work

There are many tools that employ techniques based on
program instrumentation to carry out different tasks.
These tasks range from emulation and tracing to
optimization [19]. The Wisconsin Wind Tunnel
architecture simulator [27], for example, allows the
emulation of a cycle counter, which the underlying
hardware does not provide. Techniques based on
program instrumentation have also been used in
optimizations [31, 32]. However, most of the tools that
have been developed using program instrumentation
techniques are used for studying program or system
behavior. Tools such as QPT [18], Pixie [28], and
Epoxie [33] generate address traces and instruction
counts by rewriting program executables. MPTRACE
[13] and ATUM [1] generate data and instruction
traces, and PROTEUS [5] and Shade [7] emulate other
architectures. Also, software testing and quality
assurance tools that detect memory leaks and access
errors such as Purify [15] catch programming errors by
using these techniques. Purify inserts instructions
directly into the object code produced by existing
compilers. These instructions, in turn, check the
validity of every memory access performed by the
program and report when there are errors.

There are limitations to these tools, however, since they
are designed for a specific task and are difficult if not
impossible to modify to meet users’ changing needs. It
would be difficult, for example, for a user to modify a
customized tool to obtain more or less detailed
information about a trace than what is already provided.
To modify a customized tool, a user has to have access
to the source code and have a good understanding of
how the tool works, including low-level details that
deal directly with modifying the binaries. Moreover,
many of these tools use inter-process communication or
files to relay program behavior to the analysis routines,
which are expensive [30].

There is another group of tools, sometimes called
binary editing or executable editing tools, which have
different design goals and offer a library of routines for
modifying executable files. The tools in this group
include the OM system [32], EEL [19], ATOM [30],
and Etch [4], which are explained in more detail below.
These tools differ in that they offer a library of routines

for modifying executable files. Users, in turn, can
design and build their own customized tools to meet
their needs using these tools.

OM works on object files, and it represents machine
instructions as Register Transfer language (RTL),
which can later be manipulated and written back to the
disk in the form of machine instructions. EEL also uses
an intermediate representation to represent machine
instructions. The difference between OM and EEL is
that while OM uses relocation information in the object
files to relocate edited code, EEL analyzes and modifies
the program’s instructions directly. Furthermore, EEL
can edit fully linked executables and emphasizes
portability in its design. However, EEL currently
works only on workstations with SPARC processors,
under Solaris and SunOS, and therefore its claim of
portability is yet to be realized.

ATOM provides a framework on top of OM, and a
number of customized tools from basic block counting
to cache simulators can be built on top of that
framework. ATOM, unlike OM and EEL, does not
allow one to arbitrarily modify the object code, but
simplifies the instrumentation process by providing an
API to access program constructs such as procedures,
basic blocks, and instructions, and it also provides a
library to easily manipulate those constructs. These
library routines include operations such as iterating
through these constructs and inserting procedure calls
before and after them. However, ATOM does not
allow removing or replacing existing instructions in the
binary files as EEL does. Another drawback of ATOM
is that it is not portable. Currently, ATOM runs only on
the Alpha AXP under OSF/1.

Etch is an application program performance evaluation
and optimization system running on Intel x86 platforms
running the Windows/NT operating system. Etch
allows the user to instrument existing binaries with
arbitrary instructions.

The tools mentioned above operate on object codes for
a variety of operating systems and architectures, but
none of them work on JVM class files. However, the
Java interpreter provides some profiling information,
which includes the method invocation sequence and the
size of objects allocated, when invoked with the prof
switch. There is a tool called NetProf [26] that
visualizes Java profile information by translating Java
bytecodes to Java source code. There are also tools that
carry out post-processing on class files such as osjcfp
[25] and the work by Cattell [23] to make classes
persistence-capable. However, the inner workings of

these tools have not been published. Furthermore, these
are also customized tools and have the same limitations
mentioned above.

BIT follows ATOM’s design by providing a set of
classes that users can employ to build their own
program analysis tools for JVM bytecodes.

3. BIT Architecture

This section describes the design of BIT at a high level
and illustrates how BIT is used with an example. Like
ATOM, the architecture of BIT is based on the
observation that many of the dynamic behaviors of a
program can be obtained by instrumenting a few key
locations, e.g., before and after methods, before and
after basic blocks, and before and after instructions.
Thus, BIT provides classes and methods for inserting a
method invocation at each of these key locations.

Figure 1. The Process of Using BIT – Instrumentation Code uses BIT
classes to read in User Program and to insert calls to Analysis Code to

produce Instrumented User Program.

Figure 1 illustrates the process of using BIT. BIT is a
set of Java classes that are represented by the BIT box.
The user’s application is compiled into JVM bytecodes
with a Java compiler. The User Program box represents
the application output. The user writes personalized
instrumentation code by using the classes and methods
that BIT provides. The user also writes analysis code.
Both instrumentation and analysis code are compiled
into JVM bytecodes by a Java compiler and are
represented by Instrumentation and Analysis Code
boxes respectively. When the JVM executes the
instrumentation code, it will read in the user program,
which is in the form of JVM bytecodes, and insert calls

to the analysis code at appropriate places in the user
program. This process results in the instrumented user
program, which then can be executed under the JVM to
produce both the original program output, which is
represented by the User Program Output circle, and the
analysis output, which is represented by the Analysis
Output circle. The inserted calls to the analysis routines
do not have any semantic effect on the instrumented
program, which should produce exactly the same output
as the original program.

To provide a concrete understanding of how BIT
works, we present a customized tool that could aid in
branch prediction as illustrated by Srivastava and
Eustace [30]. This tool counts the number of branches
taken and not taken at all the branches in different
methods. Figure 2 shows the instrumentation code for
this tool. BIT’s methods are shown in bold. This
instrumentation code specifies where the user program
is to be instrumented and what methods are to be
invoked. This tool takes two arguments: an input file
and an output file. The input class file is opened and
broken down into more manageable pieces (class,
routine, basic block, and instruction), which are then
instrumented. In this instrumentation program, we first
analyze the input file by creating a new ClassInfo
object, whose constructor parses the input file and
stores the intermediate representation in its members.
A call to the getRoutines() method is invoked to obtain
the vector of Routines. A Routine represents a method
in the input class file. For each of these Routines, we
obtain the basic blocks by invoking the
getBasicBlocks() method. To count all the conditional
branches in a program, we need to insert analysis code
wherever there exists a conditional instruction in the
program. This is accomplished by looking at each basic
block and seeing whether the last instruction in that
basic block is a conditional instruction or not.

Once we find conditional instructions, we insert calls to
analysis methods before these conditional instructions
are executed. In addition, calls are made when entering
and leaving a method so that variables are initialized
and results are printed.

Figure 3 shows the analysis code that is invoked when
conditional instructions are encountered. The
LeaveMethod() method prints the statistics gathered
during this method’s execution. The Offset() method
puts the offset of the conditional instruction being
executed into a static variable named pc, and the
Branch() method increments branch outcome counters.
The analysis code uses class variables branch and pc

User
Program

(class
files)

Analysis
Code

(class file)

BIT
(class
files)

Instrumen-
tation Code
(class file)

Instrumen-
ted User
Program

(class files)

User Program
Data

User
Program
Output

Analysis
Output

import BIT.*;

public class BranchPrediction {
 static DataOutputStream data_out = null;
 static Hashtable branch = null;
 static int pc = 0;

 public static void main(String argv[]) {
 String infilename = new String(argv[0]);
 String outfilename = new String(argv[1]);
 ClassInfo ci = new ClassInfo(infilename);
 Vector routines = ci.getRoutines();
 for (Enumeration e=routines.elements();e.hasMoreElements();){
 Routine routine = (Routine) e.nextElement();
 Vector instructions = routine.getInstructions();
 for (Enumeration b = routine.getBasicBlocks().elements(); b.hasMoreElements();) {
 BasicBlock bb = (BasicBlock) b.nextElement();
 Instruction instr = (Instruction)instructions.elementAt(bb.getEndAddress());
 short instr_type = InstructionTable.InstructionTypeTable[instr.getOpcode()];
 if (instr_type == InstructionTable.CONDITIONAL_INSTRUCTION) {
 instr.addBefore("BranchPrediction", "Offset", new Integer(instr.getOrigOffset()));
 instr.addBefore("BranchPrediction", "Branch", new String("BranchOutcome"));
 }
 }
 String method = new String(routine.getMethod());
 routine.addBefore("BranchPrediction", "EnterMethod", method);
 routine.addAfter("BranchPrediction", "LeaveMethod", method);
 }
 ci.write(outfilename);
 }
}

Figure 2. Instrumentation Code: Branch Counting Tool

public BranchPrediction {
 static Hashtable branch = null;
 static int pc = 0;

 public static void EnterMethod(String s) {
 System.out.println("method: " + s);
 branch = new Hashtable();
 }

 public static void LeaveMethod(String s) {
 System.out.println("stat for method: " + s);
 for (Enumeration e = branch.keys(); e.hasMoreElements();) {
 Integer key = (Integer) e.nextElement();
 Branch b = (Branch) branch.get(key);
 int total = b.taken + b.not_taken;
 System.out.print("PC: " + key);
 System.out.print("\t\ttaken: " + b.taken + " (" + b.taken*100/total + "%)");
 System.out.println("\t\tnot taken: " + b.not_taken + " (" + b.not_taken*100/total + "%)");
 }
 }

 public static void Offset(int offset) {
 pc = offset;
 }

 public static void Branch(int brOutcome) {
 Integer n = new Integer(pc);
 Branch b = (Branch) branch.get(n);
 if (b == null)
 b = new Branch();
 if (brOutcome == 0)
 b.taken++;
 else
 b.not_taken++;
}

Figure 3. Analysis Code: Branch Counting Tool

because the current version of BIT does not allow
passing more than one argument to the analysis
methods at this time, a shortcoming that will be fixed in
future work.

Analysis code is likely to vary between different
customized tools depending on what their functional
requirements are. However, most of the
instrumentation code presented in Figure 2 is likely to
be the same for different customized tools since all of
them will require some sort of navigation through
different constructs within a class file. For instance, to
dynamically count the number of instructions that get
executed in a user program, we would only have to
change the body of the loop that obtains different basic
blocks as shown in Figure 4. Instead of checking
whether the last instruction in a basic block is a
conditional or not, we count the number of instructions
present in a basic block to obtain the total instruction
count.

for (Enumeration b = routine.getBasicBlocks().elements();
 b.hasMoreElements();) {
 BasicBlock bb = (BasicBlock) b.nextElement();
 bb.addBefore("ICount", "count", new Integer(bb.size()));
}

Figure 4. Changes Required to Instrumentation Code to Count
Instructions instead of Conditionals

4. BIT Implementation

There were several different approaches that could have
been taken to observe and measure the dynamic
behavior of Java bytecodes. One possible approach
would be to modify the JVM to produce relevant
outputs. An advantage of this approach is that it is
easier to obtain certain kinds of information that would
either be difficult or impossible to obtain otherwise. For
example, measurements of the JVM garbage collection
implementation would require JVM modifications. A
drawback of this approach is that each time we wanted
to create a customized tool, we would have had revisit
the JVM source to add or remove tracing code. An
even bigger problem would be that even if we modified
the JVM source, redistributing the tools would be
difficult due to licensing restrictions. Furthermore,
tracking changes made to the JVM implementation, as
new releases became available, would also be difficult.

We originally considered using EEL as a basis for our
design, but we concluded that EEL supported more
functionality than we required. EEL was designed for
the SPARC architecture, which is more complex than
the JVM, and it proved to be overkill for instrumenting
JVM bytecodes. Furthermore, developing the BIT
system in Java allowed us to create highly portable
instrumentation tools. Although EEL’s object-oriented
design was still followed, we modeled BIT’s
functionality after that of ATOM (i.e., only allowing
executable instrumenting and not arbitrary editing),
which we felt was still highly valuable and much easier
to design, implement, and use.

4.1. Adding Method Calls

Since the instrumentation process requires adding new
method calls to a class file, class and method names as
well as other constants about these methods need to be
inserted to the constant pool table. The constant pool
table is a place where different string constants, class
names, field names, and other constants are stored for
each class file. To support the ability to add a method
call before or after a certain entity (e.g., method, basic
block, etc.), the descriptor, the class name, and the
method name of the method being inserted need to be
present in the constant pool table of the code being
instrumented. The constant pool table is also used as a
place to store arguments to the analysis methods.

If the string “BranchOutcome” is used as an argument
to the analysis methods, then it is interpreted as a
special directive for obtaining the outcome of the
branch instruction since there is no way of knowing
what the outcome of the branch would be at
instrumentation time. In this case, appropriate bytecode
instructions are added to obtain the outcome of the
branch at run-time and pass it to the analysis method.

In the JVM, there are several method invocation
instructions such as invokestatic, invokevirtual,
invokespecial, and invokeinterface. In BIT, analysis
method calls are inserted by using the invokestatic
bytecode instruction and therefore, analysis methods
have to be static. This decision implies that objects
cannot be associated with these methods. The
invokevirtual bytecode could have been used, but to
keep things simple, only the invokestatic instruction is
used. To use invokevirtual, more complex sequences of
bytecodes would have to be inserted in the instrumented

program because an instance of the class would need to
be created and manipulated.

5. Performance Results

In this section, we present results based on applying
two example tools implemented using BIT to five Java
applications: a benchmark suite, a lexical analyzer
generator, a Java compiler, an LALR parser generator,
and BIT itself.

We wrote several small tools, such as a branch counting
tool and a dynamic instruction counting tool, to
exercise BIT. The branch counting tool is a version of
the tool presented in Figures 2 and 3, modified to
produce less output. We built the dynamic instruction
counting tool by inserting calls to analysis methods
before basic blocks. The analysis method receives the
sizes of the basic blocks and adds and prints them to
show how many JVM instructions were executed
during the course of the user program’s execution. For
the results presented here, we instrumented only the
application code (i.e., not the Java library classes). Had
we instrumented the library classes as well, the
overheads would undoubtedly be higher.

To learn about the performance of BIT, three
characteristics were measured on an Intel Pentium
200Mhz machine with 24 MB of memory running
Microsoft Windows 95 and Sun Microsystems Inc.’s
Java Development Kit (JDK) version 1.1.4. The
characteristics measured were time required to
instrument user programs, execution time of the
instrumented programs, and the size of instrumented
programs. For these measurements, Jmark 1.2.1 [8], a
JVM benchmark suite from Ziff-Davis publishing
company; JLex [3], a lexical analyzer generator for
Java; EspressoGrinder [24], a Java compiler; CUP [16],
a parser generator; and BIT were used as user
applications on which the custom tools mentioned
above were run. Jmark consists of 19 class files and
benchmarks 11 different areas of Java performance,
JLex consists of 23 class files, EspressoGrinder is
composed of 105 class files, CUP consists of 40 class
files, and BIT consists of 43 class files.

Table 1 summarizes the time taken for each tool to
build the instrumented programs. As shown in Table 1,
the time taken to instrument each of the five
applications was under four minutes for both of the
customized tools. The average time taken to instrument
a single class file was about two seconds.
EspressoGrinder has more classes and a larger code
size, and this explains why it took more time to

instrument EspressoGrinder than the other four
applications. As native code compilers become
available and we are able to compile BIT, the time
required to instrument applications should decrease
significantly. The first column in this table is the time
required to compile Java files using javac compiler and
is included to aid the reader in estimating cost of
instrumenting class files relative to compilation. In the
cases where we did not have the program sources, the
compilation time is indicated as N/A.

Table 1. Time Required to Instrument User Programs

APPLICATION

COMPI-

LATION

TIME

(seconds)

BRANCH

COUNT

INST.

TIME

(seconds)

DYNAMIC

INSTRUCTION

INST. TIME

(seconds)

Jmark N/A 14 17

JLex 15 89 89

EspressoGrinder N/A 233 174

CUP 24 55 88

BIT 15 32 31

Table 2 shows the execution time of the instrumented
programs for each tool. The increase in execution time
of the instrumented programs ranged from 23% to
150%. This increase is due to method invocation
overhead when invoking analysis methods and the time
actually spent in the analysis methods. For most of the
programs, the execution time was increased by
approximately a factor of one to one and a half. The
lower overhead observed in Jmark is most likely due to
its extensive use of the Java libraries (e.g., for the
purpose of benchmarking graphics, etc.), which were
not instrumented in this study.

Table 2. Execution Time of Instrumented User Programs

APPLI-
CATION

UN-
INSTRU-
MENTED

BRANCH
COUNT

(raw/% increase
over

uninstrumented)

DYNAMIC
INSTRUCTION
(raw / % increase

over
uninstrumented)

Jmark 315
seconds

409 seconds /
30%

387 seconds /
23%

JLex 16
seconds

31 seconds /
94%

20 seconds /
25%

Espresso
Grinder

6
seconds

15 seconds /
150%

12 seconds /
100%

CUP 7
seconds

14 seconds /
100%

8 seconds /
14%

BIT 89
seconds

183 seconds /
106%

167 seconds /
88%

To get a better understanding of the programs we
instrumented, we also measured some of the basic
dynamic characteristics of the programs. In particular,
we looked at the average bytecode instructions
executed per basic block. This average (computed
dynamically) was measured to be 4.4 in JLex, 5.8 in
EspressoGrinder, 3.2 in CUP, and 3.7 in BIT.

We also measured the dynamic frequency of
conditional branch instructions in JLex,
EspressoGrinder, CUP, and BIT, and observed that
11.4% of all instructions were conditional branches in
JLex; 10.3% in EspressoGrinder; 12.9% in CUP; and
6.8% in BIT.

BIT instrumentation caused an increase in the program
size as well, and the overhead ranged from 14% to 37%
as shown in Table 3. This increase in size is explained
by the addition of entries in the constant pool table,
which includes static arguments to the analysis routines,
the names of class and analysis methods, and method
descriptors, and by the addition of actual bytecodes to
invoke the analysis routines. The size of the program
instrumented with the dynamic instruction counting tool
increased more than that of the program instrumented
with the branch counting tool except for one
application. This is because the former includes
bytecodes to invoke the analysis routines before each
basic block while the latter only includes bytecodes to
invoke the analysis routine before conditional
instructions. However, since EspressoGrinder has a
relatively large number of instructions per basic block
compared to the other applications, the branch counting
tool had more overhead in this application.

Table 3. Code Size of Instrumented User Programs

APPLI-
CATION

UN-
INSTRU
MENTED

BRANCH
COUNT

(raw / % increase
over

uninstrumented)

DYNAMIC
INSTRUCTION
(raw / % increase

over
uninstrumented)

Jmark 34,966
bytes

44,130 bytes /
26%

47,854 bytes /
37%

JLex 86,350
bytes

107,869 bytes /
25%

111,173 bytes /
29%

Espresso
Grinder

295,281
bytes

379,879 bytes /
29%

374,460 bytes /
27%

CUP 117,964
bytes

147,738 bytes /
25%

151,933 /
 29%

BIT 95,680
bytes

108,404 bytes /
13%

110,953 bytes /
16%

The results presented show that the prototype version of
BIT has acceptable performance for several
instrumentation tasks. We anticipate that the overheads

of the prototype can be reduced dramatically by making
a number of performance enhancements. To reduce the
time required to instrument user programs, we could
use arrays instead of vectors since vectors in Java tend
to be two to three times slower than arrays according to
our personal experiences. To increase the execution
speed of the instrumented user programs, we could
inline analysis methods, removing method invocation
overhead (see [30]). Allowing multiple arguments to
analysis routines would significantly decrease the
number of method calls required to do the
instrumentation, and would also substantially improve
performance.

6. Summary

BIT is a set of interfaces that brings the functionality of
ATOM and other related tracing tools to the Java world
by allowing a user to instrument a JVM class file.
Being able to create customized tools to observe and
measure the run-time behavior of programs is valuable
for many tasks including program optimization and
system design.

BIT is the first framework that allows users to create
customized tools to analyze JVM bytecodes quickly
and easily. BIT allows the user to add calls to analysis
methods any place in the JVM bytecode to obtain
dynamic information about the program. We conducted
a performance study based on two small tools written
using BIT, and we reported the results here. The
overheads for both the code size and the execution time
were between 23% to 150%.

There are issues that need to be addressed in the near
future, and in the rest of this section, we discuss them.
One issue is the handling of exceptions. An exception
in Java bytecode contains information about the
exception handler in the code buffer, but since BIT
changes the code buffer as a result of adding method
calls, the information about the exception handler in an
exception is no longer valid. This could result in run-
time errors since incorrect exception handlers could be
invoked when exceptions are raised. Checks are
needed to make sure that the information about the
exception handlers are also updated if they are going to
be affected by changes in the code buffer. Exceptions
are being ignored in the current implementation.

Larger customized tools using BIT need to be built to
prove BIT’s usefulness. Possible candidates include a
tool that performs hierarchical profiling of a class file
such as gprof [13], HiProf [10], and mprof [34].
Recently, there have been other advances in profiling

including flow and context sensitive profiling [2] and
interprocedural dataflow analysis [11]. These advanced
profiling techniques could also be applied to JVM
programs with BIT.

7. Availability

BIT source is freely available. If you would like to
obtain a copy, please email hanlee@cs.colorado.edu or
zorn@cs.colorado.edu.

Acknowledgments

This work was supported in part by the National
Science Foundation under grant IRI-95-21046. We
would like to thank Margo Seltzer and the anonymous
referees for their helpful comments on drafts of this
paper.

References

 [1] Anant Agarwal, Richard L. Sites and Mark
Horowitz. “ATUM: A New Technique for
Capturing Address Traces Using Microcode.”
Proceedings of the 13th International Symposium
on Computer Architecture, pages 199-127, June
1986.

 [2] Glenn Ammons, Thomas Ball, and James R. Larus.
“Exploiting Hardware Performance Counters with
Flow and Context Sensitive Profiling.” In
Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), pages 85-108, June
1997.

 [3] Elliot Berk. JLex: A Lexical Analyzer Generator
for Java.
http://www.cs.princeton.edu/~appel/modern/java/J
Lex.

 [4] Brian Bershad et al. Etch Overview.
http://www.cs.washington.edu/~bershad/Etch.html.

 [5] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian
Colbrook and William E. Weihl. “PROTEUS: A
High-Performance Parallel-Architecture
Simulator.” Massachusetts Institute of Technology
technical report MIT/LCS/TR-516, 1991.

 [6] Per Bothner. Kawa, the Java-based Scheme
System.
http://www.cygnus.com/~bothner/kawa.html.

 [7] Robert F. Cmelik and David Keppel. “Shade: A
Fast Instruction-Set Simulator for Execution
Profiling.” Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 128-137,
May 1994.

 [8] Richard V. Dragan and Larry Seltzer. Java Speed
Trials. PC Magazine, vol 15, no 18, 1996.

 [9] Susan J. Eggers, David R. Keppel, Eric J.
Koldinger, and Henry M. Levy. “Techniques for
Efficient Inline Tracing on a Shared-Memory
Multiprocessor.” SIGMETRICS Conference on
Measurement and modeling of Computer Systems,
vol 8, no 1, May 1990.

[10] Janel Garvin. HiProf Advanced Code Performance
Analysis Through Hierarchical Profiling.
http://tracepoint.galatia.com/noframes/products/hip
rof/profiling/overview.

[11] David W. Goodwin. “Interprocedural Dataflow
Analysis in an Executable Optimizer.” In
Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), pages 122-145, June
1997.

[12] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, 1996.

[13] Susan L. Graham, Peter B. Kessler and Marshall
K. McKusick. “An Execution Profiler for Modular
Programs.” Software Practice and Experience,
pages 671-685, vol 13, 1983.

[14] Jonathan C. Hardwick and Jay Sipelstein. “Java as
an Intermediate Language.” Technical Report
CMU-CS-96-161. Department of Computer
Science. Carnegie Mellon University, August
1996.

[15] Reed Hastings and Bob Joyce. “Purify: Fast
Detection of Memory Leaks and Access Errors.”
Proceedings of the Winter USENIX Conference,
Pages 125-136, January 1992.

[16] Scott Hudson. Java Based Constructor of Useful
Parsers (CUP).
http://www.cc.gatech.edu/gvu/people/Faculty/huds
on/java_cup/home.html.

[17] Intermetrics. AppletMagic: Ada for Java Virtual
Machine. http://www.appletmagic.com.

[18] James R. Larus and Thomas Ball. “Rewriting
Executable Files to Measure Program Behavior.”
Software, Practice and Experience, vol 24, no. 2,
pages 197-218, February 1994.

[19] James R. Larus and Eric Schnarr. “EEL: Machine-
Independent Executable Editing.” In Proceedings
of the SIGPLAN ’95 Conference on Programming
Language Design and Implementation (PLDI),
pages 291-300, June 1995.

[20] Han B. Lee. BIT: Bytecode Instrumenting Tool.
MS thesis, University of Colorado, Boulder, CO,
July 1997.

[21] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 1997.

[22] MIPS Computer Systems, Inc. Assembly
Language Programmer’s Guide, 1986.

[23] J. Eliot B. Moss and Antony L. Hosking.
“Approaches to Adding Persistence to Java.” First
International Workshop on Persistence and Java,
Septermber 1996.

[24] Martin Odersky, Michael Philippsen, and Christian
Kemper. EspressoGrinder.
http://wwwipd.ira.uka.de/~espresso/.

[25] ODI. PSE/PSE Pro for Java API User Guide.
1997.

[26] Srinivasan Parthasarathy, Michael Cierniak, and
Wei Li. “NetProf: Network-based High-level
Profiling of Java Bytecode.” Technical Report
622, Computer Science Department, University of
Rochester, May 1996.

 [27] Steven K. Reinhardt, Mark D. Hill, James R.
Larus, Alvin R. Lebeck, James C. Lewis, and
David A. Wood. “The Wisconsin Wind Tunnel:
Virtual Prototyping of Parallel Computers.” In
Proceedings of the 1993 ACM Sigmetrics
Conference on Measurement and Modeling of
Computer Systems, pages 48-60, May 1993.

[28] Michael D. Smith. “Tracing with Pixie.” Memo
from Center for Integrated Systems, Stanford
Univ., April 1991.

[29] K. So et al. “PSIMUL – A System for Parallel
Execution of Parallel Programs.” in Performance
Evaluation of Supercomputers, J.L. Martin, ed.,
Elsevier Science Publishers B.V., North Hoolan,
1988.

[30] Amitabh Srivastava and Alan Eustace. “ATOM A
System for Building Customized Program Analysis
Tools.” In Proceedings of the SIGPLAN ’94
Conference on Programming Language Design
and Implementation (PLDI), pages 196-205, June
1994.

[31] Amitabh Srivastava and David Wall. “Link-Time
Optimization of Address Calculation on a 64-bit
Architecture.” In Proceedings of the SIGPLAN ’94
Conference on Programming Language Design
and Implementation (PLDI), pages 49-60, June
1994.

[32] Amitabh Srivastava and David Wall. “A Practical
System for Intermodule Code Optimization at
Link-Time.” Journal of Programming Languages,
vol 1, no 1, pages 1-18, March 1993.

[33] David W. Wall. “Systems for Late Code
modification.” In Robert Giegerich and Susan L.
Graham, eds., Code Generation – Concepts, Tools,
Techniques, pages 275-293, Springer-Verlag, 1992.

[34] Benjamin Zorn and Paul Hilfinger. “A Memory
Allocation Profiler for C and Lisp Programs.”

USENIX Conference Proceedings, pages 223-237,
Summer 1988.

Sun, Sun Microsystems, and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United
States and other countries.

