
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



LIL: An Architecture-Neutral Language for Virtual-Machine Stubs

Neal Glew Spyridon Triantafyllis� Micha l Cierniaky

Marsha Eng Brian Lewis James Stichnoth

Microprocessor Technology Lab, Intel Corporation

Abstract

High-performance MREs (managed runtime envi-

ronments) that run either Java1 or CLI applications

require machine code sequences, called stubs, to im-

plement such runtime support operations as object

allocation, synchronization, and native method in-

vocation. Due to the frequency of these operations,

implementing stubs eÆciently is critical for perfor-

mance. Also, the number of di�erent stubs that

have to be created and maintained makes stub cre-

ation a sizable part of an MRE's implementation.

Stubs typically require access to low-level resources

such as registers and the call stack, and often must

be specialized at runtime for particular classes or

methods. Although stubs can be implemented by

generating hand-crafted machine code at runtime,

this approach is tedious and error-prone, and leads

to stubs that are non-portable and diÆcult to main-

tain.

To address these problems, we designed a domain-

speci�c language, called LIL, for implementing stubs.

LIL is low-level but architecture-neutral, allowing

the creation of stubs that are both portable and eÆ-

cient. LIL also abstracts away many implementation

details, making stubs easier to read. It is lightweight

enough to be used for dynamic stub generation.

LIL's validity checker helps us to catch many errors

early. Our preliminary experience using LIL indi-

cates that it greatly eases development and mainte-

nance of stubs without sacri�cing performance.

1 Introduction

The Open Runtime Platform (ORP [5]) is an ex-

perimental managed runtime environment (MRE)

developed by the Programming Systems Lab at In-

tel. ORP supports both Java [11] and Common

Language Infrastructure (CLI [8]) applications. To

�Spyridon is currently at Princeton University.
yMicha l is currently at Microsoft Corporation.
1Other brands and names are the property of their respec-

tive owners.

provide a credible starting point for experimenta-

tion, ORP's performance is comparable to that of

other state-of-the-art MREs. Also, ORP supports

multiple platforms with as little e�ort as possi-

ble. To date, ORP runs on both Intel r
 IA-32

and Itanium r
 Processor Family (IPF) architec-

tures, and on both the Windows and Linux oper-

ating systems.

One of the most distinctive features of ORP is

its modularity. ORP comprises three components:

a just-in-time compiler (JIT), a garbage collector,

and a core virtual machine (VM). Interaction be-

tween these components is allowed only through

strictly de�ned interfaces. Thus the VM, the JIT,

and the garbage collector are isolated from each

other's implementation details. This greatly sim-

pli�es experimentation. For example, we can exper-

iment with new compilation techniques or garbage

collection approaches by modifying just the JIT or

the garbage collector respectively, without having

to modify other ORP components. To date, we

have implemented seven di�erent JITs (see, e.g.,

[2, 7, 4, 1]) and �ve di�erent garbage collectors for

use within ORP.

ORP uses optimized machine code sequences,

called stubs, to implement a number of common run-

time support operations including object allocation,

synchronization, and exception handling. Due to

ORP's modular design, the JIT does not possess

enough information to directly generate the code

for most of these stubs. Instead, the JIT has to

rely on support from the VM, and sometimes from

the garbage collector as well. These runtime sup-

port operations usually require direct access to low-

level machine resources such as registers and the call

stack, and often need to be generated dynamically

at runtime.

In the past, the ORP VM generated stubs by di-

rectly emitting hand-written machine code. How-

ever, this approach is error prone and results in

stubs that are diÆcult to maintain. Stubs gener-

ated in this way are also not portable: a di�erent



version of each stub is needed for each of the plat-

forms supported by ORP. This situation led us to

design LIL, a domain-speci�c language for express-

ing runtime support functionality. In this paper,

we present LIL and argue that it greatly simpli�es

the creation of stubs, both by making stubs more

concise and readable, and by hiding architecture-

dependent details. Furthermore, LIL provides these

bene�ts without performance loss.2 Indeed, using

LIL facilitates experimentation with stub code and

with ORP's runtime support system in general, pos-

sibly leading to performance improvements.

In the next section, we describe stubs in more

detail, motivate the LIL approach, and present an

object allocation stub as an example that illustrates

some of the issues involved. Sections 3 and 4 present

the LIL language in detail and outline its bene�ts.

Section 5 presents preliminary results showing that

LIL's performance is similar to hand-written assem-

bly stubs. Finally, sections 6 and 7 discuss related

and future work.

2 Stubs

2.1 Motivation of Our Approach

Runtime support stubs are ubiquitous in ORP.

Examples include object allocation, type checking

(instanceof, checkcast, and aastore JVM byte-

codes), exception throwing, native-method invoca-

tion (JNI), delayed method compilation, synchro-

nization, arithmetic helpers, and class initialization.

Since these operations appear often in Java appli-

cations, implementing stubs eÆciently is critical for

performance. Also, the sheer number of di�erent

stubs that must be supported by ORP makes it nec-

essary to generate stubs in a portable and maintain-

able way. The purpose of LIL is to answer both these

challenges.

Several approaches have been used in the past to

implement runtime support code:

1. Stubs can be written in a high-level language

such as C, and compiled with the rest of the

VM source code. The VM then responds to re-

quests for runtime support routines by passing

the addresses of these precompiled functions to

the JIT. In the past, ORP used this approach

for a few stubs.

2. Stubs can also be implemented in assembly lan-

guage.

2Actually we still need a few hand-written stubs to get the

best performance. We expect that future tuning of LIL will

eliminate this need.

3. The VM can generate machine-code stubs at

runtime. This was ORP's approach before LIL.

4. The VM can express runtime support stubs in

Java bytecode. The JIT then compiles these

stubs in the usual way. Operations that can-

not be expressed in bytecode, such as those

that violate Java's type system, can be han-

dled through \magic" method calls that are

recognized and inlined into machine code by

each JIT. This approach is taken by the Jikes

RVM [3], and is discussed further in Section 6.

5. The VM can generate stubs directly in the JIT's

IR.

None of these existing approaches �t ORP's needs,

for the following reasons.

1. Dynamic code generation. While some

stubs can be generated statically, at ORP build

time, others must be customized at runtime.

For example, the stubs for invoking native

methods must be generated for each native

method. The set of native methods is not

known until class-load time, and changes as new

classes are loaded. This dynamic code genera-

tion precludes using precompiled stubs, as in

the �rst and second approaches above.

In addition, many frequently executed opera-

tions, such as type checking and object alloca-

tion, are signi�cantly more eÆcient if they are

customized on a per-type basis. For example,

the ORP VM can generate a custom checkcast

sequence for each class in a program, which is

signi�cantly more eÆcient than a general im-

plementation of checkcast.

2. Low-level access. Many runtime support op-

erations need to directly access low-level re-

sources such as processor registers or the call

stack. For example, ORP's IPF implementa-

tion keeps some global values in registers, in-

cluding the pointer to the data structure for the

current thread. Examples of operations that

need to directly manipulate the stack include

exception throwing, object allocation, and na-

tive method invocation. Such low-level oper-

ations cannot be implemented in a high-level

language, Java bytecode, or most JIT IRs.

Furthermore, certain frequently invoked stubs

are so performance-critical that they must take

full advantage of the underlying processor. This

makes it necessary to implement such stubs in

hand-crafted machine code, or at least in a suf-

�ciently low-level language.



The �gure below uses the following constants: fpo is the o�set of the frontier pointer in the per-thread

structure and lpo is the o�set of the limit pointer in the per-thread structure.

IA-32 IPF LIL

1.

push ebx

push ebp

mov ebx, [esp+20]

mov ebp, [esp+16]

entry 0:managed:

g4,pint:ref;

locals 3;

2. mov ecx, fs:[0x14] adds r18 = 0h, r4 l0=ts;

3.
mov eax, [ecx+fpo]

mov edx, [ecx+lpo]

adds r14 = fpo, r18

ld8 r8 = [r14]

adds r15 = lpo, r18

ld8 r16 = [r15]

ld r,[l0+fpo:ref];

ld l1,[l0+lpo:pint];

4.

add ebx, eax

cmp ebx, edx

ja slowpath

add r17 = r8, r32

cmp.ltu p0,p6=r16,r17

l2=r:pint+i0;

jc l2 >u l1,slowpath;

5.

mov [eax], ebp

mov [ecx+fpo], esi

pop ebp

pop ebx

ret 8

(p6) st8 [r8] = r33

(p6) st8 [r14] = r17

(p6) br.ret b0

st [r+0:pint],i1;

st [l0+fpo:pint],l2;

ret;

6.

slowpath:

pop ebp

pop ebx

/* push m2n */

push [esp+36]

push [esp+44]

call gc alloc

add esp, 8

/* pop m2n */

ret 8

/* push m2n */

adds r53 = 0h, r32

adds r54 = 0h, r33

brl.call gc alloc

/* pop m2n */

br.ret b0

:slowpath;

push m2n 0;

in2out platform:ref;

call gc alloc;

pop m2n;

ret;

Figure 1: IA-32, IPF, and LIL code sequences for object allocation. The push m2n and pop m2n code

sequences are omitted for brevity.

3. Portability. The requirement to generate

low-level code suggests using the second and

third approaches, that is, using assembly lan-

guage to implement stubs. However, this causes

portability and maintainability problems. New

assembly-language implementations would be

needed for each new processor and operating

system. Since ORP contains many stubs, this

would be onerous.

4. VM/JIT dependencies. Maintaining a clean

interface between the JIT and the VM is a key

ORP goal. Thus we cannot use the �fth ap-

proach, generating stubs directly in the JIT's

IR, since this approach would tie the VM to

a particular IR, and perhaps to a particular

JIT implementation. It would be necessary

to rewrite the stubs each time the JIT's IR is

changed.

5. VM/MRE dependencies. Because ORP

supports both Java and CLI, approach 4 re-

quires that one of these languages be chosen

as the stub implementation language, making

ORP asymmetric and more dependent upon

that language. An alternative would be to write

all stubs in both languages, which is as onerous

as writing them for multiple architectures.

6. Stub inlining. Since runtime support stubs

are invoked often, implementing them using

called functions can incur signi�cant call over-

head. Directly inlining runtime support stubs

into JIT-generated code would reduce this over-

head. Approaches 1{3 are clearly not suitable

for this purpose. Although approaches 4 and

5 could achieve this, they su�er the limitations

noted above. Section 4.5 discusses how LIL can

be used to provide a solution to this problem.



For these reasons, none of the existing approaches

for generating runtime support code is appropriate

for ORP, which motivated us to develop LIL. In the

rest of this paper we argue that the use of LIL pro-

vides an attractive balance between performance,

portability, and modularity. The main drawback of

LIL is that it requires another language and com-

piler within ORP. This drawback is mitigated by

the simplicity of the language|the implementation

adds only 8000 lines of code.

In the remainder of this section, we give an exam-

ple, the object allocation stub, and show how it is

implemented in IA-32 and IPF assembly code, and

in LIL. This example illustrates some of the issues

involved in creating stubs. Finally, before present-

ing the LIL language in Section 3, we discuss in more

detail the thread-local storage and stack-marking is-

sues, because they occur so often in stubs for man-

aged runtime environments.

2.2 Example

As an example of runtime support code, con-

sider the object allocation stub. Object alloca-

tion is implemented by the garbage collector. A

high-performance garbage collector typically pro-

vides each thread with its own thread-local allo-

cation area. This allows a thread to allocate new

objects quickly, without having to acquire a global

heap lock. The thread-local allocation area can be

represented as a frontier pointer and a limit pointer.

The allocation sequence can be divided into a fast

path and a slow path. First, the requested object

size (including all necessary alignment padding) is

added to the frontier pointer, and the result is com-

pared against the limit pointer. If enough space is

available, the fast path is executed. This path up-

dates the frontier pointer, initializes the newly allo-

cated object by clearing all its �elds and setting its

virtual-method table (vtable) pointer, and returns it.

If the available space is not enough, the slow path

is executed. This path marks the execution stack in

case garbage collection and associated stack walking

are necessary, and calls into the garbage collector to

perform the allocation.

Figure 1 shows the code for object allocation.

Columns one and two show the hand-written IA-32

and IPF assembly code, and column three shows the

equivalent LIL code, which is described in detail in

Section 3. The stub is intended to be called directly

from JIT-generated code, and is called with two ar-

guments: the object size in bytes and the vtable

pointer that corresponds to the object type. No-

tice the di�erences between the �rst two columns|

the di�erent instruction sets and the di�erent call-

Native frame

Stack

Bottom frame

Top frame

Java frame

M2nFrame

Native frame

Native frame

Java frame

Java frame

Java frame

M2nFrame

Native frame

Java frame

Java frame

Java frame

Java frame

M2nFrame

Native frame

LM2NF pointer

Figure 2: List of M2nFrames used for stack walking.

ing conventions. The purpose of LIL is to ab-

stract away these di�erences by generating platform-

speci�c code sequences automatically. In this way,

the VM could be ported to a new platform with-

out needing to rewrite and maintain a large body of

custom stub code.

2.3 MRE-Speci�c Issues

Another di�erence between columns one and two

of Figure 1 concerns MRE-speci�c details. ORP has

a per-thread structure that holds information about

each thread, including the frontier and limit point-

ers for thread-local memory allocation. A pointer to

this structure is stored in the thread-local storage

provided by the platform's threading system. Thus,

a stub can obtain a pointer to the ORP thread struc-

ture for the current thread by loading it from the

thread-local storage. We call this operation loading

the thread pointer. How it is done varies by both

architecture and operating system. Row two of Fig-

ure 1 shows how it is achieved on Win32 operating

systems. On the IA-32 architecture, it is loaded from

a �xed o�set in the fs segment; on the IPF archi-

tecture, ORP keeps the pointer in register r4 (nor-

mally a preserved register). On Linux, the pointer

is obtained by calling a function provided by the

pthreads library.

Another MRE-speci�c issue is M2nFrames. Each

time JIT-generated code calls native code, ORP re-



quires that a marker be inserted between the two

activation frames on the stack. This marker is nec-

essary because of the way ORP implements stack

walking, used in tasks such as root-set enumeration,

exception propagation, and stack introspection. We

call these markers managed-to-native frames, or

M2nFrames. Figure 2 shows the layout of a typical

thread's stack. Combining information stored in the

M2nFrames with the available information on man-

aged code, the VM can easily locate each managed

activation frame on the stack. The details of this

scheme are not important to this paper. What is

important is that any stub that might cause stack

walking, either directly or indirectly, must push an

M2nFrame onto the stack upon entry, and pop it be-

fore returning. The M2nFrame is actually part of the

stub's activation frame. Also important to this pa-

per is that the details of setting up M2nFrames are

speci�c to the implementation of the VM and to the

architecture. Therefore, stub code cannot be made

portable unless these details are abstracted away.

3 LIL

We designed the LIL
3 language in order to enable

the creation of platform-neutral stubs in ORP. We

have implemented LIL, including code generators for

the IA-32 and IPF architectures, within the ORP

framework. This section introduces LIL by exam-

ple and then provides a detailed description of the

language.

3.1 Example

The last column of Figure 1 depicts a LIL stub

for allocating an object. This stub is compiled into

code that acts like a function. The stub's entry

line states that it is called using the managed-code

calling convention4 with two arguments, and that it

returns a result. The arguments are of type g4 (32-

bit general-purpose value) and pint (pointer-sized

general-purpose value, often used for pointers other

than object references), and the result is of type ref

(reference to an object in the heap). The \0" is the

number of standard places, which are described in

Section 3.2.1. The rows in the �gure do the follow-

ing:

1. This row has the entry declaration and declares

that the rest of the stub will use three local

variables.

3LIL stands for Low-level Intermediate Language, and its

pronunciation suggests its \little"-ness or lightweight nature.
4ORP speci�es a calling convention that all JIT-compiled

code must conform to; this is called the managed-code calling

convention.

2. This row loads the thread pointer into l0 (the

�rst local variable).

3. This row loads the frontier and limit pointers.

Both instructions load from the address equal

to l0 plus a constant (fpo and lpo respec-

tively); these constants are the o�sets of the

frontier and limit pointers in the ORP thread

structure. The �rst instruction loads a ref into

r (the return variable); the second loads a pint

into l1.

4. This row computes the new frontier pointer and

compares it to the limit pointer. The �rst in-

struction adds r and i0 (the �rst input, the size

of the object to be allocated) and places the re-

sult in l2. The second instruction branches to

label slowpath if l2 is greater than l1, other-

wise it continues with the next instruction.

5. This row initializes the object's vtable pointer,

updates the frontier pointer, and returns. The

�rst two instructions store pints at the ad-

dresses r and l0 plus the constant fpo respec-

tively. In the �rst instruction, the value stored

is i1 (the vtable pointer), in the second it is

l3. The �nal instruction returns, and the value

returned to the caller is the current value of r.

6. This row is the slow path. It starts with the

declaration of label slowpath, the target of the

conditional jump above. Next it pushes an

M2nFrame. Then it sets up to call a function ac-

cording to the platform calling convention (i.e.,

the calling convention used by the platform's

C compiler), using the arguments to the stub

as the arguments for the call. Then it calls

gc alloc and sets r to the value returned. Fi-

nally it pops the M2nFrame and returns.

3.2 The Language

A LIL stub speci�es code that is like a function

in a high-level language. Like a function, it takes

arguments and can return a result. The stub speci-

�es which of several calling conventions it conforms

to. Also like a function, each stub executes with an

activation frame on the stack. Conceptually, this

activation frame is divided into a number of areas

that can vary in size and type across the execution of

the stub. For our purposes, these areas are: inputs,

standard places, locals, outputs, and return. The

inputs initially hold the arguments passed by the

caller, but they can change by assignment. Their

number and type is �xed across the stub. Standard

places are described in Section 3.2.1. The locals hold



values local to the stub. Their number is determined

by locals declarations, and their types are deter-

mined by a simple 
ow analysis. The outputs hold

values passed to functions called by the stub. Their

number and types are determined by in2out and

out declarations. These declarations set up an out-

put area, and various call instructions perform the

actual call. In the case of out there must be as-

signments to the outputs between the declaration

and the call. The return variable is a single loca-

tion that is present following a call instruction or

whenever an assignment is made to it; its type is de-

termined by a 
ow analysis. Each input, standard

place, local, output, and return is a LIL variable, and

is referred to using the names i0, i1, . . . , sp0, sp1,

. . . , l0, l1, . . . , o0, o1, . . . , and r, respectively.

All LIL variables and operations are typed by a

simple type system. The type system makes just

enough distinctions to know the width of values and

where they should be placed in a given calling con-

vention. For example, the type system distinguishes

between 
oating-point and general-purpose values

but not between signed and unsigned. In addition,

the type system distinguishes various kinds of point-

ers (e.g., pointers to heap objects versus pointers

to �xed VM data structures), because in the future

we may want the LIL code generator to be able to

enumerate garbage-collection roots on LIL activation

frames. The complete list of types is: g1, g2, g4, and

g8 for general-purpose values; f4 and f8 for 
oating-

point values; ref and pint for pointer values; and

void for return types only (nothing returned).

The LIL language includes a validity checker. This

check makes sure that each stub is sensible, and can

catch some basic errors. The conditions checked in-

clude the following. All labels used must be de-

clared exactly once. The last instruction cannot fall

through, it must jump or return (both tail calls and

no return calls satisfy this requirement). Every con-

trol 
ow path to a point must set up the activation

frame in consistent ways (i.e., same number of lo-

cals, number and type of outgoing arguments, pres-

ence or absence of an M2nFrame, et cetera). This last

condition is checked by a straightforward data
ow

analysis. The validity checker also imposes certain

restrictions on the program that make code genera-

tion easier. Space prevents a detailed description of

the validity check.

Syntactically, a LIL stub consists of an entry dec-

laration followed by a sequence of other declarations

and instructions. The declarations and instructions

are described in the following subsections, except

that we �rst describe what standard places are. This

section ends with a brief description of the imple-

mentation of LIL in ORP.

3.2.1 Standard Places

Standard places are a set of implicit arguments,

which can be passed to a stub in addition to the

normal arguments passed via the regular calling con-

ventions. To see why standard places are necessary,

consider the example of compile-me stubs. When a

new class is loaded, its methods do not need to be

compiled immediately. Instead, a compile-me stub

is installed. When the method is invoked for the

�rst time, the compile-me stub causes the method

to be compiled by the JIT, after which the compiled

code is invoked with the original arguments.

Conceptually, the compile-me stub for an instance

method taking an integer and returning a 
oat does

the following: It pushes an M2nFrame in case garbage

collection occurs or exceptions are thrown during

compilation. Then it calls the VM to compile the

method, passing a pointer to the VM data struc-

ture representing the method. This function re-

turns a pointer to the native code, the stub pops

the M2nFrame, and then performs a tail call to the

native code. Here is the LIL code that achieves this:

entry 0:managed:ref,g4:f4;

push_m2n;

out platform:pint:pint;

o0=method;

call jit_method;

pop_m2n;

tailcall r;

where method is a pointer to a VM data structure

representing the method in question.5 Except for

the entry declaration and the value of method, the

rest of the code above is common for all compile-me

stubs. Therefore it would be desirable to factor this

code out into a separate, generic stub. Compile-me

stubs could then call this stub and pass it the value

of method as an argument. However, passing an ar-

gument in the usual way would upset the argument

stack, which is already holding the arguments of the

method to be compiled.

The easiest and most eÆcient way to pass this ar-

gument between the two stubs is to use a separate

argument-passing mechanism that does not interfere

with the call stack. Standard places serve exactly

this purpose. Passing information between stubs

through standard places in LIL is roughly analogous

to passing information between functions through

5ORP's compile-me stubs also contain some exception re-

throwing code not shown here.



Table 1: LIL Declarations

LIL syntax Description

entry n:cc:Ts:RT; Stub signature

entry n:cc:arbitrary; Stub signature

out cc:Ts:RT; Call setup

in2out cc:RT; Call setup

locals n; n locals

std places n; n standard places

:label; Label declaration

global variables in C. In the example, the method-

speci�c stub becomes:

entry 0:managed:ref,g4:f4;

std_places 1;

sp0=method;

tailcall compile_me_generic;

The declaration std places 1; creates a standard

place. The next instruction assigns method to

it. The tail call passes this extra argument to

compile me generic using �xed scratch registers.

The generic compile-me stub is the following:

entry 1:managed:arbitrary;

push_m2n;

out platform:pint:pint;

o0=sp0;

call jit_method;

pop_m2n;

tailcall r;

The entry declaration declares that one extra ar-

gument will be passed in a standard place. This

standard place is then used in the third instruction

o0=sp0; as the argument to the call to jit method.

Notice also that the entry declaration contains the

keyword arbitrary instead of parameter and return

types. This means that the stub should work for any

number and type of parameters and type of return.

Such a stub cannot access the inputs and cannot

return|it must end with an unconditional jump, a

call that does not return, or a tail call.

The need for this extra argument-passing mech-

anism is important to several classes of stubs. The

standard-places mechanism is one aspect of LIL that

is di�erent from traditional compiler intermediate

representations.

3.2.2 Declarations

LIL declarations are summarized in Table 1. An

entry declaration must appear at the beginning

of every stub, and only there. The other decla-

rations can appear anywhere after the entry dec-

laration, and take e�ect at the point where they

appear. An entry declaration contains a colon-

separated list of items. The �rst item is the num-

ber of standard places passed to the stub. The rest

is the stub's signature. A signature comprises a

calling convention, a comma-separated list of pa-

rameter types, and a return type. As well as the

managed and platform calling conventions shown

in the examples, there is jni for the calling conven-

tion speci�ed by JNI [10], rth for runtime helpers,

and stdcall (for the stdcall calling convention,

needed for CLI). In some stubs, such as the generic

compile-me stub, the keyword arbitrary is used

instead of parameter and return types in the entry

declaration. This means that the stub works for an

arbitrary number of parameters of arbitrary types

and an arbitrary return type. As previously men-

tioned, such a stub may not access input variables

nor return.

The out and in2out declarations set up an output

area for a subsequent call. The out declaration is

followed by a signature for the function being called.

The in2out declaration is followed by the calling

convention and return type; the number and types

of arguments to the callee are the same as for the

stub. Strictly speaking, in2out is both a declara-

tion and an instruction. In addition to setting up for

the call, it also copies the input variables to the out-

put variables. This may be more complicated than

it seems, since the stub and the callee may follow

di�erent calling conventions. On the IA-32 archi-

tecture, for example, an in2out instruction inside a

managed stub calling a platform function will need

to reverse the order of arguments on the stack.

The instruction locals n; declares n local vari-

ables, which are then available in subsequent in-

structions. Similarly, std places n; creates n stan-

dard places. Finally, :l; declares a label l.

3.2.3 General-Purpose Instructions

LIL includes instructions typically found in a low-

level compiler intermediate representation for doing

arithmetic, loading, storing, and control 
ow. These

appear in Table 2. Instructions that are speci�c to

a VM implementation, and ORP in particular, are

described in the next section.

The arithmetic instructions include unary and bi-

nary operations common on CPUs, such as addition,

subtraction, negation, bitwise operations, sign and

zero extension, shifts, et cetera. In Table 2, v stands

for a variable (i.e., input, output, local, or standard



Table 2: LIL General-Purpose Instructions

Category LIL syntax Description

Arithmetic v = o; Move

v = uop o; Unary

v = o1 op o2; Binary

Memory ld v, addr; Load

st addr, o; Store

inc addr; Increment

cas addr=o1,o2, Atomic cmp

label; and swap

Calls call o; Ordinary

tailcall o; Tail call

call.noret o; No return

ret; Return

Branches jc cond, label; Conditional

j label; Always

place), and o stands for an operand (i.e., a variable

or immediate value). In addition, a coercion can

be applied to an operand to change its type to an

equivalent one. On a 32-bit architecture, g4, ref,

and pint are equivalent; on a 64-bit architecture,

g8, ref, and pint are equivalent. A coercion has

the form :T following the variable or immediate.

The general form for loads and stores is ld

v,addr; and st addr,o;. There is also a mem-

ory increment operation, inc addr;. This opera-

tion is used by stubs to increment statistics and

performance counters. An address consists of an

optional base variable, an optional index variable,

a byte o�set (which can be zero), and a type. The

type is the type of the memory location being ac-

cessed. The index variable can have a scale of one,

two, four, or eight. Both the complex address form

and the inc instruction match well with the IA-32

architecture's memory operations and can easily be

expanded to an eÆcient sequence of IPF instruc-

tions. In addition, an address can specify acquire or

release semantics and load instructions can specify

zero or sign extension of subword values.

There is also an atomic compare-and-swap oper-

ation, cas addr=o1,o2,label;, for use in synchro-

nization stubs. It compares the �rst operand against

the memory value given by the address. If these val-

ues are equal it stores the second operand into the

same memory address; otherwise it jumps to the

label. The whole operation appears atomic to all

threads.

The examples showed uses of call instructions,

call and tailcall. The form call.noret is like

call except that the LIL writer is asserting that

Table 3: LIL VM-Speci�c Instructions

Category LIL syntax

M2nFrames push m2n o(,handles)?;

pop m2n;

m2n save all;

JNI Handles handles = o;

Thread Pointer v = ts;

Allocation alloc v,n;

the function does not return. The LIL code genera-

tor will not generate native code beyond the actual

call instruction. It also a�ects the validity of a LIL

stub|call cannot end a stub but call.noret can.

This form is commonly used for exception throwing

functions.

We have already seen examples of conditional

jumps. The conditions are formed using the com-

mon relational operators (e.g., == and <=). LIL also

has unconditional jumps.

3.2.4 ORP-Speci�c Instructions

The push m2n instruction sets up an M2nFrame on

the stack. It includes an operand and an optional

handles keyword. The operand is a pointer to a

VM data structure for a method. If the stub inter-

faces to a native method, the operand should be this

native method. All other stubs should use NULL.

The handles keyword is explained below. The in-

struction m2n save all; saves additional informa-

tion to the M2nFrame needed for exception propaga-

tion. This information is not saved automatically

by push m2n, because doing so is expensive on IPF,

and it is very often unnecessary.

All M2nFrames also include a list of JNI han-

dles. These handles are a GC-safe mechanism for

referencing objects. The handles keyword in the

push m2n instruction declares that such handles will

be used, and the matching pop m2n instruction will

free them. Otherwise the freeing step is skipped.

The instruction handles=o; sets the list pointer in

the M2nFrame to the operand. This instruction just

sets the pointer to a list of handles in the frame;

other stub code is responsible for creating the nec-

essary handle structures.

The allocation instruction v=alloc n; allocates

n bytes of memory on the stack and places a pointer

to it into v. This space is available until the stub

returns. Stubs use this instruction to create struc-

tures, such as JNI handles, and to pass pointers to

them.



1.

entry 0:managed:f8,f8:f8;

push m2n method,handles;

locals 2;

alloc l0,8;

2.

ld l1,[mi:ref];

st [l0+0:ref],l1;

st [l0+4:pint],0;

handles = l0;

3.
out platform::void;

call gc enable;

4.

out jni:pint,pint,f8,f8:f8;

o0 = jni env;

o1 = l0;

o2 = i0;

o3 = i1;

call Java java lang Math pow;

l1 = r;

5.
out platform::void;

call gc disable;

6.

l0 = ts;

ld l0,[l0+ceo offset:ref];

jc l0=0,no exception;

7.

m2n save all;

out platform::void;

call.noret rethrow current exception;

8.

:no exception;

r=l1;

pop m2n;

ret

Figure 3: LIL code sequence for the JNI wrapper to

java.lang.Math.pow.

3.2.5 JNI Stubs

To illustrate some of the allocation and M2nFrame

setup features, this section discusses JNI stubs,

which are the most complex stubs in ORP. These

stubs are responsible for a transition from managed

code to native methods implemented according to

the JNI speci�cation [10]. They need to perform

a number of operations, including matching call-

ing conventions, enabling garbage collections, han-

dling synchronization, rethrowing exceptions, and

converting references to and from handles.

As an example, consider Math.pow, which is a

static native method that takes two doubles and

returns a double. Figure 3 shows the LIL code

that interfaces managed code to a JNI version of

Math.pow. In the �gure, method stands for the VM

data structure for Math.pow, mi stands for the ad-

dress of the �eld in the VM data structure for Math

that points to the java.lang.Class object for class

Math, jni env stands for the JNI environment struc-

ture in the VM, and ceo offset stands for the o�set

of the current exception object in the thread struc-

ture.

The �rst block declares the inputs and locals,

pushes an M2nFrame, and allocates 8 bytes of space

for storing an object handle on the stack. The sec-

ond block adds the Math class object to the list of

local object handles. The third block calls the VM's

gc enable function to allow garbage collection to

occur while the thread is subsequently executing

within native code. The fourth block calls the actual

native method. The �fth block calls gc disable

prior to the return to managed code. The sixth

block tests whether the native method threw an ex-

ception, branching to the no exception label if not.

Otherwise, the seventh block calls the VM function

rethrow current exception to propagate the ex-

ception. The �nal block pops the previously pushed

M2nFrame and returns to managed code.

In general, generating JNI stubs is a template-

driven process. Some snippets of code are included

in a JNI stub only for certain types of methods.

For example, a JNI stub will include a synchroniza-

tion snippet only if the corresponding method is de-

clared synchronized. In fact, there are two dif-

ferent synchronization snippets, for static and non-

static methods. Other code pieces are repeated for

each of a method's arguments. Actually, di�er-

ent pieces of code are used for reference and basic-

type arguments. JNI stub generation cannot be ex-

pressed as a simple \�ll in the blanks" process. It

actually takes hundreds of lines of C code to gener-

ate the LIL source code for each JNI stub.

3.3 Implementation

The LIL system has two parts: a parser and a code

generator. The parser takes a C string as input and

produces an intermediate representation (IR) of the

LIL instructions. The code generator takes the LIL

IR as input and produces machine instructions for

a particular architecture.

The parser includes a printf-like mechanism for

injecting runtime constants such as addresses of

functions or �xed VM data structures. For example,

here is the C code that generates the method-speci�c

compile-me stubs we encountered in Section 3.2.1.

NativeCodePtr

create_compile_me(Method_Handle m)

{

LilCodeStub* cs = lil_parse_code_stub(

"entry 0:managed:%0m;"

"std_places 1;"

"sp0=%1i;"



"tailcall %2i;",

m,

m,

create_compile_me_generic());

assert(lil_is_valid(cs));

NativeCodePtr addr =

LilCodeGenerator::get_platform()->

compile(cs);

lil_free_code_stub(cs);

return addr;

}

Our code generators make a couple of prepasses

to gather information and decide where to locate

LIL variables, and then a main pass to generate the

code. All these passes are simple sequential scans of

the instructions. Each LIL instruction is translated

into a sequence of machine instructions based on in-

formation gathered in the prepass. No sophisticated

optimizations, intermediate languages, or peephole

optimizations are used, although we are considering

whether a smarter instruction scheduler and tem-

plate packer would improve performance on the IPF

architecture.

LIL is very lightweight: The parser and infras-

tructure for LIL is about 3500 lines of code, the IA-

32 code generator is about 1500 lines of code, and

the IPF code generator is about 2200 lines of code.

The code generators also use the M2nFramemodules,

which are about 300 lines for each architecture, and

the code emitters, which are 2200 and 13500 lines re-

spectively. However, the M2nFrame modules and the

code emitters would be needed even without LIL.

4 Bene�ts

The motivation for creating LIL was to improve

the portability, maintainability, and correctness of

stubs. These bene�ts are described in Sections 4.1

to 4.4. Perhaps surprisingly, using LIL can also im-

prove performance. Section 4.5 describes how LIL

can be inlined, or implanted, into JIT-compiled code

to make ORP's runtime support system more eÆ-

cient.

4.1 CPU Independence

The most direct bene�t of implementing stubs us-

ing LIL is that LIL is architecture-neutral. Each stub

is written only once, instead of being reimplemented

for every platform. In addition, any performance

enhancements or bug �xes applied to a stub are au-

tomatically propagated to all architectures. Such

modi�cations have been common during ORP's de-

velopment. Before we switched to LIL, machine-

language stubs on the IA-32 and IPF architectures

diverged over time, sometimes to the extent of im-

plementing slightly di�erent functionality. LIL stubs

do not su�er from such problems.

4.2 OS Independence

Several high-performance stubs operate directly

on data structures that depend on the VM and OS.

Of these data structures, the two most important are

thread-local storage and M2nFrames. LIL hides the

implementation of these constructs, and allows stubs

to access them in a platform-independent manner.

Loading the thread pointer is needed for eÆcient

implementation of object allocation and synchro-

nization, which are signi�cant to the overall per-

formance of ORP. As mentioned in Section 2.3, this

operation is requires di�erent sequences onWindows

versus Linux, and IA-32 versus IPF platforms. As

we saw in Section 3, LIL includes a primitive for

loading the thread pointer. This enables us to use

the same stubs on all platforms and operating sys-

tems. Any operating system dependences are hidden

within the LIL code generator.

4.3 Readability

Because LIL is more high-level than machine lan-

guage, most stubs become more concise and read-

able when expressed in LIL. This is particularly true

for complex stubs, such as the ones used to imple-

ment JNI, described in Section 3.2.5. ORP's IA-32

implementation of JNI stubs has about 700 lines of

C code; ORP's IPF implementation has about 400

lines of C code. The equivalent LIL implementation

is about 320 lines of C code, and is also much easier

to understand and modify. In particular, the IA-

32 non-LIL implementation of JNI contains exten-

sive debugging code, because certain aspects of set-

ting up JNI stubs were especially error-prone. One

such aspect is accessing the call stack; since the stub

needs to push things onto the stack, o�sets of stack

values keep changing during the stub's execution.

Also, transitioning between managed and JNI code

on the IA-32 architecture requires reversing the or-

der of arguments on the stack, which is particularly

tedious. LIL code, on the other hand, sets up the

stack with simple statements such as o3=i2; and

o�sets and argument orders are automatically taken

care of by the LIL code generator.

4.4 Correctness

Implementing stubs directly in machine language

makes it hard to ensure their correctness. In ad-

dition to being diÆcult to read, machine language

o�ers no mechanisms for automated validity check-

ing. This is especially problematic, since even small

bugs in stubs are almost certain to break the system.



Using LIL helps ensure correctness in two ways.

First, some of the most tedious conventions are ab-

stracted away by LIL. For example, the stub imple-

mentor no longer has to worry about implement-

ing calling conventions, about which system values

are in what registers or memory addresses, or about

which machine registers are available for storing lo-

cal variables. The implementation of such conven-

tions needs to be checked only once, in the LIL code

generator.

Second, the LIL code generator can check LIL

source code for consistency, as explained in Sec-

tion 3.2. Although LIL is not a strongly typed lan-

guage, the limited semantic checking it supports can

still catch some of the most frequent bugs, such as

providing the wrong number of arguments to a func-

tion, accessing incoming arguments that do not ex-

ist, or returning without setting the return variable.

In a sense, the semantic checker of the LIL language

is roughly equivalent in power to that of C. This

is a big improvement over using assembly language,

which has no semantic checking whatsoever.

4.5 Code implants

We previously discussed LIL's value as a tool for

implementing stubs that are called by JIT-generated

code. But these calls introduce some ineÆciencies

because many stubs, including those for runtime

type identi�cation and memory allocation, are called

so frequently. One way to avoid this call overhead,

while maintaining ORP's strict interface between

the JIT and the VM, is to move toward an implant-

based runtime support system. In such a system,

the VM passes LIL sequences to the JIT instead of

translating the sequences itself. The JIT then trans-

lates LIL sequences to its own intermediate represen-

tation, implanting them into the code it generates.

Much like normal method inlining, code implanting

not only avoids call overheads, but also exposes more

opportunities for optimization.

In general, a LIL-based code implanting system

would work as follows.

1. The JIT �rst makes a runtime support request

to the VM. Along with the request, it passes

context information about the stub's call site.

Such information might include which stub ar-

guments are constant or NULL, the pro�le

weight of the call site, et cetera.

2. In response to that request, the VM generates a

pre-optimized LIL stub using the context infor-

mation and its knowledge of its own data struc-

tures and other implementation details.

3. The JIT receives back from the VM a snippet of

LIL code instead of a stub address. The JIT can

then translate the LIL code to its own intermedi-

ate representation. This translation is straight-

forward for LIL's general-purpose instructions,

but not possible for ORP-speci�c instructions

(see Section 3.2.4). Instead, the JIT can treat

such instructions as black boxes.

4. During the code generation phase, the JIT can

ask the VM to expand each black-box instruc-

tion to machine code.

A preliminary version of a LIL-based code im-

planting system has been implemented in ORP. This

system implants the VM stubs for the checkcast

and instanceof bytecodes into the O3 JIT, which

is currently ORP's best-performing IA-32 JIT. Ex-

periments using this system show that implanting

just these two stubs improves overall performance by

3% for the SPEC JVM98 [14] suite. The current sys-

tem implements only part of the scheme described

above. A full-
edged system would be able to im-

plant more stubs and would have more optimiza-

tion opportunities. We expect the �nal implanting

system to provide signi�cantly greater performance

improvements.

LIL code implants, their implementation, and

their performance bene�ts are described in more de-

tail by Cierniak et al. [6].

5 LIL Performance

In designing LIL, our goal was to obtain the ben-

e�ts described in the previous section without sac-

ri�cing ORP's excellent performance. Since ORP

previously implemented all its stubs through hand-

crafted machine-code generation, it is possible to

compare the performance of LIL stubs to that of

hand-coded stubs. This section will present this

comparison and show that we have mostly retained

performance. Figure 4 lists the LIL stubs that have

been written so far, and the stubs for which LIL ver-

sions have not yet been written. Of the non-LIL

stubs, the CLI stubs and atomic compare-and-swap

stubs should be straightforward|we have not got-

ten around to them yet. The other two stubs require

additional features for LIL that are highly speci�c to

those two stubs. Having the hand-coded assembly

versions of these stubs is roughly equivalent to the

additions that would be needed to the LIL code gen-

erator to support them.

We evaluate the overhead of LIL by measuring

ORP with hand-coded assembly versions of all stubs

versus ORP with LIL versions of the stubs, on both



LIL Stubs

Compilation

Compile-me generic, compile-me speci�c,

recompile

Native-method interface

JNI and PInvoke stubs

Exceptions

Throw, lazy throw, throw speci�c exceptions,

throw linking exception

Allocation

New object, new array, multinewarray,

load constant string

Synchronisation

Monitor enter and exit for objects and classes

Type tests

Checkcast, instanceof, aastore

Arithmetic helpers

Float to integer, double to integer, long shifts,

long multiplies, long divides, et cetera

Miscellaneous

Load interface vtable, initialise class,

character-array copy

Non-LIL Stubs

Native to managed transition

Transfer control to exception handler

CLI-delegate stubs

CLI unboxers

Atomic compare and swap

Figure 4: LIL and non-LIL Stubs

the IA-32 and IPF architectures. We make a few

exceptions for several performance-critical stubs,

whose assembly versions have been highly tuned for

their particular platforms. These are the object

monitor enter and exit stubs on the IA-32 architec-

ture, and the new object, new array, and character-

array copy stubs on the IPF architecture.

The IA-32 performance numbers were obtained on

a 4-processor, 2.0 GHz Intel r
 XeonTM processor-

based machine with HyperThreading disabled, with

4 GB physical memory, and running Windows 2000

Advanced Server. The IPF performance numbers

were obtained on a 4-processor, 1.5 GHz Itanium r


2-based system with 6 MB L3 cache and 16 GB phys-

ical memory, running Windows Server 2003, 64-bit

edition.

We measured the performance of the seven com-

ponents of SPEC JVM98 [14] as well as SPEC

JBB2000 [15].6 We used a 96 MB heap for the SPEC

6We use the SPEC benchmarks only as benchmarks to

JVM98 components on both architectures, 1 GB for

SPEC JBB2000 on the IA-32 architecture, and 4 GB

for SPEC JBB2000 on the IPF architecture. In gen-

eral, SPEC JVM98 models client-side applications,

which do not typically require signi�cant amounts

of memory. SPEC JBB2000 is designed to model

more memory-intensive server applications, hence

the larger heap sizes.

Figure 5 shows the relative speedup of ORP with

LIL stubs over ORP with only assembly stubs on

both the IA-32 and IPF architectures. On the IA-

32 architecture, LIL either has no e�ect or improves

performance for half of our benchmarks, allowing

for a 0.5% experimental noise margin, and shows

no more than a 7% degradation for the rest. LIL is

even more promising on the IPF architecture, with

less than 4% slowdown for jess and db.

When all available LIL stubs are used, the slow-

downs increase substantially, particularly for SPEC

JBB2000. This is because the few assembly stubs in-

cluded in Figure 5 have been highly tuned for their

particular platforms. The IA-32 tuning includes the

use of instructions that are more eÆciently imple-

mented on the Intel r
 XeonTM processor. The IPF

tuning include instruction scheduling and the use of

some specialized instructions. We are currently in-

vestigating whether comparable tuning is possible

in LIL. The work described here has allowed us to

identify the critical stubs and thereby focus the LIL

optimization e�orts on a few architecture-speci�c is-

sues.

6 Related Work

The Jikes RVM [3] is implemented almost entirely

in Java. In order to support the unsafe low-level op-

erations it needs to directly access memory, machine

registers, and operating-system resources, Jikes in-

cludes \escape" mechanisms to circumvent Java's

type system and memory model. Its primary escape

mechanism is the Magic class. This includes static

methods to do typecast, compare-and-swap, and

memory fence operations, read and write memory,

transfer control to speci�ed addresses, and access

stack frame contents (e.g., caller's frame pointer,

next instruction address). Each JIT for the Jikes

RVM treats a call on a method of the Magic class

specially: it implements the call using a sequence

of inlined machine instructions. Although support

for Magic and the other Jikes escape facilities must

compare the performance of the various techniques within

our own VM. We are not using them to compare our VM to

any other VM and are not publishing SPEC metrics of any

kind.



Figure 5: Performance impact of LIL.

be added to each new compiler, their implementa-

tion is relatively simple. The Magic class can be

used to implement much of the same functionality

as LIL. However, Magic is lower level: its operations

are close to machine instructions. This makes code

that uses Magic less readable. It also makes it easy

to make mistakes, which can corrupt the internal

state of the VM. Static analyses [12] have been im-

plemented to check code using Jikes escape mech-

anisms for GC-pointer safety (that the system can

determine at every GC point all the locations that

contain references), but these analyses do not check

for as many errors as the LIL code generator does.

In addition, code using the Jikes escape mechanisms

must often be reimplemented for each new machine

architecture.

Griesemer [9] describes the facility used by the

Hotspot virtual machine to generate machine code

at runtime. C++ Assembler classes are used by the

VM to emit stubs and other machine code: the VM

calls an Assembler method to generate each ma-

chine instruction, to de�ne labels, and other op-

erations. So, a sequence of these calls are a kind

of speci�cation for a machine code sequence. Like

LIL, the instruction-emitting Assembler methods are

slightly higher-level than raw machine instructions

since calling them may actually generate di�erent

instructions depending on which member of a pro-

cessor family the application is running on. They

also provide full control over the emitted code: as-

suming that the appropriate instruction-generation

methods have been de�ned, any machine code se-

quence can be de�ned. However, these Assembler

methods are architecture-speci�c, so di�erent se-

quences of calls are needed for the IA-32 architec-

ture versus for the IPF architecture. They are also

extremely low-level, which makes it hard to under-

stand or maintain the stub-generation code. ORP

has a similar set of instruction-emitting classes for

each processor architecture, and these were used be-

fore we developed LIL.

Microsoft's Shared Source Common Language In-

frastructure [13] includes an interpreted language,

ML, that is used to implement marshaling stubs ex-

ecuted during RPC calls or when transitioning be-

tween native library code and either the VM or JIT-

generated code. ML includes opcodes to load and

store values into marshaling bu�ers, convert values,

and throw exceptions on errors. Unlike LIL, how-

ever, this language is specialized: it supports only

argument marshaling.

Remote procedure calls (RPCs) simplify the con-

struction of distributed programs. Part of this ease

is the transparency of RPCs to the programmer, and

this transparency requires the automatic construc-

tion of stubs to make calls across machines look like

ordinary calls. Such stubs are similar in some ways

to the native-method invocation stubs, and some of

the issues are the same. However, they are di�erent

enough that the same solutions are not applicable.

7 Future Work

Many of LIL's features are the result of our expe-

rience using LIL to rewrite stubs that were formerly

hand-coded. Such features include LIL's support for



loading the thread pointer, and its support for the

M2nFrames that mark the transition between man-

aged and native frames on the stack. However, LIL

is not currently able to implement all the stubs re-

quired by ORP. We are considering whether it is

worth while adding a couple of new features to LIL

to support the two stubs that we cannot write in

LIL.

Overall, we �nd the performance of LIL on both

the IA-32 and IPF architectures satisfactory. How-

ever, there are still a few highly tuned stubs that

LIL signi�cantly under performs. Future work will

try to improve the LIL code generators, so that LIL

achieves similar performance.

Our early experiments on implanting LIL stubs

into JIT-generated code have been very encourag-

ing. We intend to continue these experiments and

further develop the code implanting system. Other

VM-emitted code sequences will be converted to LIL

and then passed to the JIT for inlining and optimiza-

tion. This will require the development of a general

way for the JIT to inline LIL sequences. It will also

be necessary to add to LIL any features required for

implants.

8 Conclusions

The ORP managed runtime environment executes

Java and CLI applications. It manages to combine

high performance with modularity and experimen-

tation ease. This is in part because of its use of

optimized runtime support stubs, which are dynam-

ically created by the VM to implement such common

operations as object allocation, exception throwing,

and native-method invocation. Problems with cre-

ating stubs using hand-written machine code led us

to develop a new language, LIL, for specifying them.

LIL is architecture-neutral and high-level than ma-

chine code, yet provides enough low-level facilities

to achieve good performance and to allow low-level

operations such as call-stack manipulations and reg-

ister access.

We found LIL stubs to be shorter and more read-

able than the processor-speci�c machine-code se-

quences they replace. This has simpli�ed their main-

tenance and has made it easier for us to experiment

with new optimizations. We studied the perfor-

mance impact of LIL stubs using SPEC JVM98 and

SPEC JBB2000 running on ORP on both the IA-32

and IPF platforms. Our results demonstrate that

using LIL retains most of the performance of hand-

written stubs. That is, using LIL o�ers signi�cant

software-engineering advantages without signi�cant

performance losses.

While LIL is still under development, our experi-

ence suggests that both its performance and capa-

bilities will continue to improve. We are particularly

optimistic about the potential of code implants, LIL

sequences passed to the JIT for optimization and in-

lining into the JIT-generated code. These implants

not only avoid the overhead of stub calls, but ex-

pose further opportunities for optimization such as

instruction reordering and scheduling.

References

[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y.

Chen, A. Ghuloum, V. Menon, B. Murphy,

M. Serrano, and T. Shpeisman. The StarJIT

Compiler: A Dynamic Compiler for Managed

Runtime Environments. Intel Technology

Journal, 7(1), February 2003. Available at

http://intel.com/technology/itj/2003/

volume07issue01/art02 starjit/

p01 abstract.htm.

[2] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y.

Lueh, V. M. Parikh, and J. Stichnoth. Fast,

E�ective Code Generation in a Just-In-Time

Java Compiler. Proceedings of the SIGPLAN

'98 Conference on Programming Language

Design and Implementation, June 1998.

[3] B. Alpern, C. R. Attanasio, J. J. Barton,

M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi,

S. J. Fink, D. Grove, M. Hind, S. F. Hummel,

D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo,

J. R. Russell, V. Sarkar, M. J. Serrano, J. C.

Shepherd, S. E. Smith, V. C. Sreedhar,

H. Srinivasan, , and J. Whaley. The Jalape~no

Virtual Machine. IBM Systems Journal, 39(1),

February 2000.

[4] A. Bik, M. Girkar, and M. Haghighat.

Experiences with JAVA JIT Optimization.

International Workshop on Innovative

Architecture for Future Generation

High-Performance Processors and Systems,

October 1998.

[5] M. Cierniak, M. Eng, N. Glew, B. Lewis, and

J. Stichnoth. Open Runtime Platform: A

Flexible High-Performance Managed Runtime

Environment. Intel Technology Journal, 7(1),

February 2003. Available at

http://intel.com/technology/itj/2003/

volume07issue01/art01 orp/

p01 abstract.htm.

[6] M. Cierniak, N. Glew, S. Triantafyllis,

M. Eng, B. Lewis, and J. Stichnoth. Object-



Model Independence via Code Implants.

Proceedings of the Workshop on

Multiparadigm Programming with OO

Languages (MPOOL'03), October 2003.

[7] M. Cierniak, G.-Y. Lueh, and J. Stichnoth.

Practicing JUDO: Java Under Dynamic

Optimizations. Proceedings of the SIGPLAN

'00 Conference on Programming Language

Design and Implementation, June 2000.

[8] ECMA. Common Language Infrastructure.

ECMA, 2002. Available at http://www.ecma-

international.org/publications/

Standards/ecma-335.htm.

[9] R. Griesemer. Generation of virtual machine

code at startup. In Proceedings of the

OOPSLA '99 Workshop on Simplicity,

Performance, and Portability in Virtual

Machine Design. Sun Microsystems, Inc.,

November 1999.

[10] S. Liang. Java Native Interface:

Programmer's Guide and Speci�cation.

Addison-Wesley, June 1999.

[11] T. Lindholm and F. Yellin. The Java Virtual

Machine Speci�cation, Second Edition.

Addison-Wesley, 1999.

[12] J.-W. Maessen, V. Sarkar, and D. Grove.

Program analysis for safety guarantees in a

java virtual machine written in java. In

Proceedings of the 2001 ACM

SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering,

pages 62{65. ACM Press, 2001.

[13] Microsoft. Shared source common language

infrastructure. Published as a Web page, 2002.

See http://msdn.microsoft.com/net/sscli.

[14] Standard Performance Evaluation

Corporation. SPEC JVM98, 1998. See

http://www.spec.org/jvm98.

[15] Standard Performance Evaluation

Corporation. SPEC JBB2000, 2000. See

http://www.spec.org/jbb2000.


