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Advances of emerging hardware

* Multi-/many-core processors
* High parallelism

* Flash-based or next-generation NVM-based SSDs
* High parallelism
* Low latency

The advanced hardware is expected to
deliver high application-level I/O parallelism




Software deficiency can be a
bottleneck

Poor scalability can be a
bottleneck
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Scalability Evaluation

SysBench: 4KB synchronous writes to 128 files
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Scalability Evaluation
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Why file systems scale poorly ?

*We focus on the scalability issues of
journaling file systems

*We take Ext4/JBD2 as an example for
analysis



Why file systems scale poorly ?

JBD2 mechanism
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Why file systems scale poorly ?

|]ssue #1: serialization of journaling
activities on devices
*Sequential transaction commits
*Sequential transaction checkpoints

*Journaling needs to ensure transaction
order for correctness

*Dependencies between transactions



Why file systems scale poorly ?

°|ssue #2: unavoidable use of
shared data structures



Why file systems scale poorly ?

JBD2 mechanism transaction Counters on transaction states
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Why file systems scale poorly ?

°|ssue #2: unavoidable use of
shared data structures

Shared data structures Synchronization

Journaling states j_state_lock (read-write lock)
Shared counters Atomic operation

On-disk structures bh state lock (bit-based spin lock)
Journaling buffer list J_list_lock (spin lock)

Checkpoint transaction list J_list_lock (spin lock)

Wait queues J_wait_done_commit (spin lock)



Data profiling

Ext4

Total Wait Time
[Lock Nam Bounces o Percen
ame Ounces (Avg. Wait Time) ereent

journal->j_wait_done_commit | 11845k | 1293 s(103.15 us) 27%

journal->j_list_lock 12713 k 154 s (11.34 us) 3.2%
journal->j_state_lock-R 1223 k 7.1 s(5.19 ps) 0.1%
journal->j_state_lock-W 956 k 4.3 5 (4.29 us) 0.09%

zone->wait_table 025 k 3.1 s(3.36 us) 0.06%

Lock contention limits the file system
scalability




Can they all be fixed using parallel
programming technigues?

*Scalable read-write locks
*E.g., RCU locks [McKenney ‘01] and Prwlocks [Liu
‘14]
* They are scalable for read-mostly workloads
* JBD2 has many writes to the shared states

*Per-core counters

*E.g., sloppy counters [Boyd-Wickizer ‘10] and
Refcache [Clements ‘13]

* |t is very expensive when reading the true values
of these counters [Clements ‘13]



Can they all be fixed by using
parallel programming techniques?

*Per-core data structures
* Using Per-core lists may be effective for the
journaling buffer lists
* |t is not suitable for the checkpoint transaction
list
* JBD2 needs to checkpoint the transactions in
sequence for correctness
*Per-core wait queues [Liu ‘14]

* [t can be effective to solve the JBD2 wait queue
bottleneck



Summary

*Using parallel programming techniques
cannot fix all the bottlenecks

*The centralized journaling design
*|ssue #1: Serialization of 1/O activities

e|ssue #2: The use of shared data
structures

*We need a new file system structure



Our solution: SpanFS

*Replace the centralized file system service with
multiple micro file system services called
domains

*Provide parallel file system services



Parallel file system services

l Committing, checkpointing . Journaled buffer / Journaling thread

and OS write-back

Domain A Domain B Domain C
K logging /\ i logging / i logging /
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Beneath the file system: global
device buffer cache address space

File system

/ / / Concurrent inserts
Global tree lock

Concurrent access to buffer list
Radix index Tree / / /
Global private lock
page

Block storage device




Dedicated buffer cache address
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Distributed namespace

Domain Domain Domain



Distributed namespace

*Distributed object
* Store shadow dentry under the parent directory
* Distribute its inode to a remote domain
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Crash consistency issues

What will happen if system crashes during
creation ?




Possible inconsistency states

Stale Objects
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Crash consistency model

* We propose to build logical connection between
domains beyond journaling



Logical connection beyond

journaling
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Crash consistency model

*Stale object deletion
* Integrity validation during lookup and readdir
* Remove the shadow dentries without remote objects

* Garbage Collection (GC)

* Background GC thread runs in case of a system crash
* GC deletes the remote objects without shadow dentries



Distributed synchronization

* Applications usually issue fsync() to explicitly persist

their data
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Distributed synchronization
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Possible inconsistency states

The path to the
target object is

lost
The target object becomes

an orphan object

/

Domain B Domain C




Intuitive solution

* [teratively synchronize all the objects along the file
path until reaching the root directory
 Similar to what Ext4 with no journaling does

* The distributed synchronization latency is long:
e Latency = latency(O1) + latency(02) + .... + latency(On)



Parallel two-phase
synchronization

* Leverage the client-server architecture of JBD2 to
commit the transactions in parallel

* Check and wait for their completion in the end
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Committing phase

Deliver transaction commit requests

Commit Requestl

4 N

4
4 A

\Journaling instancy

Domain A

i
- A

\Journaling instancy

Domain B

\Journaling instancy

Domain C




Validating phase

Check whether
it is completed

l If not, wait for completion

Completion
Notification
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Rename

* The rename operation may involve multiple JBD2
handles across multiple domains

* We proposed the ordered transaction commit
mechanism to achieve rename atomicity
e Control the commit sequence of the JBD2 handles
 System crashes lead to a small number of inconsistencies
* These inconsistency states can be verified online



Experiments

* We implemented SpanFS based on Ext4 in Linux
3.18.0

* We evaluated SpanFS against Ext4 on an intel 32
core machine with a FusionlO SSD



Throughput (1 K req/s)
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Append
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Throughput (1 K req/s)
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Throughput (1 K req/s)
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Data profiling

Ext4

Total Wait Time

[LLock Name Bounces e
(Ave. Wait Time)

sbi->s_orphan_lock 478 Kk 534 s (1117.32 ps)

journal->j_wait_done_commit 845 k 100.4 s (112.10 us)

journal->j_checkpoint_mutex 71Kk 56.5 5 (789.70 ps) 681.2 s

journal->j_list_lock 694 k 10.5s (14.64 ps)

journal->j_state_lock-R 319k 9.8 5 (28.58 us)

SpanFS-16

Total Wait Time

Lock Name Bounces (Ave. Wait Time)
journal->j_checkpoint_mutex 27k [5.1s(557.96 us) |t
inode_hash_lock 323 k 8.1 5 (25.07 us)
sbi->s_orphan_lock 124 k 4.3 s (34.51 ps)
journal->j_wait_done_commit 287 Kk 3.4s(11.07 ps) 33.3s
ps->lock (Fusionio driver) 789 k 2.4 5 (2.87 ps)




Throughput (100MB/s)

Sequential buffered writes
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Throughput (100MB/s)

Sequential synchronous writes
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Fileserver
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Throughput (100MB/s)

Varmail
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Throughput (100MB/s)

Dbench
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Garbage collection performance

The time taken to scan different numbers of files by GC

# of files 32000 320000 3200000
# of remote dentries | 30032 300030 3000030
Time 1071 ms | 2403 ms | 20725 ms




Garbage collection performance

* Measure the GC performance impact on the
foreground 1/O workloads
* Prepare 3.2 millions of files
* Run the GC thread after remount
* Run 32 Varmail instances for 60 s

* The GC thread takes 21.9 s to complete the scan

* The total throughput of the Varmail workload has
been degraded by 12%



Conclusion

* Present an exhaustive analysis of the scalability
bottlenecks of existing file systems.

* Attribute the scalability issues to their centralized
design
* Contention on shared data structures in memory
* Serialization of 1/O actions on devices

* Propose a novel journaling file system SpankFsS to
achieve scalability on many-core

* Demonstrate that SpanFS scales much better than
the baseline
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