Spanks:
A Scalable File System on
Fast Storage Devices

Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma and Jinpeng Huai

Beihang University

Advances of emerging hardware

* Multi-/many-core processors
* High parallelism

* Flash-based or next-generation NVM-based SSDs
* High parallelism
* Low latency

The advanced hardware is expected to
deliver high application-level I/O parallelism

Software deficiency can be a
bottleneck

Poor scalability can be a
bottleneck

Softwa re

/I\

Scalability Evaluation

SysBench: 4KB synchronous writes to 128 files

1‘4 [| [|] I I
- baseline ---©&-- po
g 12r ideal --1=F-- 5 = I|deal
2 spanfs —&— performance
a 10 | B |
S
(-]
2 ° \g== SpanFS
2 © performance
5
2 4
o -
E : g Baseli

8 O D= DBaseline
0 I performance
1 4 8 12 16 20 24 28 32

of cores

Ext4

Scalability Evaluation

40 blasell[ie "'(ID'"
ideal —&—

P N 0 © o

bﬁs¢hﬁe --
| —2—

1dea

)

of cores

ZFS

32

N R Y Y~ MY)
2 16 20 24 28 32

of cores

Btrfs

Why file systems scale poorly ?

*We focus on the scalability issues of
journaling file systems

*We take Ext4/JBD2 as an example for
analysis

Why file systems scale poorly ?

JBD2 mechanism

Client threads

.

logging

/// Journaled buffer = OS buffer

Checkpomt I|st
@ checkpointing

N

/Journal thread
committing

A4

/0 by OS write-back
or by a checkpoint

Log Area

Primary Storage Area

Why file systems scale poorly ?

|]ssue #1: serialization of journaling
activities on devices
*Sequential transaction commits
*Sequential transaction checkpoints

*Journaling needs to ensure transaction
order for correctness

*Dependencies between transactions

Why file systems scale poorly ?

°|ssue #2: unavoidable use of
shared data structures

Why file systems scale poorly ?

JBD2 mechanism transaction Counters on transaction states

Client threads Iogging@ Centralized journal buffer list

/// Journaled buffer = OS buffer

Wait queues

: . JJournal thread
Centralized checkpointflist

checkpointing committing
N

A4

/0 by OS write-back
or by a checkpoint

Log Area
Journal states: log head and tail

Primary Storage Area

Why file systems scale poorly ?

°|ssue #2: unavoidable use of
shared data structures

Shared data structures Synchronization

Journaling states j_state_lock (read-write lock)
Shared counters Atomic operation

On-disk structures bh state lock (bit-based spin lock)
Journaling buffer list J_list_lock (spin lock)

Checkpoint transaction list J_list_lock (spin lock)

Wait queues J_wait_done_commit (spin lock)

Data profiling

Ext4

Total Wait Time
[Lock Nam Bounces o Percen
ame Ounces (Avg. Wait Time) ereent

journal->j_wait_done_commit | 11845k | 1293 s(103.15 us) 27%

journal->j_list_lock 12713 k 154 s (11.34 us) 3.2%
journal->j_state_lock-R 1223 k 7.1 s(5.19 ps) 0.1%
journal->j_state_lock-W 956 k 4.3 5 (4.29 us) 0.09%

zone->wait_table 025 k 3.1 s(3.36 us) 0.06%

Lock contention limits the file system
scalability

Can they all be fixed using parallel
programming technigues?

*Scalable read-write locks
*E.g., RCU locks [McKenney ‘01] and Prwlocks [Liu
‘14]
* They are scalable for read-mostly workloads
* JBD2 has many writes to the shared states

*Per-core counters

*E.g., sloppy counters [Boyd-Wickizer ‘10] and
Refcache [Clements ‘13]

* |t is very expensive when reading the true values
of these counters [Clements ‘13]

Can they all be fixed by using
parallel programming techniques?

*Per-core data structures
* Using Per-core lists may be effective for the
journaling buffer lists
* |t is not suitable for the checkpoint transaction
list
* JBD2 needs to checkpoint the transactions in
sequence for correctness
*Per-core wait queues [Liu ‘14]

* [t can be effective to solve the JBD2 wait queue
bottleneck

Summary

*Using parallel programming techniques
cannot fix all the bottlenecks

*The centralized journaling design
*|ssue #1: Serialization of 1/O activities

e|ssue #2: The use of shared data
structures

*We need a new file system structure

Our solution: SpanFS

*Replace the centralized file system service with
multiple micro file system services called
domains

*Provide parallel file system services

Parallel file system services

l Committing, checkpointing . Journaled buffer / Journaling thread

and OS write-back

Domain A Domain B Domain C
K logging /\ i logging / i logging /

\Journaling instancy \Journalmg mstance Kjournalmg mstance

|/O activities l I/O activities |/O activities

On-disk structures On-disk structures On-disk structures

Beneath the file system: global
device buffer cache address space

File system

/ / / Concurrent inserts
Global tree lock

Concurrent access to buffer list
Radix index Tree / / /
Global private lock
page

Block storage device

Dedicated buffer cache address

space

m

Ra%\

Ra%\

|

Ra%\

|

On-disk structures

On-disk structures

On-disk structures

Distributed namespace

Domain Domain Domain

Distributed namespace

*Distributed object
* Store shadow dentry under the parent directory
* Distribute its inode to a remote domain

/home
@ Normal
dentry

Shadow
dentry

» inode

Domain A Domain B

Crash consistency issues

What will happen if system crashes during
creation ?

Possible inconsistency states

Stale Objects

/home /span

Craslt

Storage Garbage

Crash consistency model

* We propose to build logical connection between
domains beyond journaling

Logical connection beyond

journaling

Bidirectional index

/home

Normal
dentry

Shadow
P

Remote
>

dentry

Domain A

A set of span directories
per domain

/

/span

Yo — inode

Domain B

Crash consistency model

*Stale object deletion
* Integrity validation during lookup and readdir
* Remove the shadow dentries without remote objects

* Garbage Collection (GC)

* Background GC thread runs in case of a system crash
* GC deletes the remote objects without shadow dentries

Distributed synchronization

* Applications usually issue fsync() to explicitly persist

their data
/DomainA

-

Domain B Domain C

Distributed synchronization
/ R

ot

Domain A

4 i N (O i\
N AN)

Domain B Domain C

Possible inconsistency states

The path to the
target object is

lost
The target object becomes

an orphan object

/

Domain B Domain C

Intuitive solution

* [teratively synchronize all the objects along the file
path until reaching the root directory
 Similar to what Ext4 with no journaling does

* The distributed synchronization latency is long:
e Latency = latency(O1) + latency(02) + + latency(On)

Parallel two-phase
synchronization

* Leverage the client-server architecture of JBD2 to
commit the transactions in parallel

* Check and wait for their completion in the end

e | Rl g q "
logging logging 1 logging
S S D/

Journaling instance

Journaling instance Journaling instance

Domain A Domain B Domain C

Committing phase

Deliver transaction commit requests

Commit Requestl

4 N

4
4 A

\Journaling instancy

Domain A

i
- A

\Journaling instancy

Domain B

\Journaling instancy

Domain C

Validating phase

Check whether
it is completed

l If not, wait for completion

Completion
Notification

\Journalmg mstance

Domain A

\Journallng mstance

Domain B

\Journalmg mstance

Domain C

Rename

* The rename operation may involve multiple JBD2
handles across multiple domains

* We proposed the ordered transaction commit
mechanism to achieve rename atomicity
e Control the commit sequence of the JBD2 handles
 System crashes lead to a small number of inconsistencies
* These inconsistency states can be verified online

Experiments

* We implemented SpanFS based on Ext4 in Linux
3.18.0

* We evaluated SpanFS against Ext4 on an intel 32
core machine with a FusionlO SSD

Throughput (1 K req/s)

Create

450

400

350
300
250
200
150
100

50

spanfs-4 --Trg.--0.0]
spgnfs 16 —ér-@ QO

| | |
eXt4 G' /z’m‘

“

T

L4
el Fa !
= -

113% slower at 1 core

8 12 16 20 24 28 32
of cores

42% slower

Append

45 .

40 L ext4 G}
spanfs-4 ---
35 |- spanfs-16 A4

an
|

o O

Throughput (1 K req/s)
— — N N
o
|

ol

16 20 24
of cores

28

32

1.15X faster

Throughput (1 K req/s)

Truncate

900
800
700
600
500
400
300
200
100

ot o
spanfs-4 --LF--
- spanfs-16 —&—

of cores

7.53X faster

Throughput (1 K req/s)

Delete
/00

600

500
400

300 | 4.13X faster

200

PG PR WP
100 /- 0 |@ oo
/33A)sowerat1core

O 9

1 4 8 12 16 20 24 28 32
of cores

0

Data profiling

Ext4

Total Wait Time

[LLock Name Bounces e
(Ave. Wait Time)

sbi->s_orphan_lock 478 Kk 534 s (1117.32 ps)

journal->j_wait_done_commit 845 k 100.4 s (112.10 us)

journal->j_checkpoint_mutex 71Kk 56.5 5 (789.70 ps) 681.2 s

journal->j_list_lock 694 k 10.5s (14.64 ps)

journal->j_state_lock-R 319k 9.8 5 (28.58 us)

SpanFS-16

Total Wait Time

Lock Name Bounces (Ave. Wait Time)
journal->j_checkpoint_mutex 27k [5.1s(557.96 us) |t
inode_hash_lock 323 k 8.1 5 (25.07 us)
sbi->s_orphan_lock 124 k 4.3 s (34.51 ps)
journal->j_wait_done_commit 287 Kk 3.4s(11.07 ps) 33.3s
ps->lock (Fusionio driver) 789 k 2.4 5 (2.87 ps)

Throughput (100MB/s)

Sequential buffered writes

200
180
160
140
120
100
80
60
40
20
0

elgitril O -
spanfs-4 --{F--
spanfs-16 —&—

of cores

R |
- -

Q- L Q@ | C;} P

4 8 12 16 20 24 28 32

1226% faster

Throughput (100MB/s)

Sequential synchronous writes

1.8
1.6
1.4
1.2

0.8
0.6
0.4

0.2 %

e}:t4 -
spanfs-4 --L--
spanfs-16 —A—EI',,,EF‘

'
-
-

#

16 20
of cores

24

28

32

60% faster

Fileserver

70 .

exts -
- 60 | spanfs-4
spanfs-16

G}

1 4 8

12 16 20
of cores

24

28

32

51% faster

Throughput (100MB/s)

Varmail

4 | | | |
ext4 ---O -
35 gspanfs-4 --TF--
spanfs-16 —&—x

73% faster

1 4 8 12 16 20 24 28 32
of cores

Throughput (100MB/s)

Dbench

35 [| | |
ext4 G}

30 - spanfs-4 ---
- spanfs-16 &

20

11 16%

-—
,..-—"'"-

-
-
o =

-
——
F#

-
—
| -

15
10

0 | ! l ! l l l
1 4 8 12 16 20 24 28 32

of cores

Garbage collection performance

The time taken to scan different numbers of files by GC

of files 32000 320000 3200000
of remote dentries | 30032 300030 3000030
Time 1071 ms | 2403 ms | 20725 ms

Garbage collection performance

* Measure the GC performance impact on the
foreground 1/O workloads
* Prepare 3.2 millions of files
* Run the GC thread after remount
* Run 32 Varmail instances for 60 s

* The GC thread takes 21.9 s to complete the scan

* The total throughput of the Varmail workload has
been degraded by 12%

Conclusion

* Present an exhaustive analysis of the scalability
bottlenecks of existing file systems.

* Attribute the scalability issues to their centralized
design
* Contention on shared data structures in memory
* Serialization of 1/O actions on devices

* Propose a novel journaling file system SpankFsS to
achieve scalability on many-core

* Demonstrate that SpanFS scales much better than
the baseline

Thanks

