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Advances of emerging hardware

•Multi-/many-core processors
• High parallelism

•Flash-based or next-generation NVM-based SSDs
• High parallelism 

• Low latency
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I/O

The advanced hardware is expected to 
deliver high application-level I/O parallelism 



Software deficiency can be a 
bottleneck

NVM …… NVMNVM SSD

core core core…… CPU

Software
Poor scalability can be a 
bottleneck



Scalability Evaluation
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Scalability Evaluation
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Why file systems scale poorly ?

•We focus on the scalability issues of 
journaling file systems

•We take Ext4/JBD2 as an example for 
analysis



Why file systems scale poorly ?
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Why file systems scale poorly ?

•Issue #1: serialization of journaling 
activities on devices
•Sequential transaction commits
•Sequential transaction checkpoints

•Journaling needs to ensure transaction 
order for correctness
•Dependencies between transactions



Why file systems scale poorly ?

•Issue #2: unavoidable use of 
shared data structures



Why file systems scale poorly ?
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Why file systems scale poorly ?

•Issue #2: unavoidable use of 
shared data structures

Shared data structures Synchronization 

Journaling states j_state_lock (read-write lock)

Shared counters Atomic operation

On-disk structures bh state lock (bit-based spin lock)

Journaling buffer list J_list_lock (spin lock)

Checkpoint transaction list J_list_lock (spin lock)

Wait queues J_wait_done_commit (spin lock)



Data profiling

Lock contention limits the file system 
scalability



Can they all be fixed using parallel 
programming techniques?

•Scalable read-write locks
•E.g., RCU locks [McKenney ‘01] and Prwlocks [Liu 

‘14]
•They are scalable for read-mostly workloads
• JBD2 has many writes to the shared states

•Per-core counters
•E.g., sloppy counters  [Boyd-Wickizer ‘10] and 

Refcache [Clements ‘13]
• It is very expensive when reading the true values 

of these counters [Clements ‘13]



Can they all be fixed by using 
parallel programming techniques?

•Per-core data structures
•Using Per-core lists may be effective for the 

journaling buffer lists 
• It is not suitable for the checkpoint transaction 

list
• JBD2 needs to checkpoint the transactions in 

sequence for correctness

•Per-core wait queues [Liu ‘14]
• It can be effective to solve the JBD2 wait queue 

bottleneck



Summary

•Using parallel programming techniques 
cannot fix all the bottlenecks

•The centralized journaling design
•Issue #1: Serialization of I/O activities 
•Issue #2: The use of shared data 
structures

•We need a new file system structure



Our solution: SpanFS

•Replace the centralized file system service with 
multiple micro file system services called 
domains

•Provide parallel file system services



Parallel file system services
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Beneath the file system: global 
device buffer cache address space

File system

Radix index Tree

Global tree lock 

Concurrent inserts

page

Global private lock 

Concurrent access to buffer list

page

block block

Block storage device



Dedicated buffer cache address 
space
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Distributed namespace
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Distributed namespace

•Distributed object
• Store shadow dentry under the parent directory
•Distribute its inode to a remote domain

/home

Shadow 
dentry

Normal 
dentry

inode

inode

Domain A Domain B



Crash consistency issues
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What will happen if system crashes during 
creation ?
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Possible inconsistency states

/home

Shadow 
dentry

Normal 
dentry

inode

/span

…
Crash

Null

/home

Normal 
dentry

inode

/span

…

Crash
inode

Stale Objects

Storage Garbage



Crash consistency model

•We propose to build logical connection between 
domains beyond journaling 



Logical connection beyond 
journaling
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Crash consistency model

•Stale object deletion
• Integrity validation during lookup and readdir
• Remove the shadow dentries without remote objects

•Garbage Collection (GC)
• Background GC thread runs in case of a system crash
• GC deletes the remote objects without shadow dentries



Distributed synchronization

•Applications usually issue fsync() to explicitly persist 
their data

/
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Distributed synchronization
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Possible inconsistency states
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Intuitive solution

• Iteratively synchronize all the objects along the file 
path until reaching the root directory  
• Similar to what Ext4 with no journaling does 

•The distributed synchronization latency is long:

• Latency = latency(O1) + latency(O2) + …. + latency(On) 



Parallel two-phase 
synchronization
• Leverage the client-server architecture of JBD2 to 

commit the transactions in parallel 

•Check and wait for their completion in the end
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Committing phase
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Validating phase
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Rename

•The rename operation may involve multiple JBD2
handles across multiple domains

•We proposed the ordered transaction commit 
mechanism to achieve rename atomicity
• Control the commit sequence of the JBD2 handles
• System crashes lead to a small number of inconsistencies
• These inconsistency states can be verified online



Experiments

•We implemented SpanFS based on Ext4 in Linux 
3.18.0

•We evaluated SpanFS against Ext4 on an intel 32 
core machine with a FusionIO SSD
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Data profiling

681.2 s
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Sequential buffered writes
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Sequential synchronous writes
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Fileserver
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Varmail
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Garbage  collection performance

The time taken to scan different numbers of files by GC



Garbage collection performance

•Measure the GC performance impact on the 
foreground I/O workloads
• Prepare 3.2 millions of files
• Run the GC thread after remount
• Run 32 Varmail instances for 60 s

•The GC thread takes 21.9 s to complete the scan

•The total throughput of the Varmail workload has 
been degraded by 12% 



Conclusion

•Present an exhaustive analysis of the scalability 
bottlenecks of existing file systems.

•Attribute the scalability issues to their centralized 
design
• Contention on shared data structures in memory
• Serialization of I/O actions on devices

•Propose a novel journaling file system SpanFS to 
achieve scalability on many-core

•Demonstrate that SpanFS scales much better than 
the baseline



Thanks 


