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VM consolidation is pervasive in clouds

Consolidation benefits:
• Ease management
• Save energy
• Improve resource utilization and system throughput
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Multiple vCPUs are scheduled to time-share a pCPU
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Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources

4

VMM

VM 1

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

VM 2



Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• Multiple vCPUs sharing one pCPU is often

• E.g., VMWARE suggests 8-10 vCPUs to share one pCPU
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Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• vCPU scheduler schedules and deschedules vCPUs periodically
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• VM1 can only use 50% of I/O bandwidth even when VM2 does not use I/O device.
• I/O throughput of HDFS in VM1 is only 55% of that on bare-metal.

I/O inactivity causes low I/O performance in VMs
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I/O scheduler cannot effectively enforce fairness between VMs
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Two I/O-intensive applications (HDFS and MongoDB) show similar I/O 
throughput on bare-metal
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VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM2) 
achieves much higher I/O throughput.

I/O scheduler cannot effectively enforce fairness between VMs
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VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM2) 
achieves much higher I/O throughput.

• vCPUs running I/O tasks in MongoDB in VM2 have more time slice to run.
• vCPUs running HDFS in VM1 have less time slice to run

I/O scheduler cannot effectively enforce fairness between VMs
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Key: decouping I/O activities from vCPU scheduling

vSlicer[HPDC’12]
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Key: decouping I/O activities from vCPU scheduling
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Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!
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Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

• Key observation: each VM often has active vCPUs

• Solution: keep I/O tasks on active vCPUs

- Migrate an I/O task when its vCPU is about to be descheduled

- Migrate the I/O task to a vCPU that is NOT to be descheduled soon.

• Benefits: I/O tasks can make continuous progress like on bare-metal

- Migration can be efficient because I/O tasks usually have small 
working sets.
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vMigrater: a user-level design
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Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly? 

• Existing resource monitors cannot respond to execution phase changes quickly

- eg., Linux top and iotop refresh measurements periodically every a few seconds

- Applications often have bursty I/O phases finished within a refreshing period.
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Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly? 

• Existing resource monitors cannot respond to execution phase changes quickly

- eg., Linux top and iotop refresh measurements periodically every a few seconds

- Applications often have bursty I/O phases finished within a refreshing period.

• Event-driven method in vMigrator

- Monitor I/O events time at OS block I/O layer

- Calculate the fraction between the I/O events time and the whole period

- respond quickly when task becomes I/O intensive (<1 millisecond)
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Implementation challenges (2/3)
- when to migrate?

• When the vCPUs are to be inactive

• Naïve approach: monitor inactive/active vCPUs in hypervisor layer: not 
secure and portable

• Our approach

- a heartbeat-like mechanism: timer events as heartbeats

- a vCPU cannot process timer events when it is inactive

- vCPU time slice: timer differences between the start timer and end 
timer when the vCPU is active
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Challenges with the user-level design (3/3)
- migrate to which vCPU(s)? 

• Migrate to vCPUs with enough remaining time slice
• Estimation of time slice still relies on the heartbeat-like mechanism

• Naïve approach: consolidate all I/O tasks to the vCPU with the longest 
remaining time slice

- Problem: the vCPU may be overloaded

• Our approach:  distribute I/O tasks to vCPUs based on I/O workload and 
remaining time slice.

- tasks with heavier I/O workload on vCPUs with more time slice
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Experimental Setup

• Dell PowerEdge R430 with 12 cores, a 1TB HDD, and a 1TB SSD

• Both VMs and VMM (linux QEMU/KVM) use Ubuntu Linux 16.04 

• Each VM has 12 vCPUs and 4GB DRAM

• Compared with vSlicer [HPDC’12] and xBalloon [SoCC’17]
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Evaluation applications and workloads

Application Workload

HDFS Sequentially read 16GB with HDFS TestDFSIO

LevelDB Randomly scan table with db_bench

MediaTomb Concurrent requests on teanscoding a 1.1GB video

HBase Randomly read 1GB with Hbase PerfEval

PostMark Concurrent requests on a mail server

Nginx Concurrent requests on watermarking images

MongDB Sequentially scan records with YCSB
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Evaluation questions

• How much performance improvement can be achieved with vMigrater, 
compared with vanilla KVM and two related systems?

• Can vMigrater help the I/O scheduler in the VMM to achieve fairness 
between VMs?

• How robust is vMigrater to varying workloads?

• What is the overhead incurred by vMigrater?

• What is vMigrater’s performance when the workload in a VM varies over 
time

• How does vMigrater scale to the number of shared vCPUs on a pCPU?
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Throughput on seven applications (4 vCPUs 
sharing per pCPU)
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vMigrater’s throughput is 192% higher than Vanilla KVM, 75% higher than vSlicer,  
84% higher than xBalloon on average



HDFS performance analysis
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HDFS Vanilla vSlicer xBalloon vMigrater

I/O 
inactivity 
time 
(seconds)

121.82 92.91 75.27 6.62



MediaTomb performance analysis
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HDFS Vanilla vSlicer xBalloon vMigrater

I/O 
inactivity 
time 
(seconds)

121.82 92.91 75.27 6.62

MediaTomb Vanilla vSlicer xBalloon vMigrater

I/O inactivity 
time 
(seconds)

108.61 89.46 116.96 34.95

vMigrater has big I/O inactivity periods on MediaTomb
• MediaTomb combine computation and I/O in each thread so the migration cost 

is higher 



Fairness of I/O Scheduler in VMM
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Robustness to varying workloads 
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Robustness to varying workloads 
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Robustness to varying workloads 

63Added 8 clients



Robustness to varying workloads 

64Added 16 clients



Conclusions

• I/O inactivity problem

- Performance degradation

- I/O scheduler unfairness

• vMigrater: effectively mitigating I/O inactivity problem

- Performance is close to bare-metal 

- Regain fairness

• vMigrater’s source code: https://github.com/hku-systems/vMigrater
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Thank you

Questions?
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