
Effectively Mitigating I/O
Inactivity in vCPU Scheduling

Weiwei Jia12, Cheng Wang1, Xusheng Chen1, Jianchen Shan2, Xiaowei Shang2,
Heming Cui1, Xiaoning Ding2, Luwei Cheng3, Francis C. M. Lau1, Yuexuan Wang1,

Yuangang Wang4

Hong Kong University1, New Jersey Institute of Technology2, Facebook3, Huawei4

1

VM consolidation is pervasive in clouds

Consolidation benefits:
• Ease management
• Save energy
• Improve resource utilization and system throughput

2

Virtual Machine Monitor (VMM)

Virtual Machine
(VM 1)

Physical Machine (PM 1)

VM 2

PM n

. . .

Multiple vCPUs are scheduled to time-share a pCPU

3

VMM

VM 1

Physical Machine

VM 2

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources

4

VMM

VM 1

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

VM 2

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• Multiple vCPUs sharing one pCPU is often

• E.g., VMWARE suggests 8-10 vCPUs to share one pCPU
5

VMM

VM 1

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 2
vCPU1 vCPU2 vCPU3 vCPU4

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• vCPU scheduler schedules and deschedules vCPUs periodically

6

VMM

VM 1

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 2
vCPU1 vCPU2 vCPU3 vCPU4

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• vCPU scheduler schedules and deschedules vCPUs periodically

7

VMM

VM 1

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 2
vCPU1 vCPU2 vCPU3 vCPU4

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• vCPU scheduler schedules and deschedules vCPUs periodically

8

VMM

VM 1

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 2
vCPU1 vCPU2 vCPU3 vCPU4

vCPU1 in VM1

active

inactive

Time

T1 T2T0

vCPU1 in VM2
inactive

active

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• vCPU scheduler schedules and deschedules vCPUs periodically

9

VMM

VM 1

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 2
vCPU1 vCPU2 vCPU3 vCPU4

vCPU1 in VM1

active

inactive

Time

T1 T2T0

vCPU1 in VM2
inactive

active

Multiple vCPUs are scheduled to time-share a pCPU

• Physical CPU (pCPU): hardware resources
• Virtual CPU (vCPU): processors in VM, threads in VMM
• vCPU scheduler schedules and deschedules vCPUs periodically

10

VMM

VM 1

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 2
vCPU1 vCPU2 vCPU3 vCPU4

vCPU1 in VM1

active

inactive

Time

T1 T2T0

vCPU1 in VM2
inactive

active

11

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

An understudied problem: I/O inactivity

VM1
vCPU1
activity

active

inactive

Time

T1 T2T0

HDFS I/O
activity

on vCPU1

I/O request

active

inactive

12

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

An understudied problem: I/O inactivity

VM1
vCPU1
activity

active

inactive

Time

T1 T2T0

HDFS I/O
activity

on vCPU1

I/O request

active

inactive

13

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

An understudied problem: I/O inactivity

VM1
vCPU1
activity

active

inactive

Time

T1 T2T0

HDFS I/O
activity

on vCPU1

I/O request

active

inactive

No I/O requests can be issued on an inactive vCPU
Underutilization

of I/O device

14

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

• VM1 can only use 50% of I/O bandwidth even when VM2 does not use I/O device.
• I/O throughput of HDFS in VM1 is only 55% of that on bare-metal.

I/O inactivity causes low I/O performance in VMs

15

I/O scheduler cannot effectively enforce fairness between VMs

Operating System

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

16

I/O scheduler cannot effectively enforce fairness between VMs

Operating System

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

17

I/O scheduler cannot effectively enforce fairness between VMs

Operating System

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

Two I/O-intensive applications (HDFS and MongoDB) show similar I/O
throughput on bare-metal

18

I/O scheduler cannot effectively enforce fairness between VMs

Operating System

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

19

VMM

Physical Machine

pCPU2pCPU1 pCPU4pCPU3

I/O scheduler cannot effectively enforce fairness between VMs

20

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4

VM 1

I/O scheduler cannot effectively enforce fairness between VMs

21

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

I/O scheduler cannot effectively enforce fairness between VMs

22

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM2)
achieves much higher I/O throughput.

I/O scheduler cannot effectively enforce fairness between VMs

23

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM2)
achieves much higher I/O throughput.

I/O scheduler cannot effectively enforce fairness between VMs

24

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM2)
achieves much higher I/O throughput.

I/O scheduler cannot effectively enforce fairness between VMs

25

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM2)
achieves much higher I/O throughput.

• vCPUs running I/O tasks in MongoDB in VM2 have more time slice to run.
• vCPUs running HDFS in VM1 have less time slice to run

I/O scheduler cannot effectively enforce fairness between VMs

26

Key: decouping I/O activities from vCPU scheduling

vSlicer[HPDC’12]

27

Blue line: vCPU activity

Black line: I/O activity

Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

active

inactive

I/O request

vSlicer[HPDC’12]

active

inactive

28

Blue line: vCPU activity

Black line: I/O activity

Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

active

inactive

I/O request

vSlicer[HPDC’12]

active

inactive

inactive inactive inactive inactive

29

Blue line: vCPU activity

Black line: I/O activity

Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

active

inactive

I/O request

vSlicer[HPDC’12]

xBalloon[SoCC’17]

active

inactive

inactive inactive inactive inactive

inactive inactive

30

Blue line: vCPU activity

Black line: I/O activity

Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

active

inactive

I/O request

vSlicer[HPDC’12]

xBalloon[SoCC’17]

active

inactive

inactive inactive inactive inactive

inactive inactive

I/O activity
bare-metal

Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

31

Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

• Key observation: each VM often has active vCPUs

32

Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

• Key observation: each VM often has active vCPUs

• Solution: keep I/O tasks on active vCPUs

- Migrate an I/O task when its vCPU is about to be descheduled

33

Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

• Key observation: each VM often has active vCPUs

• Solution: keep I/O tasks on active vCPUs

- Migrate an I/O task when its vCPU is about to be descheduled

- Migrate the I/O task to a vCPU that is NOT to be descheduled soon.

34

Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

• Key observation: each VM often has active vCPUs

• Solution: keep I/O tasks on active vCPUs

- Migrate an I/O task when its vCPU is about to be descheduled

- Migrate the I/O task to a vCPU that is NOT to be descheduled soon.

• Benefits: I/O tasks can make continuous progress like on bare-metal

35

Can we decouple I/O activities from vCPU scheduling?

• Our answer is YES!

• Key observation: each VM often has active vCPUs

• Solution: keep I/O tasks on active vCPUs

- Migrate an I/O task when its vCPU is about to be descheduled

- Migrate the I/O task to a vCPU that is NOT to be descheduled soon.

• Benefits: I/O tasks can make continuous progress like on bare-metal

- Migration can be efficient because I/O tasks usually have small
working sets.

36

37

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

38

vMigrater: a user-level design

Hypervisor

VM

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

I/O-bound Task

39

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

40

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU2 vCPU3

Task
Detector

I/O-bound Task

41

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

42

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

43

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

44

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

45

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

46

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

vCPU3

activity

47

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

NOT to be descheduled soon.

vCPU3

activity

48

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

NOT to be descheduled soon.

vCPU3

activity

49

vMigrater: a user-level design

Hypervisor

VM vCPU
Monitor

vMigrater

Task Migrater

vCPU Scheduler

pCPU1 pCPU2

CPU-bound Task

vCPU1 vCPU2 vCPU3

Task
Detector

I/O-bound Task

vCPU1

activity

active

inactive

Time

T1 T2T0 T1’

To be descheduled

NOT to be descheduled soon.

vCPU3

activity

Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly?

• Existing resource monitors cannot respond to execution phase changes quickly

- eg., Linux top and iotop refresh measurements periodically every a few seconds

- Applications often have bursty I/O phases finished within a refreshing period.

50

Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly?

• Existing resource monitors cannot respond to execution phase changes quickly

- eg., Linux top and iotop refresh measurements periodically every a few seconds

- Applications often have bursty I/O phases finished within a refreshing period.

• Event-driven method in vMigrator

- Monitor I/O events time at OS block I/O layer

- Calculate the fraction between the I/O events time and the whole period

- respond quickly when task becomes I/O intensive (<1 millisecond)

51

Implementation challenges (2/3)
- when to migrate?

• When the vCPUs are to be inactive

• Naïve approach: monitor inactive/active vCPUs in hypervisor layer: not
secure and portable

• Our approach

- a heartbeat-like mechanism: timer events as heartbeats

- a vCPU cannot process timer events when it is inactive

- vCPU time slice: timer differences between the start timer and end
timer when the vCPU is active

52

Challenges with the user-level design (3/3)
- migrate to which vCPU(s)?

• Migrate to vCPUs with enough remaining time slice
• Estimation of time slice still relies on the heartbeat-like mechanism

• Naïve approach: consolidate all I/O tasks to the vCPU with the longest
remaining time slice

- Problem: the vCPU may be overloaded

• Our approach: distribute I/O tasks to vCPUs based on I/O workload and
remaining time slice.

- tasks with heavier I/O workload on vCPUs with more time slice
53

Experimental Setup

• Dell PowerEdge R430 with 12 cores, a 1TB HDD, and a 1TB SSD

• Both VMs and VMM (linux QEMU/KVM) use Ubuntu Linux 16.04

• Each VM has 12 vCPUs and 4GB DRAM

• Compared with vSlicer [HPDC’12] and xBalloon [SoCC’17]

54

Evaluation applications and workloads

Application Workload

HDFS Sequentially read 16GB with HDFS TestDFSIO

LevelDB Randomly scan table with db_bench

MediaTomb Concurrent requests on teanscoding a 1.1GB video

HBase Randomly read 1GB with Hbase PerfEval

PostMark Concurrent requests on a mail server

Nginx Concurrent requests on watermarking images

MongDB Sequentially scan records with YCSB

55

Evaluation questions

• How much performance improvement can be achieved with vMigrater,
compared with vanilla KVM and two related systems?

• Can vMigrater help the I/O scheduler in the VMM to achieve fairness
between VMs?

• How robust is vMigrater to varying workloads?

• What is the overhead incurred by vMigrater?

• What is vMigrater’s performance when the workload in a VM varies over
time

• How does vMigrater scale to the number of shared vCPUs on a pCPU?

56

Throughput on seven applications (4 vCPUs
sharing per pCPU)

57

vMigrater’s throughput is 192% higher than Vanilla KVM, 75% higher than vSlicer,
84% higher than xBalloon on average

HDFS performance analysis

58

HDFS Vanilla vSlicer xBalloon vMigrater

I/O
inactivity
time
(seconds)

121.82 92.91 75.27 6.62

MediaTomb performance analysis

59

HDFS Vanilla vSlicer xBalloon vMigrater

I/O
inactivity
time
(seconds)

121.82 92.91 75.27 6.62

MediaTomb Vanilla vSlicer xBalloon vMigrater

I/O inactivity
time
(seconds)

108.61 89.46 116.96 34.95

vMigrater has big I/O inactivity periods on MediaTomb
• MediaTomb combine computation and I/O in each thread so the migration cost

is higher

Fairness of I/O Scheduler in VMM

60

VMM

Physical Machine

pCPU2pCPU1

vCPU1

pCPU4pCPU3

vCPU2 vCPU3 vCPU4 vCPU1 vCPU2 vCPU3 vCPU4

VM 2VM 1

Robustness to varying workloads

61

Robustness to varying workloads

62Added 4 clients

Robustness to varying workloads

63Added 8 clients

Robustness to varying workloads

64Added 16 clients

Conclusions

• I/O inactivity problem

- Performance degradation

- I/O scheduler unfairness

• vMigrater: effectively mitigating I/O inactivity problem

- Performance is close to bare-metal

- Regain fairness

• vMigrater’s source code: https://github.com/hku-systems/vMigrater

65

Thank you

Questions?

66

