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VM consolidation is pervasive in clouds
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Consolidation benefits:

 Ease management

* Save energy

* Improve resource utilization and system throughput
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* Physical CPU (pCPU): hardware resources
* Virtual CPU (vCPU): processors in VM, threads in VMM
 Multiple vCPUs sharing one pCPU is often

* E.g., VMWARE suggests 8-10 vCPUs to share one pCPU
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Physical CPU (pCPU): hardware resources
Virtual CPU (vCPU): processors in VM, threads in VMM
vCPU scheduler schedules and deschedules vCPUs periodically
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An understudied problem: I/O inactivity

TO0 T1 12

Physical Machine \

I
: Time

|
VM 1 ™ / VM2 :
| ' | active |
vepu2 || vepus || vepua |, vepu2 || vepus || vepua VC'?L_J“ |
= = activity| |
| |
active Inactive
VMM HDFSI/O Y M M M I
activity | |
CPU1 pCPU2 pCPU3 pCPU4/ on vCPUll _’\ I
- inactive :
/O request

11



An understudied problem: I/O inactivity

T0 T1 T2
Physical Machine \ |

|
VM 1 N (VM2 | Time:
@ active | |
[HDES, 1 |
vcpu2 | vepus | vepua |) veruz || verus || vepua VCPL_Jl |
= = activity I
o |

active |inactive
VMM HDFSI1/0 71 [ M ulE I
activity |
CPU1 pCPU2 pCPU3 pCPU4/ on vCPU1 —’\ I
- _|inactive - :

/O request

12



An understudied problem: I/O inactivity
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/O inactivity causes low |/O performance in VMs
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VM1 can only use 50% of I/O bandwidth even when VM2 does not use I/O device.
/0 throughput of HDFS in VM1 is only 55% of that on bare-metal.
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/O scheduler cannot effectively enforce fairness between VMs
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/O scheduler cannot effectively enforce fairness between VMs
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Two |/O-intensive applications (HDFS and MongoDB) show similar I/O
throughput on bare-metal

18
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/O scheduler cannot effectively enforce fairness between VMs
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/O scheduler cannot effectively enforce fairness between VMs
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/O scheduler cannot effectively enforce fairness between VMs
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mongoDB

VM1 and VM2 are assignhed with the same 1/O priority, but MongoDB (VM2)
achieves much higher I/0 throughput.
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/O scheduler cannot effectively enforce fairness between VMs
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VM1 and VM2 are assigned with the same 1/O priority, but MongoDB (VM?2)
achieves much higher I/O throughput.
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/O scheduler cannot effectively enforce fairness between VMs
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VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM?2)

achieves much higher I/0 throughput.
e VvCPUs running |/O tasks in MongoDB in VM2 have more time slice to run.
e VCPUs running HDFS in VM1 have less time slice to run 25




Key: decouping I/O activities from vCPU scheduling
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Key: decouping I/O activities from vCPU scheduling
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Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

vSlicer[HPDC’11]

Blue line: vCPU activit

Black line: 1/O activity

xBaIIoon[SoCC’i

- _act_ive_ - ac_tivc_e I/0O request
inactive T/ inactive
Il inactive || inactive| | inactive It inactive
T T (T . .
' inactive inactive

/O activity |
bare-metal

30



Can we decouple I/O activities from vCPU scheduling?

e Qur answer is YES!
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Can we decouple I/O activities from vCPU scheduling?

* Qur answer is YES!
* Key observation: each VM often has active vCPUs

* Solution: keep I/O tasks on active vCPUs
- Migrate an 1/0O task when its vCPU is about to be descheduled

- Migrate the /O task to a vCPU that is NOT to be descheduled soon.

» Benefits: I/O tasks can make continuous progress like on bare-metal

- Migration can be efficient because 1/0O tasks usually have small
working sets.
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vMigrater: a user-level design
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Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly?

 Existing resource monitors cannot respond to execution phase changes quickly
- eg., Linux top and iotop refresh measurements periodically every a few seconds
- Applications often have bursty |/O phases finished within a refreshing period.
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Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly?

 Existing resource monitors cannot respond to execution phase changes quickly
- eg., Linux top and iotop refresh measurements periodically every a few seconds
- Applications often have bursty |/O phases finished within a refreshing period.

* Event-driven method in vMigrator
- Monitor I/O events time at OS block 1/0 layer
- Calculate the fraction between the |/O events time and the whole period
- respond quickly when task becomes 1/0O intensive (<1 millisecond)
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Implementation challenges (2/3)
- when to migrate?

e When the vCPUs are to be inactive

* Naive approach: monitor inactive/active vCPUs in hypervisor layer: not
secure and portable

e Our approach
- a heartbeat-like mechanism: timer events as heartbeats
- a VCPU cannot process timer events when it is inactive

- vVCPU time slice: timer differences between the start timer and end
timer when the vCPU is active
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Challenges with the user-level design (3/3)
- migrate to which vCPU(s)?

* Migrate to vCPUs with enough remaining time slice
e Estimation of time slice still relies on the heartbeat-like mechanism

* Naive approach: consolidate all I/O tasks to the vCPU with the longest
remaining time slice

- Problem: the vCPU may be overloaded

* Our approach: distribute 1/0 tasks to vCPUs based on 1I/0O workload and
remaining time slice.

- tasks with heavier I/O workload on vCPUs with more time slice
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Experimental Setup

* Dell PowerEdge R430 with 12 cores, a 1TB HDD, and a 1TB SSD

e Both VMs and VMM (linux QEMU/KVM) use Ubuntu Linux 16.04
* Each VM has 12 vCPUs and 4GB DRAM

* Compared with vSlicer [HPDC’12] and xBalloon [SoCC’17]
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Evaluation applications and workloads

HDFS Sequentially read 16GB with HDFS TestDFSIO
LevelDB Randomly scan table with db_bench

MediaTomb Concurrent requests on teanscoding a 1.1GB video
HBase Randomly read 1GB with Hbase PerfEval

PostMark Concurrent requests on a mail server

Nginx Concurrent requests on watermarking images

MongDB Sequentially scan records with YCSB
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Evaluation questions

* How much performance improvement can be achieved with vMigrater,
compared with vanilla KVM and two related systems?

e Can vMigrater help the I/0 scheduler in the VMM to achieve fairness
between VMs?

* How robust is vMligrater to varying workloads?

56



Throughput on seven applications (4 vCPUs
sharing per pCPU)
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vMigrater’s throughput is 192% higher than Vanilla KVM, 75% higher than vSlicer,

84% higher than xBalloon on average
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HDFS performance analysis
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MediaTomb performance analysis

Vanllla [ ]

xBalloon 121.82 9291 75.27
vMigrater

100

xBalloon | vMigrater

0]
o

|nact|V|ty
time
(seconds)

MediaTomb m xBalloon vMigrater

I/O inactivity 108.61 89.46 116.96
time
(seconds)

(o2}
o

EaN
o

[\S]
(=)

Normalized Throughput to Bare-metal(%)

vMigrater has big I/O inactivity periods on MediaTomb
 MediaTomb combine computation and I/O in each thread so the migration cost
is higher
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Fairness of 1/0O Scheduler in VMM

Physical Machine

)

VM 1 N / VM2 J\z
mongoDB SpQrK ‘
vCPU1 vCPU2 vCPU3 vCPU4 JA vCI;Ul vCPU?2 vCPU3 vCPU4
VMM
pCPU1 pCPU2 pCPU3 pCPU4/

160

L2140 ¢

an

=120+
?5/100—
o 80+
S 60|
40 +
20 1

Throu

w/o vMigrater w/ vMigrater

60



Robustnhess to varying workloads
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Conclusions

* |/O inactivity problem
- Performance degradation
- 1/O scheduler unfairness
» vMigrater: effectively mitigating I/O inactivity problem
- Performance is close to bare-metal
- Regain fairness

* vMigrater’s source code: https://github.com/hku-systems/vMigrater
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Thank you
Questions?
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