Effectively Mitigating I/O Inactivity in vCPU Scheduling

Weiwei Jia¹², Cheng Wang¹, Xusheng Chen¹, Jianchen Shan², Xiaowei Shang², Heming Cui¹, Xiaoning Ding², Luwei Cheng³, Francis C. M. Lau¹, Yuexuan Wang¹, Yuangang Wang⁴

Hong Kong University¹, New Jersey Institute of Technology², Facebook³, Huawei⁴

VM consolidation is pervasive in clouds

Consolidation benefits:

- Ease management
- Save energy
- Improve resource utilization and system throughput

Physical CPU (pCPU): hardware resources

- Physical CPU (pCPU): hardware resources
- Virtual CPU (vCPU): processors in VM, threads in VMM
- Multiple vCPUs sharing one pCPU is often
 - E.g., VMWARE suggests 8-10 vCPUs to share one pCPU

- Physical CPU (pCPU): hardware resources
- Virtual CPU (vCPU): processors in VM, threads in VMM
- vCPU scheduler schedules and deschedules vCPUs periodically

- Physical CPU (pCPU): hardware resources
- Virtual CPU (vCPU): processors in VM, threads in VMM
- vCPU scheduler schedules and deschedules vCPUs periodically

- Physical CPU (pCPU): hardware resources
- Virtual CPU (vCPU): processors in VM, threads in VMM
- vCPU scheduler schedules and deschedules vCPUs periodically

- Physical CPU (pCPU): hardware resources
- Virtual CPU (vCPU): processors in VM, threads in VMM
- vCPU scheduler schedules and deschedules vCPUs periodically

- Physical CPU (pCPU): hardware resources
- Virtual CPU (vCPU): processors in VM, threads in VMM
- vCPU scheduler schedules and deschedules vCPUs periodically

An understudied problem: I/O inactivity

An understudied problem: I/O inactivity

An understudied problem: I/O inactivity

No I/O requests can be issued on an inactive vCPU

Underutilization of I/O device

I/O inactivity causes low I/O performance in VMs

- VM1 can only use 50% of I/O bandwidth even when VM2 does not use I/O device.
- I/O throughput of HDFS in VM1 is only 55% of that on bare-metal.

Two I/O-intensive applications (HDFS and MongoDB) show similar I/O throughput on bare-metal

- vCPUs running I/O tasks in MongoDB in VM2 have more time slice to run.
- vCPUs running HDFS in VM1 have less time slice to run

Our answer is YES!

- Our answer is YES!
- Key observation: each VM often has active vCPUs

- Our answer is YES!
- Key observation: each VM often has active vCPUs
- Solution: keep I/O tasks on active vCPUs
 - Migrate an I/O task when its vCPU is about to be descheduled

- Our answer is YES!
- Key observation: each VM often has active vCPUs
- Solution: keep I/O tasks on active vCPUs
 - Migrate an I/O task when its vCPU is about to be descheduled
 - Migrate the I/O task to a vCPU that is NOT to be descheduled soon.

- Our answer is YES!
- Key observation: each VM often has active vCPUs
- Solution: keep I/O tasks on active vCPUs
 - Migrate an I/O task when its vCPU is about to be descheduled
 - Migrate the I/O task to a vCPU that is NOT to be descheduled soon.
- Benefits: I/O tasks can make continuous progress like on bare-metal

- Our answer is YES!
- Key observation: each VM often has active vCPUs
- Solution: keep I/O tasks on active vCPUs
 - Migrate an I/O task when its vCPU is about to be descheduled
 - Migrate the I/O task to a vCPU that is NOT to be descheduled soon.
- Benefits: I/O tasks can make continuous progress like on bare-metal
 - Migration can be efficient because I/O tasks usually have small working sets.

Challenges with the user-level design (1/3) - How to detect I/O tasks quickly?

- Existing resource monitors cannot respond to execution phase changes quickly
 - eg., Linux top and iotop refresh measurements periodically every a few seconds
 - Applications often have bursty I/O phases finished within a refreshing period.

Challenges with the user-level design (1/3) - How to detect I/O tasks quickly?

- Existing resource monitors cannot respond to execution phase changes quickly
 - eg., Linux top and iotop refresh measurements periodically every a few seconds
 - Applications often have bursty I/O phases finished within a refreshing period.
- Event-driven method in vMigrator
 - Monitor I/O events time at OS block I/O layer
 - Calculate the fraction between the I/O events time and the whole period
 - respond quickly when task becomes I/O intensive (<1 millisecond)

Implementation challenges (2/3) - when to migrate?

- When the vCPUs are to be inactive
- Naïve approach: monitor inactive/active vCPUs in hypervisor layer: not secure and portable
- Our approach
 - a heartbeat-like mechanism: timer events as heartbeats
 - a vCPU cannot process timer events when it is inactive
- vCPU time slice: timer differences between the start timer and end timer when the vCPU is active

Challenges with the user-level design (3/3) - migrate to which vCPU(s)?

- Migrate to vCPUs with enough remaining time slice
 - Estimation of time slice still relies on the heartbeat-like mechanism
- Naïve approach: consolidate all I/O tasks to the vCPU with the longest remaining time slice
 - Problem: the vCPU may be overloaded

- Our approach: distribute I/O tasks to vCPUs based on I/O workload and remaining time slice.
 - tasks with heavier I/O workload on vCPUs with more time slice

Experimental Setup

- Dell PowerEdge R430 with 12 cores, a 1TB HDD, and a 1TB SSD
- Both VMs and VMM (linux QEMU/KVM) use Ubuntu Linux 16.04
- Each VM has 12 vCPUs and 4GB DRAM
- Compared with vSlicer [HPDC'12] and xBalloon [SoCC'17]

Evaluation applications and workloads

Application	Workload
HDFS	Sequentially read 16GB with HDFS TestDFSIO
LevelDB	Randomly scan table with db_bench
MediaTomb	Concurrent requests on teanscoding a 1.1GB video
HBase	Randomly read 1GB with Hbase PerfEval
PostMark	Concurrent requests on a mail server
Nginx	Concurrent requests on watermarking images
MongDB	Sequentially scan records with YCSB

Evaluation questions

- How much performance improvement can be achieved with vMigrater, compared with vanilla KVM and two related systems?
- Can vMigrater help the I/O scheduler in the VMM to achieve fairness between VMs?
- How robust is vMigrater to varying workloads?
- What is the overhead incurred by vMigrater?
- What is vMigrater's performance when the workload in a VM varies over time
- How does vMigrater scale to the number of shared vCPUs on a pCPU?

Throughput on seven applications (4 vCPUs sharing per pCPU)

vMigrater's throughput is 192% higher than Vanilla KVM, 75% higher than vSlicer, 84% higher than xBalloon on average

HDFS performance analysis

HDFS	Vanilla	vSlicer	xBalloon	vMigrater
I/O inactivity time (seconds)	121.82	92.91	75.27	6.62

MediaTomb performance analysis

HDFS	Vanilla	vSlicer	xBalloon	vMigrater
I/O inactivity time (seconds)	121.82	92.91	75.27	6.62

MediaTomb	Vanilla	vSlicer	xBalloon	vMigrater
I/O inactivity	108.61	89.46	116.96	34.95
time				
(seconds)				

vMigrater has big I/O inactivity periods on MediaTomb

MediaTomb combine computation and I/O in each thread so the migration cost is higher

Fairness of I/O Scheduler in VMM

Conclusions

- I/O inactivity problem
 - Performance degradation
 - I/O scheduler unfairness
- vMigrater: effectively mitigating I/O inactivity problem
 - Performance is close to bare-metal
 - Regain fairness

• vMigrater's source code: https://github.com/hku-systems/vMigrater

Thank you Questions?