Effectively Mitigating |/O
Inactivity in vCPU Scheduling

Weiwei Jia*?, Cheng Wang?!, Xusheng Chen?, Jianchen Shan?, Xiaowei Shang?,
Heming Cuil, Xiaoning Ding?, Luwei Cheng3, Francis C. M. Lau?, Yuexuan Wang?,
Yuangang Wang*

Hong Kong University!, New Jersey Institute of Technology?, Facebook3, Huawei*

1

VM consolidation is pervasive in clouds

/ Physical Machine (PM 1) \ PM n
f N\ p
Virtual Machine
VM 2
(VM 1)
- J Y
Virtual Machine Monitor (VMM)

\L 1 -

Consolidation benefits:

 Ease management

* Save energy

* Improve resource utilization and system throughput

Multiple vCPUs are scheduled to time-share a pCPU

Physical Machine \
N\

VM 1 VM 2

VMM

Multiple vCPUs are scheduled to time-share a pCPU

Physical Machine \
N\

VM 1 VM 2

AN

VMM

pcPU1 | [pcPu2 | [pcPU3 | [pcPu4 |

* Physical CPU (pCPU): hardware resources

Multiple vCPUs are scheduled to time-share a pCPU

Physical Machine \

N\
VM 1 VM 2
veput [| vepuz | vepus || vepua | J | veput | vepuz | vepus ff vepus
- N -
VMM

pcPU1 | [pcPu2 | [pcPU3 | [pcPu4 |

* Physical CPU (pCPU): hardware resources
* Virtual CPU (vCPU): processors in VM, threads in VMM
 Multiple vCPUs sharing one pCPU is often

* E.g., VMWARE suggests 8-10 vCPUs to share one pCPU

Multiple vCPUs are scheduled to time-share a pCPU

Physical Machine \

N\
VM 1 VM 2
vepuz || verus] vepus |) vepu2 || vepus || vepus
VMM

cPU1 | [pCPU2 | [pCPU3 | [pCPU4 | /

* Physical CPU (pCPU): hardware resources
* Virtual CPU (vCPU): processors in VM, threads in VMM
 VCPU scheduler schedules and deschedules vCPUs periodically

Multiple vCPUs are scheduled to time-share a pCPU

Physical Machine \

N\
VM 1 VM 2
vepu2 | vepus | vepua | J || veput || vepuz | vepus ff vepus
) - -
VMM

cPU1 | [pCPU2 | [pCPU3 | [pCPU4 | /

* Physical CPU (pCPU): hardware resources
* Virtual CPU (vCPU): processors in VM, threads in VMM
 VCPU scheduler schedules and deschedules vCPUs periodically

Multiple vCPUs are scheduled to time-share a pCPU

T0 T1 T2
Physical Machine \

I
: Time

)
N |

active
VM 1 VM 2 T |

vCPU1lin VM1

vCPU2 || vCPU3 || vCPU4]|} vCPUL Jj vCPU2 | vCPU3 || vCPU4 : inactive I
A \ I I
VMM | |
CPU1 | | pCPU2 | | pCPU3 pCPU4/V€PUlinVM2: active |
Jnactive |

* Physical CPU (pCPU): hardware resources
* Virtual CPU (vCPU): processors in VM, threads in VMM
 VCPU scheduler schedules and deschedules vCPUs periodically

Multiple vCPUs are scheduled to time-share a pCPU

TO T1 T2
Physical Machine \ |

|

\(| Time:

active | |

VM 1 VM 2 _ I |
vCPU1lin VM1 |

vecPU2 || vCPU3 || vCPU4 | |] vePuL fj vePU2 || vCPU3 || vCPU4 jnactive I

A 1 I I

I

VMM I |

CPU1 | | pCPU2 [[pCPU3 | | pCPUA | \cpusinvmz active |

inactive |

* Physical CPU (pCPU): hardware resources
* Virtual CPU (vCPU): processors in VM, threads in VMM
 VCPU scheduler schedules and deschedules vCPUs periodically

Multiple vCPUs are scheduled to time-share a pCPU

Physical Machine

A

N/
VM 1 VM 2
e e e e R
VMM
cPU1 | [pCPU2 | [pCPU3 | [pCPU4 | /

Physical CPU (pCPU): hardware resources
Virtual CPU (vCPU): processors in VM, threads in VMM
vCPU scheduler schedules and deschedules vCPUs periodically

TO

vCPUlin VM1

vCPU1lin VM2

T1

T2

active

inactive

inactive

active

Time

v
1 — e e e e e —— —— —— — — S—

10

An understudied problem: I/O inactivity

TO0 T1 12

Physical Machine \

I
: Time

|
VM 1 ™ / VM2 :
| ' | active |
vepu2 || vepus || vepua |, vepu2 || vepus || vepua VC'?L_J“ |
= = activity| |
| |
active Inactive
VMM HDFSI/O Y M M M I
activity | |
CPU1 pCPU2 pCPU3 pCPU4/ on vCPUll _’\ I
- inactive :
/O request

11

An understudied problem: I/O inactivity

T0 T1 T2
Physical Machine \ |

|
VM 1 N (VM2 | Time:
@ active | |
[HDES, 1 |
vcpu2 | vepus | vepua |) veruz || verus || vepua VCPL_Jl |
= = activity I
o |

active |inactive
VMM HDFSI1/0 71 [M ulE I
activity |
CPU1 pCPU2 pCPU3 pCPU4/ on vCPU1 —’\ I
- _|inactive - :

/O request

12

An understudied problem: I/O inactivity

TO T1 12

Physical Machine \ i |

VM 1 N VM2 | Time :

‘ active | |

WY HIES] VM1 |

veput [vepuz ff vepus ff vepua [) vepua Jf vepuz | vepus | vepua vCPU1 |
- =/ - = activity I
o |

VMM HDFS 1/0 _active_Inactive] |

activity |

CPU1 pCPU2 pCPU3 pCPU4/ on vCPU1 _’\ :

No I/O requests can be issued on an inactive vCPU

Underutilization
of I/O device

/O inactivity causes low |/O performance in VMs

Physical Machine

A

VM 1 N / VM2
Gt
vCPU1 || vCPU2 || vCPU3 || vCPU4]\ vCPU1 || vCPU2 || vCPU3 || vCPU4
VMM
pCPU1 | | pcPU2 | | pCcPU3 pCPU4/

I/O Bandwidth (MB/s)

160 |
140
120
100 |
80 |
60 |
40
20 |

Vanilla KVM —
Bare Metal

HDFS

VM1 can only use 50% of I/O bandwidth even when VM2 does not use I/O device.
/0 throughput of HDFS in VM1 is only 55% of that on bare-metal.

14

/O scheduler cannot effectively enforce fairness between VMs

/ Physical Machine \

Operating System

pcPU1 | [pcPu2 | [pcPU3 | [pcPu4 |

15

/O scheduler cannot effectively enforce fairness between VMs

/ Physical Machine \
St Spor‘f(z 0

mongoDB

Operating System

pcPU1 | [pcPu2 | [pcPU3 | [pcPu4 |

16

/O scheduler cannot effectively enforce fairness between VMs

/ Physical Machine

s Sporf(z

~
0

mongoDB

Operating System

pCPU1 pCPU2 pCPU3

pCPU4/

/O Bandwidth (MB/s)

160
140
120
100
80 r
60 r
40 r
20 r

HDFS

MangoDB s

Bare-metal

17

/O scheduler cannot effectively enforce fairness between VMs

/ Physical Machine

St Sporf(z

~
0

mongoDB

Operating System

pCPU1

pCPU2

pCPU3

pCPU4/

/O Bandwidth (MB/s)

160
140
120
100 ¢
80 r
60 r
40 r
20 r

HDFS ===
MangoDB

Bare-metal

Two |/O-intensive applications (HDFS and MongoDB) show similar I/O
throughput on bare-metal

18

/O scheduler cannot effectively enforce fairness between VMs

/ Physical Machine \

VMM
pCPUL | | pcPU2 | | pCPU3 | [pCPU4 |

19

/O scheduler cannot effectively enforce fairness between VMs

Physical Machine \

VM 1 | N

Spark’ e

vCPU1 vCPU2 vCPU3 vCPU4

/

-

VMM
pCPUL | | pcPU2 | | pCPU3 | [pCPU4 |

20

/O scheduler cannot effectively enforce fairness between VMs

Physical Machine \

VM 1 | ™ / VM2

Spark’ e

vCPU1 || vCPU2 || vCPU3 || vCPU4]\ vCPU1 || vCPU2 || vCPU3 || vCPU4

- " -

mongoDB

VMM
pCPUL | | pcPU2 | | pCPU3 | [pCPU4 |

21

/O scheduler cannot effectively enforce fairness between VMs

Physical Machine \

VM 1 | ™ / VM2

Spark’ e

vCPU1 || vCPU2 || vCPU3 || vCPU4]\ vCPU1 || vCPU2 || vCPU3 || vCPU4

- " -

VMM
pCPUL | | pcPU2 | | pCPU3 | [pCPU4 |

mongoDB

VM1 and VM2 are assignhed with the same 1/O priority, but MongoDB (VM2)
achieves much higher I/0 throughput.

22

/O scheduler cannot effectively enforce fairness between VMs

Physical Machine \

VM 1 N / VM2 160 | HDFS ——

MangoDB s

%)
J‘z , v 2 140
SparK™ <rmes =)
mongoDB % 100 L
vCPU1 || vCPU2 || vCPU3 || vCPU4]\ vCPU1 || vCPU2 || vCPU3 || vCPU4 § 80 |
== = -8 60
= 2
VMM @D 4|
O

20 r

pCPUL | [pCPU2 | [pCPU3 | [pCPU4 |/

Bare-metal Vanilla KVM

VM1 and VM2 are assigned with the same 1/O priority, but MongoDB (VM?2)
achieves much higher I/O throughput.

23

/O scheduler cannot effectively enforce fairness between VMs

Physical Machine

)

VM 1 N / VM 2
Spcwrl(z taare U
mongoDB
vCPU1 || vCPU2 || vCPU3 || vCPU4]\ vCPU1 || vCPU2 || vCPU3 || vCPU4
VMM

pCPU1

oCPU2 | [pcPU3

pCPU4/

I/O Bandwidth (MB/s)

160
140 |
120
100
80
60 |
40 ¢
20 r

HDFS
MangoDB s

Bare-metal

VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM?2)
achieves much higher I/O throughput.

24

/O scheduler cannot effectively enforce fairness between VMs

Physical Machine

)

VM 1 N VM 2
<X G 0
SpQrK mij' mongoDB
vCPU1 vCPU2 vCPU3 vCPU4 J\ vCPU1 vCPU?2 vCPU3 vCPU4
VMM

pCPU1

oCPU2 | [pcPU3

pCPU4/

I/O Bandwidth (MB/s)

160
140 |
120
100
80 r
60 |
40 ¢
20 r

HDFS
MangoDB s

Bare-metal

VM1 and VM2 are assigned with the same I/O priority, but MongoDB (VM?2)

achieves much higher I/0 throughput.
e VvCPUs running |/O tasks in MongoDB in VM2 have more time slice to run.
e VCPUs running HDFS in VM1 have less time slice to run 25

Key: decouping I/O activities from vCPU scheduling

vSlicer[HPDC 1]

26

Key: decouping I/O activities from vCPU scheduling

active

Vanilla KVM

inactive

active

L

I/0O request

inactive

vSlicer[HPDC 1]

Blue line: vCPU activit

Black line: 1/O activity

27

Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

vSlicer[HPDC’11]

: I/0O request
inactive T/ inactive
inactive inactive) inactive inactive

Blue line: vCPU activit

Black line: 1/O activity

28

Key: decouping I/O activities from vCPU scheduling

active active I/0O request
Vanilla KVM Blue line: vCPU activit
inactive inactive
Black line: 1/O activity
vSlicer[HPDC’11] inactive inactive| inactive inactive
xBaIIoon[SoCC’iT’:] . . .
inactive Inactive

29

Key: decouping I/O activities from vCPU scheduling

Vanilla KVM

vSlicer[HPDC’11]

Blue line: vCPU activit

Black line: 1/O activity

xBaIIoon[SoCC’i

- _act_ive_ - ac_tivc_e I/0O request
inactive T/ inactive
Il inactive || inactive| | inactive It inactive
T T (T . .
' inactive inactive

/O activity |
bare-metal

30

Can we decouple I/O activities from vCPU scheduling?

e Qur answer is YES!

31

Can we decouple I/O activities from vCPU scheduling?

* Qur answer is YES!
* Key observation: each VM often has active vCPUs

32

Can we decouple I/O activities from vCPU scheduling?

* Qur answer is YES!
* Key observation: each VM often has active vCPUs

* Solution: keep I/O tasks on active vCPUs

- Migrate an 1/0O task when its vCPU is about to be descheduled

33

Can we decouple I/O activities from vCPU scheduling?

* Qur answer is YES!
* Key observation: each VM often has active vCPUs

* Solution: keep I/O tasks on active vCPUs
- Migrate an 1/0O task when its vCPU is about to be descheduled

- Migrate the /O task to a vCPU that is NOT to be descheduled soon.

34

Can we decouple I/O activities from vCPU scheduling?

* Qur answer is YES!
* Key observation: each VM often has active vCPUs

* Solution: keep I/O tasks on active vCPUs
- Migrate an 1/0O task when its vCPU is about to be descheduled

- Migrate the /O task to a vCPU that is NOT to be descheduled soon.

» Benefits: I/O tasks can make continuous progress like on bare-metal

35

Can we decouple I/O activities from vCPU scheduling?

* Qur answer is YES!
* Key observation: each VM often has active vCPUs

* Solution: keep I/O tasks on active vCPUs
- Migrate an 1/0O task when its vCPU is about to be descheduled

- Migrate the /O task to a vCPU that is NOT to be descheduled soon.

» Benefits: I/O tasks can make continuous progress like on bare-metal

- Migration can be efficient because 1/0O tasks usually have small
working sets.

36

vMigrater: a user-level design

[vCPU

Monitor

] vMigrater [

Detector

\\\

Task]

: Task Migrater]

\ vCPU1

1

! vCPU?2 \ ‘ vCPU3 \ /}

I |/O-bound Task
I CPU-bound Task

Hypervisor

vCPU Scheduler

pCPU1

pCPU2

37

vMigrater: a user-level design

™

1

;iib

! vCPU?2 \ ‘ vCPU3 \ /}

I |/O-bound Task
I CPU-bound Task

Hypervisor

vCPU Scheduler

pCPU1

pCPU2

38

vMigrater: a user-level design

[vCPU

Monitor

] vMigrater [

Detector

\\\

Task]

: Task Migrater]

\ vCPU1

1

! vCPU?2 \ ‘ vCPU3 \ /}

I |/O-bound Task
I CPU-bound Task

Hypervisor

vCPU Scheduler

pCPU1

pCPU2

39

vMigrater: a user-level design

vCPU

[Monitor] vMigrater [Detector

Task]

: Task Migrater]

1

! vCPU?2 \ ‘ vCPU3 \ /}

\\\

I |/O-bound Task
I CPU-bound Task

Hypervisor

vCPU Scheduler

pCPU1

pCPU2

40

vMigrater: a user-level design

[vCPU

Monitor

] vMigrater [

Detector

\\\

Task]

: Task Migrater]

\ vCPU1

1

! vCPU?2 \ ‘ vCPU3 \ /}

I |/O-bound Task
I CPU-bound Task

Hypervisor

vCPU Scheduler

pCPU1

pCPU2

41

vMigrater: a user-level design

[vCPU

Monitor

] vMigrater [

Detector

\\\

Task]

: Task Migrater]

I |/O-bound Task
I CPU-bound Task

0 T1°T1 T2

i I_ i\ | active

vCPU1!

\ vCPU1 !vcpuzl !vCPU?,[Y activity,
| Inactive

Hypervisor :

vCPU Scheduler :

|

pCPU1 pCPU2

Time

42

y
——————— E—— E—— S T N T T EE—— E— —

vMigrater: a user-level design

‘i$b

[vCPU

Monitor

] vMigrater [

Detector

Task]

: Task Migrater]

1

I |/O-bound Task
I CPU-bound Task

To be descheduled

vCPU1!
\ vCPU1 ‘ vCPU2 \ ‘ vCPU3 \ Y activity,
|
Hypervisor :
vCPU Scheduler :
|
0CPU1 0CPU2

Time

Inactive

43

y
——e—— e ——— T e S . T . EE—— E—— S—

vMigrater: a user-level design

\\\

[vCPU

Monitor

] vMigrater [

Detector

Task]

: Task Migrater]

1

I |/O-bound Task
I CPU-bound Task

To be descheduled

vCPU1!
\ vCPU1 !vCPUZ[/ activity,
|
Hypervisor :
vCPU Scheduler :
|
pCPU1 pCPU2

Time

Inactive

44

y
——e—— e ——— T e S . T . EE—— E—— S—

vMigrater: a user-level design

‘i$b

[vCPU

Monitor

] vMigrater [

Detector

Task]

: Task Migrater]

1

I |/O-bound Task
I CPU-bound Task

To be descheduled

vCPU1!
\ vCPU1 ‘ vCPU2 \ ‘ vCPU3 \ Y activity,
|
Hypervisor :
vCPU Scheduler :
|
0CPU1 0CPU2

Time

Inactive

45

y
——e—— e ——— T e S . T . EE—— E—— S—

vMigrater: a user-level design

‘i$b

[vCPU

Monitor

] vMigrater [

Detector

Task]

: Task Migrater]

1

I |/O-bound Task
I CPU-bound Task

To be descheduled

Time

Inactive

vCPU1!
\ vCPU1 ‘ vCPU2 \ ‘ vCPU3 \ Y activity,
|
Hypervisor :
vCPU Scheduler |
VCPUS:
SCPUL SCPU2 activity

y
——e—— e ——— T e S . T . EE—— E—— S—

46

vMigrater: a user-level design

\\\

[vCPU

Monitor

] vMigrater [

Detector

Task]

: Task Migrater]

1

I |/O-bound Task

| cPU-bound Task To be descheduled

Time

|
|
|
|
vCPU1! |
K vCPU1 !vCPUZ[!vcpual J activity, |
. | inactive |
Hypervisor : :
vCPU Scheduler | |
vCPU3! |
CPUL CPU2 activity

NOT to be descheduled soon47

vMigrater: a user-level design

‘i$b

[vCPU
Monitor

] vMigrater [

Detector

Task]

[sk Migrater |

'l |

I |/O-bound Task

| cPU-bound Task To be descheduled

Time

vCPU1!
K vCPU1 ‘ vCPU2 \ ‘ vCPU3 \ Y activity,
, | Inactive
Hypervisor :
vCPU Scheduler |
vCPUS:
CPUL SCPU2 activity

y
——e—— e ——— T e S . T . EE—— E—— S—

NOT to be descheduled soon48

vMigrater: a user-level design

\\\

vCPU

[Monitor] vMigrater [Detector

Task]

[sk Migrater |

\
=)

I

I |/O-bound Task

| cPU-bound Task To be descheduled

Time

|
|
|
|
vCPU1! |
K vCPU1 !vCPUZ[!vcpual J activity, |
. | inactive |
Hypervisor : :
vCPU Scheduler | |
vCPU3! |
CPUL CPU2 activity

NOT to be descheduled soon49

Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly?

 Existing resource monitors cannot respond to execution phase changes quickly
- eg., Linux top and iotop refresh measurements periodically every a few seconds
- Applications often have bursty |/O phases finished within a refreshing period.

50

Challenges with the user-level design (1/3)
- How to detect I/O tasks quickly?

 Existing resource monitors cannot respond to execution phase changes quickly
- eg., Linux top and iotop refresh measurements periodically every a few seconds
- Applications often have bursty |/O phases finished within a refreshing period.

* Event-driven method in vMigrator
- Monitor I/O events time at OS block 1/0 layer
- Calculate the fraction between the |/O events time and the whole period
- respond quickly when task becomes 1/0O intensive (<1 millisecond)

51

Implementation challenges (2/3)
- when to migrate?

e When the vCPUs are to be inactive

* Naive approach: monitor inactive/active vCPUs in hypervisor layer: not
secure and portable

e Our approach
- a heartbeat-like mechanism: timer events as heartbeats
- a VCPU cannot process timer events when it is inactive

- vVCPU time slice: timer differences between the start timer and end
timer when the vCPU is active

52

Challenges with the user-level design (3/3)
- migrate to which vCPU(s)?

* Migrate to vCPUs with enough remaining time slice
e Estimation of time slice still relies on the heartbeat-like mechanism

* Naive approach: consolidate all I/O tasks to the vCPU with the longest
remaining time slice

- Problem: the vCPU may be overloaded

* Our approach: distribute 1/0 tasks to vCPUs based on 1I/0O workload and
remaining time slice.

- tasks with heavier I/O workload on vCPUs with more time slice
53

Experimental Setup

* Dell PowerEdge R430 with 12 cores, a 1TB HDD, and a 1TB SSD

e Both VMs and VMM (linux QEMU/KVM) use Ubuntu Linux 16.04
* Each VM has 12 vCPUs and 4GB DRAM

* Compared with vSlicer [HPDC’12] and xBalloon [SoCC’17]

54

Evaluation applications and workloads

HDFS Sequentially read 16GB with HDFS TestDFSIO
LevelDB Randomly scan table with db_bench

MediaTomb Concurrent requests on teanscoding a 1.1GB video
HBase Randomly read 1GB with Hbase PerfEval

PostMark Concurrent requests on a mail server

Nginx Concurrent requests on watermarking images

MongDB Sequentially scan records with YCSB

55

Evaluation questions

* How much performance improvement can be achieved with vMigrater,
compared with vanilla KVM and two related systems?

e Can vMigrater help the I/0 scheduler in the VMM to achieve fairness
between VMs?

* How robust is vMligrater to varying workloads?

56

Throughput on seven applications (4 vCPUs
sharing per pCPU)

Vanilla -

vSlicer mEmms
xBalloon

vMigrater’s throughput is 192% higher than Vanilla KVM, 75% higher than vSlicer,

84% higher than xBalloon on average

100

o
o

vMigrater

D
o

N
o

[\
o

Normalized Throughput to Bare-metal(%)

o

o

@)
T
»

57

HDFS performance analysis

100 ,
R R

xBalloon vMigrater

80 vaaslllé)Coer: 121.82 9291 75.27
vMigrater |nact|V|ty
60 time
(seconds)

N
o

[\S]
o

Normalized Throughput to Bare-metal(%)

o

58

MediaTomb performance analysis

Vanllla []

xBalloon 121.82 9291 75.27
vMigrater

100

xBalloon | vMigrater

0]
o

|nact|V|ty
time
(seconds)

MediaTomb m xBalloon vMigrater

I/O inactivity 108.61 89.46 116.96
time
(seconds)

(o2}
o

EaN
o

[\S]
(=)

Normalized Throughput to Bare-metal(%)

vMigrater has big I/O inactivity periods on MediaTomb
 MediaTomb combine computation and I/O in each thread so the migration cost
is higher

59

Fairness of 1/0O Scheduler in VMM

Physical Machine

)

VM 1 N / VM2 J\z
mongoDB SpQrK ‘
vCPU1 vCPU2 vCPU3 vCPU4 JA vCI;Ul vCPU?2 vCPU3 vCPU4
VMM
pCPU1 pCPU2 pCPU3 pCPU4/

160

L2140 ¢

an

=120+
?5/100—
o 80+
S 60|
40 +
20 1

Throu

w/o vMigrater w/ vMigrater

60

Robustnhess to varying workloads

500

300 | U

200 ¢

Throughput (MB / sec)

100 ¢

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (sec)

Robustnhess to varying workloads

500

Throughput (MB / sec)

0

400 |

300 |

200 ¢

100 ¢

0

'1

> 3 24 b 6 7 8 9 10 11 12 13
Time (sec)
Added 4 clients

62

Robustnhess to varying workloads

500

100 WMWWWM

300 |

200 ¢

Throughput (MB / sec)

100 ¢

0

0 1 2 3 4 5 6 t 8l9 10 11 12 13
Time (se
Added 8 clients

Robustnhess to varying workloads

500

100 ””\’WW
300 | U

200 ¢

Throughput (MB / sec)

100 ¢

0

0 1 2 3 4 5 6 7 8 9 10 11 [2 13
Time (sec)
Added 16 clients

Conclusions

* |/O inactivity problem
- Performance degradation
- 1/O scheduler unfairness
» vMigrater: effectively mitigating I/O inactivity problem
- Performance is close to bare-metal
- Regain fairness

* vMigrater’s source code: https://github.com/hku-systems/vMigrater

65

Thank you
Questions?

66

