Data Management Design for Interlaced Magnetic Recording

Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen, Bingzhe Li,
Jim Diehl, Guohua Wang*, David H.C. Du
University of Minnesota, Twin Cities *South China University of Technology

IMR: Higher areal data density than CMR, lower write amplification (WA) than SMR.

IMR Tracks	Width	Laser Power	Data Density	Data Rate	Track Capacity
Bottom Tracks	wider	higher	higher(+27%)[1]	higher	higher
Top Tracks	narrower	lower	lower	lower	lower

Updating top tracks has no penalty

Updating bottom tracks causes Write Amplification (WA)

Only using bottom tracks when disk is not full may reduce WA.

I/O Performance depends on disk usage, and layout design.

The Problem: Data Management Design for IMR

- Adapt to disk usage.
- Reduce write amplification.
- Bound memory budget.

Outline

- The problem
- The solutions
 - Baseline design
 - DM-IMR design
- The results
- Future works

Track Group (TG)

Track Group (TG): an interlaced set of consecutive physical top and bottom tracks.

This paper only focus on the data allocation and management within one TG.

Three-Phase Baseline

DM-IMR: Data Management for IMR

- Top-Buffer
- Block-Swap

Top-Buffer

The idea: opportunistically buffer bottom-write requests into unallocated top tracks; accumulate multiple updates and write to bottom only once.

Top-Buffer

Design choice: user defines the **size budget of the memory table**; memory budget determines the max number of tracks Top-Buffer may have.

E.g., If the user bounds the memory table size to be 0.004% of the disk capacity, the max size of the Top-Buffer will be 2% of the disk capacity.

Intelligent Storage

Top-Buffer

Top-Buffer capacity also depends on available unallocated top tracks.

Problem:

- Extremely small Top-Buffer brings little benefit.
- Top-Buffer cannot function when usage=100%.

Block-Swap

The idea: progressively swap hot data in bottom tracks with cold data in top tracks.

Design choice: Top-Buffer and Block-Swap share the memory budget; Block-Swap will kick in when Top-Buffer cannot fully use the mapping table (i.e. usage is high).

Memory Mapping Table

bounded memory budget

lba	pba	
36	78	
46	79	
27	80	
24	76	
76	24	

DM-IMR: Put it together

Evaluation

- IMR Sim
- MSR Cambridge Trace Replay
- Competing Schemes

Basic Parameters Median Track pitch 820KTPI Median top track density 1640KBPI Median bottom track density 2030 KBPI **RPM** 5400 Derived Parameters #tracks (N) 1045800 Average bottom track size 2MB Average top track size 1.6MB

Table 1: IMR disk configuration.

Three-Phase Baseline

In-Place

Space utilizations (%)

Center for Research in

Intelligent Storage

Average Throughput with Varying Usage

- Buffer-Only and DM-IMR both can increase throughput.
- DM-IMR outperforms Buffer-Only after 98% because Block-Swap starts to kick in.

Summary

- Problem: data management for IMR.
- Two approaches are proposed:
 - Three-Phase baseline
 - DM-IMR, which uses Top-Buffer and Block-Swap to improve from the Three-Phase baseline.
- Results show DM-IMR can increase throughput and reduce write amplification.
- Future work: space manager design for TGs, eviction algorithms of Top-Buffer and Block-Swap, computation optimization, etc.

Data Management Design for Interlaced Magnetic Recording

Thank you! Comments/Questions?

