Hierarchical models of provenance

Peter Buneman James Cheney Egor Kostylev

University of Edinburgh TaPP, June 15, 2012

Motivation

- Many provenance systems track "flat" provenance
- Some track provenance at multiple granularity levels (in different ways)
 - e.g. ZOOM, Kepler, probably others
- Our goals:
 - Formal, high-level model of "hierarchical" provenance
 - Understand interplay between control/data abstractions and provenance models

OPM lite

- Simplified OPM: bipartite DAGs
 - Process nodes P
 - Artifact nodes A
 - Edges $E \subseteq (P \times A) \cup (A \times P)$
 - Labels on process, artifacts and edges

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

Note: This discards a lot of information!

"Hierarchical" OPM

- Augment OPM graph structure with call tree
- Tree T = (V,F) with nodes labeled by "higher-level" processes
- Mapping $\Omega: V \to (P \cup A)$
 - Requires if $(f,g) \in F$ then $\Omega(f) \supseteq \Omega(g)$
 - note reversal!
 - $\Omega(\text{root}) = (P \cup A)$
 - Further requirements: $\Omega(f)$ is a contiguous, "sub-OPM" graph.
 - Formalized more carefully in paper.

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

Views

- Given a prefix-closed subtree S of T
- This induces a *view* of H
 - that is, an normal OPM graph
- obtained by "collapsing" the graph structure of calls not in S
- This makes sense (only) because of restrictions on call mapping Ω .
 - (details in paper there are a few subtleties)

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

def f(x) = x+1

$$g(x,y) = h(x) + x*y$$

 $h(z) = z*z$
in $g(f(1), 4)$

ProvL: Simple "workflows" (ie functional programs)

• We first consider workflows with function calls but little else...

$$e := c \mid x \mid \odot(\vec{e}) \mid \text{let } x = e_1 \text{ in } e_2$$

- o denotes an arbitrary primitive function
 - think +, *, -, etc.
- Let-binding allows for sharing
 - hence, expression basically isomorphic to graph

Adding function calls

 We allow (closed, first- order) function definitions, with calls:

$$e := \cdots \mid f(\vec{e})$$

$$\operatorname{def} f_1(\vec{x}_1) = e_1, \ldots, f_m(\vec{x}_m) = e_m \text{ in } e'$$

- Functions can be defined mutually recursively
- Function calls generate call tree nodes (mapped to appropriate subgraphs).

Adding lists, map

Finally we consider lists and mapping

$$e ::= \cdots \mid \mathtt{map}_f(e)$$

- and allow nil, cons (and maybe others) as built-in functions
- Note that map is second-order i.e. map_f is a function for any f
- Map nodes link lists to lists, sub-call nodes map elements to elements

Map-incr example

def f(x) = x + 1in $map_f([1,2,3])$

Adding conditionals

• Next we consider if-then-else conditionals.

```
e := \cdots \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3
```

 The graph marks the conditional and direction taken.

Next steps

- Modeling of granularity in existing WF languages (or D-OPM)
 - expressiveness / query languages?
- Extensions to OPM / W3C PROV for hierarchical process structure?
 - complementing / clarifying work on "collections", "accounts"
- Richer language features
 - first-class higher-order functions? (cf. Perera et al. 2012)
 - meta-programming/provenance of provenance ("eval")
- Efficient implementation (exploit redundancy?)

Related work

- Provenance layering libraries/architecture (Muniswamy-Reddy et al. USENIX 2009)
- Builds on / variant of "graph model of workflow and DB prov" (Acar et al. TaPP 2010)
- ZOOM* User Views (Liu et al. TODS 2011)
 - abstract views based on user preferences
- Kepler (Anand et al. EDBT 2010)
 - data are serialized XML streams, QL supports nesting and process step navigation
- and slicing for program comprehension & provenance (Acar et al. 2012, Perera et al. 2012)
 - language-based approach, does not (directly) address abstraction/granu

Conclusions

- Provenance granularity is an important feature of several models
- There is no common understanding for what it means or how it should work
- Our contribution: basic model of "hierarchical" OPM
- But mostly open questions

Paper/appendix gives operational semantics producing HOPM graphs

$$\frac{(a := Gen_a(c))}{\gamma, c \Downarrow \Re(a, -, -), a} \frac{\gamma, \vec{e} \Downarrow \tilde{\Re}, \vec{a} \quad (a := Gen_a(\odot(\vec{o}))) \quad (p := Gen_p(\odot))}{\gamma, c \Downarrow \Re(a, -, -), a} \frac{\gamma, e \Downarrow \Re, a \quad \gamma\{x/a\}, e' \Downarrow \Re', a'}{\gamma, \text{let } x = e \text{ in } e' \Downarrow \Re \cup \Re', a'}$$

$$\frac{\gamma, e \Downarrow \Re, a \quad (a^\ell = \text{true}) \quad \gamma, e_1 \Downarrow \Re_1, a_1 \quad (a_n := Gen_a(a_1^\ell)) \quad (p_n := Gen_p(\text{iffrue}))}{\gamma, \text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow \Re \cup \Re_1 \cup \Re(a_n, p_n, (a, a_1)), a_n}$$

$$\frac{\gamma, e \Downarrow \Re, a \quad (a^\ell \neq \text{true}) \quad \gamma, e_2 \Downarrow \Re_2, a_2 \quad (a_n := Gen_a(a_2^\ell)) \quad (p_n := Gen_p(\text{iffalse}))}{\gamma, \text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow \Re \cup \Re_2 \cup \Re(a_n, p_n, (a, a_2)), a_n}$$

$$\text{(b)}$$

$$\frac{\gamma, \vec{e} \Downarrow \tilde{\Re}, \vec{a} \quad (\gamma(f) = f(\vec{x}).e) \quad \gamma\{\vec{x}/\vec{a}\}, e \Downarrow \Re, a}{\gamma, f(\vec{e}) \Downarrow \bigcup \tilde{\Re} \cup \Re(a_1, x_1, x_2)}$$

$$\text{(c)}$$

$$\frac{\gamma, e \Downarrow \Re, a \quad (a^\ell = [c_1, \dots, c_n]) \quad \gamma, f(c_1) \Downarrow \Re_1, a_1 \quad \dots \quad \gamma, f(c_n) \Downarrow \Re_n, a_n \quad (a' := Gen_a([a_1^\ell, \dots, a_n^\ell]))}{\gamma, \text{map}_f(e) \Downarrow \Re \cup \Re^\ell_{\text{map}}(a, [\Re_1, \dots, \Re_n], a'), a'} }$$

$$\text{(d)}$$

$$\frac{\{\vec{f}/\vec{f}(\vec{x}).\vec{e}\}, e \Downarrow \Re, a}{\text{def } \vec{f}(\vec{x}) = \vec{e} \text{ in } e \Downarrow \Re_{\text{main}}(\Re)}$$