
Hierarchical models
of provenance

Peter Buneman
James Cheney
Egor Kostylev

University of Edinburgh
TaPP, June 15, 2012

Motivation
• Many provenance systems track "flat"

provenance

• Some track provenance at multiple granularity
levels (in different ways)

• e.g. ZOOM, Kepler, probably others

• Our goals:

• Formal, high-level model of "hierarchical" provenance

• Understand interplay between control/data
abstractions and provenance models

OPM lite
• Simplified OPM: bipartite DAGs

• Process nodes P

• Artifact nodes A

• Edges E ⊆ (P × A) ∪ (A × P)

• Labels on process, artifacts and edges

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

Note: This
discards a lot of

information!

"Hierarchical" OPM
• Augment OPM graph structure with call tree

• Tree T = (V,F) with nodes labeled by "higher-level"
processes

• Mapping Ω : V → (P ∪ A)

• Requires if (f,g) ∈ F then Ω(f) ⊇ Ω(g)

• note reversal!

• Ω(root) = (P ∪ A)

• Further requirements: Ω(f) is a contiguous, "sub-OPM"
graph.

• Formalized more carefully in paper.

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

g1

f1

h1

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

g1

f1

h1

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

main

f1 g1

h1

Views
• Given a prefix-closed subtree S of T

• This induces a view of H

• that is, an normal OPM graph

• obtained by "collapsing" the graph structure
of calls not in S

• This makes sense (only) because of
restrictions on call mapping Ω.

• (details in paper - there are a few subtleties)

h1

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

main

f1 g1

h1

g1

f1

h1

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

main

f1 g1

h1

1

f1

2

12

g1

g1

f1

g1

1 1

+

2

* *

4

4 8

+

12

def f(x) = x+1
 g(x,y) = h(x) + x*y
 h(z) = z*z
in g(f(1), 4)

main

f1 g1

h1

1

f1

2

12

*

4

2 2

+

h1

h1

f1

ProvL: Simple "workflows"
(ie functional programs)

• We first consider workflows with function
calls but little else...

• ⊙ denotes an arbitrary primitive function

• think +, *, -, etc.

• Let-binding allows for sharing

• hence, expression basically isomorphic to graph

expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

Adding function calls
• We allow (closed, first- order) function

definitions, with calls:

• Functions can be defined mutually
recursively

• Function calls generate call tree nodes
(mapped to appropriate subgraphs).

expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

...expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

Adding lists, map
• Finally we consider lists and mapping

• and allow nil, cons (and maybe others) as
built-in functions

• Note that map is second-order - i.e. mapf is
a function for any f

• Map nodes link lists to lists, sub-call nodes
map elements to elements

...expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

Map-incr example
1 2 3

2 3 4

def f(x) = x + 1
in mapf([1,2,3])

maph

mapf

f2 f3f1

1
f1

+

1

+

f2
1

+

f3

main

Adding conditionals
• Next we consider if-then-else

conditionals.

• The graph marks the conditional and
direction taken.

...expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

expression e ::= c | x |⊙(�e) | let x = e1 in e2 (a)
| if e1 then e2 else e3 (b)
| f (�e) (c)
| map f (e) (d)

program def f1(�x1) = e1, . . . , fm(�xm) = em in e
�

Figure 4: Syntax of ProvL

(a) ProvL0 handles simple workflows involving con-
stant values, primitive operations, variables, and
let-binding (expressing sharing). We may take the
primitive operations to be the atomic “black boxes”
of any conventional workflow language (e.g. Ke-
pler, VisTrails, Taverna, ZOOM [5]) and represent
any straight-line, DAG-shaped computation using
these operations as a ProvL0 expression. The cor-
responding (H)OPM graph is essentially the same
DAG with inverted edges.

(b) ProvLb extends ProvL0 with conditionals (if–then–
else). The generated provenance graphs include
process nodes to indicate that a conditional was
evaluated, and which branch was taken. (This is
similar to the approach taken in the model of [2].)

(c) ProvL f extends ProvLb with user-defined functions,
achieving a Turing-complete language (assuming
the underlying set of operators includes at least ba-
sic arithmetic). The HOPM graph can have non-
trivial call trees as described above.

(d) ProvL, finally, extends ProvL f with support for lists
and the map function. The HOPM graph generated
for map

f
() consists of the graphs generated for the

calls f1, . . . , fn to f on the elements of the list, plus
an edge to the input list from a process node for
map

f
() itself, plus an edge to this process node from

the output list node. Also, the map
f
() process node

contains all of the calls to f , that is, Ω(map
f
()) =

Ω(f1)∪ · · ·∪Ω(fn).

4 Discussion

Some questions for further work:
1. What is the relationship between our notion of

views and accounts in OPM? It seems that accounts
can be used to represent views, but not all accounts
correspond to views (for example, accounts can pro-
vide conflicting information). How are views of
HOPM graphs related to, for example, the traces
and trace slicing of Acar et al. [1]?

2. How can we translate provenance queries on the full
graph to queries on views? Can we identify a “best”
view to answer a given query? (Similar concerns
arise in ZOOM system [6], which uses user prefer-
ences to induce a clustering of basic workflow steps

into groups to hide details irrelevant to the user.)
3. Our notion of validity for HOPM graphs is basic:

it does not, for example, require that different calls
to the same function have compatible expansions.
(That is, it would be legal for one call to f to ex-
pand to +1 and for another to expand to ∗2.) How
should validity be made more precise? Can we ex-
actly capture the provenance expressiveness of dif-
ferent workflow languages?

4. Our language uses conventional abstract syntax,
whereas most workflows employ a graphical nota-
tion and many have features such as concurrency or
streaming that are not handled by ProvL. How is
our workflow model related to existing ones [5]?

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A

core calculus for provenance. In POST, number 7215 in
LNCS, pages 410–429. Springer, 2012.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
S. Vansummeren, and J. van den Bussche. A graph model
for data and workflow provenance. In Workshop on the

Theory and Practice of Provenance, 2010.
[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. In VLDB,
2012.

[4] J. Cheney. Causality and the semantics of provenance. In
Proceedings of the 2010 Workshop on Developments in

Computational Models, 2010.
[5] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludaescher,

T. McPhillips, S. Bowers, M. Anand, and J. Freire. Prove-
nance in scientific workflow systems. IEEE Data Engi-

neering Bulletin, 30(4):44–50, 2007.
[6] Z. Liu, S. B. Davidson, and Y. Chen. Generating sound

workflow views for correct provenance analysis. ACM

Trans. Database Syst., 36(1):6, 2011.
[7] L. Moreau. The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2-3):99–241,
2010.

[8] L. Moreau. Provenance-based reproducibility in the se-
mantic web. J. Web Sem., 9(2):202–221, 2011.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den
Bussche. The open provenance model core specification
(v1.1). Future Generation Comp. Syst., 27(6):743–756,
2011.

[10] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proceed-

ings of the 2009 conference on USENIX Annual techni-

cal conference, USENIX’09, pages 10–10, Berkeley, CA,
USA, 2009. USENIX Association.

4

def f(x) = if x = 0
 then []
 else x::f(x-1)
 h(z) = z*z
in maph(f(3))

main

f3 maph

f2

f1

f0

3

f3

maph

3 2 1

h1 h1h1

9 4 1

def f(x) = if x = 0
 then []
 else x::f(x-1)
 h(z) = z*z
in maph(f(3))

main

f3 maph

f2

f1

f0

3

maph

3 2 1

h1 h1h1

9 4 1

iftrue

=

0

f2
true

2 1

cons

-

1

3 2 1

Next steps
• Modeling of granularity in existing WF languages (or D-

OPM)

• expressiveness / query languages?

• Extensions to OPM / W3C PROV for hierarchical
process structure?

• complementing / clarifying work on "collections", "accounts"

• Richer language features

• first-class higher-order functions? (cf. Perera et al. 2012)

• meta-programming/provenance of provenance ("eval")

• Efficient implementation (exploit redundancy?)

Related work
• Provenance layering libraries/architecture (Muniswamy-Reddy et

al. USENIX 2009)

• Builds on / variant of "graph model of workflow and DB
prov" (Acar et al. TaPP 2010)

• ZOOM* User Views (Liu et al. TODS 2011)

• abstract views based on user preferences

• Kepler (Anand et al. EDBT 2010)

• data are serialized XML streams, QL supports nesting and process step
navigation

• and slicing for program comprehension & provenance (Acar et al.
2012, Perera et al. 2012)

• language-based approach, does not (directly) address abstraction/granu

Conclusions
• Provenance granularity is an important

feature of several models

• There is no common understanding for
what it means or how it should work

• Our contribution: basic model of
"hierarchical" OPM

• But mostly open questions

• Paper/appendix gives operational
semantics producing HOPM graphs

(a := Gena(c))
γ,c ⇓H(a,−,−),a γ,x ⇓H(−,−,−),γ(x)

γ,�e ⇓ �H,�a (a := Gena(⊙(�a))) (p := Genp(⊙))

γ,⊙(�e) ⇓
�

�H∪H(a, p,�a),a

γ,e ⇓H,a γ{x/a},e� ⇓H
�,a�

γ,let x = e in e� ⇓H∪H
�,a�

(a)

γ,e ⇓H,a (a� = true) γ,e1 ⇓H1,a1 (an := Gena(a�1)) (pn := Genp(iftrue))
γ,if e then e1 else e2 ⇓H∪H1 ∪H(an, pn,(a,a1)),an

γ,e ⇓H,a (a� �= true) γ,e2 ⇓H2,a2 (an := Gena(a�2)) (pn := Genp(iffalse))
γ,if e then e1 else e2 ⇓H∪H2 ∪H(an, pn,(a,a2)),an

(b)

γ,�e ⇓ �H,�a (γ(f) = f (�x).e) γ{�x/�a},e ⇓H,a

γ, f (�e) ⇓
�

�H∪H f (a,H,�a),a

(c)

γ,e ⇓H,a (a� = [c1, . . . ,cn]) γ, f (c1) ⇓H1,a1 . . . γ, f (cn) ⇓Hn,an (a� := Gena([a�1, . . . ,a
�
n]))

γ,map f (e) ⇓H∪H
f
map(a, [H1, . . . ,Hn],a�),a�

(d)

{�f/�f (�x).�e},e ⇓H,a

def �f (�x) =�e in e ⇓Hmain(H)

Table 1: Semantics of ProvL

program syntax for ProvL f in the end of Tab. 4 can now
contain function definitions, i.e. it can hold that m > 0.
Of course, the size of�xi should be equal to the arity of fi.

The semantics of ProvL f operates now with HOPM
graphs with nontrivial call trees and call mappings. The
unions of such HOPM graphs work pairwise as expected.
The environment γ now has heterogeneous structure: it
maps not only variables from X to artefacts from A, but
also function names from F to expressions of the form
f (�x).e which represent bodies of these user-defined func-
tions. To produce valid HOPM graphs we of course re-
quire that these bodies implement the interpretations of
corresponding function names.

The semantics of a function call is given in Tab. 1(c). It
unions the existing HOPM graphs with new constructed
graph H f (a,H,�a) = �G,T,M�. This construction is
straightforward: the underlying OPM graph G just co-
incides with underlying graph of H, and the call tree T

and the call mapping M extends those of H as expected
w.r.t. the function f .

The semantics of a program in ProvL f is given in the
end of Tab. 1. It forms the original environment γ with
defining function bodies and evaluates the main expres-
sion. The resulting HOPM graph H is then enriched by
the root of the call tree (labeled with main) and corre-
sponding call mapping in Hmain(H).

Language with support for lists ProvL Finally, we
show how to extend the languages described before with
nested lists and map function. The same can be done
for other typed structures like sets or graphs and corre-
sponding higher-order functions. For example, it can be
done for HOPM graphs and programs as structures, and
optimisers and evaluators as higher-order functions.

In our language ProvL, extending ProvL f with support
for lists and maps, we assume that the set of constants C
is typed as described before. We may assume that the
set of built-in operators B contains special functions ma-
nipulating lists: [c], which creates a list of single ele-
ment, c1 · c2, which concatenates two lists, flatten(c)
which flattens a list, first(c) which segregates the first
element of a list, and rest(c) which removes the first
element from a list. Next we implicitly assume that all
expressions are well-typed, i.e. these built-in operators
indeed have lists as parameters.

The syntax of expressions in ProvL, extends ProvL f
with the higher-order function map f (e), and is given in
Fig. 4. In the rule (d) f is a user-defined function from F
of arity 1. As above, we assume that this parametrized by
f function map f (e) belongs to the set of functions F. Its
semantics is shown in Tab. 1(d). Intuitively, it evaluates
the body of f with the variable x substituted with each of
the elements of the list e, and composes the list of results.
It unions the HOPM graph H, which is the result of the

6

