Hierarchical models
of provenance

Peter Buneman
James Cheney
Egor Kostylev

University of Edinburgh
TaPP, June 15, 2012

Motivation

e Many provenance systems track "flat"
provenance

e Some track provenance at multiple granularity
levels (in different ways)

e e.g.ZOOM, Kepler, probably others

e Our goals:
e Formal, high-level model of "hierarchical” provenance

e Understand interplay between control/data
abstractions and provenance models

OPM lite

e Simplified OPM: bipartite DAGs

e Process nodes P
e Artifact nodes A
e EdgesEC (P xA)U (A x P)

e Labels on process, artifacts and edges

Xx+1
h(x) + x*y

def f(x) =
g(x,y) =
h(z) = Zz*z +
in g(f(1), 4)
2o

def f(x) =
g(x,y) =
h(z) =
in g(f(1), 4)

X+1
h(x) + x*y

Z*2Z +

Note: This
discards a lot of
information!

"Hierarchical”" OPM

Augment OPM graph structure with call tree

Tree T = (V,F) with nodes labeled by "higher-level”
processes

Mapping Q:V—=(PUA)

e Requires if (f,g) € F then Q(f) 2 Q(g)
e note reversal!
o Qoot)=(PUA)

e Further requirements: Q(f) is a contiguous, "sub-OPM"
graph.

e Formalized more carefully in paper.

Xx+1
h(x) + x*y

def f(x) =
g(x,y) =
h(z) = Zz*z +
in g(f(1), 4)
2o

def f(x) = x+1
g(x,y) = h(x) + x*y
h(z) = Zz*z

in g(f(1), 4)

def f(x) = x+1
g(x,y) = h(x) + x*y
h(z) = Zz*z

in g(f(1), 4)

Views

e Given a prefix-closed subtree S of T
e This induces a view of H

e thatis, an normal OPM graph

e obtained by "collapsing” the graph structure
of calls notin S

e This makes sense (only) because of
restrictions on call mapping Q.

e (details in paper - there are a few subtleties)

def f(x) =
g(x,y) =
h(z) =
in g(f(1), 4)

|
x+1
h(x) + x*y

Z2*2Z +

def f(x)

g(x,y) =
h(z) =
in g(£(1), 4)

x+1
h(x) + x*y
Z*Z

0

fi

def f(x)
g(x,y)
h(z)

= x+1
in g(£(1), 4)

h(x) + x*y
Z*Z

ProvL: Simple "workflows"
(ie functional programs)

e We first consider workflows with function
calls but little else...

e:=clx|®(€)|letx=e¢e in e
e O denotes an arbitrary primitive function
e think +, *, -, etc.

e Let-binding allows for sharing

e hence, expression basically isomorphic to graph

Adding function calls

e We allow (closed, first- order) function
definitions, with calls:

e:= - | f(é)
def fl()—él):eh“'vfn”l()?M):em in e’

e Functions can be defined mutually
recursively

e Function calls generate call tree nodes
(mapped to appropriate subgraphs).

Adding lists, map

e Finally we consider lists and mapping

e::= - | map,(e)
e and allow nil, cons (and maybe others) as
built-in functions

e Note that map is second-order - i.e. maps is
a function for any f

e Map nodes link lists to lists, sub-call nodes
map elements to elements

Map-incr example

Wan

\

eliioile

Adding conditionals

e Next we consider if-then-else
conditionals.

¢::= - | if e thene) else e3

e The graph marks the conditional and
direction taken.

def f(x)

h(z)
in mapn(£f(3))

if x =0

then []

else x::f(x-1)
Z*Z

©

O—fil—or—E—0o

©

def f(x)

h(z)

else x::f(x-1) f,
= Z*%Z <EE€> v

in map(£(3)) KC? 0)
v

then [] ; *

Next steps

Modeling of granularity in existing WF languages (or D-
OPM)

e expressiveness / query languages?

Extensions to OPM / W3C PROV for hierarchical
process structure?

nn

e complementing / clarifying work on "collections", "accounts”

Richer language features
e first-class higher-order functions? (cf. Perera et al. 2012)

e meta-programming/provenance of provenance ("eval")

Efficient implementation (exploit redundancy?)

Related work

Provenance layering libraries/architecture (Muniswamy-Reddy et
al. USENIX 2009)

Builds on / variant of "graph model of workflow and DB
prov' (Acar et al. TaPP 2010)

Z0OOM?* User Views (Liu et al. TODS 2011)
e abstract views based on user preferences

Kepler (Anand et al. EDBT 2010)

e data are serialized XML streams, QL supports nesting and process step
navigation

and slicing for program comprehension & provenance (Acar et al.
2012, Perera et al. 2012)

e language-based approach, does not (directly) address abstraction/granu

Conclusions

e Provenance granularity is an important
feature of several models

e There is no common understanding for
what it means or how it should work

e Our contribution: basic model of
"hierarchical” OPM

e But mostly open questions

e Paper/appendix gives operational
semantics producing HOPM graphs

(a:= Geng(c)) y.é L H,a (a:= GenaEQ(&’))) (p 1= Geny(©))
v.c 4 H(a,—,—),a vox b H(—,—, =), v(x) 1,0(@) 4 | JHUH(a,p,d),a

v,e | H,a vix/a},e || H',d
v,letx=eine | HUH' ,d

(a)

v,ed H,a (a' = true) v,e1 4 Hi,a (an = Geng(a})) (pn := Geny(iftrue))
Y,if e then e else e; || HUH | UH (ay, pn, (a,ay)),an

v,e | H,a (a" +# true) v,e2 | Ho,an (an := Geng(ab)) (pn := Gen,,(iffalse))
Y,if e thene| else ey || HUH, UH (ay, pu, (a,az)),an

(b)

v.eld.a (y(f)=f(®.e) viF/a},elH,a
¥, @) I JH UK (a,5,d),a

v,e | H,a (a" =1c1,...,ca]) v, f(c1) I Hi,a; v, fcn) I H,an (d' := Geny([d},...,d"]))
v,map(e) | fHUfo;ap(a, [Hy,...,H,),d),d

(d)

