
Characterizing, Modeling, and Benchmarking RocksDB
Key-Value Workloads at Facebook

Zhichao Cao1,2, Siying Dong2 , Sagar Vemuri2, and David H.C. Du1

1University of Minnesota, Twin Cities 2Facebook

Key-Value Stores are Widely Used

……

SQL Database Transactions File system Object storage ML services Storage services

……

Key-Value Store is a Hot Research Area

VLDB SIGMOD OSDI/SOSP FAST ATC

2017 3 3 3 1 5

2018 3 1 2 1 4

2019 1 1 2 5 4

2020 ? ? ? 4 ?

• The number of key-value store related papers appearing in some of the
conferences

However…...
• Key-value workloads in different applications are very different. But there are very limited

studies of real-world workload characterization and analysis for different applications that
using key-value stores.

• The analytic methods for characterizing KV-store workloads are different from the existing
workload characterization. How to capture, characterize, and model the workloads of KV
store in different applications are challenging?

• Based on the real-world workloads, what’s the limitations of existing key-value benchmarks
(e.g., query similarity or storage I/Os)? How to further improve the benchmarks?

Methodology and Tool Set
• Methodology: collect workloads-> analyze workloads->model the workloads

-> compare and improve benchmarks-> tune and improve key-value stores
• Tools: trace collector, trace replayer, trace analyzer, benchmarks

Modeling

Trace Collector

Trace files

Workload
characteristics

Benchmarking

Trace Analyzer

Trace Replayer

Production
Workloads

from Different
Applications

RocksDB
Compare &

Analyze

Tune or
improve

Adjust or
improve

Generate

Background
• RocksDB introductions
• Three RocksDB applications: 1) UDB, 2) ZippyDB, and 3) UP2X

RocksDB Preliminary

MemtableImmutable
Memtable

SST SST

SST SST SST

SST SST

……

……
……

Level 0

Level 1

Level 2

Column Family X Column Family Y

MemtableImmutable
Memtable

SST SST

SST SST

SST SST

……

……

Block
Cache

Manifest

Write Ahead
Log

Shared Data

Flush Flush
Memory

Persistent
Storage

SST ……

compaction compaction

Use Case 1: UDB
Social Graph Related

Applications

MySQL

RocksDB

File System

SSD

SQL/Connections
RocksDB Key RocksDB Value

RocksDB Key RocksDB Value

Table Index Number Primary Key Columns Checksum

Table Index Number Secondary Key Primary Key Checksum

Primary key indexed raw mapping to a RocksDB KV-pair

Secondary key indexed raw mapping to a RocksDB KV-pair

MyRocks

Graph data: Objects and associations

Use Case 2: ZippyDB

Secondary

RocksDB

Primary

RocksDB

Secondary

RocksDB

Secondary

RocksDB……. Primary

RocksDB

ZippyDB Data Management Service

Application 1 Application 2 …….Application 3 ObjStorage
Metadata Service

Use Case 3: UP2X

RocksDB RocksDB RocksDB…….

UP2X
Merge Get Put

User Profile Updates Different ML/AI services
data reads

RocksDB

Workload Characterization for Three
RocksDB Production Use cases
• 24 hours to 14 days traces.
• Query composition
• Key and value size statistics and distributions
• KV-pair hotness and access count distributions
• Query per second (QPS)
• Hot key distributions in key-space
• Key-space and temporal localities
• …..

• Query composition can be very different in different applications and even in different CFs in the same DB.
• Get is the most frequently used query type in UDB and ZippyDB, while Merge dominates the queries in UP2X.
• Query composition can be very different in different CFs in UDB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Ge
t

Pu
t

De
let
e

Sin
gle
De
let
e

Ite
rat
or

Me
rge

UDB ZippyDB UP2X

0

500

1000

1500

2000

2500

3000

3500

4000

Obje
ct

Obje
ct_

2ry
Asso

c

Asso
c_

2ry

Asso
c_

cou
nt

Non
_S

G

Q
ue

rie
s (

m
ill

io
n)

Get Put Delete Single_delete Iterator_Seek Iterator_SeekForPrev

Key-Value Query Composition

• The standard deviation of key sizes is relatively small, while the standard deviation of
value size is large.

• The average value size of UDB is larger than the other two.

Key and Value Size Statistics

• Key size is closely related to the way of key compositions in upper layer applications
• key sizes are usually small and have a narrow distribution
• The key size distributions in different CFs and in different query types are different.

Key size distribution of UDB Key size distribution of ZippyDB Key size distribution of UP2X

Key Size Distributions in Three Use Cases

• Value size distribution is wider than key size distribution
• value sizes are closely related to the types of data being stored by different applications

Value size distribution of UDB Value size distribution of ZippyDB Value size distribution of UP2X

Value Size Distributions in Three Use Cases

• The daily QPS variations of UDB are related to social network behaviors.
• The QPS of some CFs in UDB have strong diurnal patterns, while we can observe only

slight QPS variations during day and night time in ZippyDB and UP2X.

QPS of different query types and different column families in UDB during 14-day period

Query Per Second (QPS)

• The access count distributions are very different in different applications and CFs
• In UDB, only a very small portion of KV-pairs are hot and most KV-pairs are cold.
• The access count distributions are different even in different CFs.

Access count distribution of Get in UDB Access count distribution of Put in UDB

KV-pair Hotness and Access Count Distributions

Access count distribution ZippyDB Access count distribution of UP2X

KV-pair Hotness and Access Count Distributions
• The access count distributions are very different in different applications and CFs
• In ZippyDB, only a very small portion of KV-pairs are hot and the access count

distributions of different query types are different
• UP2X has a wider distribution especially for Get and Merge.

• The heat-maps of the three use
cases show a strong key-space
locality.

• Hot KV-pairs are not evenly
distributed in the key-space.
Instead, they are closely located
in the key-space.

ZippyDB

UP2X

Column Family Object of UDB

Note:
1) Keys are first sorted the same as they are in the database,
and assigned with a integer as key sequence number.
2) Y-axis is the access count of a KV-pair during 24-hour
period.
3) Red line is the separation of MySQL tables.

Access Heat-map

Time series figure of KV-pairs accessed by Merge in UP2X

Note: 1) X-axis is the key sequence number which is the same as that in heatmap, 2) Y-axis is time starting and
starts at the time when tracing begins, and 3) Red line is the separation of MySQL tables.

• The time series figures of Delete and SingleDelete for UDB and Merge for UP2X show strong
temporal locality.

• For some query types, KV-pairs in some key-ranges are intensively accessed during a short
period of time.

Key-Space and Temporal Localities

Modeling and Benchmarking
• After we have the detailed characteristics of real workload, we can compare the

benchmarking results with the real-world workloads to explore its effectiveness.

• If the existing benchmark has limitations, the new workload modeling can be done
with the help from workload characteristics. We can further improve the existing
benchmarks or develop new benchmarks based on the new models.

Investigate the Backend Storage I/Os
• YCSB can generate queries that have similar

statistics for a given query type ratio, KV-pair
hotness distribution, and value size distribution as
those in realistic workloads.

• However, it is unclear whether their generated
workloads can match the I/Os of underlying
storage systems in realistic workloads.

• We focus on: block reads (block_read), block
cache hits (block_cache_hit), bytes being read
(read_bytes), and bytes being written
(write_bytes).

YCSB

RocksDB

File System

SSD

KV queries

Data block reads/writes

Generate

Tune or
improve

Modeling

Trace Collector

Trace files

Workload
characteristics

Benchmarking

Trace Analyzer

Trace Replayer

Production
Workloads

RocksDB
Compare &

Analyze

Adjust or
improve

Replay of ZippyDB vs. Fitted YCSB

0
2
4
6
8
10
12
14
16
18

block_read block_cache_hit read_bytes write_bytes

#
tim
es
of
re
pl
ay
re
su
lts

Uniform Zipfian Hotspot Exponential

Replay

• Read more
• write less

Problem and Solution
• The hot KV-pairs are actually randomly

distributed in the whole key-space
• Due to the cache space limit, a large

number of hot data blocks that consist of
the requested KV-pairs will not be cached,
which triggers an extremely large number
of block reads.

• Instead of only modeling the overall KV-pair
hotness, we cut the whole key space into small
key-ranges and models the hotness of these key-
ranges.

• In each key-range, KV-pairs follow the overall
hotness distributions.

• Build the new benchmark based on key-range
based modeling

Heatmap changes to

New Benchmark vs. YCSB
• All_random: KV-pairs are randomly

distributed
• All_dist: hot KV-pairs are allocated

together
• Prefix_random: KV-pairs are allocated to

different key-ranges based on key-range
hotness. KV-pairs in a key-range are
randomly distributed.

• Prefix_dist: KV-pairs are allocated to
different key-ranges and hot KV-pairs in a
key-range are allocated close by

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

All_
ran

do
m

All_
dis

t

Pref
ix_

ran
do

m

Pref
ix_

dis
t

YCSB_ra
nd

om

YCSB_zi
pfi

an

YCSB_h
ots

po
t

YCSB_ex
p

N
or

m
oa

liz
ed

 S
ta

tis
tic

 R
es

ul
ts

Block_read Block_cache_hit Read_bytes Write_bytes

Conclusion and Future Work

• We introduce the key-value workload analyzing, modeling, and benchmarking methodologies. The tools
are open-sourced and people can use them to extend the exploration to more applications

• With the help of tracing, replaying, and analyzing tools, we characterized key-value workloads of three
typical RocksDB production use cases at Facebook. The findings of key/value size distribution, access
patterns, key-range localities, and workload variations provide insights that can help optimize KV-store
performance.

• We propose a key-range based model to better preserve key-space localities. The new benchmark not
only provides a good emulation of workloads at the query level, but also achieves more precise
RocksDB storage I/Os than that of YCSB.

• In the future, we will continue improve YCSB such as key-range based distribution and QPS variation.
Also, we will extend the workload characterization to other dimensions such as the correlations
between queries, the correlation between KV-pair hotness and KV-pair sizes.

A fast and easy to use persistent key-value store for any workload on
any hardware platform.

Future of RocksDB

Efficiency Easy To Use Performance

https://github.com/facebook/rocksdb

https://github.com/facebook/rocksdb

Thank You!
Q&A

