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Key-Value Stores are Widely Used
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Key-Value Store is a Hot Research Area

* The number of key-value store related papers appearing in some of the
conferences
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However......

* Key-value workloads in different applications are very different. But there are very limited
studies of real-world workload characterization and analysis for different applications that

using key-value stores.

* The analytic methods for characterizing KV-store workloads are different from the existing
workload characterization. How to capture, characterize, and model the workloads of KV

store in different applications are challenging?

* Based on the real-world workloads, what’s the limitations of existing key-value benchmarks

(e.g., query similarity or storage 1/0s)? How to further improve the benchmarks?
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Methodology and Tool Set

* Methodology: collect workloads-> analyze workloads->model the workloads
-> compare and improve benchmarks-> tune and improve key-value stores
* Tools: trace collector, trace replayer, trace analyzer, benchmarks
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Background

e RocksDB introductions

* Three Rocks

facebook.

DB applications: 1) U

DB, 2) ZippyDB, and 3) UP2X
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RocksDB Preliminary
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Use Case 1: UDB

Social Graph Related

Applications Primary key indexed raw mapping to a RocksDB KV-pair

RocksDB Key RocksDB Value

SQL/Connections

Table Index Number Primary Key Columns Checksum

MySQL

RocksDB Secondary key indexed raw mapping to a RocksDB KV-pair

RocksDB Key RocksDB Value

Table Index Number Secondary Key Primary Key Checksum

File System

C RQFS
facebook AR =0

Graph data: Objects and associations



Use Case 2: ZippyDB

ObjStorage
Metadata Service

|

ZippyDB Data Management Service

Application 1 Application 2 Application 3
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Use Case 3: UP2X

User Profile Updates

Different ML/Al services
data reads

RocksDB RocksDB
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Workload Characterization for Three
RocksDB Production Use cases

* 24 hours to 14 days traces.

* Query composition

* Key and value size statistics and distributions

* KV-pair hotness and access count distributions
* Query per second (QPS)

* Hot key distributions in key-space

* Key-space and temporal localities
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Key-Value Query Composition

*  Query composition can be very different in different applications and even in different CFs in the same DB.

* Get is the most frequently used query type in UDB and ZippyDB, while Merge dominates the queries in UP2X.

* Query composition can be very different in different CFs in UDB
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Key and Value Size Statistics

* The standard deviation of key sizes is relatively small, while the standard deviation of
value size is large.
* The average value size of UDB is larger than the other two.

Table 2: The average key size (AVG-K), the standard deviation
of key size (SD-K), the average value size (AVG-V), and the
standard deviation of value size (SD-V) of UDB, ZippyDB,

and UP2X (in bytes)
AVG-K SD-K AVG-V SD-V
UDB 27.1 26\ (1267 221

ZippyDB 47.9 3.7 42.9 26.1

UP2X 10.45 1.4 46.8 11.6
7 7
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Key Size Distributions in Three Use Cases

* Key size is closely related to the way of key compositions in upper layer applications
* key sizes are usually small and have a narrow distribution

* The key size distributions in different CFs and in different query types are different.
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Value Size Distributions in Three Use Cases

* Value size distribution is wider than key size distribution

* value sizes are closely related to the types of data being stored by different applications
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Query Per Second (QPS)

* The daily QPS variations of UDB are related to social network behaviors.

* The QPS of some CFs in UDB have strong diurnal patterns, while we can observe only

slight QPS variations during day and night time in ZippyDB and UP2X.
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KV-pair Hothess and Access Count Distributions

* The access count distributions are very ditferent in different applications and CFs

* In UDB, only a very small portion of KV-pairs are hot and most KV-pairs are cold.
* The access count distributions are different even in different CFs.
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KV-pair Hothess and Access Count Distributions

* The access count distributions are very different in different applications and CFs

* |In ZippyDB, only a very small portion of KV-
distributions of different query types are di

ferent

* UP2X has a wider distribution especially for Get and Merge.
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Key-Space and Temporal Localities

* The time series figures of Delete and SingleDelete for UDB and Merge for UP2X show strong

temporal locality.
* For some query types, KV-pairs in some key-ranges are intensively accessed during a short

period of time.
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Modeling and Benchmarking

* After we have the detailed characteristics of real workload, we can compare the
benchmarking results with the real-world workloads to explore its effectiveness.

* If the existing benchmark has limitations, the new workload modeling can be done
with the help from workload characteristics. We can further improve the existing
benchmarks or develop new benchmarks based on the new models.
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Investigate the Backend Storage I/Os

KV queries

RocksDB

Data block reads/writes

facebook.

* YCSB can generate queries that have similar
statistics for a given query type ratio, KV-pair
hotness distribution, and value size distribution as

those in realistic workloads.

* However, it is unclear whether their generated

workloads can match the I/Os of underlying

storage systems in realistic workloads.

* We focus on: block reads (block_read), block

cache hits (block_cache_hit), bytes being read
(read_bytes), and bytes being written
(write_bytes).
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Replay of ZippyDB vs. Fitted YCSB
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Problem and Solution

* The hot KV-pairs are actually randomly ° Instead of only modeling the overall KV-pair
distributed in the whole key-space hotness, we cut the whole key space into small

* Due to the cache space limit, a large key-ranges and models the hotness of these key-
number of hot data blocks that consist of ranges.
the requested KV-pairs will not be cached, * In each key-range, KV-pairs follow the overall
which triggers an extremely large number hotness distributions.
of block reads. * Build the new benchmark based on key-range

based modeling
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New Benchmark vs. YCSB

* All_random: KV-pairs are randomly
distributed

* All_dist: hot KV-pairs are allocated
together

* Prefix_random: KV-pairs are allocated to
different key-ranges based on key-range
hotness. KV-pairs in a key-range are

Normoalized Statistic Results

randomly distributed.

® Block read

# Block cache hit

® Read bytes

® Write bytes

s i S wy SR Gy WY
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* Prefix_dist: KV-pairs are allocated to
different key-ranges and hot KV-pairs in a

key-range are allocated close by
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Conclusion and Future Work
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* We introduce the key-value workload analyzing, modeling, and benchmarking methodologies. The tools

are open-sourced and people can use them to extend the exploration to more applications

* With the help of tracing, replaying, and analyzing tools, we characterized key-value workloads of three

typical RocksDB production use cases at Facebook. The findings of key/value size distribution, access

herformance.

* We propose a key-range based model to better preserve key-s
only provides a good emulation of workloads at the query leve

RocksDB storage I/Os than that of YCSB.

patterns, key-range localities, and workload variations provic

* In the future, we will continue improve YCSB such as key-range based distributio

Also, we will extend the workload characte

between queries, the correlation between

facebook.

rization to other dimensions such as t

KV-pair hotness and KV-pair sizes.

e insights that can help optimize KV-store

pace localities. The new benchmark not
, but also achieves more precise

n and QPS variation.

ne correlations



Future of RocksDB

A fast and easy to use persistent key-value store for any workload on
any hardware platform.

Efficiency Easy To Use Performance

[]facebook / rocksdb © Unwatch releases ¥ 990 % Star  16.1k ¥ Fork 3.6k

<> Code Issues 294 Pull requests 139 Actions Projects 1 Wiki Security Insights FB Internal h tt p S :Mg i t h u b . C 0 m/fac e b o O k/ ro C ks d b

A library that provides an embeddable, persistent key-value store for fast storage. http://rocksdb.org

{» 8,769 commits ¥ 104 branches 0 packages © 195 releases 4" 1 environmen t 2% 504 contributors &5 View license
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https://github.com/facebook/rocksdb
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