Characterizing, Modeling, and Benchmarking RocksDB
Key-Value Workloads at Facebook

Zhichao Cao'?, Siying Dong’ , Sagar Vemuri?, and David H.C. Du’
'University of Minnesota, Twin Cities ~ “Facebook

@ CRI'S
UNIVERSITY OF MINNESOTA intelligent Storage

Key-Value Stores are Widely Used

(o iodic g%i:s: mwcresorr Google % _{]1 Cintel? ‘ Herox e, m\"‘:‘ﬁl\' —ocsamm
S

ST Rt acwTRerny

' = ,L"‘\ stlron]s. e; Gilletre < Al | @ sama-ce- 02 ; .. \UeeHey
TSNEKL (- PAVASA RSN L = LS FLN AV O N ERlv’!.‘.o anz @ PRl FPanasonic (7, _sr - ¥

m E (M-) i #M ' a EE !? TirpaNY & O @ V‘SA Narlad! nﬁ:-ic?z--n- lbs,:i-zuav‘. Tl rsssus

——— —
. -
CrREDXT SuUsSE o visow Jpoboe ;\l

roan Sl NESCare BCL O 2 SRS StTel
Canon W SOINY m Y .‘i:; - G UC C I IPOREAL ‘?-] w-au- WHolnokend & L]l%% ARMANI ZU%CII I3 U 3N IR W N @
s CIEI &9 ZARA accenture stEmens @) == m@‘ B nro rerram e e s

Morgan Stenilcy Cl

FaN

—IA)
: :> (0, y
\ 000000
SQL Database Transactions File system Object storage ML services Storage services
& red :
amazon
DynamoDB 000000
b e ‘ LEVELDB
NOSQL
DATABASE cassandra

CRI'S

Center for Research in
Intelligent Storage

facebook.

Key-Value Store is a Hot Research Area

* The number of key-value store related papers appearing in some of the
conferences

2017 3 3 3] 5
2018 3] 2] 4
2019]] 2 5 4
2020 ¢ ¢ ¢ 4 ¢

facebook D\

However......

* Key-value workloads in different applications are very different. But there are very limited
studies of real-world workload characterization and analysis for different applications that

using key-value stores.

* The analytic methods for characterizing KV-store workloads are different from the existing
workload characterization. How to capture, characterize, and model the workloads of KV

store in different applications are challenging?

* Based on the real-world workloads, what’s the limitations of existing key-value benchmarks

(e.g., query similarity or storage 1/0s)? How to further improve the benchmarks?

facebook AR Cils

Methodology and Tool Set

* Methodology: collect workloads-> analyze workloads->model the workloads
-> compare and improve benchmarks-> tune and improve key-value stores
* Tools: trace collector, trace replayer, trace analyzer, benchmarks

Production
Workloads

from Different

Applications

RocksDB
_

/

facebook.

Tune or
Improve

_

—

Trace files

Generate

Trace Replayer

Ko}

¢

\T race Analyzer)

\
K

Workload
characteristics

Compare & |
Analyze _ Benchmarkmg/
Adjust or ‘
Improve

Intelligent Storage

Background

e RocksDB introductions

* Three Rocks

facebook.

DB applications: 1) U

DB, 2) ZippyDB, and 3) UP2X

CRI's

RocksDB Preliminary

--

Immutable | __| Memtable Immutable | _| Memtable Block
Memtable Memtable Cache
Memory
l Flush l Flush 5
Level 0 SST SST \compactioné SST SST —\compactioni Write Ahead
Log
Level 1 SST SST SST | ; SST SST | ... —\ |
Level 2 SST | | SST | +----- ‘ SST | | SST SST |- Manifest
Persistent Shared Dat
. . are ata
Storage Column Family X 7§ ColumnFamilyY ;| >7=* 79

facebook.

o 4:4

CRIs

Center for Research in
Intelligent Storage

Use Case 1: UDB

Social Graph Related

Applications Primary key indexed raw mapping to a RocksDB KV-pair

RocksDB Key RocksDB Value

SQL/Connections

Table Index Number Primary Key Columns Checksum

MySQL

RocksDB Secondary key indexed raw mapping to a RocksDB KV-pair

RocksDB Key RocksDB Value

Table Index Number Secondary Key Primary Key Checksum

File System

C RQFS
facebook AR =0

Graph data: Objects and associations

Use Case 2: ZippyDB

ObjStorage
Metadata Service

|

ZippyDB Data Management Service

Application 1 Application 2 Application 3

!

!

!

Secondary Primary Secondary Primary

Secondary

facebook. AN cKls

Use Case 3: UP2X

User Profile Updates

Different ML/Al services
data reads

RocksDB RocksDB

facebook.

RocksDB

Workload Characterization for Three
RocksDB Production Use cases

* 24 hours to 14 days traces.

* Query composition

* Key and value size statistics and distributions

* KV-pair hotness and access count distributions
* Query per second (QPS)

* Hot key distributions in key-space

* Key-space and temporal localities

facebook. CRI's

Key-Value Query Composition

* Query composition can be very different in different applications and even in different CFs in the same DB.

* Get is the most frequently used query type in UDB and ZippyDB, while Merge dominates the queries in UP2X.

* Query composition can be very different in different CFs in UDB

100% mEUDB ®ZippyDB ®mUP2X B Get §NPut mDeclete mSingle delete ®mIterator Seck M Iterator SeekForPrev

90% _ 4000

80% :f 3500
70% £ 3000

60% g 2500

50% & 2000

0

oo 1500

20% 1000

10% I I 500

0% e — - 0 NN
6@ Q&‘ Q}é@) Q}é}@ &&Q‘Q 6@06 O‘é | @é(};@
Q \Q) \\‘@ @ 0\0\
&

facebook.

Key and Value Size Statistics

* The standard deviation of key sizes is relatively small, while the standard deviation of
value size is large.
* The average value size of UDB is larger than the other two.

Table 2: The average key size (AVG-K), the standard deviation
of key size (SD-K), the average value size (AVG-V), and the
standard deviation of value size (SD-V) of UDB, ZippyDB,

and UP2X (in bytes)
AVG-K SD-K AVG-V SD-V
UDB 27.1 26\ (1267 221

ZippyDB 47.9 3.7 42.9 26.1

UP2X 10.45 1.4 46.8 11.6
7 7

ENP2

SHAS
f b CRI'S
Center for Research in
a c e o o o Intelligent Storage

Key Size Distributions in Three Use Cases

* Key size is closely related to the way of key compositions in upper layer applications
* key sizes are usually small and have a narrow distribution

* The key size distributions in different CFs and in different query types are different.

|

Object —»— 0'8/
Object 2ry —e— | 0.0 | 0.6/
Assoc —&— | 4 | Get —»— 04!
Assoc 2ry —+— ' Put —e— - Get —e—
Assoc count —e— | 0.2 ¢ ! Delete —»— 1 02 \ Put —e—
] | NOIl SG + O - ..:"%J’Ffz | Itel‘ OI‘ Seek _|— 0 Merge _|_
0 40 60 80 100120140160180 O 20 40 60—30 100 120 140 160 130 0 20 40 60 80 100 120 140 160 180
Key size (bytes) Key size (bytes) Key size (bytes)
Key size distribution of UDB Key size distribution of ZippyDB Key size distribution of UP2X

facebook. C‘{ifs

Value Size Distributions in Three Use Cases

* Value size distribution is wider than key size distribution

* value sizes are closely related to the types of data being stored by different applications

ASSOC —h—

Object —%—
Object 2ry —e— -

Assoc 2ry —+—

0.2 ¢ | Assoc count —e— |
10 100 104 100 100 10°
Value size (bytes)

Value size distribution of UDB

facebook.

10°

0.8 |
0.6 |
04 |
02 |

0

— Valuesize ——
10 100 102 100 100 100 10°

Value size (bytes)

Value size distribution of ZippyDB

0.8 ¢
0.6 ;

0.4

0.2 ;

0

Put —e—
10 10! 102 100 100 10° 10°
Value size (bytes)

Value size d

istribution of UP2X

Intelligent Storage

Query Per Second (QPS)

* The daily QPS variations of UDB are related to social network behaviors.

* The QPS of some CFs in UDB have strong diurnal patterns, while we can observe only

slight QPS variations during day and night time in ZippyDB and UP2X.

D000 T 9000 e T e
000 Get | IteratorI Delete 2000 | Object —— Assoc —— Assoc count —— |
0 ' Put SingleDelete) —— ! o 7000 | Object 2ry —— Assoc 2ry —— Non SG
2 8000 - @ 6000 |
2 6000 | | @ 5000 |
2 4000 ’ *) £ 3000 'FX I
2 - | ~ s 3000 |y | [D Al
| LA \ b 1 1AL I
C 2000 ‘ L Al | ‘w | ,‘ | o 2000 4 U i '”fh N MW L\“‘“'/\ ‘ “M “m [“))f\ﬂm‘
H\v_ P | | ‘ N ‘ﬂr‘i““v“ﬂ—ﬂ‘.""._(, _ b M (] 8 i
E‘.1\,;1.:;'_';?[“51'}3“}_'@3_,-:.1_:1_3;_5-_yi,;‘",j‘-‘qb‘y.‘_j&ﬂi":"-‘”‘“m [5 7‘:"1ff:‘ﬁ‘aﬁ;1,;;:c.‘_.J“\L_@,_.;:':.-:;s.ETF::"‘_;:‘E,:{,f,—:;.v,_z‘,;";-_»ﬁlv'\;l-:l";;,;.,._.x."u;__,;-:»:‘_;_;;.‘-‘”“f‘-’é:ﬁ::».t-v;:fﬂ':g;h._,:-;*ft“?*-:f&:?;p;::;_},_ W F’fﬂ““ l‘fr“lﬂ,‘j A }‘J:‘f;?@.‘”u,,,‘\“__r.ﬂf‘u{t:—:‘??a:n_.!‘!’“"}fjf’l‘f"f “1‘“""w‘;;f“.aq.,_gl“:?i:!:‘J;fﬂ];;‘_,ﬁ-");.;-_-__a—:::;,.:,,-\"f;;-;m:,, IOOO H‘ |#M ““.UI l"‘] ’I\ . y l i s r" ™ ‘al I "]1'.-,",.:‘“_3 . AT, 4 ll J, f " Ly_ﬁ, | Lokt
— e s O AL Iul._,_.._JLn.u. ...uh.k..:,.u ALAL KRR J u L A A AT AN e ol J.d INLAOY NN AL o
0000000000000
SSSSOSSOSSOISSISSSOSOOSOOOSISSSSASSSSSIOOD 88
v—*O\Mv—*O\m NN\ —ONN—NN O\MHO\W—*O\M NN\ — OO\ A=\
r—iﬁov—h—tc:v—io:v—ic:v—io:v—tc:v—ic'—ﬁ—‘oﬁ!—ic:MO:MO:HO:P‘O:HO :ag:98:98:28:2@:28:2g:ag:ag:ag:ag:ag:ag:ag
tfolole =Dl o orol=l=1=Tofotat=d=p-T=f=f=F~E=E=-LI L Veopoyct=t=l=tatutup~ e i=i=f=E=E=E=lolokoyoyourt-l=F=tafuta=R=b~E=k=F-E=E=E=E L Loy oyoy-t-F-F=tututup~
mm:::ooo:::oomaam mmmm:’::"ooos:":@@@ﬂﬂﬂm@m 32530007377 50005CC 52535000° P 3000500
DDSSSgzg RS S SRR 3 UMVJVMEEEFFFBBBFHmemmmmmmmzzzﬁFFBBBFHFU*U"U*V)
QPS of different query types and different column families in UDB during 14-day period
CRI'S

Center for Research in
o Intelligent Storage

KV-pair Hothess and Access Count Distributions

* The access count distributions are very ditferent in different applications and CFs

* In UDB, only a very small portion of KV-pairs are hot and most KV-pairs are cold.
* The access count distributions are different even in different CFs.

I 1\ GO0
i
08 + 0.95 W
0.6 % | - 09 1/, Object 2ry
Object 2ry —e— 085 4 / Assoc
04,4 Assoc —A— 08 ¢ Assoc 2ry —+—
02 | Assoc_count —e— 075 ¥ Assoc count —o—
0 ~Non 8G —#— 0 Non SG —#—
1 10 100 e 10 100
Access count distribution of Get in UDB Access count distribution of Put in UDB

facebook.

KV-pair Hothess and Access Count Distributions

* The access count distributions are very different in different applications and CFs

* |In ZippyDB, only a very small portion of KV-
distributions of different query types are di

ferent

* UP2X has a wider distribution especially for Get and Merge.

04 Put —— -

02 Delete —+—

) - lterator Seek ——
“ 10y ess Count 100 1000

Access count distribution ZippyDB

facebook.

nairs are hot and the access count

(et

Put |
Merge ——

— |

S —

Access Count
Ution of UP2X

Access count distrib

100

Intelligent Storage

= = Col Family Object of UDB
Access Heat-map = 400 -y oolumn iy Object of UT
S 350
» 300
& 250
:
° The heat-maps of the three use 5 100
. 50
>
cases show a strong key-space %90
locality.
* Hot KV-pairs are not evenly S 200 | ey
distributed in the key-space. 2 100 |
nstead, th osely located £ o ()
NSsteda ey are cliosely 10cate >, 0 s
. , y y ~ O 100000 200000 300000 4(MOOOOO 600000 700006—800000 900000
in the key-space. Key Sequence
£ 700 UP2X
S 600
Note: a2 500
1) Keys are first sorted the same as they are in the database, § 400
and assigned with a integer as key sequence number. ; 388
2) Y-axis is the access count of a KV-pair during 24-hour g 100
period. ; 0 L= - — - ——
3) Red line is the separation of MySQL tables. 0 5x10 1x10 1.5x10 2x10

Key Sequence

facebook. AR cKls

Key-Space and Temporal Localities

* The time series figures of Delete and SingleDelete for UDB and Merge for UP2X show strong

temporal locality.
* For some query types, KV-pairs in some key-ranges are intensively accessed during a short

period of time.

80000
70000
60000
50000
40000
30000
20000
10000

0

Time(second)

0 500000 1x10° 1.5x10° 2x10° 2.5x10° 3x10° 3.5x10° 4x10° 4.5x10°
Key Sequence

ime series figure of KV-pairs accessed by Merge in UP2X

Note: 1) X-axis is the key sequence number which is the same as that in heatmap, 2) Y-axis is time starting and &l&
facebook starts at the time when tracing begins, and 3) Red line is the separation of MySQL tables. M QF?SQ

Modeling and Benchmarking

* After we have the detailed characteristics of real workload, we can compare the
benchmarking results with the real-world workloads to explore its effectiveness.

* If the existing benchmark has limitations, the new workload modeling can be done
with the help from workload characteristics. We can further improve the existing
benchmarks or develop new benchmarks based on the new models.

facebook.

Investigate the Backend Storage I/Os

KV queries

RocksDB

Data block reads/writes

facebook.

* YCSB can generate queries that have similar
statistics for a given query type ratio, KV-pair
hotness distribution, and value size distribution as

those in realistic workloads.

* However, it is unclear whether their generated

workloads can match the I/Os of underlying

storage systems in realistic workloads.

* We focus on: block reads (block_read), block

cache hits (block_cache_hit), bytes being read
(read_bytes), and bytes being written
(write_bytes).

facebook.

Trace files

5

Trace Replayer

— g -
o —
Compare & | Benchmarking
_ Analyze) \ /
Adjust or T ‘
improve

Center for Research in
Intelligent Storage

Replay of ZippyDB vs. Fitted YCSB

18

o 10 e Read more
E 14
1) * write less
S
j%lo
o 8
S
é 6
g 4
H

2

. — a1 T Replay

block read block cache hit read bytes write bytes

B Uniform = Zipfian = Hotspot ™ Exponential

facebook. AN cKls

Problem and Solution

* The hot KV-pairs are actually randomly ° Instead of only modeling the overall KV-pair
distributed in the whole key-space hotness, we cut the whole key space into small

* Due to the cache space limit, a large key-ranges and models the hotness of these key-
number of hot data blocks that consist of ranges.
the requested KV-pairs will not be cached, * In each key-range, KV-pairs follow the overall
which triggers an extremely large number hotness distributions.
of block reads. * Build the new benchmark based on key-range

based modeling

20 | 7 ' " — :. 'f LA
0 o s s ' (0 e e s S s 50 60 e § S P09 | st T e e e e s T e e e L e e e e o —— _-,__:“:-;_ ';:i_{‘--_“f-_" '.”“_i; j: ”:_-' —.._ "f_'::- -':_'b':;" ':' - :' "' ; '.',V', >_-_' y ® V' '_- - -_-72‘: y oo
0

o 0 - _15(‘)06. Heatma pC ha nges to

000000000000000000

gﬁ(;{

f b CRTS
Center for Research in

a c e o o o Intelligent Storage

New Benchmark vs. YCSB

* All_random: KV-pairs are randomly
distributed

* All_dist: hot KV-pairs are allocated
together

* Prefix_random: KV-pairs are allocated to
different key-ranges based on key-range
hotness. KV-pairs in a key-range are

Normoalized Statistic Results

randomly distributed.

® Block read

Block cache hit

® Read bytes

® Write bytes

s i S wy SR Gy WY
O MNDWARUINIOO OO INDUWEAR OGO

* Prefix_dist: KV-pairs are allocated to
different key-ranges and hot KV-pairs in a

key-range are allocated close by

facebook.

Conclusion and Future Work

facebook.

* We introduce the key-value workload analyzing, modeling, and benchmarking methodologies. The tools

are open-sourced and people can use them to extend the exploration to more applications

* With the help of tracing, replaying, and analyzing tools, we characterized key-value workloads of three

typical RocksDB production use cases at Facebook. The findings of key/value size distribution, access

herformance.

* We propose a key-range based model to better preserve key-s
only provides a good emulation of workloads at the query leve

RocksDB storage I/Os than that of YCSB.

patterns, key-range localities, and workload variations provic

* In the future, we will continue improve YCSB such as key-range based distributio

Also, we will extend the workload characte

between queries, the correlation between

facebook.

rization to other dimensions such as t

KV-pair hotness and KV-pair sizes.

e insights that can help optimize KV-store

pace localities. The new benchmark not
, but also achieves more precise

n and QPS variation.

ne correlations

Future of RocksDB

A fast and easy to use persistent key-value store for any workload on
any hardware platform.

Efficiency Easy To Use Performance

[]facebook / rocksdb © Unwatch releases ¥ 990 % Star 16.1k ¥ Fork 3.6k

<> Code Issues 294 Pull requests 139 Actions Projects 1 Wiki Security Insights FB Internal h tt p S :Mg i t h u b . C 0 m/fac e b o O k/ ro C ks d b

A library that provides an embeddable, persistent key-value store for fast storage. http://rocksdb.org

{» 8,769 commits ¥ 104 branches 0 packages © 195 releases 4" 1 environmen t 2% 504 contributors &5 View license
I .

Center for Research in
. Intelligent Storage

https://github.com/facebook/rocksdb

Thank You!
Q&A

I H S 20
18th USENIX Conference
on File and Storage Technologies

L\,

UNIVERSITY OF MINNESOTA

facebook

