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Bugs, bugs everywhere

Buffer overflows still represent a top 3 threat (after 40 years)

Applications grow at a rapid pace, testing cannot keep up

Containment of software faults?

Solve the root cause via automated testing!
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Possibility of automated testing

Static analysis

Deployed in practice

Difficult to make path-sensitive and inter-procedural

Lack of accuracy makes for many FPs/FNs

Symbolic execution

Observations only relevant for given execution path

Core focus is on input generation

Goal is to achieve significant code coverage

Exponential in nature (input/code)

3 / 22



Introduction Dowsing Input reduction Code reduction Summary

Testing model

Search for buffer overflows

Dowser focuses on complex loops

Other approaches for simple pointer computation

Source code available: Typical in testing

Existing test inputs to reach every complex loop
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Example

Nginx web server, buffer overflow in URI parser

Application too complex for traditional tools

Complete code coverage may not even the trigger bug!

while (p <= r->uri_end) // >300 lines of code

switch (state)

case sw_usual: *u++ = ch; ...
case sw_slash: *u++ = ch; ...
...

case sw_dot: *u++ = ch; ...
if (ch == ’/’) u--; ...

case sw_dot_dot: *u++ = ch; ...
if (ch == ’/’) u -= 4; ...

...
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Testing with Dowser

Objective: focus the testing effort around specific
high-priority code fragments

Spot-checking instead of looking at general picture

Builds on symbolic execution, guided by in-depth analysis

End-to-end solution starting from source-code:
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Dowsing

Identify and rank loops based on bug probability
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Dowsing in a nutshell

Static analysis during compilation process

Search for loops containing pointer dereference

Analyze data-flow graph to infer complexity measure
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Applied to real software

Compare the ranking efficiency of the proposed heuristic to
instruction counting and random order

Buffer overflows reported in CVE for: nginx, ffmpeg,
inspircd, libexif, poppler, snort, sendmail
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Input tracking

Only sub-set of input is relevant for spot-checking
Infer relationships between inputs and candidate loops
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Example input: HTTP Request

Long input with multiple tokens.

GET /long/path/file HTTP/1.1
Host: thisisthehost.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 1337
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Highlight of HTTP Request

Only small part influences given loop

GET /long/path/file HTTP/1.1
Host: thisisthehost.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 1337

Dynamic information flow tracking

Track the influence of input on variables

Can be performed at different granularities (details in paper)
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Benefits of input reduction

Symbolic execution is input driven in nature

Provides implicit fine-grained modularization

Enables symbolic execution for applications with large input

Conversion table in movie file for ffmpeg
Font description in PDF file for poppler
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Bug search

Guide symbolic execution towards potential bug
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Basics of symbolic execution

”White-box fuzzing”

Avoid generating input that replicates execution path

Run-time feed-back about possible execution paths

Aimed at test-case generation
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Snippet of symbolic execution

Constraint solver used to check for possible divergence
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Analyzing symbolic execution

In practice input reduction was found to be insufficient

Large number of conditional branches still to be covered

Only some conditional statements are relevant

if (a[i] == ’A’)

printf(...);

Focus on the branches influencing pointer value

Value Coverage search strategy
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Value Coverage vs traditional search strategies
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Details behind Value Coverage Search

Only some execution paths are relevant to pointer arithmetic

Learn the general behavior of conditionals using small inputs

Result: 66% of conditionals eliminated

Influence on example:

while (p <= r->uri_end)

switch (state)

case sw_usual: *u++ = ch;
case sw_slash: *u++ = ch;
case sw_dot: *u++ = ch;

if (ch == ’/’) u--;
case sw_dot_dot: *u++ = ch;

if (ch == ’/’) u -= 4;
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Evaluation

Program LoC Symbolic Symbolic execution
Input Symbex M-Symbex Dowser

nginx 0.6.32 66k URI field > 8 h > 8 h 253 sec

ffmpeg 0.5 300k Huffman table > 8 h > 8 h 48 sec

inspircd 1.1.22 45k DNS response 200 sec 200 sec 32 sec

poppler 0.15.0 120k JPEG image > 8 h > 8 h 14 sec

poppler 0.15.0 120k Embedded font > 8 h > 8 h 762 sec

libexif 0.6.20 10k EXIF tag/length > 8 h 652 sec 652 sec

libexif 0.6.20 10k EXIF tag/length > 8 h 347 sec 347 sec

libexif 0.6.20 10k EXIF tag/length > 8 h 277 sec 277 sec

snort 2.4.0 75k UDP packet > 8 h > 8 h 617 sec

Table: Bugs detected with Dowser.
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Conclusions

End-to-end solution for guided symbolic execution

The spot-check approach enables focused search

Built-in prioritization mechanism to optimize testing effort

Heuristics geared towards buffer overflow type bugs

Dowser shows scalability beyond traditional tools

22 / 22


	Introduction
	Overview

	Dowsing
	Overview

	Input reduction
	Overview

	Code reduction
	Overview

	Summary
	Overview


