
Introduction Dowsing Input reduction Code reduction Summary

Dowsing for overflows:
a guided fuzzer to find buffer boundary violations

István Haller, Asia Slowinska, Matthias Neugschwandtner,
Herbert Bos

Usenix Security 2013
August 14, 2013

1 / 22

Introduction Dowsing Input reduction Code reduction Summary

Bugs, bugs everywhere

Buffer overflows still represent a top 3 threat (after 40 years)

Applications grow at a rapid pace, testing cannot keep up

Containment of software faults?

Solve the root cause via automated testing!

2 / 22

Introduction Dowsing Input reduction Code reduction Summary

Possibility of automated testing

Static analysis

Deployed in practice

Difficult to make path-sensitive and inter-procedural

Lack of accuracy makes for many FPs/FNs

Symbolic execution

Observations only relevant for given execution path

Core focus is on input generation

Goal is to achieve significant code coverage

Exponential in nature (input/code)

3 / 22

Introduction Dowsing Input reduction Code reduction Summary

Testing model

Search for buffer overflows

Dowser focuses on complex loops

Other approaches for simple pointer computation

Source code available: Typical in testing

Existing test inputs to reach every complex loop

4 / 22

Introduction Dowsing Input reduction Code reduction Summary

Example

Nginx web server, buffer overflow in URI parser

Application too complex for traditional tools

Complete code coverage may not even the trigger bug!

while (p <= r->uri_end) // >300 lines of code

switch (state)

case sw_usual: *u++ = ch; ...
case sw_slash: *u++ = ch; ...
...

case sw_dot: *u++ = ch; ...
if (ch == ’/’) u--; ...

case sw_dot_dot: *u++ = ch; ...
if (ch == ’/’) u -= 4; ...

...

5 / 22

Introduction Dowsing Input reduction Code reduction Summary

Testing with Dowser

Objective: focus the testing effort around specific
high-priority code fragments

Spot-checking instead of looking at general picture

Builds on symbolic execution, guided by in-depth analysis

End-to-end solution starting from source-code:

6 / 22

Introduction Dowsing Input reduction Code reduction Summary

Dowsing

Identify and rank loops based on bug probability

7 / 22

Introduction Dowsing Input reduction Code reduction Summary

Dowsing in a nutshell

Static analysis during compilation process

Search for loops containing pointer dereference

Analyze data-flow graph to infer complexity measure

8 / 22

Introduction Dowsing Input reduction Code reduction Summary

Applied to real software

Compare the ranking efficiency of the proposed heuristic to
instruction counting and random order

Buffer overflows reported in CVE for: nginx, ffmpeg,
inspircd, libexif, poppler, snort, sendmail

0 20 40 60 80 100

% of analysis groups analyzed

%
 o

f b
ug

s
de

te
ct

ed

0

20

40

60

80

100

Dowser
Count
Random

9 / 22

Introduction Dowsing Input reduction Code reduction Summary

Input tracking

Only sub-set of input is relevant for spot-checking
Infer relationships between inputs and candidate loops

10 / 22

Introduction Dowsing Input reduction Code reduction Summary

Example input: HTTP Request

Long input with multiple tokens.

GET /long/path/file HTTP/1.1
Host: thisisthehost.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 1337

11 / 22

Introduction Dowsing Input reduction Code reduction Summary

Highlight of HTTP Request

Only small part influences given loop

GET /long/path/file HTTP/1.1
Host: thisisthehost.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 1337

Dynamic information flow tracking

Track the influence of input on variables

Can be performed at different granularities (details in paper)

12 / 22

Introduction Dowsing Input reduction Code reduction Summary

Benefits of input reduction

Symbolic execution is input driven in nature

Provides implicit fine-grained modularization

Enables symbolic execution for applications with large input

Conversion table in movie file for ffmpeg
Font description in PDF file for poppler

13 / 22

Introduction Dowsing Input reduction Code reduction Summary

Bug search

Guide symbolic execution towards potential bug

14 / 22

Introduction Dowsing Input reduction Code reduction Summary

Basics of symbolic execution

”White-box fuzzing”

Avoid generating input that replicates execution path

Run-time feed-back about possible execution paths

Aimed at test-case generation

15 / 22

Introduction Dowsing Input reduction Code reduction Summary

Snippet of symbolic execution

Constraint solver used to check for possible divergence

16 / 22

Introduction Dowsing Input reduction Code reduction Summary

Analyzing symbolic execution

In practice input reduction was found to be insufficient

Large number of conditional branches still to be covered

Only some conditional statements are relevant

if (a[i] == ’A’)

printf(...);

Focus on the branches influencing pointer value

Value Coverage search strategy

17 / 22

Introduction Dowsing Input reduction Code reduction Summary

Value Coverage vs traditional search strategies

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50

S
e
a
rc

h
 t
im

e
 (

s
e
c
o
n

d
s
)

Symbolic Input Bytes

Depth First Search

Code Coverage

Value Coverage

18 / 22

Introduction Dowsing Input reduction Code reduction Summary

Details behind Value Coverage Search

Only some execution paths are relevant to pointer arithmetic

Learn the general behavior of conditionals using small inputs

Result: 66% of conditionals eliminated

Influence on example:

while (p <= r->uri_end)

switch (state)

case sw_usual: *u++ = ch;
case sw_slash: *u++ = ch;
case sw_dot: *u++ = ch;

if (ch == ’/’) u--;
case sw_dot_dot: *u++ = ch;

if (ch == ’/’) u -= 4;

19 / 22

Introduction Dowsing Input reduction Code reduction Summary

Details behind Value Coverage Search

Only some execution paths are relevant to pointer arithmetic

Learn the general behavior of conditionals using small inputs

Result: 66% of conditionals eliminated

Influence on example:

while (p <= r->uri_end)

switch (state)

case sw_usual: *u++ = ch;
case sw_slash: *u++ = ch;
case sw_dot: *u++ = ch;

if (ch == ’/’) u--;
case sw_dot_dot: *u++ = ch;

if (ch == ’/’) u -= 4;

20 / 22

Introduction Dowsing Input reduction Code reduction Summary

Evaluation

Program LoC Symbolic Symbolic execution
Input Symbex M-Symbex Dowser

nginx 0.6.32 66k URI field > 8 h > 8 h 253 sec

ffmpeg 0.5 300k Huffman table > 8 h > 8 h 48 sec

inspircd 1.1.22 45k DNS response 200 sec 200 sec 32 sec

poppler 0.15.0 120k JPEG image > 8 h > 8 h 14 sec

poppler 0.15.0 120k Embedded font > 8 h > 8 h 762 sec

libexif 0.6.20 10k EXIF tag/length > 8 h 652 sec 652 sec

libexif 0.6.20 10k EXIF tag/length > 8 h 347 sec 347 sec

libexif 0.6.20 10k EXIF tag/length > 8 h 277 sec 277 sec

snort 2.4.0 75k UDP packet > 8 h > 8 h 617 sec

Table: Bugs detected with Dowser.

21 / 22

Introduction Dowsing Input reduction Code reduction Summary

Conclusions

End-to-end solution for guided symbolic execution

The spot-check approach enables focused search

Built-in prioritization mechanism to optimize testing effort

Heuristics geared towards buffer overflow type bugs

Dowser shows scalability beyond traditional tools

22 / 22

	Introduction
	Overview

	Dowsing
	Overview

	Input reduction
	Overview

	Code reduction
	Overview

	Summary
	Overview

