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How to improve resource utilization, 
elasticity, heterogeneity, and fault tolerance? 

Go beyond 
physical server boundary!
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Hardware Resource Disaggregation:

Breaking monolithic servers into 
network-attached, independent 

hardware components 
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Why Possible Now?

• Network is faster 

• InfiniBand (200Gbps, 600ns)


• Optical Fabric (400Gbps, 100ns)


• More processing power at device 

• SmartNIC, SmartSSD, PIM


• Network interface closer to device 

• Omni-Path, Innova-2
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Outline
• Hardware Resource Disaggregation


• Kernel Architectures for Resource Disaggregation


• LegoOS Design and Implementation


• Abstraction


• Design Principles


• Implementation and Emulation


• Conclusion
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Can Existing Kernels Fit?

�13

Core

Kernel

GPU

Kernel

P-NIC

Kernel

Shared Main Memory

msg passing over local bus

Monolithic Server

Monolithic/Micro-kernel 
(e.g., Linux, L4)

Multikernel 
(e.g., Barrelfish, Helios, fos)

mem

Disk

NIC

CPU

monolithic 
kernel

network across servers

Server

mem

Disk

NIC

CPU

microkernel

Server

Disk NIC



Access remote resources 

Distributed resource mgmt 

Fine-grained failure handling

Existing Kernels Don’t Fit
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The OS should be also

When hardware is
disaggregated 
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Processor 
(CPU)

Memory

The Splitkernel Architecture
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• Split OS functions into monitors


• Run each monitor at h/w device


• Network messaging across        
non-coherent components


• Distributed resource mgmt and 
failure handling
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LegoOS  
The First Disaggregated OS

�19

Processor

Storage
Memory

NVM



Outline
• Hardware Resource Disaggregation


• Kernel Architectures for Resource Disaggregation


• LegoOS Design and Implementation


• Abstraction


• Design Principles


• Implementation and Emulation


• Conclusion
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How Should LegoOS Appear to Users?

• Our answer: as a set of virtual Nodes (vNodes)


- Similar semantics to virtual machines


- Unique vID, vIP, storage mount point


- Can run on multiple processor, memory, and storage components
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Abstraction - vNode
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One vNode can run multiple hardware components
One hardware component can run multiple vNodes
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Abstraction

• Appear as vNodes to users


• Linux ABI compatible


• Support unmodified Linux system call interface (common ones)


• A level of indirection to translate Linux interface to LegoOS interface
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LegoOS Design

1. Clean separation of OS and hardware functionalities


2. Build monitor with hardware constraints


3. RDMA-based message passing for both kernel and applications


4. Two-level distributed resource management


5. Memory failure tolerance through replication
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Separate Processor and Memory 
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Separate Processor and Memory 
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Separate Processor and Memory 
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Separate Processor and Memory 
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Separate Processor and Memory 
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Separate Processor and Memory 

�30

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

Processor components only 
see virtual memory addresses

Memory components manage 
virtual and physical memory

Virtual 
Address

Virtual 
Address

Virtual 
Address

Virtual 
Address

All levels of cache are virtual cache



Challenge: Remote Memory Accesses

• Network is still slower than local memory bus


• Bandwidth: 2x - 4x slower, improving fast


• Latency: ~12x slower, and improving slowly
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Add Extended Cache at Processor
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Add Extended Cache at Processor
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LegoOS Design

1. Clean separation of OS and hardware functionalities


2. Build monitor with hardware constraints


3. RDMA-based message passing for both kernel and applications


4. Two-level distributed resource management


5. Memory failure tolerance through replication
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Distributed Resource Management

1. Coarse-grain allocation 

2. Load-balancing 

3. Failure handling
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Memory (M2)
 36

Distributed Memory Management

Processor

vRegion 1 vRegion 2 vRegion 3

Memory (M1)

User Virtual Address Space

 fix-sized, coarse-grain virtual region (vRegion) (e.g., 1GB)


• GMM assigns vRegions to mem components


- On virtual mem alloc syscalls (e.g., mmap)


- Make decisions based on global loads


• Owner of a vRegion


- Fine-grained virtual memory allocation


- On-demand physical memory allocation


- Handle memory accesses
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Implementation and Emulation

       DRAM

• Status 

• 206K SLOC, runs on x86-64, 113 common Linux syscalls


• Processor 

• Reserve DRAM as ExCache (4KB page as cache line)


• h/w only on hit path, s/w managed miss path


• Memory 

• Limit number of cores, kernel-space only


• Storage/Global Resource Monitors 

• Implemented as kernel modules on Linux


• Network 

• RDMA RPC stack based on LITE [SOSP’17]
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Performance Evaluation
• Unmodified TensorFlow, running CIFAR-10


• Working set: 0.9G


• 4 threads


• Systems in comparison


• Baseline: Linux with unlimited memory


• Swap to SSD, and ramdisk


• InfiniSwap [NSDI’17]
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Conclusion

• Hardware resource disaggregation is promising for future datacenters


• The splitkernel architecture and LegoOS demonstrate the feasibility of 
resource disaggregation


• Great potentials, but many unsolved challenges!
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Thank you! 
Questions?

 

LegoOS.io
Open source @
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