
LegoOS
A Disseminated Distributed OS

for Hardware Resource
Disaggregation

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang

�1

Y4

 2

Monolithic Server

�3

OS / Hypervisor

Problems?

�4

�5

TPU

NVM

FPGA

Heterogeneity

Elasticity

Resource
Utilization

Server 1 Server 2 Job 1Job 2

cpu mem

Available Space Required Space

Fault
Tolerance

No extra
PCIe slots

Hard to add, remove, or reconfigure
devices in a servers after deployment

How to improve resource utilization,
elasticity, heterogeneity, and fault tolerance?

Go beyond
physical server boundary!

�6

�7

Hardware Resource Disaggregation:

Breaking monolithic servers into
network-attached, independent

hardware components

�8

Elasticity Heterogeneity

Resource
Utilization

Fault
Tolerance

�9

Network

Hardware

Application

Why Possible Now?

• Network is faster

• InfiniBand (200Gbps, 600ns)

• Optical Fabric (400Gbps, 100ns)

• More processing power at device

• SmartNIC, SmartSSD, PIM

• Network interface closer to device

• Omni-Path, Innova-2

�10

Intel
Rack-Scale System

Berkeley Firebox

IBM Composable System

HP The Machine

dReDBox

Outline
• Hardware Resource Disaggregation

• Kernel Architectures for Resource Disaggregation

• LegoOS Design and Implementation

• Abstraction

• Design Principles

• Implementation and Emulation

• Conclusion

�11

�12

Can Existing Kernels Fit?

�13

Core

Kernel

GPU

Kernel

P-NIC

Kernel

Shared Main Memory

msg passing over local bus

Monolithic Server

Monolithic/Micro-kernel
(e.g., Linux, L4)

Multikernel
(e.g., Barrelfish, Helios, fos)

mem

Disk

NIC

CPU

monolithic
kernel

network across servers

Server

mem

Disk

NIC

CPU

microkernel

Server

Disk NIC

Access remote resources

Distributed resource mgmt

Fine-grained failure handling

Existing Kernels Don’t Fit

�14

Network

�15

The OS should be also

When hardware is
disaggregated

�16

OS
Process

Mgmt

Virtual
Memory
System

File &
Storage
System Network

�17

Process
Mgmt

Virtual
Memory
System

File &
Storage
System

Network

File &
Storage
System

Network

Network

Network

Network

Processor
(CPU)

Memory

The Splitkernel Architecture

�18

• Split OS functions into monitors

• Run each monitor at h/w device

• Network messaging across
non-coherent components

• Distributed resource mgmt and
failure handling

Memory
Monitor

Process
Monitor

network messaging across non-coherent components

GPU
Minitor

Processor
(GPU)

Hard Disk

NVM
Monitor

NVM

SSD
Monitor

SSD

HDD
Monitor

XPU
Manager
New h/w

(XPU)

LegoOS
The First Disaggregated OS

�19

Processor

Storage
Memory

NVM

Outline
• Hardware Resource Disaggregation

• Kernel Architectures for Resource Disaggregation

• LegoOS Design and Implementation

• Abstraction

• Design Principles

• Implementation and Emulation

• Conclusion

�20

How Should LegoOS Appear to Users?

• Our answer: as a set of virtual Nodes (vNodes)

- Similar semantics to virtual machines

- Unique vID, vIP, storage mount point

- Can run on multiple processor, memory, and storage components

�21

As a giant machine?
As a set of hardware devices?

Abstraction - vNode

�22

One vNode can run multiple hardware components
One hardware component can run multiple vNodes

Processor
(CPU)

GPU
Minitor

Processor
(GPU)

Memory Hard Disk

network messaging across non-coherent components

NVM
Monitor

NVM

SSD
Monitor

SSD

HDD
Monitor

Memory
Monitor

Process
Monitor

XPU
Manager

New h/w
(XPU)

vNode2

vNode1

Abstraction

• Appear as vNodes to users

• Linux ABI compatible

• Support unmodified Linux system call interface (common ones)

• A level of indirection to translate Linux interface to LegoOS interface

�23

LegoOS Design

1. Clean separation of OS and hardware functionalities

2. Build monitor with hardware constraints

3. RDMA-based message passing for both kernel and applications

4. Two-level distributed resource management

5. Memory failure tolerance through replication

�24

Separate Processor and Memory

�25

Processor

CPU CPU$ $

Last-Level Cache

DRAM

TLB

MMU

PT

Separate Processor and Memory

�26

N
et

w
or

k

DRAM

Memory

Disaggregating DRAM

Memory

Processor

CPU CPU$ $

Last-Level Cache TLB

MMU PT

Separate Processor and Memory

�27

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

Separate and move
hardware units

to memory component

MemoryPT

Separate Processor and Memory

�28

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory
System

Separate Processor and Memory

�29

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

Separate and move
virtual memory system
to memory component

MemoryPT

Virtual Memory System

Separate Processor and Memory

�30

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

Processor components only
see virtual memory addresses

Memory components manage
virtual and physical memory

Virtual
Address

Virtual
Address

Virtual
Address

Virtual
Address

All levels of cache are virtual cache

Challenge: Remote Memory Accesses

• Network is still slower than local memory bus

• Bandwidth: 2x - 4x slower, improving fast

• Latency: ~12x slower, and improving slowly

�31

Add Extended Cache at Processor

�32

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

Add Extended Cache at Processor

�33

Processor

CPU CPU$ $

Last-Level Cache

N
et

w
or

k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

DRAM ExCache

• Add small DRAM/HBM at processor

• Use it as Extended Cache, or ExCache

• Software and hardware co-managed

• Inclusive

• Virtual cache

LegoOS Design

1. Clean separation of OS and hardware functionalities

2. Build monitor with hardware constraints

3. RDMA-based message passing for both kernel and applications

4. Two-level distributed resource management

5. Memory failure tolerance through replication

�34

Distributed Resource Management

1. Coarse-grain allocation

2. Load-balancing

3. Failure handling

�35

Global
Process Manager (GPM)

Global
Memory Manager (GMM)

Global
Storage Manager (GSM)

Processor
(CPU)

GPU
Minitor

Processor
(GPU)

Memory Hard Disk

network messaging across non-coherent components

NVM
Monitor

NVM

SSD
Monitor

SSD

HDD
Monitor

Memory
Monitor

Process
Monitor Global

Resource Mgmt

Memory

Memory
Monitor

Memory (M2)
 36

Distributed Memory Management

Processor

vRegion 1 vRegion 2 vRegion 3

Memory (M1)

User Virtual Address Space

 fix-sized, coarse-grain virtual region (vRegion) (e.g., 1GB)

• GMM assigns vRegions to mem components

- On virtual mem alloc syscalls (e.g., mmap)

- Make decisions based on global loads

• Owner of a vRegion

- Fine-grained virtual memory allocation

- On-demand physical memory allocation

- Handle memory accesses

0 max

(Physical Memory) (Physical Memory)

Used Used

vRegion 1 vRegion 2

mmap 1.5GB
write 1GB

GMM

UsedUsed

Implementation and Emulation

 DRAM

• Status

• 206K SLOC, runs on x86-64, 113 common Linux syscalls

• Processor

• Reserve DRAM as ExCache (4KB page as cache line)

• h/w only on hit path, s/w managed miss path

• Memory

• Limit number of cores, kernel-space only

• Storage/Global Resource Monitors

• Implemented as kernel modules on Linux

• Network

• RDMA RPC stack based on LITE [SOSP’17]
�37

CPU

LLC

ExCache

CPU
Processor

Disk

Memory Storage

 DRAM
LLC Disk

DRAM

CPU

LLC Disk

Process Monitor

Memory Monitor Linux Kernel Module

CPU CPU

CPU CPU CPU CPU

RDMA Network

Performance Evaluation
• Unmodified TensorFlow, running CIFAR-10

• Working set: 0.9G

• 4 threads

• Systems in comparison

• Baseline: Linux with unlimited memory

• Swap to SSD, and ramdisk

• InfiniSwap [NSDI’17]

�38

ExCache/Memory Size (MB)
128 256 512

S
l
o
w
d
o
w
n

1

3

5

7
Linux−swap−SSD

Linux−swap−ramdisk
InfiniSwap

LegoOS

LegoOS Config: 1P, 1M, 1S

Only 1.3x to 1.7x slowdown when disaggregating devices with LegoOS

To gain better resource packing, elasticity, and fault tolerance!

Conclusion

• Hardware resource disaggregation is promising for future datacenters

• The splitkernel architecture and LegoOS demonstrate the feasibility of
resource disaggregation

• Great potentials, but many unsolved challenges!

�39

Thank you!
Questions?

LegoOS.io
Open source @

.io
Poster Tonight. Number 11.

http://wuklab.io
http://wuklab.io

