
Gandiva: Introspective Cluster
Scheduling for Deep Learning

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee,

Muthian Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel,

Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan Yang, Lidong Zhou

Microsoft Research

Deep learning: An important cloud workload

• Growing impact: Consumer products – Web search, Alexa/Siri/Cortana,…
• Upcoming: Enterprise uses (e.g. medical diagnosis, retail)

• DL jobs are compute-intensive, so need expensive custom hardware
• Dominant platform today: GPUs

• Cloud vendors run large clusters of GPUs (billions of $)

• Efficient use of GPU clusters crucial to manage cost of DL innovation

Deep Learning Training (DLT)

• Build a model for an end-to-end application (e.g. speech2text)
• Select best model architecture, invent new architectures, tune accuracy, …

• Key to DL Innovation

• DLT is mostly trial-and-error: Little theoretical understanding
• Will a model architecture work? Don’t know -- Train it and measure!

• Lots of trials => high cost: Training = significant fraction of GPU usage

• Goal: Run DLT jobs efficiently in a cluster of GPUs

DLT Schedulers today

• Treat DLT jobs as generic big-data jobs (e.g. use Yarn, Kubernetes)

• Schedule a job on a GPU exclusively, job holds it until completion

• Problem #1: High Latency (head-of-line blocking)

Short job
(queued)

Multi-jobNeed time-slicing of jobs

However, GPUs not efficiently virtualizable

Long DLT job
Runtime: Several days!

DLT Schedulers today

2-GPU job

Need ability to migrate jobs

Sensitivity to locality varies across jobs

• Treat DLT jobs as generic big-data jobs (e.g. use Yarn, Kubernetes)

• Schedule a job on a GPU exclusively, job holds it until completion

• Problem #2: Low Efficiency (Fixed decision at job-placement time)

Server 2

Server 1

Domain knowledge: Intra-job predictability

Each spike is a “mini-batch”

Mini-batch times identical

~77x diff. in RAM usage

Time-slicing quantum =
Group of minibatches

ResNet50 training on ImageNet data

23GB

0.3 GB

Gandiva: A domain-specific scheduler for DLT

• Result: Faster & cheaper execution of DLT workflows
• Latency: 4.5x lower queueing times, 5-7x faster multi-jobs (AutoML)

• Efficiency: 26% higher cluster throughput

Today’s schedulers

Cluster
Job

Start_job,
Stop_job,
Send_signal

Gandiva

DLT Job /
Multi-job

Outline

• Introduction

• Gandiva mechanisms

• Implementation & Evaluation

• Conclusion

Time-slicing

• Over-subscription as a first-class feature (similar to OS)
• Time quantum of ~1 min (~100 mini-batches)

• Better than queueing: Faster time-to-early feedback

• Faster multi-job execution during hyper-param searches

Sc
h

ed
u

le
r

p
yT

o
rc

h
/

TF

Suspend Job

Wait for mini-batch completion

Copy state from GPU to CPU

Suspend job in CPUSuspend done

Useful work

50 – 250 ms

Customization: Align with mini-batch boundary => ~50x cheaper

Migration / Packing

• Move jobs across GPUs to improve efficiency

• Generic distributed process migration is unreliable / slow
• Customization: Integration with toolkit checkpointing makes it fast/robust

• #1: De-fragment multi-GPU jobs

• #2: Exploit heterogeneity: Low job parallelism => cheaper GPU

• #3: Packing: Pack multiple jobs onto the same GPU
• Jobs that are low on GPU & RAM usage. Run together instead of time-slice

• Challenge: How do we know migration/packing helped?

Application-aware profiling

• Solution: Measure useful work directly
• Customization: Job runtime exports “time-per-minibatch”

• Allows simple “introspection” policy
• Try migration/packing, measure benefit, revert if negative

Job 1

GPU Util: 50%

Job 2

GPU Util: 80%

Two possibilities:
- #1: 30% more useful work done
- #2: Overhead due to interference

- Could even be a net loss!

Introspective Scheduling

Traditional Schedulers Gandiva

Scheduling
decision

One-time (job-placement)
- Stuck with decision for
entire job

Continuous / Introspective
- Can recover quickly from

mistakes

Profiling

System-level:
e.g. CPU/GPU Util

- Entangles Useful work vs.
overhead

Application-level (customized):
Mini-batches per second

- Measures “useful work”

Outline

• Introduction

• Schedulers for DLT: Today

• Gandiva mechanisms

• Implementation & Evaluation

• Conclusion

Kubernetes NodeKubernetes Node

Implementation

Kubernetes Master

Kubernetes API
Gandiva Scheduler

Time_Slice()
Do_Migration()
Do_Packing()

Profile
/ Job
State

Node allocation req.

Node / Container Info

Kubernetes Node

Kube Daemon

Container
Gandiva Client

Start, Stop,
Pause, Resume,…

User
DLT
Job

Profile Info /
Job State

Scheduling
RPCs

Job creation /
Node allocation

Also, changes to DL Toolkits:
Tensorflow & pyTorch

Time-slicing, migration, etc.

Microbenchmark: Time-slicing

Server 4 P100 GPUs

6 DLT jobs:
ResNet50/ImagNet
on pyTorch

All jobs get equal
time-share during
time-slicing

Low overhead:
Total throughput
remains same

Micro-benchmark: Packing

1 P100 GPU

2 DLT jobs: Image
Superresolution on
pyTorch

Gandiva starts with
time-slicing

Based on profiling, tries
to pack both jobs

Higher App throughput
=> Continue w/ packing

Microbenchmark: AutoML

Accuracy:
70%

Accuracy:
80%

Accuracy:
90%

Baseline 134.1 2489.1 5296.7

Gandiva 134.1 543.1 935.4

Speedup 1x 5.25x 5.66x

AutoML: Explore 100 hyper-parameter configs
- ResNet-like Model for CIFAR Image dataset; 16 P40 GPUs
- HyperOpt: Predict “more promising” mode based on early feedback

Time-slicing + Prioritization => Gandiva explores more configs in parallel

Time in minutes
to find config w/
accuracy > threshold

Cluster utilization

Cluster of 180 GPUs

Synthetic DLT jobs
modelled from a
production trace

Efficiency
Cluster throughput
improves by 26%

Latency
4.5x reduction in
avg. time to first
100 mini-batches

Summary

• Large cloud applications benefit from custom systems infrastructure

• Co-design of cluster scheduler w/ DL job => rich information, control

• Efficient time-slicing => Low latency, early feedback, iterate fast

• Application-aware profiling => Introspection

• Custom migration/packing => Cluster efficiency

• Much faster hyper-parameter exploration/AutoML

