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Deep learning: An important cloud workload

• Growing impact: Consumer products – Web search, Alexa/Siri/Cortana,…
• Upcoming: Enterprise uses (e.g. medical diagnosis, retail)

• DL jobs are compute-intensive, so need expensive custom hardware
• Dominant platform today: GPUs

• Cloud vendors run large clusters of GPUs (billions of $)

• Efficient use of GPU clusters crucial to manage cost of DL innovation



Deep Learning Training (DLT)

• Build a model for an end-to-end application (e.g. speech2text)
• Select best model architecture, invent new architectures, tune accuracy, …

• Key to DL Innovation

• DLT is mostly trial-and-error: Little theoretical understanding
• Will a model architecture work? Don’t know -- Train it and measure!

• Lots of trials => high cost: Training = significant fraction of GPU usage

• Goal: Run DLT jobs efficiently in a cluster of GPUs



DLT Schedulers today

• Treat DLT jobs as generic big-data jobs (e.g. use Yarn, Kubernetes)

• Schedule a job on a GPU exclusively, job holds it until completion

• Problem #1: High Latency (head-of-line blocking)

Short job
(queued)

Multi-jobNeed time-slicing of jobs

However, GPUs not efficiently virtualizable

Long DLT job
Runtime: Several days!



DLT Schedulers today

2-GPU job

Need ability to migrate jobs

Sensitivity to locality varies across jobs

• Treat DLT jobs as generic big-data jobs (e.g. use Yarn, Kubernetes)

• Schedule a job on a GPU exclusively, job holds it until completion

• Problem #2: Low Efficiency (Fixed decision at job-placement time)

Server 2

Server 1



Domain knowledge: Intra-job predictability

Each spike is a “mini-batch”

Mini-batch times identical

~77x diff. in RAM usage

Time-slicing quantum = 
Group of minibatches

ResNet50 training on ImageNet data

23GB

0.3 GB



Gandiva:  A domain-specific scheduler for DLT

• Result:  Faster & cheaper execution of DLT workflows
• Latency:  4.5x lower queueing times, 5-7x faster multi-jobs (AutoML)

• Efficiency:  26% higher cluster throughput

Today’s schedulers

Cluster 
Job

Start_job, 
Stop_job,
Send_signal

Gandiva

DLT Job / 
Multi-job
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Time-slicing

• Over-subscription as a first-class feature (similar to OS)
• Time quantum of ~1 min (~100 mini-batches)

• Better than queueing: Faster time-to-early feedback

• Faster multi-job execution during hyper-param searches
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Suspend Job

Wait for mini-batch completion

Copy state from GPU to CPU

Suspend job in CPUSuspend done

Useful work

50 – 250 ms

Customization:  Align with mini-batch boundary => ~50x cheaper



Migration / Packing

• Move jobs across GPUs to improve efficiency 

• Generic distributed process migration is unreliable / slow
• Customization: Integration with toolkit checkpointing makes it fast/robust

• #1:  De-fragment multi-GPU jobs

• #2:  Exploit heterogeneity:  Low job parallelism => cheaper GPU

• #3:  Packing:  Pack multiple jobs onto the same GPU
• Jobs that are low on GPU & RAM usage.  Run together instead of time-slice

• Challenge: How do we know migration/packing helped?



Application-aware profiling

• Solution: Measure useful work directly
• Customization: Job runtime exports “time-per-minibatch”

• Allows simple “introspection” policy
• Try migration/packing, measure benefit, revert if negative

Job 1

GPU Util: 50%

Job 2

GPU Util: 80%

Two possibilities:
- #1: 30% more useful work done
- #2: Overhead due to interference

- Could even be a net loss!



Introspective Scheduling

Traditional Schedulers Gandiva

Scheduling 
decision

One-time (job-placement) 
- Stuck with decision for
entire job

Continuous / Introspective
- Can recover quickly from

mistakes

Profiling

System-level:
e.g. CPU/GPU Util

- Entangles Useful work vs.
overhead

Application-level (customized):
Mini-batches per second

- Measures “useful work”



Outline

• Introduction

• Schedulers for DLT: Today

• Gandiva mechanisms

• Implementation & Evaluation

• Conclusion



Kubernetes NodeKubernetes Node

Implementation

Kubernetes Master

Kubernetes API
Gandiva Scheduler

Time_Slice()
Do_Migration()
Do_Packing()

Profile
/ Job 
State

Node allocation req.

Node / Container Info

Kubernetes Node

Kube Daemon

Container
Gandiva Client

Start, Stop, 
Pause, Resume,…

User 
DLT 
Job

Profile Info / 
Job State

Scheduling
RPCs

Job creation / 
Node allocation

Also, changes to DL Toolkits: 
Tensorflow & pyTorch

Time-slicing, migration, etc.



Microbenchmark:  Time-slicing

Server 4 P100 GPUs

6 DLT jobs: 
ResNet50/ImagNet
on pyTorch

All jobs get equal 
time-share during 
time-slicing

Low overhead:
Total throughput 
remains same 



Micro-benchmark: Packing

1 P100 GPU

2 DLT jobs: Image 
Superresolution on 
pyTorch

Gandiva starts with 
time-slicing

Based on profiling, tries 
to pack both jobs

Higher App throughput 
=> Continue w/ packing



Microbenchmark: AutoML

Accuracy: 
70%

Accuracy: 
80%

Accuracy: 
90%

Baseline 134.1 2489.1 5296.7

Gandiva 134.1 543.1 935.4

Speedup 1x 5.25x 5.66x

AutoML:  Explore 100 hyper-parameter configs
- ResNet-like Model for CIFAR Image dataset; 16 P40 GPUs
- HyperOpt:  Predict “more promising” mode based on early feedback

Time-slicing + Prioritization => Gandiva explores more configs in parallel

Time in minutes
to find config w/ 
accuracy > threshold



Cluster utilization

Cluster of 180 GPUs

Synthetic DLT jobs 
modelled from a 
production trace

Efficiency
Cluster throughput 
improves by 26%

Latency
4.5x reduction in 
avg. time to first 
100 mini-batches 



Summary

• Large cloud applications benefit from custom systems infrastructure

• Co-design of cluster scheduler w/ DL job => rich information, control

• Efficient time-slicing => Low latency, early feedback, iterate fast

• Application-aware profiling => Introspection

• Custom migration/packing => Cluster efficiency

• Much faster hyper-parameter exploration/AutoML


