

Cocaine Noodles: Exploiting the Gap between Human and Machine Speech Recognition

<u>Tavish Vaidya</u>, Yuankai Zhang, Micah Sherr and Clay Shields Georgetown University

Presented at WOOT'15
10-11 August, 2015

Voice input is near ubiquitous

Voice input is near ubiquitous

Can the differences between human and machine understanding of speech lead to attacks?

Attack 1

Open malicious webpage

- Serve drive-by-download or malware
- Open up attack surface for further attacks

Attack 2

Send text message to particular number

- Monetize the attack using reverse SMS billing or premium SMS service numbers as destination

Attack 3 Tradewowell M. M.

Enumerate devices in an area (e.g. those belonging to dissidents attending a rally)

Other Attacks

- Denial-of-Service
 - E.g., use public announcement systems to turn on airplane mode
- Sending/forging email
- Sending/forging messages on social media

Attacker Goals

 Execute commands on target device by exploiting its speech recognition system

- Minimize the possibility of alerting the user of the attack
 - Produce *mangled* commands that are understood by the device but not the user

(Non)Assumptions

- Non-assumption: we make no assumption about target speech recognition system
 - Speech recognition model and process are treated as black boxes
 - Attacks are agnostic to particular AI/ML used by target device
- Adversary is able to play audio to target devices
 - E.g., from an elevator speaker, youtube video, LRAD etc.
- Target devices do not apply biometrics or attempt to authenticate users/speakers
- Target devices are always listening to voice input

Background: Speech Recognition Overview

- Pre-processing
 - Background noise removal
 - Speech/non-speech segmentation

- Feature Extraction
 - Acoustic features useful for recognizing speech
 - Mel-frequency cepstral coefficients (MFCC) for representing acoustic features

Background: Speech Recognition Overview

Model Based Prediction

- Extracted acoustic features of input signal matched against existing models
- Models typically constructed using statistical approaches

Post-processing

- Optionally, rank generated predictions using additional information
- E.g., enforcing grammar rules, subject matter, locality of words, etc.

Mel-Frequency Cepstral Coefficients (MFCCs)

- Cepstral coefficients represent acoustic features in audio signal
- MFCC closely <u>approximates</u> human response to auditory sensation
- Allows for better representation of sound

Attack Overview

Generating attack commands

MFCC Tuning

- MFCC computation has various parameters
- We modify 4 independent parameters:
 - 1. wintime
 - 2. hoptime
 - 3. numcep
 - 4. nbands
- Experimentally observed the effect of changing each parameter
- Perceived quality of mangled audio varies with different parameter values
- Used Google's Speech-to-Text Speech
 Recognition API to narrow down parameters

Feature Extraction with Tuned MFCC Parameters

 Tuned parameters are used for computing MFCC

- MFCC computation is *lossy*
 - Signal is considered statistically constant over a small time window
 - Energy level of closely spaced frequencies are aggregated in various frequency regions on mel frequency scale
 - MFCCs do not retain all information about the original input
- Tuned MFCC parameters are intended to further increase this loss

Inverse MFCC Computation

Extracted audio features converted back to audio signal

- MFCC computation steps are reversed

- White noise added to (re)construct mangled audio command

Mangled commands are crafted to contain acoustic information for a targeted speech recognition system to work, but the human brain doesn't work the same way as machine speech recognition systems!

http://www.ucsf.edu/news/2014/01/111506/ucsf-team-reveals-how-brain-recognizes-speech-sounds

Evaluation

Goal: Determine that mangled commands...

- 1) ...activate functionality on phone (comprehension by machine); and
- 2) ...are difficult for humans to interpret (non-comprehension by human listeners)

Consider 4 types of commands:

- activating the voice command input (i.e., "OK Google")
- calling a number
- sending a text message to a number
- opening a website (tested against two websites)

Comprehension by Machine

Experimental setup

- Tested the audio commands against Google Now
- Samsung Galaxy S4 smartphone with Android version 4.4.2
- Commands were played via speakers placed ~30 cm from phone

Baseline

(un-mangled commands)

- Un-mangled versions of all commands were played
- All candidates successfully activated functionality on the device

Attack

(mangled commands)

- 500 potential candidates filtered using Google's STT
- 105 candidates manually chosen by 2 authors
- All selected attack candidates successfully activated functionality on the device

Non-comprehension by Human Listeners

Experimental setup

- Amazon Mechanical Turk user study
- Task: Evaluators given 4 unique audio commands to transcribe
 - Asked to provide their best guess
 - Given bonus (\$\$\$) for correct transcriptions
 - Audio samples included both mangled and unmangled commands
- Conservative test: evaluators could replay audio, listen under ideal conditions, etc.

Evaluation Metric

- Levenshtein edit distance (of phonemes) between correct and human-provided transcriptions
- Normalized w.r.t. length of correct transcription

Human Understanding of Mangled Commands

Human Understanding of Mangled Commands

Summary

- Voice command input systems are ubiquitous, but lack security
- There exists a gap in the ability of humans and machines to understand audio signals
- We examined the possibility of exploiting this gap on voice command inputs
- Preliminary results show that this gap can be exploited

Cocaine Noodles: Exploiting the Gap between Human and Machine Speech Recognition

Tavish Vaidya, Yuankai Zhang, Micah Sherr and Clay Shields Georgetown University