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experts spanning academia and industry.

The review process was double-blind. We had two rounds of reviews per cycle, providing papers that advanced to the second
round at least five reviews. We strove to include valuable feedback in all these reviews, so we hope it benefited all authors
who submitted their work. After writing reviews, we held online discussions to select papers to be discussed further at PC
meetings or to be accepted without further need for discussion. We discussed 24 papers during the Spring PC meeting
(conducted online via video conferencing software) and 90 papers during the 1.5-day Fall PC meeting held on the UC San
Diego campus in La Jolla, Calif.
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to Ivan Beschastnikh and Ravi Netravali for serving as poster co-chairs. We’d like to thank Sujata Banerjee and Rebecca
Isaacs for handling chair conflict papers. We’d like to thank Ellen Zegura, Laurant Vanbever, and Aditya Akella for selecting
the best papers and the community award paper. We’d like to thank the members of the Test of Time Awards committee:
Aditya Akella, Katerina Argyraki, Sujata Banerjee, Paul Barham, Miguel Castro, Nick Feamster, Jon Howell, Arvind
Krishnamurthy, Jay Lorch, Jeff Mogul, Timothy Roscoe, Srinivasan Seshan, Alex Snoeren, and Minlan Yu. We’d like to
thank the NSDI steering committee as well as the co-chairs of NSDI 2019, Minlan Yu and Jay Lorch.

We would like to thank Jennifer Folkestad, who organized the in-person PC meeting on UC San Diego’s campus, the PC
dinner, and then an entirely different second PC dinner on an hour’s notice after the first restaurant caught fire moments
before we were to arrive.

We’re so very grateful to the USENIX staff, including Casey Henderson, Ginny Staubach, Jasmine Murcia, Jessica Kim,
Michele Nelson, and Sarah TerHune, for the extraordinary levels of support they provided.

Ranjita Bhagwan, Microsoft Research India
George Porter, University of California, San Diego
NSDI *20 Program Co-Chairs
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Expanding across time to deliver bandwidth efficiency and low latency

William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren, and George Porter
University of California San Diego

Abstract

Datacenters need networks that support both low-latency
and high-bandwidth packet delivery to meet the stringent
requirements of modern applications. We present Opera, a
dynamic network that delivers latency-sensitive traffic quickly
by relying on multi-hop forwarding in the same way as
expander-graph-based approaches, but provides near-optimal
bandwidth for bulk flows through direct forwarding over
time-varying source-to-destination circuits. Unlike prior ap-
proaches, Opera requires no separate electrical network and
no active circuit scheduling. The key to Opera’s design is
the rapid and deterministic reconfiguration of the network,
piece-by-piece, such that at any moment in time the network
implements an expander graph, yet, integrated across time,
the network provides bandwidth-efficient single-hop paths be-
tween all racks. We show that Opera supports low-latency traf-
fic with flow completion times comparable to cost-equivalent
static topologies, while delivering up to 4 x the bandwidth
for all-to-all traffic and supporting up to 60% higher load for
published datacenter workloads.

1 Introduction

Datacenter networks are tasked with providing connectiv-
ity between an ever-increasing number of end hosts whose
link rates improve by orders of magnitude every few years.
Preserving the “big-switch” illusion of full bisection band-
width [2, 21] by augmenting the internal switching capacity of
the network accordingly is increasingly cost prohibitive and
likely soon infeasible [35]. Practitioners have long favored
over-subscribed networks that provide all-to-all connectiv-
ity, but at only a fraction of host-link speeds [21, 41]. Such
networks realize cost savings by dramatically reducing the
amount of in-network capacity (in terms of both the number
and rate of links and switches internal to the network fabric),
providing full-speed connectivity between only a subset of
hosts, and more limited capacity between others.

The catch, of course, is that any under-provisioned topology
inherently biases the network toward certain workloads. Tradi-
tional over-subscribed Clos topologies only support rack-local
traffic at full line rate; researchers have proposed alternate
ways of deploying a limited amount of switching capacity—
either through disparate link and switch technologies [31,
38, 40, 44], non-hierarchical topologies [27, 29, 42, 43], or

both [20, 34]—that can deliver higher performance for pub-
lished workloads [4, 39] at similar costs. Because workloads
can be dynamic, many of these proposals implement reconfig-
urable networks that allocate link capacity in a time-varying
fashion, either on a fixed schedule [34, 40] or in response to
recent demand [20, 31, 44]. Unfortunately, practical recon-
figurable technologies require non-trivial delay to retarget
capacity, limiting their utility for workloads with stringent
latency requirements.

Under-provisioned networks often incorporate some flavor
of indirect traffic routing to address inopportune traffic de-
mands; because application workloads do not always align
well with the structure of the network, some traffic may transit
longer, less-efficient paths. The benefits of indirection come
at significant cost, however: traversing more than a single hop
through the network imposes a “bandwidth tax.” Said another
way, x bytes sent over a direct link between two end points
consume only x bytes of network capacity. If that same traffic
is instead sent over k links, perhaps indirecting through mul-
tiple switches, it consumes (k- x) bytes of network capacity,
where (k— 1)x corresponds to the bandwidth tax. Hence, the
effective carrying capacity of a network, i.e., net the band-
width tax, can be significantly less than its raw switching
capacity; aggregate tax rates of 200-500% are common in
existing proposals.

Reconfigurable networks seek to reduce the overall band-
width tax rate of a given workload by provisioning direct
links between end points with the highest demands, elimi-
nating the tax on the largest, “bulk” flows whose completion
time is gated by available network capacity, rather than propa-
gation delay. The time required to identify such flows [31, 44]
and reconfigure the network [20, 34], however, is generally
orders-of-magnitude larger than the one-way delay of even an
indirect route through the network, which is the main driver of
completion times for small flows. Hence, dynamic networks
face a fundamental trade-off between amortizing the overhead
of reconfiguration against the inefficiency of sub-optimal con-
figurations. The upshot is existing proposals are either unsuit-
able for latency sensitive traffic (which is frequently shunted
to an entirely separate network in so-called hybrid architec-
tures [31, 34, 38]), or pay substantial bandwidth tax to provide
low-latency connectivity, especially when faced with dynamic
or unpredictable workloads.
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Figure 1: Published empirical flow-size distributions.

Opera is a network architecture that minimizes the band-
width tax paid by bulk traffic—which makes up the vast major-
ity of the bytes in today’s networks [4, 39]—while ensuring
low-latency delivery for the (small fraction of) traffic that
cannot tolerate added delays. Opera implements a dynamic,
circuit-switched topology that constantly reconfigures a small
number of each top-of-rack (ToR) switch’s uplinks, moving
through a series of time-varying expander graphs (without re-
quiring runtime circuit selection algorithms or network-wide
traffic demand collection). Opera’s ever-changing topology
ensures that every pair of end points is periodically allocated
a direct link, delivering bandwidth-efficient connectivity for
bulk traffic, while indirecting latency-sensitive traffic over
the same, low-diameter network to provide near-optimal flow
completion times.

By strategically pre-configuring the assignment of rack-
to-rack circuits at each instant in time such that those cir-
cuits form an expander graph, Opera can always forward
low-latency traffic over an expander without waiting for any
circuits to be (re-)configured. Thus, on a per-packet basis,
Opera can choose to either (1) immediately send a packet
over whatever static expander is currently instantiated, in-
curring a modest tax on this small fraction of traffic, or (2)
buffer the packet and wait until a direct link is established
to the ultimate destination, eliminating the bandwidth tax on
the vast majority of bytes. Our simulation results show this
trade-off results in up to a 4 X increase in throughput for shuf-
fle workloads compared to cost-equivalent static topologies.
Moreover, for published, skewed datacenter workloads, Opera
delivers an effective 8.4% bandwidth tax rate, resulting in up
to a 60% increase in throughput while maintaining equivalent
flow completion times across all flow sizes. We further val-
idate the stability of this result across a range of workloads,
network scales, and cost factors.

2 Network efficiency

The reality of datacenter networks is one of non-stop
change: developers are continuously deploying new appli-

Folded-Clos Expander Opera (Reconfiguring)
u < k/2 uplinks to u > k/2 uplinks to u = (k/2) — 1 uplinks
Agg/Pod pkt. switches other ToRs to core circuit switches

ToR switch

d > k/2 downlinks

d < k/2 downlinks d = k/2 downlinks

Figure 2: Oversubscribed folded-Clos networks allocate
fewer uplinks than downlinks, and static expander-graph-
based networks typically allocate more upward ports than
downward ports. In Opera, the ToR switch is provisioned 1:1.
When a circuit switch is reconfiguring, the associated ToR
port cannot carry traffic through that uplink.

cations and updating existing applications, and user behavior
is in a constant state of flux. As a result, operators cannot
risk designing networks that support only a narrow range of
workloads, and instead must choose a design that supports a
wide range of workloads, applications, and user behavior.

2.1 Workload properties

One saving grace of the need to service a wide range
of workloads is the likelihood that there will, in fact, be
a spectrum of needs in practice. A concrete example is
the distribution of flow sizes, which is known to be highly
skewed in today’s networks: Figure 1 shows data published
by Microsoft [4, 21] (Websearch and Datamining) and Face-
book [39] (Hadoop) depicting the distributions of traffic ac-
cording to individual flows (top) and total number of transmit-
ted bytes (bottom) that we consider in this paper. The vast ma-
jority of bytes are in bulk flows, not the short, latency-sensitive
ones, suggesting that to make the most out of available capac-
ity, an ideal network must seek to minimize the bandwidth
tax paid on bulk traffic while not substantially impacting the
propagation delay experienced by short flows.

While there are myriad ways to measure a network’s suit-
ability for a given workload, flow completion time (FCT)
is frequently offered as a useful figure of merit [14] due to
its applicability across a wide range of workloads. The flow
completion time of small flows is constrained by the underly-
ing network’s propagation delay. Thus, lowering the network
diameter and/or reducing queuing reduces the FCT for this
type of traffic. On the other hand, the FCT of bulk traffic is
governed by the available capacity along a flow’s path.

Because the FCT of short flows is dictated by propaga-
tion delay, such traffic is commonly referred to as “latency-
sensitive” or, equivalently, “low-latency”. (While applications
may be equally sensitive to the FCT of larger flows, their FCT
is dominated by available bandwidth.) In today’s networks,
flows are classified into these categories either explicitly (e.g.,
by application type, port number, or sender-based rules), or
implicitly (e.g., by remaining flow size for shortest-remaining-
time-first (SRTF) scheduling). Opera is agnostic to the manner
in which traffic is classified; for our purposes latency-sensitive
and short flows are synonymous. Because latency-sensitive
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traffic’s impact on network capacity is negligible in today’s
workloads, it suffices to use priority queuing to ensure short
flows receive unimpeded service while allowing bulk traffic
to consume any remaining capacity [7, 22]. The challenge is
to simultaneously provide high-capacity paths while main-
taining a short path length.

2.2 The “big switch” abstraction

If cost (and practicality) were no object, a perfect network
would consist of one large, non-blocking switch that connects
all the end points. It is precisely such a “big switch” illu-
sion that scale-out packet-switched network fabrics based on
folded-Clos topologies [2, 21, 37] were designed to provide.
These topologies rely on multiple stages of packet switches in-
terconnected with shuffle networks. The abundance of packet
switches at each stage and surfeit of links between them en-
sures that there is sufficient capacity to support any mixture of
(admissible) inter-server communication. Proposals such as
Hedera [3], pHost [19], HULL [5], NDP [24], PIAS [7], and
Homa [36] introduce flow scheduling techniques that assign
traffic to well-chosen paths to maximize throughput while
minimizing in-network queuing when servicing a mixture of
bulk and low-latency traffic.

2.3 Reduced capacity networks

While full-bandwidth “big switch” network designs are
ideal in the sense that they provide operators with the max-
imum flexibility to deploy services, schedule jobs, and dis-
aggregate storage and compute, they are impractical to con-
struct at scale. Indeed, published reports confirm the largest
datacenter networks in existence, while based upon folded-
Clos topologies, are not fully provisioned [15, 41]. Moreover,
some have observed that packet-switching technology may
not be able to keep up as link rates surpass 400 Gb/s, so it is
unclear how much longer the “big switch” abstraction will
even be feasible [35]. Hence, researchers and practitioners
alike have considered numerous ways to under-provision or
“over-subscribe” network topologies.

One way to view over-subscription in a rack-based data-
center is to consider how each individual ToR switch is provi-
sioned. Consider a scenario in which servers in a cluster or
datacenter are organized into racks, each with a k-radix ToR
packet switch that connects it to the rest of the network. We
say that a ToR with d connected servers has d “downward”
facing ports. A ToR with u ports connected to the rest of the
network has u “upward” facing ports, or uplinks. (In a fully
populated ToR, d + u = k.) In this context, we now overview
existing proposals for interconnecting such racks.

Over-subscribed Fat Trees: As shown in the left-most por-
tion of Figure 2, designers can build M:1 over-subscribed
folded-Clos networks in which the network can deliver only
(1/M = u/d) the bandwidth of a fully-provisioned design.
Common values of (d : u) are between 3:1 and 5:1 [41]. The
cost and bandwidth delivered in folded-Clos networks scale

almost linearly according to the over-subscription factor, and
so decreasing overall cost necessitates decreasing the maxi-
mum network throughput—and vice versa. Routing remains
direct, however, so over-subscription does not introduce a
bandwidth tax; rather, it severely reduces the available net-
work capacity between end points in different racks. As a
result, application frameworks such as MapReduce [13] and
Hadoop [18] schedule jobs with locality in mind in an effort
to keep traffic contained within a rack.

Expander topologies: To address the limited cross-
network bandwidth available in over-subscribed Fat Trees,
researchers have proposed alternative reduced-capacity net-
work topologies based on expander graphs. In these proposals,
the u uplinks from each ToR are directly connected to other
ToRs, either randomly [42] or deterministically [27, 29, 43],
reducing the number of switches and inter-switch links in-
ternal to the network itself. Expander-graph-based network
topologies are sparse graphs with the property that there are
many potential short paths from a given source to a particular
destination.

Because there are no in-network switches, packets must
“hop” between ToRs a number of times to reach their ultimate
destination, resulting in a bandwidth tax. An expander graph
with an average ToR-to-ToR hop count of La,, pays an overall
bandwidth tax rate of (L4,, — 1) X in expectation because in-
dividual packets must indirect across a number of in-network
links. The average path lengths for large networks can be in
the range of 4-5 hops, resulting in a bandwidth tax rate of
300—400%. Moreover, a recent proposal [29] employs Valiant
load balancing (VLB)—which imposes an additional level
of explicit indirection—to address skewed traffic demands,
doubling the bandwidth tax in some circumstances. One way
that expanders counter-act their high bandwidth tax rate is
by over-provisioning: ToRs in expander topologies typically
have more upward-facing ports than down (u > d, as shown in
the center of Figure 2)—and, hence, far more upward-facing
ports than over-subscribed Fat Trees—which provides more
in-network capacity. Said another way, the impact of the band-
width tax is reduced by a factor of u/d.

Reconfigurable topologies: In an effort to reduce the band-
width tax, other proposals rely on some form of reconfig-
urable link technology, including RF [28, 45], free-space op-
tical [20, 23], and circuit switching [16, 31, 38, 40, 44]. Most
reconfigurable topologies dynamically establish end-to-end
paths within the network core in response to traffic demand,
although RotorNet [34] employs a fixed, deterministic sched-
ule. In either case, these networks establish and tear down
physical-layer links over time. When the topology can be
matched to the demand—and setting aside latency concerns—
traffic can be delivered from source to destination in a single
hop, avoiding any bandwidth tax. In some cases, similar to
expander-based topologies, they employ 2-hop VLB [34, 40],
resulting in a 100% bandwidth tax rate.
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A fundamental limitation of any reconfigurable topology,
however, is that during the time a link/beam/circuit (for sim-
plicity we will use the latter term in the remainder of the paper)
is being provisioned, it cannot convey data. Moreover, most
proposals do not provision links between all sources and desti-
nations at all times, meaning that traffic may incur significant
delay as it waits for the appropriate circuit to be provisioned.
For existing proposals, this end-to-end delay is on the order
of 10-100s of milliseconds. Hence, previous proposals for
reconfigurable network topologies rely on a distinct, generally
packet-switched, network to service latency-sensitive traffic.
The requirement for a separate network built using a different
technology is a significant practical limitation and source of
cost and power consumption.

3 Design

We start with an overview of our design before working
through an example. We then proceed to describe how we
construct the topology of a given network, how routes are
chosen, how the network moves through its fixed set of con-
figurations, and address practical considerations like cabling
complexity, switching speeds, and fault tolerance.

3.1 Overview

Opera is structured as a two-tier leaf-spine topology, with
packet-switched ToRs interconnected by reconfigurable cir-
cuit switches as shown in Figure 5. Each of a ToR’s u uplinks
are connected to one of u circuit switches, and each circuit
switch has a number of ports equal to the number of ToRs in
the network. Opera’s design is based around two fundamental
starting blocks that follow directly from the requirements for
small network diameter and low bandwidth tax.

Expansion for short paths: Because the FCT of short,
latency-sensitive flows is gated by end-to-end delay, we seek
a topology with the lowest possible expected path length.
Expander-based topologies are known to be ideal [27]. Ex-
panders also have good fault-tolerance properties; if switches
or links fail, there are likely to be alternative paths that remain.
Thus, to efficiently support low-latency traffic, we require a
topology with good expansion properties at all times.

Reconfigurability to avoid the bandwidth tax: A fully-
connected graph (i.e. full mesh) could avoid a bandwidth
tax entirely, but is infeasible to construct at scale. Rather
than providing a full mesh in space, reconfigurable circuit
switches offer the ability to establish, over time, direct one-
hop paths between every rack pair using a relatively small
number of links. Because bulk flows can generally amortize
modest reconfiguration overheads if they result in increased
throughput, we incorporate reconfigurability into our design
to minimize the bandwidth tax on bulk traffic.

Opera combines the elements of expansion and reconfig-
urability to efficiently (and simultaneously) serve both low-
latency and bulk traffic with low FCTs. Similar to Rotor-
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(a) Simultaneous reconfig. (b) Offset reconfiguration

Figure 3: Reconfiguring all switches in unison (a) leads to
periodic disruptions; staggered reconfigurations (b) ensure
some paths are always available.

Net [34], Opera incorporates reconfigurable circuit switches
that cyclically set up and tear down direct connections be-
tween ToRs, such that after a “cycle time” of connections,
every ToR has been connected to every other ToR. We lever-
age ToR-uplink parallelism to stagger the reconfigurations of
multiple circuit switches, allowing “always-on” (albeit ever-
changing) multi-hop connectivity between all ToR pairs.

Critically, the combination of circuits at any time forms an
expander graph. Thus, during a single cycle, every packet has
a choice between waiting for a bandwidth-tax-avoiding direct
connection, or being immediately sent over a multi-hop path
through the time-varying expander. The end result is a single
fabric that supports bulk and low-latency traffic as opposed
to two separate networks used in hybrid approaches. As we
will show, Opera does not require any runtime selection of
circuits or system-wide collection of traffic demands, vastly
simplifying its control plane relative to approaches that re-
quire active circuit scheduling, such as ProjecToR [20] and
Mordia [38]. We leave to future work the possibility (and com-
plexity) of adjusting Opera’s matchings over long timescales
to, for example, adapt to diurnal traffic patterns.

3.1.1 Eliminating reconfiguration disruptions

Circuit switches impose a technology-dependent reconfigu-
ration delay, necessitating that flows be re-routed before recon-
figuration. Even in a network with multiple circuit switches,
if all switches reconfigure simultaneously (Figure 3a), the
global disruption in connectivity requires routes to recon-
verge. For today’s switching technologies, this would lead to
traffic delays that could severely impact the FCTs of short,
latency-sensitive flows. To avoid this scenario and allow for
low-latency packet delivery, Opera offsets the reconfigura-
tions of circuit switches. For example, in the case of small
topologies with few switches, at most one switch may be re-
configuring at a time (Figure 3b), allowing flows traversing
a circuit with an impending reconfiguration to be migrated
to other circuits that will remain active during that time pe-
riod (for large-scale networks with many circuit switches, it
is advantageous to reconfigure more than one switch at a time
as described in Appendix C). As a result, while Opera is in
near-constant flux, changes are incremental and connectivity
is continuous across time.
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3.1.2 Ensuring good expansion

While offsetting reconfigurations guarantees continuous
connectivity, it does not, by itself, guarantee complete connec-
tivity. Opera must simultaneously ensure that (1) multi-hop
paths exist between all racks at every point in time to support
low-latency traffic, and (2) direct paths are provisioned be-
tween every rack-pair over a fixed period of time to support
bulk traffic with low bandwidth tax. We guarantee both by
implementing a (time-varying) expander graph across the set
of circuit switches.

In Opera, each of a ToR’s u uplinks is connected to a (rotor)
circuit switch [33] that, at any point in time, implements a
(pre-determined) random permutation between input and out-
put ports (i.e., a “matching”). The inter-ToR network topology
is then the union of # random matchings, which, for u > 3,
results in an expander graph with high probability [6]. More-
over, even if a switch is reconfiguring, there are still u — 1
active matchings, meaning that if # > 4, the network will still
be an expander with high probability, no matter which switch
is reconfiguring. In Opera, we let u = k/2 where k is O(10)
to O(100) ports for today’s packet switches (depending on
the configured per-port bandwidth).

Figure 4 shows the distribution of path lengths in one ex-
ample 648-host network considered in our evaluation, where
u = 6. Opera’s path lengths are almost always substantially
shorter than those in a Fat Tree that connects the same num-
ber of hosts, and only marginally longer than an expander
with u = 7 which we argue later has similar cost, but per-
forms poorly for certain workloads. Clearly, ensuring good
expansion alone is not an issue with modest switch radices.
However, Opera must also directly connect each rack pair over
time. We achieve this by having each switch cycle through
a set of matchings; we minimize the total number of match-
ings (and thus the time required to cycle through them) by
constructing a disjoint set.

3.2 Example

Figure 5 depicts a small-scale Opera network. Each of the
eight ToRs has four uplinks to four different circuit switches
(with one potentially down due to reconfiguration at any par-
ticular moment). By forwarding traffic through those ToRs,

they can reach any ToRs to which they, in turn, are connected.
Each circuit switch has two matchings, labeled A and B (note
that all matchings are disjoint from one another). In this ex-
ample topology, any ToR-pair can communicate by utilizing
any set of three matchings, meaning complete connectivity
is maintained regardless of which matchings happen to be
implemented by the switches at a given time. Figure 5 depicts
two network-wide configurations. In Figure 5a switches 2—4
are implementing matching A, and in Figure 5b, switches 2—4
implement matching B. In both cases switch 1 is unavailable
due to reconfiguration.

In this example, racks 1 and 8 are directly connected by
the configuration shown in Figure 5b, and so the lowest
bandwidth-tax way to send bulk data from 1 to 8 would be to
wait until matching B is instantiated in switch 2, and then to
send the data through that circuit; such traffic would arrive at
ToR 8 in a single hop. On the other hand, low-latency traffic
from ToR 1 to ToR 8 can be sent immediately, e.g. during the
configuration shown in Figure 5a, and simply take a longer
path to get to ToR 8. The traffic would hop from ToR 1 to
ToR 6 (via switch 4), then to ToR 8 (via switch 2), and incur a
100% bandwidth tax. Although not highlighted in the figure,
similar alternatives exist for all rack pairs.

3.3 Topology generation

The algorithm to generate an N-rack Opera topology is as
follows. First, we randomly factor a complete graph (i.e. N X
N all-ones matrix) into N disjoint (and symmetric) matchings.
Because this factorization can be computationally expensive
for large networks, we employ graph lifting to generate large
factorizations from smaller ones. Next, we randomly assign
the N matchings to u circuit switches, so that each switch has
N /u matchings assigned to it. Finally, we randomly choose
the order in which each switch cycles through its matchings.
These choices are fixed at design time, before the network is
put into operation; there is no topology computation during
network operation.

Because our construction approach is random, it is possible
(although unlikely) that a specific Opera topology realization
will not have good expander properties at all points across
time. For example, the combination of matchings in a given
set of u — 1 switches at a particular time may not constitute
an expander. In this case, it would be trivial to generate and
test additional realizations at design time until a solution
with good properties is found. This was not necessary in
our experience, as the first iteration of the algorithm always
produced a topology with near-optimal properties. We discuss
the properties of these graphs in detail in Appendix E.

3.4 Forwarding

We are now left to decide how to best serve a given flow
or packet: (1) send it immediately over multi-hop expander
paths and pay the bandwidth tax (we refer to these as “indi-
rect” paths), or (2) delay transmission and send it over one-hop
paths to avoid the bandwidth tax (we refer to these as “di-
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Figure 5: An Opera topology with eight ToR switches and four rotor circuit switches (from RotorNet [34]). Two different paths
from rack 1 to rack 8 are highlighted: (a) a two-hop path in red, and (b) a one-hop path in blue. Each direct inter-rack connection
is implemented only once per configuration, while multi-hop paths are available between each rack-pair at all times.

rect” paths). For skewed traffic patterns that, by definition,
leave spare capacity in the network, two-hop paths based on
Valiant load balancing can be used to carry bulk traffic in
Opera. Our baseline approach is to make the decision based
on flow size. Since the delay in waiting for a direct path can
be an entire cycle time, we only let flows that are long enough
to amortize that delay use direct paths, and place all other
traffic on indirect paths. However, we can do even better if
we know something about application behavior. Consider an
all-to-all shuffle operation, where a large number of hosts
simultaneously need to exchange a small amount of data with
one another. Although each flow is small, there will be signif-
icant contention, extending the flow completion time of these
flows. Minimizing bandwidth tax is critical in these situations.
With application-based tagging, Opera can route such traffic
over direct paths.

3.5 Synchronization

Opera employs reconfigurable circuit switches, and so its
design requires a certain level of synchronization within the
system to operate correctly. In particular, there are three syn-
chronization requirements that must be met: (1) ToR switches
must know when core circuit switches are reconfiguring, (2)
ToR switches must update their forwarding tables in sync with
the changing core circuits, and (3) end hosts must send bulk
traffic to their local ToR only during the timeslots when the
ToR is directly connected to the destination (to prevent exces-
sive queueing in the ToR). In the first case, since each ToR’s
uplink is connected directly to one of the circuit switches, the
ToR can monitor the signal strength of the transceiver attached
to that link to re-synchronize with the circuit switch. Alter-
natively, the ToR could rely on IEEE 1588 (PTP), which can
synchronize switches to within 1 ps [1]. For low-latency
traffic, end hosts simply transmit packets immediately, with-
out any coordination or synchronization. For bulk traffic, end
hosts transmit when polled by their attached ToR. To evaluate
the practicality of this synchronization approach, we built a
small-scale prototype based on a programmable P4 switch,
described in Section 6.

Opera can tolerate arbitrary bounds on (de-)synch-
ronization by introducing “guard bands” around each con-
figuration, in which no data is sent to ensure the network

is configured as expected when transmissions do occur. To
analyze the impact of guard bands, we hold the circuit tim-
ings constant and reduced the effective time of the slot during
which data can be transmitted. Each us of guard time con-
tributes a 1% relative reduction in low-latency capacity and a
0.2% reduction for bulk traffic. In practice, if any component
becomes de-synchronized beyond the guard-band tolerance,
it can simply be declared failed (see Section 3.6.2).

3.6 Practical considerations

While Opera’s design draws its power from graph-theoretic
underpinnings, it is also practical to deploy. Here, we consider
two real-world constraints on networks.

3.6.1 Cabling and switch complexity

Today’s datacenter networks are based on folded-Clos
topologies which use perfect-shuffle cabling patterns between
tiers of switches. While proposals for static expander graphs
alter that wiring pattern [42] leading to concerns about ca-
bling complexity, Opera does not. In Opera, the intercon-
nection complexity is contained within the circuit switches
themselves, while the inter-switch cabling remains the famil-
iar perfect shuffle. In principle, Opera can be implemented
with a variety of electronic or optical circuit switch technolo-
gies. We focus on optical switching for our analysis due to its
cost and data-rate transparency benefits. Further, because each
circuit switch in Opera must only implement N /u matchings
(rather than O(N!)), Opera can make use of optical switches
with limited configurability such as those proposed in Rotor-
Net [34], which have been demonstrated to scale better than
optical crossbar switches [17, 33].

3.6.2 Fault tolerance

Opera detects, shares, and recovers from link, ToR, and
circuit switch failures using common routing protocol prac-
tices. We take advantage of Opera’s cyclic connectivity to
detect and communicate failures: each time a new circuit is
configured, the ToR CPUs on each end of the link exchange a
short sequence of “hello” messages (which contain informa-
tion of new failures, if applicable). If no hello messages are
received within a configurable amount of time, the ToR marks
the link in question as bad. Because all ToR-pair connections
are established every cycle, any ToR that remains connected
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Figure 6: (a) A set of ¢ circuit switches with offset recon-
figurations forms a series of topology slices. (b) The time
constants associated with a single slice: € is the worst-case
end-to-end delay for a low-latency packet to traverse the net-
work and r is the circuit switch reconfiguration delay.

to the network will learn of any failure event within two cy-
cles (<10ms). Upon receiving information of a new failure, a
ToR recomputes and updates its routing tables to route around
failed components.

4 Implementation

Here, we describe the implementation details of Opera. To
ground our discussion, we refer to an example 108-rack, 648-
host, k = 12 topology (we evaluate this topology along with
a larger one in Section 5).

4.1 Defining bulk and low-latency traffic

In Opera, traffic is defined as low-latency if it cannot wait
until a direct bandwidth-efficient path becomes available.
Thus the division between low-latency and bulk traffic de-
pends on the rate at which Opera’s circuit switches cycle
through direct matchings. The faster Opera steps through
these matchings, the lower the overhead for sending traffic on
direct paths, and thus the larger the fraction of traffic that can
utilize these paths. Two factors impact cycle speed: circuit
amortization and end-to-end delay.

Circuit amortization: The rate at which a circuit switch
can change matchings is technology dependent. State-of-the-
art optical switches with the large port counts needed for
practical datacenter deployment have reconfiguration delays
on the order of 10 us [20, 34, 38]. A 90% amortization of this
delay would limit circuit reconfigurations to every 100 ps.
In Opera, each switch cycles through N/u matchings, which
could range from 10 matchings for small networks (e.g. N =
320 racks and u# = 32 uplinks) to 32 matchings for larger
networks (e.g. N = 4096 racks and u = 128 uplinks). This
means any flow than can amortize a 1-3 ms increase in its FCT
could take the bandwidth-efficient direct paths (and shorter
flows would take indirect paths).

End-to-end delay: Perhaps surprisingly, a second timing
constraint, end-to-end delay, has a larger impact on cycle time.
In particular, consider a low-latency packet that is emitted
from a host NIC. At the first ToR, the packet is routed toward
its destination, and in general, at each hop along the way,

each ToR routes the packet along an expander-graph path. If,
during the packet’s journey, the circuit topology changes, it
is possible the packet could be caught in a loop or redirected
along a sub-optimal path. Dropping the packet immediately
(and expecting the sender to resend it) would significantly
delay the flow completion time of that flow.

Our approach, depicted in Figure 6, to avoid the problems
described above, requires that subsequent circuit reconfigu-
rations be spaced by at least the sum of the end-to-end delay
under worst-case queuing, €, and the reconfiguration delay, r.
We refer to this time period €+r as a “topology slice”. Any
packets sent during a slice are not routed through the circuit
with an impending reconfiguration during that slice. This way,
packets always have at least € time to make it through the
network before a switch reconfigures.

The parameter € depends on the worst-case path length (in
hops), the queue depth, the link rate, and propagation delay.
Path length is a function of the expander, while the data rate
and propagation delay are fixed; the key driver of € is the
queue depth. As explained in the following section, we choose
a shallow queue depth of 24 KB (8 1500-byte full packets +
187 64-byte headers). When combined with a worst-case path
length of 5 ToR-to-ToR hops (Figure 4), 500-ns propagation
delay per hop (100 meters of fiber), and 10-Gb/s link speed,
we set € to 90 ps. In our example 108-rack network, there are
6 circuit switches, meaning the inter-reconfiguration period
of a single switch is 6g, yielding a duty cycle of 98%. Further,
our example network has N/u = 108/6 = 18 matchings per
switch, yielding a cycle time of N x € = 10.8 ms. We use this
cycle time of 10.8 ms in our simulations in Section 5. For
these time constants, flows >15 MB will have an FCT well
within a factor of 2 of their ideal (link-rate-limited) FCT. As
we will show in Section 5, depending on traffic conditions,
shorter flows may benefit from direct paths as well.

4.2 Transport protocols

Opera requires transport protocols that can (1) immediately
send low-latency traffic into the network, while (2) delaying
bulk traffic until the appropriate time. To avoid head-of-line
blocking, NICs and ToRs perform priority queuing. Our de-
sign replaces the typical TCP stack with the protocols below,
but keeps the familiar sockets application interface.

4.2.1 Low-latency transport

As discussed in the previous section, minimizing the cy-
cle time is predicated on minimizing the queue depth for
low-latency packets at ToRs. The recently proposed NDP
protocol [24] is a promising choice because it achieves high
throughput with very shallow queues. We find that 12-KB
queues work well for Opera (each port has an additional
equal-sized header queue). NDP also has other beneficial
characteristics for Opera, such as zero-RTT convergence and
no packet metadata loss to eliminate RTOs. Despite being de-
signed for fully-provisioned folded Clos networks, we find in
simulation that NDP works well with minimal modification in
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Opera, despite Opera’s continuously-varying topology. Other
transports, like the recently proposed Homa protocol [36],
may also be a good fit for low-latency traffic in Opera, but we
leave this to future work.

4.2.2 Bulk transport

Opera’s bulk transport protocol is relatively simple. We
draw heavily from the RotorLB protocol proposed in Rotor-
Net [34], which buffers traffic at end hosts until direct con-
nections to the destination are available. When bulk traffic is
heavily skewed, and there is necessarily spare capacity else-
where in the network, RotorL.B automatically transitions to
using two-hop routing (i.e. Valiant load balancing) to improve
throughput. Unlike low-latency traffic, which can be sent at
any time, bulk traffic admission is coordinated with the state
of the circuit switches, as described in Section 3.5. In addition
to extending RotorL.B to work with offset reconfigurations,
we also implemented a NACK mechanism to handle cases
where large bursts of priority-queued low-latency traffic can
cause bulk traffic queued at the ToR to be delayed beyond the
transmission window and dropped at the ToR. Retransmitting
a small number of packets does not significantly affect the
FCT of bulk traffic. Unlike TCP, RotorLLB does not rely on
retransmission timeouts, which could otherwise cause band-
width throttling for bulk traffic.

4.3 Packet forwarding

Opera relies on ToR switches to route packets along di-
rect or multi-hop paths depending on the requested network
service model. We implement this routing functionality us-
ing the P4 programming language. Each ToR switch has a
built-in register that stores the current network configuration,
updated either in-band or via PTP. When a packet arrives at
the first ToR switch, the packet’s metadata is updated with the
value of the configuration register. What happens next, and at
subsequent ToR switches, depends on the value of the DSCP
field. If that field indicates a low-latency packet, the switch
consults a low-latency table to determine the next hop along
the expander path, and then forwards the packet out that port.
If the field indicates bulk traffic, the switch consults a bulk
traffic table which indicates which circuit switch—if any—
provides a direct connection, and the packet is forwarded to
that port. We measure the amount of in-switch memory re-
quired to implement this P4 program for various datacenter
sizes in Section 6.2.

5 Evaluation

We evaluate Opera in simulation. Initially, we focus on
a concrete 648-host network, comparing to cost-equivalent
folded-Clos, static expander, non-hybrid RotorNet, and (non-
cost-equivalent) hybrid RotorNet networks. We then validate
against a range of network sizes, skewed workloads, and un-
derlying cost assumptions. We use the ht sim packet simula-
tor [26], which was previously used to evaluate the NDP proto-
col [24], and extend it to model static expander networks and

dynamic networks. We ported our RotorNet simulator [34] to
htsim, first validating its performance against prior results.
We also modify NDP to handle <1500 byte packets, which is
necessary for some workloads considered. Both the folded-
Clos and static expander use NDP as the transport protocol.
Opera and RotorNet use NDP to transport low-latency traffic
and RotorLLB for bulk traffic. Because Opera explicitly uses
priority queuing, we simulate the static networks with ide-
alized priority queuing where appropriate to maintain a fair
comparison. Following prior work [20, 29], we set the link
bandwidth to 10 Gb/s. We use a 1500-byte MTU and set the
propagation delay to 500 ns between ToRs (equivalent to 100
meters of fiber).

5.1 Real-world traffic

We start by considering Opera’s target scenario, a workload
with an inherent mix of bulk and low-latency traffic. Here we
consider the Datamining workload from Microsoft [21], and
use a Poisson flow-arrival process to generate flows. We vary
the Poisson rate to adjust the load on the network, defining
load relative to the aggregate bandwidth of all host links (i.e.,
100% load means all hosts are driving their edge links at
full capacity, an inadmissible load for any over-subscribed
network). As shown in the top portion of Figure 1, flows in
this workload range in size from 100 bytes to 1 GB. We use
Opera’s default configuration to decide how to route traffic:
flows <15 MB are treated as low-latency and are routed over
indirect paths, while flows >15 MB are treated as bulk and
are routed over direct paths.

Figure 7 shows the performance of Opera as well as cost-
comparable 3:1 folded-Clos and u = 7 static expander net-
works for various offered loads. We also compared to a hy-
brid RotorNet which faces one of the six ToR uplinks to a
multi-stage packet switched network to accommodate low-
latency traffic (for 1.33x the cost), and a cost-equivalent non-
hybrid RotorNet with no packet switching above the ToR.
Appendix B discusses the tradeoffs for a hybrid RotorNet
in more detail. We report the 99th percentile FCT except in
the case of 1% load, where the variance in the tail obscures
the trend and so report the average instead. Note that Opera
priority queues all low-latency flows, while by default the
static networks do not. For fairness, we also present the ex-
pander and folded Clos with “ideal” priority queuing—that is,
removing all flows >15 MB. For reference, we also plot the
minimum achievable latency in each network, derived from
the end-to-end delay and link capacity.

The static networks start to saturate past 25% load: folded
Clos have limited network capacity, and expanders have high
bandwidth tax. Opera, on the other hand, is able to ser-
vice 40% load despite having lower innate capacity than the
cost-comparable expander. Opera offloads bulk traffic onto
bandwidth-efficient paths, and only pays bandwidth tax on the
small fraction (4%) of low-latency traffic that transits indirect
paths, yielding an effective aggregate bandwidth tax of 8.4%
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Figure 8: Network throughput over time for a 100-KB all-
to-all Shuffle workload. Opera carries all traffic over direct
paths, greatly increasing throughput. (The small “step” down
in Opera’s throughput around 50 ms is due to some flows
taking one additional cycle to finish.)

for this workload. Hybrid RotorNet, even with 1/6'" of its core
capacity packet-switched (for 33% higher cost than the other
networks), delivers longer FCTs than Opera for short flows
at loads >10%. A non-hybrid (i.e. all-optical-core) RotorNet
is cost-equivalent to the other networks, but its latency for
short flows is three orders of magnitude higher than the other
networks, as shown in Figure 7c.

5.2 Bulk traffic

Opera’s superiority in the mixed case stems entirely from
its ability to avoid paying bandwidth tax on the bulk traf-
fic. We highlight this ability by focusing on a workload in
which all flows are routed over direct paths. We consider
an all-to-all shuffle operation (common to MapReduce style
applications), and choose the flow size to be 100 KB based
on the median inter-rack flow size reported in a Facebook
Hadoop cluster [39] (c.f. Figure 1). Here we presume the
application tags its flows as bulk, so we do not employ flow-
length based classification; i.e., Opera does not indirect any
flows in this scenario. We let all flows start simultaneously
in Opera, as RotorLB accommodates such cases gracefully,
and stagger flow arrivals over 10 ms for the static networks,
which otherwise suffer from severe startup effects. Because
the shuffle operation correlates the start times of all flows, this
workload can drive the network to 100% utilization.

Figure 8 shows the delivered bandwidth over time for the
different networks. The limited capacity of the 3:1 Clos and
high bandwidth tax rates of the expander significantly extend

the FCT of the shuffle operation, yielding 99th-percentile
FCTs of 227 ms and 223 ms, respectively. Opera’s direct
paths are bandwidth-tax-free, allowing higher throughput and
reducing the 99th-percentile FCT to 60 ms.

5.3 Only low-latency flows

Conversely, workloads in which all flows are routed over
indirect low-latency paths represents the worst case for Opera,
i.e., it always pays a bandwidth tax. Given our 15 MB thresh-
old for bulk traffic, it is clear from the bottom portion of
Figure | that the Websearch workload [4] represents such a
case. A lower threshold would avoid the bandwidth tax, but
would require a shorter cycle time to prevent a significant
increase in FCT for these short “bulk” flows.

Figure 9 shows the results for the Websearch workload,
again under a Poisson flow arrival process. As before, the
cost-equivalent all-optical RotorNet suffers from long FCTs.
Hybrid RotorNet (with 1/6™ of its capacity packet switched
for 33% higher cost) can only admit just over 10% load, at
which point the throughput saturates. At more than 5% load,
its FCTs are significantly higher than the other networks.
All other networks provide equivalent FCTs across all flow
sizes for loads at or below 10%, at which point Opera is
not able to admit additional load. Both the 3:1 folded Clos
and expander saturate (slightly) above 25% load, but at that
point both deliver FCTs nearly 100 x worse than at 1% load.
While Opera forwards traffic analogous to the expander in this
scenario, it has only 60% the capacity and pays an additional
41% bandwidth tax due to its longer expected path length.

5.4 Mixed traffic

To drive home Opera’s ability to trade off low-latency ca-
pacity against lower effective bandwidth taxes, we explic-
itly combine the Websearch (low-latency) and Shuffle (bulk)
workloads from above in varying proportions. Figure 10
shows the aggregate network throughput as a function of
Websearch (low-latency) traffic load, defined as before as a
fraction of the aggregate host link capacity. We see that for
low Websearch load, Opera delivers up to 4x more through-
put than the static topologies. Even at 10% Websearch load
(near its maximum admissible load), Opera still delivers al-
most 2x more throughput. In essence, Opera “gives up” a
factor of 2 in low-latency capacity (due to its relatively under-
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provisioned ToRs) to gain a factor of 2—4 in bulk capacity
from its vastly lower effective bandwidth tax.

Facebook has reported that only 25% of traffic is attributed
to bulk-dominated Hadoop jobs, but also that the total average
network load is less than 1% [39]. Even if the other 75% of
traffic was solely low-latency flows, Opera can accommodate
this light overall load with little-to-no degradation in FCT
while significantly improving throughput for Hadoop traffic,
which has a high momentary peak load due to the correlated
start times of constituent flows.

5.5 Fault tolerance

Next, we demonstrate Opera’s ability to maintain and re-
establish connectivity in the face of component failures by
injecting random link, ToR, and circuit switch failures into
the network. We then step through the topology slices and
record (1) the number of ToR pairs that were disconnected in
the worst-case topology slice and (2) the number of unique
disconnected ToR pairs integrated across all slices. Figure 11
shows that Opera can withstand about 4% of links failing, 7%
of ToRs failing, or 33% (2 out of 6) of circuit switches failing
without suffering any loss in connectivity. Opera’s robustness
to failure stems from the good fault tolerance properties of ex-
pander graphs. As discussed in Appendix F, Opera has better
fault tolerance than a 3:1 folded Clos, and is less tolerant than
the u = 7 expander (which has higher fanout). Maintaining
connectivity under failure does require some degree of path
stretch in Opera; Appendix F discusses this in more detail.

5.6 Network scale and cost sensitivity

Finally, we examine Opera’s relative performance across a
range of network sizes and cost assumptions. We introduce a
parameter o, which is defined following [29] to be the cost of
an Opera “port” (consisting of a ToR port, optical transceiver,
fiber, and circuit switch port) divided by the cost of a static net-
work “port” (consisting of a ToR port, optical transceiver, and
fiber). A full description of this cost-normalization method is
presented in Appendix A. If o > 1 (i.e. circuit switch ports
are not free) then a cost-equivalent static network can use the
extra capital to purchase more packet switches and increase
its aggregate capacity.

We evaluated workloads previously analyzed in [29] using
htsim: (1) hot rack, which is a highly skewed workload where
one rack communicates with one other rack; (2) skew[0.1,1],
(10% of racks are hot [29]), (3) skew[0.2,1] (20% hot); and
(4) host permutation, where each host sends to one other non-
rack-local host. For each workload, we considered a range
of relative Opera port costs (reallocating any resulting cost
savings in the static networks to increase their capacity). We
considered both k = 12 and k = 24 ToR radices, corresponding
to 648-host and 5,184-host networks. Figure 12 shows the
results for k = 24; the k = 12 case has nearly identical cost-
performance scaling and is presented in Appendix D, along
with path length scaling analysis.

The throughput of the folded Clos topology is indepen-
dent of traffic pattern, whereas the throughput of the ex-
pander topology decreases as workloads become less skewed.
Opera’s throughput initially decreases with a decrease in skew,
then increases as the traffic becomes more uniform. As long
as o < 1.8 (Opera’s circuit switch ports cost less than a packet
switch port populated with an optical transceiver), Opera de-
livers higher throughputs than either an expander or folded
Clos for permutation traffic and moderately skewed traffic
(e.g. 20% of racks communicating). In the case of a single
hot rack, Opera offers comparable performance to a static
expander. In the case of shuffle (all-to-all) traffic, Opera deliv-
ers 2x higher throughput than either the expander or folded
Clos even for a = 2. As discussed further in Appendix A,
we believe oo = 1.3 is achievable today with certain optical
switching technologies.
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Opera does not offer an advantage for skewed and permu-
tation workloads when the relative cost of its ports is signifi-
cantly higher than packet switches (o > 2), or in deployments
where more than 10% of the link rate is devoted to urgent,
delay-intolerant traffic, as described in Section 5.3.

6 Prototype

Priority queueing plays an important role in Opera’s design,
ensuring that low-latency packets do not get buffered behind
bulk packets in the end hosts and switches, and our simulation
study reflects this design. In a real system, low-latency packets
that arrive at a switch might temporarily buffer behind lower-
priority bulk packets that are being transmitted out an egress
port. To better understand the impact of this effect on the
end-to-end latency of Opera, we built a small-scale hardware
prototype.

The prototype consists of eight ToR switches, each with
four uplinks connected to one of four emulated circuit
switches (the same topology shown in Figure 5). All eight ToR
and four circuit switches are implemented as virtual switches
within a single physical 6.5-Tb/s Barefoot Tofino switch. We
wrote a P4 program to emulate the circuit switches, which for-
ward bulk packets arriving at an ingress port based on a state
register, regardless of the destination address of the packet.
We connect the virtual ToR switches to the four virtual circuit
switches using eight physical 100-Gb/s cables in loopback
mode (logically partitioned into 32 10-Gb/s links). Each vir-
tual ToR switch is connected via a cable to one attached end
host, which hosts a Mellanox ConnectX-5 NIC. There are
eight such end hosts (one per ToR switch) each configured to
run at 10 Gb/s.

An attached control server periodically sends a packet to
the Tofino’s ASIC that updates its state register. After con-
figuring this register, the controller sends RDMA messages
to each of the attached hosts, signaling that one of the emu-
lated circuit switches has reconfigured. The end hosts run two

0.8r
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Figure 13: RTT values for low-latency traffic with and with-
out bulk background traffic in the prototype.

processes: an MPI-based shuffle program patterned on the
Hadoop workload, and a simple “ping-pong” application that
sends low-latency RDMA messages to a randomly selected
receiver, which simply returns a response back to the sender.
The relatively low sending rate of the ping-pong application
did not require us to implement NDP for this traffic.

6.1 End-to-end latency

Figure 13 shows the observed application-level latency of
sending a ping message from a random source to a random
destination (and back). We plot this distribution both with and
without bulk background traffic. The latency observed without
bulk traffic is due to a combination of the path length and the
time to forward a packet through Tofino’s P4 program, which
we observe to be about 3 us per hop, resulting in latency of
up to 9 us depending on path length. The observed tail is
due to RoCE/MPI variance at the end hosts. In the presence
of bulk traffic, low-latency packets potentially need to queue
behind bulk packets currently being sent from the egress port.
Because we emulate circuit switches within the Barefoot
switch, each transit of a circuit-switch introduces additional
latency that would not be present in a deployment, adding
additional latency. For our testbed there are as many as eight
serialization points from source to destination, or 16 for each
ping-pong exchange. Each serialization point can introduce
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#Racks | #Entries | % Utilization
108 12,096 0.7
252 65,268 3.8
520 276,120 16.2
768 600,576 35.3
1008 1,032,192 60.7
1200 1,461,600 85.9

Table 1: Number of entries and resulting resource utilization
for Opera rulesets for datacenters of varying sizes.

as much as 1.2 us (one MTU at 10 Gb/s), or 19.2 us in total,
as shown in Figure 13. The distribution is smooth because
when low-latency packets buffer behind bulk packets currently
exiting the switch, the amount of remaining time is effectively
a random variable.

6.2 Routing state scalability

Opera requires more routing state than a static topology.
A straightforward implementation would require the tables
in each switch to contain O(chk)2 entries as there are N, .«
topology slices and N, — 1 possible destinations within
each slice. We use Barefoot’s Capilano compiler tool to mea-
sure the size of the ruleset for various datacenter sizes, and
compare that size to the capacity of the Tofino 65x100GE
switch. The ruleset consists of both bulk and low-latency
non-rack-local rules. The resulting number of rules and the
percent utilization of the switch’s memory are shown in Ta-
ble 1. Because the practical rulesize limit may be lower than
the compiler-predicted size due to hash collisions within the
switch, we loaded the generated rules into a physical switch to
validate that the rules would fit into the resource constraints.
These results show that today’s hardware is capable of hold-
ing the rules needed to implement Opera, while also leaving
spare capacity for additional non-Opera rules.

7 Related work

Opera builds upon previous network designs focused on
cluster and low-latency environments. In addition to the
folded-Clos and expander graph topologies described thus
far, a number of additional static and dynamic network topolo-
gies have been proposed for clusters and datacenters.

Static topologies: Dragonfly [30] and SlimFly [8] topolo-
gies connect localized pools of high cross-section bandwidth
with a sparse inter-cluster set of links, and have been adopted
in HPC environments. Diamond [12] and WaveCube [9] stati-
cally interconnect switches with optical wavelength MUXes,
resulting in a connected topology without reconfiguration.
Quartz [32] interconnects switches into rings, and relies on
multi-hop forwarding for low-latency traffic.

Dynamic topologies: Several dynamic network topologies
have been proposed, which we can group into two categories:
those that cannot support low-latency traffic and those that

can. In the former case, Helios [16], Mordia [38], and C-
Through [44] aim to reactively establish high-bandwidth con-
nections in response to observed traffic patterns; they all rely
on a separate packet-switched network to support low-latency
traffic. RotorNet [34] relies on deterministic reconfiguration
to deliver constant bandwidth between all endpoints, and re-
quires endpoints inject traffic using Valiant load balancing to
support skewed traffic. RotorNet requires a separate packet-
switched network for low latency traffic.

ProjecToR [20], on the other hand, always maintains a
“base mesh” of connected links that can handle low-latency
traffic while it opportunistically reconfigures free-space links
in response to changes in traffic patterns. The authors ini-
tially evaluated the use of a random base network, ruling it
out due to poor support of skew. Instead, they proposed a
weighted matching of sources and sinks, though it is not clear
what the expected diameter of that network would be in gen-
eral. Similar to ProjecToR, Opera maintains an “always on”
base network which consists of a repeating sequence of time-
varying expander graphs, which has a well-known structure
and performance characteristics.

There are also reconfigurable network proposals that rely
on multi-hop indirection to support low-latency traffic. In
OSA [10], during reconfiguration some end-to-end paths may
not be available, and so some circuit-switch ports can be
reserved specifically to ensure connectivity for low-latency
traffic. Megaswitch [11] could potentially support low-latency
traffic in a similar manner.

8 Conclusions

Static topologies such as oversubscribed folded-Clos and
expander graphs support low-latency traffic but have lim-
ited overall network bandwidth. Recently proposed dynamic
topologies provide high bandwidth, but cannot support low-
latency traffic. In this paper, we propose Opera, which is a
topology that implements a series of time-varying expander
graphs that support low-latency traffic, and when integrated
over time, provide direct connections between all endpoints
to deliver high throughput to bulk traffic. Opera can deliver a
4x increase in throughput for shuffle workloads and a 60%
increase in supported load for skewed datacenter workloads
compared to cost-equivalent static networks, all without ad-
versely impacting the flow completion times of short flows.
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Appendix

A Cost-normalization approach

In this section, we detail the method we used to analyze
arange of cost-equivalent network topologies at various net-
work scales and technology cost points. We begin by defining
a as the cost of an Opera “port” (consisting of a ToR port,
optical transceiver, fiber, and circuit switch port) divided by
the cost of a static network “port” (consisting of a ToR port,
optical transceiver, and fiber), following [29].

We can also interpret o as the cost of the “core” ports (i.e.
upward-facing ToR ports and above) per edge port (i.e. server-
facing ToR port). Core ports drive the network cost because
they require optical transceivers. Thus, for a folded Clos we
can write o = 2(T — 1)/F (where T is the number of tiers
and F is the oversubscription factor). For a static expander,
we can write & = u/(k — u) (where u is the number of ToR
uplinks and k is the ToR radix).

We use a T = 3 three tier (i.e. three layer) folded Clos as
the normalizing basis and keep the packet switch radix (k)
and number of hosts (H) constant for each point of network
comparison. To determine the number of hosts as a function
of k and o, we first solve the for the oversubscription factor
as a function of o: F =2(T — 1)/ (note T = 3). Then, we
find the number of hosts H in a folded Clos as a function
of F, k,and o: H = (4F /(F +1))(k/2)" (note T = 3, and
F is a function of o). This allows us to compare networks
for various values of k and o, but we also estimate o given
technology assumptions described below.

Opera’s cost hinges largely on the circuit switching tech-
nology used. While a wide variety of technologies could be
used in principle, using optical rotor switches [34] is likely
the most cost-effective because (1) they provide low optical
signal attenuation (about 3 dB) [33], and (2) they are com-
patible with either single mode or multimode signaling by
virtue of their imaging-relay-based design [33]. These factors
mean that Opera can use the same (cost) multimode or simgle-
mode transceivers used in traditional networks, unlike many
other optical network proposals that require expensive and
sophisticated telecom grade gear such as wavelength tunable
transceivers or optical amplifiers. Based on the cost estimates
of commodity components taken from [29] and rotor switch
components (summarized in Table 2), we approximate that
an Opera port costs about 1.3x more than a static network
port (i.e. a=1.3).

B Hybrid cost-performance tradeoff

In Section 5, we evaluated the performance of a hybrid
RotorNet which faced one of the six available ToR uplinks to
a multi-stage packet switched network (for 1.33x the cost of
the other networks evaluated). Here, we consider the tradeoff
between FCT and cost for a broader range of hybrid packet
switched bandwidths. To consider small fractions of packet
switched bandwidth, we allow the bandwidth of a single ToR
uplink to be split arbitrarily between the packet and circuit
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Component Static  Opera
SR transceiver $80 $80
Optical fiber ($0.3/m)  $45 $45
ToR port $90 $90
Optical fiber array - $30 7
Optical lenses - $15 %
Beam-steering element - $5
Optical mapping - $10 7
Total $215  $275
o ratio 1 1.3

Table 2: Cost per “port” for a static network vs. Opera. A
“port” in a static network consists of a packet switch port,
optical transceiver, and fiber. A “port” in Opera consists of
a packet switched (ToR) port, optical transceiver, and fiber,

as well as the components needed to build a rotor switch.

The cost of rotor switch components is amortized across the
number of ports on a given rotor switch, which can be 100s
or 1,000s; we present values in the table assuming 512 port
rotor switches. ( per duplex fiber port)

—~10° ‘ :
UEJL ¢ (Non-hybrid) © RotorNet
D A & Opera
210

= (Hybrid)

2 10° (4%)

o o %)

Q 0

ISl o (13%) ]
g 10 o (im0
A R
L10'¢

1 1.1 1.2 1.3
Relative cost of hybrid RotorNet

Figure 14: Flow completion times as a function of the cost
incurred by adding more packet switched bandwidth to a

hybrid RotorNet. The FCTs for Opera are shown for reference.

FCTs are shown for 1 kB flows in the Datamining workload
running at 25% load. The percent values for hybrid RotorNet
indicate the percent of total network bandwidth allocated to
the packet switched portion of the network.
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Figure 15: Relative cycle time is improved at larger scale by
grouping circuit switches and allowing one switch in each
group to reconfigure simultaneously.

networks. Figure 14 shows the resulting tradeoff between
cost and the FCTs for 1 kB flows in the Datamining workload
running at 25% load (similar trends were observed for other
loads and flow sizes). As cost is reduced in hybrid RotorNet
(by allocating a smaller percent of total network bandwidth to
the packet switched network), FCTs begin to rise substantially
due to increased network congestion.

C Reducing cycle time at scale

Larger Opera networks are enabled by higher radix ToR
switches, which commensurately increase the number of cir-
cuit switches. To prevent the cycle time from scaling quadrat-
ically with the ToR radix, we allow multiple circuit switches
to reconfigure simultaneously (ensuring that the remaining
switches deliver a fully-connected network at all times). As
an example, doubling the ToR radix doubles the number of
circuit switches, but presents the opportunity to cut the cycle
time in half by reconfiguring two circuit switches at a time.
This approach offers linear scaling in the cycle time with
the ToR radix, as shown in Figure 15. Assuming we divide
circuit switches into groups of 6, parallelizing the cycle of
each group, the cycle time increases by a factor of 6 from a
k = 12 (648-host network) to a k = 64 (98,304-host network),
corresponding to a flow length cutoff for “bulk” flows of 90
MB in the latter case.

D Additional scaling analysis

Figure 16 shows the performance-cost scaling trends for
various traffic patterns for networks with £k = 12 port ToRs.
Comparing with Figure 12, we observed nearly identical per-
formance between networks with k = 12 and k£ = 24, indi-
cating the (cost-normalized) network performance is nearly
independent of scale for all networks considered (folded Clos,
static expanders, and Opera).

To analyze this result at a more fundamental level, we
evaluated the average and worst-case path lengths for ToR
radices between k = 12 and k = 48 for both Opera and static
expanders at various cost points (). Figure 17 shows that
the average path lengths converge for large network sizes
(the worst-case path length for all networks including Opera
was 4 ToR-to-ToR hops for kK = 24 and above). Given that
the network performance properties of static expanders are
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Figure 17: Path lengths for different network sizes (from
k = 12 with ~ 650 hosts to k = 48 with ~ 98,000 hosts) and
relative cost assumptions (Ct).

correlated with their path length properties [6], Figure 17
supports our observation that the cost-performance properties

of the networks do not change substantially with network size.

E Spectral efficiency and path lengths
The spectral gap of a network is a graph-theoretic metric
indicating how close a graph is to an optimal Ramanujan

expander [25]. Larger spectral gaps imply better expansion.

We evaluated the spectral gap for each the 108 topology slices
in the example 648-host 108-rack Opera network analyzed in
the text, and compared it to the spectral gaps of a number or

randomly-generated static expanders with varying d:u ratios.

All networks used k = 12 radix ToRs and were constrained to
have a nearly-equal number of hosts. The results are shown
in Figure 18. Note that expanders with larger u require more
ToR switches (i.e., cost more) to support the same number of
hosts.

Interestingly, when the number of hosts is held constant, we
observe that the average and worst-case path length is not a
strong function of the spectral gap. Further, we see that Opera
comes very close to the best average path length achievable
with a static expander, indicating that it makes good use of
the ToR uplinks in each topology slice. Opera achieves this

6 , : :
O
pera ¥ Worst-cases
5 SN O Averages |
S4r %* * *
2
) « )
-3
< o o} o
a2} 1 f
Static Static Static Static
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Spectral Gap

Figure 18: Average and worst-case path lengths and spectral
gap for Opera and static expander networks. All networks
use k = 12-port ToR switches and have between 644 and 650
hosts. Each data point for Opera corresponds to one of its 108
topology slices.

good performance despite the fact that we have imposed addi-
tional constraints to support bulk traffic with low bandwidth
tax: unlike a static expander, Opera must provide a set of
Nyacks = 108 expanders across time, and those expanders are
constructed from an underlying set of disjoint matchings.

F Additional failure analysis

Opera recomputes paths to route around failed links, ToRs,
and circuit switches, and in general these paths will be longer
than those under zero failures. Figure 19 shows the correlation
between the degree of each type of failure and the average
and maximum path length (taken across all topology slices).

For reference, we also analyzed the fault tolerance proper-
ties of the 3:1 folded Clos and u = 7 expander discussed in
the paper. Figure 20 shows the results for the 3:1 Clos and
Figure 21 shows results for the u = 7 expander. We note that
Opera has better fault tolerance properties than the 3:1 folded
Clos, but the u = 7 expander is better yet. This is not surpris-
ing considering the u = 7 expander has significantly more
links and switches, as well as higher fanout at each ToR.
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Abstract

The lossless Ethernet is attractive for data centers and cluster
systems, but various performance issues, such as unfairness,
head-of-line blocking and congestion spreading, etc., impede
its large-scale deployment in production systems. Through
fine-grained experimental observations, we inspect the inter-
actions between flow control and congestion control, and are
aware that the radical cause of performance problems is the
ineffective elements in the congestion management architec-
ture for lossless Ethernet, including the improper congestion
detection mechanism and inadequate rate adjustment law.

Inspired by these insights and findings obtained in exper-
iment investigations, we revise the congestion management
architecture, and propose the Photonic Congestion Notifica-
tion (PCN) scheme, which consists of two basic components:
(i) a novel congestion detection and identification mechanism
to recognize which flows are really responsible for conges-
tion; (if) a receiver-driven rate adjustment method to alleviate
congestion in as short as 1 RTT. We implement PCN using
DPDK NICs and conduct evaluations using testbed experi-
ments and simulations. The results show that PCN greatly
improves performance under concurrent burst workload, and
significantly mitigates PFC PAUSE messages and reduces the
flow completion time under realistic workload.

1 Introduction

Recently, lossless network has become an attractive trend in
data centers and cluster computing systems. Generally, re-
transmission caused by packet loss readily leads to goodput
decrease, completion time increase, and even missing appli-
cation deadlines [9, 10, 50]. In addition, scaling transport pro-
tocols such as Remote Direct Memory Access (RDMA) and
Fibre Channel (FC) over data center requires reliable trans-
mission without packet loss due to network congestion [3, 15].

The lossless InfiniBand (IB) [16] is popular in HPC (High
performance Computing) cluster systems, but modern data
center has already been built with IP/Ethernet technologies

*Nanjing University of Aeronautics and Astronautics

that are also dominated in traditional Internet. The data center
operators and cloud builders may do some IB, but much less
ubiquitous than Ethernet. Furthermore, they are reluctant to
simultaneously deploy and manage two separate networks
within the same data center [39,49]. IEEE DCB (Data Center
Bridging) [4] is naturally imparted appeal as an enhanced
capability of Ethernet, which enables Ethernet to be a con-
solidated switching fabric that can replace traditionally sep-
arated fabrics for special purposes, such as FC for storage,
IPC (Interprocess Communication) for HPC, and Ethernet
for LAN traffic. Converged Ethernet has significant perfor-
mance, cost, and management advantages over maintaining
separate switching fabrics [8]. To enable lossless semantics
for a consolidated Ethernet, both hop-by-hop flow control
PFC (Priority-based Flow Control) [6] and end-to-end con-
gestion control QCN (Quantized Congestion Notification) [5]
are developed in the link layer to enhance traditional Ethernet.
The scalable lossless Ethernet switching fabric is definitely
one of the potential candidates for building future data centers
to accommodate promising applications, such as RDMA over
Converged Ethernet (RoCE) [15], NVMe Over Fabrics [42]
and resource disaggregation [23], etc..

Over the last decade, the rise of various Online Data-
Intensive (OLDI) applications [31] and virtualized ser-
vices [40] generate increasingly diverse traffic patterns and
specific characteristics, e.g., incast, burst and mixture of
mice/elephant flows, etc. [12, 25, 44]. Because it is unclear
whether the lossless Ethernet can work effectively in large-
scale data centers with such complex traffic, we conduct em-
pirical and experimental investigations to attain the in-depth
understanding of congestion management (CM) architecture
in lossless Ethernet. The detailed observation and conjoint
analysis uncover the radical root of some performance issues,
such as congestion spreading and being susceptible to burst
traffic. In the light of these insights, we re-architect CM in
lossless Ethernet. The key findings and main contributions
are summarized as follows.

e Revealing the inadequate elements in existing CM ar-
chitecture for lossless Ethernet, including: a) The congestion
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detection mechanism cannot exactly identify congested or
uncongested flows when they are churned in the same queue,
so that it is unlikely to notify different sources to make dis-
criminative rate adjustments. b) The slow evolution-based
rate adjustment of end-to-end congestion control mismatches
the fast operations of hop-by-hop flow control.

e Developing a novel CM scheme named Photonic Con-
gestion Notification (PCN), which includes: a) A subtle con-
gestion detection and identification mechanism, which can
distinguish real congested flows so as to make a proper rate ad-
justment for congested or uncongested flows even if they are
churned in the same accumulated queue. b) A receiver-driven
rate adjustment rule, which can speed up the convergence of
rate regulation, and is robust to burst traffic and adaptable to
link capacity.

e Implementing PCN using DPDK NICs and conducting
evaluations using both testbed experiments and ns-3 simula-
tions. Extensive simulations in the large-scale network with
synthesized traffic from real workload show that PCN sup-
presses PFC PAUSESs by 12%, 47% and 90% compared to
QCN, DCQCN and TIMELY respectively, and reduces latency
by at most 10x, 11.3x and 13.2x.

2 Background

2.1 Traffic Features in Data Centers

A variety of applications in data centers generate flows with a
wide spectrum of traffic patterns and distributions. For exam-
ple, web search service usually generates short and burst flows.
On the other hand, the log file processing introduces few but
long-lived flows to transmit bulk of data. Investigations on
traffic in many operation data centers show the wide distribu-
tion traffic patterns [41]. The size of flows may range from
0.05KB to more than 100MB, and the distribution is quite
scattered. Among all traffic, mice flows, which finish sending
all packets before receiving any ACK, cannot be adjusted
by the end-to-end congestion control scheme. Furthermore,
many measurements [18, 19,33, 41] indicate that the occur-
rence of mice flow is not only frequent but also bursty. The
highly dynamic entering/leaving of mice flows would greatly
shock queue length in switches and then the end-to-end la-
tency [12, 13,44]. Although these flows do not react to the
congestion control scheme, they severely disturb the normal
operations of the congestion management of switching fabric
in data centers or cluster systems.

2.2 Congestion Management in lossless Ether-
net

To guarantee losslessness and provide satisfying job comple-
tion time under such diverse traffic patterns, congestion man-
agement becomes critical and challenging in lossless Ethernet.
IEEE DCB [4] specifies a framework for CM consisting of

two basic functions, including end-to-end congestion control
and hop-by-hop flow control.

The end-to-end congestion control regulates source sending
rate actively according to the congestion information reflected
by measured variables, such as switch queue length or RTT.
Representative solutions include QCN developed by IEEE
802.1 Qau [5], the Layer-3 scheme DCQCN [49], and the RTT-
based scheme TIMELY [36]. Although these protocols can
constrain the switch queue length and accordingly reduce the
packet loss ratio, there is not enough guarantee of zero packet
loss. Actually, the uncontrollable burst may be already lost
before sources are aware of network congestion, especially
when the congestion control loop delay is relatively large or
the degree of burst and concurrency is heavy. What is worse, a
large number of congestion control mechanisms [5,21,27,36,
38,49] start flows at the line rate to accelerate the completion
of mice flows, which exacerbates the loss problem.

To avoid packet loss due to uncontrollable burst, Priority-
based Flow Control (PFC) is defined by IEEE 802.1Qbb [6] to
ensure losslessness. With PFC, a switch sends a PAUSE frame
to its upstream device (a switch or a NIC) to stop transmission
when the ingress queue length exceeds a certain threshold.
And a RESUME frame is sent when the queue drains below
another threshold. Although PFC can guarantee zero packet
loss due to network congestion, it leads to some performance
issues such as head-of-line blocking (HLB), unfairness and
even deadlock [26,28,45,46,49]. When PFC is triggered in-
cessantly, the local congestion spreads back to both congested
and uncongested sources, and then the network throughput
and flow completion time are drastically harmed. The fun-
damental solution for these performance issues is to elimi-
nate persistent congestion by end-to-end congestion control
schemes such that PFC is not triggered incessantly [46,49].

In total, the end-to-end congestion control needs PFC to
prevent packet loss due to transient congestion of uncontrol-
lable burst, and PFC also needs end-to-end congestion control
to eliminate persistent congestion. That is, the end-to-end
congestion control and hop-by-hop lossless flow control are
complementary to each other in lossless Ethernet.

3 Experimental Observation and Insights

3.1 Observations

Although both end-to-end congestion control and hop-by-
hop flow control can meet their goals independently under
the diverse traffic patterns, their interaction would induce
unexpected issues. (1) When burst short flows enter into the
network, existing flows in the network would still suffer from
the PFC-related side-effects, i.e., congestion spreading and
unfairness. (2) After burst leaving the network, congestion
control would not efficiently and timely reallocate available
bandwidth.
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Figure 1: Compact and typical network scenario.

Most existing work considerably concerns the single ele-
ment in the CM of lossless Ethernet (e.g., congestion con-
trol [36, 49]) or special symptoms (e.g., HLB [7], dead-
lock [28,29,45]), but unconsciously overlooks the interaction
of congestion control and flow control under diverse traffic
patterns, thus is likely to shield the essential cause of afore-
mentioned performance issues. Subsequently, we first con-
duct a careful, fine-grained and multi-variable observation,
and then infer the radical root of special symptoms and issues.

Specifically, we define a compact and typical network sce-
nario, which is not too complex to hinder us capturing the
basic principles of both key elements and core mechanisms in
the CM of lossless Ethernet. At the same time, it should have
sufficiently common features so as to ensure the obtained con-
clusions and insights are without loss of generality. As shown
in Fig.1, we choose a basic unit of a typical network topol-
ogy in data center, like Clos [22] and Fat-Tree [11], where
16 senders and 2 receivers are connected by two switches.
All links are 40Gbps, with a propagation delay of 5us. The
traffic is a mixture of long-lived flows and concurrent burst
mice flows. In detail, HO and H1 start long-lived flows to RO
and R1, respectively. Assume that FO and F1 achieve their
fair bandwidth allocation of the 40Gbps bottleneck link from
switch SO to S1 at the beginning of simulation. At time 0,
each sender of H2~H15 generates 16 short flows to R1 at
line rate (i.e., 40Gbps) simultaneously, and the size of each
flow is 64KB. Since each mice flow only lasts for 12.8us
(<1 RTT), it is uncontrollable by the end-to-end congestion
control mechanisms. These uncontrollable burst flows last
for about 3ms in total. We conduct simulations with ns-3 to
investigate various CM schemes including PFC, PFC+QCN,
PFC+DCQCN, and PFC+TIMELY. All parameters are set to
the default values recommended by the related standard [5, 6]
and literature [36,49], and the details are given in § 7. The
results are presented in Fig.2.

When PFEC is solely employed, the input port P1/S1 pauses
its upstream port PO/SO to avoid packet drops, and the port
P2/S1 is congested by concurrent burst flows. Subsequently,
“Pause” spreads upstream along with the long flow, and both
HO and H1 are eventually paused. We measure the PAUSE
Rate (i.e., the rate of transmitting PAUSE messages), and the
instantaneous throughput. As shown in Fig.2(a), a congestion
tree, which roots from S1, spreads to HO and H1, appears
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Figure 2: Interactions between PFC and existing congestion
controls.

and lasts for 3.1ms (>100 RTT) until the burst mice flows
finish. During this process, both the congested flow F1 and
uncongested flow FO face great throughput loss as shown in
Fig.2(b), no matter whether they are responsible for the real
congestion at port P2/S1.

When QCN, DCQCN or TIMELY works with PFC jointly,
the congestion tree still appears, as shown in Fig.2(a). How-
ever, its lasting time is reduced to 0.5ms (=17RTT), 1.8ms
(=57RTT) and 1.4ms (=47RTT). Surprisingly, the two long
flows FO and F1 may fail to recover to their initial throughput
quickly after both concurrent burst flows and congestion tree
disappear. As illustrated in Fig.2(b), the throughput loss un-
expectedly lasts for 12.5ms with QCN, 25ms with DCQCN
and 60ms with TIMELY, respectively, even if the concurrent
burst flows last for only 3ms. Totally, the performance of
PFC+QCN, PFC+DCQCN and PFC+TIMELY is worse than
PFC in this scenario.

3.2 Interaction Issues

To understand the long duration of congestion tree and un-
expected great throughput loss, we analyze the dynamic be-
haviors of flows in detail, and reveal the interaction issues
between hop-by-hop flow control and end-to-end congestion
controls. We believe that careful analysis and rigorous rea-
soning from interactive behavior could enlighten us the root
causes of various performance issues reported by existing
work [26,34,37].

1) PFC confuses congestion detection. In above experi-
ments, an ideal end-to-end congestion control scheme should
only throttle F1 to 2.5Gbps and allocate flow FO the remaining
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Figure 3: The responsiveness of different congestion controls.

bandwidth (37.5Gbps) of bottleneck link from SO to S1. How-
ever, this ideal bandwidth allocation cannot be achieved even
existing congestion controls (QCN, DCQCN and TIMELY)
are employed. To explore the cause of this phenomenon, we
record the sending rate regulated by the end-to-end congestion
control and the real sending rate of the uncongested flow FO
and congested flow F1. The results are presented in Fig.3(a).
When congestion tree exists, both the queue length and RTT
increase at port PO/S0O. Because senders infer congestion ac-
cording to the feedback information (i.e., queue length or
RTT), FO is also regarded as congested. Hence, the sending
rate of FO is reduced by QCN, DCQCN and TIMELY, even
if it contributes nothing to the real congestion point at P2/S1.
Therefore, after the congestion tree disappears (as marked by
the dash line in Fig.3(a)), the sending rate of FO is very low
although it escapes from the collateral damage of PFC.

In summary, it takes some time for congestion controls to
eliminate congestion tree. In this transient process, the large
queue length and RTT due to congestion spreading caused
by PFC would mislead congestion controls to decrease the
sending rate of victim flows (FO in this example).

2) The slow evolution-based rate adjustment of end-to-
end congestion control mismatches the fast hop-by-hop
operations of PFC. Fig.3 also unveils the reason why the
congestion tree is still created and lasts for tens of RTTs with
QCN, DCQCN and TIMELY. Although FO and F1 are throt-
tled immediately when the concurrent burst mice flows enter,
it takes a long time for QCN, DCQCN and TIMELY to reduce
the sending rates (the regulation time of different congestion
controls are marked in Fig. 3). However, PFC works hop-by-
hop and thus the congestion spreads very fast. During the rate
decrease of FO and F1, PFC is triggered incessantly. So the
real sending rates of FO and F1 are mainly determined by PFC
rather than end-to-end congestion control, thus the through-
put of both FO and F1 are small. This is why the congestion

tree spreading still occurs even if the end-to-end congestion
control is employed.

This problem is attributed to the mismatch between the
slow evolution-based rate adjustment of end-to-end conges-
tion control and the fast operations of hop-by-hop flow control.
More specifically, when the available bandwidth reduces sud-
denly due to the concurrent burst mice flows, the end-to-end
congestion control schemes have no idea of the target rate
thus only make rate decrease based on the current sending rate
step by step, which is at most 50% per update period. More-
over, the update period is about 20us (time of transmitting
100 packets) for QCN, 50us for DCQCN and at least 12.5us
(time of sending 64KB segment) for TIMELY. What’s more,
when the throughput of FO and F1 is very small, DCQCN may
not receive a single packet in one update period, and would
start rate increase automatically. As a result, tens of update
periods may be needed to decrease F1’s rate to approach the
remaining available bandwidth, as shown in Fig.3.

3) The rate increase is inadaptable to dynamic network
conditions. After the concurrent burst mice flows vanish and
the congestion tree disappears, the sending rates of both FO
and F1 have been throttled, and need to increase step by step.
QCN and DCQCN increase the sending rate towards the tar-
get rate stored at previous rate decrease in a binary-search
way and raise the target rate linearly with a pre-configured
value periodically. TIMELY adds the sending rate with a
fixed value in each update period. Briefly, all rate increasing
methods are linear. Consequently, they fail to take full use
of available bandwidth immediately after the disturbance of
concurrent burst mice flows. This is why flows FO and F1
need much longer time to recover to full throughput as pre-
sented in Fig.2(b). Moreover, the step of rate increase in each
update period needs to be configured adaptively according
to network bandwidth. For example, the parameters of QCN,
DCQCN and TIMELY tuned for 40Gbps link may be too con-
servative for 100Gbps link, but too aggressive for 1Gbps link.
The tuning of parameters would become difficult in practice.

4 Principles

The root cause of all aforementioned performance issues can
be concluded as the existing end-to-end congestion control
scheme cannot cooperate with hop-by-hop flow control well.
To address these issues, we revisit the architecture of CM. We
first present a discussion about which elements in existing
congestion management introduce these performance issues,
and then propose the ways to overcome these incongruities
by re-architecting the CM for lossless Ethernet. Briefly, the
principles are threefold.

1. The uncongested flow becomes a victim because the ex-
isting congestion management cannot identify real con-
gested flows. The operation of PFC would back pressure
congestion and contaminate current congestion signals
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(i.e., queue length and RTT). We need to find out a new
mechanism to properly distinguish which flows are really
responsible for congestion.

2. Congestion spreading is caused by the slow evolution-
based rate decreasing mechanism, thus a fast and accu-
rate rate decreasing solution is indispensable.

3. When burst traffic vanishes, the long-lived flows mainly
rely on the linear rate increase to share the released
bandwidth, which leads to sluggish convergence and
bandwidth waste. Therefore, a prompt rate increasing
mechanism should be developed.

4.1 Congestion Detection and Identification

Traditionally, the end-to-end congestion control detects the
network congestion based on the measured variables like
switch queue length and RTT. However, this congestion de-
tection mechanism is confused by PFC in lossless Ethernet.
We need to revise the congestion detection and identification
mechanism to avoid this confusion and then correctly identify
which flows are really congested.

4.1.1 Detecting Congestion

To aid detecting congestion, we classify the egress ports of
switches into the following three states.

Real-Congestion: The ports in real-congestion fully utilize
the egress links and the excessive incoming packets accumu-
late in the buffer, as shown in Fig.4(a). For example, in the
previous simulation, when the concurrent burst mice flows
start, port P2/S1 is in real-congestion.

Non-Congestion: As illustrated in Fig.4(b), no packets
accumulate in the buffer of egress ports, and thus the incoming
packet is transmitted immediately. That is, the egress links
work normally with utilization less than 100%. The port P3/S1
in above simulation is always in non-congestion.

Quasi-Congestion: The ports in quasi-congestion also
keep certain queue length, but the associated egress link is

not fully utilized due to PAUSE and RESUME, as depicted in
Fig.4(c). Therefore, it is unknown whether the incoming rate
of packets exceeds the link capacity or not. For example, in the
previous simulation, port PO/SO turns into quasi-congestion in
face of PFC triggers. However, because flows passing through
this port would suffer large queue length and delay, the con-
gestion detection mechanism in existing congestion controls
(e.g., QCN, DCQCN and TIMELY) dogmatically judges that
these flows experience congestion.

Consequently, to distinguish these different states of the
egress ports, especially the quasi-congestion state, the impacts
of PFC should be taken into consideration when detecting
congestion.

4.1.2 Identifying Congested Flows

Owing to the impact of PFC, packets from both congested and
uncongested flows are likely to backlog in the same queue
length in egress port, which is paused by its downstream
ingress port. Therefore, it may be proper to predict potential
congestion depending on the queue length of egress port,
but indeed unwise to make congestion judgment and provide
indiscriminate information to all flow sources, just like QCN
and DCQCN. TIMELY also hardly distinguishes whether
the flow actually traverses the real congested port by merely
measuring RTT and its variations.

To avoid the confused congestion information in existing
CM architecture to perturb the normal interaction between
flow control and congestion control, and even lead to mu-
tual damage, we advocate decoupling congestion detection
and identification functions during re-architecting the CM
of lossless Ethernet. The switch is responsible for detecting
congestion and providing congestion signals through moni-
toring the related network status. The end systems synthesize
relevant information to judge congestion and identify whether
its flow is really congested.

4.2 Receiver-Driven Rate Decrease

The ideal congestion control scheme should throttle the con-
gested flows towards a proper rate directly. To achieve this
goal, we need to obtain this proper rate at first. In lossless
Ethernet, the proper rate should not trigger PFC but can still
keep high throughput. To find this rate, we should answer the
following two sub-questions: 1) what is the minimum rate
for congested flows to not lose throughput? 2) what is the
maximum rate for congested flows to not trigger PFCs?

The first answer is intuitive. It should be the arrival rate of
receiver. We define it as Receiving Rate. On one hand, the path
of congested flows must have at least one real congested port,
thus the sum of receiving rates of all flows just achieves the
capacity of bottleneck link. On the other hand, if the congested
flow decreases rate to less than its receiving rate, there must
be idle bandwidth on the bottleneck link, which means that

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 23



this flow can actually send more data. Thus, the receiving
rate is the minimum rate for the congested flows to not lose
throughput. The power of receiving rate has also introduced in
recent designs like Fast TCP [32], NDP [27] and Homa [38].
They both take advantage of receiving rate to achieve fast
convergence when detecting congestion.

Fortunately, the receiving rate is also the answer to the sec-
ond sub-question. That is, when the sending rate does not ex-
ceed the receiving rate, the packets of congested flows do not
accumulate at the ingress port of congested switches and then
PFCs are not triggered. What’s more, this phenomenon occurs
regardless of whether the egress port of the same switch is
congested or not.

To vividly illustrate this phenomenon, we repeat the experi-
ment in the network scenario given in § 3.1. We start H2~H4
at line rate to simulate uncontrollable bursts. And both the
congestion-irrelevant flow FO and congestion-relevant flow
F1 are controlled by rate limiters. The sending rate of FO
is fixed at its fair allocation (i.e., 20Gbps), and the sending
rate of F1 varies from 20Gbps to 0 step by step manually.
When the simulation is running, both flows are throttled by
their fixed rate limiters and PFC. The sending rates set in
rate limiters and receiving rates at the receiver side for these
two long flows, as well as the generating rate of PAUSE
frames on ingress port p1/S1, are drawn in Fig.5. Obviously,
when the sending rate of congestion-relevant flow F1 exceeds
9.5Gbps, its receiving rate is only 9.5Gbps. At the same time,
the ingress port p1/S1 generates PFC PAUSEs persistently
and the congestion-irrelevant flow FO is collaterally dam-
aged. On the contrary, when the sending rate of F1 does not
exceed 9.5Gbps, no PAUSE frame is generated from port
p1/S1 and the congestion-irrelevant flow FO can achieve its
expected throughput. This experiment indicates that throt-
tling congested flows to their receiving rate can prevent more
PFC triggers on the associated egress ports, and then suppress
congestion spreading in this branch of congestion tree.

Consequently, we obtain a valuable insight, that is decreas-
ing the rate of congested flows to their receiving rate di-
rectly. It inspires us to design a receiver-driven rate decreas-
ing algorithm to work in harmony with PFC in lossless Ether-
net, which will be elaborated in the following.

4.3 Gentle-to-Aggressive Rate Increase

The rate increase should accelerate non-congested flows to
rapidly share available bandwidth and then keep at full uti-
lization stably simultaneously. The rate-increase rule of a
non-congested flow is needed in two cases.

1) The flow has just turned its state from congested to non-
congested. According to our receiver-driven rate decrease
principle, the flow rate has reduced to its receiving rate, which
implies no PFC trigger and no throughput loss. Thus, the flow
has little space for rate increase. Therefore, the rate of this
flow should be increased gently.

Receiver (NP)
o Identify Congested Flows
* Rate Estimator

* Congestion Notification

Sender (RP) Data e Swit.ch g(l(gifa)l Data

* Rate Adjustment |5oNp1 (Non-PAUSEECN) | CNP

Figure 6: PCN framework.

2) The flow has remained in the non-congested state for
several continuous update periods. In this case, the flow can
increase more aggressively to occupy the available bandwidth.
Since our receiver-driven rate-decrease rule can sharply re-
duce the overflowed traffic, the rate increasing mechanism can
be designed more aggressively to fulfill network bandwidth
quickly.

Therefore, we obtain a suggestion, that is increasing the
rate of non-congested flows gently at first and then ag-
gressively. It guides us to design a gentle-to-aggressive rate
increasing algorithm that can guarantee stability and fast con-
vergence simultaneously.

S PCN

In this section, based on the principles in § 4, we re-architect
congestion management for lossless Ethernet and propose
Photonic Congestion Notification (PCN)', which is designed
to be a rate-based, end-to-end congestion control mechanism
to work with PFC in harmony. As shown in Fig.6, PCN is
composed of three parts: reaction point (RP), congestion point
(CP) and notification point (NP). In general, the CP, which
always refers to the congested switch, marks passing pack-
ets using a Non-PAUSE ECN (NP-ECN) method to detect
whether the egress ports are in real congestion. Notice that
a packet marked with NP-ECN does not definitely mean en-
countering congestion, it requires NP to make the final deci-
sion. The NP, i.e., the receiver, identifies the congested flows,
calculates their receiving rate and sends the congestion noti-
fication packets (CNP) to RP periodically. The RP, which is
always the NIC of senders, adjusts the sending rate of each
flow according to the information in CNPs. Subsequently, we
introduce each part of PCN in details.

5.1 CP Algorithm

We develop the NP-ECN method to detect congestion and
generate the congestion signal. The CP algorithm follows the
state machine in Fig.7. Suppose that when one egress port
of a switch receives a RESUME frame from its downstream

'We liken current schemes (e.g. QCN, DCQCN and TIMELY) to quan-
tum, because they can only quantify the network congestion as a whole, but
cannot provide different congestion notifications for congested flows and
non-congested victim flows, which seems in quantum entanglement. And as
an analogy, our design is like the photon, which breaks down the entangle-
ment, i.e., directly recognizing the congested flows and allocating them the
appreciate rates.
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Figure 7: CP state machine.

node, there are N packets in the associated waiting queue.
NP-ECN will set its counter PN=N. Then the port restarts
to transmit packets. Each time a packet is transmitted, the
counter is decremented by one, until all of the N paused pack-
ets have been transmitted. For these N packets, they will not
be marked. And for the later packets that have not been paused
and correspondingly PN=0, the switch will mark them with
ECN in the traditional method, with the threshold as zero.

In this way, all packets in the real-congestion egress ports
will be marked with ECN. On the contrary, the packets are
never marked with ECN in the non-congestion ports. And for
quasi-congestion ports, the paused packets are not marked
with ECN. Meanwhile, when the queue of ingress port is
not empty, the packets arriving and leaving the ports in RE-
SUME status are marked with ECN, namely, packets in quasi-
congestion ports are partially marked with ECN. In PCN,
CP only works for marking a congestion signal on packets
and lets the NP node finally determine whether the flow is
congested.

It is noted that NP-ECN mechanism can be implemented
easily based on the commercial switch equipped with both
ECN and PAUSE functions. Compared to the traditional ECN
method in commodity switches, the NP-ECN method of PCN
requires one more counter per port, and several more lines of
logic. The space and computing complexities of modification
are both O(1).

5.2 NP Algorithm

The functions of NP include identifying congested flows,
estimating receiving rate and sending Congestion Notification
Packets (CNP) periodically. T denotes the CNP generation
period.

Identifying congested flows: NP identifies the congested
flows based on the ECN signal marked by the NP-ECN mech-
anism. A flow is regarded to be congested if 95% packets re-
ceived in CNP generation period T are marked with ECN. The
value 95% is set empirically to filter some tiny disturbances
in practice, such as queue oscillation and priority schedule,
which make that one or more packets of real-congested flows
are unlikely marked with ECN.

Estimating receiving rate: The receiving rate is calcu-
lated directly with 7" divided by the total size of arrived pack-

First of a flow

Timer=0; Timer=0;

RecNum=1; recNum=0;

recData=pSize; recData=0; Send CNP
ECNNum=ECN set?1:0; ECNNum=0;

|—>‘ Wait for timeout expire of Timer |

recNum+=1;
recData+=pSize;
ECNNum+=ECN set?1:0;
Calculate interArrivalTime;

t

Received a packet

ECN=0;
recRate=0;

ECN=1;

recRate=pSize/interArrivalTime;

ECN=1;
recRate=recData/Timer;

Figure 8: NP state machine.

MAC | Ipv4/IPv6 | UDP
Header| Header |Header

16 Bytes

BTH
reserved

ICRC| FCS

[ 1-bit ECN] [ 32-bits Normalized RecRate |

Figure 9: Packet format of CNP

ets. Noticeably, the receiving rate of flow may be so small that
just one packet arrives in several CNP generation periods. To
address this special case, PCN also records the inter-arrival
time of packets at the NP. When the inter-arrival time is larger
than 7', NP estimates the receiving rate by replacing T by the
inter-arrival time.

Generating CNPs: The NP sends CNPs to notify the
source of flow with the receiving rate in period 7', which
is set to be 50us similar to DCQCN. Moreover, PCN gener-
ates CNP explicitly when the flow needs either rate-decrease
or rate-increase, different from DCQCN which only generates
CNPs to notify rate-decrease. And the CNP is not generated
when none of its packets is received in period 7. In details,
the format of CNP packets is compatible with the CNP packet
in RoCEv2 [15], as shown in Fig.9. The main information
encapsulated by CNP includes 1-bit ECN in the IPv4/IPv6
header and 32-bit RecRate in the reserved segment, which
carries the receiving rate normalized by 1Mbps. The state
machine of NP algorithm is summarized in Fig.8.

5.3 RP Algorithm

Algorithm 1 describes the pseudo code of how RP adjusts
the sending rate according to the information in CNP. In
the beginning, flows start at the line rate to improve flow
completion time (FCT) for short flows.

Rate Decrease: When RP receives a CNP with ECN-
marked, it conducts a rate decrease following the rule in line
6. Instead of resetting the sending rate to the receiving rate di-
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Algorithm 1 PCN RP Algorithm.

1: sendRate < lineRate

2: W Whin

3: repeat per CNP (CE, recRate)
4: if CE ==1 then

5 (CNP notifies rate decrease)

6: sendRate < min{sendRate, recRate- (1 —wmpin)}

7: W 4— Wmin

8: else

9: (CNP notifies rate increase)
10: sendRate < sendRate - (1 —w) + lineRate - w
11: wéw- (1 —w)+Wmax -w

12: until End of flow

w
COoo00
oNRooH oORNWRWL

Normalized
Rate
©000

Increase Loop

Figure 10: Evolution of w and rate when a sender receives
continuous CNP notifying rate increase.

rectly as discussed in § 4.2, a small discount w,;;, is conducted,
such that the build-up queue in switches can be drained out.
Accordingly, during draining the build-up queue, the recRate
may be larger than the sendRate, the sending rate should be
non-increasing in line 6.

Rate Increase: When RP receives a CNP without ECN-
marking, it makes rate adjustments following the law in line
10 and 11. Specifically, the RP increases the sending rate by
computing a weighted average of its current value and the
line rate. This rate increase law is effective in multiple folds.

(1) The ideal sending rate can be reached as it always stays
between the current sending rate and the line rate.

(2) Since the value of w is identical for all flows, the slow
flows increase more aggressively than fast flows, which is
beneficial to fairness.

(3) The weight w changes automatically from the minimum
value wpn to the maximum value wp,x such that PCN can
realize the gentle-to-aggressive rate increase as discussed in
§ 4.3. For example, when wpin = 1/128, winax = 0.5, and
CNPs without ECN-marking are received successively, the
evolution of w and the sending rate from O to the lineRate are
presented in Fig.10. The sending rate grows by no more than
10% of the line rate in the first 5 CNPs, but increases to 95%
of the line rate after only 15 CNPs.

(4) Any parameter configurations are not specially required
to adapt to the upgrade of link capacity from 1Gbps to even
400Gbps.

5.4 Discussion

As discussed in §4, the main root of performance issues in
current lossless Ethernet is the improper interaction between
PFC and end-to-end congestion control schemes. We demon-
strate that PCN solves the core problems in lossless Ethernet
using a minimal implementation cost.

Implementation requirement: To implement PCN, a lit-
tle switch modification is needed. Compared to the traditional
ECN method in commodity switches, the NP-ECN method
of PCN (see Fig.7) only requires one more counter per port,
and several more lines of logic. The space and computing
complexities of modification are both O(1).

Benefits: To demonstrate the advantages of PCN, we en-
able PCN and repeat the simulations in § 3.1, and the results
are also inserted into Fig.2 and Fig.3, respectively. The results
in Fig.2(a) tell that PAUSE in both SO->HO and SO->H1 links
are completely avoided and only a handful of PAUSE fleet-
ingly appears in the S1->S0 link, but congestion spreading
is quickly suppressed and congestion tree is not generated.
The results in Fig.3 confirm that PCN can help the uncon-
gested flows grab idle bandwidth quickly, and regulate the
congested flows to proper rates correctly and promptly. PCN
increases FO to fully utilize network bandwidth during con-
current bursts. After the concurrent burst vanishes, FO and F1
fairly share bandwidth without wasting network resources or
triggering PFC PAUSEs as shown in Fig.2(b).

6 Theoretical Analysis and Parameter Setting

6.1 Theoretical Analysis

We build a fluid model of PCN and analyze its performance,
including convergence, fairness, and stability. The main con-
clusions are summarized in the following propositions and
the detailed analyses are listed in Appendix A.

Proposition 1. PCN can achieve convergence of total rate
towards the bottleneck capacity as fast as in only one control
loop, i.e., one RTT.

Proposition 2. PCN can always fairly share the bottleneck
link, i.e., R; — % regardless of the initial sending rates and
parameter settings, where R; is the receiving rate of flow i, N
is the number of sources sharing the bottleneck link, and C is
the link capacity.

Proposition 3. PCN is stable and the oscillation of both
the queue length and rate are bounded in the steady state.
The maximum oscillation ranges of queue length (AQ) and
receiving rate of flow i (AR;) are

AQ = (N — 2+ Wiin)WminCT (1)

AR; — wiinC )
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Figure 11: Dynamic behavior of PCN, DCQCN and TIMELY.

6.2 Parameter Settings

Based on the above conclusions, we can obtain some practical
guidelines towards parameter settings, including the CNP
generating period 7', and the minimum and maximum value
of weight factor w.

CNP generating period 7': It should be identical for all
flows. It is noteworthy that 7 is also the control loop period,
thus a large T will damage the responsiveness of PCN. How-
ever, in practice, there exists an inherent control loop delay,
i.e., RTT. If T is smaller than RTT, PCN is hardly aware of
status change in the last control loop, which leads to over-
much adjustments and considerable oscillations. Therefore,
the recommended 7" should be the maximum value of RTT in
networks, which can be estimated in advance.

Minimum weight wp,i,: The value of wy,, should make a
trade-off between fast convergence and stability. A large/small
wmin Will speed up/slow down the convergence of queue
length, but make the flow oscillate more/less aggressively
at steady state. According to Proposition 2, Equation (1) and
(2), we recommend the proper value of w to be 0.1/N, which
limits the aggregate rate oscillation not exceeding 0.1C and
the queue oscillation less than 0.1CT'.

Maximum weight wp.x: The value of wy,x determines
how aggressively a flow increases when the network is de-
tected under-utilized continuously. Thus an aggressive wmax
is recommended, i.e., wiax = 0.5.

7 Evaluation

We evaluate the performance of PCN in a variety of settings
using testbed experiments (§ 7.1) and ns-3 simulations (§ 7.1
~ 7.4), and compare it against QCN, DCQCN and TIMELY.
The functional modules of our simulator are developed based
on the open project for DCQCN [48] and code snippet (per-
packet pacing version) for TIMELY [35], and all parameters
are set to the default values recommended by the related
literatures [36,49]. All experiments enable PFC with Xprr =
512KB.

7.1 Basic Properties

In this subsection, we verify the basic function of PCN using
simple synthetic microbenchmarks.

Testbed setup: Since current commodity switches do not
provide the interface to modify the ECN-marking logic, we
implement PCN upon DPDK [1]. We plug two Intel 82599
NICs to one PowerEdge R530 server to act as PCN’s CP. Each
NIC has two 10Gbps Ethernet ports and the server is equipped
with dual Intel Xeon E5-2620 v3 CPUs (6 cores, 2.4GHz).
Thus, the server can work as a four-port switch. By deploying
DPDK in the server, both PFC and NP-ECN are implemented
based on the reference test-pipeline project [2].

DPDK also enables the implementation of our special
packet processing required at NICs. On the sender side, the
rate limiter at a per-packet granularity is employed for rate ad-
justment. On the receiver side, PCN receives packets, records
ECN marking information, and sends back CNP packets peri-
odically.

Scenario: We use a dumbbell topology where 3 pairs of
sender and receiver share the same 10Gbps bottleneck link.
Specially, the number of flows on one of three pairs is twice
of that on other two. We run this experiment on both hardware
testbed and ns-3 simulator for cross-validation. In both testbed
experiments and simulations, the RT T is measured to be about
500us, thus the same configuration is kept in simulations.

Fine-grained observation: First, four long-lived flows are
launched and the dynamic behaviors of PCN, QCN, DCQCN
and TIMELY is observed. The evolutions of queue length
in bottleneck and the aggregate sending rate are depicted in
Fig.11. As illustrated in Fig.11(a) and 11(b), PCN exhibits
the same performance on the testbed and simulator. Com-
paring Fig.11(b) to 11(c), 11(d) and 11(e), PCN outperforms
QCN, DCQCN and TIMELY in terms of fast convergence
and stability.

In both testbed experiment and simulation, PCN regulates
the aggregate sending rate to the bottleneck capacity within
2ms (4 RTT), which is 20x, 25x and 45x faster than that with
QCN, DCQCN and TIMELY, which is benefited from the
receiver-driven rate-decrease method of PCN. It can throttle
the incoming traffic to match the bottleneck capacity directly,
rather than explore the available bandwidth round by round.
Consequently, PCN can limit the bottleneck queue length
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Figure 12: Generating rate of PAUSEs and FCT under concurrent burst.

at a very low level (about several packets) in no more than
7.5ms (~15 RTT), while it costs 13ms (~26 RTT) for QCN,
41ms (~80RTT) for DCQCN and 72ms (~144 RTT) for
TIMELY.

In the steady state, PCN oscillates with low amplitude in
both testbed experiment and simulation. The queue length
almost approaches zero and the aggregate sending rate keeps
near 10Gbps. QCN has the similar performance. However,
both DCQCN and TIMELY lead to large oscillations and high
buffer occupancy. This advantage comes from the congestion
detection method of PCN. The threshold of queue length for
ECN marking is set to zero, rather than a positive value.

7.2 Burst Tolerance

One advantage of PCN is robustness against PFC triggers
caused by concurrent burst flows. Next, we use the basic
scenario in Fig.l to evaluate PCN in the typical head-of-
line scenario. All links are 40Gbps with Sus propagation
delay, hosts HO ~ H15 generate flows according to the heavy-
tailed Hadoop workload [44] with exponentially distributed
inter-arrival time. Specially, the workload generators at hosts
H?2 ~ H1S5 are set to be synchronous to simulate concurrent
bursts. The target load at the two bottleneck links is set to 0.6.
We measure the pause rate and flow completion time (FCT)
of PCN and compare them with QCN, DCQCN and TIMELY.

The left subgraph in Fig.12 shows the generating rate of
PFC PAUSEs. QCN triggers the smallest PAUSEs, and PCN
can prevent at least 53% and 92% of PFC PAUSEs compared
to DCQCN and TIMELY, respectively. And the average and
99, percentile FCTs from different hosts are drawn in the
right subgraph in Fig.12. The solid bar at the bottom indicates
the average FCT and the upper stripe bar shows the 99,
percentile value. Clearly, PCN performs better than QCN,
DCQCN and TIMELY for all kinds of hosts.

1) Actually, QCN avoids PAUSEs by drastically reducing
the sending rate, which likely leads to poor link utilization
and high FCT for long-lived flows. On the contrary, PCN
can prevent PAUSEs without harming throughput, and then
achieves 2.25x~3.03x shorter FCT than QCN.

2) For the victim host HO, PCN achieves 2.4x and 2.0x
faster average FCT compared to DCQCN and TIMELY, which
is mainly benefited from a fact that PCN can mitigate PFC

H1 H2-H15

Figure 13: Performance of PCN
with different wyi, and wax.

Flow size % of number % of traffic
Wi W2 Wil w2

0KB-10KB (S) 80.14 | 70.79 | 3.08 | 0.22
10KB-100KB (M) | 10.32 | 16.59 | 5.89 | 1.56
100KB-1MB (L) 9.12 3,52 | 83.8 | 1.53

IMB- (XL) 0.41 9.1 7.04 | 96.7
Wi Web-server rack at Facebook [44].
w2 Hadoop cluster at Facebook [44].

Table 1: Flow size distribution of realistic workloads.

triggers between two switches. For the concurrent burst from
H2 ~ H15, PCN can keep the buffer at egress port P2 nearly
empty, and thus obtain an improvement of 3.5x and 3.4x in the
99;, percentile FCT compared to DCQCN and TIMELY. And
for host H1, whose flows traverse two congested switches, the
flow transmission speed of PCN is at least 2.2x of DCQCN
and 1.7x of TIMELY.

7.3 Parameter sensitivity

As discussed in § 6.2, the minimal and maximal of weight
factor wyin and wp,x determine the convergence speed and
oscillation amplitude in steady state. To evaluate the parame-
ter sensitivity, we repeat the concurrent burst simulation with
different wiin and wiax values. Fig.13 shows the result. With
the changes of wp,j, and wpyax, PCN can always achieve the
satisfied performance. As wp,x decreases, switch SO receives
fewer PFC PAUSEs from its downstream device, but the 99%-
tile of FCT grows a little. Meanwhile, the value of wy, has
almost no impact on pause rate, but the small wy,, increases
FCT slightly. The results indicate that our recommended pa-
rameter settings are proper.

7.4 Realistic Workloads

In this subsection, we evaluate the performance of PCN with
realistic workload.

Scenario: We consider an 8-pod clos network. Each pod
consists of 2 Leafs, 4 ToRs, and 64 hosts, and communi-
cates with other pods through 8 spines. The link capability
is 10Gbps below ToRs and 40Gbps above them, and the link
delay is Sus. The over-subscription ratio is 1:1 at the ToR
switch layer, so does in other layers. To support multi-path
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Figure 14: Performance for realistic workloads.

capability, Equal Cost Multi Path (ECMP) routing scheme is
used. In this configuration, the congestion tends to occur at
the last hop. When PFC is employed to guarantee losslessness,
the root congestion at the last hop may spread to the whole
network.

Workloads: We choose two different workloads, whose
flow size distribution is listed in Table 1. These two workloads
are typical traffic pattern in operation data centers: (1) most
flows are short, and (2) most traffic is constituted by few but
large flows. The difference is that W2 contains more heavy-
tailed flows.

We generate over 50 thousands of flows with exponentially
distributed inter-arrival time, and configure the target load
at 0.6 for ToR down-links. The source and destination of
each flow are arbitrarily selected with a random in-cast ratio
ranging from 1 to 15.

Fig.14 presents the results. The generating rates of PFC
PAUSESs from different switch layers are drawn in Fig.14(a),
where the solid bat at the bottom indicates the PAUSE rate
from the ToRs, the middle stripe bar denotes that from the
Leafs, and the top empty bar shows that from the Spines.
In Fig.14(b), we draw the statistical FCT of all flows, and
Fig.14(c) shows the flow completion rate (FCR) i.e., the num-

ber of completed flows per second. Subsequently, we compare
the performance of PCN with QCN, DCQCN and TIMELY
under different workloads.

(1) W1 contains the most S size flows in number and the
most L size flows in bytes. Under this workload, the net-
work congestion condition would change dramatically. Al-
though PCN triggers 5.73x more PFC PAUSEs than QCN,
it achieves 1.60x faster 99%-ile FCT and 3.70x larger FCR.
This is because QCN reduces the sending rate of large flows
so drastically that the network becomes seriously underload.
Since PCN can rapidly detect the congestion point and ad-
just the rate of congested flows, short flows experience a low
queuing delay and complete quickly. This can improve the
overall FCT and increase FCR. Compared with DCQCN and
TIMELY, PCN avoids 64% and 75% PFC PAUSEs, speeds
up 1.75x and 2.35x in average FCT, and obtains 1.73x and
12.16x FCR, respectively.

(2) W2 is significantly heavy-tailed, where the S size
flows occupy almost 80% of the number and less than
1% of the bytes, while the XL size flows only take less
than 10% of the number but occupy almost all bytes. Un-
der this workload, PCN suppresses 35%/89%/99% PAUSEzs,
speeds up 1.44x/1.57x/10.96x in average FCT and achieves
1.27x/1.13x/6.5x more FCR compared with QCN, DCQCN
and TIMELY, respectively.

7.5 External Evaluations

Furthermore, we conduct external evaluations to explore
PCN’s performance in more scenarios. The detailed descrip-
tions are in Appendix B, and the main findings are five folds.

Flow Scalability: PCN can hold as many as 1024 con-
current long flows, guaranteeing few PFC PAUSEs, low and
stable queue length, near-full network utilization, as well as
good fairness.

Adversarial Traffic: When facing dynamic flows entering
and exiting with an interval of 10~100 control loops, the
end-to-end congestion control schemes fail to start the fast
rate increasing algorithm. Compared with QCN, DCQCN
and TIMELY, PCN can alleviate but not fully eliminate the
interruption from adversarial traffic.

Multiple Bottlenecks: In the parking lot scenario with N
bottlenecks, PCN allocates bandwidth following proportional
fairness. That is, it allocates ﬁ of capacity to the flow that
passes all N bottlenecks.

Multiple Priorities: When concurrent burst in higher pri-
ority leads to severe oscillation of available bandwidth in
lower priority, PCN triggers less PAUSE compared with DC-
QCN and TIMELY. Consequently, PCN outperforms other
schemes in speeding up the overall flow completion.

Deadlock: PCN can not essentially prevent PFC deadlock,
neither can other end-to-end congestion control schemes, but
can significantly decrease the probability of deadlock. Com-
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pared to DCQCN and TIMELY, PCN can reduce 79.2% and
96.7% of deadlocks, respectively.

8 Related Work

The lossless switching fabric is a lasting topic. Here we only
present a brief survey on the related work of lossless Ethernet
and its congestion management, as well as receiver-driven
rate control schemes.

Scaling RDMA over data centers. There are two lines
in scaling RDMA over data centers. The first line, such as
DCB [4] and RoCE [15, 26], attempts to enhance Ethernet
with lossless property using PFC. It requires little modifica-
tion to the well-tested RDMA transport stack but involves
new issues caused by PFC. So an appropriate end-to-end con-
gestion control scheme is needed. And the second line, such
as Resilient RoCE [34] and IRN [37], tries to improve the
RDMA transport stack to tolerate packet loss. Thus it can
scale RDMA over lossy networks. We prefer the first line. We
think the lossless Ethernet is more potential. On one hand, not
just for RDMA, lossless Ethernet makes it easier to enable
various well-tested transport protocols in data centers. It does
not require NICs to support selective retransmission using
the limited storage resources. On the other hand, lossless Eth-
ernet can avoid retransmission of lost packets, and then can
improve both network latency and throughput performance.

Lossless Ethernet switching fabric. It is always attrac-
tive to build cost-effective, efficient and large-scale lossless
switching fabric leveraging commodity Ethernet chips. The
related studies broadly follow three fundamental ways, which
are reservation, explicit allocation, and congestion manage-
ment. TDMA Ethernet [47] advocates reserving slots by de-
ploying TDMA MAC layer. Fastpass [43] conducts explicit
bandwidth allocations by a centralized arbiter to determine
the time at which each packet should be transmitted and the
path it should take. Whether TDMA Ethernet or Fastpass,
they leverage non-conflict bandwidth access to build lossless
Ethernet. However, due to slot wastage and unneglectable
signal overheads, their flexibility and scalability in large-scale
and ultra-high speed networks need to be further validated in
practice. The third approach is to enhance traditional lossy
Ethernet by introducing congestion management.

Congestion management for lossless Ethernet. IEEE
DCB task group [4] defines the congestion management
framework and develops concrete mechanisms, including
PFC [6] and QCN [5], to enhance traditional Ethernet to be
Converged Ethernet where losslessness should naturally be
indispensable. To enable RoCE deployment in large-scale
IP-routed data center networks, DCQCN [49] is developed
through replacing the congestion notification mechanism de-
fined in QCN with ECN in Layer 3, and then stitching together
pieces of rate adjusting laws from QCN [5] and DCTCP [12].
TIMELY [36] follows the implicit congestion detection mech-
anism developed by TCP Vegas [20] and uses delay measure-

ments to detect congestion, and then adjusts transmission rates
according to RTT gradients. Both explicit and implicit conges-
tion detection mechanisms in existing end-to-end congestion
control schemes cannot identify the real congested flows, thus
the performance issues in lossless Ethernet, such as HoL, con-
gestion spreading and unfairness, are hardly solved essentially.
In addition, IEEE 802.1 pQcz [7] has been supplemented to
prevent PFC harming victim flows by isolating congestion.
However, modification of current commodity switches is re-
quired to add more functions. In comparison, the congestion
detecting mechanism in our PCN can correctly identify con-
gested flows, moreover is practicable and back-compatible,
which endows fundamental advantages for congestion man-
agement in lossless Ethernet.

Receiver-driven rate control. Recently, a series of
receiver-driven rate control schemes have been proposed,
such as ExpressPass [21], NDP [27] and Homa [38]. Express-
Pass proactively controls congestion even before sending data
packets by shaping the flow of credit packets in receivers.
Both NDP and Homa also use the receiver-driven method to
allocate priority to different flows in lossy data center net-
works. The receiver-driven rate adjustment in our PCN not
only has the similar benefit of matching the incoming traffic
load to the network capacity in one RTT, but also can dras-
tically mitigate PFC triggers in one RTT as well, which is
especially appropriate for lossless Ethernet.

9 Conclusion

This paper re-architects congestion management for loss-
less Ethernet, and proposes Photonic Congestion Notifica-
tion (PCN), which is appropriate for lossless Ethernet by two
ingenious designs: (i) a novel congestion detection and iden-
tification mechanism to recognize which flows are really re-
sponsible for congestion; (ii) a receiver-driven rate adjustment
scheme to alleviate congestion in as fast as one loop control
round, i.e., one RTT. PCN can be easily implemented on
commodity switches with a little modification. Extensive ex-
periments and simulations confirm that PCN greatly improves
performance, and significantly mitigates PFC PAUSE mes-
sages and reduces the flow completion time under realistic
workload.
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A Theoretical Analysis

We build a fluid model of PCN to exhibit PCN’s good perfor-
mance of fast convergence, fairness, and stability. The main
symbols are summarized in Table 2.

A.1 Fluid Model

Suppose N sources share the bottleneck link with capacity C.
Foreachsourcei (i=1,--- ,N) and each CNP generating time
ty =kT(k=1,2,---), Ri(k),R;(k) and Q(k) denote the send-
ing rate and receiving rate of source 7, and the queue length in
bottleneck link, respectively. Clearly, the queue length Q(k)
evolutes as follows

O(k+1) =max{0,0(k) + [} Ri(k) - C]T} (3

As the associated egress port is not paused by its downstream
device and excessive packets are accumulated in buffer, we
regard the flow through this port is congested. Define the
congestion indicator function p(k)

0, ifOk+1)=0
p(k){ L, if Qk+1)>0 @

When N sources share the bottleneck capacity C by the send-

: fom (1) — _ Ri(k)
ing ratio 1;(k) I R

ing traffic can arrive their receiver side. Consequently, the
receiving rate of each source satisfies

. If the link is underflow, all incom-

Ri(k) = p(k)ni(k)C + (1 — p(k))Ri(k) (5)

With probability p(k) and receiving rate I?,(k), source i will
change its sending rate and the weight factor according to the
corresponding adjustment rule. Thus, we have,

~

Ri(k+1) = p(k)R;(k)(1 — wiin)+ (6)
(1= p(k))[Ri(k) (1 —w(k)) + Cw(k)]
and
w(k+1) = p(k)wmin+ (7

(1= p(K) w(k) (1 = w(k)) + wimaxw(K)]

The dynamic behavior of PCN congestion management sys-
tem can be described using Equation (3), (4), (5), (6) and (7).
Based on this fluid model, we analyze PCN’s properties in
terms of convergence, fairness, and stability.
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Variable Description
R; Sending rate of Flow i
uf Bandwidth allocation ratio, 1; = ZRlléi
R; Receiving rate of Flow i
w Weight factor
0 Bottleneck queue length
T CNP generating period
k Sequence of CNP generating periods
C Bottleneck link capacity
Table 2: Variables of fluid model
L ZrRO-ar * [SR. (k) = CIT
g > g
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Figure 15: Convergence of PCN.

A.2 Performance Analysis
A.2.1 Convergence

Without loss of generality, assume the queue associated with
bottleneck link is empty and the sending rate of N flows is
arbitrary at initial time 0. Hence, there are two cases.

(1) ¥ R;(0) > C: If the total rate exceeds the bottleneck
capacity, the corresponding queue increases and all flows
conduct the rate-decrease adjustment, thus,

[LR:(0)-C]T
(1= wmin)M:(0)C

Note that the total rate Y’ R;(1) = (1 — win)C < C, thus the
buffer will be drained out in next several periods. When the

port is in congestion, the rate-decrease algorithm takes effect.
Ri(1) Ri(0)

Since TRO) = TR0 Ve have
{ Q(k) = [ERi(0)—CIT — (k= 1)wminCT ®)
Ri(k) = (1 —wmin)ni(0)C

Equation (8) implies that the total sending rate " R;(k) con-
verges to (1 — wpiy)C in one control loop, while the queue
length approaches to zero after [1+ %@gc] control loops.
The detail evolutions are illustrated in F[{g 15(a).

(2) Y R;(0) < C: If the total rate is less than the bottleneck
capacity, all flows run the rate-increase algorithm. Eventually,

the total sending rate will exceed the link capacity after Ky

control loops, where Ky < 10 according to Fig.10. Therefore,
we have Y R; (ko) > C and Q(kg) = 0. Subsequently, the dy-
namic behavior of both queue and aggregate rate drawn in
Fig.15(b) are similar with those in above case.

In a word, PCN can achieve convergence of total rate to-
wards the bottleneck capacity as fast as in only one control
loop, and drain out backlog packets.

A.2.2 Fairness

Suppose the above convergence phase ends at the start of k;
control loop, where the buffer has been drained out, and the
sending rate of flow i is increased from (1 — win)Ni(ko)C,
then,

(1 _Wmin)zni(kO)C“FWminC ©)

and

Ri(k 1 — Wnin )i (k i
ni(k]): ( 1) _ ( Wmm) lez( 0)+Wmm (10)
ZRi(kl) (1 _Wmin) + NWmin
Note that Y R;(k1) = [1 + (N — 2+ Win )Wmin]C > C, the bot-
tleneck link becomes real congested and the RP conducts the
rate-decrease adjustment in the next period, thus we have

{ Ok +1) =
Ri(lirl) =

(N — 2 + Win )WminCT

(1= Wi (k1 )C (b

Since the aggregate sending rate will become below C, the
backlog packets in queue will be drained out at a rate of wy;,C
per period and the sending rate is kept, then

{ O(ki +k) =
Ri(kl—l—k) =

(N —k—1+ Wmin)WminCT
(1 - Wmin)ni(kl)c
Obviously, the buffer will become empty again at the start-

ing of k1 + N control loop, and the sending rate of flow i is
increased from (1 — wpin)n;(k1)C, thus

Q(k] +N) = 0 (12)
Ri(kl +N) = (1 _Wmin)zni(kl)c+wminc
and )
ni(k1+N): (I_Wmin) T]i(kl)"‘wmin (13)

(1 - Wmin)2 + NWmin
Comparing equation (9) and (12), we can find that PCN re-
peats the one period of rate-increase and N-1 periods of rate-
decrease, as illustrated in Fig.16. And from equation (10)
and (12), we also obtain the following dynamic evolution of
bandwidth allocation ratio of each flow,

Ni(ki +kN) = ani(ki +(k—1)N)+b
akni(kl)—i— }J‘;(])ajb
a (ko) + Xj_ga’b
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Figure 16: Dynamic behavior of PCN.

(1 _Wmin)2
(lfwmin)2+NWmm
sequently, as k — oo, there is

where a =
(1 Wmm) +NWnin

b
(ki +Nk) > —— = — 14

nl( 1+ ) 1—4 N ( )
That is, PCN can always achieve fair bandwidth allocation
regardless of the initial sending rates of flows and parameter
settings.

A2.3  Stability

Finally, we show the steady state behavior of PCN. As il-
lustrated in Fig.16, the queue length varies between 0 and
Q(k; + 1) periodically. Based on equation (1 1), the maximal
queue oscillation AQ satisfies

AQ=Q(ki +1) =

Similarly, the sending rate also changes in each N control
loops. As Fig.16 shows, the aggregate rate increases in k; +
kN period and decreases in k| + kN + 1 period. Note that each
flow achieves fair bandwidth allocation ratio in the steady
state, i.e.,m; — %, thus we can obtain the following derivation
based on equation (11) and (12),

(N =24 Wiin ) WminCT (15)

Ri(ki +kN) = (1 —wpin)NiC + wiinC
- [+ )Wmm]g
R,‘(kl + kN + 1) = ( Wmm)n C
— ( Wmm)

Therefore, the rate oscillation AR; around the fair share %
satisfies
AR; — wiinC (16)

Equation (15) and (16) indicate the oscillations of both the

queue and rate are bounded in steady state, i.e., the stability
of PCN is fine.

B External Evaluations

In this section, we will explore how PCN performs in artificial
cases, including flow scalability, adversarial traffic, multiple
bottlenecks, multiple priorities and deadlock.

€(0,1),b=—"mn___ Con-
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Figure 17: Flow scalability test.

B.1 Flow Scalability

Using the simple 3-dumbbell topology in §7.1, we vary the
number of flows from 4 to 64 (testbed) and 1024 (ns-3) to
test the performance of PCN under more flows. The queue
length, pause rate, link utilization and fairness are measured
and calculated, and the results are presented in Fig.17.

First, we measure the average queue occupancy and pause
rate as the number of concurrent flows increases. In PCN,
the average queue length is no more than 60KB and 100KB
in the testbed and ns-3 simulator, respectively. At the same
time, there are no PAUSE frames generated. In contrast, with
4 ~ 256 flows, DCQCN’s queue length grows with the number
of flows, QCN and TIMELY keep the queue length around
50KB ~ 100KB and 100 ~ 200K B, respectively. But QCN,
DCQCN and TIMELY maintain a very high queue occupancy
beyond 256 flows, which indicates the end-to-end congestion
control fail to take effect. As for QCN, DCQCN and TIMELY,
PFC is rarely triggered when the number of flows is less than
256, but persistent PAUSE frames are generated.

Second, we measure the utilization of bottleneck link. PCN
achieves near 100% utilization in all case with both testbed
and ns-3 simulator. QCN, DCQCN and TIMELY have a little
under-utilization with the increase of concurrent flows, but
recover full utilization with more than 256 flows. However,
this recovery of link utilization is due to PFC rather than the
end-to-end congestion control schemes.

Finally, we calculate the Jain’s fairness index [30] using
the throughput of each flow at 500ms interval. With a large
number of flows, the fairness index of QCN, DCQCN and
TIMELY drops significantly. Because they can not prevent
PFC from persistent triggers, the inherent unfairness problem
of PFC exhibits. On the opposite, PCN achieves good fairness
in all cases.
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B.2 Adversarial Traffic

Subsequently, we test PCN using an adversarial traffic pat-
tern. In the basic scenario in Fig.1, we set long flows FO and
F1 transmit persistently, and burst flows from H2~H15 to
R1 enter and exit the network at different intervals, varying
from 50us (1 control loop) to 5000us (100 control loops). We
simulate PCN, QCN, DCQCN and TIMELY, and measure the
throughput of the two bottlenecks (link SO—S1 and S1—R1)
and different flows. The results are drawn in Fig.18.

The first bottleneck, link SO—S1, is irrelative with the burst
flows. Fig.18(a) shows that under PCN, QCN and TIMELY,
link SO—S1 can achieve near-full utilization. But when the
burst flows becomes more frequent, DCQCN trends to loss as
high as 15% of throughput. This is because switch S1 pauses
SO when the burst flows make P2IS1 congested, and DCQCN
conducts improper rate decrease for the victim flow FO.

The second bottleneck, link S1—R1, is frequently inter-
rupted by the burst flows. Fig.18(b) exhibits that when the flow
arrival interval shrinks, the congestion-relative flow F1 occu-
pies lower throughput but the link utilization becomes larger.
The performance issue occurs when the flow arrival interval
is a little large (>500us, 10 control loops). This means, their
rate increase phase is interrupted by new-arrival flows. We

can see that PCN keeps the link throughput at 30Gbps, while
QCN, DCQCN and TIMELY remains at 23Gbps, 25Gbps
and 29Gbps, respectively. That is, PCN can alleviate, but not
eliminate, the interruption from adversarial traffic.

B.3 Multiple Bottlenecks

In a multi-bottleneck scenario, the NP-ECN method of PCN’s
CP may encounter several issues. On one hand, when the first
congestion point marks ECN on all packets, the second con-
gestion point may be paused, thus some flows are the victim
but they have been marked with ECN already. On the other
hand, flows through multiple congestion points may have a
larger probability to be marked with ECN, resulting in un-
fairness. To test how PCN performs in multiple bottleneck
scenario, we conduct a series of simulations using the parking
lot topology in Fig.19(a). There are N bottlenecks and N + 1
flows, where we set N = 2,4,6, 8, 10. FO passes all the bottle-
necks while other flows pass only one bottleneck. We measure
the throughput of FO and F1, and their sum is the throughput
of link1. The result is drawn in Fig.19(b). Obviously, link1
achieves the similar utilization regardless of the number of
bottlenecks. PCN can always provide more than 98% of link
utilization, while the link utilization under QCN and DCQCN
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Scheme | S(P1) | M(P2) | L(P3) | XL(P4) [E9PCN I QON I DCQCN O TIMELY | [ Avg 99%ile ]
PCN 0 0 0.10 171.49 - 300 — oy
QCN 0 0 | 028 | 11049 |§ " 3 200] 2

DCQCN | 0 0 | 026 | 175.02 |% -G ool B

TIMELY | 0 0 [ 109 [21036 " ELL o L oL L

Table 3: Generating rate of PFC PAUSEs for
multiple priorities.

and TIMELY is 90%, 88% and 95%, respectively. Meanwhile,
FO is allocated less bandwidth than F2. Actually, the band-
width allocation of PCN conforms to proportional fairness,
where FO obtains about ﬁ of the capacity. QCN allocates
FO less than the proportional fairness. DCQCN allocates FO
more than the proportional fairness, but also less than the
max-min fairness, i.e, half of the capacity.

B.4 Multiple Priorities

The switching fabric in data center typically provides multiple
priorities to improve performance, especially for minimizing
flow completion time. The principle “short flow first” has been
adopted in a series of works such as pHost [24], pFabric [14]
and PIAS [17]. However, the concurrent burst in higher prior-
ity may trigger more PAUSE in lower priority, and impact the
end-to-end congestion control schemes. To demonstrate and
confirm this fact, we configure W1 and repeat the simulation
in § 7.4, where the flows are classified into four priorities
according to their size, namely, the S size flows are in the
first priority and the XL flows are gathered in the fourth prior-
ity. The switches forward packets following the strict priority
scheduling.

The generating rate of PFC PAUSEs and FCT for different
priorities are listed in Table 3 and shown in Fig.20. For S
and M flows in these two high priorities, few PFC PAUSE
messages generate regardless of congestion control schemes.
Thus, these flows can obtain almost the same FCT under three
congestion control schemes. On the contrary, for the L and
XL flows in the two low priorities, PFC PAUSEs can not be
avoided. In this case, PCN triggers less PAUSE compared
with DCQCN and TIMELY. QCN reduces PAUSE generated
for XL flows by underutilizing available bandwidth. PCN

Figure 20: Average/99%-ile flow completion time for multiple priorities.
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(b) Statistical Results
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Figure 21: Performance of various schemes under deadlock
scenario.

outperforms the other three schemes in speeding up the overall
flow completion time.

B.5 Deadlock Scenario

A common concern in Lossless Ethernet is that PAUSE can
lead to deadlocks [28]. To explore PCN’s effort to avoiding
deadlock, we conduct a simple simulation using the topology
illustrated in Fig.21(a). It comes from one pod in the clos
network used in § 7.4, but link LO-T3 and link L1-TO are
failed, such that there is a cycle buffer dependency (CBD) as
the red line draws. We simulate PCN, DCQCN and TIMELY
with the W2 workload. The target load is 0.6 at ToR down-
links with in-cast ratio ranging from 1 to 15. Each scheme is
tested for 1000 times and every simulation lasts for 500ms. We
record the time when deadlock occurs, and draw the statistical
results in Fig.21(b). Among the 1000 simulations, PCN only
encounters with deadlock for 28 times, while DCQCN and
TIMELY are deadlocked for 134 and 870 times, respectively.
The advantage of PCN comes from the positive effect of
mitigating PFC triggers and stopping congestion spreading.

36 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



Measuring Congestion in High-Performance Datacenter Interconnects

Saurabh Jha!, Archit Patke!, Jim Brandtz, Ann Gentile?, Benjamin Lim!,

Mike Showerman®, Greg Bauer?, Larry Kaplan*, Zbigniew Kalbarczyk', William Kramer'-, Ravi Iyer

1

YUniversity of Illinois at Urbana-Champaign, *Sandia National Lab,
3National Center for Supercomputing Applications, *Cray Inc.

Abstract

While it is widely acknowledged that network congestion
in High Performance Computing (HPC) systems can signifi-
cantly degrade application performance, there has been little
to no quantification of congestion on credit-based intercon-
nect networks. We present a methodology for detecting, ex-
tracting, and characterizing regions of congestion in networks.
We have implemented the methodology in a deployable tool,
Monet, which can provide such analysis and feedback at run-
time. Using Monet, we characterize and diagnose congestion
in the world’s largest 3D torus network of Blue Waters, a 13.3-
petaflop supercomputer at the National Center for Supercom-
puting Applications. Our study deepens the understanding of
production congestion at a scale that has never been evaluated
before.

1 Introduction

High-speed interconnect networks (HSN), e.g., Infini-
band [48] and Cray Aries [42]), which uses credit-based flow
control algorithms [32, 61], are increasingly being used in
high-performance datacenters (HPC [11] and clouds [5, 6,8,
80]) to support the low-latency communication primitives
required by extreme-scale applications (e.g., scientific and
deep-learning applications). Despite the network support for
low-latency communication primitives and advanced conges-
tion mitigation and protection mechanisms, significant perfor-
mance variation has been observed in production systems run-
ning real-world workloads. While it is widely acknowledged
that network congestion can significantly degrade application
performance [24,26,45,71, 81], there has been little to no
quantification of congestion on such interconnect networks
to understand, diagnose and mitigate congestion problems
at the application or system-level. In particular, tools and
techniques to perform runtime measurement and characteri-
zation and provide runtime feedback to system software (e.g.,
schedulers) or users (e.g., application developers or system
managers) are generally not available on production systems.
This would require continuous system-wide, data collection
on the state of network performance and associated complex

analysis which may be difficult to perform at runtime.

The core contributions of this paper are (a) a methodol-
ogy, including algorithms, for quantitative characterization
of congestion of high-speed interconnect networks; (b) in-
troduction of a deployable toolset, Monet [7], that employs
our congestion characterization methodology; and (c) use of
the the methodology for characterization of congestion using
5 months of operational data from a 3D torus-based inter-
connect network of Blue Waters [1,27,60], a 13.3-petaflop
Cray supercomputer at the National Center for Supercom-
puting Applications (NCSA) at the University of Illinois at
Urbana-Champaign. The novelty of our approach is its ability
to use percent time stalled (Pry)' metric to detect and quan-
titatively characterize congestion hotspots, also referred to
as congestion regions (CRs), which are group of links with
similar levels of congestion.

The Monet tool has been experimentally used on NCSA’s
Blue Waters. Blue Waters uses a Cray Gemini [21] 3D torus
interconnect, the largest known 3D torus in existence, that
connects 27,648 compute nodes, henceforth referred to as
nodes. The proposed tool is not specific to Cray Gemini and
Blue Waters; it can be deployed on other k-dimensional mesh
or toroidal networks, such as TPU clouds [3], Fujitsu TOFU
network-based [18,20] K supercomputer [70] and upcoming
post-K supercomputer [10]°. The key components of our
methodology and the Monet toolset are as follows:

Data collection tools: On Blue Waters, we use vendor-
provided tools (e.g., gpcdr [35]), along with the Lightweight
Distributed Metric Service (LDMS) monitoring frame-
work [17]. Together these tools collect data on (a) the network
(e.g., transferred/received bytes, congestion metrics, and link
failure events); (b) the file system traffic (e.g., read/write
bytes); and (c) the applications (e.g., start/end time). We are
released raw network data obtained from Blue Waters [57] as
well as the associated code for generating CRs as artifacts with
this paper [7]. To the best of our knowledge, this is the first

1Py, defined formally in Section 2, approximately represents the intensity
of congestion on a link, quantified between 0% and 100%.
2The first post-K supercomputer is scheduled to be deployed in 2021.
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Figure 1: Characterization and diagnosis workflow for interconnection-networks.

such large-scale network data release for an HPC high-speed

interconnect network that uses credit-based flow control.

A network hotspot extraction and characterization
tool, which extracts CRs at runtime; it does so by using an
unsupervised region-growth clustering algorithm. The clus-
tering method requires specification of congestion metrics
(e.g., percent time stalled (Pr;) or stall-to-flit ratios) and a
network topology graph to extract regions of congestion that
can be used for runtime or long-term network congestion
characterization.

A diagnosis tool, which determines the cause of conges-
tion (e.g., link failures or excessive file system traffic from
applications) by combining system and application execution
information with the CR characterizations. This tool leverages
outlier-detection algorithms combined with domain-driven
knowledge to flag anomalies in the data that can be correlated
with the occurrence of CRs.

To produce the findings discussed in this paper, we used
5 months of operational data on Blue Waters representing
more than 815,006 unique application runs that injected more
than 70 PB of data into the network. Our key findings are as
follows:

o While it is rare for the system to be globally congested,
there is a continuous presence of highly congested regions
(CRs) in the network, and they are severe enough to affect
application performance. Measurements show that (a) for
more than 56% of system uptime, there exists at least one
highly congested CR (i.e., a CR with a Prg > 25%), and that
these CRs have a median size of 32 links and a maximum
size of 2,324 links (5.6% of total links); and (b) highly
congested regions may persist for more than 23 hours, with
a median duration time of 9 hours>. With respect to impact
on applications, we observed 1000-node production runs
of the NAMD [77] application * slowing down by as much
as 1.89x in the presence of high congestion compared to
median runtime of 282 minutes.

e Once congestion occurs in the network, it is likely to persist
rather than decrease, leading to long-lived congestion in
the network. Measurements show that once the network
has entered a state of high congestion (Pry > 25%), it will
persist in high congestion state with a probability of 0.87

3Note that Blue Waters allows applications to run for a maximum of 48 hours.
4NAMD is the top application running on Blue Waters consuming 18% of
total node-hours [58].
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Figure 2: Cray Gemini 48-port switch.

in the next measurement window.

e Quick propagation of congestion can be caused by net-
work component failures. Network component failures
(e.g., network router failures) that occur in the vicinity of a
large-scale application can lead to high network congestion
within minutes of the failure event. Measurements show
that 88% of directional link failures > caused the formation
of CRs with an average Pry > 15%.

e Default congestion mitigation mechanisms have limited
efficacy. Our measurements show that (a) 29.8% of the 261
triggers of vendor-provided congestion mitigation mecha-
nisms failed to alleviate long-lasting congestion (i.e., con-
gestion driven by continuous oversubscription, as opposed
to isolated traffic bursts), as they did not address the root
causes of congestion; and (b) vendor-provided mitigation
mechanisms were triggered in 8% (261) of the 3,390 high-
congestion events identified by our framework. Of these
3,390 events, 25% lasted for more than 30 minutes. This
analysis suggests that augmentation of the vendor-supplied
solution could be an effective way to improve overall con-
gestion management.

In this paper, we highlight the utility of congestion regions in

the following ways:

o We showcase the effectiveness of CRs in detecting long-
lived congestion. Based on this characterization, we pro-
pose that CR detection could be used to trigger congestion
mitigation responses that could augment the current vendor-
provided mechanisms.

o We illustrate how CRs, in conjunction with network traf-
fic assessment, enable congestion diagnosis. Our diagno-
sis tool attributes congestion cause to one of the follow-
ing: (a) system issues (such as launch/exit of application),
(b) failure issues (such as network link failures), and (c)
intra-application issues (such as changes in communication
patterns within an application). Such a diagnosis allows
system managers to take cause-specific mitigating actions.
This paper’s organization is illustrated in Figure 1. We

present background information on the Gemini network, per-

formance data, and congestion mitigation mechanisms in Sec-
tion 2. In Section 3, we present our data collection method-
ology and tools. In Section 4, we present our methodology
for characterizing congestion. We present our measurement-

Ssee Section 5.4 for the definition of directional link.
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driven congestion characterization results in Section 5. In
Section 6, we discuss the further utility of our methodology
to inform targeted responses, and in Section 7, we discuss its
use in diagnosing the root causes of congestion. We address
related work in Section 8 and conclude in Section 9.

2 Cray Gemini Network and Blue Waters

A variety of network technologies and topologies have been
utilized in HPC systems (e.g., [19,21,31,36,42,59,62,75]).
Depending on the technology, routing within these networks
may be statically defined for the duration of a system boot cy-
cle, or may dynamically change because of congestion and/or
failure conditions. More details on HPC interconnects can be
found in Appendix A. The focus of this paper is on NCSA’s
Cray XE/XK Blue Waters [1] system, which is composed of
27,648 nodes and has a large-scale (13,824 x 48 port switches)
Gemini [21] 3D torus (dimension 24x24x24) interconnect. It
is a good platform for development and validation of conges-
tion analysis/ characterization methods as:

e It uses directional-order routing, which is predominantly
static®. From a traffic and congestion characterization per-
spective, statically routed environments are easier to vali-
date than dynamic and adaptive networks.

o Blue Waters is the best case torus to study since it uses
topology-aware scheduling (TAS) [41, 82], discussed later
in this section, which has eliminated many congestion is-
sues compared to random scheduling.

o Blue Waters performs continuous system-wide collection
and storage of network performance counters.

2.1 Gemini Network

In Cray XE/XK systems, four nodes are packaged on a
blade. Each blade is equipped with a mezzanine card. This
card contains a pair of Gemini [21] ASICs, which serve as
network switches. The Gemini switch design is shown in
Figure 2. Each Gemini ASIC consists of 48 tiles, each of
which provide a duplex link. The switches are connected with
one another in 6 directions, X+/-, Y+/- and Z+/-, via multiple
links that form a 3D torus. The number of links in a direction,
depends on the direction as shown in the figure; there are 8
each in X+/- and, Z+/- and 4 each in Y+/-. It is convenient
to consider all links in a given direction as a directionally
aggregated link, which we will henceforth call a link. The
available bandwidth on a particular link is dependent on the
link type, i.e., whether the link connects compute cabinets or
blades, in addition to the number of tiles in the link [76]. X,
Y links have aggregate bandwidths of 9.4 GB/s and 4.7 GB/s,
respectively, whereas Z links are predominantly 15 GB/s, with
1/8 of them at 9.4 GB/s. Traffic routing in the Gemini network
is largely static and changes only when failures occur that
need to be routed around. Traffic is directionally routed in
the X, Y, and Z dimensions, with the shortest path in terms of

When network-link failures occur, network routes are recomputed; that
changes the route while the system is up.

hops in + or - chosen for each direction. A deterministic rule
handles tie-breaking.

To avoid data loss in the network 7, the Gemini HSN uses a
credit-based flow control mechanism [61], and routing is done
on a per-packet basis. In credit-based flow control networks,
a source is allowed to send a quantum of data, e.g., a flit, to
a next hop destination only if it has a sufficient number of
credits. If the source does not have sufficient credits, it must
stall (wait) until enough credits are available. Stalls can occur
in two different places: within the switch (resulting in a ing
stall) or between switches (resulting in an credit stall).

Definition 1 : A Credit stall is the wait time associated with
sending of a flit from an output buffer of one switch to an input
buffer of another across a link.

Definition 2 : An Ingq stall is the wait time associated with
sending of a flit from the output buffer of one switch port to an
input buffer of another between tiles within the same network
switch ASIC.

Congestion in a Gemini-based network can be characterized
using both credit and ing stall metrics. Specifically, we con-
sider the Percent Time Stalled as a metric for quantifying
congestion, which we generically refer to as the stall value.

Definition 3 : Percent Time Stalled (Pry) is the average time
spent stalled (T;s) over all tiles of a directional network link
or individual intra-Gemini switch link over the same time
interval (T;): Prs = 100 T;s/T;.

Depending on the network topology and routing rules, (a)
an application’s traffic can pass through switches not directly
associated with its allocated nodes, and multiple applications
can be in competition for bandwidth on the same network
links; (b) stalls on a link can lead to back pressure on prior
switches in communication routes, causing congestion to
spread; and (c) the initial manifestation location of congestion
cannot be directly associated with the cause of congestion.
Differences in available bandwidth along directions, com-
bined with the directional-order routing, can also cause back
pressure, leading to varying levels of congestion along the
three directions.

2.2 Congestion Mitigation

Run-time evaluations that identify localized areas of con-
gestion and assess congestion duration can be used to trigger
Congestion Effect Mitigating Responses (CEMRs), such as
resource scheduling, placement decisions, and dynamic ap-
plication reconfiguration. While we have defined a CEMR
as a response that can be used to minimize the negative ef-
fects of network congestion, Cray provides a software mecha-
nism [33] to directly alleviate the congestion itself. When a

"The probability of loss of a quantum of data in credit-flow networks is
negligible and mostly occurs due to network-related failures.
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variety of network components (e.g., tiles, NICs) exceeds a
high-watermark threshold with respect to the ratio of stalls to
forwarded flits, the software instigates a Congestion Protec-
tion Event (CPE), which is a throttling of injection of traffic
from all NICs. The CPE mechanism limits the aggregate traf-
fic injection bandwidth over all compute nodes to less than
what can be ejected to a single node. While this ensures that
the congestion is at least temporarily alleviated, the network
as a whole is drastically under-subscribed for the duration
of the throttling. As a result, the performance of all applica-
tions running on the system can be significantly impacted.
Throttling remains active until associated monitored values
and ratios drop below their low-watermark thresholds. Appli-
cations with sustained high traffic injection rates may induce
many CPEs, leading to significant time spent in globally throt-
tling. Bursts of high traffic injection rates may thus trigger
CPEs, due to localized congestion, that could have been alle-
viated without the global negative impact of throttling. There
is an option to enable the software to terminate the applica-
tion that it determines is the top congestion candidate, though
this feature is not enabled on the Blue Waters system. The
option to terminate application in a production environment
is not acceptable to most developers and system managers as
it will lead to loss of computational node-hours used by the
application after the last checkpoint.

While some of this congestion may be alleviated by
CEMRs such as feedback of congestion information to appli-
cations to trigger rebalancing [29] or to scheduling/resource
managers to preferentially allocate nodes (e.g., via mecha-
nisms such as slurm’s [79] node weight), some may be un-
avoidable since all networks have finite bandwidth.

On Blue Waters a topology-aware scheduling (TAS) [41,
82] scheme is used to decrease the possibility of application
communication interference by assigning, by default [12],
node allocations that are constrained within small-convex
prisms with respect to the HSN topology. Jobs that exceed
half a torus will still route outside the allocation and possibly
interfere with other jobs and vice versa; a non-default option
can be used to avoid placement next to such jobs. The /O
routers represent fixed, and roughly evenly distributed, pro-
portional portions of the storage subsystem. Since the storage
subsystem components, including I/O routers, are allocated
(for writes) in a round robin (by request order) manner in-
dependent of TAS allocations, storage I/O communications
will generally use network links both within and outside the
geometry of the application’s allocation and can also be a
cause of interference between applications.

3 Data Sources and Data Collection Tools

This section describes the datasets and tools used to collect
data at scale to enable both runtime and long-term characteri-
zation of network congestion. We leverage vendor-provided
and specialized tools to enable collection and real-time stream-
ing of data to a remote compute node for analysis and char-

acterization. Data provided or exposed on all Cray Gemini
systems includes: OS and network performance counter data,
network resilience-related logs, and workload placement and
status logs. In this study, we used five months (Jan 01 to May
31, 2017) of production network performance-related data
(15 TB), network resilience-related logs (100 GB), and appli-
cation placement logs (7 GB). Note that the methodologies
addressed in this work rely only on the availability of the data,
independent of the specific tools used to collect the data.

Network Performance Counters: Network performance-
related information on links is exposed via Cray’s gpcdr [35]
kernel module. Lustre file system and RDMA traffic in-
formation is exposed on the nodes via /proc/fs and
/proc/kgnilnd. Itis neither collected nor made available for
analysis via vendor-provided collection mechanisms. On Blue
Waters, these data are collected and transported off the system
for storage and analysis via the Lightweight Distributed Met-
ric Service (LDMS) monitoring framework [17]. In this work,
we use the following information: directionally aggregated
network traffic (bytes and packets) and length of stalls due
to credit depletion; Lustre file system read and write bytes;
and RDMA bytes transmitted and received. LDMS samplers
collect those data at 60-second intervals and calculate derived
metrics, such as the percent of time spent in stalls (Prg) and
percent of total bandwidth used over the last interval. LDMS
daemons synchronize their sampling to within a few ms (ne-
glecting clock skew) in order to provide coherent snapshots
of network state across the whole system.

Network Monitoring Logs: Network failures and conges-
tion levels are monitored and mitigated by Cray’s xtnlrd soft-
ware. This software further logs certain network events in a
well-known format in the nerwatch log file. Significant exam-
ple log lines are provided in Cray documents [33,34]. Regular
expression matching for these lines is implemented in Log-
Diver [66], a log-processing tool, which we use to extract the
occurrences, times, and locations of link failures and CPEs.

Workload Data: Blue Waters utilizes the Moab scheduler,
from which application queue time, start time, end time, exit
status, and allocation of nodes can be obtained. The work-
load dataset contains information about 815,006 application
runs that were executed during our study period. A detailed
characterization of Blue Waters workloads can be found in
Appendix B and Blue Waters workload study [58].

Note that we will only be releasing network data. Worload
data and network monitoring logs will not be released due to
privacy and other concerns.

4 CR Extraction and Characterization Tool

This section first describes our motivation for choosing
congestion regions (CRs) as a driver for characterizing net-
work congestion, and then describes our methodology (imple-
mented as the Monet tool) for extracting CRs over each data
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collection interval and the classification of those CRs based
on severity.

4.1 Why Congestion Regions?

We seek to motivate our choice to characterize congestion
regions (CRs) and the need for estimates for severity in terms
of the stall values. We first show that the charcterization of
hotspot links individually do not reveal the spatial and growth
characteristics which is needed for diagnosis. Then, we show
how characterizing CRs is meaningful.

Characterizing hotspot links individually do not reveal
regions of congestion. Figure 3 characterizes the median,
99%ile and 99.9%ile duration of the hotspot links by gen-
erating the distribution of the duration for which a link per-
sists to be in congestion at Prg > PrThreshold value. For
example, 99.9%ile duration for hotspot links with Prg > 30
is 400 minutes (6.67 hours). The measurements show that the
median duration of hotspot link at different Pr, thresholds
is constantly at ~ 0, however, 99.9%ile duration of hotspot
links linearly decreases with increasing Pr; threshold value.
Although such characterizations are useful to understand con-
gestion at link-level, they hide the spatial characteristics of
congestion such as the existence of multiple pockets of con-
gestion and their spread and growth over time. The lack of
such information makes it difficult to understand congestion
characteristics and their root cause.
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Figure 3: Duration of congestion on links at different Pr; thresholds
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Figure 4: Correlating congestion with NAMD application runtime
CRs captures relationship between congestion-level and
application slowdown efficiently. In order to determine
possible severity values and show effectiveness of CRs in
determining application slowdown, we extracted from the
production Blue Waters dataset a set of NAMD [771® runs

8NAMD has two different implementations: (a) uGNI shared memory parallel
(SMP)-based, and (b) MPI-based. In this work, unstated NAMD refers to
uGNI SMP-based implementation. uGNI is user level Generic Network
Interface [83].

each of which ran on 1000 nodes with the same input param-
eters. We chose NAMD because it consumes approximately
18% of total node-hours available on Blue Waters’. Figure 4a
shows the execution time of each individual run with respect
to the average Pr; over all links within the allocated applica-
tion topology. (Here we leverage TAS to determine severity
value estimates based on the values within the allocation; that
is not a condition for the rest of this work.) Figure 4a shows
that execution time is perhaps only loosely related to the av-
erage Pry; with correlation of 0.33 . In contrast, 4b shows
the relationship of the application execution time with the
maximum average Prg over all CRs (defined in 4.2) within the
allocated topology; with correlation of 0.89. In this case, exe-
cution time increases with increasing maximum of average
Prs over all regions. We found this relationship to hold for
other scientific applications. This is a motivating factor for
the extraction of such congestion regions (CRs) as indicators
of ‘hot-spots’ in the network. We describe the methodology
for CR extraction in the next section.

In addition, we selected approximate ranges of Pr; values,
corresponding to increasing run times, to use as estimates
for the severity levels as these can be easily calculated, un-
derstood and compared. These levels are indicated as sym-
bols in the figure. Explicitly, we assign 0-5% average Prg
in a CR as Negligible or ‘Neg’, 5-15% as ‘Low’, 15-25% as
‘Medium’, and > 25% as ‘High’. These are meant to be quali-
tative assignments and not to be rigorously associated with
a definitive performance variation for all applications in all
cases, as the network communication patterns and traffic vol-
umes vary among HPC applications. We will use these ranges
in characterizations in the rest of this work. More accurate
determinations of impact could be used in place of these in
the future, without changing the validity of the CR extraction
technique.

4.2 Extracting Congestion Regions

We have developed an unsupervised clustering approach
for extracting and localizing regions of congestion in the net-
work by segmenting the network into groups of links with
similar congestion values. The clustering approach requires
the following parameters: (a) network graph (G), (b) conges-
tion measures (v for each vertex v in G), (c) neighborhood
distance metric (dg), and (d) stall similarity metric (d; ). The
network is represented as a graph G. Each link in the network
is represented as a vertex v in G, and two vertices are con-
nected if the corresponding network links are both connected
to the same switch (i.e., the switch is an edge in the graphs).
For each vertex v, the congestion measures(s) are denoted
by the vector vy, which is composed of credit stalls and inq

9This was best effort extraction and the NAMD application runs may not
be exactly executing the same binary or processing the same data, as user
may have recompiled the code with a different library or used the same
name for dataset while changing the data. There is limited information to
extract suitable comparable runs from historical data that are also subject to
allocation and performance variation.
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stalls, which we use independently. Distance metrics dg and
dy, are also required, the former for calculating distances be-
tween two vertices and the latter for calculating differences
among the stalls v;. We assign each vertex the coordinate
halfway between the logical coordinates of the two switches
to which that vertex is immediately connected, and we set dg
to be the L1 norm between the coordinates. Since the Blue
Waters data consists of directionally aggregated information
as opposed to counters on a per-tile-link (or buffer) basis,
then, in our case, d), is simply the absolute difference between
the two credit-stall or the two ing-stall values of the links,
depending on what kinds of regions are being segmented.
We consider credit and inq stalls separately to extract CRs,
as the relationship between the two types of stalls is not im-
mediately apparent from the measurements, and thus require
two segmentation passes. Next, we outline the segmentation
algorithm.

Segmentation Algorithm The segmentation algorithm has
four stages which are executed in order, as follows.

e Nearby links with similar stall values are grouped together.
Specifically, they are grouped into the equivalence classes
of the reflexive and transitive closure of the relation ~,
defined by x ~, y < ds(x,y) < dAdy(x;—ys) < 0, where
x,y are vertices in G, and 8,0, are thresholds for distance
between vertices and stall values, respectively.

Nearby regions with similar average stall values, are
grouped together through repetition of the previous step,
but with regions in place of individual links. Instead of
using the link values vy, we use the average value of vy over
all links in the region, and instead of using 8,, we use a
separate threshold value 0,.

CRs that are below the size threshold ¢ are merged into the
nearest region within the distance threshold 3.

Remaining CRs with < ¢ links are discarded, so that re-
gions that are too small to be significant are eliminated.
The optimum values for the parameters used in segmenta-
tion algorithms, except for d, were estimated empirically by
knee-curve [63] method, based on the number of regions pro-
duced. Using that method, the obtained parameter values '°
are: (a) 6, =4, (b) 6, =4, and (c) o = 20. In [63], the authors

105tall thresholds are scaled by 2.55x to represent the color range (0-255)
for visualization purposes
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99.33%

1000
1200
1400
1600

probabili-

captures tr
ties from one severity state to another. Percentage in boxes
indicates percentage of total link-hours spent in that state.
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(c) CR congestion e

conclude that the optimum sliding window time is the knee
of the curve drawn between the sliding window time and the
number of clusters obtained using a clustering algorithm. This
decreases truncation errors (in which a cluster is split into
multiple clusters because of a small sliding window time)
and collision errors (in which two events not related to each
other merge into a single cluster because of a large sliding
window time). We fixed d to be 2 in order to consider only
links that are two hops away, to capture the local nature of
congestion [47]. It should be noted that the region clustering
algorithm may discard small isolated regions (size < ©) of
high congestion. If such CRs do cause high interference, they
will grow over time and eventually be captured.

Our algorithm works under several assumptions: (a) con-
gestion spreads locally, and (b) within a CR, the stall values of
the links do not vary significantly. These assumptions are rea-
sonable for k-dimensional toroids that use directional-order
routing algorithm. The methodology used to derive CRs is not
dependent on the resource allocation policy (such as TAS).
The proposed extraction and its use for characterization is
particularly suitable for analysis of network topologies that
use directional- or dimensional-order routing. In principle,
the algorithm can be applied to other topologies (such as
mesh and high-order torus networks) with other metrics (such
as stall-to-flit ratio). Furthermore, the region extraction al-
gorithm does not force any shape constraints; thus CRs can
be of any arbitrary shape requiring us to store each vertex
associated with the CR. In this work, we have configured the
tool to store and display bounding boxes over CRs, as doing
so vastly reduces the storage requirements (from TBs of raw
data to 4 MB in this case), provides a succinct summary of
the network congestion state, and eases visualization.

We validate the methodology for determining the param-
eters of the region-based segmentation algorithm and its ap-
plicability for CR extraction by using synthetic datasets, as
described in Appendix D.

4.3 Implementation and Performance

We have implemented the region-extraction algorithm as
a modified version of the region growth segmentation al-
gorithm [78] found in the open-source PointCloud Library
(PCL) [9] [4]. The tool is capable of performing run-time
extraction of CRs even for large-scale topologies. Using the
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Blue Waters dataset, Monet mined CRs from each 60-second
snapshot of data for 41,472 links in ~ 7 seconds; Monet was
running on a single thread of a 2.0 GHz Intel Xeon E5-2683
v3 CPU with 512 GB of RAM. Thus, on Blue Waters Monet
can be run at run-time, as the collection interval is much
greater than CR extraction time. Since Monet operates on the
database, it works the same way whether the data are being
streamed into the database or it is operating on historical data.

5 Characterization Results

In this section, we present results of the application of
our analysis methodology to five months of data from a large-
scale production HPC system (Blue Waters) to provide charac-
terizations of CRs. Readers interested in understanding traffic
characteristics at the link and datacenter-level may refer to a
related work [16].

5.1 Congestion Region Characterization

Here we assess and characterize the congestion severity.

CR-level Size and Severity Characterizations: Figure 5a

shows a histogram'! of CR sizes in terms of the number of

links for each congested state (i.e., not including ‘Neg’). Fig-
ure 5b show a histogram of the durations of CRs across ‘Low’,

‘Medium’ and ‘High’ congestion levels. These measurements

show that unchecked congestion in credit-based interconnects

leads to:

e High growth and spread of congestion leading to large
CRs. The max size of CRs in terms of number of links
was found to be 41,168 (99.99% of total links), 6,904
(16.6% of total links), and 2,324 (5.6% of total links) across
‘Low’, ‘Medium’ and ‘High’ congestion levels respectively,
whereas the 99th percentile of the'” CR size was found to
be 299, 448, and 214 respectively.

e [ ocalized congestion hotspots, i.e., pockets of congestion.
CRs rarely spread to cover all of the network. The number
of CRs decreases (see Figure 5a) with increasing size across
all severity states except for ‘Low’ for which we observe
increase at the tail. For example, there are ~ 16,000 CRs in
the ‘High’ which comprise 128 links but only ~ 141 CRs
of size ~ 600.

e [ong-lived congestion. The CR count decreases with in-
creasing duration, however there are many long-lived CRs.
The 50%ile, 99%ile and max duration of CRs across all
states were found to be 579 minutes (9.7 hours), 1421 min-
utes (23.6 hours), and 1439 minutes (24 hours) respectively,
whereas the 50%ile, 99%ile and max Pr, of CRs was found
to be 14%, 46%, and 92%, respectively. CR duration did not
change significantly across ‘Low’, ‘Medium’, and ‘High’.

CR Evolution and State Probability: Figure 5c shows the
transition probabilities of the CR states. The percentage in

plotted as lines and every tenth point marked on the line using a shape for
clarity.
12We will use %ile to denote percentile in the rest of the paper.

Figure 6: Network congestion evolution captures transition probabilities
Jfrom one severity state to another. Percentage numbers in boxes indicates
percentage of total system wall clock time spent in that state.

the box next to each state shows the percentage of total link-

hours'? spent in that state. It can be interpreted as the proba-

bility that a link will be congested at a severity state at a given
time. For example, there is a probability of 0.10% that a link
will be in the ‘High’. These measurements show that:

e The vast majority of link-hours (99.3% of total link-hours)
on Blue Waters are spent in ‘Neg’ congestion. Considera-
tion of a grosser congestion metric, such as the average stall
time across the entire network, will not reveal the presence
of significant CRs.

e Once a CR of ‘Low’, ‘Medium’ or ‘High’ congestion is
formed, it is likely to persist (with a probability of more
than 0.5) rather than decrease or vanish from the network.

5.2 Network-level Congestion Evolution and
Transition Probabilities

In this section, we assess and characterize the overall net-
work congestion severity state. The overall network conges-
tion severity state is the state into which the highest CR falls.
That assignment is independent of the overall distribution
of links in each state. Figure 6 shows the probabilities that
transitions between network states will occur between one
measurement interval and the next. The rectangular boxes in
the figure indicate the fraction of time that the network resides
in each state. These measurements show the following:

e While each individual link of the entire network is most
often in a state of ‘Neg’ congestion, there exists at least one
‘High’ CR for 56% of the time. However, ‘High’ CRs are
small; in Section 5.1, we found that 99th percentile size of
‘High’ is 214 links. Thus, the Blue Waters network state is
nearly always non-negligible (95%), with the “High” state
occurring for the majority of the time.

e There is a significant chance that the current network state
will persist or increase in severity in the next measurement
period. For example, there is an 87% chance that it will
stay in a ‘High’ state.

e A network state is more likely to drop to the next lower
state than to drop to ‘Neg’.

o Together these factors indicate that congestion builds and
subsides slowly, suggesting that it is possible to fore-

13Link-hours are calculated by
(measurement time-window) for each state.

Y (#links in Region) X
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cast (within bounds) congestion levels. Combined with
proactive localized congestion mitigation techniques and
CEMREs, such forecasts could significantly improve overall
system performance and application throughput.

5.3 Application Impact of CR

The potential impact of congestion on applications can be
significant, even when the percentage of link-hours spent in
non- ‘Neg’ congested regions is small. While we cannot quan-
tify congestion’s impact on all of the applications running on
Blue Waters (as we lack ground truth information on particu-
lar application runtimes without congestion), we can quantify
the impact of congestion on the following:

e Production runs of the NAMD application [77]. The worst-
case NAMD execution runtime was 3.4x slower in the
presence of high CRs relative to baseline runs (i.e., negli-
gible congestion). The median runtime was found be 282
minutes, and hence worst-case runtime was 1.86x slower
than the median runtime. This is discussed in more detail
in Section 4.1.

e In [16], authors show that benchmark runs of PSDNS [74]
and AMR [2] on 256 nodes slowed down by as much as
1.6 even at low-levels of congestion (5% < Pry < 15%).
To find a upper bound on the number of potentially im-

pacted applications, we consider the applications whose allo-

cations are directly associated with a router in a CR. Out of

815,006 total application runs on Blue Waters, over 16.6%,

12.3%, and 6.5% of the unique application runs were impacted

by ‘Low’, ‘Medium’, and ‘High’ CRs, respectively.

5.4 Congestion Scenarios

In this section, we show how CRs manifest under differ-
ent congestion scenarios: (a) system issues (e.g. changes in
system load), (b) network-component failures (e.g. link fail-
ures), and (c) intra-application contention. Since the CRs are
described as bounding boxes with coordinates described in
relation to the 3D torus, they can easily be visualized in con-
junction with applications’ placements at runtime on the torus.
CRs of ‘Neg’ congestion are not shown in the figures.

Congestion due to System Issues: Network congestion
may result from contention between different applications
for the same network resources. That can occur because of
a change in system load (e.g. launches of new applications)
or change in application traffic that increases contention on
shared links between applications.

Figure 7(i) shows four snapshots, read clockwise, of ex-
tracted CRs, including size and severity state, for different
time intervals during a changing workload. Figure 7(i)(a)
shows that ‘Low’ (blue) CRs when most of the workload con-
sists of multiple instances of MPI-based NAMD [77]. The
overall network state was thus ‘Low’. The CRs remained rela-
tively unchanged for 40 minutes, after which two instances
of NAMD completed and Variant Calling [37] was launched.
Three minutes after the launch, new CRs of increased severity
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Figure 7: Case studies: network congestion is shown due to (i) sys-
tem issues (such as introduction of new applications), (ii) failures
(such as network link failure), and (iii) change in communication
pattern within the application.

occurred (Figure 7(i)(b,c)). The ‘High’ (red) '* and ‘Medium’
(orange) severity CRs overlapped with the applications.

The increase in the severity of congestion was due to high
I/O bandwidth utilization by the Variant Calling application.
The overall network state remained ‘High’ for ~ 143 minutes
until the Variant Calling application completed. At that time,
the congestion subsided, as shown in Figure 7(i)(d).

Congestion Due to Network-component Failures:
Network-related failures are frequent [55, 68] and may
lead to network congestion, depending on the traffic on
the network and the type of failure. In [55], the mean time
between failures (MTBF) for directional links in Blue Waters
was found to be approximately 2.46e06 link-hours (or 280
link-years). Given the large number of links (41,472 links) on
Blue Waters, the expected mean time between failure of a
link across the system is about 59.2 hours; i.e., Blue Waters
admins can expect one directional-link failure every 59.2
hours.

Failures of directional links or routers generally lead to

4not visible and hidden by other regions.
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occurrences of ‘High’ CRs, while isolated failures of a few
switch links (which are much more frequent) generally do not
lead to occurrences of significant CRs. In this work we found
that 88% of directional link failures led to congestion; how-
ever, isolated failures of switch links did not lead to significant
CRs (i.e., had ‘Neg’ CRs).

Figure 7(ii) shows the impact of a network blade failure
that caused the loss of two network routers and about 96
links (x,y,z location of failure at coordinates (12,3,4) and
(12,3,3)). Figure 7(ii)(a) shows the congestion CRs before
the failure incident and Figure 7(ii)(b) shows the CRs just
after the completion of the network recovery. Immediately
after failure, the stalls increased because of the unavailability
of links, requiring the packets to be buffered on the network
nodes. The congestion quickly spread into the geometry of
nearby applications in the torus. Failure of a blade increased
the overall size (in number of links) of ‘Low” CRs by a factor
of 2, and of ‘Medium’ CRs by a factor of 4.2, and created
previously non existent ‘High’ CRs with more than 200 links.

Congestion Due to Intra-Application Issues: Conges-
tion within an application’s geometry (intra-application con-
tention) can occur even with TAS. Figure 7(iii) shows con-
gestion CRs while the uGNI-based shared memory parallel
(SMP) NAMD application on more than 2,000 nodes. The
application is geometrically mapped on the torus starting at
coordinates (15, 18, 0) and ending at coordinates (1, 21, 23)
(wrapping around). The congestion CRs alternate between the
two states shown (state 1 shown in Figure 7(iii)(a), and state 2,
shown in Figure 7(iii)(b)) throughout the application run-time
because of changes in communication patterns corresponding
to the different segments of the NAMD code.

Intra-application contention is less likely to elevate to
cause global network issue, unless the links are involved in
global (e.g., I/O) routes, or if the resulting congestion is heavy
enough to trigger the system-wide mitigation mechanism (see
Section 2.2).

Importance of diagnosis: In this section, we have iden-
tified three high-level causes of congestion, which we cat-
egorize as (a) system issues, (b) network-component fail-
ures, and (c) intra-application contention. For each cause,
system managers could trigger one of the following actions
to reduce/manage congestion. In the case of intra-application
congestion, an automated MPI rank remapping tool such as
TopoMapping [46], could be used to change traffic flow band-
width on links to reduce congestion on them. In the case
of inter-application congestion (caused by system issues or
network failures), a node-allocation policy (e.g., TAS) could
use knowledge of congested regions to reduce the impact of
congestion on applications. Finally, if execution of an appli-
cation frequently causes inter-application congestion, then
the application should be re-engineered to limit chances of
congestion.
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Figure 8: Characterizing Cray Gemini congestion mitigation events.

6 Using Characterizations: Congestion Re-
sponse

In this section, we first discuss efficacy of Cray CPEs and
then show how our CR-based characterizations can be used to
inform effective responses to performance-degrading levels
of congestion.

Characterizing Cray CPEs: Recall from Section 2 that the
vendor-provided congestion mitigation mechanism throttles
all NIC traffic injection into the network irrespective of the
location and size of the triggering congestion region. This
mitigation mechanism is triggered infrequently by design and
hence may miss detections and opportunities to trigger more
targeted congestion avoidance mechanisms. On Blue Waters,
congestion mitigation events are generally active for small
durations (typically less than a minute), however, in extreme
cases, we have seen them active for as long as 100 minutes.

Each throttling event is logged in netwatch log files.

We define a congestion mitigation event (CME) as a col-
lection of one or more throttling events that were coalesced
together based on a sliding window algorithm [63] with a slid-
ing window of 210 seconds, and we use this to estimate the
duration of the vendor-provided congestion mitigation mech-
anisms. Figure 8a and 8b shows a box plot of duration of
and time between CMEs respectively. The analysis of CMEs
shows that :

o CMEs were triggered 261 times; 29.8% of which did not
alleviate congestion in the system. Figure 9 shows a case
where the size and severity of CRs increases after a series
of throttling events.

e The median time between triggers of CMEs was found to
be 7 hours. The distribution of time between events is given
in Figure 8b.

e CME:s are generally active for small durations (typically
less than a minute), however, in extreme cases, we have
seen them active for as long as 100 minutes.

e 8% of the application runs were impacted with over 700 of
those utilizing > 100 nodes.

These observations motivate the utility of augmenting the
vendor supplied solution of global traffic suppression to man-
age exceptionally high congestion bursts with our more local-
ized approach of taking action on CRs at a higher system-level
of granularity to alleviate sources of network congestion.

CR-based congestion detection to increase mitigation ef-
fectiveness: CR based characterizations can potentially im-
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Figure 9: A case in which a congestion protection event (CPE)

failed to mitigate the congestion

prove congestion mitigation and CEMR effectiveness by more

accurately determining which scenarios should be addressed

by which mechanisms and by using the identified CRs to
trigger localized responses more frequently than Cray CMEs.

That approach is motivated by our discovery (see Section 5.2)

that the network is in a ‘High’ congestion state the major-

ity of the time, primarily because of CRs of small size but
significant congestion severity.

We define a Regions Congestion Event (RCE) as a time-
window for which each time instance has at least one region of
‘High’ congestion. We calculate it by combining the CR eval-
uations across S-minute sliding windows. Figure 10 shows
boxplots of (a) average credit Prg across all extracted CRs
during RCEs’, (b) average inq Prgs across all RCEs’, (c) times
between RCE, and (d) durations of the RCEs’. These mea-
surements show
e Relative to the vendor-provided congestion mitigation

mechanisms, our characterization results in 13x more

events (3390 RCEs) upon which we could potentially act.

e Vendor provided congestion mitigation mechanisms trigger
on 8% (261 of 3390) of RCEs.

e The average Prg of maximum ing- and credit-stall across
all extracted regions present in RCEs is quite high, at 33.8%
and 27.4%, respectively.

o 25% of 3390 RCEs lasted for more than 30 minutes, and
the average duration was found to be approximately an
hour.

CRs discovery could also be used for informing conges-
tion aware scheduling decisions. Communication-intensive
applications could be preferentially placed to not contend for
bandwidth in significantly congested regions or be delayed
from launching until congestion has subsided.

7 Using Characterizations:
Causes of Congestion
Section 5.4 identifies the root causes of congestion and
discusses the the importance of diagnosis. Here we explore
that idea to create tools to enable diagnosis at runtime.

Diagnosing

7.1 Diagnosis Methodology and Tool
We present a methodology that can provide results to help
draw a system manager’s attention to anomalous scenarios

and potential offenders for further analysis. We can combine
system information with the CR-characterizations to help
diagnose causes of significant congestion. Factors include
applications that inject more traffic than can be ejected into
the targets or than the traversed links can transfer, either via
communication patterns (e.g., all-to-all or many-to-one) or
I/0 traffic, and link failures. These can typically be identified
by observation(s) of anomalies in the data.

Mining Candidate Congestion-Causing Factors For
each congestion Region, CR;, identified at time T, we cre-
ate two tables /g, (T) and Fcg,(T), as described below.

2Icr,(T) table: Each row in /g, (T') corresponds to an ap-
plication that is within Nj,,s < 3 hops away from the bound-
ing box of the congestion region CR;. @cg,(T) contains in-
formation about the application and its traffic characteristics
across seven traffic features: (a) application name, (b) max-
imum read bytes per minute, (¢) maximum write bytes per
minute, (d) maximum RDMA read bytes per minute, (¢) max-
imum RDMA write bytes per minute, (f) maximum all-to-all
communication traffic bytes per minute, and (g) maximum
many-to-one communication traffic bytes per minute, where
the maximums are taken over the past 30 minutes, i.e., the
most recent 30 measurement windows. The list of applica-
tions that are within Nj,,s away from congestion region CR;
are extracted from the workload data. The measurements for
features (a) to (e) are extracted by querying network perfor-
mance counter data, whereas we estimate the features (f) and
(g) are estimated from Network performance counter data
by taking several bisection cuts over the application geome-
try and comparing node traffic ingestion and ejection bytes
among the two partitions of the bisection cut.

Fcr,(T) table: Each row in Zcg,(T) corresponds to an
application that is within Nj,,; < 3 away from the congestion
boundary of CR;. Zcg,(T) contains information about failure
events across three failure features: (a) failure timestamp, (b)
failure location (i.e., coordinates in the torus), and (c) failure
type (i.e., switch link, network link, and router failures). Lists
of failure events that are within N, ,; away from congestion
region CR; are extracted from network failure data.

Identifying Anomalous or Extreme Factors: The next
step is to identify extreme application traffic characteris-
tics or network-related failures over the past 30 minutes that
have led to the occurrence of CRs. For each traffic feature
in /g, (T), we use an outlier detection method to identify
the top k applications that are exhibiting anomalous behavior.
The method uses the numerical values of the features listed in
table @/cg, (T'). Our analysis framework uses a median-based
outlier detection algorithm proposed by Donoho [40] for each
CR;. According to [40], the median-based method is more ro-
bust than mean-based methods for skewed datasets. Because
CRs due to network-related failure events !> are rare relative
to congestion caused by other factors, all failure events that

151n this paper, we do not consider the effect of lane failures on congestion.
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Figure 10: Characterization of Regions Congestion Events (RCE).

occur within Ny, s of CR; in the most recent 30 measurement
windows are marked as anomalous.

Generating Evidence: The last step is to generate evidence
for determining whether anomalous factors identified in the
previous step are truly responsible for the observed congestion
in the CR. The evidence is provided in the form of a statis-
tical correlation taken over the most recent 30 measurement
time-windows between the moving average stall value of the
links and the numerical traffic feature(s) obtained from the
data (e.g., RDMA read bytes per minute of the application)
associated with the anomalous factor(s). For failure-related
anomalous factors, we calculate the correlation taken over
the most recent 30 measurement time-windows between the
moving average of observed traffic summed across the links
that are within Ny, ,; away from the failed link(s) and the stall
values'®. A high correlation produces the desired evidence.
‘We order the anomalous factors using the calculated correla-
tion value regardless of the congestion cause. Additionally,
we show a plot of stall values and the feature associated with
the anomalous factor(s) to help understand the impact of the
anomalous factor(s) on congestion.

The steps in this section were only tested on a dataset
consisting of the case studies discussed in Section 5.4 and 7
because of lack of ground truth labels on root causes. Creation
of labels on congestion causes requires significant human ef-
fort and is prone to errors. However, we have been able to
generate labels by using the proposed unsupervised method-
ology, which provides a good starting point for diagnosis.

7.2 Comprehensive Congestion Analysis

In this section, we describe an example use case in which
our analysis methodologies were used to detect and diagnose
the congestion in a scenario obtained from real data for which
the ground truth of the cause was available. The overall steps
involved in using our methodologies, included in our Monet
implementation, for congestion detection and diagnosis are
summarized in Figure 11 and described in Section 7. Not all
of the steps discussed below are currently automated, but we
are working on automating an end-to-end pipeline.

Step 1. Extraction of CR. Figure 11(a) shows that our anal-
ysis indicated wide spread high-level congestion across the
system (see the left graph in Figure 11(a)). An in-depth anal-
ysis of the raw data resulted in identification/detection of

16Increase in traffic near a failed link leads to congestion as shown in Sec-
tion 5.4.

congestion regions (see the top-right graph in Figure 11(a)).

Step 2. Congestion diagnosis. There are 3 steps associated
with diagnosing the cause of the congestion.

Step 2.1. Mining candidate factors. To determine the cause
of the congestion, we correlated the CR-data with application-
related network traffic (for all applications that overlapped
with or were near the congestion regions) and network in-
formation to generate candidate factors that may have led to
congestion. In this example, there were no failures; hence, this
analysis generated only application-related candidate factors
2cr;, as shown in Figure 11.

Step 2.2. Identifying anomalous factors. Next, we utilized
the application traffic characteristics from candidate factors
observed over the last 30 minutes (i.e., many-to-one or all-to-
all traffic communication, and file system statistics such as
read or write bytes) to identify anomalous factors by using
a median-based outlier detection algorithm. In our example,
as indicated in Figure 11(b), the offending application was
“Enzo” which was running on 32 nodes allocated along the “Z”
direction at location (X,Y,Z) = (0,16,16) (indicated by a black
circle in Figure 11(a)). At the time of detection, “Enzo” was
reading from the file system at an average rate of 4 GB/min
(averaged over past 30 minutes and with a peak rate of 70
GB/min), which was 16x greater than the next-highest rate
of read traffic by any other application in that time-window.
The </cg,(T) for RDMA read bytes/min was 70 GB/min.
The tool identified the RDMA read bytes/min of the “Enzo”
application as the outlier feature. Hence, “Enzo” was marked
as the anomalous factor that led to the congestion.

Step 2.3. Generating evidence. Once the potential cause
had been established, further analysis produced additional
evidence (e.g., distribution and correlation coefficient asso-
ciated with link stalls in the congestion time window) to
validate/verify the diagnosis results produced in Step 2.2.
Figure 11(c), in the top graph, shows a plot of the sum of
stall rates on all links for all the Gemini routers local to the
compute nodes used by the offending application, (i.e., Enzo)
(normalized to the total stall rate throughout the duration of
the application run). The two peaks (marked) in this top plot
correspond to the increase in read bytes (normalized to total
read bytes during the application run) shown in the bottom
plot. Note that abnormal activity (an excessive amount of traf-
fic to the file system) occurred around 10:10 AM (as shown
Figure 11(c)), which was about 20 minutes before the severe
congestion developed in the system (seen in Figure 11(a)). A
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Figure 11: Detection and Diagnosis methodology applied to real-scenario

“Medium” level of congestion was detected in the system span-
ning a few links (i.e., the congestion region size was small) at
the time of the increased read traffic. Thus the cause was diag-
nosed to be “Enzo”. Although, in this example scenario, the
Cray congestion mitigation mechanism was triggered, it was
not successful in alleviating the network congestion. Instead,
the CR size grew over time, impacting several applications.
“Enzo” was responsible for another triggering of the conges-
tion mitigation mechanism at 3:20 PM (see the top graph in
Figure 11(c)). Monet detected and diagnosed it correctly.

8 Related Work

There is great interest in assessing performance anomalies
in HPC systems with the goal of understanding and minimiz-
ing application performance variation [25, 86, 86, 88]. Mon-
itoring frameworks such as Darshan [65], Beacon [87] and
Kaleidoscope [54] focuses on I/O profiling and performance
anomaly diagnosis. Whereas, our work focuses on assess-
ing network congestion in credit-flow based interconnection
networks. Typically congestion studies are based on measure-
ments of performance variation of benchmark applications
in production settings [25, 88] and/or modeling that assumes
steady state utilization/congestion behavior [23, 52, 64, 73],
and thus do not address full production workloads.

There are research efforts on identifying hotspots and miti-
gating the effects of congestion at the application or system-
layer (e.g., schedulers). These approaches include (a) use
of application’s own indirect measures, such as messaging
rates [25], or network counters from switch that are accessi-
ble only from within an allocation [38,49,50, 76], and there-
fore miss measurements of congestion along routes involv-
ing switches outside of the allocation; and (b) use of global
network counter data [17, 26, 28, 30], however, these have
presented only representative examples of congestion through
time or executed a single application on the system [26].

In contrast, this work is the first long-term characterization
of high-speed interconnect network congestion of a large-
scale production system, where network resources are shared
by nodes across disparate job allocations, using global net-

work counters. The characterizations and diagnosis enabled
by our work can be used to inform application-level [29] or
system-level CEMRs (e.g., use of localized throttling instead
of network-wide throttling). Perhaps, the closest work to ours
is [22] which is an empirical study of cloud data center net-
works with a focus on network utilization and traffic patterns,
and Beacon [87] which was used on TaihuLight [43] to moni-
tor interconnection network inter-node traffic bandwidth. Like
others, these works did not involve generation and characteri-
zation of congestion regions, diagnosis of congestion causes,
nor a generalized implementation of a methodology for such,
however, we did observe some complimentary results in our
system (e.g., the existence of hot-spot links, the full bisection
bandwidth was not always used, assessment of persistence of
congestion in links).

Finally, for datacenter networks, efforts such as Express-
Pass [32], DCQCN [89], TIMELY [69] focus on prevent-
ing and mitigating congestion at the network-layer whereas
efforts such as PathDump [84], SwitchPointer [85], Path-
Query [72], EverFlow [90], NetSight [51], LDMS [17] and
TPP [53] focus on network monitoring. These approaches are
tuned for TCP/IP networks and are orthogonal to the work pre-
sented here. Our approach is complementary to these efforts
as it enables characterization of congestion regions (hotspots)
and identification of congestion causing events.

9 Conclusions and Future Work

We present novel methodologies for detecting, character-
izing, and diagnosing network congestion. We implemented
these capabilities and demonstrated them using production
data from NCSA’s 27,648 node, Cray Gemini based, Blue
Waters system. While we utilized the scale and data avail-
ability of the Blue Waters system to validate our approach,
the methodologies presented are generally applicable to other
credit-based k-dimensional meshes or toroidal networks. Our
future work will involve extending the presented techniques to
other network technologies and topologies (see Appendix C).
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A HPC Interconnect Background

Here we briefly give an overview of HPC interconnects and
dive deeper into the details of torus networks.

A.1 Interconnection Networks

An interconnection network is a programmable system that
transports data between terminals. The main design aspects
of interconnection networks are (1) topology, (2) routing, (3)
flow control, and (4) recovery. Topology determines the con-
nection between compute nodes and network nodes (routers,
switches, etc.). Routing, flow control, and recovery heavily
depend on the topology of the interconnection system. The
most widely used topologies in high-performance computing
(HPC) are (1) Fat-Tree (e.g. Summit [13]), (2) DragonFly
(e.g., Edison [15]), and (3) Torus (e.g., Blue Waters [67]).

A.2 Torus Networks

Torus networks can support N = k" nodes which are ar-
ranged in a k-ary n-cube grid (i.e., nodes are arranged in
regular n-dimensional grid with k nodes in each dimension).
In the case of Blue Waters, n = 3. In torus networks, each
node serves simultaneously as an input terminal, output ter-
minal and switching node of the network. Torus networks
are regular (i.e., all nodes have the same degree) and are also
edge-symmetric (useful for load-balancing). Torus networks
are very popular for exploiting physical locality between com-
municating nodes, providing low latency and high throughput.
However, the average hop count to route packets to a ran-
dom node is high compared with other network topolgoies
such as Fat-Tree or DragonFly. On the other hand, extra hop
counts provide path diversity, which is required for building
fault-tolerant architecture.

Routing involves selection of the path from the source
node (src) to destination node (dst) among many possible
paths in a given topology. In torus networks, routing is done
through the directional-order routing algorithm. Directional-
order routing does the following:

e Routes the packet in X+/-, Y+, or Z+ until the dimension
is resolved,

e Routes the packet in Y+/- or Z+ until the Y dimension
is resolved, and

e Routes the packet in Z+/- until the Z dimension is re-
solved, at which point the packet must have arrived at its
destination.

B Workload Information

On Blue Waters, all jobs execute in non-shared mode,
without any co-location with another job on the same com-
pute node. Users can submit batch or interactive jobs using
Moab/Torque [14] and configure several parameters for job
resource request such as: (i) number of nodes, (ii) the number
of cores, and (iii) the system walltime (i.e., requested clock

time for the job). Blue Waters puts a 48-hour walltime restric-
tion. Blue Waters uses Integrated System Console (ISC) [44]
to parse and store the job records and its associated metrics
(performance and failure) in its database.

In [39], Di Martino et al. provided detailed characteriza-
tion of more than 5 million HPC application runs completed
during the first 518 production days of Blue Waters. However,
for completeness, this section provides the workload charac-
teristics of the jobs running on Blue Waters during our study
period. Due to loss of data caused by a failure, we do not have
workload information for Jan 2017 and hence the workload
data shown here is from Feb 2017 - July 2017. During our
study period, 2,219k jobs were executed by 467 unique users.
We characterize the job characteristics in terms of 1) job type,
and ii) job size.

B.1 Job type

Blue Waters workload is predominantly composed of sci-
entific applications. The most prolific scientific fields are
summarized in Figure 12a in terms of node-hours. The top
scientific discipline during our study period was ‘Astronomi-
cal Sciences’ (21.9%). However, the top scientific disciplines
changes over time based on resource allocation awards given
by US National Science Foundation and University of Illinois.

Definition 4 Node-seconds: is the product of the number of
nodes and the wallclock time (in seconds) used by a job. The
metric captures the scale of the job’s execution across space
and time.

B.2 Job Size

Figure 13b shows a bar plot summarizing relationship be-
tween percentage by node-seconds (see Def. 4) and percent-
age of jobs, whereas Fig. 13a shows a bar plot summarizing
relationship between number of nodes and percentage of jobs.
74% of the jobs are single-node jobs. However, these jobs
contribute only 5% by node-seconds. The large-scale jobs by
number are small, they contribute to 94% of the total node-
seconds.

Materials Research
Biophysics

Molecular Biosciences
Other

Earth Sciences
Astronomy & Astrophysics
Geophysics 21.60

Astronomical Sciences 21.90

0 10 20 30
Percentage of total walltime

(a) Breakdown of wallclock time of scientific application domains
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Figure 13: Characteristics of jobs running on Blue Waters.

C Existence of Congestion Hotspots and Re-
gions in DragonFly Interconnect

Here we characterize hotspot links on Edison [15], a 2.57
petaflops production system, to showcase continued existence
of network congestion problems on a current state of the art
network interconnect. Edison uses Cray Aries interconnect
which is based on DragonFly topology and uses adaptive rout-
ing [59]. We use one week of LDMS data that was collected
from Edison at one second interval, and amounts to 7.7 TB.
Our analyses shows 1) presence of long duration hotspot links,
and 2) performance variability on a current state of the art
network interconnect.
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Figure 14: Distribution of hotspot link duration in Edison [replicated from
[56]]

Figure 14 characterizes the median, 99%ile and 99.9%ile
duration of the hotspot links by generating the distribution of
the duration for which a link persists to be in congestion at
Prs > Prg Threshold. While the 99.9%ile hotspot duration is

an order of magnitude lesser compared to the observed results
in Gemini (see Figure. 3), which can be explained by the
low diameter topology and use of congestion-aware routing
policies in Aries. The duration of hotspot is longer than a
minute for congestion thresholds less than 15% Pr;. More
details on characterization for Edison can be found in [56].
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Figure 15: Variation of MILC runtime on Edison

Although the hotspot link duration has significantly de-
creased, the performance variation due to congestion contin-
ues to be a problem. For example, we observed significant
performance variation of up to 1.67 x compared to baseline
for MILC application [25] on Edison (see Figure 15). MILC
is a communication-heavy application susceptible to conges-
tion on the interconnect. The reason for slowdown of the
application can be attributed to presence of congestion in the
links which rapidly evolves (i.e., a link may not be contin-
uously congested but there is always groups of congested
links). Preliminary analysis of network congestion counters
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obtained from Edison [15] suggests existence of congestion
regions that evolve rapidly. Our future work will focus on
applying and extending our methodology to other intercon-
nects technologies that use different topology other than torus
(e.g., Fat-Tree or DragonFly) or use adaptive-routing (e.g.,
UGAL [59]). In emerging network technologies, vastly more
network performance counters are available that can be used
for detecting congestion and hence there is an increased need
for algorithmic methods for discovering and assessing con-
gestion at system and application-level.

D Validation of Congestion Regions Gener-
ated by Region Segmentation

Validation of the region segmentation algorithm was done
by inspecting visualizations of both the unsegmented and
segmented congestion data. We also generated synthetic con-
gestion data and evaluated our algorithm’s performance on it
as a sanity check.

D.1 Results Analysis Discussion

As we do not have any ground truth for our clustering algo-
rithm and the credit and inq stall on each link widely varies
across the system with time (as discussed in previous subsec-
tion), we attempted some sanity checks in order to validate
that the algorithm produced a sensible clustering of the data.
To facilitate this, we implemented visualization tools for visu-
alizing both the raw, unsegmented data, as well as the final,
segmented data. We then ran our algorithm on the conges-
tion data that was recorded at times when we knew there
were congestion events (e.g. when Cray congestion protec-
tion events were triggered), as well as at multiple randomly
sampled timepoints. We then visualized both sets of data and
manually inspected the regions generated, checking visually
to see if they lined up with the visualization of the raw con-
gestion data. For samples that we inspected, the algorithm
worked well for segmenting the data.

As a further test, we generated random congestion data
following a simplified model and scored our algorithm’s ef-
fectiveness at classifying those data. The data was created by
randomly generating regions of congestion in a 24 x 24 x 24
cube representing the 3D torus of the Blue Waters Gemini in-
terconnect. Each congestion region was created by randomly
generating a) a cuboid in which each dimension was between
3 and 9 links inclusive, b) a random stall value s between
20% and 50%, and c) a random integer from {0, 1}. Depend-
ing on the value of the random integer, s was added to the
credit-stall or ing-stall of all the links in the cuboid. Finally,
after all regions were added random Gaussian noise with
(u,0) = (0,2.5) was added to both the credit- and ing-stalls
of all the links in the cube to simulate small variances in the
stall values of each link.

We then ran our algorithm on 100 samples, each with a ran-
dom number of regions (from 1 to 8 inclusive), and assigned
a score as well as calculating the precision and recall for that

sample. We scored the match as follows: for a single sam-
ple, let A;;i = 1---n be the actual regions and B;,i=1---m
be the regions the algorithm produced. A single sample was
then assigned the score (% ’ Biggj:} )(max?mm) ), where |A;]|
represents the number of links in the enclosed region, and
the B}, are the regions that "best" overlap their respective A;.
The Bj, are chosen by going through the regions A; in order
from smallest to largest, and choosing j; such that B}, has the
largest possible overlap with A;. Regions created by segmen-
tation that have both ing- and credit-stall < 5% are considered
insignificant and were excluded from this processing.

This scoring assigns a score of 1 to a perfect match, which
degrades to 0 when a) the mismatch between the true and the
matching generated region increases, or when b) the algorithm
generates more regions than true regions.

Based on that scoring, the algorithm achieved an average
score of 0.81 (maximum 1.0) with parameters (8, = 12,0, =
8,8, = 2,0, = 20) over 100 samples, with an average preci-
sion of (.87 and an average recall of 0.89.

D.2 Summary

While it is not possible to fully validate the efficacy of
our segmentation algorithm, the synthetic datasets generated
give us a degree of confidence that the algorithm does the
right thing on simple models of congestion that satisfy our
assumptions (i.e. that congestion tends to spread locally) and
work well with noise. The comparison between the datasets
before and after the segmentation suggests that algorithm does
still work reasonably well in practice, on real datasets.

The region segmentation algorithm was applied to 5 months
of production data collected as part of the operational environ-
ment of a system. The data was obtained from Blue Waters
through various tools and counters(e.g., network performance
counters, link-aggregated data, scheduler and log files) and
hence is reliant on the correctness. The reliability of the sys-
tem software for synchronized data collection at regular in-
tervals (LDMS) is dependent on the system operation staff
which supports it and performance details for this software
are available in its documention.
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SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz
ETH Ziirich

Abstract

Push-In First-Out (PIFO) queues are hardware primitives
which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Alexander Dietmiiller
ETH Ziirich

Laurent Vanbever
ETH Ziirich
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Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.
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Example First, we provide an intuition how SP-PIFO ap-
proximates PIFO behaviors using SP queues in Fig. 1. The ex-
ample illustrates the scheduling behavior of two SP-PIFO sys-
tems which receive the input packet sequence [2][5][4][1][4][3].
By convention, we write the first packet being enqueued on
the far-right ([3]) and the last one on the far-left ([2]). Similarly
to [23], we also consider that lower-rank packets have higher
priority (and use corresponding color codes). The figure il-
lustrates the scheduling decision of each system for the sixth
packet ([2]), assuming the first 5 have been enqueued already.

A PIFO queue always schedules incoming packets per-
fectly, leading to the sorted output [5][4][4][3][2][1]. In contrast,
the quality of the scheduling of a SP-PIFO scheme depends
on: (i) the number of SP queues available (here, two); and (ii)
the mapping of packet ranks to those queues. Fig. | illustrates
two such mapping strategies. Strategy A maps ranks 1-3 (resp.
4-5) to the highest (resp. lowest) SP queue, while Strategy B
maps ranks 1-2 (resp. 3-5) to the highest (resp. lowest) SP
queue. We see that Strategy B is capable of perfectly sorting
the input sequence, i.e. it behaves like a perfect PIFO queue.
In contrast, Strategy A leads to sub-optimal packet inversions,
e.g. [1] is incorrectly scheduled after [3].

Insights The key challenge in SP-PIFO is to design adapta-
tion strategies that can: (i) closely approximate PIFO behav-
ior; and (ii) be implemented in programmable data planes.
These are hard challenges as the best mapping strategy de-
pends on the traffic mix and the actual ranks being enqueued,
both of which can change on a per-packet basis.

SP-PIFO approximates the best mapping strategy by dy-
namically shifting the ranks mapped to each queue to reduce
the scheduling mistakes it observes in real time. We show
that SP-PIFO’s adaptation strategy achieves almost the same
performance as provably-correct adaptation strategies while
being implementable in programmable data planes.

Performance We use SP-PIFO to implement a wide variety
of scheduling objectives ranging from minimizing flow com-
pletion times to achieving max-min fairness. For all cases,
we show that SP-PIFO achieves performance on-par with the
state-of-the-art. We also demonstrate that SP-PIFO runs at
line rate on existing programmable hardware.

Contributions Our main contributions are:

e A novel approach for approximating PIFO queues using
strict-priority queues (§3).
e An adaptation algorithm which dynamically adapts the

queue mapping according to the network conditions,
closely-approximating an optimal scheme (§4).

e An implementation' of SP-PIFO in Java and P4 (§5).

e A comprehensive evaluation showing SP-PIFO effec-
tiveness in approximating perfect PIFO behavior with as
little as 8 queues and on actual hardware switches (§6).

! Available at https://github.com/nsg-ethz/sp-pifo
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Figure 2: Overview of SP-PIFO data-plane pipeline.

2 Overview

In this section, we provide an informal overview of how SP-
PIFO manages to closely approximate PIFO behaviors. At a
high level, SP-PIFO is a priority-queuing scheduling disci-
pline (see Fig. 2) which maps incoming packets to n priority
queues. SP-PIFO assumes that packets are tagged with a rank
indicating the intended scheduling order, with lower ranks be-
ing preferred over higher ones. Packets enqueued in a queue
are scheduled according to their order of arrival (i.e., First-In
First-Out), after all packets enqueued in any higher-priority
queue have been scheduled. Unlike classical priority-queuing
disciplines [20], SP-PIFO dynamically adapts the mapping
between the packet ranks and the priority queues according
to the observed network conditions. In particular, SP-PIFO
adapts the mapping so as to minimize the scheduling “unpi-
foness”, that is, the number of times a higher-rank packet is
scheduled before an enqueued lower-rank packet. We refer to
such scheduling mistakes as inversions.

Mapping SP-PIFO maps each incoming packet to queues
according to the queue bounds. These queue bounds iden-
tify, for each queue i, the smallest packet rank that can be
enqueued. Whenever a packet is received, SP-PIFO scans
the queue bounds bottom-up, starting from the lowest-priority
queue, and enqueues the packet in the first queue with a bound
smaller or equal to the packet rank. Given a packet with rank
r € Z>¢ and n priority queues, let g be the vector of queue
bounds (g1, - ,qn) € Z" such that 0 < g1 < g < -+~ < gy
For instance, consider a vector g = {0,3,5} indicating the
bounds of 3 priority queues, with O (resp. 5) indicating the
bound of the highest- (resp. lowest-) priority queue. Given g,
SP-PIFO enqueues packets with rank 2 in the first (highest-
priority) queue, packets with rank 3 in the second queue and
packets with rank 10 in the third (lowest-priority) queue.

Adaptation “Unpifoness” can be minimized across multi-
ple packets, e.g. by monitoring the rank distribution over
periodic time windows and adapting the bounds through a
gradient descent, or on a per-packet basis (see Fig. 2). De-
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pending on the characteristics of the rank distribution, the
first strategy can provably converge to the optimal mapping.
Unfortunately, its requirements exceed the capabilities of ex-
isting programmable data planes. SP-PIFO addresses these
two limitations: it works for any rank distribution, on existing
hardware. SP-PIFO dynamically adapts q such that the re-
sulting scheduling closely approximates an ideal PIFO queue,
minimizing the amount of observed inversions by dynamically
shifting the ranks mapped to each queue. SP-PIFO operates
online, without prior knowledge of the incoming packet ranks.

SP-PIFO’s adaptation mechanism consists of two stages:
a push-up stage where future low-rank (i.e. high-priority)
packets are pushed to higher-priority queues; and a push-
down stage where future high-rank (i.e. low-priority) packets
are pushed down to lower queues.

Stage 1: Push-up Whenever SP-PIFO enqueues a packet,
it updates the corresponding queue bound to the rank of
the enqueued packet. Doing so, SP-PIFO aims at ensuring
that future lower-ranked packets will not be enqueued in the
same queue, but in a more preferred one. Intuitively, SP-PIFO
“pushes up” packets with low ranks to the highest-priority
queues, where they will drained first. Of course, as the number
of queues is finite—and often, much smaller than the number
of ranks—this is not always possible, leading to inversions.

Stage 2: Push-down Whenever SP-PIFO detects an inver-
sion in the highest-priority queue (i.e., the packet rank is
smaller than the highest-priority queue bound), it decreases
the queue bound of all queues. Doing so, SP-PIFO en-
sures that future higher-rank packets will be enqueued in
lower-priority queues. Intuitively, after an inversion, SP-PIFO
“pushes down” packets with high ranks to the lower-priority
queues in order to prevent them from causing inversions in the
highest-priority queue. SP-PIFO decreases the queue bounds
according to the magnitude of the inversion, i.e. the difference
between the packet rank and the corresponding queue bound:
the bigger the inversion, the more ranks are pushed down.

Example Fig. 3 illustrates the execution of SP-PIFO with two
priority queues when receiving [1][2][5][4][1][4][3]. Without loss
of generality, we consider that the queue bounds are initialized
to 0. SP-PIFO enqueues the first packet ([3]) in the lowest-
priority queue and updates its queue bound to 3. Likewise,
SP-PIFO also enqueues the second packet, , in the lowest-
priority queue. As its rank (4) is higher than the queue bound
(3), it then updates the queue bound to 4.

The same process is applied to the subsequent packets until
the second |1/ is encountered, creating an inversion (grayed
area in Fig. 3). Indeed, SP-PIFO enqueues |1]| in the highest-
priority queue affer having enqueued [2]. Once the inversion is
detected, SP-PIFO adapts the queue bounds to 1 and 5—1 =4,
respectively. Observe that if [1] and [2] keep arriving, the bound
of the lowest-priority queue will decrease, eventually reach-
ing 2. At this point, future |1| will not experience inversions
anymore as they will have a dedicated queue.

Incoming packets
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Figure 3: SP-PIFO mapping and adaptation mechanisms.

3 SP-PIFO design

In this section, we describe the theoretical basis supporting the
design of SP-PIFO. We first phrase the problem of finding the
optimal queue bounds as an empirical risk minimization prob-
lem in which a loss function—how “unpifo” the current map-
ping is—is minimized (§3.1). We then develop an algorithm
based on gradient descent which provably converges to the
optimal bounds for stable rank distributions (§3.2). We show
how the convergence requirements make the algorithm im-
practical (§3.3). In the following, we present SP-PIFO which
relaxes the requirements at the benefit of practicality (§4).

3.1 Problem statement

Let U :R" X R>9 — R>q be a loss function such that 7(q, r)
quantifies the approximation error of scheduling a packet with
rank r based on queue bounds g compared to an ideal PIFO
queue. Intuitively, a smaller loss equals a better approximation.
Note that U stands for unpifoness.

The adaptation goal is to find the optimal queue bounds g*
that minimize the expected loss for all possible ranks. Let Q
be the space of all valid bound vectors and & the distribution
of packet ranks, then the optimal queue bounds g* are:

q" =argmin E [ U(q,r)] (1)

geQ ™R
Finding g* directly is intractable though. Indeed, evaluating
the expected loss U is impossible since the distribution of
packet ranks X is unknown. We address this problem by
considering the empirical loss Ue,p observed over a set D
of i.i.d. rank samples. Doing so, we phrase the problem of
finding g* as an empirical risk minimization (ERM) problem:

q* = argmin — Z Uemp(D, q,1) )
q€Q | ‘re@
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Evaluating empirical losses For a given rank r, we mea-
sure the empirical loss U, as the expected number of inver-
sions that » would encounter, if the rank distribution 2D was
scheduled given the queue bounds g, weighted by the cost
that each inversion would cause to the system performance.
This cost can be just a constant value, if all inversions are
treated the same, or it can measure the magnitude of the in-
version (i.e., how big is the difference between ranks causing
it). Since r receives inversions only from higher ranks in the
distribution, U, can be rewritten as:

1
ruemp(a)vqar) = @ Z COStq(r,7r) (3)
reD
r’€>r

Having formulated the adaptation goal as an empirical risk
minimization, we aim to solve it by analyzing how changes in
q influence the empirical risk, and trying to design an iterative
algorithm capable of converging to the minimal risk.

3.2 Gradient-based adaptation algorithm

We first introduce a greedy, gradient-based algorithm, which
provably converges to the optimal queue bounds g* provided
that the rank distribution stays constant. The algorithm builds
upon the fact that inversions cannot occur between ranks
mapped to different priority queues. This allows to instantiate
the empirical risk minimization in eq. 2 at a queue level by
simply adding the individual losses of each queue. Letting
U(g;) be the loss function corresponding to the queue with
bound g;, this is:

g =argmin Y U(g;) )
9c€Q gicq

Letting pyp(r) and pp(r) be the empirical probability of
ranks r and 7/, respectively, both mapped to the queue with
bound ¢;, we can define the unpifoness of the queue as:

Y. po(r)-po(r)-cost(r,r) (5
qi<r<gi+1
r<r’<q[+|

U(qi) =

Overview Considering this problem instantiation, the greedy
algorithm first computes the rank distribution over a set of k
packets before minimizing the expected per-queue unpifoness
by incrementing (resp. decrementing) the queue bounds.
Specifically, after processing the k-th packet, the greedy algo-
rithm selects, for each queue, the bound that most decreases
the overall system unpifoness. Although comparing the perfor-
mance of all bound combinations is not possible, we introduce
an efficient computation mechanism that allows to prune the
search space while preserving convergence. We prove the
optimality of the algorithm in Appendix A.

packet rank distribution
2/7

Incoming packets

" HH
057117
1L r2r3rqrs
e e

adaptation window (k = 7) current allocation

L [ TR
& TTBEA

unpifoness = 9a

[1=1,92=3] |
(updated bounds) l l

| [ [2[a]1] [2[t]4]1]4]3]
— 3] L s]4]4[3] [ [ 11 1s]

unpifoness = 8a. unpifoness = 250,

improving allocation
8a < 9o

worsening allocation
2500 > 9a

Figure 4: The gradient-based algorithm greedily minimizes
the expected unpifoness.

Example We illustrate the execution of the algorithm in
Fig. 4. We assume a system with two priority queues and
assume that the packet sequence is received
over and over again. We set the adaptation window k to 7
packets. We initialize the queue bounds to 1 and 4.

The algorithm starts by computing the observed rank dis-
tribution after receiving the 7-th packet. Here, it estimates the
probability of receiving a packet of rank 1 as p(1) =2/7. Sim-
ilarly, p(2) = 1/7, p(3) = 1/7, p(4) =2/7 and p(5) = 1/7.
It then computes the expected unpifoness that this distribu-
tion would have generated with the current queue bounds
(eq. 3). For the higher-priority queue, this is U; = p(1)-p(2)-
cost(2,1)+p(1)-p(3)-cost(3,1)+ p(2) - p(3) - cost(3,2) =
(2/7-1)7)-2=1)+(2/7-1/7)-3=1)+(1/7-1/7)-(3=2).
This equation can be simplified to U; = 700 where o0 =
(1/7-1/7). Similarly, U = p(4) - p(5) - cost(5,4) = 2a.,
adding up a total of U = 9.

Next, the algorithm compares the expected unpifoness that
would be obtained if the queue bound was incremented (gradi-
ent up) or decremented (gradient down) and adapts the queue
bound in the direction resulting in the biggest decrease of
unpifoness.

Gradient up Incrementing ¢, from 4 to 5 means that only
rank {5} would be mapped to the lower-priority queue. The
resulting unpifoness is U = 25a. The higher unpifoness (250
instead of 90) indicates that, by incrementing g5, the system
gets further away from the PIFO behavior. Note that the in-
crease in unpifoness comes from the higher-priority queue as
rank {5} gets an exclusive queue.
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Gradient down In contrast, the system unpifoness reduces
from 9a to 8o when decrementing g, from 4 to 3. Indeed,
U = p(1)-p(2)-cost(2,1) = 2a, and U = p(3) - p(4) -
cost(4,3)+p(3) - p(5)-cost(5,3) + p(4) - p(5) - cost(5,4) =
60, adding up to U = 8al. As such, the adaptation mechanism
updates the queue bound: ¢, = 3.

The above process repeats every 7-th packet, estimating the
rank distribution before greedily adapting the queue bounds.

3.3 Limitations

While the adaptation algorithm described above provably con-
verges to the optimal mapping (see A.1), two key limitations
make it impractical. First, it is not currently implementable
in existing programmable data planes due to resource con-
straints. Second, the algorithm only converges for stable rank
distributions, which is rarely the case, and its convergence
time directly depends on the distribution size, which can be
large. We explain how to overcome these limitations in §4.

Hardware restrictions Monitoring the rank distributions
over periodic adaptation windows requires a high amount
of memory and computational resources, both of which are
scarce in current programmable data planes. In particular,
implementing the greedy algorithm in hardware (see A.2)
requires to: (i) store the value of each queue bound; (ii) com-
pute the current unpifoness; and (iii) estimate the unpifoness
obtained by incrementing or decrementing each queue bound.
As we explain in A.3, the amount of resources required to run
the algorithm on a practical number of queues (8 queues or
more) exceeds the capabilities of current switch designs.

Convergence In A.4, we study the performance of the
gradient-based algorithm and analyze the effects on conver-
gence when the adaptation window, the number of queues,
and the rank range is modified. We show that, for the algo-
rithm to converge, the rank distribution needs to be stable in
time. However, this is unrealistic in most practical scenarios
where not only the rank distribution is unknown but also varies
through time (e.g., virtual times in fair-queuing schemes).

4 Our approach: SP-PIFO

We now present SP-PIFO, an approximation of the gradient-
based adaptation algorithm (§3.2) which is implementable in
existing data planes and rapidly adapts to varying rank distri-
butions. SP-PIFO substitutes the gradient computation by a
simpler adaptation process which minimizes the probability
of inversions per packet, rather than per k-packets.

In the following, we first show how to instantiate the em-
pirical risk minimization problem (eq. 2) at the packet level
and describe how SP-PIFO solves it (§4.1). We then system-
atically characterize how SP-PIFO handles inversions (§4.2).

4.1 Per-packet adaptation algorithm

The SP-PIFO adaptation algorithm (alg. 1) is based on two
competing stages that act in opposing direction. We show that
this combination manages to strike a balance in the number of
inversions observed by all queues, resulting in a good PIFO
approximation. In the following, we first show how to phrase
the empirical risk minimization problem at the per-packet
level before describing both mechanisms.

Problem statement In contrast to §3.2, we aim at minimiz-
ing the cost generated by scheduling each individual packet.
Formally, we aim to find the optimal bound vector g* that
minimizes the unpifoness for all enqueued packets P:

q" = argmin U(?P,q) (6)
9eQ

Let r(p) be the rank of a given packet p € P, and let r,,(p, q)
be the rank perceived as a result of the mapping decision,
which is identified as the highest rank amongst those of pack-
ets sharing the same queue. Considering that the objective for
the bound vector g is to perfectly approximate PIFO behav-
iors, we can estimate the unpifoness at enqueue as:

U(P,q) = ), costy(p) (N
PEP
where
costg(p) =71p(p, @) —1(p) (8)

Computing the rank perceived requires determining the
highest rank among all packets sharing the queue at any given
moment. This not only requires to keep track of all ranks in
each queue, but also selecting the highest, which is computa-
tionally expensive. Since one of the premises of SP-PIFO is
to be implementable in the data plane, we relax this condition
and keep track of only a single parameter g; per queue. These
parameters, the bounds g, simplify the cost estimation of a
potential mapping decision at enqueue.

We discuss how we update these parameters as well as the
tradeoffs of this relaxation below.

Stage 1: “Push-up” The first stage increases g to minimize
the unpifoness of the queue to which the incoming packet is
mapped. Specifically, the mapping process scans the queues
bottom-up and enqueues the packet in the first queue that
satisfies r(p) > ¢;. It then increases g; to the rank of the
enqueued packet. By doing so, the mechanism minimizes (i)
the cost for each packet p (at enqueue time); as well as (ii)
the impact that this decision may have on future packets.

This mapping process guarantees a zero-cost packet alloca-
tion for all packets within a queue. That is, as we effectively
keep track of the highest rank per queue, we ensure that no
packet with lower rank is mapped to the same queue. This
holds for all queues except for the highest-priority queue.
There, packets are enqueued even if r(p) < q.
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Algorithm 1 SP-PIFO adaptation algorithm

Require: An incoming packet with rank r.
1: procedure PUSH-UP
for g; : g1 to g4, gi € g do
if r > g; or i = 1 then
qi<r
ENQUEUE(r, i)

2 > Scan bottom-up
’;

4

5

6: procedure PUSH-DOWN

7

8

9

> Update queue bound
> Select queue

> Detect inversion
> Compute cost inversion

if » < g then
cost < qi—r
forgicq, j#ido

10: qj < qj— cost > Adapt queue bounds

Stage 2: “Push-down” As illustrated in §2, the first stage
can lead to inversions in the highest-priority queue. The sec-
ond stage aims at counteracting that effect by reducing the
number of ranks enqueued in the highest-priority queue. This
is achieved by decreasing all queue bounds by some given
amount. Different decreasing strategies exist. In SP-PIFO,
we decrease each g; proportionally to the cost of the inver-
sion. That is, we decrease all queue bounds by g; — r(p).
This choice is both (i) practical, as it can be efficiently im-
plemented in hardware; and (ii) functional, as it results in a
reasonable balance between inversions in the highest-priority
queue and shifts in the other queues. Below, we provide some
insights on the nature of this balance and why it is important
for a good PIFO approximation. We simulate the performance
of different decreasing strategies in §4.2.

Tradeoffs Unlike the gradient-based algorithm (§3.2), SP-
PIFO may converge to a sub-optimal solution exhibiting inver-
sions. One can distinguish three sources of inversions. First,
there can be inversions in the highest-priority queue. These
inversions are proportional to the probability of observing
packets with rank r(p) < ¢;. Second, after the “push-down”
stage, the queue bounds do not necessarily match the highest
rank packet in the queue anymore. This may lead to inversions
for future packets and is proportional to how often, and how
much, queue bounds are decreased. Finally, because only the
highest rank in a queue is tracked, it can happen that a packet
is enqueued in a higher-priority queue because r(p) < ¢;,
while r(p) is greater than the lowest rank in queue i, caus-
ing an inversion. This is proportional to the number of ranks
between the minimum rank in the queue and the queue bound.

Average-case analysis The exact amount of inversions intro-
duced by each of these three sources is hard to quantify as
queue bounds are shifting with (almost) every packet. Yet, on
average, we can show that the dynamics of SP-PIFO coun-
teract all three sources. On the one hand, it equalizes the
probability of r(p) < g; with the probability of packets be-
ing mapped to a specific queue, striking a balance between
inversions because there are no higher-priority queues, and in-

versions because of queue bound mismatch. Furthermore, for
this equalizing, the probabilities of specific ranks are weighted
more if they are far away from queue bounds, which keeps
queues more compact to reduce the chance of overlap.

As a result, on average workloads, SP-PIFO provides a
good approximation, and can adapt to arbitrary rank distribu-
tions. Nevertheless, there are adversarial packet orderings cir-
cumventing these mechanisms, resulting in large unpifoness
(§7). We provide the theoretical foundations for these state-
ments in Appendix B and verify them by simulation in §4.2.

4.2 SP-PIFO analysis

We now dive deeper into understanding SP-PIFO using
switch-level simulations. We compare its behavior to that of
an ideal PIFO queue, along with several well-known schedul-
ing schemes (e.g., FIFO). We first describe the high-level
behavior using a uniform rank distribution (§4.2.1), before
systematically exploring the design space (§4.2.2).

Methodology We implement various scheduling schemes
(including SP-PIFO, FIFO, and our gradient-based algorithm)
in Netbench [3, 15], a packet-level simulator. We analyze the
performance of a single switch scheduling 1500 flows of IMB
(fixed), which start according to a Poisson distribution. We run
the simulation during one second. We limit the transmission
through an output link of 10 Gbps which corresponds to an
average port utilization of 75%. We measure the number of
inversions generated by each rank at dequeue. Whenever a
packet is polled, we check whether its rank is higher than any
of the ranks remaining at any of the queues. When this occurs,
we count an inversion fo the rank generating it (i.e., the one
of the polled packet), making sure that inversions are counted
at most once per polled-packet, regardless of the number of
packets affected by it.

We compare four scheduling schemes: (i) SP-PIFO (§4);
(ii) the gradient-based algorithm (§3, see implementation in
A.2); (ii1) a strict-priority scheme fixed to the optimal mapping
for a uniform distribution (i.e., bounds distributed uniformly
across ranks, g; = 12i); and (vi) a FIFO queue, as baseline.
All strict-priority schemes (SP schemes) use 8 queues of 10
packets, while the FIFO queue has a capacity of 80 packets.

4.2.1 Characterizing general SP-PIFO behavior

We start by showcasing how SP-PIFO handles inversions by
analyzing its behavior under a uniform rank distribution. That
is, we tag the packets with a rank drawn from a uniform
distribution (between 0 to 100).

Fig. 5a illustrates the number of inversions generated by
each rank for the different SP schemes in comparison with
FIFO. We see that a FIFO queue generates a uniform number
of inversions across all ranks (since they all share the same
queue). In contrast, SP schemes (all the others in Fig. 5a) gen-
erate a progressively-higher number of inversions as rank val-
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Figure 5: SP-PIFO performance (uniform rank distribution).

ues increase. This occurs as higher ranks are mapped to lower-
priority queues, which drain packets less frequently. Since
those queues have a higher occupancy on average, the poten-
tial number of inversions increases. This behavior, however,
is not preserved for the lowest-priority queue (the far-right
peak in the graph) as a result of starvation. Despite having the
largest average queue size, this queue drains fewer packets
and, as such, the number of inversions it sees decreases.

For the fixed-queue bounds, we see that a saw-shape delin-
eates the inversions observed across ranks in different queues,
reaching the x axis for the ranks corresponding to the queue
bounds. Indeed, the lowest rank within each queue never gen-
erates inversions since the other ranks sharing the queue have
higher values. The second-lowest rank can only generate in-
versions to the lowest, and the progression continues until the
highest rank, which can generate inversions to all the lower
ranks sharing the queue.

When considering the gradient-based greedy algorithm
(which is optimal) and SP-PIFO, we see that the saw-shape
vanishes. This is because queue bounds are not fixed any-
more and successive packets of a given rank can be mapped
to multiple queues. In particular, since the rank distribution
sampled at each adaptation window varies, the queue-bound
design in the gradient-based algorithm oscillates. In SP-PIFO,
as a higher variability is produced, the number of inversions
delineates the envelope of the optimal schemes.

4.2.2 Characterizing SP-PIFO design space

We now systematically explore the design space of SP-PIFO
along four dimensions: the number of queues, the adaptation
strategy when encountering an inversion (in the push-down
stage, §4.1), the utilization levels, and the rank distributions.
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Figure 6: SP-PIFO performance (alternative distributions).

SP-PIFO manages to approximate the optimal algorithms
in all rank distributions and utilization levels, with as little
as 8 queues. The best performances are obtained under low
utilizations and with 32 queues.

Number of queues (Fig. 5b) When using only 8 queues,
SP-PIFO is already within ~20-29% of the gradient-descent
algorithm and the optimal mapping. With 32 queues, it gets
even closer, producing only ~22% more inversions than the
optimal and achieving on-par behavior to the gradient-descent
algorithm. Overall, it improves FIFO performance ~3.3x
(resp. ~10x) when only 8 (resp. 32) queues are used.

Push-down strategies (Fig. 5¢) We evaluate four adaptation
strategies for decreasing each queue bound in the push-down
stage: (i) to the value of the next-higher queue bound (“Queue
Bound”); (ii) by the cost of the inversion (g; — (p), the strat-
egy in SP-PIFO, “Cost”); (iii) by the rank of the packet caus-
ing the inversion (“Rank”); and (iv) by 1 (“17).

The best performance is obtained for “Queue Bound”,
which produces ~15% more inversions than the gradient-
based algorithm. This is followed by “Cost” and “Rank”, with
~22%, and “1”” with ~33%. While the three first techniques
produce similar results, the “push down” effect of “1” is too
small to balance the “push up” stage, resulting in many inver-
sions. While “Queue Bound” is marginally better than “Cost”,
it is more costly to implement, thus SP-PIFO uses the latter.

Utilization (Fig. 5d) SP-PIFO performance is close to the
gradient-based algorithm. For utilizations below 60%, SP-
PIFO is on-par with the gradient-based algorithm. The number
of inversions slightly increases at higher utilizations: 26% and
38% for 80% and 90%.
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Rank distributions (Fig. 6) We analyze the performance
of SP-PIFO under four alternative rank distributions: expo-
nential, inverse exponential, Poisson and convex. SP-PIFO
performs better than FIFO and is close to the gradient-based
algorithm for each distribution.

The performance of SP-PIFO is better for rank distributions
in which more ranks appear in higher-priority queues. The
number of inversions for SP-PIFO in convex and exponential
distributions is only ~21-24% higher than the gradient-based
algorithm. The corresponding numbers for Poisson and in-
verse exponential amount to ~49-55%. In all cases, SP-PIFO
performs between ~2.5-3.5x better than a FIFO, with only
8 priority queues.

5 Implementation

In this section, we describe our implementation of SP-PIFO
in P44 [7] and P4,4.% Our implementation follows the algo-
rithm described in §4 and spans 190 (P4¢) and 735 (P44)
lines of code. It performs three main operations: (i) comput-
ing/extracting the rank from a packet header; (ii) mapping
packets to queues (§2); and (iii) updating the queue bounds.

Rank computation We implemented and tested multiple rank
computation functions such as LSTF [17], STFQ [23], and
FIFO+ [9] in P4;5. We note that the reduced memory usage in
SP-PIFO leaves room to compute ranks directly on the switch.
That said, most ranking algorithms can directly be computed
by the end-hosts [17].

Mapping We store the queue-bound values in individual reg-
isters and access them sequentially using an if-else condi-
tional tree. For each register access, we leverage the ALU to
perform three operations: (i) we read the queue-bound value
and compare it to the packet rank; (ii) we notify the queue-
selection result to the control flow using a single-bit metadata;
and (iii) we update the queue-bound value to the packet rank
if the queue is selected. In the ALU of the last queue, instead
of transferring the mapping decision to the control flow using
a binary metadata, we first check whether an inversion has
occurred before transferring the potential inversion cost using
larger metadata.

Adaptation When the mapping process detects an inversion,
we need to update all queue bounds. While accessing multiple
registers is not restricted by the P4 specification [10], current
architectures do not support it (among others, to guarantee
line rate). We address this problem by relying on the packet-
resubmission primitive to access the queue bounds a second
time and update them with the measured inversion cost. While
resubmission can possibly break the line-rate guarantees, we
only require it occasionally, upon inversions.

2The P44 code is used for running SP-PIFO on the Tofino platform [2].

Memory requirements Our implementation only requires
n registers where n is the number of queues. We leverage n
ALUs to access registers during the mapping process and n— 1
additional ALUs to update registers from the resubmission
pipeline in case of inversions. We use n — 1 bits of metadata to
access the mapping results of non-top-priority queues in their
respective ALUs from the control flow (i.e., a single 1-bit
metadata field for each queue) and an extra 32-bit field for the
top-priority queue to (potentially) transfer the inversion cost.

Regarding the number of stages, our implementation uses
more stages than the number of queues in order to perform the
sequential access to queue-bound registers during the map-
ping process. Note that alternative designs would be possible
but would come at the expense of line-rate guarantees.

6 Evaluation

We now evaluate SP-PIFO performance and practicality. We
first use packet-level simulations to evaluate how SP-PIFO ap-
proximates well-known scheduling objectives under realistic
traffic workloads (§6.1). We then evaluate SP-PIFO schedul-
ing performance when deployed on hardware switches (§6.2).

6.1 Performance analysis

We consider two scheduling objectives: (i) minimizing Flow
Completion Times (FCTs); and (ii) enforcing fairness. We
consider that ranks are set at the end hosts for the former
objective and computed in the switch for the latter. For both
objectives, we show that SP-PIFO scheduling capabilities
achieve near-optimal performance, with as little as 8 queues.

Methodology We integrated SP-PIFO in Netbench [3, 15],
a packet-level simulator. Similar to [4], we use a leaf-spine
topology with 144 servers connected through 9 leaf and 4
spine switches. We set the access and leaf-spine links to
1Gbps and 4Gbps, respectively. This results in a theoretical
end-to-end Round-Trip-Time (RTT) of 32.12us when cross-
ing the spine (4 hops) and 26us under the leaf (2 hops). We
generate traffic flows following two widely-used heavy-tailed
workloads: pFabric web application and data mining [4]. Flow
arrivals are Poisson-distributed and we adapt their starting
rates to achieve different utilization levels. We use ECMP and
draw source-destination pairs uniformly at random.

6.1.1 Minimizing Flow Completion Times

Rank definition & benchmarks We minimize FCTs by
implementing the pFabric algorithm [4] which sets the packet
ranks according to their remaining flow sizes. Specifically, we
compare pFabric performance when run on top of PIFO and
SP-PIFO. We also analyze TCP NewReno with traditional
drop-tail queues and DCTCP with ECN-marking drop-tail
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Figure 7: pFabric: FCT statistics across different flow sizes in data mining workload.
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Figure 8: pFabric: FCT statistics across different flow sizes in web search workload.

queues. Our pFabric implementation does not consider starva-
tion prevention. As suggested in [4], we approximate pFabric
rate control by using standard TCP with a retransmission
time-out of 3 RTTs, balancing the difference in RTOs be-
tween schemes with the proportional queue size. That is, we
use an RTO of 96us and 8 queues x 10 packets for SP-PIFO
(resp. 1 queuex 80 packets in PIFO), and an RTO of 300us
and 146KB drop-tail queues for both TCP and DCTCP, with
ECN marking at 14.6KB, i.e. ~10 packets.

Summary Fig. 7 and Fig. 8 depict the average and 99th per-
centile FCTs of large (> 1MB) and small flows (< 100KB)
for both data mining and web search workloads. We see that
SP-PIFO achieves close-to-PIFO performance in both dis-
tributions. When comparing performance across flow sizes,
we see that SP-PIFO achieves better performance for small
flows. This is not surprising since those flows are mapped into
higher-priority queues. As discussed in §4.2, strict-priority
schemes provide higher unpifoness protection for packets
mapped into higher-priority queues.

When comparing the two traffic distributions, we see that
SP-PIFO performs better under the data mining workload.
This is again expected. While both distributions are heavy-
tailed, the data mining one is more skewed [4] and therefore
easier to handle for SP-PIFO. Indeed, the probability of having
large flows simultaneously sharing the same port (potentially
blocking smaller flows) is lower for the data mining workload.

Data mining (Fig. 7) The average FCTs achieved by PIFO
and SP-PIFO are similar for small flows, i.e. within ~0.4—
11%. Concretely, SP-PIFO outperforms DCTCP and TCP by
a factor of ~2-5x and ~8-30x, respectively. When consid-
ering the 99th percentile, the gap between PIFO and SP-PIFO
slightly accentuates to ~9.6-26.6%. Still, SP-PIFO outper-
forms DCTCP and TCP by a factor of ~1.5-4.7x and ~12.5—
22 x, respectively. The largest performance gap between PIFO
and SP-PIFO occurs at low utilization. In this regime, the num-
ber of packets scheduled is low and the transient adaptation of
SP-PIFO is more visible. Whenever the utilization is >40%,
the difference is consistently below 20%. Finally, SP-PIFO
and PIFO still perform similarly among large flows: within
~1.9-9%, representing improvements with respect to TCP
and DCTCP of ~1.4-2.7x and ~1.5-2.8 X, respectively.

Web search (Fig. 8) The results are similar to the data
mining one, with slightly worse performance for SP-PIFO,
especially amongst big flows. Indeed, since the distribution is
less skewed, bigger flows have higher chances to reach higher-
priority queues, blocking transmissions of smaller flows. Still,
we see that the performance of SP-PIFO is within ~16.54—
32.5% of PIFO for small flows, and between ~1.3—4.4x and
~4.7-16.7 % better than DCTCP and TCP. Even at the 99th
percentile, the difference between SP-PIFO and PIFO stays
within ~20.7-32%. Note that, while the percentages might
seem high, the values we are looking at are very small.
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Figure 9: Fairness: FCT statistics for all flows at different loads, over the web search workload.

6.1.2 Enforcing fairness across flows

Rank definition & benchmarks We enforce fairness
across flows by implementing the Start-Time Fair Queueing
(STFQ) rank design [13] on top of PIFO and SP-PIFO. We
benchmark our solution with AFQ [21] (§8). We analyze the
performance for different flow sizes and number of queues.
Specifically, we use 8 queuesx 10 packets in SP-schemes
(resp. 1 queuex 80 packets for single-queue schemes) and
32 queues x 10 packets in SP-schemes (resp. 1 queue x320
packets for single-queue schemes). For AFQ, we select the
bytes-per-round parameter which gives the best performance.
In our testbed, this is 320 and 80 BpR for the 8-queue and
32-queue scenario, respectively. As in [21], we use DCTCP as
transport layer for AFQ, PIFO and SP-PIFO (with an RTO of
300us). We set ECN marking to 48KB, i.e. ~32 packets. We
generate traffic following the pFabric web search distribution.

Summary Fig. 9a and Fig. 9b depict the average FCTs of
small flows across different levels of utilization, when 8
queues and 32 queues are used. Fig. 9c depicts the FCTs
across flow sizes at 70% utilization and for 32 queues. In all
cases SP-PIFO achieves near-PIFO behavior and is on-par
performance with AFQ (current state-of-the-art).

Impact of the utilization (Fig. 9a & Fig. 9b) SP-PIFO stays
within ~23-28% (resp. ~21-28%) of ideal PIFO across
all levels of utilization when 8 queues (resp. 32) are used.
Even in the highest utilizations, it is consistently below ~26%
(resp. ~25%). SP-PIFO performance is at the level of AFQ,
within ~3-10% (resp. ~0.5-11%), generating improvements
of ~1.4-2.3x and ~2.7-4.2x (resp. ~1.4-2.3x and ~3.7—
7.4 x) over DCTCP and TCP. The fact that SP-PIFO perfor-
mance is equivalent with 8 and 32 queues is not surprising:
as the bandwidth-delay product is low, only a reduced queue
size is required for efficient link utilization.

Impact of flow sizes (Fig. 9¢) At 70% utilization, we see
that SP-PIFO lies within ~10-30% of PIFO performance
for all flow sizes and is on-par with AFQ. The only excep-
tion is for very small flows (<10K) in which AFQ performs
20% better. SP-PIFO improves DCTCP and TCP behaviors

for small flows, within ~1.5-3X and ~2-13X, respectively.
Considering the 99th percentile, we see that SP-PIFO stays
within ~8-35% of PIFO and improves between ~12—-78%
and ~1.5-10.76 x with respect to DCTCP and TCP.

Impact of the number of queues (Fig. 10) We analyze the
impact of the number of queues on average FCTs for both
AFQ and SP-PIFO. We set the BpR at MSS for all queue
configurations, as in [21], avoiding AFQ dropping packets
too often for cases of fewer queues. We see that while AFQ
has a higher sensitivity with respect to the number of queues,
SP-PIFO preserves a similar level of performance, without
any configuration or prior traffic knowledge.

6.2 Hardware testbed

We finally evaluate our hardware-based implementation of SP-
PIFO on the Barefoot Tofino Wedge 100BF-32X platform [2].
We perform two experiments. First, we analyze the bandwidth
allocated by SP-PIFO to flows with different ranks when
scheduled over a bottleneck link. Second, we measure the
impact on the FCT when SP-PIFO runs pFabric. We show
that SP-PIFO efficiently schedules traffic at potentially Tbps.

Bandwidth shares We transmit 8 UDP flows of 20Gbps be-
tween two servers. We generate the flows progressively, in
increasing order of priority (decreasing rank). We use 4 pri-
ority queues and schedule the flows over a 10Gbps interface.
We generate the flows using Moongen [12] and use an inter-
mediate switch to amplify them to the required throughput.

Fig. 11 depicts the flows’ bandwidth and how SP-PIFO
manages to virtually extend the number of queues. As ex-
pected, the first 4 flows receive the complete bandwidth, since
they are mapped to dedicated queues. As the number of flows
exceeds the number of queues, flows start to share queue
space and see a reduced bandwidth.

Flow completion times We simultaneously generate 1000
TCP flows of different sizes, going from 1GB to 100GB in
steps of 100MB, and schedule them over a bottleneck link of
7Gbps. We set the rank of each flow to the absolute flow size,
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following [4]. We compare the FCTs achieved by SP-PIFO
scheduling and the ones achieved by a FIFO queue.

Fig. 12 shows the resulting FCTs. As expected, the FIFO
queue leads to increased FCTs by not considering flow size.
In contrast, SP-PIFO prioritizes short flows over long ones,
minimizing their FCTs and the overall transmission time.

7 Discussion

In this section, we discuss the limitations of SP-PIFO and
how we can mitigate them. We first discuss intrinsic limita-
tions that come from using PIFO as a scheduling scheme. We
then discuss specific limitations of SP-PIFO together with
the problem of adversarial workloads. Finally, we suggest
potential hardware primitives that could facilitate PIFO im-
plementations in the future.

PIFO-inherited limitations Individual PIFO queues suffer
from two main limitations. First, they cannot rate-limit their
egress throughput preventing them from implementing non-
work-conserving scheduling algorithms. SP-PIFO also shares
the same limitation. Second, PIFO queues cannot directly im-
plement hierarchical scheduling algorithms. Yet, as proposed
by [23], multiple SP-PIFO schemes (i.e., using different set
of priority queues) can be grouped as a tree to approximate hi-
erarchical scheduling algorithms. The key challenge consists

2
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Figure 12: Tofino: FCT statistics across different flow sizes
with pFabric ranks.

in figuring out how to allow access of multiple queues with
existing traffic manager capabilities. While this is orthogonal
to this paper, one option would be to recirculate packets, en-
abling access to the traffic manager (and therefore the queues)
multiple times in the same pipeline. Doing so, while limiting
the impact on performance, is an interesting open question.

SP-PIFO-specific limitations The main limitation of SP-
PIFO is that, as an approximation scheme, it cannot guarantee
to perfectly emulate the behavior of a theoretical PIFO queue
for all ranks. We note two things. First, our evaluation (§6)
shows that, for realistic workloads, SP-PIFO performance is
often on-par with PIFO performances. Second, we note that
SP-PIFO can provide strong PIFO-like guarantees for some
ranks by dedicating some queues to them at the price of re-
duced performance for the other ranks. We believe this is an
interesting tradeoff as current switches can support up to 32
queues per port [21].

Adversarial workloads We have argued that, on average,
SP-PIFO can adapt to any kind of rank distribution. This
has certain limitations. First, we assume that all queues are
drained at some point. Nonetheless, a malicious host could
send a large number of high-priority packets and, as a result,
packets in lower-priority queues would never be drained. Such
“starvation” attacks are common to any type of priority scheme.
For instance, a malicious host could try to grab a bigger slice
of the network resources by setting ranks to 0 in slack-based
algorithms [4,9,17] or resetting flow identifiers in fair-queuing
schemes [23]. The problem of starvation in strict-priority
scheduling is also well-known in the context of QoS and
is typically addressed by policing high-priority traffic at the
edge of the network [18].

Aside from starvation attacks we also assume that, for a
given rank distribution, the particular order of ranks is random.
In practice, this is reasonable. While the ranks for individ-
ual flows might have some structure (e.g., monotonically-
increasing ranks), when various flows are scheduled together
the ordering of their packet ranks is randomized. Yet, attack-
ers could try to coordinate large numbers of flows to create
adversarial orderings, which “outplay” the adaptation mecha-
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nisms (§B.3). Nevertheless, any non-malicious flow which is
active at the same time can thwart such strategies by randomly
breaking the adversarial order. Aside from that, the network
could be monitored to detect such adversarial attacks.

Facilitating PIFO in the future On a forward-looking per-
spective, we note some improvements in hardware primi-
tives that would facilitate PIFO implementations in the future.
As we already discussed in §5, a higher number of stages
would facilitate per-queue state storage and a higher number
of queues would directly increase PIFO performance. Fur-
ther than that, multiple and dynamic memory access between
the ingress and egress pipelines would allow state updates
after inversions in the highest-priority queue without having
to rely on resubmission techniques. In the same direction,
access to queue information from the ingress pipeline or
an enhanced flexibility in the management of strict-priority
queues directly from the data plane would enable more accu-
rate unpifoness prediction at enqueue, opening the doors to
higher-performance SP-PIFO algorithms.

8 Related work

Programmable packet scheduling While scheduling has
been extensively studied over the years, the idea of making it
programmable is relatively recent [17,22]. In [24], Sivaraman
et. al. suggested programmable scheduling by proving that
the best scheduling algorithm to use depends on the desired
performance objective. In [17], Mittal et. al. made the obser-
vation that, despite certain algorithms accept configurations
to approximate a wide range of objectives, a universal packet
scheduling outperforming in all scenarios does not exist.

Several abstractions for programmable scheduling have
been proposed afterwards. In addition to PIFO [24], Eif-
fel [19] presents an alternative queue structure which ap-
proximates fine priorities by exploiting the characteristics
that define packet ranks in most scenarios to diminish the
required computational complexity. In contrast to [19, 24],
which rely on new hardware designs, SP-PIFO shows that
efficient programmable packet scheduling can be achieved
today, at scale, and on existing devices.

Exploiting priority queues Other (recent) schemes lever-
age multiple priority queues for specific performance objec-
tives. They highlight the need of programmable scheduling
in existing devices [16], and illustrate how rank designs pro-
ducing close-to-optimal results can already be implemented
in existing data planes. For enforcing fairness, FDPA [8] sim-
plifies the computational cost of per-flow virtual counters or
individual user queues in traditional-fair-queuing schemes
by using arrival-rate information at a user level. AFQ [21],
instead, emulates ideal fair queuing by implementing per-flow

counters on a count-min sketch and dynamically rotating pri-
orities in a strict-priority scheme to imitate the round-robin
behavior. SP-PIFO differs by fixing queue priorities and dy-
namically adapting the mapping of packets to those queues.
This actually makes SP-PIFO implementable at line rate in
existing data planes.

pFabric [4] and PTAS [5] show the use of priority queues
in flow completion time minimization. While pFabric relies
in general on a PIFO-queue design, [4] includes experiments
in which flows are mapped to priority queues based on their
size. While pFabric experiments use thresholds fixed from the
knowledge of flow distributions, SP-PIFO adapts the mapping
design automatically per-packet, without any traffic knowl-
edge required in advance. PIAS [5] approaches the case of
unknown flow sizes and uses Multi-level Feedback Queues
(MLFQ) [11] to achieve the desired Shortest Job First (SJF)
behavior, by gradually switching flows from higher to lower-
priority queues as their number of transmitted bytes increase.

In contrast to these proposals, SP-PIFO supports a much
wider range of performance objectives. SP-PIFO (like
PIFO [24]) can be used to implement any scheduling algo-
rithm in which the relative scheduling order does not change
with future packet arrivals. As illustrated in the evaluation
section (§6), the algorithms presented in AFQ [21], FDPA [8],
pFabric [4] and PIAS [5] can be used as ranking designs (i.e.,
setting packet ranks to scheduling virtual rounds, estimated
arrival rates, shortest remaining processing time of flows, or
number of packets transmitted under the MLFQ aging design)
to be run on top of SP-PIFO.

9 Conclusions

We presented SP-PIFO, a programmable packet scheduler
which closely approximates the theoretical behavior of PIFO
queues, today, on programmable data planes. The key insight
behind SP-PIFO is to dynamically adapt the mapping between
the packet ranks and a (fixed) set of strict-priority queues.

Our evaluation on realistic workloads shows that SP-PIFO
is practical: it closely approximates PIFO behaviors and, in
many cases, perfectly matches them. We also confirm that
SP-PIFO runs on actual programmable hardware.

Overall, we believe that our work shows that the benefits of
programmable packet scheduling—experimenting with new
scheduling algorithms—can be fulfilled today, in existing
networks.
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A Gradient-based algorithm

In this appendix we detail the greedy iterative algorithm pre-
sented in §3.2. We first motivate and proof how the algorithm
converges to the optimal solution (A.1). Second, we show how
to effectively prune the search space making computation effi-
cient while keeping convergence (A.2). Finally, we analyze its
implementation (A.3) and convergence requirements (A.4).

A.1 Greedy optimization

The algorithm (alg. 2) iteratively minimizes the risk by ad-
justing queue bounds, one queue and one step at a time, until
reaching convergence. At each iteration, the algorithm pre-
dicts, for every g;, whether moving the bound by one (in either
direction) decreases the expected risk, and moves the bound in
the direction of maximum decrease. In the following, we dis-
cuss first, how the algorithm can predict the expected change
in risk, and second, why checking a single step is sufficient to
converge.

Algorithm 2 Greedy optimization

Require: k: Step size, g;,;: Initial bounds
1: procedure ADAPTATION

2: D+ 0
3: q < Ginic > Initialize bounds
4: for all p: incoming packet do
5: D« DU{rank(p)} > Collect samples
6: if |D| = k then > Adapt bounds
7: P <~ COMPUTERANKPROBABILITES (D)
8: repeat
9: q < UPDATEMAPPING(q, P)

until g converges

._
- 2

D<+0

12: function UPDATEMAPPING(q, P)
13: for g; € g do

—_

> Reset samples

14: AT < RISKFROMINCREMENT(g;, P)
15: A~ < RISKFROMDECREMENT(g;, ©P)
16: if (AT <0) and (AT <A™) then
17: gi+—qi+1
18: else if (A~ <0) and (A~ < A™) then
19: qi+—qi—1

return g

Risk difference In §3.2, we demonstrated that the risk can
be analyzed on a per-queue basis from the cost of mapping
packets with different ranks to the same queue. Consequently,
changes in the risk resulting from changing the bound vector
q can be analyzed by comparing the risk difference in affected
queues. To be precise, every change of a single element g;
in g affects two queues, queue i and i — 1, as ranks are either
moved from i to i — 1 (increase in g;) or moved from i — 1 to
i (decrease in g;).

Theorem 1 Let r* = g;, let Q; be the set of ranks mapped to
queue i (before any changes). Increasing q; by 1 changes the
risk by:

87 =) B p)costr’,n) = T plricostrr®)
9

Let r* = q; — 1. Decreasing q; by 1 changes the risk by:

A7 =) (E plrdeostr ) = B plricostrr®)

(10)

Proof Increasing g; effectively removes the lowest rank from
queue i, which now becomes the highest rank in queue i — 1.
As the new highest rank in queue i — 1, it causes possible
inversions and therefore risk for all other ranks in queue i — 1,
resulting in the first, positive term in eq. 9. Conversely, as the
lowest rank in queue, it was prone to receive inversions from
any other element in the queue, supposing a risk in queue i
that is removed with the change. This risk reduction results
in the second, negative, term.

The proof for decreasing g; is symmetrical, with the main
difference that now, rank ¢;_1 is the one changing from queue
i—1to queue i.

Greedy step Based on the theory presented, the algorithm
computes the risk and either (for every ¢;):

(a) Does not move g;, if neither incrementing or decrement-
ing reduces the expected risk.

(b) Increments g;, if incrementing decreases the risk more
than decrementing.

(c) Decrements g;, if decrementing decreases the risk more
than incrementing.

This effectively prunes the search space. At every iteration,
the algorithm only requires a constant amount of compar-
isons, and it does not explore directions further in case they
increase the risk. In the following, we show why deciding not
to explore a direction further after a single step is reasonable.

Theorem 2 Let Af and A;" denote the prospective in- and
decreases from incrementing/decrementing q; by 1. Let Ai++
and A;~ denote the in- and decreases from increment-
ing/decrementing q; by more than 1. Let the cost function
used to compute the differences be non-decreasing in |r* —r|
and 0 if and only if r* = r. Then:

1. IfAf >0, then A7 > 0.

2. If Ay >0, then A7~ > 0.
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Proof

I: IfAF >0,
Z p(r)cost(r*,r) > Z p(r)cost(r,r") (1D
reQ;_1 reQ;

Let r** = ¢; + 1, i.e. the second-lowest rank in queue i,
which would be moved if we move the queue bound by
more than 1. Moving both r* and r** would cause the
following change in risk:

A= (12)
p(r)( Y, p(r)cost(r',r) = Y p(r)cost(r,r*))+
reQi | reQ;
(13)
p(r*)( Y, p(r)cost(r™,r) = Y p(r)cost(r,r™))
r€Qi—1 reQ;
(14)

Note that we can omit the cost between r* and r** in
eq. 14: as the cost function is by definition symmet-
ric, the additional increase in the left-hand term is ex-
actly equal in magnitude to the additional decrease in
the right-hand term, and thus they cancel each other.
Thus we omit the term to not clutter the notation. Next,
again by definition of the cost function, if r** > r* > r,
then cost (r**,r) > cost(r*,r), and if r > r** > r*, then
cost(r,r**) < cost(r,r*). Additionally, we note that the
order of arguments in the cost function does not matter,
as it is symmetrical. Applied to the risk of the lower- and
higher-priority queue respectively (eq. 14), this gives:

Z p(r)cost(r™,r) > Z p(r)cost(r*,r)
reQi_ 1 reQiq

Z p(r)cost(r,r™) < Z p(r)cost(r,r")

reQ; reQ;

s)

And in conclusion, the left hand term in eq. 14 is larger
than the left hand term in eq. 13, and the right hand term
in eq. 14 is smaller then the left hand term in eq. 13.
Consequently, if eq. 13 is positive, eq. 14 must also be
positive (as probabilities are always positive), proving
that if one step does increase the risks, two steps will
also increase the risk. The exact same procedure can be
repeated for larger step sizes, which we omit here.

[\

: This proof is conceptually identical to the other direction,
and we will thus omit it. The guiding principle is the
same: moving more than one rank can only cause higher
increase in risk in the queue the ranks are moved to, and
lower decrease in risk in the queue the ranks are taken
from, compared to the previous ranks. Thus, if already
moving one rank causes a higher increase in risk in one
queue than decrease in the other, moving additional ranks
does not change this.
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Figure 13: Greedy convergence for uniform rank distribution.

Conclusion We have explained how the greedy algorithm
only requires exploring the direction which offers a potential
decrease in risk, and we have proved how the risk does not
decrease with the distance between ranks (it cannot be better
to have a bigger inversion, only equal or worse). This allows
the greedy algorithm to quickly decide if a direction is not
worth investigating, effectively pruning the search space.

A.2 Efficient computation

As tracking the complete rank distribution at each iteration
might be too expensive in terms of memory, and repeating
the adaptation until convergence too costly in terms of com-
plexity, we show in the following lines how the mathematical
formulation of the problem allows a simplified implementa-
tion which only requires 4 counters per queue.

From the empirical probability definition, pp(r) =
[rp|/| D], we can rewrite eq. 9 and eq. 10 as:

+ |‘]i|

Af = @2-( Y Irlcost(gi,r) = Y |rlcost(r,q;))
| ‘ reQi—q reQ;
i—1
A = 'q@ MR eost(ai— 1)~ Y Ircost(rng; 1)
| | reQ; re€Qi—1

(16)

Since the queue bound g; stays constant throughout the
adaptation window, each of the summations in eq. 16 can
be implemented through a counter which gets updated every
time a new packet arrives, with its carried rank. Note that the
number of counters required increases linearly with the num-
ber of queues. Also, observe that the counters in eq. 16, only
allow the computation of one step in the gradient. However,
this is enough since, as can be seen in Fig. 13, the one-step
version manages to converge in practice.
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Figure 14: Greedy algorithm adaptation microbenchmark.

A.3 Implementation requirements

With the computation presented in A.2, implementing the
gradient-based algorithm on top of n priority queues, requires
n registers for queue-bound storage and (4 - n) registers for
the gradient computation. The mapping process §2 requires
packets to potentially read all the queue-bound values (i.e.,
for packets scheduled in the highest-priority queue). In the
same direction, while most packets only need to update the
two counters corresponding to their queue, the k;, packet
in each sequence needs to access all counters to perform
the adaptation decision. This supposes being able to read
n+ (4-n) different registers for a single packet (without even
considering the updates). Since existing devices only support
up to 12-16 stages, with a single register access per stage [14],
the implementation of the greedy algorithm is not feasible for
a practical number of queues (i.e., n > 8).

A.4 Convergence analysis

We now show how the greedy-algorithm performance varies
when modifying the three main degrees of freedom: (i) the
adaptation window (i.e., the number of packets that are moni-
tored before the adaptation mechanism is executed); (ii) the
number of queues available in the strict-priority scheme; and
(iii) the number of ranks in the distribution. For that, we ana-
lyze the unpifoness evolution of a single switch running the
greedy algorithm for a uniform rank distribution from O to
100 until convergence. We compute unpifoness as specified
in §3.1, based on the packets scheduled and the queue bounds
used during the adaptation window.

Effects of varying the adaptation window Fig. 14a shows
the unpifoness evolution when we run the greedy algorithm
on top of a strict-priority scheme of 8 queues, and we vary the
adaptation window from 50 to 7000 packets. We observe that,
for the algorithm to converge, the adaptation window needs
to be broad enough to cover a complete sample of the rank
distribution (i.e., one that characterizes all its representative
behaviors). In our case, any adaptation window below 100
packets can not characterize completely the rank distribution.

Indeed, Fig. 14a depicts how the greedy algorithm correctly
converges as soon as more than 200 packets are monitored per
iteration. In general, the broader the adaptation window, the
more precise the rank distribution estimate, and the better the
adaptation decision. However, while a too narrow adaptation
window can suppose missing important information of the
rank distribution and breaking convergence guarantees, a too
broad adaptation window can make the algorithm too slow to
converge, negatively impacting the performance.

Finally, the greedy algorithm only converges if the rank
distribution has a smaller variability than the adaptation rate
(i.e., the rank distribution is stable during the time it takes for
the algorithm to converge). Relating it to the previous point,
simpler rank distributions, which require narrower adaptation
windows, can afford higher levels of variability. In contrast,
complex distributions which take longer to adapt and are
required to keep stable longer for the algorithm to converge.

Effects of varying the number of queues Fig. 14b depicts
the case in which we fix an adaptation window of 1000 pack-
ets, and modify the number of queues from § to 32. All queues
have a constant size of 10 packets. We see how the higher
number of queues the lower the unpifoness, and the better the
PIFO approximation. This is expected since each queue can
be perceived as an opportunity to sort packets with different
ranks, and therefore to reduce the number of inversions. Also,
we can see how the number of iterations required by the algo-
rithm to converge does not directly depend on the number of
queues. This results from the fact that each adaptation deci-
sion analyzes (and, if required, updates) potential redesigns
for all the different queue bounds.

Effects of varying the number of ranks Fig. 14c presents
the effects of modifying the range of the uniform rank distri-
bution from 100 to 1000 ranks, when we fix the number of
queues to 8 and the adaptation window to 1000 packets. As
expected, under the same number of queues, a higher number
of ranks implies an increase in unpifoness. Also, as the rank
ranges get closer to the adaptation window, the distribution
estimates get worse, and the adaptation gets tougher.
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B Theoretical analysis of SP-PIFO

SP-PIFO is a highly-dynamic probabilistic system. In partic-
ular, its queue bounds g change with nearly every incoming
packet. Nevertheless, in this section we show that the system
has an attractive equilibrium g* (B.1), how this equilibrium
balances the different causes of inversions (B.2), and we dis-
cuss the limitations and open question of our analysis (B.3).

B.1 Stable equilibrium

Queue-bound dynamics Consider SP-PIFO as a discrete-
time system, where each time step corresponds to an arriving
packet. Let g’ be the queue bounds at step 7, when the z-th
packet arrives. Then, the queue bounds at step ¢ + 1 are:

gt =4 +A(F) (17)

where 7' is the rank of the #-th packet, and A(r") is the change
this packet causes on the queue bounds. The queue-bound
change is given by the “push-down” and “push-up” stages of
SP-PIFO, respectively. If the packet causes an inversion in
the highest-priority queue, all queue bounds are decreased
by ¢} —r*. Otherwise, there is exactly one queue i such that
q; <1 <}, and only g; is set to r, or equivalently, is
increased by r' — ¢.. Finally, let p(r') be the probability of
rank r for the z-th packet. Then, the expected value of the
queue bounds at step 7 + 1, and the expected difference to the
queue bounds at step  are, respectively: °

E[¢i"'] =E[4}] (18)
+ Y ("4 9
Gi<r<qi,
Af(q' 1)
=Y p(")di—7) (20)
r<q}
A= (q',1")

SE[g" ~q]=4(d.7) -4 (d.") @D
Equilibrium As expected, we can see from eq. 21 that the
change of queue bounds is determined by the “push-up” (Ai*)
and “push-down” (A7) stages working against each other.
Indeed, if A;L is larger than A™, the queue bound increases,
and vice versa. The system has an equilibrium g*, where A" =
A~ and the expected change is 0. Note that this equilibrium
depends on the rank probability.

Attraction The equilibrium g* is attractive, i.e. if ¢} < ¢,
E[¢:"! —¢!] > 0, and vice versa. For small perturbations, this
is straightforward. Assume that all queue bounds are in equi-
librium, except g;. If ¢' < g, then A'(q',7") > A} (g%, 1),

3For queue i = n, there is no ¢, and there is no upper bound on .

because the sum in eq. 19 has (i) more (non-negative) terms;
and (ii) each term is weighted stronger, as the difference
r' — ¢! is larger. On the other hand, A~ (q', ") is either equal
to A~ (g*,r") (for i > 1) or even smaller (for i = 1, as there
are less, and lesser weighted, terms in the sum 20). Thus, the
increase is larger than the decrease, and the expected change
to g; is positive. The argument for ¢} > ¢; is symmetrical.
For larger disturbances, the equilibrium is also attractive,
but it might take more than a single time step, as the “push-up”
stage for g; also depends on g;1: if both ¢; < ¢} and g; 41 <
q;v1» the “push-up” might be too weak to pull g; towards
the equilibrium. However, this is not the case for the lowest-
priority queue g, for which the “push-up” does not depend
on another queue. Thus, lower-priority queues (at least g;,)
might be pulled towards the equilibrium at first, while other
g; are not. Notice that an expected increase of ¢, ; increases

the “push-up” mechanism for ¢!*' and decreases it for ¢/}

l
(eq. 19). Eventually, as the lower-priority queue bound is
getting closer to the equilibrium, the higher-priority queue
bound is also pulled towards the equilibrium. This continues
until the highest-priority queue, where an expected increase of
¢} also increases the “push-down” mechanism for all bounds
at step 7+ 1 (eq. 20). As a result, over multiple time steps, the
expected effects of the “push-up” and “push-down” stages

equalize, eventually pulling all ¢; towards ¢ .

B.2 Balance

As explained in §4, there are three main reasons for unpi-
foness: (i) inversions in the highest-priority queue, after which
all queue bounds are decreased; (ii) inversions in a lower-
priority queue after its queue bound has been decreased; (iii)
inversions in a lower-priority queue, if its highest rank “over-
takes” the lowest rank of a higher-priority queue.

As we can see in eq. 19, eq. 20, and eq. 21, all these factors
play a role in the dynamics of SP-PIFO. At the equilibrium,
the probability of “push-down”, which is exactly the probabil-
ity of an inversion in the highest-priority queue (weighted by
its severity), is equalized with the probability of a packet be-
ing mapped to any other queue (again weighted, more on this
below). While this does not directly correspond to inversions,
the more packets are mapped to lower-priority queues, the
higher is the probability of an inversion in those queues after
a “push-down”. SP-PIFO thus keeps a balance between inver-
sions (i) and (ii), as decreasing (i) would require a stronger
“push-down”, which would then increase (ii), and vice versa.

Finally, as mentioned above, the ranks in a queue are
weighted by how far they are away from the queue bound
(" —¢}). This penalizes long (in terms of distinct ranks)
queues, which helps to reduce (iii), as the probability for one
queue “overtaking” another increases the further the actual
queue bound is from the highest-rank packet in the queue,
which increases with the length of the queue.
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B.3 Assumptions and limitations

The analysis presented above is based on a few assumptions,
which we argue are justified, yet pose some open questions.

First, we assume that there exists a finite distribution of
ranks. This is given in practice. Since ranks need to be pro-
cessed and stored in hardware, which offers restricted re-
sources, rank ranges must have a limited size.

Second, although SP-PIFO can rapidly adapt to varying
rank distributions (in particular faster than the greedy algo-
rithm), we assume that the rank distribution is stable enough
such that an equilibrium can exist at all. However, it remains
an open question whether there is a point in which the rank-
distribution variation might be too fast for the system to actu-
ally converge to an equilibrium. In that (hypothetical) case,
the analysis presented herein would not be useful to provide
any additional insights on the performance of SP-PIFO.

Finally, we assume that the ranks appear in random order,
independently from each other. At the first glance, this may
seem irrational, as many scheduling algorithms have some
structure in the way how ranks are assigned to packets for a
given flow. Nevertheless, in practical scenarios, many flows
are scheduled together, and even though the ranks for individ-
ual flows might be structured, the combined ranks of packets
across flows become randomized.

Adversarial workloads Based on the previous assump-
tions, we have shown that SP-PIFO is attracted towards an
expected equilibrium, in which the different sources of unpi-
foness are balanced. However, there are also some limitations.

On the one hand, this equilibrium exists only in expecta-
tion, and the queue bounds are also only attracted to it in
expectation. The actual queue bounds depend on the order
in which packets arrive, as do inversions. So, even though
on average, assuming a random rank ordering, the system
might be balanced, there exist particular adversarial rank or-
derings, which “outplay” the two stages to create events of
large unpifoness. An adversary might attempt to abuse this by
coordinating a large number of flows to force an adversarial
ordering of packet ranks. As an example, she might try to
increase all queue bounds as much as possible before trigger-
ing a “push-down” reaction (e.g., by generating sequences of
monotonically-increasing packet ranks). With the sudden de-
crease in queue-bound values, the high-rank packets mapped
in the queues would generate inversions to the new packets.

Nevertheless, any non-malicious coexisting flow can easily
thwart such strategies, by just randomly breaking the adversar-
ial order. Still, it might be interesting to classify all adversarial
orderings, and subsequently monitor the network to actively
detect such type of attacks.
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AccelTCP: Accelerating Network Applications with Stateful TCP
Offloading

YoungGyoun Moon SeungEon Lee Muhammad Asim Jamshed KyoungSoo Park
KAIST KAIST Intel Labs KAIST
Abstract Ensuring the desirable properties of TCP, however,

The performance of modern key-value servers or
layer-7 load balancers often heavily depends on the ef-
ficiency of the underlying TCP stack. Despite numer-
ous optimizations such as kernel-bypassing and zero-
copying, performance improvement with a TCP stack is
fundamentally limited due to the protocol conformance
overhead for compatible TCP operations. Unfortunately,
the protocol conformance overhead amounts to as large
as 60% of the entire CPU cycles for short-lived connec-
tions or degrades the performance of L7 proxying by
3.2x to 6.3x.

This work presents AccelTCP, a hardware-assisted
TCP stack architecture that harnesses programmable
network interface cards (NICs) as a TCP protocol acceler-
ator. Accel TCP can offload complex TCP operations such
as connection setup and teardown completely to NIC,
which simplifies the host stack operations and frees a
significant amount of CPU cycles for application process-
ing. In addition, it supports running connection splicing
on NIC so that the NIC relays all packets of the spliced
connections with zero DMA overhead. Our evaluation
shows that Accel TCP enables short-lived connections to
perform comparably to persistent connections. It also im-
proves the performance of Redis, a popular in-memory
key-value store, and HAProxy, a widely-used layer-7
load balancer, by 2.3x and 11.9x, respectively.

1 Introduction

Transmission Control Protocol (TCP) [24] is undeniably
the most popular protocol in modern data networking.
It guarantees reliable data transfer between two end-
points without overwhelming either end-point nor the
network itself. It has become ubiquitous as it simply
requires running on the Internet Protocol (IP) [23] that
operates on almost every physical network.

often entails a severe performance penalty. This is es-
pecially pronounced with the recent trend that the gap
between CPU capacity and network bandwidth widens.
Two notable scenarios where modern TCP servers suffer
from poor performance are handling short-lived con-
nections and layer-7 (L7) proxying. Short-lived connec-
tions incur a serious overhead in processing small con-
trol packets while an L7 proxy requires large compute
cycles and memory bandwidth for relaying packets be-
tween two connections. While recent kernel-bypass TCP
stacks [5, 30, 41, 55, 61] have substantially improved the
performance of short RPC transactions, they still need to
track flow states whose computation cost is as large as
60% of the entire CPU cycles (Section §2). An alternative
might be to adopt RDMA [37, 43] or a custom RPC pro-
tocol [44], but the former requires an extra in-network
support [7, 8, 70] while the latter is limited to closed
environments. On the other hand, an application-level
proxy like L7 load balancer (LB) may benefit from zero
copying (e.g., via the splice() system call), but it must
perform expensive DMA operations that would waste
memory bandwidth.

The root cause of the problem is actually clear — the
TCP stack must maintain mechanical protocol confor-
mance regardless of what the application does. For in-
stance, a key-value server has to synchronize the state at
connection setup and closure even when it handles only
two data packets for a query. An L7 LB must relay the
content between two separate connections even if its
core functionality is determining the back-end server.

AccelTCP addresses this problem by exploiting mod-
ern network interface cards (NICs) as a TCP protocol ac-
celerator. It presents a dual-stack TCP design that splits
the functionality between a host and a NIC stack. The
host stack holds the main control of all TCP operations;
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it sends and receives data reliably from/to applications
and performs control-plane operations such as conges-
tion and flow control. In contrast to existing TCP stacks,
however, it accelerates TCP processing by selectively
offloading stateful operations to the NIC stack. Once
offloaded, the NIC stack processes connection setup
and teardown as well as connection splicing that re-
lays packets of two connections entirely on NIC. The
goal of AccelTCP is to extend the performance benefit
of traditional NIC offload to short-lived connections and
application-level proxying while being complementary
to existing offloading schemes.

Our design brings two practical benefits. First, it signif-
icantly saves the compute cycles and memory bandwidth
of the host stack as it simplifies the code path. Connec-
tion management on NIC simplifies the host stack as
the host needs to keep only the established connections
as well as it avoids frequent DMA operations for small
control packets. Also, forwarding packets of spliced con-
nections directly on NIC eliminates DMA operations and
application-level processing. This allows the application
to spend precious CPU cycles on its main functionality.
Second, the host stack makes an offloading decision flex-
ibly on a per-flow basis. When an L7 LB needs to check
the content of a response of select flows, it opts them
out of offloading while other flows still benefit from con-
nection splicing on NIC. When the host stack detects
overload of the NIC, it can opportunistically reduce the
offloading rate and use the CPU instead.

However, performing stateful TCP operations on
NIC is non-trivial due to following challenges. First,
maintaining consistency of transmission control blocks
(TCBs) across host and NIC stacks is challenging as any
operation on one stack inherently deviates from the
state of the other. To address the problem, AccelTCP
always transfers the ownership of a TCB along with an
offloaded task. This ensures that a single entity solely
holds the ownership and updates its state at any given
time. Second, stateful TCP operations increase the im-
plementation complexity on NIC. AccelTCP manages
the complexity in two respects. First, it exploits modern
smart NICs equipped with tens of processing cores and
a large memory, which allows flexible packet processing
with C and/or P4 [33]. Second, it limits the complexity
by resorting to a stateless protocol or by cooperating
with the host stack. As a result, the entire code for the
NIC stack is only 1,501 lines of C code and 195 lines of
P4 code, which is small enough to manage on NIC.

Our evaluation shows that AccelTCP brings an enor-
mous performance gain. It outperforms mTCP [41] by
2.2x to 3.8x while it enables non-persistent connections

to perform comparably to persistent connections on
IX [30] or mTCP. AccelTCP’s connection splicing of-
fload achieves a full line rate of 80 Gbps for L7 proxying
of 512-byte messages with only a single CPU core. In
terms of real-world applications, Accel TCP improves
the performance of Redis [17] and HAProxy [6] by a
factor of 2.3x and 11.9x, respectively.

The contribution of our work is summarized as fol-
lows. (1) We quantify and present the overhead of TCP
protocol conformance in short-lived connections and
L7 proxying. (2) We present the design of AccelTCP, a
dual-stack TCP processing system that offloads select
features of stateful TCP operations to NIC. We explain
the rationale for our target tasks of NIC offload, and
present a number of techniques that reduce the imple-
mentation complexity on smart NIC. (3) We demonstrate
a significant performance benefit of AccelTCP over exist-
ing kernel-bypass TCP stacks like mTCP and IX as well
as the benefit to real-world applications like a key-value
server and an L7 LB.

2 Background and Motivation

In this section, we briefly explain the need for an NIC-
accelerated TCP stack, and discuss our approach.

2.1 TCP Overhead in Short Connections
& L7 Proxying

Short-lived TCP connections are prevalent in data cen-
ters [31, 65] as well as in wide-area networks [54, 64, 66].
L7 proxying is also widely used in middlebox applica-
tions such as L7 LBs [6, 36] and application-level gate-
ways [2, 19]. Unfortunately, application-level perfor-
mance of these workloads is often suboptimal as the
majority of CPU cycles are spent on TCP stack oper-
ations. To better understand the cost, we analyze the
overhead of the TCP stack operations in these workloads.
To avoid the inefficiency of the kernel stack [38, 39, 60],
we use mTCP [41], a scalable user-level TCP stack on
DPDK [10], as our baseline stack for evaluation. We use
one machine for a server (or proxy) and four clients and
four back-end servers, all equipped with a 40GbE NIC.
The detailed experimental setup is in Section §6.

Small message transactions: To measure the over-
head of a short-lived TCP connection, we compare the
performance of non-persistent vs. persistent connec-
tions with a large number of concurrent RPC transac-
tions. We spawn 16k connections where each transac-
tion exchanges one small request and one small response
(64B) between a client and a server. A non-persistent
connection performs only a single transaction while a
persistent connection repeats the transactions without
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Figure 1: Small packet (64B) performance with non-persistent
and persistent connections

a closure. To minimize the number of small packets, we
patch mTCP to piggyback every ACK on the data packet.

Figure 1 shows that persistent connections outper-
form non-persistent connections by 2.6x to 3.2x. The
connection management overhead is roughly propor-
tional to the number of extra packets that it handles; two
packets per transaction with a persistent connection vs.
six ! packets for the same task with a non-persistent con-
nection. Table 1 shows the breakdown of the CPU cycles
where almost 60% of them are attributed to connection
setup and teardown. The overhead mainly comes from
TCP protocol handling with connection table manage-
ment, TCB construction and destruction, packet I/O, and
L2/L3-level processing of control packets.

Our experiments may explain the strong preference
to persistent connections in data centers. However, not
all applications benefit from the persistency. When ap-
plication data is inherently small or transferred sporadi-
cally [32, 69], it would result in a period of inactivity that
taxes on server resources. Similarly, persistent connec-
tions are often deprecated in PHP applications to avoid
the risk of resource misuse [28]. In general, supporting
persistent connections is cuambersome and error-prone
because the application not only needs to keep track of
connection states, but it also has to periodically check
connection timeout and terminate idle connections. By
eliminating the connection management cost with NIC
offload, our work intends to free the developers from
this burden to choose the best approach without perfor-
marnce concern.

Application-level proxying: An L7 proxy typically
operates by (1) terminating a client connection (2) ac-
cepting a request from the client and determining the
back-end server with it, and creating a server-side con-
nection, and (3) relaying the content between the client
and the back-end server. While the key functionality
of an L7 proxy is to map a client-side connection to a
back-end server, it consumes most of CPU cycles on re-
laying the packets between the two connections. Packet

ISYN, SYN-ACK, ACK-request, response-FIN, FIN-ACK, and ACK.

. TCP processing and state update ~ 24.0%
Connection 60.5%
setu TCP connection state init/destroy 17.2%
teardown

Packet I/O (control packet) 10.2%
L2-L3 processing/forward 9.1%
Message TCP processing and state update  11.0% 29.0%
delivery Message copy via socket buffer 8.4%
Packet I/O (data packet) 5.1%
L2-L3 processing/forward 4.5%
Socket/epoll API calls 5.6%
Timer handling and context switching 3.5%
Application logic 1.4%

Table 1: CPU usage breakdown of a user-level TCP echo server
(a single 64B packet exchange per connection)

64B 1500B
L7 proxy (mTCP) 2.1 Gbps 5.3 Gbps
L7 proxy with splice() (mTCP) 2.3 Gbps 6.3 Gbps
L3 forward at host (DPDK) 7.3 Gbps  39.8 Gbps
L3 forward at NIC 2 28.8 Gbps  40.0 Gbps

Table 2: L7 proxying and L3 forwarding performance on a
single CPU core

relaying incurs a severe memory copying overhead as
well as frequent context switchings between the TCP
stack and the application. While zero-copying APIs like
splice() can mitigate the overhead, DMA operations be-
tween the host memory and the NIC are unavoidable
even with a kernel-bypass TCP stack.

Table 2 shows the 1-core performance of a simple
L7 proxy on mTCP with 16k persistent connections
(8k connections for clients-to-proxy and proxy-to-back-
end servers, respectively). The proxy exchanges n-byte
(n=64 or 1500) packets between two connections, and
we measure the wire-level throughput at clients includ-
ing control packets. We observe that TCP operations
in the proxy significantly degrade the performance by
3.2x to 6.3x compared to simple packet forwarding with
DPDK [10], despite using zero-copy splice(). Moreover,
DMA operations further degrade the performance by
3.8x for small packets.

Summary: We confirm that connection management
and packet relaying consume a large amount of CPU cy-
cles, severely limiting the application-level performance.
Offloading these operations to NIC promises a large
potential for performance improvement.

2.2 NIC Offload of TCP Features

There have been a large number of works and debates
on NIC offloading of TCP features [35, 47, 50, 57]. While
AccelTCP pursues the same benefit of saving CPU cycles

2 All 120 flow-processing cores in Agilio LX are enabled.
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and memory bandwidth, it targets a different class of
applications neglected by existing schemes.

Partial TCP offload: Modern NICs typically support
partial, fixed TCP function offloads such as TCP/IP
checksum calculation, TCP segmentation offload (TSO),
and large receive offload (LRO). These significantly save
CPU cycles for processing large messages as they avoid
scanning packet payload and reduce the number of in-
terrupts to handle. TSO and LRO also improve the DMA
throughput as they cut down the DMA setup cost re-
quired to deliver many small packets. However, their
performance benefit is mostly limited to large data trans-
fer as short-lived transactions deal with only a few of
small packets.

Full Stack offload: TCP Offload Engine (TOE) takes
a more ambitious approach that offloads entire TCP
processing to NIC [34, 67]. Similar to our work, TOE
eliminates the CPU cycles and DMA overhead of con-
nection management. It also avoids the DMA transfer of
small ACK packets as it manages socket buffers on NIC.
Unfortunately, full stack TOE is unpopular in practice as
it requires invasive modification of the kernel stack and
the compute resource on NIC is limited [12]. Also, oper-
ational flexibility is constrained as it requires firmware
update to fix bugs or to replace algorithms like conges-
tion control or to add new TCP options. Microsoft’s TCP
Chimney [15] deviates from the full stack TOE as the
kernel stack controls all connections while it offloads
only data transfer to the NIC. However, it suffers from
similar limitations that arise as the NIC implements TCP
data transfer (e.g., flow reassembly, congestion and flow
control, buffer management). As a result, it is rarely en-
abled these days [27].

In comparison, existing schemes mainly focus on effi-
cient large data transfer, but AccelTCP targets perfor-
mance improvement with short-lived connections and
L7 proxying. AccelTCP is complementary to existing
partial TCP offloads as it still exploits them for large
data transfer. Similar to TCP Chimney, AccelTCP’s host
stack assumes full control of the connections. However,
the main offloading task is completely the opposite: Ac-
celTCP offloads connection management while the host
stack implements entire TCP data transfer. This design
substantially reduces the complexity on NIC while it
extends the benefit to an important class of modern
applications.

2.3 Smart NIC for Stateful Offload

Smart NICs [1, 3, 14, 25] are gaining popularity as
they support flexible packet processing at high speed
with programming languages like C or P4 [33]. Re-
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Figure 3: Packet forwarding performance on Agilio LX

cent smart NICs are flexible enough to run Open
vSwitch [62], Berkeley packet filter [49], or even key-
value lookup [53], often achieving 2x to 3x performance
improvement over CPU-based solutions [16]. In this
work, we use Netronome Agilio LX as a smart NIC plat-
form to offload stateful TCP operations.

As shown in Figure 2, Agilio LX employs 120 flow
processing cores (FPCs) running at 1.2GHz. 36 FPCs
are dedicated to special operations (e.g., PCI or Inter-
laken) while remaining 84 FPCs can be used for arbitrary
packet processing programmed in C and P4. One can im-
plement the basic forwarding path with a match-action
table in P4 and add custom actions that require a fine-
grained logic written in C. The platform also provides
fast hashing, checksum calculation, and cryptographic
operations implemented in hardware.

One drastic difference from general-purpose CPU is
that FPCs have multiple layers of non-uniform memory
access subsystem - registers and memory local to each
FPC, shared memory for a cluster of FPCs called "island",
or globally-accessible memory by all FPCs. Memory ac-
cess latency ranges from 1 to 500 cycles depending on
the location, where access to smaller memory tends to be
faster than larger ones. We mainly use internal memory
(IMEM, 8MB of SRAM) for flow metadata and external
memory (EMEM, 8GB of DRAM) for packet contents.
Depending on the flow metadata size, IMEM can sup-
port up to 128K to 256K concurrent flows. While EMEM
would support more flows, it is 2.5x slower. Each FPC
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Figure 4: Split of TCP functionality in AccelTCP

can run up to 8 cooperative threads — access to slow
memory by one thread would trigger a hardware-based
context switch to another, which takes only 2 cycles.
This hides memory access latency similarly to GPU.

Figure 3 shows the packet forwarding performance
of Agilio LX as a function of cycles spent by custom C
code, where L3 forwarding is implemented in P4. We
see that it achieves the line rate (40 Gbps) for any pack-
ets larger than 128B. However, 64B packet forwarding
throughput is only 42.9 Mpps (or 28.8 Gbps) even with-
out any custom code. We suspect the bottleneck lies in
scattering and gathering of packets across the FPCs. The
performance starts to drop as the custom code spends
more than 200 cycles, so minimizing cycle consumption
on NIC is critical for high performance.

3 AccelTCP Design Rationale

AccelTCP is a dual-stack TCP architecture that har-
nesses NIC hardware as a TCP protocol accelerator. So,
the primary task in AccelTCP’s design is to determine
the target for offloading. In this regard, AccelTCP di-
vides the TCP stack operations into two categories: cen-
tral TCP operations that involve application data trans-
fer and peripheral TCP operations required for protocol
conformance or mechanical operations that can bypass
the application logic. Central TCP operations refer to
all aspects of application data transfer — reliable data
transfer with handling ACKs, inferring loss and packet
retransmission, tracking received data and performing
flow reassembly, enforcing congestion/flow control, and
detecting errors (e.g., abrupt connection closure by a
peer). These are typically complex and subject to flexi-
ble policies, which demands variable amount of compute
cycles. One can optimize them by exploiting flow-level
parallelism [5, 30, 41, 59] or by steering the tasks into
fast and slow paths [48] on kernel-bypass stacks. How-
ever, the inherent complexity makes it a poor fit for NIC
offloading as evidenced by the full stack TOE approach.

Peripheral operations refer to the remaining tasks
whose operation is logically independent from the ap-
plication. These include traditional partial NIC offload

tasks 3, connection setup and teardown, and blind relay-
ing of packets between two connections that requires
no application-level intervention. Peripheral tasks are
either stateless operations with a fixed processing cost
or lightly stateful operations that synchronize the states
for reliable data transfer. We mainly target these opera-
tions for offloading as they can be easily separated from
the host side that runs applications.

Connection management offload: State synchro-
nization at the boundary of a connection is a key re-
quirement for TCP, but it is a pure overhead from the ap-
plication’s perspective. While NIC offload is logically de-
sirable, conventional wisdom suggests otherwise due to
complexity [15, 48]. Our position is that one can tame the
complexity on recent smart NICs. First, connection setup
operations can be made stateless with SYN-cookies [20].
Second, the common case of connection teardown is
simple state transition, and modern smart NICs have
enough resources to handle a few exceptions.

Connection splicing offload: Offloading connection
splicing to NIC is conceptually complex as it requires
state management of two separate connections on NIC.
However, if the application does not modify the re-
layed content, as is often the case with L7 LBs, we can
simulate a single logical connection with two physi-
cal connections. This allows the NIC to operate as a
fast packet forwarder that simply translates the packet
header. The compute cycles for this are fixed with a
small per-splicing state.

To support the new offload tasks, we structure the
dual-stack design with the following guidelines.
1. Full control by the host side: The host side should
enforce full control of offloading, and it should be able to
operate standalone. This is because the host stack must
handle corner cases that cannot benefit from offload. For
example, a SYN packet without the timestamp option
should be handled by the host stack as SYN-cookie-based
connection setup would lose negotiated TCP options
(Section §4). Also, the host stack could decide to tem-
porarily disable connection offload when it detects the
overload of the NIC.

2. Single ownership of a TCB: AccelTCP offloads
stateful operations that require updating the TCB. How-
ever, maintaining shared TCBs consistently across two
stacks is very challenging. For example, a send buffer
may have unacknowledged data along with the last FIN
packet. The host stack may decide to deliver all data
packets for itself while it offloads the connection tear-
down to NIC simultaneously. Unfortunately, handling

3Such as checksum calculation, TSO, and LRO.
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ACKs and retransmission across two stacks require care-
ful synchronization of the TCB. To avoid such a case,
AccelTCP enforces an exclusive ownership of the TCB at
any given time - either host or NIC stack holds the own-
ership but not both. In the above case, the host stack
offloads the entire data to the NIC stack and forgets
about the connection. The NIC stack handles remaining
data transfer as well as connection teardown.

3. Minimal complexity on NIC: Smart NICs have lim-
ited compute resources, so it is important to minimize
complex operations on NIC. A tricky case arises at con-
nection teardown as the host stack can offload data trans-
fer as well. In that case, the host stack limits the amount
of data so that the NIC stack avoids congestion control
and minimizes state tracking of data packets.

4 AccelTCP NIC Dataplane

In this section, we present the design of AccelTCP NIC
stack in detail. Its primary role is to execute three offload
tasks requested by the host stack. Each offload task can
be enabled independently and the host side can decide
which flows to benefit from it. The overall operation of
NIC offload is shown in Figure 5.

4.1 Connection Setup Offload

An AccelTCP server can offload the connection setup
process completely to the NIC stack. For connection
setup offload, the server installs the metadata such as
local IP addresses and ports for listening on NIC, and
the NIC stack handles all control packets in a three-way
handshake. Then, only the established connections are
delivered to the host stack.

AccelTCP leverages SYN cookies [20] for stateless
handshake on NIC. Stateless handshake enables a more
efficient implementation as most smart NICs support fast
one-way hashing functions in hardware [1, 3, 14]. When
a SYN packet arrives, the NIC stack responds with an
SYN-ACK packet whose initial sequence number (ISN)
is chosen carefully. The ISN consists of 24 bits of a hash
value produced with the input of the 4-tuple of a connec-
tion and a nonce, 3 bits of encoded maximum segment
size (MSS), and time-dependent 5 bits to prevent replay
attacks. When an ACK for the SYN-ACK packet arrives,
the NIC stack verifies if the ACK number matches (ISN +
1). If it matches, the NIC stack passes the ACK packet up
to the host stack with a special marking that indicates
a new connection and the information on negotiated
TCP options. To properly handle TCP options carried
in the initial SYN, the NIC stack encodes all negotiated
options in the TCP Timestamps option [22] of the SYN-
ACK packet [9]. Then, the NIC stack can retrieve the

information from the TSecr value echoed back with the
ACK packet. In addition, we use extra one bit in the
timestamp field to differentiate a SYN-ACK packet from
other packets. This would allow the NIC stack to bypass
ACK number verification for normal packets. The TCP
Timestamps option is popular (e.g., enabled on 84% of
hosts in a national-scale network [51]), and enabled by
default on most OSes, but in case a client does not sup-
port it, the NIC stack hands the setup process over to
the host stack.

One case where SYN cookies are deprecated is when
the server must send the data first after connection setup
(e.g., SMTP server). In this case, the client could wait
indefinitely if the client-sent ACK packet is lost as the
SYN-ACK packet is never retransmitted. Such applica-
tions should disable connection setup offload and have
the host stack handle connection setup instead.

4.2 Connection Teardown Offload

The application can ask for offloading connection tear-
down on a per-flow basis. If the host stack decides to
offload connection teardown, it hands over the owner-
ship of the TCB and remaining data in the send buffer
to the NIC stack. Then, the host stack removes the flow
entry from its connection table, and the NIC stack con-
tinues to handle the teardown.

Connection teardown offload is tricky as it must main-
tain per-flow states while it should ensure reliable de-
livery of the FIN packet with the offloaded data. To
minimize the complexity, the host stack offloads con-
nection teardown only when the following conditions
are met. First, the amount of remaining data should be
smaller than the send window size. This would avoid
complex congestion control on NIC while it still benefits
most short-lived connections. 4 Second, if the application
wants to confirm data delivery at close(), the host stack
should handle the connection teardown by itself. For
example, an application may make close() to block until
all data is delivered to the other side (e.g., SO_LINGER
option). In that case, processing the teardown at the host
stack is much simpler as it needs to report the result to
the application. Fortunately, blocking close() is rare in
busy TCP servers as it not only kills the performance, but
a well-designed application-level protocol may avoid it.
Third, the number of offloaded flows should not exceed
a threshold, determined by available memory size on
NIC. For each connection teardown, the host stack first
checks the number of connection closures being handled
by the NIC, and the host stack carries out the connection
teardown if the number exceeds the threshold.

4RFC 6928 [21] suggests 10 MSS as the initial window size.
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Figure 6: Timer bitmap wheel for RTO management on NIC.
Trro represents the remaining time until retransmission.

The NIC stack implements the teardown offload by
extending the TSO mechanism. On receiving the offload
request, it stores a 26-byte flow state ° at the on-chip
SRAM (e.g., 8MB of IMEM), segments the data into TCP
packets, and send them out. Then, it stores the entire
packets at the off-chip DRAM (e.g., 8GB of EMEM) for
potential retransmission. This would allow tracking over
256k concurrent flows being closed on NIC.

Timeout management: The teardown process re-
quires timeout management for packet retransmission
and for observing a timeout in the TIME_WAIT state.
AccelTCP uses three duplicate ACKs and expiration of
retransmission timeout (RTO) as a trigger for packet
retransmission. For teardown offload, however, RTO is
the main mechanism as the number of data packets is
often too small for three duplicate ACKs. Also, any side
that sends the FIN first would end up in the TIME_WAIT
state for a timeout. A high-performance server typically
avoids this state by having the clients initiate the con-
nection closure, but sometimes it is inevitable. Accel TCP
supports the TIME_WAIT state, but it shares the same
mechanism as RTO management for the timer.

Unfortunately, an efficient RTO implementation on
NIC is challenging. For multicore CPU systems, a list or a
hash table implementation would work well as each CPU
core handles only its own flows affinitized to it without
a lock. However, smart NICs often do not guarantee

Sa 4-tuple of the connection, TCP state, expected sequence and
ACK numbers, and current RTO.

flow-core affinity, so a list-based implementation would
incur huge lock contention with many processor cores.

We observe that RTO management is write-heavy
as each offloaded flow (and each packet transmission)
would register for a new RTO. Thus, we come up with a
data structure called timer bitmap wheel, which allows
concurrent updates with minimal lock contention. It con-
sists of N timer bitmaps where each bitmap is associated
with a distinct timeout value. The time interval between
two neighboring timer bitmaps is fixed (e.g., 100 us for
Figure 6). When one time interval elapses, all bitmaps
rotate in the clockwise direction by one interval, like
Figure 6-(b). Bitmap rotation is efficiently implemented
by updating a pointer to the RTO-expired bitmap every
time interval. Each timer bitmap records all flows with
the same RTO value, where the location of a bit repre-
sents a flow id (e.g., n-th bit in a bitmap refers to a flow
id, n). When the RTO of a timer bitmap expires, all flows
in the bitmap retransmit their unacknowledged packets.
From the location of each bit that is set, one can derive
the corresponding flow id and find the pointer to its flow
state that holds all the metadata required for retransmis-
sion. Then, all bits in the bitmap are reset to zero and its
RTO is reset to (N x (time interval)). RTO-expired flows
register for a new RTO. When an ACK for the FIN of a
flow arrives, the flow is removed from its RTO bitmap.
One can implement an RTO larger than the maximum
by keeping a counter in the flow state that decrements
every expiration of the maximum RTO.

The timer bitmap wheel allows concurrent updates by
multiple flows as long as their flow ids belong to differ-
ent 32-bit words in the bitmap. Only the flows whose ids
share the same 32-bit word contend for a lock for access.
On the down side, it exhibits two overheads: memory
space for bitmaps and bitmap scanning at RTO expira-
tion. The memory consumption is not a big concern as
it requires only 8KB for each bitmap for 64k concurrent
flows being closed. We reduce the scanning overhead
by having multiple cores scan a different bitmap region
in parallel. Keeping a per-region counter might further
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reduce the scanning overhead, but we find that the cost
for counter update is too expensive even with atomic
increment/decrement.

4.3 Connection Splicing Offload

Connection splicing offload on NIC allows zero-DMA
data transfer. The key idea is to simulate a single con-
nection by exploiting the NIC as a simple L4 switch that
translates the packet header. An L7 proxy can ask for
connection splicing on NIC if it no longer wants to relay
packets of the two connections in the application layer.
On a splicing offload request, the host stack hands over
the states of two connections to NIC, and removes their
TCBs from its connection table. The NIC stack takes over
the ownership, and installs two L4 forwarding rules for
relaying packets. The host stack keeps track of the num-
ber of spliced connections offloaded to NIC, and decides
whether to offload more connections by considering the
available memory on NIC.

Figure 7 shows the packet translation process. It sim-
ply swaps the 4-tuples of two connections and translates
the sequence/ACK numbers and TCP/IP checksums of
a packet with pre-calculated offsets. While the Figure
assumes that the proxy does not modify any content,
but one can easily support such a case. For example, if a
proxy modifies request or response headers before splic-
ing, the host stack only needs to reflect the extra delta
in sequence and ACK numbers into the pre-calculated
offsets. One limitation in our current scheme is that the
proxy may not read or modify the packets any more
after splicing offload.

Efficient TCP/IP checksum update: Translating a
packet header requires TCP/IP checksum update. How-
ever, recalculating the TCP checksum is expensive as it
scans the entire packet payload. To avoid the overhead,
AccelTCP adopts differential checksum update, which
exploits the fact that the one’s complement addition is

1 On splicing offload for a flow from IP(P.) to IP(Py):
2 CSO, € 1P+ 1P,

3 CSOTCP < C‘SOIP + PS + Pps - PC - Ppc+ ASEQ+ AACK
4 Store CSO;, and CSOrcp

5 For any next incoming packets from IP(P.) to IP(Py):
6 Load CSOy; and CSOqp

7 CSp € CSpp + CSOyp

8 CSyep € CSrept CSOrcp

9 If (SEQ #) > (~Aggq), then CSyep € CSpep—1

0

1 If (ACK #) > (— Ayc), then CSyp € CSpep— 1

Figure 8: Differential checksum update. CSO: checksum offset,
CS: checksum. Other notations are in Figure 7. Note that +
and - indicate 1’s complement addition and subtraction.

both associative and distributive. Since only the 4-tuple
of a connection and sequence and ACK numbers are
updated, we only need to add the difference (or offset)
of these values to the checksum. Figure 8 shows the
algorithm. Upon splicing offload request, the NIC stack
pre-calculates the offsets for IP and TCP checksums, re-
spectively (Line 2-4). For each packet for translation, it
adds the offsets to IP and TCP checksums, respectively
(Line 7-8). One corner case arises if a sequence or an
ACK number wraps around. In that case, we need to sub-
tract 1 from the checksum to conform to 1’s complement
addition (Line 9-10).

Tracking teardown state: Since connection splicing
operates by merging two connections into one, the NIC
stack only needs to passively monitor connection tear-
down by the server and the client. When the spliced
connection closes completely or if it is reset by any peer,
the NIC stack removes the forwarding rule entries, and
notifies the host stack of the closure. This allows reusing
TCP ports or tracking connection statistics at the host.

5 AccelTCP Host Stack

The AccelTCP host stack is logically independent of the
NIC stack. While our current implementation is based
on mTCP [41], one can extend any TCP stack to harness
our NIC offloading.

5.1 Socket API Extension

AccelTCP allows easy porting of existing applications
by reusing the epoll()-based POSIX-like socket API of
mTCP. In addition, it extends the API to support flexible
NIC offloading as shown in Figure 9. First, AccelTCP
adds extra socket options tomtcp_setsockopt () to en-
able connection setup and teardown offload to NIC. Note
that the connection teardown offload request is advisory,
so the host stack can decide not to offload the closure
if the conditions are not met (Section §4.2). Second, Ac-
celTCP adds mtcp_nsplice() to initiate splicing two
connections on NIC. The host stack waits until all data
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/* enable/disable setup and teardown offload
- level : IPPPROTO_TCP
- optname: TCP_SETUP_OFFLOAD or TCP_TEARDOWN_OFFLOAD
- optval : 1 (enable) or © (disable) */
int mtcp_setsockopt(mctx_t m, int sock, int level, int optname,
void *optval, socklen_t optlen);

/* offload connection splicing of two connections */
int mtcp_nsplice(mctx_t m, int sock_c, int sock_s, callback_t* cb);

/* notified upon a closure of spliced connections */
typedef void (*callback_t)(nsplice_meta_t * meta);

Figure 9: Socket API extension for AccelTCP

in the send buffer are acknowledged while buffering any
incoming packets. Then, it installs forwarding rules onto
NIC, sending the buffered packets after header transla-
tion. After calling this function, the socket descriptors
should be treated as if they are closed in the applica-
tion. Optionally, the application may specify a callback
function to be notified when the spliced connections
finish. Through the callback function, AccelTCP pro-
vides (i) remote addresses of the spliced connections, (ii)
the number of bytes transferred after offloaded to NIC
dataplane, and (iii) how the connections are terminated
(e.g., normal teardown or reset by any peer).

5.2 Host Stack Optimizations

We optimize the host networking stack to accelerate
small message processing. While these optimizations
are orthogonal to NIC offload, they bring a significant
performance benefit to short-lived connections.

Lazy TCB creation: A full TCB of a connection ranges
from 400 to 700 bytes even on recent implementa-
tions [5, 41]. However, we find that many of the fields are
unnecessary for short-lived connections whose message
size is smaller than the initial window size. To avoid the
overhead of a large TCB, AccelTCP creates the full TCB
only when multiple transactions are observed. Instead,
the host stack creates a small quasi-TCB (40 bytes) for a
new connection. If the application closes the connection
after a single write, the host stack offloads the teardown
and destroys the quasi-TCB.

Opportunistic zero-copy: Recent high-performance
TCP stacks [30, 61, 68] bypass the socket buffer to avoid
extra memory copying. However, this often freezes the
application-level buffer even after sending data, or over-
flows the host packet buffers if the application does
not read the packets in a timely manner. AccelTCP ad-
dresses this problem by opportunistically performing a
zero-copy I/0. When a stream of packets arrive in order,
the application waiting for a read event will issue a read
call. Then, the content of the packets is copied directly to
the application buffer while any leftover is written to the
receive socket buffer. When an application sends data
on an empty socket buffer, the data is directly written to

the host packet buffer for DMA’ing to NIC. Only when
the host packet buffer is full, the data is written to the
send socket buffer. Our scheme observes the semantics
of standard socket operations, allowing easy porting of
existing applications. Yet, this provides the benefit of
zero-copying to most short-lived connections.

User-level threading: mTCP spawns two kernel-level
threads: a TCP stack thread and an application thread
on each CPU core. While this allows independent op-
erations of the TCP thread (e.g., timer operations), it
incurs a high context switching overhead. To address
the problem, we modify mTCP to use cooperative user-
level threading [13]. We find that this not only reduces
the context switching overhead, but it also allows other
optimizations like lazy TCB creation and opportunistic
zero-copying.

6 Evaluation

We evaluate AccelTCP by answering following ques-
tions. First, does stateful TCP offloading and host stack
optimizations demonstrate a high performance in a va-
riety of workloads? (§6.1) Second, does it deliver the
performance benefit to real-world applications? (§6.2)
Finally, is the extra cost of a smart NIC justifiable? (§6.3)

Experiment setup: Our experimental setup consists
of one server (or a proxy), four clients, and four back-
end servers. The server machine has an Intel Xeon Gold
6142 @ 2.6GHz with 128 GB of DRAM and a dual-port
Netronome Agilio LX 40GbE NIC (NFP-6480 chipset).
Each client has an Intel Xeon E5-2640 v3 @ 2.6GHz,
and back-end servers have a mix of Xeon E5-2699 v4
@ 2.2GHz and Xeon E5-2683 v4 @ 2.1GHz. The client
and backend server machines are configured with Intel
XL710-QDA2 40GbE NICs. All the machines are con-
nected to a Dell Z9100-ON switch, configured to run at
40 GbE speed. For TCP stacks, we compare AccelTCP
against mTCP [41] and IX [30]. All TCP stacks employ
DPDK [10] for kernel-bypass packet I/O. Clients and
back-end servers run mTCP patched to use cooperative
user-level threading as Accel TCP. For IX experiments,
we use two dual-port Intel X520-DA2 10GbE NICs, and
enable all four ports bonded with a L3+L4 hash to bal-
ance the load as IX does not support 40GbE NICs. We
verify that any single 10GbE port does not become the
bottleneck based on port-level statistics at the switch.
Hyperthreading is disabled for mTCP and AccelTCP,
and enabled for IX when it improves the performance.

Our current prototype uses CRC32 to generate SYN
cookies for connection setup. To prevent state explosion
attacks, one needs to use a cryptographic hash function
(such as MD5 or SHA?2). Unfortunately, the API sup-
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Figure 10: Throughputs of 64B packet transactions

Action Mtps  Speedup
Baseline (w/o NIC offload) 0.89 1.0x
+ Enable setup offload (§4.1) 1.21 1.4x
+ Enable teardown offload (§4.2) 2.06 2.3x

Enable opportunistic TCB creation 342 38

& opportunistic zero-copy (§5.2)

Table 3: Breakdown of contribution by each optimization on
a single CPU core (64B packet transactions)

port for hardware-assisted cryptographic operations in
Agilio NICs is currently incomplete (for both C and P4
code), so we use CRC32 instead here.

6.1 Microbenchmark

We evaluate AccelTCP’s performance for handling short-
lived TCP connections and L7 proxying, and compare
against the performance of the state-of-the-art TCP
stacks: mTCP [41] and IX [30].

6.1.1 Short-lived Connection Performance

We evaluate the benefit of connection management of-
fload by comparing the performance of TCP echo servers
that perform 64B packet transactions with persistent vs.
non-persistent connections. The TCP echo servers main-
tain 16k concurrent connections, and the performance
results are averaged over one-minute period for five runs
in each experiment. In the non-persistent case, a new
connection is created immediately after every connec-
tion closure. AccelTCP offloads connection setup and
offload to NIC while mTCP handles them using CPU.
For IX, we evaluate only the persistent connection case
as IX experiences a crash when handling thousands of
concurrent connections with normal teardown.

Figure 10 compares the throughputs over varying
numbers of CPU cores. Accel TCP achieves 2.2x to 3.8x
better throughputs than non-persistent mTCP, compa-
rable to those of persistent connections. Surprisingly,
AccelTCP outperforms persistent connections by 13% to
54% for up to four CPU cores. This is because AccelTCP

383
S

a OmTCP & AccelTCP 17.0 197 19.8
515
g 1L5 112
= 10 93
g‘ 5 " 6.0 . 6.3
O 1.5 0.9 - ]/_7\.

0 0.5 . '

64 128 256 SI12 1024 2048 4096
Message size (B)
Figure 11: Performance of short-lived connections for varying
message sizes on a single CPU core

o~ 80 Oepproxy-mTCP 80 80 80
=
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Figure 12: Comparison of L7 proxying throughputs

benefits from lazy TCB creation (§5.2) while persistent
connections suffer from a CPU bottleneck. However,
its eight-core performance is 22% lower than that of
persistent IX, implying a bottleneck on NIC. Overall,
connection management offload brings a significant per-
formance benefit, which enables short-lived connections
to perform comparably to persistent connections.

Table 3 shows the breakdown of performance in terms
of the contribution by each optimization. We find that
connection setup and teardown offload improve the base-
line performance by 2.3x while other host stack optimiza-
tions contribute by extra 1.5x.

Figure 11 compares the goodputs over varying mes-
sage sizes on a single CPU core. AccelTCP maintains the
performance benefit over different message sizes with a
speedup of 2.5x to 3.6x. The performance of messages
larger than one MSS is limited at 20 Gbps, which seems
impacted by our software TSO implementation on NIC.
The current Agilio NIC SDK does not provide an API
to exploit hardware TSO for programmable dataplane.
We believe the single core performance would further
improve with proper hardware support.

6.1.2 Layer-7 Proxing Performance

We now evaluate connection splicing offload with a
simple L7 LB called epproxy that inspects the initial
request, determines a back-end server, and relays the
content between the client and the server. We measure
the wire-level, receive-side throughput (including con-
trol packets) on the client side over different message
sizes. Clients spawn 8k concurrent connections with ep-
proxy, and the proxy creates 8k connections with back-
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Figure 13: L7 proxying performance over varying numbers
of message transactions per connection with 64B packets

end servers. We confirm that both clients and back-end
servers are not the bottleneck. We configure epproxy-
mTCP to use eight cores while epproxy-Accel TCP uses
only a single core as CPU is not the bottleneck. All con-
nections are persistent, and we employ both ports of the
Agilio LX NIC here. The NIC is connected to the host
via 8 lanes of PCle-v3 °.

Figure 12 shows that AccelTCP-proxy outperforms
epproxy-mTCP by 1.4x to 2.2x even if the latter employs
8x more CPU cores. We make two observations here.
First, the performance of epproxy-Accel TCP reaches full
80 Gbps from 512-byte messages, which exceeds the
PCle throughput of the NIC. This is because epproxy-
AccelTCP bypasses host-side DMA and fully utilizes
the forwarding capacity of the NIC. Second, epproxy-
AccelTCP achieves up to twice as large goodput as the
epproxy-mTCP. For example, epproxy-AccelTCP actu-
ally performs 2.8x more transactions per second than
epproxy-mTCP for 64B messages. This is because Ac-
celTCP splices two connections into a single one while
mTCP relays two connections. For each request from a
client, epproxy-mTCP must send an ACK as well as a
response packet from the back-end server. In contrast,
epproxy-AccelTCP replays only the response packet
with a piggybacked ACK from the back-end server.

We move on to see if epproxy-Accel TCP fares well on
non-persistent connections. Figure 13 shows the perfor-
mance over varying numbers of message transactions
per connection. Accel TCP performs 1.8x better at a sin-
gle transaction, and the performance gap widens as large
as 2.4x at 128 transactions per connection. This confirms
that proxying non-persistent connections also benefit
from splicing offload of AccelTCP.

6.2 Application Benchmark

We investigate if AccelTCP delivers the performance
benefit to real-world applications.

Key-value store (Redis): We evaluate the effective-
ness of AccelTCP with Redis (v.4.0.8) [17], a popular

Theoretical maximum throughput is 63 Gbps according to [58].

1-core 8-core
Redis-mTCP (kernel thread) 0.19 Mtps  1.38 Mtps
Redis-mTCP (user-level thread) 0.28 Mtps  1.94 Mtps
Redis-AccelTCP 0.44 Mtps  3.06 Mtps

Table 4: Redis performance for short-lived connections

BTCP/IP ORedis session init/destroy ORedis request handling

| mTCP (kernel thread)

| mTCP (user-level thread)

| AccelTCP

0% 25% 50% 75% 100%
CPU utilization

Figure 14: CPU breakdown of Redis on a single CPU core

in-memory key-value store. We use Redis on mTCP as
a baseline server while we port it to use AccelTCP for
comparison. We test with the USR workload from Face-
book [29], which consists of 99.8% GET requests and
0.2% SET requests with short keys (< 20B) and 2B val-
ues. For load generation, we use a Redis client similar to
memtier_benchmark [18] written in mTCP. We config-
ure the Redis server and the clients to perform a single
key-value transaction for each connection to show the
behavior when short-lived connections are dominant.

Table 4 compares the throughputs. Redis-Accel TCP
achieves 1.6x to 2.3x better performance than Redis-
mTCP, and its performance scales well with the number
of CPU cores. Figure 14 shows that mTCP consumes
over a half of CPU cycles on TCP stack operations. In
contrast, Accel TCP saves up to 75% of the CPU cycles for
TCP processing. With AccelTCP, session initialization
and destruction of Redis limits the performance. Our
investigation reveals that the overhead mostly comes
from dynamic memory (de)allocation (zmalloc() and
zfree()) for per-connection metadata, which incurs a
severe penalty for handling short-lived connections.

L7 LB (HAProxy): We see if AccelTCP improves the
performance of HAProxy (v.1.8.0) [6], a widely used
HTTP-based L7 LB. We first port HAProxy to use mTCP
and AccelTCP, respectively, and evaluate the through-
put with the SpecWeb2009[26]-like workload. The work-
load consists of static files whose size ranges from 30
to 5,670 bytes with an average file size of 728 bytes. For
a fair comparison, we disable any header rewriting in
the both version after delivering the first HT'TP request.
We spawn 8k persistent connections, using simple epoll-
based clients and back-end servers running on mTCP.
Table 5 compares the throughputs with with 1 core and
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1-core 8-core
HAProxy-mTCP 4.3 Gbps 6.2 Gbps
HAProxy-AccelTCP  73.1 Gbps  73.1 Gbps

Table 5: L7 LB performance for SpecWeb2009-like workload

E5-2650v2  Gold 6142
mTCP (XL710-QDA2) 1.00 1.25
AccelTCP (Agilio LX) 1.93 1.96

Table 6: Comparison of normalized performance-per-dollar

8 cores. HAProxy-Accel TCP achieves 73.1 Gbps, a 11.9x
better throughput than HAProxy-mTCP. The average
response time of HAProxy-AccelTCP is 0.98 ms, 13.6x
lower than that of HAProxy-mTCP. We observe that the
performance benefit is much larger than in Section 6.1.2
because HAProxy has a higher overhead in application-
level request processing and packet relaying.

6.3 Cost-effectiveness Analysis

AccelTCP requires a smart NIC, which is about 3-4x
more expensive than a normal NIC at the moment. For
fairness, we try comparing the cost effectiveness by
the performance-per-dollar metric. We draw hardware
prices from Intel [11] and Colfax [4] pages (as of August
2019), and use the performance of 64B packet transac-
tions on short-lived connections. Specifically, we com-
pare the performance-per-dollar with a system that runs
mTCP with a commodity NIC (Intel XL710-QDA2, $440)
vs. another system that runs AccelTCP with a smart
NIC (Agilio LX, $1,750). For CPU, we consider Xeon
E5-2650v2 ($1,170) and Xeon Gold 6142 ($2,950). For
simplicity, we only consider CPU and NIC as hardware
cost. Table 6 suggests that NIC offload with AccelTCP
is 1.6x to 1.9x more cost-effective, and the gap would
widen further if we add other fixed hardware costs.

7 Related Work

Kernel-bypass TCP stacks: Modern kernel-bypass
TCP stacks such as mTCP [41], IX [30], SandStorm [55],
F-Stack [5] deliver high-performance TCP processing of
small message transactions. Most of them employ a fast
user-level packet I/O [10], and exploit high parallelism
on multicore systems by flow steering on NIC. More
recently, systems like ZygOS [63], Shinjuku [42], and
Shenango [59] further improve kernel-bypass stack by
reducing the tail latency, employing techniques like task
stealing, centralized packet distribution, and dynamic
core reallocation. We believe that these works are largely
orthogonal but complementary to our work as AccelTCP
would enhance these stacks by offloading connection
management tasks to NIC.

NIC offload: Existing TCP offloads mostly focus on
improving large message transfer either by offloading
the whole TCP stack [50] or by selectively offloading
common send-receive operations [46]. In contrast, our
work focuses on connection management and proxying
whose performance is often critical to modern network
workloads, while we intentionally avoid the complexity
of application data transfer offloading. UNO [52] and
Metron [45] strive to achieve optimal network function
(NF) performance with NIC offload based on runtime
traffic statistics. We plan to explore dynamic offloading
of a subset of networking stack features (or connections)
in response to varying load in the future. To offload TCP
connection management, any L2-L4 NFs that should run
prior to TCP stack (e.g., firewalling or host networking)
must be offloaded to NIC accordingly. Such NFs can
be written in P4 [40, 45, 56] and easily integrated with
AccelTCP by properly placing them at ingress/egress
pipelines of the NIC dataplane.

L7 proxing and short RPCs: Our connection splicing
is inspired by the packet tunneling mechanism of Yoda
L7 LB [36]. However, Yoda operates as a packet-level
translator without a TCP stack, so it cannot modify any
of relayed content. In contrast, an AccelTCP application
can initiate the offload after any content modification.
Also, AccelTCP packet translation runs on NIC hard-
ware, promising better performance. Finally, we note
that eRPC [44] achieves 5.0 Mtps RPC performance (vs.
3.4 Mtps of AccelTCP) on a single core. However, ePRC
is limited to data center environments while AccelTCP is
compatible to TCP and accommodates any TCP clients.

8 Conclusion

In this paper, we have presented AccelTCP that har-
nesses modern programmable NICs as a TCP protocol
accelerator. Drawing the lessons from full stack TOE, Ac-
celTCP’s design focuses on minimizing the interaction
with the host stack by offloading only select features of
stateful TCP operations. Accel TCP manages the com-
plexity on NIC by stateless handshake, single ownership
of a TCB, and conditional teardown offload. In addi-
tion, it simplifies connection splicing by efficient packet
header translation. We have also presented a number of
optimizations that significantly improve the host stack.

We have demonstrated that AccelTCP brings a sub-
stantial performance boost to short-message transac-
tions and L7 proxying. Accel TCP delivers a 2.3x speedup
to Redis on a kernel-bypass stack while it improves the
performance of HAProxy by a factor of 11.9. AccelTCP
is available at https://github.com/acceltcp, and
we hope our effort will renew the interest in selective
NIC offload of stateful TCP operations.
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Appendix A. Host-NIC Communication Interface

The host and NIC stacks communicate with each other
by piggybacking control information in the normal pack-
ets most time. It encodes the type of offload as unused
EtherType values in the Ethernet header, and tags along
other information in the special header between the
Ethernet and IP headers.

Connection setup: When an application listens on a
socket whose setup offload option is enabled, the host
stack sends a special control packet to NIC, carrying the
listening address/port and TCP options that must be de-
livered to the remote host during connection setup (e.g.,
MSS, Window scale factor, Selective ACK, etc.). To no-
tify a new connection, the NIC stack sets the Ethertype
of the ACK packet to 0x090A, and delivers the negoti-
ated options in the TCP Timestamps option. The host
stack extracts only the TCP options, and ignores the
NIC-generated timestamp value.

Connection teardown: For teardown offload, the host
stack creates a TSO packet that holds all remaining data
in the send buffer, and sets the EtherType to 0x090B. It
also encodes other information such as MSS (2 bytes),
current RTO (4 bytes), and current TCP state (2 bytes)
in the special header area. The NIC stack notifies the
host stack of the number of connections being closed
on NIC by either sending a control packet or tagging at
any packet delivered to host.

Connection splicing: For splicing offload, the host
stack uses 0x090C as EtherType, and writes the sequence
and ACK number offsets (4 bytes each), and a 4-tuple of
a connection in the special header. When the splicing
offload packet is passed to the NIC stack, a race condi-
tion may arise if some packets in the flows are passed
up to the host stack at the same time. To ensure correct
forwarding, the host stack keeps the connection entries
until it is notified that the splicing rules are installed at

NIC. For reporting a closure of spliced connections, NIC
creates a special control packet holding the connection
information and traffic statistics with the EtherType,
0x090D, and sends it up to the host stack. By monitoring
those control packets, the host stack can keep track of
the number of active spliced connections on NIC.
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Abstract

Data-center network stacks are moving into hardware to
achieve 100 Gbps data rates and beyond at low latency and
low CPU utilization. However, hardwiring the network stack
in the NIC would stifle innovation in transport protocols. In
this paper, we enable programmable transport protocols in
high-speed NICs by designing Tonic, a flexible hardware ar-
chitecture for transport logic. At 100 Gbps, transport pro-
tocols must generate a data segment every few nanoseconds
using only a few kilobits of per-flow state on the NIC. By
identifying common patterns across transport logic of dif-
ferent transport protocols, we design an efficient hardware
“template” for transport logic that satisfies these constraints
while being programmable with a simple API. Experiments
with our FPGA-based prototype show that Tonic can support
the transport logic of a wide range of protocols and meet tim-
ing for 100 Gbps of back-to-back 128-byte packets. That is,
every 10 ns, our prototype generates the address of a data
segment for one of more than a thousand active flows for a
downstream DMA pipeline to fetch and transmit a packet.

1 Introduction

Transport protocols, along with the rest of the network
stack, traditionally run in software. Despite efforts to im-
prove their performance and efficiency [|116,25//32]], software
network stacks tend to consume 30-40% of CPU cycles to
keep up with applications in today’s data centers [25}(32}[38]].

As data centers move to 100 Gbps Ethernet, the CPU
utilization of software network stacks becomes increasingly
prohibitive. As a result, multiple vendors have developed
hardware network stacks that run entirely on the network in-
terface card (NIC) [[8,10]. However, there are only two main
transport protocols implemented on these NICs, both hard-
wired and modifiable only by the vendors:

RoCE. RoCE is used for Remote Direct Memory Access
(RDMA) [8]], using DCQCN [43]] for congestion control and
a simple go-back-N method for reliable data delivery.

TCP. A few vendors offload a TCP variant of their choice

Princeton University

Manya Ghobadi Jennifer Rexford
MIT Princeton University
David Wentzlaff
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to the NIC to either be used directly through the socket API
(TCP Offload Engine [[10]]) or to enable RDMA (iWARP [/7]).

These protocols, however, only use a small fixed set
out of the myriad of possible algorithms for reliable deliv-
ery [[161[21,1241[27,]33}[34] and congestion control [[12}17}/19}
35//42}/43]] proposed over the past few decades. For instance,
recent work suggests that low-latency data-center networks
can significantly benefit from receiver-driven transport pro-
tocols [21,24,36], which is not an option in today’s hardware
stacks. In an attempt to deploy RoCE NICs in Microsoft data
centers, operators needed to modify the data delivery algo-
rithm to avoid livelocks in their network but had to rely on
the NIC vendor to make that change [22]. Other algorithms
have been proposed to improve RoCE’s simple reliable deliv-
ery algorithm [31}[34]]. The long list of optimizations in TCP
from years of deployment in various networks is a testament
to the need for programmability in transport protocols.

In this paper, we investigate how to make hardware trans-
port protocols programmable. Even if NIC vendors open
up interfaces for programming their hardware, it takes a sig-
nificant amount of expertise, time, and effort to implement
transport protocols in high-speed hardware. To keep up with
100 Gbps, the transport protocol should generate and trans-
mit a packet every few nanoseconds. It should handle more
than a thousand active flows, typical in today’s data-center
servers [[15,37,/38]. To make matters worse, NICs are ex-
tremely constrained in terms of the amount of their on-chip
memory and computing resources [30434].

We argue that transport protocols on high-speed NICs can
be made programmable without exposing users to the full
complexity of programming for high-speed hardware. Our
argument is grounded in two main observations:

First, programmable transport logic is the key to en-
abling flexible hardware transport protocols. An imple-
mentation of a transport protocol performs several function-
ality such as connection management, data buffer manage-
ment, and data transfer. However, its central responsibility,
where most of the innovation happens, is to decide which
data segments to transfer (data delivery) and when (conges-
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tion control), which we collectively call the transport logic.
Thus, the key to programmable transport protocols on high-
speed NICs is enabling users to modify the transport logic.

Second, we can exploit common patterns in transport
logic to create reusable high-speed hardware modules.
Despite their differences in application-level API (e.g., sock-
ets and byte-stream abstractions for TCP vs. the message-
based Verbs API for RDMA), and in connection and data
buffer management, transport protocols share several com-
mon patterns. For instance, different transport protocols use
different algorithms to detect lost packets. However, once a
packet is declared lost, reliable transport protocols prioritize
its retransmission over sending a new data segment. As an-
other example, in congestion control, given the parameters
determined by the control loop (e.g., congestion window and
rate), there are only a few common ways to calculate how
many bytes a flow can transmit at any time. This enables us
to design an efficient “template” for transport logic in hard-
ware that can be programmed with a simple APIL.

Using these insights, we design and develop Tonic, a pro-
grammable hardware architecture that can realize the trans-
port logic of a broad range of transport protocols, using a
simple API, while supporting 100 Gbps data-rates. Every
clock cycle, Tonic generates the address of the next segment
for transmission. The data segment is fetched from memory
by a downstream DMA pipeline and turned into a full packet
by the rest of the hardware network stack (Figure |I).

We envision that Tonic would reside on the NIC, re-
placing the hard-coded transport logic in hardware imple-
mentations of transport protocols (e.g., future RDMA NICs
and TCP offload engines). Tonic provides a unified pro-
grammable architecture for transport logic, independent of
how specific implementations of different transport proto-
cols perform connection and data buffer management, and
their application-level APIs. We will, however, describe how
Tonic interfaces with the rest of the transport layer in general
(§2) and how it can be integrated into Linux Kernel to inter-
act with applications using socket API as an example (§3)).

We implement a Tonic prototype in ~8K lines of Ver-
ilog code and demonstrate Tonic’s programmability by im-
plementing the transport logic of a variety of transport pro-
tocols [[13,/16,[23}24}34,/43]] in less than 200 lines of code.
We also show, using an FPGA, that Tonic meets timing for
~100 Mpps, i.e., supporting 100Gbps of back-to-back 128B
packets. That is, every 10ns, Tonic can generate the transport
metadata required for a downstream DMA pipeline to fetch
and send one packet. From generation to transmission, the
latency of a single segment address through Tonic is ~ 0.1us,
and Tonic can support up to 2048 concurrent flows.

2 Tonic as the Transport Logic

This section is an overview of how Tonic fits into the trans-
port layer (§2.1)), and how it overcomes the challenges of im-

Host NIC

send_data()
— Transport Layer - Data Transfer

add_conn() Next

P

Transport Layer -
Connection Management || rm_conn()

Transport | s Next [[ESVEL
egment Segment| and
— Logic Address Below
Memory (Tonic) :> IZ: >
(Segments) ‘—l data &

Figure 1: Tonic providing programmable transport logic in a hard-
ware network stack on the NIC (sender-side).

Sur
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plementing transport logic on high-speed NICs (§2.2]).

2.1 How Tonic Fits in the Transport Layer

Sitting between applications and the rest of the stack,
transport-layer protocols perform two main functions:
Connection Management includes creating and configuring
endpoints (e.g., sockets for TCP and queue-pairs for RDMA)
and establishing the connection in the beginning, and closing
the connection and releasing its resources at the end.

Data Transfer involves delivering data from one endpoint
to another, reliably and efficiently, in a stream of segments E
Different transport protocols provide different APIs for ap-
plications to request data transfer: TCP offers the abstraction
of a byte-stream to which applications can continuously ap-
pend data, while in RDMA, each “send” call to a queue-pair
creates a separate work request and is treated as a separate
message. Moreover, specifics of managing applications’ data
buffers differ across different implementations of transport
protocols. Regardless, the transport protocol must deliver
the outstanding data to its destination in multiple data seg-
ments that fit into individual packets. Deciding which bytes
comprise the next segment and when it is transmitted is done
by data delivery and congestion control algorithms, which
we collectively call transport logic and implement in Tonic.

Figure[I|shows a high-level overview of how Tonic fits in a
hardware network stack. To decouple Tonic from specifics of
connection management and application-level APIs, connec-
tion setup and tear-down run outside of Tonic. Tonic relies
on the rest of the transport layer to provide it with a unique
identifier (flow id) for each established connection, and to
explicitly add and remove connections using these IDs.

For data transfer on the sender side, Tonic keeps track of
the number of outstanding bytes and transport-specific meta-
data to implement the transport logic, i.e., generate the ad-
dress of the next data segment for each flow at the time desig-
nated by the congestion control algorithm. Thus, Tonic does
not need to store and/or handle actual data bytes; it relies
on the rest of the transport layer to manage data buffers on
the host, DMA the segment whose address is generated in
Tonic from memory, and notify it of new requests for data
transmission on existing connections (see §3|for details).

The receiver-side of transport logic mainly involves gen-
erating control signals such as acknowledgments, per-packet

'We focus on reliable transport as it is more commonly used and more
complicated to implement.
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Observation Examples
Only track a limited window of segments | TCP, NDP, IRN
Only keep a few bits of state per segment | TCP, NDP, IRN, RoCEv2
Lost segments first, new segments next TCP, NDP, IRN, RoCEv2
Loss detection: Acks and timeouts TCP, NDP, IRN
The three cgmmon credit calculation TCP, RoCEy2, NDP
patterns: window, rate, and grant tokens

N B W =] 3

Table 1: Common transport logic patterns.

grant tokens [21,24}36]], or periodic congestion notification
packets (CNPs) [43]], while the rest of the transport layer
manages receive data buffers and delivers the received data
to applications. While handling received data can get quite
complicated, generating control signals on the receiver is
typically simpler than the sender. Thus, although we mainly
focus on the sender, we reuse modules from the sender to
implement a receiver solely for generating per-packet cumu-
lative and selective acks and grant tokens at line rate.

2.2 Hardware Design Challenges

Implementing transport logic at line rate in the NIC is
challenging due to two main constraints:

Timing constraints. The median packet size in data cen-
ters is less than 200 bytes [15/[37]. To achieve 100 Gbps
for these small packets, the NIC has to send a packet every
~10ns. Thus, every ~10 ns, the transport logic should deter-
mine which active flow should transmit which data segment
next. To make this decision, it uses some state per flow (e.g.,
acknowledged data segments, duplicate acks, rate/window
size, etc.) which is updated when various transport events
happen (e.g., receiving an acknowledgment or a timeout).
These updates could involve operations with non-negligible
hardware overhead, such as searching bitmaps and arrays.

To allow for more time in processing each event while
still determining the next data segment every ~10 ns, we
could conceivably pipeline the processing of transport events
across multiple stages. However, pipelining is more tractable
when incoming events are from different flows as they up-
date different states. Processing back-to-back events for the
same flow (e.g., generating data segments while receiving ac-
knowledgments) requires updates to the same state, making
it difficult to pipeline event processing while ensuring state
consistency. Thus, we strive to process each transport event
within 10 ns instead to quickly consolidate the state for the
next event in case it affects the same flow.

Memory constraints. A typical data-center server has
more than a thousand concurrent active flows with kilobytes
of in-flight data [[15,37,[38]]. Since NICs have just a few
megabytes of high-speed memory [30,34], the transport pro-
tocol can store only a few kilobits of state per flow on NIC.

Tonic’s goal is to satisfy these tight timing and memory
constraints while supporting programmability with a simple
API. To do so, we identify common patterns across trans-
port logic in various protocols that we implement as reusable
fixed-function modules. These patterns allow us to optimize

these modules for timing and memory, while simplifying the
programming API by reducing the functionality users must
specify. These patterns are summarized in Table |1} and are
discussed in detail in next section, where we describe Tonic’s
components and how these patterns affect their design.

3 Tonic Architecture

Transport logic at the sender is what determines, for each
flow, which data segments to transfer (data delivery) and
when (congestion control). Conceptually, congestion con-
trol algorithms perform credit management, i.e., determine
how many bytes a given flow can transmit at a time. Data
delivery algorithms perform segment selection, i.e., decide
which contiguous sequence of bytes a particular flow should
transmit. Although the terms “data delivery” and “con-
gestion control” are commonly associated with TCP-based
transport protocols, Tonic provides a general programmable
architecture for transport logic that can be used for other
kinds of transport protocols as well, such as receiver-driven
[21,24,36] and RDMA-based [8] transport protocols.

Tonic exploits the natural functional separation between
data delivery and credit management to partition them into
two components with separate state (Figure[2). The data de-
livery engine processes events related to generating, track-
ing, and delivery of segments, while the credit engine pro-
cesses events related to adjusting each flow’s credit and send-
ing out segment addresses for those with sufficient credit.

At the cost of lightweight coordination between the two
engines, this partitioning helps Tonic meet its timing con-
straints while concurrently processing multiple events (e.g.,
receipt of acknowledgments and segment transmission) ev-
ery cycle. These events must read the current state of their
corresponding flow, update it, and write it back to memory
for events in the next cycle. However, concurrent read and
write to memory in every cycle is costly. Instead of using a
wide memory to serve all the transport events, the partition-
ing allows the data delivery and credit engines to have nar-
rower memories to serve only the events that matter for their
specific functionality, hence meeting timing constraints.

In this section, we present, in how the engines co-
ordinate to fairly and efficiently pick one of a few thou-
sand flows every cycle for segment transmission while keep-
ing the outgoing link utilized. Next, and describe
fixed-function and programmable event processing modules
in each engine, and how their design is inspired by patterns
in Table |I} We present Tonic’s solution for resolving con-
flicts when multiple events for the same flow are received in

acycle in and its programming interface in
3.1 Efficient Flow Scheduling

At any time, a flow can only transmit a data segment if
it (1) has enough credit, and (2) has a new or lost segment
to send. To be work conserving, Tonic must track the set
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Figure 2: Tonic’s architecture (dark red boxes (also with thick borders) are programmable, others are fixed)

of flows that are eligible for transmission (meet both of the
above criteria) and only pick among those when selecting a
flow for transmission each cycle. This is challenging to do
efficiently. We have more than a thousand flows with their
state partitioned across the two engines: Only the credit en-
gine knows how much credit a flow has, and only the data de-
livery engine knows the status of a flow’s segments and can
generate the address of its next segment. We cannot check
the state of all the flows every cycle across both engines to
find the ones eligible for transmission in that cycle.

Instead, we decouple the generation of segment addresses
from their final transmission to the DMA pipeline. We al-
low the data delivery engine to generate up to N segment ad-
dresses for a flow without necessarily having enough credit
to send them out. In the credit engine, we keep a ring buffer
of size N for each flow to store these outstanding segments
addresses. When the flow has enough credit to send a seg-
ment, the credit engine dequeues and outputs a segment ad-
dress from the buffer and signals the data delivery engine to
decrement the number of outstanding segments for that flow.

This solves the problem of the partitioned state across the
two engines. The data delivery engine does not need to keep
track of the credit changes of flows for segment address gen-
eration. It only needs to be notified when a segment address
is dequeued from the buffer. Moreover, the credit engine
does not need to know the exact status of all flow’s segments.
If the flow’s ring buffer is empty, that flow does not have
segments to send. Otherwise, there are already segment ad-
dresses that can be output when the flow has enough credit.

Still, the data delivery engine cannot simply check the
state of all the flows every cycle to determine those that can
generate segments. Instead, we dynamically maintain the set
of active flows in the data delivery engine, i.e., the flows that
have at least one segment to generate and less than N out-
standing segments (see red numbered circles in Figure [2).
When a flow is created, it is added to the active set. Every
cycle, one flow is selected and removed from the set for seg-
ment generation (Step 1). Once processed (Step 2), only if it
has more segments to send and less than N outstanding seg-
ments, is it inserted back into the set (Step 3). Otherwise, it

will be inserted in the set if, later on, the receipt of an ack or
a signal from the credit engine “activates” the flow (Step 9).
Moreover, the generated segment address is forwarded to the
credit engine (Step 4) for insertion in the ring buffer (Step 5).

Similarly, the credit engine maintains the set of ready-to-
transmit flows, i.e., the flows with one segment address or
more in their ring buffers and enough credit to send at least
one segment out. Every cycle, a flow is selected from the set
(Step 6), one segment address from its ring buffer is trans-
mitted (Step 7), its credit is decreased, and it is inserted back
into the set if it has more segment addresses and credit for
further transmission (Step 8). It also signals the data deliv-
ery engine about the transmission (Step 9) to decrement the
number of outstanding segments for that flow.

To be fair when picking flows from the active (or ready-to-
transmit) set, Tonic uses a FIFO to implement round-robin
scheduling among flows in the set (see active list in [39]]).
The choice of round-robin scheduling is not fundamental;
any other scheduler that meets our timing constraints can re-
place the FIFO to support other scheduling disciplines [40].

3.2 Flexible Segment Selection

With B bytes of credit, a flow can send S = max(B,MSS)
bytes, where M SS is the maximum segment size. In transport
protocols, data delivery algorithms use acknowledgments to
keep track of the status of each byte of data (e.g., delivered,
lost, in-flight, and not transmitted), and use that to decide
which contiguous § bytes of data to transmit next.

However, there are two main challenges in implementing
data delivery algorithms in high-speed NICs. First, due to
memory constraints, the NIC cannot store per-byte informa-
tion. Second, with a few exceptions [8l34], these algorithms
are designed for software, where they could store and freely
loop through large arrays of metadata to aggregate informa-
tion. This computational flexibility has created significant
diversity across these algorithms. Unfortunately, NIC hard-
ware is much more constrained than software. Thus, we did
not aim to support all data delivery algorithms. Instead, we
looked for patterns that are common across a variety of algo-
rithms while being amenable to hardware implementation.
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3.2.1 Pre-Calculated Fixed Segment Boundaries

Data delivery algorithms could conceivably choose the
next S bytes to send from anywhere in the data stream and
produce segments with variable boundaries. However, since
the NIC cannot maintain per-byte state, Tonic requires data
to be partitioned into fixed-size segments (by a Kernel mod-
ule or the driver, see §5) when the flow requests transmission
of new data. This way, data delivery algorithms can use per-
segment information to select the next segment.

Note that the fixed segment size can be configured for each
flow based on its throughput and latency requirements. With
message-based transport protocols (e.g., RoCEv2), having
fixed segment boundaries fits naturally; the message length
is known and the optimal segment size can be chosen from
the beginning. For protocols with a byte-stream abstraction
(e.g., TCP and NDP), the fixed segment size should be de-
cided on the fly as data is added to the stream. It can be set to
MSS (or larger if using TSO [18]]) for high-bandwidth flows.
For flows that generate small data segments and sporadically,
the segment size can be set to a smaller value, depending
on whether it is more desirable to consolidate multiple small
segments into a larger one before notifying Tonic, or to trans-
mit the small segment right away (§5). Regardless, to avoid
storing per-byte state on the NIC, segment size should be de-
cided outside of Tonic and changed infrequently.

3.2.2 Small Per-Segment State for a Limited Window

Independent of a flow’s available credit, data delivery al-
gorithms typically do not transmit a new segment if it is too
far, i.e., more than K segments apart, from the first unac-
knowledged segment, to limit the state that the sender and
receiver need to keep ﬂ Still, in a 100 Gbps network with a
10us RTT, K can get as large as ~128 segments. Fortunately,
we observe that storing the following per-segment state is
enough for most data delivery algorithms: (1) Is the segment
acknowledged (in presence of selective acknowledgments)?
(2) If not, is it lost or still in flight? (3) If lost, is it already
retransmitted (to avoid redundant retransmission)?

More specifically, we observe that, in the absence of ex-
plicit negative acknowledgments, data delivery algorithms
accumulate evidence of loss for each segment from posi-
tive acknowledgments, e.g., duplicate cumulative (e.g., TCP
NewReno [23]]) or selective acks (e.g., IRN for RDMA and
TCP SACK [16]). Once the accumulated evidence for a seg-
ment passes a threshold, the algorithm can declare it lost with
high confidence. Typically, an evidence of loss for segment
i is also an evidence of loss for every unacknowledged seg-
ment j with j < i. Thus, most of these algorithms can be
rewritten to only keep track of the total evidence of loss for
the first unacknowledged segment and incrementally com-

2In TCP-based protocols, K is the minimum of receive window and con-
gestion window size. However, the limit imposed by K exists when transport
protocols use other ways (e.g., rate) to limit a flow’s transmission pace [8§].

pute the evidence for the rest as needed. Based on these
observations (#1 and #2 in Table [I)), we use a fixed set of
bitmaps in Tonic’s data delivery engine to track the status of
a flow’s segments and implement optimized fixed-function
bitmap operations for updating them on transport events.

3.2.3 Concurrent Event Processing

For every flow, four main events can affect the generation
of its next segment address. First, the receipt of an acknowl-
edgment can either move the window forward and enable the
flow to generate more segments, or signal segment loss and
trigger retransmissions. Second, the absence of acknowledg-
ments, i.e., a timeout, can also lead to more segments marked
as lost and trigger retransmissions. Third, generation of a
segment address increments the number of a flow’s outstand-
ing segments and can deactivate the flow if it goes above N.
Fourth, segment address transmission (out of the credit en-
gine) decrements the number of outstanding segments and
can enable the flow to generate more segment addresses.

Tonic’s data delivery engine has four modules to handle
these four events (Figure[2). Every cycle, each module reads
the state of the flow for which it received an event from the
memory in the data delivery engine, processes the event, and
updates the flow state accordingly. The flow state in the data
delivery engine consists of a fixed set of variables to track the
status of the current window of segments across events, as
well as the user-defined variables used in the programmable
components (Table[Z). As an example of the fixed state vari-
ables, Tonic keeps a fixed set of bitmaps for each flow (ob-
servations in §3.2.2): The acked bitmap keeps track of selec-
tively acknowledged segments, marked-for-rtx keeps track
of lost segments that require retransmission, and rtx-cnt
stores information about their previous retransmissions.

The following paragraphs briefly describe how each event-
processing module affects a flow’s state, and whether there
are common patterns that we can exploit to implement all or
parts of its functionality in a fixed-function manner.

Incoming. This module processes acknowledgments (and
other incoming packets, see §3.3.3). Some updates to state
variables in response to acknowledgments are similar across
all data delivery algorithms and do not need to be pro-
grammable (e.g., updating window boundaries, and mark-
ing selectively acked segments in acked bitmap, see §3.2.2),
whereas loss detection and recovery, which rely on acknowl-
edgments as a signal, vary a lot across different algorithms
and must be programmable by users (#4 in Table [I). Thus,
the Incoming module is designed as a two-stage pipeline: a
fixed-function stage for the common updates followed by a
programmable stage for loss detection and recovery.

The benefit of this two-stage design is that the common
updates mostly involve bitmaps and arrays (§3.2.2)), which
are implemented as ring buffers in hardware and costly to
modify across their elements. For instance, in all data de-
livery algorithms, if an incoming packet acknowledges seg-
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ment A cumulatively and segment S selectively, wnd-start is
updated to max (wnd-start, A) and acked[S] to one, and the
boundaries of all bitmaps and arrays are updated based on the
new wnd-start. By moving these updates into a fixed func-
tion stage, we can (i) optimize them to meet Tonic’s timing
and memory constraints, and (ii) provide programmers with
a dedicated stage, i.e., a separate cycle, to do loss detection
and recovery. In this dedicated stage, programmers can use
the updated state variables from the previous stage and the
rest of the variables from memory to infer segment loss (and
perform other user-defined computation discussed in §3.3.3).

Periodic Updates. The data delivery engine iterates over
active flows, sending them one at a time to this module to
check for retransmission timer expiration and perform other
user-defined periodic updates (§3.3.3). Thus, with its 10 ns
clock cycle, Tonic can cover each flow within a few mi-
croseconds of the expiry of its retransmission timer. This
module must be programmable as a retransmission timeout
is a signal for detecting loss (#4 in Table[I). Similar to the
programmable stage of the Incoming module, the program-
mers can use per-flow state variables to infer segment loss.

Segment Generation. Given an active flow and its vari-
ables, this module generates the next segment’s address and
forwards it to the credit engine. Tonic can implement seg-
ment address generation as a fixed function module based on
the following observation (#3 in Table[T): Although different
reliable data delivery algorithms have different ways of infer-
ring segment loss, once a lost segment is detected, it is only
logical to retransmit it before sending anything new. Thus,
the procedure for selecting the next segment is the same irre-
spective of the data delivery algorithm, and is implemented
as a fixed-function module in Tonic. Thus, this module pri-
oritizes retransmission of lost segments in marked-for-rtx
over sending the next new segment, i.e., highest_sent+1 and
also increments the number of outstanding segments.

Segment Transmitted. This module is fixed function and
is triggered when a segment address is transmitted out of the
credit engine. It decrements the number of outstanding seg-
ments of the corresponding flow. If the flow was deactivated
due to a full ring buffer, it is inserted into the active set again.

3.3 Flexible Credit Management

Transport protocols use congestion-control algorithms to
avoid overloading the network by controlling the pace of a
flow’s transmission. These algorithms consist of a control
loop that estimates the network capacity by monitoring the
stream of incoming control packets (e.g., acknowledgments
and congestion notification packets (CNPs)) and sets param-
eters that limit outgoing data packets. While the control loop
is different in many algorithms, the credit calculation based
on parameters is not. Tonic has efficient fixed-function mod-

ules for credit calculation (§3.3.1) and §3.3.2) and relegates
parameter adjustment to programmable modules (§3.3.3).

State Variable | Description

acked selectively acknowledged segments (bitmap)
marked-for-rtx lost segments marked for retransmission (bitmap)
rtx-cnt number of retransmissions of a segment (bitmap)
wnd-start the address of the first segment in the window
wnd-size size of the window (min(W, reved _window))
highest-sent the highest segment transmitted so far

total-sent Total number of segments transmitted so far

is-idle does the flow have segments to send?
outstanding-cnt | # of outstanding segments

rtx-timer when will the rtx timer expire?

user-context user-defined variables for programmable modules

Table 2: Per-flow state variables in the data delivery engine

3.3.1 Common Credit-Calculation Patterns

Congestion control algorithms have a broad range of ways
to estimate network capacity. However, they enforce limits
on data transmission in three main ways (#5 in Table [I)):
Congestion window. The control loop limits a flow to at
most W bytes in flight from the first unacknowledged byte.
Thus, if byte i is the first unacknowledged byte, the flow
cannot send bytes beyond i+ W. Keeping track of in-flight
segments to enforce a congestion window can get compli-
cated, e.g., in the presence of selective acknowledgments,
and is implemented in the fixed-function stage of the incom-
ing module in the data delivery engine.

Rate. The control loop limits the flow’s average rate (R) and
maximum burst size (D). Thus, if a flow had credit c¢( at
the time f( of the last transmission, then the credit at time ¢
will be min(R* (t —to) + co,D). As we show in §4 imple-
menting precise per-flow rate limiters under our strict timing
and memory constraints is challenging and has an optimized
fixed-function implementation in Tonic.

Grant tokens. Instead of estimating network capacity, the
control loop receives tokens from the receiver and adds them
to the flow’s credit. Thus, the credit of a flow is the total
tokens received minus the number of transmitted bytes, and
the credit calculation logic consists of a simple addition.

Since these are used by most congestion control algo-
rithm we optimize their implementation to meet Tonic’s
timing and memory constraints. Congestion window calcu-
lations are mostly affected by acks. Thus, calculation and
enforcement of congestion window happen in the data deliv-
ery engine. For the other two credit calculation schemes, the
credit engine processes credit-related event, and Tonic users
can simply pick which scheme to use in the credit engine.

3.3.2 Event Processing for Credit Calculation

Conceptually, three main events can trigger credit calcu-
lation for a flow, and the credit engine has different modules
to concurrently process them every cycle (Figure [2). First,
when a segment address is received from the data delivery
engine and is the only one in the flow’s ring buffer, the flow
could now qualify for transmission or remain idle based on

3 Tonic’s credit engine has a modular event-based design (§3.3.2), mak-
ing it amenable for extension to future credit calculation schemes.
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its credit (the Enqueue module). Second, when a flow trans-
mits a segment address, its credit must be decreased and we
should determine whether it is qualified for further transmis-
sion based on its updated credit and the occupancy of its ring
buffer (the Transmit module). Third are events that can add
credit to the flow (e.g., from grant tokens and leaky bucket
rate limiters), which is where the main difference lies be-
tween rate-based and token-based credit calculation.

When using grant tokens, the credit engine needs two ded-
icated modules to add credit to a flow: one to process incom-
ing grant tokens from the receiver, and one to add credit for
retransmissions on timeouts. When using rate, the credit en-
gine does not need any extra modules for adding credit since
a flow with rate R bytes-per-cycle implicitly gains R bytes of
credit every cycle and, therefore, we can compute in advance
when it will be qualified for transmission.

Suppose in cycle T, the Transmit module transmits a seg-
ment from flow f, and is determining whether the flow is
qualified for further transmission. Suppose that f has more
segments in the ring buffer but lacks L bytes of credit. The
Transmit module can compute when it will have sufficient
credit as T = % and set up a timer for 7 cycles. When
the timer expires, f definitely has enough credit for at least
one segment, so it can be directly inserted into ready-to-tx.
When f reaches the head of ready-to-tx and is processed
by the Transmit module again in cycle 71, the Transmit mod-
ule can increase f’s credit by (7T} — Tp) * R — S, where S is
the size of the segment that is transmitted at time 7} El Note
that when using rate, the credit engine must perform division
and maintain per-flow timers. We will discuss the hardware
implementation of these operations in

3.3.3 Flexible Parameter Adjustment

Congestion control algorithms often have a control loop
that continuously monitors the network and adjusts credit
calculation parameters, i.e., rate or window size, based on
estimated network capacity. Parameter adjustment is either
triggered by incoming packets (e.g., acknowledgments and
their signals such as ECN or delay in TCP variants and
Timely, and congestion notification packets (CNPs) in DC-
QCN) or periodic timers and counters (timeouts in TCP vari-
ants and byte counter and various timers in DCQCN), and in
some cases is inspired by segment losses as well (window
adjustment after duplicate acknowledgments in TCP).

Corresponding to these triggers, for specifying parameter
adjustment logic, Tonic’s users can use the programmable
stage of the “Incoming” module, which sees all incoming
packets, and the “Periodic Updates” module for timers and
counters. Both modules are in the data delivery engine and
have access to segment status information, in case segment
status (e.g., drops) is needed for parameter adjustment. The
updated parameters are forwarded to the credit engine.

4Similarly, the Enqueue module can set up the timer when it receives the
first segment of the queue and the flow lacks credit for its transmission.

As we show in we have implemented several con-
gestion control algorithms in Tonic and their parameter ad-
justment calculations have finished within our 10 ns clock
cycle. Those with integer arithmetic operations did not need
any modifications. For those with floating-point operations,
such as DCQCN, we approximated the operations to a cer-
tain decimal point using integer operations. If an algorithm
requires high-precision and complicated floating-point oper-
ations for parameter adjustment that cannot be implemented
within one clock cycle [19]], the computation can be rele-
gated to a floating-point arithmetic module outside of Tonic.
This module can perform the computation asynchronously
and store the output in a separate memory, which merges
into Tonic through the “Periodic Updates” module.

3.4 Handling Conflicting Events

Tonic strives to process events concurrently in order to be
responsive to events. Thus, if a flow receives more than one
event in the same cycle, it allows the event processing mod-
ules to process the events and update the flow’s state vari-
ables, and reconciles the state before writing it back into
memory (the Merge modules in Figure2).

Since acknowledgments and retransmission timeouts are,
by definition, mutually exclusive, Tonic discards the timeout
if it is received in the same cycle as an acknowledgment for
the same flow. This significantly simplifies the merge logic
because several variables (window size and retransmission
timer period) are only modified by these two events and,
therefore, are never updated concurrently. We can resolve
concurrent updates for the remaining variables with simple,
predefined merge logic. For example, Segment Generation
increments the number of outstanding segments, whereas
Segment Transmitted decrements it; if both events affect the
same flow at the same time, the number does not change.
User-defined variables are updated in either the Incoming or
the Periodic Updates module, and we rely on the program-
mer to specify which updated variables should be prioritized
if both updates happen in the same cycle.

3.5 Tonic’s Programming Interface

To implement a new transport logic in Tonic, program-
mers only need to specify (i) which of the three credit man-
agement schemes to use, (ii) the loss detection and recovery
logic in response to acknowledgments and timeouts, and (iii)
congestion-control parameter adjustment in response to in-
coming packets or periodic timers and counters. The first one
is used to pick the right modules for the credit engine, and the
last two are inserted into the corresponding programmable
stages of the data delivery engine (Figure [2).

To specify the logic for the programmable stage of the In-
coming module, programmers need to write a function that
receives the incoming packet (ack or other control signals),
the number of newly acknowledged segments, the acked
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bitmap updated with the information in the ack, the old and
new value of wnd-start (in case the window moves forward
due to a new cumulative ack), and the rest of the flow’s state
variables (Table [2) as input. In the output, they can mark a
range of segments for retransmission in marked-for-rtx, up-
date congestion-control parameters such as window size and
rate, and reset the retransmission timer. The programming
interface of the Periodic Updates module is similar.

In specifying these functions, programmers can use inte-
ger arithmetic operations, e.g., addition, subtraction, multi-
plication, and division with small-width operands, condition-
als, and a limited set of read-only bitmap operations, e.g., in-
dex lookup, and finding the first set bit in the updated acked
bitmap (see appendix [F] for an example program). Note that
a dedicated fixed-function stage in the data delivery engine
performs the costly common bitmap updates on receipt of
acks (§3.2.3). We show, in that a wide range of trans-
port protocols can be implemented using this interface and
give examples of ones that cannot.

4 Hardware Implementation

In this section, we describe the hardware design of the
Tonic components that were the most challenging to imple-
ment under Tonic’s tight timing and memory constraints.

High-Precision Per-Flow Rate Limiting. A flow with rate
R bytes per cycle and L bytes to send will have sufficient
credit for transmission in T = [ %] cycles. Tonic needs to do
this computation in the credit engine but must represent R as
an integer since it cannot afford to do floating-point division.
This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If R is in bytes per
cycle, we cannot support rates below one byte per cycle or
~1 Gbps. If we represent R in bytes per thousand cycles,
we can support rates as low as 1 Mbps. However, T = [%W
determines how many thousand cycles from now the flow
qualifies for transmission which results in lower rate con-
formance and precision for higher-bandwidth flows. To sup-
port a wide range of rates without sacrificing precision, Tonic
keeps multiple representations of the flow’s rate at different
levels of precision and picks the most precise representation
for computing 7' at any moment (details in Appendix [B).

Efficient Bitmap Operations. Tonic uses bitmaps as large
as 128 bits to track the status of segments for each flow.
Bitmaps are implemented as ring buffers. The head pointer
corresponds to the first unacked segment and moves forward
around the buffer with new acks. To efficiently implement
operations whose output depends on the values of all the bits
in the bitmap, we must divide the buffer into smaller parts in
multiple layers, process them in parallel, and join the results.
One such operation, frequently used in Tonic, is finding the
first set bit after the head. The moving head of the ring buffer
complicates the implementation of this operation since keep-
ing track of the head in each layer requires extra processing,

making it difficult to compute within our 10 ns target. In-
stead, Tonic uses a light-weight pre-processing on the input
ring buffer to avoid head index computation in the layers al-
together (details in Appendix [C).

Concurrent Memory Access. Every cycle, five modules in
the data delivery engine, including both stages of the Incom-
ing module, concurrently access its memory (§3.2.3). How-
ever, FPGAs only have dual-ported block RAMs, with each
port capable of either read or write every cycle. Building
memories with more concurrent reads and writes requires
keeping multiple copies of data in separate memory “banks”
and keeping track of the bank with the most recent data
for each addresf] [26]. To avoid supporting five concurrent
reads and writes, we manage to partition per-flow state vari-
ables into two groups, each processed by at most four events.
Thus, Tonic can use two memories with four read and write
ports instead of a single one with five, to provide concurrent
access for all processing modules at the same time.

5 Integrating Tonic into the Transport Layer

Tonic’s transport logic is intentionally decoupled from
the specific implementation of other transport functionality
such as connection management, application-level API, and
buffer management. This section provides an example of
how Tonic can interface with the Linux kernel to learn about
new connections, requests for data transmission, and connec-
tion terminationﬂ After creating the socket, applications use
various system calls for connection management and data
transfer. As Tonic mainly focuses on the sender sider of the
transport logic, we only discuss the system calls and modifi-
cations relevant to the sender side of the transport layer.
Connection Management. connect () on the client initiates
a connection, listen() and accept () on the server listen for
and accept connections, and close () terminate connections.
As connection management happens outside of Tonic, the
kernel implementation of these system calls stays untouched.
However, once the connection is established, the kernel maps
itto a unique flow id in [0,N), where N is the maximum num-
ber of flows supported by Tonic, and notifies Tonic through
the NIC driver about the new connection.

Specifically, from the connection’s Transmission Control
Block (TCB) in the kernel, the IP addresses and ports of
the communication endpoints are sent to Tonic alongside the
flow id and the fixed segment size chosen for the connec-
tion. The kernel only needs to track the TCB fields used for
connection management (e.g., IP addresses, ports, and TCP
FSM), pointers to data buffers, and receiver-related fields.
Fields used for data transfer on the sender, i.e., snd.nxt,
snd.una, and snd.wnd, are stored in and handled by Tonic.
Finally, after a call to close(), the kernel uses the connec-

3 This overhead is specific to FPGAs, and can potentially be eliminated
if the memory is designed as an ASIC.
6 See appendix@for how Tonic can be used with RDMA.
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tion’s flow id to notify Tonic of its termination.

Data Transfer. send() adds data to the connection’s socket
buffer, which stores its outstanding data waiting for delivery.
Tonic keeps a few bits of per-segment state for outstanding
data and performs all transport logic computation in terms
of segments. As such, data should be partitioned into equal-
sized segments before Tonic can start its transmission (§3.2)).
Thus, modifications to send() mainly involve determining
segment boundaries for the data in the socket buffer based on
the connection’s configured segment size and deciding when
to notify Tonic of the new segments. Specifically, the kernel
keeps an extra pointer for each connection’s socket buffer, in
addition to its head and tail, called tonic-tail. It points
to the last segment of which Tonic has been notified. head
and updates to tonic-tail are sent to Tonic to use when
generating the next segment’s address to fetch from memory.

Starting with an empty socket buffer, when the applica-
tion calls send(), data is copied to the socket buffer, and
tail is updated accordingly. Assuming the connection’s
configured segment size is C, the data is then partitioned
into C-sized segments. Suppose the data is partitioned into
S segments and B < C remaining bytes. The kernel then
updates tonic-tail to point to the end of the last C-sized
segment, i.e., head + C * S, and notifies Tonic of the update
to tonic-tail. The extra B bytes remain unknown to Tonic
for a configurable time 7', in case the application calls send
to provide more data. In that case, the data are added to the
socket buffer, data between tonic-tail and tail are sim-
ilarly partitioned, tonic-tail is updated accordingly, and
Tonic is notified of new data segments.

If there is not enough data for a C-sized segment after time
T, the kernel needs to notify Tonic of the “sub-segment” (a
segment smaller than C) and its size, and update tonic-tail
accordingly. Note that Tonic requires all segments, except
for the last one in a burst, to be of equal size, as all com-
putations, including window updates, are in terms of seg-
ments. Thus, after creating a “sub-segment”, if there is more
data from the application, Tonic can only start its trans-
mission when it is done transferring its current segments.
Tonic notifies the kernel once it successfully delivers the fi-
nal “sub-segment”, at which point, head and tonic-tail will
be equal, and the kernel continues partitioning the remaining
data in the socket buffer and updating Tonic as before. Note
that Tonic can periodically, with a configurable frequency,
forward acknowledgments to the kernel to move head for-
ward and free up space for new data in the socket buffer.

C and T can be configured for each flow based on its la-
tency and throughput characteristics. For high-bandwidth
flows, C can be set to MSS (or larger, if using TSO). For
flows that sporadically generate small segments, setting C
and T is not as straightforward since segments cannot be
consolidated within Tonic. We discuss the trade-offs in de-
ciding these parameters in detail in appendix [D]

Other Considerations. As we show in §6 Tonic’s current

design supports 2048 concurrent flows, matching the work-
ing sets observed in data centers [15,37]] and other hardware
offloads in the literature [20]. If a host has more open con-
nections than Tonic can support, the kernel can offload data
transfer for flows to Tonic on a first-come first-serve basis,
or have users set a flag when creating the socket and fall
back to software once Tonic runs out of resources for new
flows. Alternatively, modern FPGA-based NICs have a large
DRAM directly attached to the FPGA [20]. The DRAM can
potentially be used to store the state of more connections,
and swap them back and forth into Tonic’s memory as they
activate and need to transmit data. Moreover, to provide visi-
bility into the performance of hardware transport logic, Tonic
can provide an interface for kernel to periodically pull trans-
port statistics from the NIC.

Other Transport Layers. The above design is an exam-
ple of how Tonic can be integrated into a commonly-used
transport layer. However, TCP, sockets, and bytestreams
are not suitable for all applications. In fact, several data-
center applications with high-bandwidth low-latency flows
are starting to use RDMA and its message-based API in-
stead [519,22}35]]. Tonic can be integrated into RDMA-based
transport as well, which we discuss in appendix [A]

6 Evaluation

To evaluate Tonic, we implement a prototype in Verilog
(~8K lines of code) and a cycle-accurate hardware simulator
in C++ (~2K lines of code) [11]]. The simulator is integrated
with NS3 network simulator [4] for end-to-end experiments.

To implement a transport protocol on Tonic’s Verilog pro-
totype, programmers only need to provide three Verilog files:
(i) incoming.v, describing the loss detection and recovery
logic and how to change credit management parameters (i.e.,
rate or window) in response to incoming packets; this code
is inserted into the second stage of the Incoming pipeline in
the data delivery engine, (ii) periodic_updates.v, describ-
ing the loss detection and recovery logic in response to time-
outs and how to change credit management parameters (i.e.,
rate or window) in response to periodic timers and counters;
this code is inserted into the Periodic Updates module in the
data delivery engine, and (iii) user_configs.vh, specifying
which of the three credit calculation schemes to use and the
initial values of user-defined state variables and other param-
eters, such as initial window size, rate, and credit.

We evaluate the following two aspects of Tonic:
Hardware Design (§6.1). We use Tonic’s Verilog prototype
to evaluate its hardware architecture for programmability and
scalability. Can Tonic support a wide range of transport pro-
tocols? Does it reduce the development effort of implement-
ing transport protocols in the NIC? Can Tonic support com-
plex user-defined logic with several variables? How many
per-flow segments and concurrent flows can it support?
End-to-End Behavior (§6.2)). We use Tonic’s cycle-accurate
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simulator and NS3 to compare Tonic’s end-to-end behavior
with that of hard-coded implementations of two protocols:
New Reno [23]] and RoCEv2 with DCQCN [43]], both for a
single flow and for multiple flows sharing a bottleneck link.

6.1 Hardware Design

There are two main metrics for evaluating the efficiency
of a hardware design: (i) Resource Utilization. FPGAs
consist of primitive blocks, which can be configured and
connected to implement a Verilog program: look-up tables
(LUTs) are the main reconfigurable logic blocks, and block
RAMs (BRAMs) are used to implement memory. (ii) Tim-
ing. At the beginning of each cycle, each module’s input is
written to a set of input registers. The module must process
the input and prepare the result for the output registers before
the next cycle begins. Tonic must meet timing at 100 MHz to
transmit a segment address every 10 ns. That is, to achieve
100 Gbps, the processing delay of every path from input to
output registers in every module must stay within 10 ns.

We use these two metrics to evaluate Tonic’s programma-
bility and scalability. These metrics are highly dependent on
the specific target used for synthesis. We use the Kintex Ul-
trascale+ XCKU15P FPGA as our target because this FPGA,
and others with similar capabilities, are included as bump-
in-the-wire entities in today’s commercial programmable
NICs [2,[3]. This is a conservative choice, as these NICs
are designed for 10-40 Gbps Ethernet. A 100 Gbps NIC
could potentially have a more powerful FPGA. Moreover,
we synthesize all of Tonic’s components onto the FPGA
to evaluate it as a standalone prototype. However, given
the well-defined interfaces between the fixed-function and
programmable modules, it is conceivable to implement the
fixed-function components as an ASIC for more efficiency.
Unless stated otherwise, we set the maximum number of
concurrent flows to 1024 and the maximum window size to
128 segments in all of our experimentsﬂ

6.1.1 Hardware Programmability

We have implemented the sender’s transport logic of six
protocols in Tonic as representatives of various types of seg-
ment selection and credit calculation algorithms in the lit-
erature. Table [3] summarizes their resource utilization for
both fixed-function and user-defined modules, and the lines
of code and bytes of user-defined state used to implement
them. While we use the same set of per-flow state variables
(Table [2) for all protocols, not all of them use all the vari-
ables in processing transport events. For instance, bitmaps
are only used by protocols with selective acks. Thus, it is
possible to reduce the resource utilization even more with
some pre-processing to remove the irrelevant variables and
computation from the Verilog design.

7A 100 Gbps flow with 1500B back-to-back packets over 15-us RTT,
typical in data centers, has at most 128 in-flight segments.

User-De‘ﬁned Credit Look up Tables (IjUTs) BRAMs
Logic Type User-Defined| Fixed
LoC state(B) total(K) % | total(K) % | total %
Reno 48 8| wnd (24 0.5/109.4 209|195 20
NewReno| 74 13| wnd |2.6 0.5(112.5 21.5|1211 21
SACK 193 19| wnd |3.3 0.6|112.1 21.4|219 22
NDP 20 1| token [3.0 0.6/143.6 29.0|300 30
gOC(E)ECVI:I/ 63 30| rate |0.9 0.21185.2 35.2|1251 26
IRN 54 14| rate (2.9 0.6|177.4 339|219 22

Table 3: Resource utilization of transport protocols in Tonic.

Reno [13]] and New Reno [23] represent TCP variants that
use only cumulative acks for reliable delivery and congestion
window for credit management. Reno can only recover from
one loss within the window using fast retransmit, whereas
New Reno uses partial acknowledgments to recover more ef-
ficiently from multiple losses in the same window. SACK,
inspired by RFC 6675 [[16], represents TCP variants that use
selective acks. Our implementation has one SACK block
per ack but can be extended to more. NDP [24] represents
receiver-driven protocols, recently proposed for low-latency
data-center networks [21}|36]]. It uses explicit NACKs and
timeouts for loss detection and grant tokens for congestion
control. RoCEv2 w/ DCQCN [43]] is a widely-used transport
for RDMA over Ethernet, and IRN [34] is a recent hardware-
based protocol for improving RoCE’s simple data delivery
algorithm. Both use rate limiters for credit management.

Note that, as described in not all data delivery al-
gorithms are feasible for hardware implementation as is. For
instance, due to memory constraints on the NIC, it is not pos-
sible to keep timestamps for every packet, new and retrans-
missions, on the NIC. As a result, transport protocols which
rely heavily on per-packet timestamps, e.g., QUIC [27]], need
to be modified to work with fewer timestamps, i.e., for a sub-
set of in-flight segments, to be offloaded to hardware.
Takeways. There are three key takeaways from these results:
o Tonic supports a variety of transport protocols.

e Tonic enables programmers to implement new transport
logic with modest development effort. Using Tonic, each
of the above protocols is implemented in less than 200
lines of Verilog code, with the user-defined logic con-
suming less than 0.6% of the FPGA’s LUTs. In contrast,
Tonic’s fixed-function modules, which are reused across
these protocols, are implemented in ~8K lines of code and
consume ~60 times more LUTs.

e Different credit management schemes have different over-
heads. For transport protocols that use congestion win-
dow, window calculations overlap with and therefore are
implemented in the data delivery engine (§3.3.1). Thus,
their credit engine utilizes fewer resources than others.
Rate limiting requires more per-flow state and more com-
plicated operations (§4) than enforcing receiver-generated
grant tokens but needs fewer memory ports for concurrent
reads and writes (§3.3.2), overall leading to lower BRAM
and higher LUT utilization for rate limiting.
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Figure 3: NewReno’s Tonic vs hard-coded implementation in NS3 (10G line-rate): a) Congestion window updates (single flow, random
drops), b) Transmitted sequence numbers with retransmission in large dots (single flow, random drops), and c) CDF of average throughput of
multiple flows sharing a bottleneck link over 5 seconds (200 flows from 2 hosts to one receiver)

6.1.2 Hardware Scalability

We evaluate Tonic’s scalability by examining how sources
of variability in its architecture (programmable modules and
various parameters) affect memory utilization and timing.
User-defined logic in programmable modules can have
arbitrarily-long chains of dependent operations, potentially
causing timing violations. We generate 70 random programs
for incoming.v (the programmable stage of Incoming mod-
ule in data delivery engine) with different numbers of arith-
metic, logical, and bitmap operations, and analyze how long
the chain of dependent operations gets without violating tim-
ing at 10ns. These programs use up to 125B of state and
have a maximum dependency of 65 logic levels (respectively
six and two times more than the benchmark protocols in Ta-
ble ). Each logic level represents one of several primitive
logic blocks (LUT, MUX, DSP, etc.) chained together to im-
plement a path in a Verilog program.

We plug these programs into Tonic, synthesize them, and
analyze the relationship between the number of logic levels
and latency of the max-delay path (Table ). Programs with
up to 32 logic levels consistently meet timing, while those
with more than 43 logic levels do not. Between 32 and 42
logic levels, the latency of the max-delay path is around 10
ns. Depending on the mix of primitives on the max-delay
path and their latencies, programs in that region can poten-
tially meet timing. Our benchmark protocols have 13 to 29
logic levels on their max-delay path and all meet timing.
Thus, Tonic not only supports our benchmark protocols, but
also has room to support future more sophisticated protocols.
User-defined state variables increase the memory width af-
fecting BRAM utilization. We add extra variables to SACK,
IRN, and NDP to see how wide memories can get without
violating timing and running out of BRAMs, repeating the
experiment for each of the three credit management schemes
as they have different memory footprints (Table [4). Tonic
can support 448B of user-defined state with congestion win-
dow for credit management, 340B with rate, and 256B with
grant tokens (Protocols in Table|3|use less than 30B).
Maximum window size determines the size of per-flow
bitmaps stored in the data delivery engine to keep track of
the status of a flow’s segments, therefore affecting memory

Metric | Results

(0,31] meets timing

(31,42] depends on operations
(42,65] violates timing

256 grant token
User-Defined State | bytes 340 rate

Complexity of logic
User-Defined Logic | levels

448 congestion window
Window Size segments | 256
Concurrent Flows | count 2048

Table 4: Summary of Tonic’s scalability results.

utilization, and the complexity of bitmap operations, hence
timing. Tonic can support bitmaps as large as 256 bits (i.e.,
tracking 256 segments), with which we can support a single
100Gbps flow in a network with up to 30us RTT (Table ).

Maximum number of concurrent flows determines
memory depth and the size of FIFOs used for flow schedul-
ing (§3.1). Thus, it affects both memory utilization and the
queue operations, hence timing. Tonic can scale to 2048 con-
current flows in hardware (Table ) which matches the size
of the active flow set observed in data centers [[15,/37] and
other hardware offloads in the literature [20].

Takeways. Tonic has additional room to support future
protocols that are more sophisticated with more user-defined
variables than our benchmark protocols. It can track 256
segments per flow and support 2048 concurrent flows. With
a more powerful FPGA with more BRAMs, Tonic can po-
tentially support even larger windows and more flows.

6.2 End-to-End Behavior

To examine Tonic’s end-to-end behavior and verify the fi-
delity of Tonic-based implementation of the transport logic
in different protocols, we have developed a cycle-accurate
hardware simulator for Tonic in C++. We use this sim-
ulator with NS3 to show that Tonic-based implementation
of NewReno and RoCEv2 w/ DCQCN senders match their
hard-coded NS3 implementation. Note that the goal of these
simulations is to analyze and verify Tonic’s end-to-end be-
havior. Tonic’s ability to support 100Gbps line rate has al-
ready been demonstrated in using hardware synthesis.
Thus, in our simulations, we use 10Gbps and 40Gbps as
line rate merely to make hardware simulations with multi-
ple flows over seconds computationally tractable.
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6.2.1 TCP New Reno

We implement TCP New Reno in Tonic based on
RFC 6582, and use NS3’s native network stack for its hard-
coded implementation. Our Tonic-based implementation
works with the unmodified native TCP receiver in NS3. In
all simulations, hosts are connected via 10Gbps links to one
switch, RTT is 10us, the buffer is 5.5MB, the minimum re-
transmission timeout is 200ms (Linux default), segments are
1000B large, and delayed acks are enabled on the receiver.
Single Flow. We start a single flow from one host to an-
other, and randomly drop packets on the receiver’s NIC. Fig-
ure [3(a) and [3(b) show the updates to the congestion win-
dow and transmitted sequence numbers (retransmissions are
marked with large dots), respectively. Tonic’s behavior in
both cases closely matches the hard-coded implementation.
The slight differences stem from the fact that in NS3’s net-
work stack, all the computation happens in the same virtual
time step while in Tonic every event (incoming packets , seg-
ment address generation, etc.) is processed over a 100ns cy-
cle (increased from 10ns to match the 10G line rate).
Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for 5 sec-
onds. The CDF of average throughput across the 200 flows
for the Tonic-based implementation closely matches that of
the hard-coded implementation (Figure [3(c)). We observe
similarly matching distributions for number of retransmis-
sions. When analyzing the flows’ throughput in millisecond-
long epochs, we notice larger variations in the hard-coded
implementation than Tonic since Tonic, as opposed to NS3’s
stack, performs per-packet round robin scheduling across
flows on the same host.

6.2.2 RoCEv2 with DCQCN

We implement RoCE w/ DCQCN [43]] in Tonic, and use
the authors’ NS3 implementation from [44] for the hard-
coded implementation. Our Tonic-based implementation
works with the unmodified hard-coded RoCE receiver. In
all simulations, hosts are connected via 40Gbps links to the
same switch, RTT is 4us, segments are 1000B large, and we
use the default DCQCN parameters from [44].

Single Flow. DCQCN is a rate-based algorithm which uses
CNPs and periodic timers and counters for congestion con-

trol as opposed to packet loss in TCP. Thus, to observe rate
updates for a single flow, we run two flows from two hosts
to the same receiver for one second to create congestion and
track the throughput changes of one as they both converge
to the same rate. Tonic’s behavior closely matches the hard-
coded implementation (Figure {). We also ran a single DC-
QCN flow at 100Gbps with 128B back-to-back packets and
confirmed that Tonic can saturate the 100Gbps link.

Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for one
second. Both Tonic and the hard-coded implementation do
per-packet round robin scheduling among the flows on the
same host. As a result, all flows in both cases end up with
an average throughput of 203 4+ 0.2Mbps. Moreover, we ob-
serve a matching distribution of CNPs in both cases.

7 Related Work

Tonic is the first programmable architecture for transport
logic in hardware able to support 100 Gbps. In this section,
we review the most closely related prior work.

Commercial hardware network stacks. Some NICs
have hardware network stacks with hard-wired transport pro-
tocols [8,/10]. However, they only implement two proto-
cols, either RoCE [8]] or a vendor-selected TCP variant, and
can only be modified by their vendor. Tonic enables pro-
grammers to implement a variety of transport protocols in
hardware with modest effort. In the absence of a publicly-
available detailed description of these NICs’ architecture, we
could not compare our design decisions with theirs.

Non-commercial hardware transport protocols. Recent
work explores hardware transport protocols that run at high
speed with low memory footprint [30}/31,/34]. Tonic facil-
itates innovation in this area by enabling researchers to im-
plement new protocols with modest development effort.

Accelerating network functionality. Several academic
and industrial projects offload end-host virtual switching and
network functions to FPGAs, processing a stream of already-
generated packets [[14} 20,128,129, {41]]. Tonic, on the other
hand, implements the transport logic in the NIC by keeping
track of potentially a few hundred segments at a time to gen-
erate packets at line rate while running user-defined transport
logic to ensure efficient and reliable delivery.
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A Integrating Tonic within RDMA

Remote Direct Memory Access (RDMA) enables applica-
tions to directly access memory on remote endpoints without
involving the CPU. To do so, the endpoints create a queue
pair, analogous to a connection, and post requests, called
Work Queue Elements (WQEs), for sending or receiving data
from each other’s memory. While RDMA originated from
InfiniBand networks, RDMA over Ethernet is getting more
common in data centers [9,22,|35]]. In this section, we use
RDMA to refer to RDMA implementations over Ethernet.

Once a queue pair is created, RDMA NICs can add the
new “connection” to Tonic and use it to on the sender side to
transfer data in response to different WQEs. Each WQE cor-
responds to a separate message transfer and therefore nicely
fits Tonic’s need for determining segment boundaries before
starting data transmission.

For instance, in an RDMA Write, one endpoint posts a
Request WQE to write to the memory on the other endpoint.
Data length, data source address on the sender, and data sink
addresses on the receiver are specified in the Request WQE.
Thus, a shim layer between RDMA applications and Tonic
can decide the segment boundaries and notify Tonic of the
number of segments and the source memory address to read
the data from on the sender. Once Tonic generates the next
segment address, the rest of the RDMA NIC can DMA it
from the sender’s memory and add appropriate headers. An
RDMA Send is similar to RDMA Write, except it requires a
Receive WQE on the receiver to specify the sink address to
which the data from the sender should be written. So, Tonic
can still be used in the same way on the sender side.

As another example, in an RDMA Read, one endpoint re-
quests data from the memory on the other endpoint. So, the
responder endpoint should transmit data to the requester end-
point. Again, the data length, data source address on the re-
sponder, and data sink address on the requester are specified
in the WQE. Thus, the shim layer can decide the segment
boundaries and and transfer the data using Tonic.

Thus, Tonic can be integrated into RDMA NICs to re-
place the hard-coded transport logic on the sender-side of
data transfer. In fact, two of our benchmark protocols, RoCE
w/ DCQCN [43]] and IRN [34], are proposed for RDMA
NICs. That said, this is assuming there is a compatible re-
ceiver on the other side to generate the control signals (e.g.,
acknowledgments, congestion notifications, etc.) required

by whichever transport protocol one chooses to implement
on Tonic on the sender side.

While some implementations of RDMA over Ethernet
such as iWarp [7] handle out-of-order (OOQ) packets and
implement TCP/IP-like acknowledgments, others, namely
RoCE [{8]], assume a lossless network and have simpler trans-
port protocols that do not require receivers to handle OOO
packets and generate frequent control signals. However, as
RDMA over Ethernet is getting more common in data cen-
ters, the capability to handle OOO packets on the receiver
and generate various control signals for more efficient trans-
port is being implemented in these NICs as well [344/43]].

Finally, Tonic provides in-order reliable data delivery
within the same flow. Thus, messages sent over the same
flow are delivered to the receiver in the same order. How-
ever, it is sometimes desirable to support out-of-order mes-
sage delivery for a communication endpoint (e.g., a queue
pair), for instance, to increase the performance of applica-
tions when messages are independent from each other, or
when using “unconnected” endpoints (e.g., one sender and
multiple receivers). It is still possible to support out-of-order
message delivery using Tonic by creating multiple flows in
Tonic for the same communication endpoint and using them
concurrently. Extending Tonic to support out-of-order mes-
sage delivery within the same flow is an interesting avenue
for future work.

B High-Precision Per-Flow Rate Limiting

When using rate in the credit engine, if a flow with rate
R bytes per cycle needs L more bytes of credit to transmit
a segment, Tonic calculates T = ffﬂ as the time where the
flow will have sufficient credit for transmission. It sets up
a timer that expires in T cycles, and upon its expiry, queues
up the flow in ready-to-tx for transmission (§3.3.2). Since
Tonic cannot afford to do floating-point division within its

timing constraints, R must be represented as an integer.

This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If we represent R
in bytes per cycle, we can compute the exact cycle when the
flow will have enough credit, but cannot support rates lower
than one byte per cycle or ~1 Gbps. If we instead represent
R in, say, bytes per thousand cycles, we can support lower
rates (e.g., 1 Mbps), but T = [ %] will determine how many
thousand cycles from now the flow can qualify for transmis-
sion. This results in lower rate conformance and precision
for higher-bandwidth flows. As a concrete example, for a
20 Gbps flow, R would be 25000 bytes per thousand cycles.
Suppose the flow has a 1500-byte segment to transmit. It
will have enough credit to do so in 8 cycles but has to wait

(%] = 1 thousand cycles to be queued for transmission.

Instead of committing to one representation for R, Tonic
keeps multiple variables Ry, ... Ry for each flow, each rep-
resenting flow’s rate at a different level of precision. As the
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congestion control loop adjusts the rate according to network
capacity, Tonic can efficiently switch between Ry,...,R; to
pick the most precise representation for computing 7" at any
moment. This enables Tonic to support a wide range of rates
without sacrificing the rate-limiting precision.

C Efficient Bitmap Operations

Tonic uses bitmaps as large as 128 bits to track the status
of a window of segments for each flow. Bitmaps are im-
plemented as ring buffers, with the head pointer correspond-
ing to the first unacknowledged segment. As new acknowl-
edgments arrive, the head pointer moves forward around the
ring. To efficiently implement operations whose output de-
pends on the values of all the bits in the bitmap, we must par-
allelize them by dividing the ring buffer into smaller parts,
processing them in parallel, and joining the results. For large
ring buffers, this divide and conquer pattern is repeated in
multiple layers. As each layer depends on the previous one
for its input, we must keep the computation in each layer
minimal to stay within our 10 ns target.

One such operation finds the first set bit after the head.
This operation is used to find the next lost segment for re-
transmission in the marked-for-rtx bitmap. The moving
head of the ring buffer complicates the implementation of
this operation. Suppose we have a 32-bit ring buffer Az,
with bits 5 and 30 set to one, and the head at index 6. Thus,
find first(As;,6) = 30. We divide the ring into eight four-
bit parts, “or” the bits in each one, and feed the results into
an 8-bit ring buffer Ag, where Ag[i] = OR(A3,[i : i+ 3]). So,
only Ag[l] and Ag[7] are set. However, because the set bit
in Asp[4 : 7] is before the head in the original ring buffer, we
cannot simply use one as Ag’s head index or we will mistak-
enly generate 5 instead of 30 as the final result. So, we need
extra computation to find the correct new head. For a larger
ring buffer with multiple layers of this divide and conquer
pattern, we need to compute the head in each layer.

Instead, we use a lightweight pre-processing on the in-
put ring buffer to avoid head index computation altogether.
More specifically, using A3, as input, we compute A%, which
is equal to A3, except that all the bits from index zero to
head (6 in our example) are set to zero. Starting from in-
dex zero, the first set bit in A%, is always closer to the orig-
inal head than the first set bit in A3y. So, findfirst(A3,6)
equals find first(A%,,0) if A}, has any set bits, and other-
wise findfirst(As;,0). This way, independent of the input
head index H, we can always solve find first(A,H) from
two subproblems with the head index fixed at zero.

D Deciding C and T for Flows Using Tonic
through the Socket API

In we provide an example of how Tonic can be inte-
grated into the Linux Kernel so that applications can use it
through the Socket API. We introduce two parameters: (i)

C, which is the flow’s fixed segment size, and (ii) 7', which
is the duration that the Kernel waits for more data from the
application before sending a “sub-segment” (a segment that
is smaller than C) to Tonic. C and T can be configured for
each flow based on its latency and throughput characteristics.
For high-bandwidth flows, C can be set to MSS (or larger, if
using TSO). For flows that only sporadically generate data
segments, setting C and T, as we discuss below, is not as
straightforward.

With a fixed C, increasing T results in more small seg-
ments being consolidated into C-sized segments before being
sent to Tonic for transmission, but at the expense of higher
latency. C determines the size of the segments and number of
sub-segments generated by Tonic. Recall from §5]that a sub-
segment is created when there is not enough data to make
a full C-sized segment within 7. Tonic needs all segments,
except for the last sub-segment in a burst, to be of equal size.
Thus, even if more data is added to the socket buffer after the
sub-segment is sent to Tonic for transmission, Tonic has to
successfully deliver all the previous segments before it can
start transmitting the new ones. Thus, it is desirable to pro-
duce larger segments but fewer sub-segments. With a fixed
T, increasing C results in larger segments. However, to pro-
duce fewer sub-segments, C should be picked such that in
most cases, the data within a burst is divisible by C. Bursts
are separated in time by 7. So the choice of T affects the
choice of C and vice versa.

For instance, if an application periodically generates 128-
byte requests, C can be easily set to 128 and T based on the
periodicity. As another example, for an application that peri-
odically generates segments of widely-varying sizes, setting
T to zero and C to the maximum expected segment size re-
sults in Tonic transmitting data segments as generated by the
application without consolidation, potentially creating many
sub-segments. For the same application, setting 7 to zero
and C to the minimum expected segment size could result in
Tonic generating many small segments as all segments will
be broken into the minimum expected segment size. Note
that these trade-offs become more pronounced if Tonic is to
be used for flows that only sporadically generate data seg-
ments. For high-bandwidth flows, C can be set to MSS (or
larger, if using TSO), and T depending on the application’s
traffic pattern and burstiness.
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F New Reno in Tonic

The following is the implementation of New Reno’s loss detection and recovery algorithm on receipt of acknowledgments in
Tonic [23]). Extra comments have been added for clarification.

module new_reno_incoming(

/% sk sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok okok ok TNPUTS ok ok ok ok sk sk ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok K % ok ok ok ok % /

// ACK, NACK, SACK, CNP, etc...

input  [‘PKT_TYPE_W-1:0]
input  [‘PKT_DATA_W-1:0]

pkt_type,
pkt_data_in,

// Segment ID in the cumulative acknowledgment

input  [SEGMENT_ID_W-1:0]

cumulative_ack,

// Segment ID that is selectively acknowledged, if any

input [“SEGMENT_ID_W-1:0]

selective_ack,

// Number of segments acknowledged with the received acknowledgment

input [ ‘WINDOW_INDEX_W-1:0]

newly_acked_cnt,

// Segment ID at the beginning of the window, before and after the

// acknowledgment
input [ ‘WINDOW_INDEX_W-1:0]
input  [‘WINDOW_INDEX_W-1:0]

// Current time in nanoseconds
input [‘TIME_W-1:0]

//// Per-Flow State

input [“MAX_WINDOW_SIZE-1:0]
input [“MAX_TX_CNT_SIZE-1:0]
input [“SEGMENT_ID_W-1:0]
input [“SEGMENT_ID_W-1:01]
input [“WINDOW_SIZE_W-1:0]
input [‘“TIEMR_W-1:0]

input [“SEGMENT_ID_W-1:0]

input [“USER_VARS_W-1:0]

old_wnd_start,
new_wnd_start,

now,

acked,

tx_cnt,
highest_sent,
wnd_start,
wnd_size_in,
rtx_timer_amount_in,
total_tx_cnt,

user_vars_in,

/% sk sk ok ok ok ok ok ok ok ok okoskok ok ok ok ok ok ok ok okokok QUTPUTS ok %k ok sk ok ok sk sk ok ok % ok ok ok ok ok ok ok ok o % % % % ok ok ok ok % /

output [‘FLAG_W-1:0]

output [ “SEGMENT _ID_W-1:0]
output [‘SEGMENT_ID_W-1:0]
output [“WINDOW_SIZE_W-1:01]
output [‘TIMER_W-1:0]
output [‘FLAG_W-1:0]

output [‘USER_VARS_W-1:0]

)

mark_any_for_rtx,
mark_for_rtx_from,
mark_for_rtx_to,
wnd_size_out,
rtx_timer_amount_out,
reset_rtx_timer,

user_vars_out

J*kkkokkkkkkkkkkokkkkkkkkkkk Local Variables sk skkkkkskkskkskkkkkkkkk

*

* Declarations ommited for brevity

*

**************************************************************/

/// is the ack new or duplicate?

assign is_dup_ack = old_wnd_start == cumulative_ack;
assign is_new_ack = new_wnd_start > old_wnd_start;

/// count duplicated acks

assign dup_acks = is_new_ack 7 O0:

is_dup_ack ? dup_acks_in + 1

// How many in_flight packets?

dup_acks_in;

assign sent_out = highest_sent - wnd_start;

assign in_flight = sent_out -

// update previous highest ack

assign prev_highest_ack_out = is_new_ack ? old_wnd_start

/// Should we do fast rtx?

assign do_fast_rtx = dup_acks ==

dup_acks;

prev_highest_ack_in;

‘DUP_ACKS_THRESH &

((cumulative_ack > recover_in) |
(wnd_size_in > 1 & cumulative_ack - prev_highest_ack_in <= 4));

// if yes, update recovery sequence and updated ssh_thresh

assign recovery_seq_out = do_fast_rtx ? highest_sent

recovery_seq_in;
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77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
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96
97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152

assign half_wnd in_flight > 2 7 in_flight >> 1 : 2;
assign ss_thresh_out = do_fast_rtx 7?7 half_wnd : ss_thresh_in;

//// if in recovery and this is a new ack, is it a

// full ack or a partial ack? (Definition in RFC)
assign full_ack = is_new_ack & cumulative_ack > recover_in;
assign partial_ack = is_new_ack & cumulative_ack <= recover_in;

// mark for retransmission

assign mark_any_for_rtx = do_fast_rtx | partial_ack;
assign rtx_start = wnd_start_in;
assign rtx_end = wnd_start_in + 1;

// reset rtx timer if not in recovery

assign in_recovery_out = do_fast_rtx | (in_recovery_in & cumulative_ack <= recover_in);
assign reset_rtx_timer = “in_recovery_out;
assign in_timeout_out = (“full_ack) & in_timeout_in;

//// decide new window size

// keep a counter for additive increase
assign additive_inc_cntr_out = in_recovery_out & “in_timeout_in 7 0
is_new_ack & wnd_size_in >= ss_thresh_in 7

(additive_inc_cntr_in == wnd_size_in ? 0
additive_inc_cntr_in + 1): additive_inc_cntr_in;

assign wnd_size_out = new_wnd_size >= ‘MAX_WINDOW_SIZE ? ‘MAX_WINDOW_SIZE : new_wnd_size;

always @(*) begin
if (do_fast_rtx) begin
// set it equals to new ss_thresh, expanded for performance reasons
cwnd_out = sent_out - ‘DUP_ACKS_THRESH > 2 ? sent_out >> 1 : 1;
end
else if (“in_recovery_in & is_new_ack) begin
if (cwnd_in < ss_thresh_out) begin

cwnd_out = cwnd_in + newly_acked_cnt;
end
else if (wnd_inc_cntr_in >= cwnd_in) begin
cwnd_out = cwnd_in + 1;
end
else begin
cwnd_out = cwnd_in;
end
end
else begin
cwnd_out = cwnd_in;
end
end
assign there_is_more = in_flight >= cwnd_in;

always @(*) begin
if (do_fast_rtx) begin

new_wnd_size = sent_out;
end
else if ("in_recovery_in & is_new_ack) begin
new_wnd_size = cwnd_out;
end
else begin
new_wnd_size = there_is_more 7?7 sent_out : cwnd_in + dup_acks;
end

end

//// break up user context into variables

assign {prev_highest_ack_in, in_recovery_in, recover_in,
in_timeout_in, wnd_inc_cntr_in, ss_thresh_in,
dup_acks_in, cwnd_in} = user_cntxt_in;

assign user_cntxt_out = {prev_highest_ack_out, in_recovery_out, recover_out,

in_timeout_out, wnd_inc_cntr_out, ss_thresh_out,
dup_acks_outm, cwnd_out};

endmodule
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FileMR: Rethinking RDMA Networking for Scalable Persistent Memory

Jian Yang"
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Abstract

The emergence of dense, byte-addressable nonvolatile main
memories (NVMMs) allows application developers to com-
bine storage and memory into a single layer. With NVMMs,
servers can equip terabytes of memory that survive power
outages, and all of this persistent capacity can be managed
through a specialized NVMM file system. NVMMs appear
to mesh perfectly with another popular technology, remote
direct memory access (RDMA). RDMA gives a client direct
access to memory on a remote machine and mediates this
access through a memory region abstraction that handles the
necessary translations and permissions.

NVMM and RDMA seem eminently compatible: by com-
bining them, we should be able to build network-attached,
byte-addressable, persistent storage. Unfortunately, however,
the systems were not designed to work together. An NVMM-
aware file system manages persistent memory as files,
whereas RDMA uses a different abstraction — memory re-
gions to organize remotely accessible memory. As a result, in
practice, building RDMA-accessible NVMMs requires expen-
sive translation layers resulting from this duplication of effort
that spans permissions, naming, and address translation.

This work introduces two changes to the existing RDMA
protocol: file memory region (FileMR) and range-based ad-
dress translation. These optimizations create an abstraction
that combines memory regions and files: a client can directly
access a file backed by NVMM file system through RDMA,
addressing its contents via file offsets. By eliminating redun-
dant translations, it minimizes the amount of translations done
at the NIC, reduces the load on the NIC’s translation cache
and increases the hit rate by 3.8x - 340x and resulting in
application performance improvement by 1.8x - 2.0x.

1 Introduction

How scalable computer systems store and access data is
changing rapidly, and these changes are in part motivated
by the blurring of lines between traditionally separate system
components. Nonvolatile main memory (NVMM) provides
byte-addressable memory that survives power outages, blur-
ring the line between memory and storage. Similarly, remote
direct memory access (RDMA) allows a client to directly ac-
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cess memory on a remote server, blurring the line between lo-
cal and remote memory. At first glance, by combining NVMM
and RDMA, we could unify storage, memory and network
to provide large, stable, byte-addressable network-attached
memory. Unfortunately, the existing systems used to man-
age these technologies are simultaneously overlapping and
incompatible.

NVMMs merge memory and storage. The technology al-
lows applications to access persistent data using load/store
instructions, avoiding the need for a block-based interface
utilized by traditional storage systems. NVMMs are managed
by an NVMM-aware file system, which mediates access to
the storage media. With an NVMM-aware file system, appli-
cations can map a file into their address space, and then access
it using loads and stores instructions, drastically reducing the
latency for access to persistent data.

RDMA merges local and remote memory. RDMA allows a
client to directly access memory on a remote server. Once the
remote server decides to allow incoming access, it registers a
portion of its address space as an RDMA memory region and
sends the client a key to access it. Using the key, the client
can enlist the server’s RDMA network interface (RNIC) to
directly read and write to the server’s memory, bypassing the
CPU. RDMA is popular as it offloads most of the networking
stack onto hardware and provides close-to-hardware abstrac-
tions, exhibiting much better latency compared to TCP/IP
protocol.

Ideally, we could combine NVMM and RDMA into a
unified network-attached persistent memory. Unfortunately,
NVM file systems and the RDMA network protocol were
not designed to work together. As a result, there are many
redundancies, particularly where the systems overlap in mem-
ory. Only RDMA provides network data transfer and only the
NVMM file system provides persistent memory metadata, but
both systems implement protection, address translation, nam-
ing, and allocation across different abstractions: for RDMA,
memory regions, and for NVMM file systems, files. Naively
using RDMA and NVMM file systems together results in a
duplication of effort and inefficient translation layers between
their abstractions. These translation layers are expensive, es-
pecially since RNICs can only store translations for limited
amount of memory while NVM capacity can be extremely
large.

In this paper, we present a new abstraction, called a file
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memory region (FileMR), that combines the best of both
RDMA and NVM file systems to provide fast, network-
attached, file-system managed, persistent memory. It accom-
plishes this goal by offloading most RDMA-required tasks re-
lated to memory management to the NVM file system through
the new memory region type; the file system effectively be-
comes RDMA’s control plane.

With the FileMR abstraction, a client establishes an RDMA
connection backed by files, instead of memory address ranges
(i.e., an RDMA memory region). RDMA reads and writes are
directed to the file through the file system, and addressed by
the file offset. The translation between file offset and physical
memory address is routed through the NVMM file system,
which stores all its files in persistent memory. Access to the
file is mediated via traditional file system protections (e.g.,
access control lists). To further optimize address translation,
we integrate a range-based translation system, which uses ad-
dress ranges (instead of pages) for translation, into the RNIC,
reducing the space needed for translation and resolving the
abstraction mismatch between RDMA and NVMM file sys-
tems.

Our FileMR design with range-based translation provides
a way to seamlessly combine RDMA and NVMM. Compared
to simply layering traditional RDMA memory regions on top
of NVMM, FileMR provides the following benefits:

¢ It minimizes the amount of translation done at the NIC,
reducing the load on the NIC’s translation cache and
improving hit rate by 3.8 x - 340x.

* It simplifies memory protection by using existing file
access control lists instead of RDMA’s ad-hoc memory
keys.

* It simplifies connection management by using persistent
files instead of ephemeral memory region IDs.

* It allows network-accessible memory to be moved or
expanded without revoking permissions or closing a con-
nection, giving the file system the ability to defragment
and append to files.

The rest of this paper is organized as follows. Section 2
describes the necessary background on RDMA and NVMM
file systems. Section 3 describes the design of the FileMR.
Section 4 describes our proposed changes to RDMA stack and
RNICs, and Section 5 introduce two case studies. Section 6
provides experimental results. Section 7 discusses the appli-
cability of the FileMR on real hardware. Section 8 describes
related work, and Section 9 concludes.

2 Background

This section introduces background on both RDMA and
NVMM and describes the motivation for introducing a new

memory abstraction for RDMA, detailing the issue of redun-
dant memory management mechanisms and the reasons exist-
ing systems cannot solve this problem.

2.1 RDMA Networking

RDMA has become a popular networking protocol, especially
for distributed applications [2,20-22,34,36,43,47,55,56,62].
RDMA exposes a machine’s memory to direct access from
the RDMA network interface (RNIC), allowing remote clients
to directly access a machine’s memory without involving the
local CPU.

The RDMA hardware supports a set of operations (called
verbs). One-sided verbs, for instance, “read” and “write”,
directly access remote memory without requiring anything of
the remote CPU, in fact, these verb bypasses the remote CPU
entirely. Two-sided verbs, in contrast, require both machines
to post matching requests, for instance, “send” and “receive”,
which transfer data between registered buffers with addresses
chosen by sender and receiver applications locally.

To establish an RDMA connection, an application registers
one or more memory regions (MRs) that grant the local RNIC
access to part of the local address space. The MR functions
as both a name and a security domain: To give a client access
to a region, the local RNIC supplies the MR’s virtual address,
size and a special 32-bit “rkey”. Rkeys are sent with any
one-sided verb and allow the receiving RNIC to verify the
client has direct access to the region. For two-sided verbs,
a send/recv operation requires both the sender and receiver
to post matching requests, each attached to some local, pre-
registered, memory region, negating the need for rkeys.

To manage outstanding requests, RDMA uses work queues
derived from the virtual interface architecture (VIA) [10]. Af-
ter establishing a connection, an application can initiate an
RDMA verb through its local RNIC by posting work queue en-
tries (WQEs). These entries are written onto a pair of queues
(a queue pair or “QP”); one queue for send/write requests and
one for read/receive requests. Once the entry is written to the
queue pair, the RNIC will execute the RDMA verb and access
the remote machine. Once the verb is completed, the RNIC
will acknowledge the verb’s success by placing a “comple-
tion” in the “completion queue” (CQ). The application can
poll for the completion from the completion queue to receive
notification that the verb completed successfully.

2.2 Nonvolatile Main Memory

Nonvolatile main memory (NVMM) is nonvolatile memory
directly accessible via a load/store interface. NVMM is com-
prised of multiple nonvolatile DIMMs that are attached to
the CPU memory bus and sit alongside traditional DRAM
DIMMs. One or multiple nonvolatile DIMMs can be com-
bined to form a single contiguous physical address space
exposed to the OS [42].
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As NVMM is a persistent media, it requires management
software to provide naming, allocation and protection, and
it is generally managed by a file system. However, unlike
traditional file systems built for slower block devices, NVMM-
aware file systems play a critical role in providing efficient
NVMM access — the DRAM-comparable latency of NVMM
means software overhead can dominate performance. As a
result, NVMM-aware file systems [7,57,59,60] avoid software
overhead along the critical path in two ways:

First, they support the direct access mmap() (DAX-mmap)
capability. DAX-mmap allows applications to map NVMM
files directly into their address spaces and to perform data
accesses via simple loads and stores. This scheme allows
applications to bypass the kernel and file system for most data
accesses, drastically improving performance for file access.

However, NVMM resides within the memory hierarchy,
which can cause complications since caches are not persistent
but can hold data that the application wants to persist. To
persist data, cached writes to NVMM must be followed by
cache-line flush or clean instructions to ensure the data is
actually written back to NVMM, and non-temporal writes can
bypass the CPU caches entirely. A store fence can enforce the
ordering of the writes and guarantee the data will survive a
power failure.

2.3 Managing RDMA and NVMM

Userspace RDMA accesses and NVMM mmapped-DAX ac-
cesses share a critical functionality: they allow direct access
to memory without involving the kernel. Broadly speaking,
we can divide both NVMM file systems and RDMA into a
data plane that accesses the memory and a control plane that
manages the memory exposed to user applications. The data
plane is effectively the same for both: it consists of direct
loads and stores to memory. The control plane, in contrast,
differs drastically between the systems.

For both RDMA and NVMM file systems, the control plane
must provide four services for memory management. First,
it must provide naming to ensure that the application can
find the appropriate region of memory to directly access. Sec-
ondly, it must provide access control, to prevent an application
from accessing data it should not. Thirdly, it must provide a
mechanism to allocate and free resources to expand or shrink
the memory available to the application. Finally, it must per-
form translation between application level names (i.e., virtual
addresses, or memory and file offsets) to physical memory
addresses. In practice, this final requirement means that both
RDMA and NVMM file systems must work closely with the
virtual memory subsystem.

Table | summarizes the control plane metadata operations
for RDMA and NVMM. These memory management func-
tionalities are attached to different abstractions in RDMA and
NVMM file systems. For RDMA we use abstractions such as
memory regions and memory windows, and for NVMM file
systems we use files.

Role | RDMA /File System |  FileMR

Naming Both (Redundant) FS Managed
Permissions Both (Redundant) FS Managed
Allocation Both (Redundant) FS Managed
Appending Not Allowed FS Managed
Remapping Not Allowed FS Managed
Defragmentation Not Allowed FS Managed
Translation Both (Incompatible) | FS Managed
Persistence FS Only FS Managed
Networking RDMA RDMA

CPU-Bypass RDMA RDMA

Table 1: Control plane roles for RDMA and NVMM. This
table shows the features provided by RDMA and NVMM vs.
FileMR.

2.3.1 Naming

Names provide a hardware-independent way to refer to phys-
ical memory locations. In RDMA applications, the virtual
address of a memory region, along with its “host” machine’s
location (e.g., IP address or GID) serves as a globally (i.e.,
across nodes) meaningful name for regions of physical mem-
ory. These names are transient, since they become invalid
when the application that created them exits, and inflexible
since they prevent an RDMA-exposed page from changing
its virtual to physical address mapping while accessible. To
share a name with a client that wishes to directly access it
via reads and writes, the host gives it the metadata of the MR.
For two-sided verbs (i.e., send/receive) naming is ad-hoc: the
receiver must use an out-of-band channel to decide where to
place the received data.

NVMM-based file systems use filenames to name regions
of physical memory on a host. Since files outlive applica-
tions, the file system manages names independent of applica-
tions and provides more sophisticated management for named
memory regions (i.e., hierarchical directories and text-based
names). To access a file, clients and applications on the host
request access from the file system.

2.3.2 Permissions

Permissions determine what processes have access to what
memory. In RDMA, the RDMA contexts are isolated and
permissions are enforced in two ways. To grant a client direct
read/write access to a memory location, the host shares a
memory region specific “rkey.” The rkey is a 32-bit key that
is attached to all one-sided verbs (such as read and write)
and is verified by the RNIC to ensure the client has access
to the addressed memory region. For every registered region,
the RNIC driver maintains the rkey, along with other RDMA
metadata that provides isolation and protection in hardware-
accessible structures in DRAM.

Permissions are established when the RDMA connection
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between nodes is created, and are granted by the application
code establishing the connection. They do not outlive the
process or survive a system restart. For two-sided verbs pro-
tection is enforced by the receiving application in an ad-hoc
manner: The receiver uses an out-of-band channel to decide
what permissions the sender has.

Access control for NVMM uses the traditional file system
design. Permissions are attached to each file and designated
for both individual users and groups. Unlike RDMA memory
regions and their rkeys, permissions are a property of the
underlying data and survive both process and system restart.

2.3.3 Allocation

RDMA verbs and NVMM files both directly access mem-
ory, so allocation and expansion of available memory is an
important metadata operation.

For NVMM file systems, the file system maintains a list
of free physical pages that can be used to create or extend
files. Creation of a file involves marshalling the appropriate
resources and linking the new pages into the existing file
hierarchy. Similarly, free pages can be linked to or detached
from existing files to grow or shrink the file. Changing the size
of DAX-mmap’d files is easy as well with calls to fallocate
and mremap.

Creating a new RDMA memory region consists of allocat-
ing the required memory resources, pinning their pages, and
generating the rkey. Note that although many RNICs are capa-
ble of handling physical addresses [32], the physical address
of a memory region is often out of the programmer’s control
(it depends, instead, on the implementation of malloc), and
the page is pinned once the region is registered, leading to a
fragmented physical address space.

In addition, changing the mapping of a memory region
is expensive. For example, to increase the memory region
size, the host server needs to deregister the memory region,
reregister a larger region, and send the changes to any inter-
ested clients. The rereg_mr verb combines deregistration and
registration but still carries significant overhead. MPI applica-
tions with public memory pool often use memory windows
to provide dynamic access control on top of a memory region.
This approach does not blend with NVMM file systems since
it still requires static mappings of the underlying memory
region.

Alternatively, programmers can add another memory region
to the connection or protection domain. However, as memory
regions require non-negligible metadata and RDMA does not
support multi-region accesses, this solution adds significant
complexity.

This fixed size limitation also prohibits common file system
operations and optimizations, such as appending to a file,
remapping file content, and defragmentation.
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Figure 1: Address translation for RDMA and NVMM.
RDMA (left) uses NIC-side address translation with pinning,
while NVMM (right) allows the file system to maintain the
layout of a file mapped to user address space.

2.3.4 Address Translation

RDMA and NVMM file system address translation mecha-
nisms ensure that their direct accesses hit the correct physical
page.

As shown in Figure 1, RDMA solves the problem of ad-
dress translation by pinning the virtual to physical address,
that is, as long as a memory region is registered, its virtual and
physical addresses cannot change. Once this mapping is fixed,
the RNIC is capable of handling memory regions registered
on virtual address ranges directly: the RNIC translates from
virtual addresses to physical addresses for incoming RDMA
verbs. To do this translation, the NIC maintains a memory
translation table (MTT) that holds parts of the system page
tables.

The MTT flattens the translation entries for the relevant
RDMA accessible pages and can be cached in the RNIC’s on-
board SRAM [54] to accelerate lookups of this mapping. The
pin-down cache is critical for getting good performance out
of RDMA — the pin-down cache is small (a few megabytes),
a miss is expensive, and due to its addressing mechanism,
most RNICs require all pages in a region be the same size. To
circumvent these limitations, researchers have done signifi-
cant work trying to make the most of the cache for addressing
large memories [14, 22, 35,36, 43,48, 56, 62]. While com-
plex solutions exist, the most common recommendation is
to reduce the number of translations needed (e.g., addressing
large contiguous memory regions with either huge pages or
physical addresses).

The NVMM file system handles address translation