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Message from the 
NSDI ’20 Program Co-Chairs 

Welcome to NSDI ’20!

NSDI is traditionally the top venue for papers on networked and distributed systems, and this year we continue that tradition 
with an excellent program featuring yet another record number of amazing papers. The research and experiences described in 
this year’s program include a wide range of topics including analytics, data center network architecture, distributed systems, 
host networking, machine learning, modern network hardware, monitoring and diagnosis, operating systems, privacy, 
security, wireless networking and deployed industrial experience.

This year, we continued the changes put into place during last year’s conference, including two deadlines and the possibility 
of a “one shot” revision process. We received 354 submissions (79 in the Spring cycle and 275 in the Fall cycle), and we 
accepted a record 65 papers, resulting in an 18.3% acceptance rate. These papers were carefully selected by a panel of 57 
experts spanning academia and industry.

The review process was double-blind. We had two rounds of reviews per cycle, providing papers that advanced to the second 
round at least five reviews. We strove to include valuable feedback in all these reviews, so we hope it benefited all authors 
who submitted their work. After writing reviews, we held online discussions to select papers to be discussed further at PC 
meetings or to be accepted without further need for discussion. We discussed 24 papers during the Spring PC meeting 
(conducted online via video conferencing software) and 90 papers during the 1.5-day Fall PC meeting held on the UC San 
Diego campus in La Jolla, Calif. 

We’d like to thank the many, many people whose work was necessary to arrange this conference. Foremost, we thank 
all the authors who chose to send their strong work to NSDI. We also thank the program committee whose diligence, 
professionalism, expertise, excitement, and courtesy made the review process go smoothly and successfully. Special thanks 
to those of them who took on extra responsibilities beyond the considerable ones PC members already have. Thank you 
to Ivan Beschastnikh and Ravi Netravali for serving as poster co-chairs. We’d like to thank Sujata Banerjee and Rebecca 
Isaacs for handling chair conflict papers. We’d like to thank Ellen Zegura, Laurant Vanbever, and Aditya Akella for selecting 
the best papers and the community award paper. We’d like to thank the members of the Test of Time Awards committee: 
Aditya Akella, Katerina Argyraki, Sujata Banerjee, Paul Barham, Miguel Castro, Nick Feamster, Jon Howell, Arvind 
Krishnamurthy, Jay Lorch, Jeff Mogul, Timothy Roscoe, Srinivasan Seshan, Alex Snoeren, and Minlan Yu. We’d like to 
thank the NSDI steering committee as well as the co-chairs of NSDI 2019, Minlan Yu and Jay Lorch.

We would like to thank Jennifer Folkestad, who organized the in-person PC meeting on UC San Diego’s campus, the PC 
dinner, and then an entirely different second PC dinner on an hour’s notice after the first restaurant caught fire moments 
before we were to arrive.

We’re so very grateful to the USENIX staff, including Casey Henderson, Ginny Staubach, Jasmine Murcia, Jessica Kim, 
Michele Nelson, and Sarah TerHune, for the extraordinary levels of support they provided.

Ranjita Bhagwan, Microsoft Research India 
George Porter, University of California, San Diego 
NSDI ’20 Program Co-Chairs
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Expanding across time to deliver bandwidth efficiency and low latency

William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren, and George Porter
University of California San Diego

Abstract
Datacenters need networks that support both low-latency

and high-bandwidth packet delivery to meet the stringent
requirements of modern applications. We present Opera, a
dynamic network that delivers latency-sensitive traffic quickly
by relying on multi-hop forwarding in the same way as
expander-graph-based approaches, but provides near-optimal
bandwidth for bulk flows through direct forwarding over
time-varying source-to-destination circuits. Unlike prior ap-
proaches, Opera requires no separate electrical network and
no active circuit scheduling. The key to Opera’s design is
the rapid and deterministic reconfiguration of the network,
piece-by-piece, such that at any moment in time the network
implements an expander graph, yet, integrated across time,
the network provides bandwidth-efficient single-hop paths be-
tween all racks. We show that Opera supports low-latency traf-
fic with flow completion times comparable to cost-equivalent
static topologies, while delivering up to 4× the bandwidth
for all-to-all traffic and supporting up to 60% higher load for
published datacenter workloads.

1 Introduction
Datacenter networks are tasked with providing connectiv-

ity between an ever-increasing number of end hosts whose
link rates improve by orders of magnitude every few years.
Preserving the “big-switch” illusion of full bisection band-
width [2, 21] by augmenting the internal switching capacity of
the network accordingly is increasingly cost prohibitive and
likely soon infeasible [35]. Practitioners have long favored
over-subscribed networks that provide all-to-all connectiv-
ity, but at only a fraction of host-link speeds [21, 41]. Such
networks realize cost savings by dramatically reducing the
amount of in-network capacity (in terms of both the number
and rate of links and switches internal to the network fabric),
providing full-speed connectivity between only a subset of
hosts, and more limited capacity between others.

The catch, of course, is that any under-provisioned topology
inherently biases the network toward certain workloads. Tradi-
tional over-subscribed Clos topologies only support rack-local
traffic at full line rate; researchers have proposed alternate
ways of deploying a limited amount of switching capacity—
either through disparate link and switch technologies [31,
38, 40, 44], non-hierarchical topologies [27, 29, 42, 43], or

both [20, 34]—that can deliver higher performance for pub-
lished workloads [4, 39] at similar costs. Because workloads
can be dynamic, many of these proposals implement reconfig-
urable networks that allocate link capacity in a time-varying
fashion, either on a fixed schedule [34, 40] or in response to
recent demand [20, 31, 44]. Unfortunately, practical recon-
figurable technologies require non-trivial delay to retarget
capacity, limiting their utility for workloads with stringent
latency requirements.

Under-provisioned networks often incorporate some flavor
of indirect traffic routing to address inopportune traffic de-
mands; because application workloads do not always align
well with the structure of the network, some traffic may transit
longer, less-efficient paths. The benefits of indirection come
at significant cost, however: traversing more than a single hop
through the network imposes a “bandwidth tax.” Said another
way, x bytes sent over a direct link between two end points
consume only x bytes of network capacity. If that same traffic
is instead sent over k links, perhaps indirecting through mul-
tiple switches, it consumes (k · x) bytes of network capacity,
where (k−1)x corresponds to the bandwidth tax. Hence, the
effective carrying capacity of a network, i.e., net the band-
width tax, can be significantly less than its raw switching
capacity; aggregate tax rates of 200–500% are common in
existing proposals.

Reconfigurable networks seek to reduce the overall band-
width tax rate of a given workload by provisioning direct
links between end points with the highest demands, elimi-
nating the tax on the largest, “bulk” flows whose completion
time is gated by available network capacity, rather than propa-
gation delay. The time required to identify such flows [31, 44]
and reconfigure the network [20, 34], however, is generally
orders-of-magnitude larger than the one-way delay of even an
indirect route through the network, which is the main driver of
completion times for small flows. Hence, dynamic networks
face a fundamental trade-off between amortizing the overhead
of reconfiguration against the inefficiency of sub-optimal con-
figurations. The upshot is existing proposals are either unsuit-
able for latency sensitive traffic (which is frequently shunted
to an entirely separate network in so-called hybrid architec-
tures [31, 34, 38]), or pay substantial bandwidth tax to provide
low-latency connectivity, especially when faced with dynamic
or unpredictable workloads.
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Figure 1: Published empirical flow-size distributions.

Opera is a network architecture that minimizes the band-
width tax paid by bulk traffic—which makes up the vast major-
ity of the bytes in today’s networks [4, 39]—while ensuring
low-latency delivery for the (small fraction of) traffic that
cannot tolerate added delays. Opera implements a dynamic,
circuit-switched topology that constantly reconfigures a small
number of each top-of-rack (ToR) switch’s uplinks, moving
through a series of time-varying expander graphs (without re-
quiring runtime circuit selection algorithms or network-wide
traffic demand collection). Opera’s ever-changing topology
ensures that every pair of end points is periodically allocated
a direct link, delivering bandwidth-efficient connectivity for
bulk traffic, while indirecting latency-sensitive traffic over
the same, low-diameter network to provide near-optimal flow
completion times.

By strategically pre-configuring the assignment of rack-
to-rack circuits at each instant in time such that those cir-
cuits form an expander graph, Opera can always forward
low-latency traffic over an expander without waiting for any
circuits to be (re-)configured. Thus, on a per-packet basis,
Opera can choose to either (1) immediately send a packet
over whatever static expander is currently instantiated, in-
curring a modest tax on this small fraction of traffic, or (2)
buffer the packet and wait until a direct link is established
to the ultimate destination, eliminating the bandwidth tax on
the vast majority of bytes. Our simulation results show this
trade-off results in up to a 4× increase in throughput for shuf-
fle workloads compared to cost-equivalent static topologies.
Moreover, for published, skewed datacenter workloads, Opera
delivers an effective 8.4% bandwidth tax rate, resulting in up
to a 60% increase in throughput while maintaining equivalent
flow completion times across all flow sizes. We further val-
idate the stability of this result across a range of workloads,
network scales, and cost factors.

2 Network efficiency
The reality of datacenter networks is one of non-stop

change: developers are continuously deploying new appli-

u = (k/2) – 1 uplinks 
to core circuit switches

d = k/2 downlinks

Opera (Reconfiguring)

ToR switch

u ≤ k/2 uplinks to
Agg/Pod pkt. switches

d ≥ k/2 downlinks

Folded-Clos

ToR switch

u ≥ k/2 uplinks to 
other ToRs

d ≤ k/2 downlinks

Expander

ToR switch

Figure 2: Oversubscribed folded-Clos networks allocate
fewer uplinks than downlinks, and static expander-graph-
based networks typically allocate more upward ports than
downward ports. In Opera, the ToR switch is provisioned 1:1.
When a circuit switch is reconfiguring, the associated ToR
port cannot carry traffic through that uplink.

cations and updating existing applications, and user behavior
is in a constant state of flux. As a result, operators cannot
risk designing networks that support only a narrow range of
workloads, and instead must choose a design that supports a
wide range of workloads, applications, and user behavior.

2.1 Workload properties
One saving grace of the need to service a wide range

of workloads is the likelihood that there will, in fact, be
a spectrum of needs in practice. A concrete example is
the distribution of flow sizes, which is known to be highly
skewed in today’s networks: Figure 1 shows data published
by Microsoft [4, 21] (Websearch and Datamining) and Face-
book [39] (Hadoop) depicting the distributions of traffic ac-
cording to individual flows (top) and total number of transmit-
ted bytes (bottom) that we consider in this paper. The vast ma-
jority of bytes are in bulk flows, not the short, latency-sensitive
ones, suggesting that to make the most out of available capac-
ity, an ideal network must seek to minimize the bandwidth
tax paid on bulk traffic while not substantially impacting the
propagation delay experienced by short flows.

While there are myriad ways to measure a network’s suit-
ability for a given workload, flow completion time (FCT)
is frequently offered as a useful figure of merit [14] due to
its applicability across a wide range of workloads. The flow
completion time of small flows is constrained by the underly-
ing network’s propagation delay. Thus, lowering the network
diameter and/or reducing queuing reduces the FCT for this
type of traffic. On the other hand, the FCT of bulk traffic is
governed by the available capacity along a flow’s path.

Because the FCT of short flows is dictated by propaga-
tion delay, such traffic is commonly referred to as “latency-
sensitive” or, equivalently, “low-latency”. (While applications
may be equally sensitive to the FCT of larger flows, their FCT
is dominated by available bandwidth.) In today’s networks,
flows are classified into these categories either explicitly (e.g.,
by application type, port number, or sender-based rules), or
implicitly (e.g., by remaining flow size for shortest-remaining-
time-first (SRTF) scheduling). Opera is agnostic to the manner
in which traffic is classified; for our purposes latency-sensitive
and short flows are synonymous. Because latency-sensitive
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traffic’s impact on network capacity is negligible in today’s
workloads, it suffices to use priority queuing to ensure short
flows receive unimpeded service while allowing bulk traffic
to consume any remaining capacity [7, 22]. The challenge is
to simultaneously provide high-capacity paths while main-
taining a short path length.

2.2 The “big switch” abstraction
If cost (and practicality) were no object, a perfect network

would consist of one large, non-blocking switch that connects
all the end points. It is precisely such a “big switch” illu-
sion that scale-out packet-switched network fabrics based on
folded-Clos topologies [2, 21, 37] were designed to provide.
These topologies rely on multiple stages of packet switches in-
terconnected with shuffle networks. The abundance of packet
switches at each stage and surfeit of links between them en-
sures that there is sufficient capacity to support any mixture of
(admissible) inter-server communication. Proposals such as
Hedera [3], pHost [19], HULL [5], NDP [24], PIAS [7], and
Homa [36] introduce flow scheduling techniques that assign
traffic to well-chosen paths to maximize throughput while
minimizing in-network queuing when servicing a mixture of
bulk and low-latency traffic.

2.3 Reduced capacity networks
While full-bandwidth “big switch” network designs are

ideal in the sense that they provide operators with the max-
imum flexibility to deploy services, schedule jobs, and dis-
aggregate storage and compute, they are impractical to con-
struct at scale. Indeed, published reports confirm the largest
datacenter networks in existence, while based upon folded-
Clos topologies, are not fully provisioned [15, 41]. Moreover,
some have observed that packet-switching technology may
not be able to keep up as link rates surpass 400 Gb/s, so it is
unclear how much longer the “big switch” abstraction will
even be feasible [35]. Hence, researchers and practitioners
alike have considered numerous ways to under-provision or
“over-subscribe” network topologies.

One way to view over-subscription in a rack-based data-
center is to consider how each individual ToR switch is provi-
sioned. Consider a scenario in which servers in a cluster or
datacenter are organized into racks, each with a k-radix ToR
packet switch that connects it to the rest of the network. We
say that a ToR with d connected servers has d “downward”
facing ports. A ToR with u ports connected to the rest of the
network has u “upward” facing ports, or uplinks. (In a fully
populated ToR, d +u = k.) In this context, we now overview
existing proposals for interconnecting such racks.

Over-subscribed Fat Trees: As shown in the left-most por-
tion of Figure 2, designers can build M:1 over-subscribed
folded-Clos networks in which the network can deliver only
(1/M = u/d) the bandwidth of a fully-provisioned design.
Common values of (d : u) are between 3:1 and 5:1 [41]. The
cost and bandwidth delivered in folded-Clos networks scale

almost linearly according to the over-subscription factor, and
so decreasing overall cost necessitates decreasing the maxi-
mum network throughput—and vice versa. Routing remains
direct, however, so over-subscription does not introduce a
bandwidth tax; rather, it severely reduces the available net-
work capacity between end points in different racks. As a
result, application frameworks such as MapReduce [13] and
Hadoop [18] schedule jobs with locality in mind in an effort
to keep traffic contained within a rack.

Expander topologies: To address the limited cross-
network bandwidth available in over-subscribed Fat Trees,
researchers have proposed alternative reduced-capacity net-
work topologies based on expander graphs. In these proposals,
the u uplinks from each ToR are directly connected to other
ToRs, either randomly [42] or deterministically [27, 29, 43],
reducing the number of switches and inter-switch links in-
ternal to the network itself. Expander-graph-based network
topologies are sparse graphs with the property that there are
many potential short paths from a given source to a particular
destination.

Because there are no in-network switches, packets must
“hop” between ToRs a number of times to reach their ultimate
destination, resulting in a bandwidth tax. An expander graph
with an average ToR-to-ToR hop count of LAvg pays an overall
bandwidth tax rate of (LAvg −1)× in expectation because in-
dividual packets must indirect across a number of in-network
links. The average path lengths for large networks can be in
the range of 4–5 hops, resulting in a bandwidth tax rate of
300–400%. Moreover, a recent proposal [29] employs Valiant
load balancing (VLB)—which imposes an additional level
of explicit indirection—to address skewed traffic demands,
doubling the bandwidth tax in some circumstances. One way
that expanders counter-act their high bandwidth tax rate is
by over-provisioning: ToRs in expander topologies typically
have more upward-facing ports than down (u> d, as shown in
the center of Figure 2)—and, hence, far more upward-facing
ports than over-subscribed Fat Trees—which provides more
in-network capacity. Said another way, the impact of the band-
width tax is reduced by a factor of u/d.

Reconfigurable topologies: In an effort to reduce the band-
width tax, other proposals rely on some form of reconfig-
urable link technology, including RF [28, 45], free-space op-
tical [20, 23], and circuit switching [16, 31, 38, 40, 44]. Most
reconfigurable topologies dynamically establish end-to-end
paths within the network core in response to traffic demand,
although RotorNet [34] employs a fixed, deterministic sched-
ule. In either case, these networks establish and tear down
physical-layer links over time. When the topology can be
matched to the demand—and setting aside latency concerns—
traffic can be delivered from source to destination in a single
hop, avoiding any bandwidth tax. In some cases, similar to
expander-based topologies, they employ 2-hop VLB [34, 40],
resulting in a 100% bandwidth tax rate.
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A fundamental limitation of any reconfigurable topology,
however, is that during the time a link/beam/circuit (for sim-
plicity we will use the latter term in the remainder of the paper)
is being provisioned, it cannot convey data. Moreover, most
proposals do not provision links between all sources and desti-
nations at all times, meaning that traffic may incur significant
delay as it waits for the appropriate circuit to be provisioned.
For existing proposals, this end-to-end delay is on the order
of 10–100s of milliseconds. Hence, previous proposals for
reconfigurable network topologies rely on a distinct, generally
packet-switched, network to service latency-sensitive traffic.
The requirement for a separate network built using a different
technology is a significant practical limitation and source of
cost and power consumption.

3 Design
We start with an overview of our design before working

through an example. We then proceed to describe how we
construct the topology of a given network, how routes are
chosen, how the network moves through its fixed set of con-
figurations, and address practical considerations like cabling
complexity, switching speeds, and fault tolerance.

3.1 Overview
Opera is structured as a two-tier leaf-spine topology, with

packet-switched ToRs interconnected by reconfigurable cir-
cuit switches as shown in Figure 5. Each of a ToR’s u uplinks
are connected to one of u circuit switches, and each circuit
switch has a number of ports equal to the number of ToRs in
the network. Opera’s design is based around two fundamental
starting blocks that follow directly from the requirements for
small network diameter and low bandwidth tax.

Expansion for short paths: Because the FCT of short,
latency-sensitive flows is gated by end-to-end delay, we seek
a topology with the lowest possible expected path length.
Expander-based topologies are known to be ideal [27]. Ex-
panders also have good fault-tolerance properties; if switches
or links fail, there are likely to be alternative paths that remain.
Thus, to efficiently support low-latency traffic, we require a
topology with good expansion properties at all times.

Reconfigurability to avoid the bandwidth tax: A fully-
connected graph (i.e. full mesh) could avoid a bandwidth
tax entirely, but is infeasible to construct at scale. Rather
than providing a full mesh in space, reconfigurable circuit
switches offer the ability to establish, over time, direct one-
hop paths between every rack pair using a relatively small
number of links. Because bulk flows can generally amortize
modest reconfiguration overheads if they result in increased
throughput, we incorporate reconfigurability into our design
to minimize the bandwidth tax on bulk traffic.

Opera combines the elements of expansion and reconfig-
urability to efficiently (and simultaneously) serve both low-
latency and bulk traffic with low FCTs. Similar to Rotor-
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Figure 3: Reconfiguring all switches in unison (a) leads to
periodic disruptions; staggered reconfigurations (b) ensure
some paths are always available.

Net [34], Opera incorporates reconfigurable circuit switches
that cyclically set up and tear down direct connections be-
tween ToRs, such that after a “cycle time” of connections,
every ToR has been connected to every other ToR. We lever-
age ToR-uplink parallelism to stagger the reconfigurations of
multiple circuit switches, allowing “always-on” (albeit ever-
changing) multi-hop connectivity between all ToR pairs.

Critically, the combination of circuits at any time forms an
expander graph. Thus, during a single cycle, every packet has
a choice between waiting for a bandwidth-tax-avoiding direct
connection, or being immediately sent over a multi-hop path
through the time-varying expander. The end result is a single
fabric that supports bulk and low-latency traffic as opposed
to two separate networks used in hybrid approaches. As we
will show, Opera does not require any runtime selection of
circuits or system-wide collection of traffic demands, vastly
simplifying its control plane relative to approaches that re-
quire active circuit scheduling, such as ProjecToR [20] and
Mordia [38]. We leave to future work the possibility (and com-
plexity) of adjusting Opera’s matchings over long timescales
to, for example, adapt to diurnal traffic patterns.

3.1.1 Eliminating reconfiguration disruptions
Circuit switches impose a technology-dependent reconfigu-

ration delay, necessitating that flows be re-routed before recon-
figuration. Even in a network with multiple circuit switches,
if all switches reconfigure simultaneously (Figure 3a), the
global disruption in connectivity requires routes to recon-
verge. For today’s switching technologies, this would lead to
traffic delays that could severely impact the FCTs of short,
latency-sensitive flows. To avoid this scenario and allow for
low-latency packet delivery, Opera offsets the reconfigura-
tions of circuit switches. For example, in the case of small
topologies with few switches, at most one switch may be re-
configuring at a time (Figure 3b), allowing flows traversing
a circuit with an impending reconfiguration to be migrated
to other circuits that will remain active during that time pe-
riod (for large-scale networks with many circuit switches, it
is advantageous to reconfigure more than one switch at a time
as described in Appendix C). As a result, while Opera is in
near-constant flux, changes are incremental and connectivity
is continuous across time.
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Figure 4: CDF of path lengths for equal-cost 648-host Opera,
650-host u = 7 expander, and 648-host 3:1 folded-Clos net-
works. (CDFs staggered slightly for clarity.)

3.1.2 Ensuring good expansion
While offsetting reconfigurations guarantees continuous

connectivity, it does not, by itself, guarantee complete connec-
tivity. Opera must simultaneously ensure that (1) multi-hop
paths exist between all racks at every point in time to support
low-latency traffic, and (2) direct paths are provisioned be-
tween every rack-pair over a fixed period of time to support
bulk traffic with low bandwidth tax. We guarantee both by
implementing a (time-varying) expander graph across the set
of circuit switches.

In Opera, each of a ToR’s u uplinks is connected to a (rotor)
circuit switch [33] that, at any point in time, implements a
(pre-determined) random permutation between input and out-
put ports (i.e., a “matching”). The inter-ToR network topology
is then the union of u random matchings, which, for u ≥ 3,
results in an expander graph with high probability [6]. More-
over, even if a switch is reconfiguring, there are still u− 1
active matchings, meaning that if u ≥ 4, the network will still
be an expander with high probability, no matter which switch
is reconfiguring. In Opera, we let u = k/2 where k is O(10)
to O(100) ports for today’s packet switches (depending on
the configured per-port bandwidth).

Figure 4 shows the distribution of path lengths in one ex-
ample 648-host network considered in our evaluation, where
u = 6. Opera’s path lengths are almost always substantially
shorter than those in a Fat Tree that connects the same num-
ber of hosts, and only marginally longer than an expander
with u = 7 which we argue later has similar cost, but per-
forms poorly for certain workloads. Clearly, ensuring good
expansion alone is not an issue with modest switch radices.
However, Opera must also directly connect each rack pair over
time. We achieve this by having each switch cycle through
a set of matchings; we minimize the total number of match-
ings (and thus the time required to cycle through them) by
constructing a disjoint set.

3.2 Example
Figure 5 depicts a small-scale Opera network. Each of the

eight ToRs has four uplinks to four different circuit switches
(with one potentially down due to reconfiguration at any par-
ticular moment). By forwarding traffic through those ToRs,

they can reach any ToRs to which they, in turn, are connected.
Each circuit switch has two matchings, labeled A and B (note
that all matchings are disjoint from one another). In this ex-
ample topology, any ToR-pair can communicate by utilizing
any set of three matchings, meaning complete connectivity
is maintained regardless of which matchings happen to be
implemented by the switches at a given time. Figure 5 depicts
two network-wide configurations. In Figure 5a switches 2–4
are implementing matching A, and in Figure 5b, switches 2–4
implement matching B. In both cases switch 1 is unavailable
due to reconfiguration.

In this example, racks 1 and 8 are directly connected by
the configuration shown in Figure 5b, and so the lowest
bandwidth-tax way to send bulk data from 1 to 8 would be to
wait until matching B is instantiated in switch 2, and then to
send the data through that circuit; such traffic would arrive at
ToR 8 in a single hop. On the other hand, low-latency traffic
from ToR 1 to ToR 8 can be sent immediately, e.g. during the
configuration shown in Figure 5a, and simply take a longer
path to get to ToR 8. The traffic would hop from ToR 1 to
ToR 6 (via switch 4), then to ToR 8 (via switch 2), and incur a
100% bandwidth tax. Although not highlighted in the figure,
similar alternatives exist for all rack pairs.

3.3 Topology generation
The algorithm to generate an N-rack Opera topology is as

follows. First, we randomly factor a complete graph (i.e. N ×
N all-ones matrix) into N disjoint (and symmetric) matchings.
Because this factorization can be computationally expensive
for large networks, we employ graph lifting to generate large
factorizations from smaller ones. Next, we randomly assign
the N matchings to u circuit switches, so that each switch has
N/u matchings assigned to it. Finally, we randomly choose
the order in which each switch cycles through its matchings.
These choices are fixed at design time, before the network is
put into operation; there is no topology computation during
network operation.

Because our construction approach is random, it is possible
(although unlikely) that a specific Opera topology realization
will not have good expander properties at all points across
time. For example, the combination of matchings in a given
set of u−1 switches at a particular time may not constitute
an expander. In this case, it would be trivial to generate and
test additional realizations at design time until a solution
with good properties is found. This was not necessary in
our experience, as the first iteration of the algorithm always
produced a topology with near-optimal properties. We discuss
the properties of these graphs in detail in Appendix E.

3.4 Forwarding
We are now left to decide how to best serve a given flow

or packet: (1) send it immediately over multi-hop expander
paths and pay the bandwidth tax (we refer to these as “indi-
rect” paths), or (2) delay transmission and send it over one-hop
paths to avoid the bandwidth tax (we refer to these as “di-
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Figure 5: An Opera topology with eight ToR switches and four rotor circuit switches (from RotorNet [34]). Two different paths
from rack 1 to rack 8 are highlighted: (a) a two-hop path in red, and (b) a one-hop path in blue. Each direct inter-rack connection
is implemented only once per configuration, while multi-hop paths are available between each rack-pair at all times.

rect” paths). For skewed traffic patterns that, by definition,
leave spare capacity in the network, two-hop paths based on
Valiant load balancing can be used to carry bulk traffic in
Opera. Our baseline approach is to make the decision based
on flow size. Since the delay in waiting for a direct path can
be an entire cycle time, we only let flows that are long enough
to amortize that delay use direct paths, and place all other
traffic on indirect paths. However, we can do even better if
we know something about application behavior. Consider an
all-to-all shuffle operation, where a large number of hosts
simultaneously need to exchange a small amount of data with
one another. Although each flow is small, there will be signif-
icant contention, extending the flow completion time of these
flows. Minimizing bandwidth tax is critical in these situations.
With application-based tagging, Opera can route such traffic
over direct paths.

3.5 Synchronization
Opera employs reconfigurable circuit switches, and so its

design requires a certain level of synchronization within the
system to operate correctly. In particular, there are three syn-
chronization requirements that must be met: (1) ToR switches
must know when core circuit switches are reconfiguring, (2)
ToR switches must update their forwarding tables in sync with
the changing core circuits, and (3) end hosts must send bulk
traffic to their local ToR only during the timeslots when the
ToR is directly connected to the destination (to prevent exces-
sive queueing in the ToR). In the first case, since each ToR’s
uplink is connected directly to one of the circuit switches, the
ToR can monitor the signal strength of the transceiver attached
to that link to re-synchronize with the circuit switch. Alter-
natively, the ToR could rely on IEEE 1588 (PTP), which can
synchronize switches to within ±1 µs [1]. For low-latency
traffic, end hosts simply transmit packets immediately, with-
out any coordination or synchronization. For bulk traffic, end
hosts transmit when polled by their attached ToR. To evaluate
the practicality of this synchronization approach, we built a
small-scale prototype based on a programmable P4 switch,
described in Section 6.

Opera can tolerate arbitrary bounds on (de-)synch-
ronization by introducing “guard bands” around each con-
figuration, in which no data is sent to ensure the network

is configured as expected when transmissions do occur. To
analyze the impact of guard bands, we hold the circuit tim-
ings constant and reduced the effective time of the slot during
which data can be transmitted. Each µs of guard time con-
tributes a 1% relative reduction in low-latency capacity and a
0.2% reduction for bulk traffic. In practice, if any component
becomes de-synchronized beyond the guard-band tolerance,
it can simply be declared failed (see Section 3.6.2).

3.6 Practical considerations
While Opera’s design draws its power from graph-theoretic

underpinnings, it is also practical to deploy. Here, we consider
two real-world constraints on networks.

3.6.1 Cabling and switch complexity
Today’s datacenter networks are based on folded-Clos

topologies which use perfect-shuffle cabling patterns between
tiers of switches. While proposals for static expander graphs
alter that wiring pattern [42] leading to concerns about ca-
bling complexity, Opera does not. In Opera, the intercon-
nection complexity is contained within the circuit switches
themselves, while the inter-switch cabling remains the famil-
iar perfect shuffle. In principle, Opera can be implemented
with a variety of electronic or optical circuit switch technolo-
gies. We focus on optical switching for our analysis due to its
cost and data-rate transparency benefits. Further, because each
circuit switch in Opera must only implement N/u matchings
(rather than O(N!)), Opera can make use of optical switches
with limited configurability such as those proposed in Rotor-
Net [34], which have been demonstrated to scale better than
optical crossbar switches [17, 33].

3.6.2 Fault tolerance
Opera detects, shares, and recovers from link, ToR, and

circuit switch failures using common routing protocol prac-
tices. We take advantage of Opera’s cyclic connectivity to
detect and communicate failures: each time a new circuit is
configured, the ToR CPUs on each end of the link exchange a
short sequence of “hello” messages (which contain informa-
tion of new failures, if applicable). If no hello messages are
received within a configurable amount of time, the ToR marks
the link in question as bad. Because all ToR-pair connections
are established every cycle, any ToR that remains connected
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to the network will learn of any failure event within two cy-
cles (<10ms). Upon receiving information of a new failure, a
ToR recomputes and updates its routing tables to route around
failed components.

4 Implementation
Here, we describe the implementation details of Opera. To

ground our discussion, we refer to an example 108-rack, 648-
host, k = 12 topology (we evaluate this topology along with
a larger one in Section 5).

4.1 Defining bulk and low-latency traffic
In Opera, traffic is defined as low-latency if it cannot wait

until a direct bandwidth-efficient path becomes available.
Thus the division between low-latency and bulk traffic de-
pends on the rate at which Opera’s circuit switches cycle
through direct matchings. The faster Opera steps through
these matchings, the lower the overhead for sending traffic on
direct paths, and thus the larger the fraction of traffic that can
utilize these paths. Two factors impact cycle speed: circuit
amortization and end-to-end delay.

Circuit amortization: The rate at which a circuit switch
can change matchings is technology dependent. State-of-the-
art optical switches with the large port counts needed for
practical datacenter deployment have reconfiguration delays
on the order of 10 µs [20, 34, 38]. A 90% amortization of this
delay would limit circuit reconfigurations to every 100 µs.
In Opera, each switch cycles through N/u matchings, which
could range from 10 matchings for small networks (e.g. N =
320 racks and u = 32 uplinks) to 32 matchings for larger
networks (e.g. N = 4096 racks and u = 128 uplinks). This
means any flow than can amortize a 1–3 ms increase in its FCT
could take the bandwidth-efficient direct paths (and shorter
flows would take indirect paths).

End-to-end delay: Perhaps surprisingly, a second timing
constraint, end-to-end delay, has a larger impact on cycle time.
In particular, consider a low-latency packet that is emitted
from a host NIC. At the first ToR, the packet is routed toward
its destination, and in general, at each hop along the way,

each ToR routes the packet along an expander-graph path. If,
during the packet’s journey, the circuit topology changes, it
is possible the packet could be caught in a loop or redirected
along a sub-optimal path. Dropping the packet immediately
(and expecting the sender to resend it) would significantly
delay the flow completion time of that flow.

Our approach, depicted in Figure 6, to avoid the problems
described above, requires that subsequent circuit reconfigu-
rations be spaced by at least the sum of the end-to-end delay
under worst-case queuing, ε, and the reconfiguration delay, r.
We refer to this time period ε+r as a “topology slice”. Any
packets sent during a slice are not routed through the circuit
with an impending reconfiguration during that slice. This way,
packets always have at least ε time to make it through the
network before a switch reconfigures.

The parameter ε depends on the worst-case path length (in
hops), the queue depth, the link rate, and propagation delay.
Path length is a function of the expander, while the data rate
and propagation delay are fixed; the key driver of ε is the
queue depth. As explained in the following section, we choose
a shallow queue depth of 24 KB (8 1500-byte full packets +
187 64-byte headers). When combined with a worst-case path
length of 5 ToR-to-ToR hops (Figure 4), 500-ns propagation
delay per hop (100 meters of fiber), and 10-Gb/s link speed,
we set ε to 90 µs. In our example 108-rack network, there are
6 circuit switches, meaning the inter-reconfiguration period
of a single switch is 6ε, yielding a duty cycle of 98%. Further,
our example network has N/u = 108/6 = 18 matchings per
switch, yielding a cycle time of N × ε = 10.8 ms. We use this
cycle time of 10.8 ms in our simulations in Section 5. For
these time constants, flows ≥15 MB will have an FCT well
within a factor of 2 of their ideal (link-rate-limited) FCT. As
we will show in Section 5, depending on traffic conditions,
shorter flows may benefit from direct paths as well.

4.2 Transport protocols
Opera requires transport protocols that can (1) immediately

send low-latency traffic into the network, while (2) delaying
bulk traffic until the appropriate time. To avoid head-of-line
blocking, NICs and ToRs perform priority queuing. Our de-
sign replaces the typical TCP stack with the protocols below,
but keeps the familiar sockets application interface.

4.2.1 Low-latency transport
As discussed in the previous section, minimizing the cy-

cle time is predicated on minimizing the queue depth for
low-latency packets at ToRs. The recently proposed NDP
protocol [24] is a promising choice because it achieves high
throughput with very shallow queues. We find that 12-KB
queues work well for Opera (each port has an additional
equal-sized header queue). NDP also has other beneficial
characteristics for Opera, such as zero-RTT convergence and
no packet metadata loss to eliminate RTOs. Despite being de-
signed for fully-provisioned folded Clos networks, we find in
simulation that NDP works well with minimal modification in
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Opera, despite Opera’s continuously-varying topology. Other
transports, like the recently proposed Homa protocol [36],
may also be a good fit for low-latency traffic in Opera, but we
leave this to future work.
4.2.2 Bulk transport

Opera’s bulk transport protocol is relatively simple. We
draw heavily from the RotorLB protocol proposed in Rotor-
Net [34], which buffers traffic at end hosts until direct con-
nections to the destination are available. When bulk traffic is
heavily skewed, and there is necessarily spare capacity else-
where in the network, RotorLB automatically transitions to
using two-hop routing (i.e. Valiant load balancing) to improve
throughput. Unlike low-latency traffic, which can be sent at
any time, bulk traffic admission is coordinated with the state
of the circuit switches, as described in Section 3.5. In addition
to extending RotorLB to work with offset reconfigurations,
we also implemented a NACK mechanism to handle cases
where large bursts of priority-queued low-latency traffic can
cause bulk traffic queued at the ToR to be delayed beyond the
transmission window and dropped at the ToR. Retransmitting
a small number of packets does not significantly affect the
FCT of bulk traffic. Unlike TCP, RotorLB does not rely on
retransmission timeouts, which could otherwise cause band-
width throttling for bulk traffic.

4.3 Packet forwarding
Opera relies on ToR switches to route packets along di-

rect or multi-hop paths depending on the requested network
service model. We implement this routing functionality us-
ing the P4 programming language. Each ToR switch has a
built-in register that stores the current network configuration,
updated either in-band or via PTP. When a packet arrives at
the first ToR switch, the packet’s metadata is updated with the
value of the configuration register. What happens next, and at
subsequent ToR switches, depends on the value of the DSCP
field. If that field indicates a low-latency packet, the switch
consults a low-latency table to determine the next hop along
the expander path, and then forwards the packet out that port.
If the field indicates bulk traffic, the switch consults a bulk
traffic table which indicates which circuit switch—if any—
provides a direct connection, and the packet is forwarded to
that port. We measure the amount of in-switch memory re-
quired to implement this P4 program for various datacenter
sizes in Section 6.2.

5 Evaluation
We evaluate Opera in simulation. Initially, we focus on

a concrete 648-host network, comparing to cost-equivalent
folded-Clos, static expander, non-hybrid RotorNet, and (non-
cost-equivalent) hybrid RotorNet networks. We then validate
against a range of network sizes, skewed workloads, and un-
derlying cost assumptions. We use the htsim packet simula-
tor [26], which was previously used to evaluate the NDP proto-
col [24], and extend it to model static expander networks and

dynamic networks. We ported our RotorNet simulator [34] to
htsim, first validating its performance against prior results.
We also modify NDP to handle <1500 byte packets, which is
necessary for some workloads considered. Both the folded-
Clos and static expander use NDP as the transport protocol.
Opera and RotorNet use NDP to transport low-latency traffic
and RotorLB for bulk traffic. Because Opera explicitly uses
priority queuing, we simulate the static networks with ide-
alized priority queuing where appropriate to maintain a fair
comparison. Following prior work [20, 29], we set the link
bandwidth to 10 Gb/s. We use a 1500-byte MTU and set the
propagation delay to 500 ns between ToRs (equivalent to 100
meters of fiber).

5.1 Real-world traffic
We start by considering Opera’s target scenario, a workload

with an inherent mix of bulk and low-latency traffic. Here we
consider the Datamining workload from Microsoft [21], and
use a Poisson flow-arrival process to generate flows. We vary
the Poisson rate to adjust the load on the network, defining
load relative to the aggregate bandwidth of all host links (i.e.,
100% load means all hosts are driving their edge links at
full capacity, an inadmissible load for any over-subscribed
network). As shown in the top portion of Figure 1, flows in
this workload range in size from 100 bytes to 1 GB. We use
Opera’s default configuration to decide how to route traffic:
flows <15 MB are treated as low-latency and are routed over
indirect paths, while flows ≥15 MB are treated as bulk and
are routed over direct paths.

Figure 7 shows the performance of Opera as well as cost-
comparable 3:1 folded-Clos and u = 7 static expander net-
works for various offered loads. We also compared to a hy-
brid RotorNet which faces one of the six ToR uplinks to a
multi-stage packet switched network to accommodate low-
latency traffic (for 1.33× the cost), and a cost-equivalent non-
hybrid RotorNet with no packet switching above the ToR.
Appendix B discusses the tradeoffs for a hybrid RotorNet
in more detail. We report the 99th percentile FCT except in
the case of 1% load, where the variance in the tail obscures
the trend and so report the average instead. Note that Opera
priority queues all low-latency flows, while by default the
static networks do not. For fairness, we also present the ex-
pander and folded Clos with “ideal” priority queuing—that is,
removing all flows ≥15 MB. For reference, we also plot the
minimum achievable latency in each network, derived from
the end-to-end delay and link capacity.

The static networks start to saturate past 25% load: folded
Clos have limited network capacity, and expanders have high
bandwidth tax. Opera, on the other hand, is able to ser-
vice 40% load despite having lower innate capacity than the
cost-comparable expander. Opera offloads bulk traffic onto
bandwidth-efficient paths, and only pays bandwidth tax on the
small fraction (4%) of low-latency traffic that transits indirect
paths, yielding an effective aggregate bandwidth tax of 8.4%
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Figure 7: FCTs for the Datamining workload. All networks are cost comparable except hybrid RotorNet, which is 1.33× more
expensive. In (a) and (b), dashed lines are without priority queuing, and solid lines are with ideal priority queuing.

0 50 100 150 200 250
Time (ms)

0

0.25

0.5

0.75

1

Th
ro

ug
hp

ut

Opera
u = 7 exp.
3:1 F.C.

Figure 8: Network throughput over time for a 100-KB all-
to-all Shuffle workload. Opera carries all traffic over direct
paths, greatly increasing throughput. (The small “step” down
in Opera’s throughput around 50 ms is due to some flows
taking one additional cycle to finish.)

for this workload. Hybrid RotorNet, even with 1/6th of its core
capacity packet-switched (for 33% higher cost than the other
networks), delivers longer FCTs than Opera for short flows
at loads >10%. A non-hybrid (i.e. all-optical-core) RotorNet
is cost-equivalent to the other networks, but its latency for
short flows is three orders of magnitude higher than the other
networks, as shown in Figure 7c.

5.2 Bulk traffic
Opera’s superiority in the mixed case stems entirely from

its ability to avoid paying bandwidth tax on the bulk traf-
fic. We highlight this ability by focusing on a workload in
which all flows are routed over direct paths. We consider
an all-to-all shuffle operation (common to MapReduce style
applications), and choose the flow size to be 100 KB based
on the median inter-rack flow size reported in a Facebook
Hadoop cluster [39] (c.f. Figure 1). Here we presume the
application tags its flows as bulk, so we do not employ flow-
length based classification; i.e., Opera does not indirect any
flows in this scenario. We let all flows start simultaneously
in Opera, as RotorLB accommodates such cases gracefully,
and stagger flow arrivals over 10 ms for the static networks,
which otherwise suffer from severe startup effects. Because
the shuffle operation correlates the start times of all flows, this
workload can drive the network to 100% utilization.

Figure 8 shows the delivered bandwidth over time for the
different networks. The limited capacity of the 3:1 Clos and
high bandwidth tax rates of the expander significantly extend

the FCT of the shuffle operation, yielding 99th-percentile
FCTs of 227 ms and 223 ms, respectively. Opera’s direct
paths are bandwidth-tax-free, allowing higher throughput and
reducing the 99th-percentile FCT to 60 ms.

5.3 Only low-latency flows
Conversely, workloads in which all flows are routed over

indirect low-latency paths represents the worst case for Opera,
i.e., it always pays a bandwidth tax. Given our 15 MB thresh-
old for bulk traffic, it is clear from the bottom portion of
Figure 1 that the Websearch workload [4] represents such a
case. A lower threshold would avoid the bandwidth tax, but
would require a shorter cycle time to prevent a significant
increase in FCT for these short “bulk” flows.

Figure 9 shows the results for the Websearch workload,
again under a Poisson flow arrival process. As before, the
cost-equivalent all-optical RotorNet suffers from long FCTs.
Hybrid RotorNet (with 1/6th of its capacity packet switched
for 33% higher cost) can only admit just over 10% load, at
which point the throughput saturates. At more than 5% load,
its FCTs are significantly higher than the other networks.
All other networks provide equivalent FCTs across all flow
sizes for loads at or below 10%, at which point Opera is
not able to admit additional load. Both the 3:1 folded Clos
and expander saturate (slightly) above 25% load, but at that
point both deliver FCTs nearly 100× worse than at 1% load.
While Opera forwards traffic analogous to the expander in this
scenario, it has only 60% the capacity and pays an additional
41% bandwidth tax due to its longer expected path length.

5.4 Mixed traffic
To drive home Opera’s ability to trade off low-latency ca-

pacity against lower effective bandwidth taxes, we explic-
itly combine the Websearch (low-latency) and Shuffle (bulk)
workloads from above in varying proportions. Figure 10
shows the aggregate network throughput as a function of
Websearch (low-latency) traffic load, defined as before as a
fraction of the aggregate host link capacity. We see that for
low Websearch load, Opera delivers up to 4× more through-
put than the static topologies. Even at 10% Websearch load
(near its maximum admissible load), Opera still delivers al-
most 2× more throughput. In essence, Opera “gives up” a
factor of 2 in low-latency capacity (due to its relatively under-
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Figure 10: Network throughput vs. Websearch traffic load
for a combined Websearch/Shuffle workload.

provisioned ToRs) to gain a factor of 2–4 in bulk capacity
from its vastly lower effective bandwidth tax.

Facebook has reported that only 25% of traffic is attributed
to bulk-dominated Hadoop jobs, but also that the total average
network load is less than 1% [39]. Even if the other 75% of
traffic was solely low-latency flows, Opera can accommodate
this light overall load with little-to-no degradation in FCT
while significantly improving throughput for Hadoop traffic,
which has a high momentary peak load due to the correlated
start times of constituent flows.

5.5 Fault tolerance
Next, we demonstrate Opera’s ability to maintain and re-

establish connectivity in the face of component failures by
injecting random link, ToR, and circuit switch failures into
the network. We then step through the topology slices and
record (1) the number of ToR pairs that were disconnected in
the worst-case topology slice and (2) the number of unique
disconnected ToR pairs integrated across all slices. Figure 11
shows that Opera can withstand about 4% of links failing, 7%
of ToRs failing, or 33% (2 out of 6) of circuit switches failing
without suffering any loss in connectivity. Opera’s robustness
to failure stems from the good fault tolerance properties of ex-
pander graphs. As discussed in Appendix F, Opera has better
fault tolerance than a 3:1 folded Clos, and is less tolerant than
the u = 7 expander (which has higher fanout). Maintaining
connectivity under failure does require some degree of path
stretch in Opera; Appendix F discusses this in more detail.

5.6 Network scale and cost sensitivity
Finally, we examine Opera’s relative performance across a

range of network sizes and cost assumptions. We introduce a
parameter α, which is defined following [29] to be the cost of
an Opera “port” (consisting of a ToR port, optical transceiver,
fiber, and circuit switch port) divided by the cost of a static net-
work “port” (consisting of a ToR port, optical transceiver, and
fiber). A full description of this cost-normalization method is
presented in Appendix A. If α > 1 (i.e. circuit switch ports
are not free) then a cost-equivalent static network can use the
extra capital to purchase more packet switches and increase
its aggregate capacity.

We evaluated workloads previously analyzed in [29] using
htsim: (1) hot rack, which is a highly skewed workload where
one rack communicates with one other rack; (2) skew[0.1,1],
(10% of racks are hot [29]), (3) skew[0.2,1] (20% hot); and
(4) host permutation, where each host sends to one other non-
rack-local host. For each workload, we considered a range
of relative Opera port costs (reallocating any resulting cost
savings in the static networks to increase their capacity). We
considered both k= 12 and k= 24 ToR radices, corresponding
to 648-host and 5,184-host networks. Figure 12 shows the
results for k = 24; the k = 12 case has nearly identical cost-
performance scaling and is presented in Appendix D, along
with path length scaling analysis.

The throughput of the folded Clos topology is indepen-
dent of traffic pattern, whereas the throughput of the ex-
pander topology decreases as workloads become less skewed.
Opera’s throughput initially decreases with a decrease in skew,
then increases as the traffic becomes more uniform. As long
as α < 1.8 (Opera’s circuit switch ports cost less than a packet
switch port populated with an optical transceiver), Opera de-
livers higher throughputs than either an expander or folded
Clos for permutation traffic and moderately skewed traffic
(e.g. 20% of racks communicating). In the case of a single
hot rack, Opera offers comparable performance to a static
expander. In the case of shuffle (all-to-all) traffic, Opera deliv-
ers 2× higher throughput than either the expander or folded
Clos even for α = 2. As discussed further in Appendix A,
we believe α = 1.3 is achievable today with certain optical
switching technologies.
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Figure 11: Fault tolerance in a 648-host, 108-rack Opera network with 6 circuit switches and k = 12 port ToRs. Connectivity
loss is the fraction of disconnected ToR pairs. In cases involving ToR failures, connectivity loss refers to non-failed ToRs.

1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

Th
ro

ug
hp

ut

1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

Opera
Opera (all-to-all)
expander
folded Clos
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Opera does not offer an advantage for skewed and permu-
tation workloads when the relative cost of its ports is signifi-
cantly higher than packet switches (α > 2), or in deployments
where more than 10% of the link rate is devoted to urgent,
delay-intolerant traffic, as described in Section 5.3.

6 Prototype
Priority queueing plays an important role in Opera’s design,

ensuring that low-latency packets do not get buffered behind
bulk packets in the end hosts and switches, and our simulation
study reflects this design. In a real system, low-latency packets
that arrive at a switch might temporarily buffer behind lower-
priority bulk packets that are being transmitted out an egress
port. To better understand the impact of this effect on the
end-to-end latency of Opera, we built a small-scale hardware
prototype.

The prototype consists of eight ToR switches, each with
four uplinks connected to one of four emulated circuit
switches (the same topology shown in Figure 5). All eight ToR
and four circuit switches are implemented as virtual switches
within a single physical 6.5-Tb/s Barefoot Tofino switch. We
wrote a P4 program to emulate the circuit switches, which for-
ward bulk packets arriving at an ingress port based on a state
register, regardless of the destination address of the packet.
We connect the virtual ToR switches to the four virtual circuit
switches using eight physical 100-Gb/s cables in loopback
mode (logically partitioned into 32 10-Gb/s links). Each vir-
tual ToR switch is connected via a cable to one attached end
host, which hosts a Mellanox ConnectX-5 NIC. There are
eight such end hosts (one per ToR switch) each configured to
run at 10 Gb/s.

An attached control server periodically sends a packet to
the Tofino’s ASIC that updates its state register. After con-
figuring this register, the controller sends RDMA messages
to each of the attached hosts, signaling that one of the emu-
lated circuit switches has reconfigured. The end hosts run two
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Figure 13: RTT values for low-latency traffic with and with-
out bulk background traffic in the prototype.

processes: an MPI-based shuffle program patterned on the
Hadoop workload, and a simple “ping-pong” application that
sends low-latency RDMA messages to a randomly selected
receiver, which simply returns a response back to the sender.
The relatively low sending rate of the ping-pong application
did not require us to implement NDP for this traffic.

6.1 End-to-end latency
Figure 13 shows the observed application-level latency of

sending a ping message from a random source to a random
destination (and back). We plot this distribution both with and
without bulk background traffic. The latency observed without
bulk traffic is due to a combination of the path length and the
time to forward a packet through Tofino’s P4 program, which
we observe to be about 3 µs per hop, resulting in latency of
up to 9 µs depending on path length. The observed tail is
due to RoCE/MPI variance at the end hosts. In the presence
of bulk traffic, low-latency packets potentially need to queue
behind bulk packets currently being sent from the egress port.
Because we emulate circuit switches within the Barefoot
switch, each transit of a circuit-switch introduces additional
latency that would not be present in a deployment, adding
additional latency. For our testbed there are as many as eight
serialization points from source to destination, or 16 for each
ping-pong exchange. Each serialization point can introduce
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#Racks #Entries % Utilization
108 12,096 0.7
252 65,268 3.8
520 276,120 16.2
768 600,576 35.3

1008 1,032,192 60.7
1200 1,461,600 85.9

Table 1: Number of entries and resulting resource utilization
for Opera rulesets for datacenters of varying sizes.

as much as 1.2 µs (one MTU at 10 Gb/s), or 19.2 µs in total,
as shown in Figure 13. The distribution is smooth because
when low-latency packets buffer behind bulk packets currently
exiting the switch, the amount of remaining time is effectively
a random variable.

6.2 Routing state scalability
Opera requires more routing state than a static topology.

A straightforward implementation would require the tables
in each switch to contain O(Nrack)

2 entries as there are Nrack
topology slices and Nrack − 1 possible destinations within
each slice. We use Barefoot’s Capilano compiler tool to mea-
sure the size of the ruleset for various datacenter sizes, and
compare that size to the capacity of the Tofino 65x100GE
switch. The ruleset consists of both bulk and low-latency
non-rack-local rules. The resulting number of rules and the
percent utilization of the switch’s memory are shown in Ta-
ble 1. Because the practical rulesize limit may be lower than
the compiler-predicted size due to hash collisions within the
switch, we loaded the generated rules into a physical switch to
validate that the rules would fit into the resource constraints.
These results show that today’s hardware is capable of hold-
ing the rules needed to implement Opera, while also leaving
spare capacity for additional non-Opera rules.

7 Related work
Opera builds upon previous network designs focused on

cluster and low-latency environments. In addition to the
folded-Clos and expander graph topologies described thus
far, a number of additional static and dynamic network topolo-
gies have been proposed for clusters and datacenters.

Static topologies: Dragonfly [30] and SlimFly [8] topolo-
gies connect localized pools of high cross-section bandwidth
with a sparse inter-cluster set of links, and have been adopted
in HPC environments. Diamond [12] and WaveCube [9] stati-
cally interconnect switches with optical wavelength MUXes,
resulting in a connected topology without reconfiguration.
Quartz [32] interconnects switches into rings, and relies on
multi-hop forwarding for low-latency traffic.

Dynamic topologies: Several dynamic network topologies
have been proposed, which we can group into two categories:
those that cannot support low-latency traffic and those that

can. In the former case, Helios [16], Mordia [38], and C-
Through [44] aim to reactively establish high-bandwidth con-
nections in response to observed traffic patterns; they all rely
on a separate packet-switched network to support low-latency
traffic. RotorNet [34] relies on deterministic reconfiguration
to deliver constant bandwidth between all endpoints, and re-
quires endpoints inject traffic using Valiant load balancing to
support skewed traffic. RotorNet requires a separate packet-
switched network for low latency traffic.

ProjecToR [20], on the other hand, always maintains a
“base mesh” of connected links that can handle low-latency
traffic while it opportunistically reconfigures free-space links
in response to changes in traffic patterns. The authors ini-
tially evaluated the use of a random base network, ruling it
out due to poor support of skew. Instead, they proposed a
weighted matching of sources and sinks, though it is not clear
what the expected diameter of that network would be in gen-
eral. Similar to ProjecToR, Opera maintains an “always on”
base network which consists of a repeating sequence of time-
varying expander graphs, which has a well-known structure
and performance characteristics.

There are also reconfigurable network proposals that rely
on multi-hop indirection to support low-latency traffic. In
OSA [10], during reconfiguration some end-to-end paths may
not be available, and so some circuit-switch ports can be
reserved specifically to ensure connectivity for low-latency
traffic. Megaswitch [11] could potentially support low-latency
traffic in a similar manner.

8 Conclusions

Static topologies such as oversubscribed folded-Clos and
expander graphs support low-latency traffic but have lim-
ited overall network bandwidth. Recently proposed dynamic
topologies provide high bandwidth, but cannot support low-
latency traffic. In this paper, we propose Opera, which is a
topology that implements a series of time-varying expander
graphs that support low-latency traffic, and when integrated
over time, provide direct connections between all endpoints
to deliver high throughput to bulk traffic. Opera can deliver a
4× increase in throughput for shuffle workloads and a 60%
increase in supported load for skewed datacenter workloads
compared to cost-equivalent static networks, all without ad-
versely impacting the flow completion times of short flows.
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Appendix
A Cost-normalization approach

In this section, we detail the method we used to analyze
a range of cost-equivalent network topologies at various net-
work scales and technology cost points. We begin by defining
α as the cost of an Opera “port” (consisting of a ToR port,
optical transceiver, fiber, and circuit switch port) divided by
the cost of a static network “port” (consisting of a ToR port,
optical transceiver, and fiber), following [29].

We can also interpret α as the cost of the “core” ports (i.e.
upward-facing ToR ports and above) per edge port (i.e. server-
facing ToR port). Core ports drive the network cost because
they require optical transceivers. Thus, for a folded Clos we
can write α = 2(T − 1)/F (where T is the number of tiers
and F is the oversubscription factor). For a static expander,
we can write α = u/(k−u) (where u is the number of ToR
uplinks and k is the ToR radix).

We use a T = 3 three tier (i.e. three layer) folded Clos as
the normalizing basis and keep the packet switch radix (k)
and number of hosts (H) constant for each point of network
comparison. To determine the number of hosts as a function
of k and α, we first solve the for the oversubscription factor
as a function of α: F = 2(T −1)/α (note T = 3). Then, we
find the number of hosts H in a folded Clos as a function
of F , k, and α: H = (4F/(F + 1))(k/2)T (note T = 3, and
F is a function of α). This allows us to compare networks
for various values of k and α, but we also estimate α given
technology assumptions described below.

Opera’s cost hinges largely on the circuit switching tech-
nology used. While a wide variety of technologies could be
used in principle, using optical rotor switches [34] is likely
the most cost-effective because (1) they provide low optical
signal attenuation (about 3 dB) [33], and (2) they are com-
patible with either single mode or multimode signaling by
virtue of their imaging-relay-based design [33]. These factors
mean that Opera can use the same (cost) multimode or simgle-
mode transceivers used in traditional networks, unlike many
other optical network proposals that require expensive and
sophisticated telecom grade gear such as wavelength tunable
transceivers or optical amplifiers. Based on the cost estimates
of commodity components taken from [29] and rotor switch
components (summarized in Table 2), we approximate that
an Opera port costs about 1.3× more than a static network
port (i.e. α=1.3).

B Hybrid cost-performance tradeoff
In Section 5, we evaluated the performance of a hybrid

RotorNet which faced one of the six available ToR uplinks to
a multi-stage packet switched network (for 1.33× the cost of
the other networks evaluated). Here, we consider the tradeoff
between FCT and cost for a broader range of hybrid packet
switched bandwidths. To consider small fractions of packet
switched bandwidth, we allow the bandwidth of a single ToR
uplink to be split arbitrarily between the packet and circuit
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Component Static Opera
SR transceiver $80 $80
Optical fiber ($0.3/m) $45 $45
ToR port $90 $90
Optical fiber array - $30 †
Optical lenses - $15 †
Beam-steering element - $5 †
Optical mapping - $10 †
Total $215 $275
α ratio 1 1.3

Table 2: Cost per “port” for a static network vs. Opera. A
“port” in a static network consists of a packet switch port,
optical transceiver, and fiber. A “port” in Opera consists of
a packet switched (ToR) port, optical transceiver, and fiber,
as well as the components needed to build a rotor switch.
The cost of rotor switch components is amortized across the
number of ports on a given rotor switch, which can be 100s
or 1,000s; we present values in the table assuming 512 port
rotor switches. († per duplex fiber port)
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networks. Figure 14 shows the resulting tradeoff between
cost and the FCTs for 1 kB flows in the Datamining workload
running at 25% load (similar trends were observed for other
loads and flow sizes). As cost is reduced in hybrid RotorNet
(by allocating a smaller percent of total network bandwidth to
the packet switched network), FCTs begin to rise substantially
due to increased network congestion.

C Reducing cycle time at scale
Larger Opera networks are enabled by higher radix ToR

switches, which commensurately increase the number of cir-
cuit switches. To prevent the cycle time from scaling quadrat-
ically with the ToR radix, we allow multiple circuit switches
to reconfigure simultaneously (ensuring that the remaining
switches deliver a fully-connected network at all times). As
an example, doubling the ToR radix doubles the number of
circuit switches, but presents the opportunity to cut the cycle
time in half by reconfiguring two circuit switches at a time.
This approach offers linear scaling in the cycle time with
the ToR radix, as shown in Figure 15. Assuming we divide
circuit switches into groups of 6, parallelizing the cycle of
each group, the cycle time increases by a factor of 6 from a
k = 12 (648-host network) to a k = 64 (98,304-host network),
corresponding to a flow length cutoff for “bulk” flows of 90
MB in the latter case.

D Additional scaling analysis
Figure 16 shows the performance-cost scaling trends for

various traffic patterns for networks with k = 12 port ToRs.
Comparing with Figure 12, we observed nearly identical per-
formance between networks with k = 12 and k = 24, indi-
cating the (cost-normalized) network performance is nearly
independent of scale for all networks considered (folded Clos,
static expanders, and Opera).

To analyze this result at a more fundamental level, we
evaluated the average and worst-case path lengths for ToR
radices between k = 12 and k = 48 for both Opera and static
expanders at various cost points (α). Figure 17 shows that
the average path lengths converge for large network sizes
(the worst-case path length for all networks including Opera
was 4 ToR-to-ToR hops for k = 24 and above). Given that
the network performance properties of static expanders are
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correlated with their path length properties [6], Figure 17
supports our observation that the cost-performance properties
of the networks do not change substantially with network size.

E Spectral efficiency and path lengths
The spectral gap of a network is a graph-theoretic metric

indicating how close a graph is to an optimal Ramanujan
expander [25]. Larger spectral gaps imply better expansion.
We evaluated the spectral gap for each the 108 topology slices
in the example 648-host 108-rack Opera network analyzed in
the text, and compared it to the spectral gaps of a number or
randomly-generated static expanders with varying d:u ratios.
All networks used k = 12 radix ToRs and were constrained to
have a nearly-equal number of hosts. The results are shown
in Figure 18. Note that expanders with larger u require more
ToR switches (i.e., cost more) to support the same number of
hosts.

Interestingly, when the number of hosts is held constant, we
observe that the average and worst-case path length is not a
strong function of the spectral gap. Further, we see that Opera
comes very close to the best average path length achievable
with a static expander, indicating that it makes good use of
the ToR uplinks in each topology slice. Opera achieves this
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Figure 18: Average and worst-case path lengths and spectral
gap for Opera and static expander networks. All networks
use k = 12-port ToR switches and have between 644 and 650
hosts. Each data point for Opera corresponds to one of its 108
topology slices.

good performance despite the fact that we have imposed addi-
tional constraints to support bulk traffic with low bandwidth
tax: unlike a static expander, Opera must provide a set of
Nracks = 108 expanders across time, and those expanders are
constructed from an underlying set of disjoint matchings.
F Additional failure analysis

Opera recomputes paths to route around failed links, ToRs,
and circuit switches, and in general these paths will be longer
than those under zero failures. Figure 19 shows the correlation
between the degree of each type of failure and the average
and maximum path length (taken across all topology slices).

For reference, we also analyzed the fault tolerance proper-
ties of the 3:1 folded Clos and u = 7 expander discussed in
the paper. Figure 20 shows the results for the 3:1 Clos and
Figure 21 shows results for the u = 7 expander. We note that
Opera has better fault tolerance properties than the 3:1 folded
Clos, but the u = 7 expander is better yet. This is not surpris-
ing considering the u = 7 expander has significantly more
links and switches, as well as higher fanout at each ToR.
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Figure 20: Connectivity loss and impact on path lengths in the 3:1 folded Clos for link failures (top two) and ToR failures
(bottom two).
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Figure 21: Connectivity loss and impact on path lengths in the u = 7 expander for link failures (top two) and ToR failures
(bottom two).
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Abstract

The lossless Ethernet is attractive for data centers and cluster

systems, but various performance issues, such as unfairness,

head-of-line blocking and congestion spreading, etc., impede

its large-scale deployment in production systems. Through

fine-grained experimental observations, we inspect the inter-

actions between flow control and congestion control, and are

aware that the radical cause of performance problems is the

ineffective elements in the congestion management architec-

ture for lossless Ethernet, including the improper congestion

detection mechanism and inadequate rate adjustment law.

Inspired by these insights and findings obtained in exper-

iment investigations, we revise the congestion management

architecture, and propose the Photonic Congestion Notifica-

tion (PCN) scheme, which consists of two basic components:

(i) a novel congestion detection and identification mechanism

to recognize which flows are really responsible for conges-

tion; (ii) a receiver-driven rate adjustment method to alleviate

congestion in as short as 1 RTT. We implement PCN using

DPDK NICs and conduct evaluations using testbed experi-

ments and simulations. The results show that PCN greatly

improves performance under concurrent burst workload, and

significantly mitigates PFC PAUSE messages and reduces the

flow completion time under realistic workload.

1 Introduction

Recently, lossless network has become an attractive trend in

data centers and cluster computing systems. Generally, re-

transmission caused by packet loss readily leads to goodput

decrease, completion time increase, and even missing appli-

cation deadlines [9, 10, 50]. In addition, scaling transport pro-

tocols such as Remote Direct Memory Access (RDMA) and

Fibre Channel (FC) over data center requires reliable trans-

mission without packet loss due to network congestion [3,15].

The lossless InfiniBand (IB) [16] is popular in HPC (High

performance Computing) cluster systems, but modern data

center has already been built with IP/Ethernet technologies

that are also dominated in traditional Internet. The data center

operators and cloud builders may do some IB, but much less

ubiquitous than Ethernet. Furthermore, they are reluctant to

simultaneously deploy and manage two separate networks

within the same data center [39, 49]. IEEE DCB (Data Center

Bridging) [4] is naturally imparted appeal as an enhanced

capability of Ethernet, which enables Ethernet to be a con-

solidated switching fabric that can replace traditionally sep-

arated fabrics for special purposes, such as FC for storage,

IPC (Interprocess Communication) for HPC, and Ethernet

for LAN traffic. Converged Ethernet has significant perfor-

mance, cost, and management advantages over maintaining

separate switching fabrics [8]. To enable lossless semantics

for a consolidated Ethernet, both hop-by-hop flow control

PFC (Priority-based Flow Control) [6] and end-to-end con-

gestion control QCN (Quantized Congestion Notification) [5]

are developed in the link layer to enhance traditional Ethernet.

The scalable lossless Ethernet switching fabric is definitely

one of the potential candidates for building future data centers

to accommodate promising applications, such as RDMA over

Converged Ethernet (RoCE) [15], NVMe Over Fabrics [42]

and resource disaggregation [23], etc..

Over the last decade, the rise of various Online Data-

Intensive (OLDI) applications [31] and virtualized ser-

vices [40] generate increasingly diverse traffic patterns and

specific characteristics, e.g., incast, burst and mixture of

mice/elephant flows, etc. [12, 25, 44]. Because it is unclear

whether the lossless Ethernet can work effectively in large-

scale data centers with such complex traffic, we conduct em-

pirical and experimental investigations to attain the in-depth

understanding of congestion management (CM) architecture

in lossless Ethernet. The detailed observation and conjoint

analysis uncover the radical root of some performance issues,

such as congestion spreading and being susceptible to burst

traffic. In the light of these insights, we re-architect CM in

lossless Ethernet. The key findings and main contributions

are summarized as follows.

• Revealing the inadequate elements in existing CM ar-

chitecture for lossless Ethernet, including: a) The congestion
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detection mechanism cannot exactly identify congested or

uncongested flows when they are churned in the same queue,

so that it is unlikely to notify different sources to make dis-

criminative rate adjustments. b) The slow evolution-based

rate adjustment of end-to-end congestion control mismatches

the fast operations of hop-by-hop flow control.

• Developing a novel CM scheme named Photonic Con-

gestion Notification (PCN), which includes: a) A subtle con-

gestion detection and identification mechanism, which can

distinguish real congested flows so as to make a proper rate ad-

justment for congested or uncongested flows even if they are

churned in the same accumulated queue. b) A receiver-driven

rate adjustment rule, which can speed up the convergence of

rate regulation, and is robust to burst traffic and adaptable to

link capacity.

• Implementing PCN using DPDK NICs and conducting

evaluations using both testbed experiments and ns-3 simula-

tions. Extensive simulations in the large-scale network with

synthesized traffic from real workload show that PCN sup-

presses PFC PAUSEs by 12%, 47% and 90% compared to

QCN, DCQCN and TIMELY respectively, and reduces latency

by at most 10x, 11.3x and 13.2x.

2 Background

2.1 Traffic Features in Data Centers

A variety of applications in data centers generate flows with a

wide spectrum of traffic patterns and distributions. For exam-

ple, web search service usually generates short and burst flows.

On the other hand, the log file processing introduces few but

long-lived flows to transmit bulk of data. Investigations on

traffic in many operation data centers show the wide distribu-

tion traffic patterns [41]. The size of flows may range from

0.05KB to more than 100MB, and the distribution is quite

scattered. Among all traffic, mice flows, which finish sending

all packets before receiving any ACK, cannot be adjusted

by the end-to-end congestion control scheme. Furthermore,

many measurements [18, 19, 33, 41] indicate that the occur-

rence of mice flow is not only frequent but also bursty. The

highly dynamic entering/leaving of mice flows would greatly

shock queue length in switches and then the end-to-end la-

tency [12, 13, 44]. Although these flows do not react to the

congestion control scheme, they severely disturb the normal

operations of the congestion management of switching fabric

in data centers or cluster systems.

2.2 Congestion Management in lossless Ether-

net

To guarantee losslessness and provide satisfying job comple-

tion time under such diverse traffic patterns, congestion man-

agement becomes critical and challenging in lossless Ethernet.

IEEE DCB [4] specifies a framework for CM consisting of

two basic functions, including end-to-end congestion control

and hop-by-hop flow control.

The end-to-end congestion control regulates source sending

rate actively according to the congestion information reflected

by measured variables, such as switch queue length or RTT.

Representative solutions include QCN developed by IEEE

802.1 Qau [5], the Layer-3 scheme DCQCN [49], and the RTT-

based scheme TIMELY [36]. Although these protocols can

constrain the switch queue length and accordingly reduce the

packet loss ratio, there is not enough guarantee of zero packet

loss. Actually, the uncontrollable burst may be already lost

before sources are aware of network congestion, especially

when the congestion control loop delay is relatively large or

the degree of burst and concurrency is heavy. What is worse, a

large number of congestion control mechanisms [5, 21, 27, 36,

38, 49] start flows at the line rate to accelerate the completion

of mice flows, which exacerbates the loss problem.

To avoid packet loss due to uncontrollable burst, Priority-

based Flow Control (PFC) is defined by IEEE 802.1Qbb [6] to

ensure losslessness. With PFC, a switch sends a PAUSE frame

to its upstream device (a switch or a NIC) to stop transmission

when the ingress queue length exceeds a certain threshold.

And a RESUME frame is sent when the queue drains below

another threshold. Although PFC can guarantee zero packet

loss due to network congestion, it leads to some performance

issues such as head-of-line blocking (HLB), unfairness and

even deadlock [26, 28, 45, 46, 49]. When PFC is triggered in-

cessantly, the local congestion spreads back to both congested

and uncongested sources, and then the network throughput

and flow completion time are drastically harmed. The fun-

damental solution for these performance issues is to elimi-

nate persistent congestion by end-to-end congestion control

schemes such that PFC is not triggered incessantly [46, 49].

In total, the end-to-end congestion control needs PFC to

prevent packet loss due to transient congestion of uncontrol-

lable burst, and PFC also needs end-to-end congestion control

to eliminate persistent congestion. That is, the end-to-end

congestion control and hop-by-hop lossless flow control are

complementary to each other in lossless Ethernet.

3 Experimental Observation and Insights

3.1 Observations

Although both end-to-end congestion control and hop-by-

hop flow control can meet their goals independently under

the diverse traffic patterns, their interaction would induce

unexpected issues. (1) When burst short flows enter into the

network, existing flows in the network would still suffer from

the PFC-related side-effects, i.e., congestion spreading and

unfairness. (2) After burst leaving the network, congestion

control would not efficiently and timely reallocate available

bandwidth.
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Figure 1: Compact and typical network scenario.

Most existing work considerably concerns the single ele-

ment in the CM of lossless Ethernet (e.g., congestion con-

trol [36, 49]) or special symptoms (e.g., HLB [7], dead-

lock [28,29,45]), but unconsciously overlooks the interaction

of congestion control and flow control under diverse traffic

patterns, thus is likely to shield the essential cause of afore-

mentioned performance issues. Subsequently, we first con-

duct a careful, fine-grained and multi-variable observation,

and then infer the radical root of special symptoms and issues.

Specifically, we define a compact and typical network sce-

nario, which is not too complex to hinder us capturing the

basic principles of both key elements and core mechanisms in

the CM of lossless Ethernet. At the same time, it should have

sufficiently common features so as to ensure the obtained con-

clusions and insights are without loss of generality. As shown

in Fig.1, we choose a basic unit of a typical network topol-

ogy in data center, like Clos [22] and Fat-Tree [11], where

16 senders and 2 receivers are connected by two switches.

All links are 40Gbps, with a propagation delay of 5µs. The

traffic is a mixture of long-lived flows and concurrent burst

mice flows. In detail, H0 and H1 start long-lived flows to R0

and R1, respectively. Assume that F0 and F1 achieve their

fair bandwidth allocation of the 40Gbps bottleneck link from

switch S0 to S1 at the beginning of simulation. At time 0,

each sender of H2∼H15 generates 16 short flows to R1 at

line rate (i.e., 40Gbps) simultaneously, and the size of each

flow is 64KB. Since each mice flow only lasts for 12.8µs

(<1 RTT), it is uncontrollable by the end-to-end congestion

control mechanisms. These uncontrollable burst flows last

for about 3ms in total. We conduct simulations with ns-3 to

investigate various CM schemes including PFC, PFC+QCN,

PFC+DCQCN, and PFC+TIMELY. All parameters are set to

the default values recommended by the related standard [5, 6]

and literature [36, 49], and the details are given in § 7. The

results are presented in Fig.2.

When PFC is solely employed, the input port P1/S1 pauses

its upstream port P0/S0 to avoid packet drops, and the port

P2/S1 is congested by concurrent burst flows. Subsequently,

“Pause” spreads upstream along with the long flow, and both

H0 and H1 are eventually paused. We measure the PAUSE

Rate (i.e., the rate of transmitting PAUSE messages), and the

instantaneous throughput. As shown in Fig.2(a), a congestion

tree, which roots from S1, spreads to H0 and H1, appears
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Figure 2: Interactions between PFC and existing congestion

controls.

and lasts for 3.1ms (>100 RTT) until the burst mice flows

finish. During this process, both the congested flow F1 and

uncongested flow F0 face great throughput loss as shown in

Fig.2(b), no matter whether they are responsible for the real

congestion at port P2/S1.

When QCN, DCQCN or TIMELY works with PFC jointly,

the congestion tree still appears, as shown in Fig.2(a). How-

ever, its lasting time is reduced to 0.5ms (≈17RTT), 1.8ms

(≈57RTT) and 1.4ms (≈47RTT). Surprisingly, the two long

flows F0 and F1 may fail to recover to their initial throughput

quickly after both concurrent burst flows and congestion tree

disappear. As illustrated in Fig.2(b), the throughput loss un-

expectedly lasts for 12.5ms with QCN, 25ms with DCQCN

and 60ms with TIMELY, respectively, even if the concurrent

burst flows last for only 3ms. Totally, the performance of

PFC+QCN, PFC+DCQCN and PFC+TIMELY is worse than

PFC in this scenario.

3.2 Interaction Issues

To understand the long duration of congestion tree and un-

expected great throughput loss, we analyze the dynamic be-

haviors of flows in detail, and reveal the interaction issues

between hop-by-hop flow control and end-to-end congestion

controls. We believe that careful analysis and rigorous rea-

soning from interactive behavior could enlighten us the root

causes of various performance issues reported by existing

work [26, 34, 37].

1) PFC confuses congestion detection. In above experi-

ments, an ideal end-to-end congestion control scheme should

only throttle F1 to 2.5Gbps and allocate flow F0 the remaining
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Figure 3: The responsiveness of different congestion controls.

bandwidth (37.5Gbps) of bottleneck link from S0 to S1. How-

ever, this ideal bandwidth allocation cannot be achieved even

existing congestion controls (QCN, DCQCN and TIMELY)

are employed. To explore the cause of this phenomenon, we

record the sending rate regulated by the end-to-end congestion

control and the real sending rate of the uncongested flow F0

and congested flow F1. The results are presented in Fig.3(a).

When congestion tree exists, both the queue length and RTT

increase at port P0/S0. Because senders infer congestion ac-

cording to the feedback information (i.e., queue length or

RTT), F0 is also regarded as congested. Hence, the sending

rate of F0 is reduced by QCN, DCQCN and TIMELY, even

if it contributes nothing to the real congestion point at P2/S1.

Therefore, after the congestion tree disappears (as marked by

the dash line in Fig.3(a)), the sending rate of F0 is very low

although it escapes from the collateral damage of PFC.

In summary, it takes some time for congestion controls to

eliminate congestion tree. In this transient process, the large

queue length and RTT due to congestion spreading caused

by PFC would mislead congestion controls to decrease the

sending rate of victim flows (F0 in this example).

2) The slow evolution-based rate adjustment of end-to-

end congestion control mismatches the fast hop-by-hop

operations of PFC. Fig.3 also unveils the reason why the

congestion tree is still created and lasts for tens of RTTs with

QCN, DCQCN and TIMELY. Although F0 and F1 are throt-

tled immediately when the concurrent burst mice flows enter,

it takes a long time for QCN, DCQCN and TIMELY to reduce

the sending rates (the regulation time of different congestion

controls are marked in Fig. 3). However, PFC works hop-by-

hop and thus the congestion spreads very fast. During the rate

decrease of F0 and F1, PFC is triggered incessantly. So the

real sending rates of F0 and F1 are mainly determined by PFC

rather than end-to-end congestion control, thus the through-

put of both F0 and F1 are small. This is why the congestion

tree spreading still occurs even if the end-to-end congestion

control is employed.

This problem is attributed to the mismatch between the

slow evolution-based rate adjustment of end-to-end conges-

tion control and the fast operations of hop-by-hop flow control.

More specifically, when the available bandwidth reduces sud-

denly due to the concurrent burst mice flows, the end-to-end

congestion control schemes have no idea of the target rate

thus only make rate decrease based on the current sending rate

step by step, which is at most 50% per update period. More-

over, the update period is about 20µs (time of transmitting

100 packets) for QCN, 50µs for DCQCN and at least 12.5µs

(time of sending 64KB segment) for TIMELY. What’s more,

when the throughput of F0 and F1 is very small, DCQCN may

not receive a single packet in one update period, and would

start rate increase automatically. As a result, tens of update

periods may be needed to decrease F1’s rate to approach the

remaining available bandwidth, as shown in Fig.3.

3) The rate increase is inadaptable to dynamic network

conditions. After the concurrent burst mice flows vanish and

the congestion tree disappears, the sending rates of both F0

and F1 have been throttled, and need to increase step by step.

QCN and DCQCN increase the sending rate towards the tar-

get rate stored at previous rate decrease in a binary-search

way and raise the target rate linearly with a pre-configured

value periodically. TIMELY adds the sending rate with a

fixed value in each update period. Briefly, all rate increasing

methods are linear. Consequently, they fail to take full use

of available bandwidth immediately after the disturbance of

concurrent burst mice flows. This is why flows F0 and F1

need much longer time to recover to full throughput as pre-

sented in Fig.2(b). Moreover, the step of rate increase in each

update period needs to be configured adaptively according

to network bandwidth. For example, the parameters of QCN,

DCQCN and TIMELY tuned for 40Gbps link may be too con-

servative for 100Gbps link, but too aggressive for 1Gbps link.

The tuning of parameters would become difficult in practice.

4 Principles

The root cause of all aforementioned performance issues can

be concluded as the existing end-to-end congestion control

scheme cannot cooperate with hop-by-hop flow control well.

To address these issues, we revisit the architecture of CM. We

first present a discussion about which elements in existing

congestion management introduce these performance issues,

and then propose the ways to overcome these incongruities

by re-architecting the CM for lossless Ethernet. Briefly, the

principles are threefold.

1. The uncongested flow becomes a victim because the ex-

isting congestion management cannot identify real con-

gested flows. The operation of PFC would back pressure

congestion and contaminate current congestion signals
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(i.e., queue length and RTT). We need to find out a new

mechanism to properly distinguish which flows are really

responsible for congestion.

2. Congestion spreading is caused by the slow evolution-

based rate decreasing mechanism, thus a fast and accu-

rate rate decreasing solution is indispensable.

3. When burst traffic vanishes, the long-lived flows mainly

rely on the linear rate increase to share the released

bandwidth, which leads to sluggish convergence and

bandwidth waste. Therefore, a prompt rate increasing

mechanism should be developed.

4.1 Congestion Detection and Identification

Traditionally, the end-to-end congestion control detects the

network congestion based on the measured variables like

switch queue length and RTT. However, this congestion de-

tection mechanism is confused by PFC in lossless Ethernet.

We need to revise the congestion detection and identification

mechanism to avoid this confusion and then correctly identify

which flows are really congested.

4.1.1 Detecting Congestion

To aid detecting congestion, we classify the egress ports of

switches into the following three states.

Real-Congestion: The ports in real-congestion fully utilize

the egress links and the excessive incoming packets accumu-

late in the buffer, as shown in Fig.4(a). For example, in the

previous simulation, when the concurrent burst mice flows

start, port P2/S1 is in real-congestion.

Non-Congestion: As illustrated in Fig.4(b), no packets

accumulate in the buffer of egress ports, and thus the incoming

packet is transmitted immediately. That is, the egress links

work normally with utilization less than 100%. The port P3/S1

in above simulation is always in non-congestion.

Quasi-Congestion: The ports in quasi-congestion also

keep certain queue length, but the associated egress link is

not fully utilized due to PAUSE and RESUME, as depicted in

Fig.4(c). Therefore, it is unknown whether the incoming rate

of packets exceeds the link capacity or not. For example, in the

previous simulation, port P0/S0 turns into quasi-congestion in

face of PFC triggers. However, because flows passing through

this port would suffer large queue length and delay, the con-

gestion detection mechanism in existing congestion controls

(e.g., QCN, DCQCN and TIMELY) dogmatically judges that

these flows experience congestion.

Consequently, to distinguish these different states of the

egress ports, especially the quasi-congestion state, the impacts

of PFC should be taken into consideration when detecting

congestion.

4.1.2 Identifying Congested Flows

Owing to the impact of PFC, packets from both congested and

uncongested flows are likely to backlog in the same queue

length in egress port, which is paused by its downstream

ingress port. Therefore, it may be proper to predict potential

congestion depending on the queue length of egress port,

but indeed unwise to make congestion judgment and provide

indiscriminate information to all flow sources, just like QCN

and DCQCN. TIMELY also hardly distinguishes whether

the flow actually traverses the real congested port by merely

measuring RTT and its variations.

To avoid the confused congestion information in existing

CM architecture to perturb the normal interaction between

flow control and congestion control, and even lead to mu-

tual damage, we advocate decoupling congestion detection

and identification functions during re-architecting the CM

of lossless Ethernet. The switch is responsible for detecting

congestion and providing congestion signals through moni-

toring the related network status. The end systems synthesize

relevant information to judge congestion and identify whether

its flow is really congested.

4.2 Receiver-Driven Rate Decrease

The ideal congestion control scheme should throttle the con-

gested flows towards a proper rate directly. To achieve this

goal, we need to obtain this proper rate at first. In lossless

Ethernet, the proper rate should not trigger PFC but can still

keep high throughput. To find this rate, we should answer the

following two sub-questions: 1) what is the minimum rate

for congested flows to not lose throughput? 2) what is the

maximum rate for congested flows to not trigger PFCs?

The first answer is intuitive. It should be the arrival rate of

receiver. We define it as Receiving Rate. On one hand, the path

of congested flows must have at least one real congested port,

thus the sum of receiving rates of all flows just achieves the

capacity of bottleneck link. On the other hand, if the congested

flow decreases rate to less than its receiving rate, there must

be idle bandwidth on the bottleneck link, which means that
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this flow can actually send more data. Thus, the receiving

rate is the minimum rate for the congested flows to not lose

throughput. The power of receiving rate has also introduced in

recent designs like Fast TCP [32], NDP [27] and Homa [38].

They both take advantage of receiving rate to achieve fast

convergence when detecting congestion.

Fortunately, the receiving rate is also the answer to the sec-

ond sub-question. That is, when the sending rate does not ex-

ceed the receiving rate, the packets of congested flows do not

accumulate at the ingress port of congested switches and then

PFCs are not triggered. What’s more, this phenomenon occurs

regardless of whether the egress port of the same switch is

congested or not.

To vividly illustrate this phenomenon, we repeat the experi-

ment in the network scenario given in § 3.1. We start H2∼H4

at line rate to simulate uncontrollable bursts. And both the

congestion-irrelevant flow F0 and congestion-relevant flow

F1 are controlled by rate limiters. The sending rate of F0

is fixed at its fair allocation (i.e., 20Gbps), and the sending

rate of F1 varies from 20Gbps to 0 step by step manually.

When the simulation is running, both flows are throttled by

their fixed rate limiters and PFC. The sending rates set in

rate limiters and receiving rates at the receiver side for these

two long flows, as well as the generating rate of PAUSE

frames on ingress port p1/S1, are drawn in Fig.5. Obviously,

when the sending rate of congestion-relevant flow F1 exceeds

9.5Gbps, its receiving rate is only 9.5Gbps. At the same time,

the ingress port p1/S1 generates PFC PAUSEs persistently

and the congestion-irrelevant flow F0 is collaterally dam-

aged. On the contrary, when the sending rate of F1 does not

exceed 9.5Gbps, no PAUSE frame is generated from port

p1/S1 and the congestion-irrelevant flow F0 can achieve its

expected throughput. This experiment indicates that throt-

tling congested flows to their receiving rate can prevent more

PFC triggers on the associated egress ports, and then suppress

congestion spreading in this branch of congestion tree.

Consequently, we obtain a valuable insight, that is decreas-

ing the rate of congested flows to their receiving rate di-

rectly. It inspires us to design a receiver-driven rate decreas-

ing algorithm to work in harmony with PFC in lossless Ether-

net, which will be elaborated in the following.

4.3 Gentle-to-Aggressive Rate Increase

The rate increase should accelerate non-congested flows to

rapidly share available bandwidth and then keep at full uti-

lization stably simultaneously. The rate-increase rule of a

non-congested flow is needed in two cases.

1) The flow has just turned its state from congested to non-

congested. According to our receiver-driven rate decrease

principle, the flow rate has reduced to its receiving rate, which

implies no PFC trigger and no throughput loss. Thus, the flow

has little space for rate increase. Therefore, the rate of this

flow should be increased gently.

Sender (RP)
 Rate Adjustment

Switch (CP)
 Congestion Signal

   (Non-PAUSE ECN)

Receiver (NP)
 Identify Congested Flows

 Rate Estimator

 Congestion Notification

Data Data

CNP CNP

Figure 6: PCN framework.

2) The flow has remained in the non-congested state for

several continuous update periods. In this case, the flow can

increase more aggressively to occupy the available bandwidth.

Since our receiver-driven rate-decrease rule can sharply re-

duce the overflowed traffic, the rate increasing mechanism can

be designed more aggressively to fulfill network bandwidth

quickly.

Therefore, we obtain a suggestion, that is increasing the

rate of non-congested flows gently at first and then ag-

gressively. It guides us to design a gentle-to-aggressive rate

increasing algorithm that can guarantee stability and fast con-

vergence simultaneously.

5 PCN

In this section, based on the principles in § 4, we re-architect

congestion management for lossless Ethernet and propose

Photonic Congestion Notification (PCN)1, which is designed

to be a rate-based, end-to-end congestion control mechanism

to work with PFC in harmony. As shown in Fig.6, PCN is

composed of three parts: reaction point (RP), congestion point

(CP) and notification point (NP). In general, the CP, which

always refers to the congested switch, marks passing pack-

ets using a Non-PAUSE ECN (NP-ECN) method to detect

whether the egress ports are in real congestion. Notice that

a packet marked with NP-ECN does not definitely mean en-

countering congestion, it requires NP to make the final deci-

sion. The NP, i.e., the receiver, identifies the congested flows,

calculates their receiving rate and sends the congestion noti-

fication packets (CNP) to RP periodically. The RP, which is

always the NIC of senders, adjusts the sending rate of each

flow according to the information in CNPs. Subsequently, we

introduce each part of PCN in details.

5.1 CP Algorithm

We develop the NP-ECN method to detect congestion and

generate the congestion signal. The CP algorithm follows the

state machine in Fig.7. Suppose that when one egress port

of a switch receives a RESUME frame from its downstream

1We liken current schemes (e.g. QCN, DCQCN and TIMELY) to quan-

tum, because they can only quantify the network congestion as a whole, but

cannot provide different congestion notifications for congested flows and

non-congested victim flows, which seems in quantum entanglement. And as

an analogy, our design is like the photon, which breaks down the entangle-

ment, i.e., directly recognizing the congested flows and allocating them the

appreciate rates.

24    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



PN==0?

QueueLength>0?

Mark ECN

Transmitting a packet

PN--

Yes

Yes

No

No

PN=number of 

packets in the queue

Received a RESUME

Figure 7: CP state machine.

node, there are N packets in the associated waiting queue.

NP-ECN will set its counter PN=N. Then the port restarts

to transmit packets. Each time a packet is transmitted, the

counter is decremented by one, until all of the N paused pack-

ets have been transmitted. For these N packets, they will not

be marked. And for the later packets that have not been paused

and correspondingly PN=0, the switch will mark them with

ECN in the traditional method, with the threshold as zero.

In this way, all packets in the real-congestion egress ports

will be marked with ECN. On the contrary, the packets are

never marked with ECN in the non-congestion ports. And for

quasi-congestion ports, the paused packets are not marked

with ECN. Meanwhile, when the queue of ingress port is

not empty, the packets arriving and leaving the ports in RE-

SUME status are marked with ECN, namely, packets in quasi-

congestion ports are partially marked with ECN. In PCN,

CP only works for marking a congestion signal on packets

and lets the NP node finally determine whether the flow is

congested.

It is noted that NP-ECN mechanism can be implemented

easily based on the commercial switch equipped with both

ECN and PAUSE functions. Compared to the traditional ECN

method in commodity switches, the NP-ECN method of PCN

requires one more counter per port, and several more lines of

logic. The space and computing complexities of modification

are both O(1).

5.2 NP Algorithm

The functions of NP include identifying congested flows,

estimating receiving rate and sending Congestion Notification

Packets (CNP) periodically. T denotes the CNP generation

period.

Identifying congested flows: NP identifies the congested

flows based on the ECN signal marked by the NP-ECN mech-

anism. A flow is regarded to be congested if 95% packets re-

ceived in CNP generation period T are marked with ECN. The

value 95% is set empirically to filter some tiny disturbances

in practice, such as queue oscillation and priority schedule,

which make that one or more packets of real-congested flows

are unlikely marked with ECN.

Estimating receiving rate: The receiving rate is calcu-

lated directly with T divided by the total size of arrived pack-

First of a flow

Timer=0;

RecNum=1;

recData=pSize;

ECNNum=ECN set?1:0;

Wait for timeout expire of Timer 

recNum+=1;

recData+=pSize;

ECNNum+=ECN set?1:0;

Calculate interArrivalTime;

Received a packet

recNum>0?

ECNNum/TotalNum>0.95?
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recNum=0;

recData=0;

ECNNum=0;

ECN=0;

recRate=0;

ECN=1;

recRate=pSize/interArrivalTime;

No
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recNum>1?
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ECN=1;
recRate=recData/Timer;

Send CNP

Figure 8: NP state machine.
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Figure 9: Packet format of CNP

ets. Noticeably, the receiving rate of flow may be so small that

just one packet arrives in several CNP generation periods. To

address this special case, PCN also records the inter-arrival

time of packets at the NP. When the inter-arrival time is larger

than T , NP estimates the receiving rate by replacing T by the

inter-arrival time.

Generating CNPs: The NP sends CNPs to notify the

source of flow with the receiving rate in period T , which

is set to be 50µs similar to DCQCN. Moreover, PCN gener-

ates CNP explicitly when the flow needs either rate-decrease

or rate-increase, different from DCQCN which only generates

CNPs to notify rate-decrease. And the CNP is not generated

when none of its packets is received in period T . In details,

the format of CNP packets is compatible with the CNP packet

in RoCEv2 [15], as shown in Fig.9. The main information

encapsulated by CNP includes 1-bit ECN in the IPv4/IPv6

header and 32-bit RecRate in the reserved segment, which

carries the receiving rate normalized by 1Mbps. The state

machine of NP algorithm is summarized in Fig.8.

5.3 RP Algorithm

Algorithm 1 describes the pseudo code of how RP adjusts

the sending rate according to the information in CNP. In

the beginning, flows start at the line rate to improve flow

completion time (FCT) for short flows.

Rate Decrease: When RP receives a CNP with ECN-

marked, it conducts a rate decrease following the rule in line

6. Instead of resetting the sending rate to the receiving rate di-
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Algorithm 1 PCN RP Algorithm.

1: sendRate← lineRate

2: w← wmin

3: repeat per CNP (CE, recRate)

4: if CE == 1 then

5: (CNP notifies rate decrease)

6: sendRate←min{sendRate, recRate · (1−wmin)}

7: w← wmin

8: else

9: (CNP notifies rate increase)

10: sendRate← sendRate · (1−w)+ lineRate ·w
11: w← w · (1−w)+wmax ·w
12: until End of flow
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Figure 10: Evolution of w and rate when a sender receives

continuous CNP notifying rate increase.

rectly as discussed in § 4.2, a small discount wmin is conducted,

such that the build-up queue in switches can be drained out.

Accordingly, during draining the build-up queue, the recRate

may be larger than the sendRate, the sending rate should be

non-increasing in line 6.

Rate Increase: When RP receives a CNP without ECN-

marking, it makes rate adjustments following the law in line

10 and 11. Specifically, the RP increases the sending rate by

computing a weighted average of its current value and the

line rate. This rate increase law is effective in multiple folds.

(1) The ideal sending rate can be reached as it always stays

between the current sending rate and the line rate.

(2) Since the value of w is identical for all flows, the slow

flows increase more aggressively than fast flows, which is

beneficial to fairness.

(3) The weight w changes automatically from the minimum

value wmin to the maximum value wmax such that PCN can

realize the gentle-to-aggressive rate increase as discussed in

§ 4.3. For example, when wmin = 1/128, wmax = 0.5, and

CNPs without ECN-marking are received successively, the

evolution of w and the sending rate from 0 to the lineRate are

presented in Fig.10. The sending rate grows by no more than

10% of the line rate in the first 5 CNPs, but increases to 95%

of the line rate after only 15 CNPs.

(4) Any parameter configurations are not specially required

to adapt to the upgrade of link capacity from 1Gbps to even

400Gbps.

5.4 Discussion

As discussed in §4, the main root of performance issues in

current lossless Ethernet is the improper interaction between

PFC and end-to-end congestion control schemes. We demon-

strate that PCN solves the core problems in lossless Ethernet

using a minimal implementation cost.

Implementation requirement: To implement PCN, a lit-

tle switch modification is needed. Compared to the traditional

ECN method in commodity switches, the NP-ECN method

of PCN (see Fig.7) only requires one more counter per port,

and several more lines of logic. The space and computing

complexities of modification are both O(1).

Benefits: To demonstrate the advantages of PCN, we en-

able PCN and repeat the simulations in § 3.1, and the results

are also inserted into Fig.2 and Fig.3, respectively. The results

in Fig.2(a) tell that PAUSE in both S0->H0 and S0->H1 links

are completely avoided and only a handful of PAUSE fleet-

ingly appears in the S1->S0 link, but congestion spreading

is quickly suppressed and congestion tree is not generated.

The results in Fig.3 confirm that PCN can help the uncon-

gested flows grab idle bandwidth quickly, and regulate the

congested flows to proper rates correctly and promptly. PCN

increases F0 to fully utilize network bandwidth during con-

current bursts. After the concurrent burst vanishes, F0 and F1

fairly share bandwidth without wasting network resources or

triggering PFC PAUSEs as shown in Fig.2(b).

6 Theoretical Analysis and Parameter Setting

6.1 Theoretical Analysis

We build a fluid model of PCN and analyze its performance,

including convergence, fairness, and stability. The main con-

clusions are summarized in the following propositions and

the detailed analyses are listed in Appendix A.

Proposition 1. PCN can achieve convergence of total rate

towards the bottleneck capacity as fast as in only one control

loop, i.e., one RTT.

Proposition 2. PCN can always fairly share the bottleneck

link, i.e., Ri→
C
N

regardless of the initial sending rates and

parameter settings, where Ri is the receiving rate of flow i, N

is the number of sources sharing the bottleneck link, and C is

the link capacity.

Proposition 3. PCN is stable and the oscillation of both

the queue length and rate are bounded in the steady state.

The maximum oscillation ranges of queue length (∆Q) and

receiving rate of flow i (∆Ri) are

∆Q = (N−2+wmin)wminCT (1)

∆Ri→ wminC (2)
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Figure 11: Dynamic behavior of PCN, DCQCN and TIMELY.

6.2 Parameter Settings

Based on the above conclusions, we can obtain some practical

guidelines towards parameter settings, including the CNP

generating period T , and the minimum and maximum value

of weight factor w.

CNP generating period T : It should be identical for all

flows. It is noteworthy that T is also the control loop period,

thus a large T will damage the responsiveness of PCN. How-

ever, in practice, there exists an inherent control loop delay,

i.e., RTT. If T is smaller than RTT, PCN is hardly aware of

status change in the last control loop, which leads to over-

much adjustments and considerable oscillations. Therefore,

the recommended T should be the maximum value of RTT in

networks, which can be estimated in advance.

Minimum weight wmin: The value of wmin should make a

trade-off between fast convergence and stability. A large/small

wmin will speed up/slow down the convergence of queue

length, but make the flow oscillate more/less aggressively

at steady state. According to Proposition 2, Equation (1) and

(2), we recommend the proper value of w to be 0.1/N, which

limits the aggregate rate oscillation not exceeding 0.1C and

the queue oscillation less than 0.1CT .

Maximum weight wmax: The value of wmax determines

how aggressively a flow increases when the network is de-

tected under-utilized continuously. Thus an aggressive wmax

is recommended, i.e., wmax = 0.5.

7 Evaluation

We evaluate the performance of PCN in a variety of settings

using testbed experiments (§ 7.1) and ns-3 simulations (§ 7.1

∼ 7.4), and compare it against QCN, DCQCN and TIMELY.

The functional modules of our simulator are developed based

on the open project for DCQCN [48] and code snippet (per-

packet pacing version) for TIMELY [35], and all parameters

are set to the default values recommended by the related

literatures [36,49]. All experiments enable PFC with XOFF =
512KB.

7.1 Basic Properties

In this subsection, we verify the basic function of PCN using

simple synthetic microbenchmarks.

Testbed setup: Since current commodity switches do not

provide the interface to modify the ECN-marking logic, we

implement PCN upon DPDK [1]. We plug two Intel 82599

NICs to one PowerEdge R530 server to act as PCN’s CP. Each

NIC has two 10Gbps Ethernet ports and the server is equipped

with dual Intel Xeon E5-2620 v3 CPUs (6 cores, 2.4GHz).

Thus, the server can work as a four-port switch. By deploying

DPDK in the server, both PFC and NP-ECN are implemented

based on the reference test-pipeline project [2].

DPDK also enables the implementation of our special

packet processing required at NICs. On the sender side, the

rate limiter at a per-packet granularity is employed for rate ad-

justment. On the receiver side, PCN receives packets, records

ECN marking information, and sends back CNP packets peri-

odically.

Scenario: We use a dumbbell topology where 3 pairs of

sender and receiver share the same 10Gbps bottleneck link.

Specially, the number of flows on one of three pairs is twice

of that on other two. We run this experiment on both hardware

testbed and ns-3 simulator for cross-validation. In both testbed

experiments and simulations, the RT T is measured to be about

500µs, thus the same configuration is kept in simulations.

Fine-grained observation: First, four long-lived flows are

launched and the dynamic behaviors of PCN, QCN, DCQCN

and TIMELY is observed. The evolutions of queue length

in bottleneck and the aggregate sending rate are depicted in

Fig.11. As illustrated in Fig.11(a) and 11(b), PCN exhibits

the same performance on the testbed and simulator. Com-

paring Fig.11(b) to 11(c), 11(d) and 11(e), PCN outperforms

QCN, DCQCN and TIMELY in terms of fast convergence

and stability.

In both testbed experiment and simulation, PCN regulates

the aggregate sending rate to the bottleneck capacity within

2ms (4 RTT), which is 20x, 25x and 45x faster than that with

QCN, DCQCN and TIMELY, which is benefited from the

receiver-driven rate-decrease method of PCN. It can throttle

the incoming traffic to match the bottleneck capacity directly,

rather than explore the available bandwidth round by round.

Consequently, PCN can limit the bottleneck queue length
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Figure 12: Generating rate of PAUSEs and FCT under concurrent burst.
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Figure 13: Performance of PCN

with different wmin and wmax.

at a very low level (about several packets) in no more than

7.5ms (∼15 RTT), while it costs 13ms (∼26 RTT) for QCN,

41ms (∼80RTT) for DCQCN and 72ms (∼144 RTT) for

TIMELY.

In the steady state, PCN oscillates with low amplitude in

both testbed experiment and simulation. The queue length

almost approaches zero and the aggregate sending rate keeps

near 10Gbps. QCN has the similar performance. However,

both DCQCN and TIMELY lead to large oscillations and high

buffer occupancy. This advantage comes from the congestion

detection method of PCN. The threshold of queue length for

ECN marking is set to zero, rather than a positive value.

7.2 Burst Tolerance

One advantage of PCN is robustness against PFC triggers

caused by concurrent burst flows. Next, we use the basic

scenario in Fig.1 to evaluate PCN in the typical head-of-

line scenario. All links are 40Gbps with 5µs propagation

delay, hosts H0∼H15 generate flows according to the heavy-

tailed Hadoop workload [44] with exponentially distributed

inter-arrival time. Specially, the workload generators at hosts

H2∼ H15 are set to be synchronous to simulate concurrent

bursts. The target load at the two bottleneck links is set to 0.6.

We measure the pause rate and flow completion time (FCT)

of PCN and compare them with QCN, DCQCN and TIMELY.

The left subgraph in Fig.12 shows the generating rate of

PFC PAUSEs. QCN triggers the smallest PAUSEs, and PCN

can prevent at least 53% and 92% of PFC PAUSEs compared

to DCQCN and TIMELY, respectively. And the average and

99th percentile FCTs from different hosts are drawn in the

right subgraph in Fig.12. The solid bar at the bottom indicates

the average FCT and the upper stripe bar shows the 99th

percentile value. Clearly, PCN performs better than QCN,

DCQCN and TIMELY for all kinds of hosts.

1) Actually, QCN avoids PAUSEs by drastically reducing

the sending rate, which likely leads to poor link utilization

and high FCT for long-lived flows. On the contrary, PCN

can prevent PAUSEs without harming throughput, and then

achieves 2.25x∼3.03x shorter FCT than QCN.

2) For the victim host H0, PCN achieves 2.4x and 2.0x

faster average FCT compared to DCQCN and TIMELY, which

is mainly benefited from a fact that PCN can mitigate PFC

Flow size
% of number % of traffic

W1 W2 W1 W2

0KB-10KB (S) 80.14 70.79 3.08 0.22

10KB-100KB (M) 10.32 16.59 5.89 1.56

100KB-1MB (L) 9.12 3.52 83.8 1.53

1MB- (XL) 0.41 9.1 7.04 96.7
W1 Web-server rack at Facebook [44].

W2 Hadoop cluster at Facebook [44].

Table 1: Flow size distribution of realistic workloads.

triggers between two switches. For the concurrent burst from

H2∼ H15, PCN can keep the buffer at egress port P2 nearly

empty, and thus obtain an improvement of 3.5x and 3.4x in the

99th percentile FCT compared to DCQCN and TIMELY. And

for host H1, whose flows traverse two congested switches, the

flow transmission speed of PCN is at least 2.2x of DCQCN

and 1.7x of TIMELY.

7.3 Parameter sensitivity

As discussed in § 6.2, the minimal and maximal of weight

factor wmin and wmax determine the convergence speed and

oscillation amplitude in steady state. To evaluate the parame-

ter sensitivity, we repeat the concurrent burst simulation with

different wmin and wmax values. Fig.13 shows the result. With

the changes of wmin and wmax, PCN can always achieve the

satisfied performance. As wmax decreases, switch S0 receives

fewer PFC PAUSEs from its downstream device, but the 99%-

tile of FCT grows a little. Meanwhile, the value of wmin has

almost no impact on pause rate, but the small wmin increases

FCT slightly. The results indicate that our recommended pa-

rameter settings are proper.

7.4 Realistic Workloads

In this subsection, we evaluate the performance of PCN with

realistic workload.

Scenario: We consider an 8-pod clos network. Each pod

consists of 2 Leafs, 4 ToRs, and 64 hosts, and communi-

cates with other pods through 8 spines. The link capability

is 10Gbps below ToRs and 40Gbps above them, and the link

delay is 5µs. The over-subscription ratio is 1:1 at the ToR

switch layer, so does in other layers. To support multi-path
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Figure 14: Performance for realistic workloads.

capability, Equal Cost Multi Path (ECMP) routing scheme is

used. In this configuration, the congestion tends to occur at

the last hop. When PFC is employed to guarantee losslessness,

the root congestion at the last hop may spread to the whole

network.

Workloads: We choose two different workloads, whose

flow size distribution is listed in Table 1. These two workloads

are typical traffic pattern in operation data centers: (1) most

flows are short, and (2) most traffic is constituted by few but

large flows. The difference is that W2 contains more heavy-

tailed flows.

We generate over 50 thousands of flows with exponentially

distributed inter-arrival time, and configure the target load

at 0.6 for ToR down-links. The source and destination of

each flow are arbitrarily selected with a random in-cast ratio

ranging from 1 to 15.

Fig.14 presents the results. The generating rates of PFC

PAUSEs from different switch layers are drawn in Fig.14(a),

where the solid bat at the bottom indicates the PAUSE rate

from the ToRs, the middle stripe bar denotes that from the

Leafs, and the top empty bar shows that from the Spines.

In Fig.14(b), we draw the statistical FCT of all flows, and

Fig.14(c) shows the flow completion rate (FCR) i.e., the num-

ber of completed flows per second. Subsequently, we compare

the performance of PCN with QCN, DCQCN and TIMELY

under different workloads.

(1) W1 contains the most S size flows in number and the

most L size flows in bytes. Under this workload, the net-

work congestion condition would change dramatically. Al-

though PCN triggers 5.73x more PFC PAUSEs than QCN,

it achieves 1.60x faster 99%-ile FCT and 3.70x larger FCR.

This is because QCN reduces the sending rate of large flows

so drastically that the network becomes seriously underload.

Since PCN can rapidly detect the congestion point and ad-

just the rate of congested flows, short flows experience a low

queuing delay and complete quickly. This can improve the

overall FCT and increase FCR. Compared with DCQCN and

TIMELY, PCN avoids 64% and 75% PFC PAUSEs, speeds

up 1.75x and 2.35x in average FCT, and obtains 1.73x and

12.16x FCR, respectively.

(2) W2 is significantly heavy-tailed, where the S size

flows occupy almost 80% of the number and less than

1% of the bytes, while the XL size flows only take less

than 10% of the number but occupy almost all bytes. Un-

der this workload, PCN suppresses 35%/89%/99% PAUSEs,

speeds up 1.44x/1.57x/10.96x in average FCT and achieves

1.27x/1.13x/6.5x more FCR compared with QCN, DCQCN

and TIMELY, respectively.

7.5 External Evaluations

Furthermore, we conduct external evaluations to explore

PCN’s performance in more scenarios. The detailed descrip-

tions are in Appendix B, and the main findings are five folds.

Flow Scalability: PCN can hold as many as 1024 con-

current long flows, guaranteeing few PFC PAUSEs, low and

stable queue length, near-full network utilization, as well as

good fairness.

Adversarial Traffic: When facing dynamic flows entering

and exiting with an interval of 10∼100 control loops, the

end-to-end congestion control schemes fail to start the fast

rate increasing algorithm. Compared with QCN, DCQCN

and TIMELY, PCN can alleviate but not fully eliminate the

interruption from adversarial traffic.

Multiple Bottlenecks: In the parking lot scenario with N

bottlenecks, PCN allocates bandwidth following proportional

fairness. That is, it allocates 1
N+1

of capacity to the flow that

passes all N bottlenecks.

Multiple Priorities: When concurrent burst in higher pri-

ority leads to severe oscillation of available bandwidth in

lower priority, PCN triggers less PAUSE compared with DC-

QCN and TIMELY. Consequently, PCN outperforms other

schemes in speeding up the overall flow completion.

Deadlock: PCN can not essentially prevent PFC deadlock,

neither can other end-to-end congestion control schemes, but

can significantly decrease the probability of deadlock. Com-
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pared to DCQCN and TIMELY, PCN can reduce 79.2% and

96.7% of deadlocks, respectively.

8 Related Work

The lossless switching fabric is a lasting topic. Here we only

present a brief survey on the related work of lossless Ethernet

and its congestion management, as well as receiver-driven

rate control schemes.

Scaling RDMA over data centers. There are two lines

in scaling RDMA over data centers. The first line, such as

DCB [4] and RoCE [15, 26], attempts to enhance Ethernet

with lossless property using PFC. It requires little modifica-

tion to the well-tested RDMA transport stack but involves

new issues caused by PFC. So an appropriate end-to-end con-

gestion control scheme is needed. And the second line, such

as Resilient RoCE [34] and IRN [37], tries to improve the

RDMA transport stack to tolerate packet loss. Thus it can

scale RDMA over lossy networks. We prefer the first line. We

think the lossless Ethernet is more potential. On one hand, not

just for RDMA, lossless Ethernet makes it easier to enable

various well-tested transport protocols in data centers. It does

not require NICs to support selective retransmission using

the limited storage resources. On the other hand, lossless Eth-

ernet can avoid retransmission of lost packets, and then can

improve both network latency and throughput performance.

Lossless Ethernet switching fabric. It is always attrac-

tive to build cost-effective, efficient and large-scale lossless

switching fabric leveraging commodity Ethernet chips. The

related studies broadly follow three fundamental ways, which

are reservation, explicit allocation, and congestion manage-

ment. TDMA Ethernet [47] advocates reserving slots by de-

ploying TDMA MAC layer. Fastpass [43] conducts explicit

bandwidth allocations by a centralized arbiter to determine

the time at which each packet should be transmitted and the

path it should take. Whether TDMA Ethernet or Fastpass,

they leverage non-conflict bandwidth access to build lossless

Ethernet. However, due to slot wastage and unneglectable

signal overheads, their flexibility and scalability in large-scale

and ultra-high speed networks need to be further validated in

practice. The third approach is to enhance traditional lossy

Ethernet by introducing congestion management.

Congestion management for lossless Ethernet. IEEE

DCB task group [4] defines the congestion management

framework and develops concrete mechanisms, including

PFC [6] and QCN [5], to enhance traditional Ethernet to be

Converged Ethernet where losslessness should naturally be

indispensable. To enable RoCE deployment in large-scale

IP-routed data center networks, DCQCN [49] is developed

through replacing the congestion notification mechanism de-

fined in QCN with ECN in Layer 3, and then stitching together

pieces of rate adjusting laws from QCN [5] and DCTCP [12].

TIMELY [36] follows the implicit congestion detection mech-

anism developed by TCP Vegas [20] and uses delay measure-

ments to detect congestion, and then adjusts transmission rates

according to RTT gradients. Both explicit and implicit conges-

tion detection mechanisms in existing end-to-end congestion

control schemes cannot identify the real congested flows, thus

the performance issues in lossless Ethernet, such as HoL, con-

gestion spreading and unfairness, are hardly solved essentially.

In addition, IEEE 802.1 pQcz [7] has been supplemented to

prevent PFC harming victim flows by isolating congestion.

However, modification of current commodity switches is re-

quired to add more functions. In comparison, the congestion

detecting mechanism in our PCN can correctly identify con-

gested flows, moreover is practicable and back-compatible,

which endows fundamental advantages for congestion man-

agement in lossless Ethernet.

Receiver-driven rate control. Recently, a series of

receiver-driven rate control schemes have been proposed,

such as ExpressPass [21], NDP [27] and Homa [38]. Express-

Pass proactively controls congestion even before sending data

packets by shaping the flow of credit packets in receivers.

Both NDP and Homa also use the receiver-driven method to

allocate priority to different flows in lossy data center net-

works. The receiver-driven rate adjustment in our PCN not

only has the similar benefit of matching the incoming traffic

load to the network capacity in one RTT, but also can dras-

tically mitigate PFC triggers in one RTT as well, which is

especially appropriate for lossless Ethernet.

9 Conclusion

This paper re-architects congestion management for loss-

less Ethernet, and proposes Photonic Congestion Notifica-

tion (PCN), which is appropriate for lossless Ethernet by two

ingenious designs: (i) a novel congestion detection and iden-

tification mechanism to recognize which flows are really re-

sponsible for congestion; (ii) a receiver-driven rate adjustment

scheme to alleviate congestion in as fast as one loop control

round, i.e., one RTT. PCN can be easily implemented on

commodity switches with a little modification. Extensive ex-

periments and simulations confirm that PCN greatly improves

performance, and significantly mitigates PFC PAUSE mes-

sages and reduces the flow completion time under realistic

workload.
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A Theoretical Analysis

We build a fluid model of PCN to exhibit PCN’s good perfor-

mance of fast convergence, fairness, and stability. The main

symbols are summarized in Table 2.

A.1 Fluid Model

Suppose N sources share the bottleneck link with capacity C.

For each source i (i= 1, · · · ,N) and each CNP generating time

tk = kT (k = 1,2, · · ·), Ri(k), R̂i(k) and Q(k) denote the send-

ing rate and receiving rate of source i, and the queue length in

bottleneck link, respectively. Clearly, the queue length Q(k)
evolutes as follows

Q(k+1) = max{0,Q(k)+ [∑Ri(k)−C]T} (3)

As the associated egress port is not paused by its downstream

device and excessive packets are accumulated in buffer, we

regard the flow through this port is congested. Define the

congestion indicator function p(k)

p(k) =

{
0, i f Q(k+1) = 0

1, i f Q(k+1)> 0
(4)

When N sources share the bottleneck capacity C by the send-

ing ratio ηi(k) =
Ri(k)

∑N
j=1 R j(k)

. If the link is underflow, all incom-

ing traffic can arrive their receiver side. Consequently, the

receiving rate of each source satisfies

R̂i(k) = p(k)ηi(k)C+(1− p(k))Ri(k) (5)

With probability p(k) and receiving rate R̂i(k), source i will

change its sending rate and the weight factor according to the

corresponding adjustment rule. Thus, we have,

Ri(k+1) = p(k)R̂i(k)(1−wmin)+
Ri(k+1) =(1− p(k))[Ri(k)(1−w(k))+Cw(k)]

(6)

and

w(k+1) = p(k)wmin+
w(k+1) =(1− p(k))[w(k)(1−w(k))+wmaxw(k)]

(7)

The dynamic behavior of PCN congestion management sys-

tem can be described using Equation (3), (4), (5), (6) and (7).

Based on this fluid model, we analyze PCN’s properties in

terms of convergence, fairness, and stability.
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Variable Description

Ri Sending rate of Flow i

ηi Bandwidth allocation ratio, ηi =
Ri

∑Ri

R̂i Receiving rate of Flow i

w Weight factor

Q Bottleneck queue length

T CNP generating period

k Sequence of CNP generating periods

C Bottleneck link capacity

Table 2: Variables of fluid model
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Figure 15: Convergence of PCN.

A.2 Performance Analysis

A.2.1 Convergence

Without loss of generality, assume the queue associated with

bottleneck link is empty and the sending rate of N flows is

arbitrary at initial time 0. Hence, there are two cases.

(1) ∑Ri(0) > C: If the total rate exceeds the bottleneck

capacity, the corresponding queue increases and all flows

conduct the rate-decrease adjustment, thus,

{
Q(1) = [∑Ri(0)−C]T

Ri(1) = (1−wmin)ηi(0)C

Note that the total rate ∑Ri(1) = (1−wmin)C <C, thus the

buffer will be drained out in next several periods. When the

port is in congestion, the rate-decrease algorithm takes effect.

Since
Ri(1)

∑Ri(1)
= Ri(0)

∑Ri(0)
, we have

{
Q(k) = [∑Ri(0)−C]T − (k−1)wminCT

Ri(k) = (1−wmin)ηi(0)C
(8)

Equation (8) implies that the total sending rate ∑Ri(k) con-

verges to (1−wmin)C in one control loop, while the queue

length approaches to zero after ⌈1+ ∑Ri(0)−C

wminC
⌉ control loops.

The detail evolutions are illustrated in Fig.15(a).

(2) ∑Ri(0)≤C: If the total rate is less than the bottleneck

capacity, all flows run the rate-increase algorithm. Eventually,

the total sending rate will exceed the link capacity after K0

control loops, where K0 < 10 according to Fig.10. Therefore,

we have ∑Ri(k0) >C and Q(k0) = 0. Subsequently, the dy-

namic behavior of both queue and aggregate rate drawn in

Fig.15(b) are similar with those in above case.

In a word, PCN can achieve convergence of total rate to-

wards the bottleneck capacity as fast as in only one control

loop, and drain out backlog packets.

A.2.2 Fairness

Suppose the above convergence phase ends at the start of k1

control loop, where the buffer has been drained out, and the

sending rate of flow i is increased from (1−wmin)ηi(k0)C,

then,

{
Q(k1) = 0

Ri(k1) = (1−wmin)
2ηi(k0)C+wminC

(9)

and

ηi(k1) =
Ri(k1)

∑Ri(k1)
=

(1−wmin)
2ηi(k0)+wmin

(1−wmin)2 +Nwmin

(10)

Note that ∑Ri(k1) = [1+(N−2+wmin)wmin]C >C, the bot-

tleneck link becomes real congested and the RP conducts the

rate-decrease adjustment in the next period, thus we have

{
Q(k1 +1) = (N−2+wmin)wminCT

Ri(k1 +1) = (1−wmin)ηi(k1)C
(11)

Since the aggregate sending rate will become below C, the

backlog packets in queue will be drained out at a rate of wminC

per period and the sending rate is kept, then

{
Q(k1 + k) = (N− k−1+wmin)wminCT

Ri(k1 + k) = (1−wmin)ηi(k1)C

Obviously, the buffer will become empty again at the start-

ing of k1 +N control loop, and the sending rate of flow i is

increased from (1−wmin)ηi(k1)C, thus

{
Q(k1 +N) = 0

Ri(k1 +N) = (1−wmin)
2ηi(k1)C+wminC

(12)

and

ηi(k1 +N) =
(1−wmin)

2ηi(k1)+wmin

(1−wmin)2 +Nwmin

(13)

Comparing equation (9) and (12), we can find that PCN re-

peats the one period of rate-increase and N-1 periods of rate-

decrease, as illustrated in Fig.16. And from equation (10)

and (12), we also obtain the following dynamic evolution of

bandwidth allocation ratio of each flow,

ηi(k1 + kN) = aηi(k1 +(k−1)N)+b

= akηi(k1)+∑
k−1
j=0 a jb

= ak+1ηi(k0)+∑k
j=0 a jb
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Figure 16: Dynamic behavior of PCN.

where a= (1−wmin)
2

(1−wmin)2+Nwmin
∈ (0,1), b= wmin

(1−wmin)2+Nwmin
. Con-

sequently, as k→ ∞, there is

ηi(k1 +Nk)→
b

1−a
=

1

N
(14)

That is, PCN can always achieve fair bandwidth allocation

regardless of the initial sending rates of flows and parameter

settings.

A.2.3 Stability

Finally, we show the steady state behavior of PCN. As il-

lustrated in Fig.16, the queue length varies between 0 and

Q(k1 +1) periodically. Based on equation (11), the maximal

queue oscillation ∆Q satisfies

∆Q = Q(k1 +1) = (N−2+wmin)wminCT (15)

Similarly, the sending rate also changes in each N control

loops. As Fig.16 shows, the aggregate rate increases in k1 +
kN period and decreases in k1+kN+1 period. Note that each

flow achieves fair bandwidth allocation ratio in the steady

state, i.e., ηi→
1
N

, thus we can obtain the following derivation

based on equation (11) and (12),

Ri(k1 + kN) = (1−wmin)ηiC+wminC

→ [1+(N−1)wmin]
C
N

Ri(k1 + kN +1) = (1−wmin)ηiC

→ (1−wmin)
C
N

Therefore, the rate oscillation ∆Ri around the fair share C
N

satisfies

∆Ri→ wminC (16)

Equation (15) and (16) indicate the oscillations of both the

queue and rate are bounded in steady state, i.e., the stability

of PCN is fine.

B External Evaluations

In this section, we will explore how PCN performs in artificial

cases, including flow scalability, adversarial traffic, multiple

bottlenecks, multiple priorities and deadlock.
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Figure 17: Flow scalability test.

B.1 Flow Scalability

Using the simple 3-dumbbell topology in §7.1, we vary the

number of flows from 4 to 64 (testbed) and 1024 (ns-3) to

test the performance of PCN under more flows. The queue

length, pause rate, link utilization and fairness are measured

and calculated, and the results are presented in Fig.17.

First, we measure the average queue occupancy and pause

rate as the number of concurrent flows increases. In PCN,

the average queue length is no more than 60KB and 100KB

in the testbed and ns-3 simulator, respectively. At the same

time, there are no PAUSE frames generated. In contrast, with

4∼ 256 flows, DCQCN’s queue length grows with the number

of flows, QCN and TIMELY keep the queue length around

50KB ∼ 100KB and 100 ∼ 200KB, respectively. But QCN,

DCQCN and TIMELY maintain a very high queue occupancy

beyond 256 flows, which indicates the end-to-end congestion

control fail to take effect. As for QCN, DCQCN and TIMELY,

PFC is rarely triggered when the number of flows is less than

256, but persistent PAUSE frames are generated.

Second, we measure the utilization of bottleneck link. PCN

achieves near 100% utilization in all case with both testbed

and ns-3 simulator. QCN, DCQCN and TIMELY have a little

under-utilization with the increase of concurrent flows, but

recover full utilization with more than 256 flows. However,

this recovery of link utilization is due to PFC rather than the

end-to-end congestion control schemes.

Finally, we calculate the Jain’s fairness index [30] using

the throughput of each flow at 500ms interval. With a large

number of flows, the fairness index of QCN, DCQCN and

TIMELY drops significantly. Because they can not prevent

PFC from persistent triggers, the inherent unfairness problem

of PFC exhibits. On the opposite, PCN achieves good fairness

in all cases.
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B.2 Adversarial Traffic

Subsequently, we test PCN using an adversarial traffic pat-

tern. In the basic scenario in Fig.1, we set long flows F0 and

F1 transmit persistently, and burst flows from H2∼H15 to

R1 enter and exit the network at different intervals, varying

from 50µs (1 control loop) to 5000µs (100 control loops). We

simulate PCN, QCN, DCQCN and TIMELY, and measure the

throughput of the two bottlenecks (link S0→S1 and S1→R1)

and different flows. The results are drawn in Fig.18.

The first bottleneck, link S0→S1, is irrelative with the burst

flows. Fig.18(a) shows that under PCN, QCN and TIMELY,

link S0→S1 can achieve near-full utilization. But when the

burst flows becomes more frequent, DCQCN trends to loss as

high as 15% of throughput. This is because switch S1 pauses

S0 when the burst flows make P2|S1 congested, and DCQCN

conducts improper rate decrease for the victim flow F0.

The second bottleneck, link S1→R1, is frequently inter-

rupted by the burst flows. Fig.18(b) exhibits that when the flow

arrival interval shrinks, the congestion-relative flow F1 occu-

pies lower throughput but the link utilization becomes larger.

The performance issue occurs when the flow arrival interval

is a little large (>500µs, 10 control loops). This means, their

rate increase phase is interrupted by new-arrival flows. We

can see that PCN keeps the link throughput at 30Gbps, while

QCN, DCQCN and TIMELY remains at 23Gbps, 25Gbps

and 29Gbps, respectively. That is, PCN can alleviate, but not

eliminate, the interruption from adversarial traffic.

B.3 Multiple Bottlenecks

In a multi-bottleneck scenario, the NP-ECN method of PCN’s

CP may encounter several issues. On one hand, when the first

congestion point marks ECN on all packets, the second con-

gestion point may be paused, thus some flows are the victim

but they have been marked with ECN already. On the other

hand, flows through multiple congestion points may have a

larger probability to be marked with ECN, resulting in un-

fairness. To test how PCN performs in multiple bottleneck

scenario, we conduct a series of simulations using the parking

lot topology in Fig.19(a). There are N bottlenecks and N +1

flows, where we set N = 2,4,6,8,10. F0 passes all the bottle-

necks while other flows pass only one bottleneck. We measure

the throughput of F0 and F1, and their sum is the throughput

of link1. The result is drawn in Fig.19(b). Obviously, link1

achieves the similar utilization regardless of the number of

bottlenecks. PCN can always provide more than 98% of link

utilization, while the link utilization under QCN and DCQCN
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Scheme S(P1) M(P2) L(P3) XL(P4)

PCN 0 0 0.10 171.49

QCN 0 0 0.28 110.49

DCQCN 0 0 0.26 175.02

TIMELY 0 0 1.09 210.36

Table 3: Generating rate of PFC PAUSEs for

multiple priorities.
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Figure 20: Average/99%-ile flow completion time for multiple priorities.

and TIMELY is 90%, 88% and 95%, respectively. Meanwhile,

F0 is allocated less bandwidth than F2. Actually, the band-

width allocation of PCN conforms to proportional fairness,

where F0 obtains about 1
N+1

of the capacity. QCN allocates

F0 less than the proportional fairness. DCQCN allocates F0

more than the proportional fairness, but also less than the

max-min fairness, i.e, half of the capacity.

B.4 Multiple Priorities

The switching fabric in data center typically provides multiple

priorities to improve performance, especially for minimizing

flow completion time. The principle “short flow first” has been

adopted in a series of works such as pHost [24], pFabric [14]

and PIAS [17]. However, the concurrent burst in higher prior-

ity may trigger more PAUSE in lower priority, and impact the

end-to-end congestion control schemes. To demonstrate and

confirm this fact, we configure W1 and repeat the simulation

in § 7.4, where the flows are classified into four priorities

according to their size, namely, the S size flows are in the

first priority and the XL flows are gathered in the fourth prior-

ity. The switches forward packets following the strict priority

scheduling.

The generating rate of PFC PAUSEs and FCT for different

priorities are listed in Table 3 and shown in Fig.20. For S

and M flows in these two high priorities, few PFC PAUSE

messages generate regardless of congestion control schemes.

Thus, these flows can obtain almost the same FCT under three

congestion control schemes. On the contrary, for the L and

XL flows in the two low priorities, PFC PAUSEs can not be

avoided. In this case, PCN triggers less PAUSE compared

with DCQCN and TIMELY. QCN reduces PAUSE generated

for XL flows by underutilizing available bandwidth. PCN
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Figure 21: Performance of various schemes under deadlock

scenario.

outperforms the other three schemes in speeding up the overall

flow completion time.

B.5 Deadlock Scenario

A common concern in Lossless Ethernet is that PAUSE can

lead to deadlocks [28]. To explore PCN’s effort to avoiding

deadlock, we conduct a simple simulation using the topology

illustrated in Fig.21(a). It comes from one pod in the clos

network used in § 7.4, but link L0-T3 and link L1-T0 are

failed, such that there is a cycle buffer dependency (CBD) as

the red line draws. We simulate PCN, DCQCN and TIMELY

with the W2 workload. The target load is 0.6 at ToR down-

links with in-cast ratio ranging from 1 to 15. Each scheme is

tested for 1000 times and every simulation lasts for 500ms. We

record the time when deadlock occurs, and draw the statistical

results in Fig.21(b). Among the 1000 simulations, PCN only

encounters with deadlock for 28 times, while DCQCN and

TIMELY are deadlocked for 134 and 870 times, respectively.

The advantage of PCN comes from the positive effect of

mitigating PFC triggers and stopping congestion spreading.
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Abstract

While it is widely acknowledged that network congestion

in High Performance Computing (HPC) systems can signifi-

cantly degrade application performance, there has been little

to no quantification of congestion on credit-based intercon-

nect networks. We present a methodology for detecting, ex-

tracting, and characterizing regions of congestion in networks.

We have implemented the methodology in a deployable tool,

Monet, which can provide such analysis and feedback at run-

time. Using Monet, we characterize and diagnose congestion

in the world’s largest 3D torus network of Blue Waters, a 13.3-

petaflop supercomputer at the National Center for Supercom-

puting Applications. Our study deepens the understanding of

production congestion at a scale that has never been evaluated

before.

1 Introduction

High-speed interconnect networks (HSN), e.g., Infini-

band [48] and Cray Aries [42]), which uses credit-based flow

control algorithms [32, 61], are increasingly being used in

high-performance datacenters (HPC [11] and clouds [5, 6, 8,

80]) to support the low-latency communication primitives

required by extreme-scale applications (e.g., scientific and

deep-learning applications). Despite the network support for

low-latency communication primitives and advanced conges-

tion mitigation and protection mechanisms, significant perfor-

mance variation has been observed in production systems run-

ning real-world workloads. While it is widely acknowledged

that network congestion can significantly degrade application

performance [24, 26, 45, 71, 81], there has been little to no

quantification of congestion on such interconnect networks

to understand, diagnose and mitigate congestion problems

at the application or system-level. In particular, tools and

techniques to perform runtime measurement and characteri-

zation and provide runtime feedback to system software (e.g.,

schedulers) or users (e.g., application developers or system

managers) are generally not available on production systems.

This would require continuous system-wide, data collection

on the state of network performance and associated complex

analysis which may be difficult to perform at runtime.

The core contributions of this paper are (a) a methodol-

ogy, including algorithms, for quantitative characterization

of congestion of high-speed interconnect networks; (b) in-

troduction of a deployable toolset, Monet [7], that employs

our congestion characterization methodology; and (c) use of

the the methodology for characterization of congestion using

5 months of operational data from a 3D torus-based inter-

connect network of Blue Waters [1, 27, 60], a 13.3-petaflop

Cray supercomputer at the National Center for Supercom-

puting Applications (NCSA) at the University of Illinois at

Urbana-Champaign. The novelty of our approach is its ability

to use percent time stalled (PT s)
1 metric to detect and quan-

titatively characterize congestion hotspots, also referred to

as congestion regions (CRs), which are group of links with

similar levels of congestion.

The Monet tool has been experimentally used on NCSA’s

Blue Waters. Blue Waters uses a Cray Gemini [21] 3D torus

interconnect, the largest known 3D torus in existence, that

connects 27,648 compute nodes, henceforth referred to as

nodes. The proposed tool is not specific to Cray Gemini and

Blue Waters; it can be deployed on other k-dimensional mesh

or toroidal networks, such as TPU clouds [3], Fujitsu TOFU

network-based [18, 20] K supercomputer [70] and upcoming

post-K supercomputer [10]2. The key components of our

methodology and the Monet toolset are as follows:

Data collection tools: On Blue Waters, we use vendor-

provided tools (e.g., gpcdr [35]), along with the Lightweight

Distributed Metric Service (LDMS) monitoring frame-

work [17]. Together these tools collect data on (a) the network

(e.g., transferred/received bytes, congestion metrics, and link

failure events); (b) the file system traffic (e.g., read/write

bytes); and (c) the applications (e.g., start/end time). We are

released raw network data obtained from Blue Waters [57] as

well as the associated code for generating CRs as artifacts with

this paper [7]. To the best of our knowledge, this is the first

1PT s, defined formally in Section 2, approximately represents the intensity

of congestion on a link, quantified between 0% and 100%.
2The first post-K supercomputer is scheduled to be deployed in 2021.
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such large-scale network data release for an HPC high-speed

interconnect network that uses credit-based flow control.

A network hotspot extraction and characterization

tool, which extracts CRs at runtime; it does so by using an

unsupervised region-growth clustering algorithm. The clus-

tering method requires specification of congestion metrics

(e.g., percent time stalled (PT s) or stall-to-flit ratios) and a

network topology graph to extract regions of congestion that

can be used for runtime or long-term network congestion

characterization.

A diagnosis tool, which determines the cause of conges-

tion (e.g., link failures or excessive file system traffic from

applications) by combining system and application execution

information with the CR characterizations. This tool leverages

outlier-detection algorithms combined with domain-driven

knowledge to flag anomalies in the data that can be correlated

with the occurrence of CRs.

To produce the findings discussed in this paper, we used

5 months of operational data on Blue Waters representing

more than 815,006 unique application runs that injected more

than 70 PB of data into the network. Our key findings are as

follows:

• While it is rare for the system to be globally congested,

there is a continuous presence of highly congested regions

(CRs) in the network, and they are severe enough to affect

application performance. Measurements show that (a) for

more than 56% of system uptime, there exists at least one

highly congested CR (i.e., a CR with a PT s > 25%), and that

these CRs have a median size of 32 links and a maximum

size of 2,324 links (5.6% of total links); and (b) highly

congested regions may persist for more than 23 hours, with

a median duration time of 9 hours3. With respect to impact

on applications, we observed 1000-node production runs

of the NAMD [77] application 4 slowing down by as much

as 1.89× in the presence of high congestion compared to

median runtime of 282 minutes.

• Once congestion occurs in the network, it is likely to persist

rather than decrease, leading to long-lived congestion in

the network. Measurements show that once the network

has entered a state of high congestion (PT s > 25%), it will

persist in high congestion state with a probability of 0.87

3Note that Blue Waters allows applications to run for a maximum of 48 hours.
4NAMD is the top application running on Blue Waters consuming 18% of

total node-hours [58].

in the next measurement window.

• Quick propagation of congestion can be caused by net-

work component failures. Network component failures

(e.g., network router failures) that occur in the vicinity of a

large-scale application can lead to high network congestion

within minutes of the failure event. Measurements show

that 88% of directional link failures 5 caused the formation

of CRs with an average PT s ≥ 15%.

• Default congestion mitigation mechanisms have limited

efficacy. Our measurements show that (a) 29.8% of the 261

triggers of vendor-provided congestion mitigation mecha-

nisms failed to alleviate long-lasting congestion (i.e., con-

gestion driven by continuous oversubscription, as opposed

to isolated traffic bursts), as they did not address the root

causes of congestion; and (b) vendor-provided mitigation

mechanisms were triggered in 8% (261) of the 3,390 high-

congestion events identified by our framework. Of these

3,390 events, 25% lasted for more than 30 minutes. This

analysis suggests that augmentation of the vendor-supplied

solution could be an effective way to improve overall con-

gestion management.

In this paper, we highlight the utility of congestion regions in

the following ways:

• We showcase the effectiveness of CRs in detecting long-

lived congestion. Based on this characterization, we pro-

pose that CR detection could be used to trigger congestion

mitigation responses that could augment the current vendor-

provided mechanisms.

• We illustrate how CRs, in conjunction with network traf-

fic assessment, enable congestion diagnosis. Our diagno-

sis tool attributes congestion cause to one of the follow-

ing: (a) system issues (such as launch/exit of application),

(b) failure issues (such as network link failures), and (c)

intra-application issues (such as changes in communication

patterns within an application). Such a diagnosis allows

system managers to take cause-specific mitigating actions.

This paper’s organization is illustrated in Figure 1. We

present background information on the Gemini network, per-

formance data, and congestion mitigation mechanisms in Sec-

tion 2. In Section 3, we present our data collection method-

ology and tools. In Section 4, we present our methodology

for characterizing congestion. We present our measurement-

5see Section 5.4 for the definition of directional link.
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driven congestion characterization results in Section 5. In

Section 6, we discuss the further utility of our methodology

to inform targeted responses, and in Section 7, we discuss its

use in diagnosing the root causes of congestion. We address

related work in Section 8 and conclude in Section 9.

2 Cray Gemini Network and Blue Waters

A variety of network technologies and topologies have been

utilized in HPC systems (e.g., [19, 21, 31, 36, 42, 59, 62, 75]).

Depending on the technology, routing within these networks

may be statically defined for the duration of a system boot cy-

cle, or may dynamically change because of congestion and/or

failure conditions. More details on HPC interconnects can be

found in Appendix A. The focus of this paper is on NCSA’s

Cray XE/XK Blue Waters [1] system, which is composed of

27,648 nodes and has a large-scale (13,824 x 48 port switches)

Gemini [21] 3D torus (dimension 24x24x24) interconnect. It

is a good platform for development and validation of conges-

tion analysis/ characterization methods as:

• It uses directional-order routing, which is predominantly

static6. From a traffic and congestion characterization per-

spective, statically routed environments are easier to vali-

date than dynamic and adaptive networks.

• Blue Waters is the best case torus to study since it uses

topology-aware scheduling (TAS) [41, 82], discussed later

in this section, which has eliminated many congestion is-

sues compared to random scheduling.

• Blue Waters performs continuous system-wide collection

and storage of network performance counters.

2.1 Gemini Network

In Cray XE/XK systems, four nodes are packaged on a

blade. Each blade is equipped with a mezzanine card. This

card contains a pair of Gemini [21] ASICs, which serve as

network switches. The Gemini switch design is shown in

Figure 2. Each Gemini ASIC consists of 48 tiles, each of

which provide a duplex link. The switches are connected with

one another in 6 directions, X+/-, Y+/- and Z+/-, via multiple

links that form a 3D torus. The number of links in a direction,

depends on the direction as shown in the figure; there are 8

each in X+/- and, Z+/- and 4 each in Y+/-. It is convenient

to consider all links in a given direction as a directionally

aggregated link, which we will henceforth call a link. The

available bandwidth on a particular link is dependent on the

link type, i.e., whether the link connects compute cabinets or

blades, in addition to the number of tiles in the link [76]. X,

Y links have aggregate bandwidths of 9.4 GB/s and 4.7 GB/s,

respectively, whereas Z links are predominantly 15 GB/s, with

1/8 of them at 9.4 GB/s. Traffic routing in the Gemini network

is largely static and changes only when failures occur that

need to be routed around. Traffic is directionally routed in

the X, Y, and Z dimensions, with the shortest path in terms of

6When network-link failures occur, network routes are recomputed; that

changes the route while the system is up.

hops in + or - chosen for each direction. A deterministic rule

handles tie-breaking.

To avoid data loss in the network 7, the Gemini HSN uses a

credit-based flow control mechanism [61], and routing is done

on a per-packet basis. In credit-based flow control networks,

a source is allowed to send a quantum of data, e.g., a flit, to

a next hop destination only if it has a sufficient number of

credits. If the source does not have sufficient credits, it must

stall (wait) until enough credits are available. Stalls can occur

in two different places: within the switch (resulting in a inq

stall) or between switches (resulting in an credit stall).

Definition 1 : A Credit stall is the wait time associated with

sending of a flit from an output buffer of one switch to an input

buffer of another across a link.

Definition 2 : An Inq stall is the wait time associated with

sending of a flit from the output buffer of one switch port to an

input buffer of another between tiles within the same network

switch ASIC.

Congestion in a Gemini-based network can be characterized

using both credit and inq stall metrics. Specifically, we con-

sider the Percent Time Stalled as a metric for quantifying

congestion, which we generically refer to as the stall value.

Definition 3 : Percent Time Stalled (PT s) is the average time

spent stalled (Tis) over all tiles of a directional network link

or individual intra-Gemini switch link over the same time

interval (Ti): PT s = 100∗Tis/Ti.

Depending on the network topology and routing rules, (a)

an application’s traffic can pass through switches not directly

associated with its allocated nodes, and multiple applications

can be in competition for bandwidth on the same network

links; (b) stalls on a link can lead to back pressure on prior

switches in communication routes, causing congestion to

spread; and (c) the initial manifestation location of congestion

cannot be directly associated with the cause of congestion.

Differences in available bandwidth along directions, com-

bined with the directional-order routing, can also cause back

pressure, leading to varying levels of congestion along the

three directions.

2.2 Congestion Mitigation

Run-time evaluations that identify localized areas of con-

gestion and assess congestion duration can be used to trigger

Congestion Effect Mitigating Responses (CEMRs), such as

resource scheduling, placement decisions, and dynamic ap-

plication reconfiguration. While we have defined a CEMR

as a response that can be used to minimize the negative ef-

fects of network congestion, Cray provides a software mecha-

nism [33] to directly alleviate the congestion itself. When a

7The probability of loss of a quantum of data in credit-flow networks is

negligible and mostly occurs due to network-related failures.
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variety of network components (e.g., tiles, NICs) exceeds a

high-watermark threshold with respect to the ratio of stalls to

forwarded flits, the software instigates a Congestion Protec-

tion Event (CPE), which is a throttling of injection of traffic

from all NICs. The CPE mechanism limits the aggregate traf-

fic injection bandwidth over all compute nodes to less than

what can be ejected to a single node. While this ensures that

the congestion is at least temporarily alleviated, the network

as a whole is drastically under-subscribed for the duration

of the throttling. As a result, the performance of all applica-

tions running on the system can be significantly impacted.

Throttling remains active until associated monitored values

and ratios drop below their low-watermark thresholds. Appli-

cations with sustained high traffic injection rates may induce

many CPEs, leading to significant time spent in globally throt-

tling. Bursts of high traffic injection rates may thus trigger

CPEs, due to localized congestion, that could have been alle-

viated without the global negative impact of throttling. There

is an option to enable the software to terminate the applica-

tion that it determines is the top congestion candidate, though

this feature is not enabled on the Blue Waters system. The

option to terminate application in a production environment

is not acceptable to most developers and system managers as

it will lead to loss of computational node-hours used by the

application after the last checkpoint.

While some of this congestion may be alleviated by

CEMRs such as feedback of congestion information to appli-

cations to trigger rebalancing [29] or to scheduling/resource

managers to preferentially allocate nodes (e.g., via mecha-

nisms such as slurm’s [79] node weight), some may be un-

avoidable since all networks have finite bandwidth.

On Blue Waters a topology-aware scheduling (TAS) [41,

82] scheme is used to decrease the possibility of application

communication interference by assigning, by default [12],

node allocations that are constrained within small-convex

prisms with respect to the HSN topology. Jobs that exceed

half a torus will still route outside the allocation and possibly

interfere with other jobs and vice versa; a non-default option

can be used to avoid placement next to such jobs. The I/O

routers represent fixed, and roughly evenly distributed, pro-

portional portions of the storage subsystem. Since the storage

subsystem components, including I/O routers, are allocated

(for writes) in a round robin (by request order) manner in-

dependent of TAS allocations, storage I/O communications

will generally use network links both within and outside the

geometry of the application’s allocation and can also be a

cause of interference between applications.

3 Data Sources and Data Collection Tools

This section describes the datasets and tools used to collect

data at scale to enable both runtime and long-term characteri-

zation of network congestion. We leverage vendor-provided

and specialized tools to enable collection and real-time stream-

ing of data to a remote compute node for analysis and char-

acterization. Data provided or exposed on all Cray Gemini

systems includes: OS and network performance counter data,

network resilience-related logs, and workload placement and

status logs. In this study, we used five months (Jan 01 to May

31, 2017) of production network performance-related data

(15 TB), network resilience-related logs (100 GB), and appli-

cation placement logs (7 GB). Note that the methodologies

addressed in this work rely only on the availability of the data,

independent of the specific tools used to collect the data.

Network Performance Counters: Network performance-

related information on links is exposed via Cray’s gpcdr [35]

kernel module. Lustre file system and RDMA traffic in-

formation is exposed on the nodes via /proc/fs and

/proc/kgnilnd. It is neither collected nor made available for

analysis via vendor-provided collection mechanisms. On Blue

Waters, these data are collected and transported off the system

for storage and analysis via the Lightweight Distributed Met-

ric Service (LDMS) monitoring framework [17]. In this work,

we use the following information: directionally aggregated

network traffic (bytes and packets) and length of stalls due

to credit depletion; Lustre file system read and write bytes;

and RDMA bytes transmitted and received. LDMS samplers

collect those data at 60-second intervals and calculate derived

metrics, such as the percent of time spent in stalls (PT s) and

percent of total bandwidth used over the last interval. LDMS

daemons synchronize their sampling to within a few ms (ne-

glecting clock skew) in order to provide coherent snapshots

of network state across the whole system.

Network Monitoring Logs: Network failures and conges-

tion levels are monitored and mitigated by Cray’s xtnlrd soft-

ware. This software further logs certain network events in a

well-known format in the netwatch log file. Significant exam-

ple log lines are provided in Cray documents [33,34]. Regular

expression matching for these lines is implemented in Log-

Diver [66], a log-processing tool, which we use to extract the

occurrences, times, and locations of link failures and CPEs.

Workload Data: Blue Waters utilizes the Moab scheduler,

from which application queue time, start time, end time, exit

status, and allocation of nodes can be obtained. The work-

load dataset contains information about 815,006 application

runs that were executed during our study period. A detailed

characterization of Blue Waters workloads can be found in

Appendix B and Blue Waters workload study [58].

Note that we will only be releasing network data. Worload

data and network monitoring logs will not be released due to

privacy and other concerns.

4 CR Extraction and Characterization Tool

This section first describes our motivation for choosing

congestion regions (CRs) as a driver for characterizing net-

work congestion, and then describes our methodology (imple-

mented as the Monet tool) for extracting CRs over each data
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collection interval and the classification of those CRs based

on severity.

4.1 Why Congestion Regions?

We seek to motivate our choice to characterize congestion

regions (CRs) and the need for estimates for severity in terms

of the stall values. We first show that the charcterization of

hotspot links individually do not reveal the spatial and growth

characteristics which is needed for diagnosis. Then, we show

how characterizing CRs is meaningful.

Characterizing hotspot links individually do not reveal

regions of congestion. Figure 3 characterizes the median,

99%ile and 99.9%ile duration of the hotspot links by gen-

erating the distribution of the duration for which a link per-

sists to be in congestion at PT s ≥ PT sThreshold value. For

example, 99.9%ile duration for hotspot links with PT s ≥ 30

is 400 minutes (6.67 hours). The measurements show that the

median duration of hotspot link at different PT s thresholds

is constantly at ∼ 0, however, 99.9%ile duration of hotspot

links linearly decreases with increasing PT s threshold value.

Although such characterizations are useful to understand con-

gestion at link-level, they hide the spatial characteristics of

congestion such as the existence of multiple pockets of con-

gestion and their spread and growth over time. The lack of

such information makes it difficult to understand congestion

characteristics and their root cause.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  10  20  30  40  50  60  70  80  90 100

D
u
ra
ti
o
n
 (
m
in
s)

PTs Threshold (%)

median

99%ile

99.9%ile

Figure 3: Duration of congestion on links at different PT s thresholds

 150
 200
 250
 300
 350
 400
 450
 500
 550

 0  5  10  15  20  25  30

E
x
ec
u
ti
o
n
 T
im
e 
(m
in
s)

Avg. PTs across all the links
 within the application topology (%)

(a) Not using CRs

 150
 200
 250
 300
 350
 400
 450
 500
 550

 0  5  10  15  20  25  30  35

E
x
ec
u
ti
o
n
 T
im
e 
(m
in
s)

Max of average PTs across
 all regions overlapping the
 application topology (%)

Neg
Low
Med
High

(b) Using CRs

Figure 4: Correlating congestion with NAMD application runtime

CRs captures relationship between congestion-level and

application slowdown efficiently. In order to determine

possible severity values and show effectiveness of CRs in

determining application slowdown, we extracted from the

production Blue Waters dataset a set of NAMD [77]8 runs

8NAMD has two different implementations: (a) uGNI shared memory parallel

(SMP)-based, and (b) MPI-based. In this work, unstated NAMD refers to

uGNI SMP-based implementation. uGNI is user level Generic Network

Interface [83].

each of which ran on 1000 nodes with the same input param-

eters. We chose NAMD because it consumes approximately

18% of total node-hours available on Blue Waters9. Figure 4a

shows the execution time of each individual run with respect

to the average PT s over all links within the allocated applica-

tion topology. (Here we leverage TAS to determine severity

value estimates based on the values within the allocation; that

is not a condition for the rest of this work.) Figure 4a shows

that execution time is perhaps only loosely related to the av-

erage PT s; with correlation of 0.33 . In contrast, 4b shows

the relationship of the application execution time with the

maximum average PT s over all CRs (defined in 4.2) within the

allocated topology; with correlation of 0.89. In this case, exe-

cution time increases with increasing maximum of average

PT s over all regions. We found this relationship to hold for

other scientific applications. This is a motivating factor for

the extraction of such congestion regions (CRs) as indicators

of ‘hot-spots’ in the network. We describe the methodology

for CR extraction in the next section.

In addition, we selected approximate ranges of PT s values,

corresponding to increasing run times, to use as estimates

for the severity levels as these can be easily calculated, un-

derstood and compared. These levels are indicated as sym-

bols in the figure. Explicitly, we assign 0-5% average PT s

in a CR as Negligible or ‘Neg’, 5-15% as ‘Low’, 15-25% as

‘Medium’, and > 25% as ‘High’. These are meant to be quali-

tative assignments and not to be rigorously associated with

a definitive performance variation for all applications in all

cases, as the network communication patterns and traffic vol-

umes vary among HPC applications. We will use these ranges

in characterizations in the rest of this work. More accurate

determinations of impact could be used in place of these in

the future, without changing the validity of the CR extraction

technique.

4.2 Extracting Congestion Regions

We have developed an unsupervised clustering approach

for extracting and localizing regions of congestion in the net-

work by segmenting the network into groups of links with

similar congestion values. The clustering approach requires

the following parameters: (a) network graph (G), (b) conges-

tion measures (vs for each vertex v in G), (c) neighborhood

distance metric (dδ), and (d) stall similarity metric (dλ). The

network is represented as a graph G. Each link in the network

is represented as a vertex v in G, and two vertices are con-

nected if the corresponding network links are both connected

to the same switch (i.e., the switch is an edge in the graphs).

For each vertex v, the congestion measures(s) are denoted

by the vector vs, which is composed of credit stalls and inq

9This was best effort extraction and the NAMD application runs may not

be exactly executing the same binary or processing the same data, as user

may have recompiled the code with a different library or used the same

name for dataset while changing the data. There is limited information to

extract suitable comparable runs from historical data that are also subject to

allocation and performance variation.
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Figure 5: CR size, duration, evolution characterization. # of CRs across ‘Low’, ‘Medium’, and ‘High’ are 9.4e05, 7.3e05, and 4.2e05 respectively.

stalls, which we use independently. Distance metrics dδ and

dλ are also required, the former for calculating distances be-

tween two vertices and the latter for calculating differences

among the stalls vs. We assign each vertex the coordinate

halfway between the logical coordinates of the two switches

to which that vertex is immediately connected, and we set dδ

to be the L1 norm between the coordinates. Since the Blue

Waters data consists of directionally aggregated information

as opposed to counters on a per-tile-link (or buffer) basis,

then, in our case, dλ is simply the absolute difference between

the two credit-stall or the two inq-stall values of the links,

depending on what kinds of regions are being segmented.

We consider credit and inq stalls separately to extract CRs,

as the relationship between the two types of stalls is not im-

mediately apparent from the measurements, and thus require

two segmentation passes. Next, we outline the segmentation

algorithm.

Segmentation Algorithm The segmentation algorithm has

four stages which are executed in order, as follows.

• Nearby links with similar stall values are grouped together.

Specifically, they are grouped into the equivalence classes

of the reflexive and transitive closure of the relation ∼r

defined by x ∼r y ⇔ dδ(x,y)≤ δ∧dλ(xs −ys)≤ θp, where

x,y are vertices in G, and δ,θp are thresholds for distance

between vertices and stall values, respectively.

• Nearby regions with similar average stall values, are

grouped together through repetition of the previous step,

but with regions in place of individual links. Instead of

using the link values vs, we use the average value of vs over

all links in the region, and instead of using θp, we use a

separate threshold value θr.

• CRs that are below the size threshold σ are merged into the

nearest region within the distance threshold δ.

• Remaining CRs with < σ links are discarded, so that re-

gions that are too small to be significant are eliminated.

The optimum values for the parameters used in segmenta-

tion algorithms, except for δ, were estimated empirically by

knee-curve [63] method, based on the number of regions pro-

duced. Using that method, the obtained parameter values 10

are: (a) θp = 4, (b) θr = 4, and (c) σ = 20. In [63], the authors

10stall thresholds are scaled by 2.55× to represent the color range (0-255)

for visualization purposes

conclude that the optimum sliding window time is the knee

of the curve drawn between the sliding window time and the

number of clusters obtained using a clustering algorithm. This

decreases truncation errors (in which a cluster is split into

multiple clusters because of a small sliding window time)

and collision errors (in which two events not related to each

other merge into a single cluster because of a large sliding

window time). We fixed δ to be 2 in order to consider only

links that are two hops away, to capture the local nature of

congestion [47]. It should be noted that the region clustering

algorithm may discard small isolated regions (size ≤ σ) of

high congestion. If such CRs do cause high interference, they

will grow over time and eventually be captured.

Our algorithm works under several assumptions: (a) con-

gestion spreads locally, and (b) within a CR, the stall values of

the links do not vary significantly. These assumptions are rea-

sonable for k-dimensional toroids that use directional-order

routing algorithm. The methodology used to derive CRs is not

dependent on the resource allocation policy (such as TAS).

The proposed extraction and its use for characterization is

particularly suitable for analysis of network topologies that

use directional- or dimensional-order routing. In principle,

the algorithm can be applied to other topologies (such as

mesh and high-order torus networks) with other metrics (such

as stall-to-flit ratio). Furthermore, the region extraction al-

gorithm does not force any shape constraints; thus CRs can

be of any arbitrary shape requiring us to store each vertex

associated with the CR. In this work, we have configured the

tool to store and display bounding boxes over CRs, as doing

so vastly reduces the storage requirements (from TBs of raw

data to 4 MB in this case), provides a succinct summary of

the network congestion state, and eases visualization.

We validate the methodology for determining the param-

eters of the region-based segmentation algorithm and its ap-

plicability for CR extraction by using synthetic datasets, as

described in Appendix D.

4.3 Implementation and Performance

We have implemented the region-extraction algorithm as

a modified version of the region growth segmentation al-

gorithm [78] found in the open-source PointCloud Library

(PCL) [9] [4]. The tool is capable of performing run-time

extraction of CRs even for large-scale topologies. Using the
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Blue Waters dataset, Monet mined CRs from each 60-second

snapshot of data for 41,472 links in ∼7 seconds; Monet was

running on a single thread of a 2.0 GHz Intel Xeon E5-2683

v3 CPU with 512 GB of RAM. Thus, on Blue Waters Monet

can be run at run-time, as the collection interval is much

greater than CR extraction time. Since Monet operates on the

database, it works the same way whether the data are being

streamed into the database or it is operating on historical data.

5 Characterization Results

In this section, we present results of the application of

our analysis methodology to five months of data from a large-

scale production HPC system (Blue Waters) to provide charac-

terizations of CRs. Readers interested in understanding traffic

characteristics at the link and datacenter-level may refer to a

related work [16].

5.1 Congestion Region Characterization

Here we assess and characterize the congestion severity.

CR-level Size and Severity Characterizations: Figure 5a

shows a histogram11 of CR sizes in terms of the number of

links for each congested state (i.e., not including ‘Neg’). Fig-

ure 5b show a histogram of the durations of CRs across ‘Low’,

‘Medium’ and ‘High’ congestion levels. These measurements

show that unchecked congestion in credit-based interconnects

leads to:

• High growth and spread of congestion leading to large

CRs. The max size of CRs in terms of number of links

was found to be 41,168 (99.99% of total links), 6,904

(16.6% of total links), and 2,324 (5.6% of total links) across

‘Low’, ‘Medium’ and ‘High’ congestion levels respectively,

whereas the 99th percentile of the12 CR size was found to

be 299, 448, and 214 respectively.

• Localized congestion hotspots, i.e., pockets of congestion.

CRs rarely spread to cover all of the network. The number

of CRs decreases (see Figure 5a) with increasing size across

all severity states except for ‘Low’ for which we observe

increase at the tail. For example, there are ∼16,000 CRs in

the ‘High’ which comprise 128 links but only ∼141 CRs

of size ∼600.

• Long-lived congestion. The CR count decreases with in-

creasing duration, however there are many long-lived CRs.

The 50%ile, 99%ile and max duration of CRs across all

states were found to be 579 minutes (9.7 hours), 1421 min-

utes (23.6 hours), and 1439 minutes (24 hours) respectively,

whereas the 50%ile, 99%ile and max PT s of CRs was found

to be 14%, 46%, and 92%, respectively. CR duration did not

change significantly across ‘Low’, ‘Medium’, and ‘High’.

CR Evolution and State Probability: Figure 5c shows the

transition probabilities of the CR states. The percentage in

11plotted as lines and every tenth point marked on the line using a shape for

clarity.
12We will use %ile to denote percentile in the rest of the paper.
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Figure 6: Network congestion evolution captures transition probabilities

from one severity state to another. Percentage numbers in boxes indicates

percentage of total system wall clock time spent in that state.

the box next to each state shows the percentage of total link-

hours13 spent in that state. It can be interpreted as the proba-

bility that a link will be congested at a severity state at a given

time. For example, there is a probability of 0.10% that a link

will be in the ‘High’. These measurements show that:

• The vast majority of link-hours (99.3% of total link-hours)

on Blue Waters are spent in ‘Neg’ congestion. Considera-

tion of a grosser congestion metric, such as the average stall

time across the entire network, will not reveal the presence

of significant CRs.

• Once a CR of ‘Low’, ‘Medium’ or ‘High’ congestion is

formed, it is likely to persist (with a probability of more

than 0.5) rather than decrease or vanish from the network.

5.2 Network-level Congestion Evolution and

Transition Probabilities

In this section, we assess and characterize the overall net-

work congestion severity state. The overall network conges-

tion severity state is the state into which the highest CR falls.

That assignment is independent of the overall distribution

of links in each state. Figure 6 shows the probabilities that

transitions between network states will occur between one

measurement interval and the next. The rectangular boxes in

the figure indicate the fraction of time that the network resides

in each state. These measurements show the following:

• While each individual link of the entire network is most

often in a state of ‘Neg’ congestion, there exists at least one

‘High’ CR for 56% of the time. However, ‘High’ CRs are

small; in Section 5.1, we found that 99th percentile size of

‘High’ is 214 links. Thus, the Blue Waters network state is

nearly always non-negligible (95%), with the “High” state

occurring for the majority of the time.

• There is a significant chance that the current network state

will persist or increase in severity in the next measurement

period. For example, there is an 87% chance that it will

stay in a ‘High’ state.

• A network state is more likely to drop to the next lower

state than to drop to ‘Neg’.

• Together these factors indicate that congestion builds and

subsides slowly, suggesting that it is possible to fore-

13Link-hours are calculated by ∑ (#links in Region) ×
(measurement time-window) for each state.
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cast (within bounds) congestion levels. Combined with

proactive localized congestion mitigation techniques and

CEMRs, such forecasts could significantly improve overall

system performance and application throughput.

5.3 Application Impact of CR

The potential impact of congestion on applications can be

significant, even when the percentage of link-hours spent in

non-‘Neg’ congested regions is small. While we cannot quan-

tify congestion’s impact on all of the applications running on

Blue Waters (as we lack ground truth information on particu-

lar application runtimes without congestion), we can quantify

the impact of congestion on the following:

• Production runs of the NAMD application [77]. The worst-

case NAMD execution runtime was 3.4× slower in the

presence of high CRs relative to baseline runs (i.e., negli-

gible congestion). The median runtime was found be 282

minutes, and hence worst-case runtime was 1.86× slower

than the median runtime. This is discussed in more detail

in Section 4.1.

• In [16], authors show that benchmark runs of PSDNS [74]

and AMR [2] on 256 nodes slowed down by as much as

1.6× even at low-levels of congestion (5% < PT s ≤ 15%).

To find a upper bound on the number of potentially im-

pacted applications, we consider the applications whose allo-

cations are directly associated with a router in a CR. Out of

815,006 total application runs on Blue Waters, over 16.6%,

12.3%, and 6.5% of the unique application runs were impacted

by ‘Low’, ‘Medium’, and ‘High’ CRs, respectively.

5.4 Congestion Scenarios

In this section, we show how CRs manifest under differ-

ent congestion scenarios: (a) system issues (e.g. changes in

system load), (b) network-component failures (e.g. link fail-

ures), and (c) intra-application contention. Since the CRs are

described as bounding boxes with coordinates described in

relation to the 3D torus, they can easily be visualized in con-

junction with applications’ placements at runtime on the torus.

CRs of ‘Neg’ congestion are not shown in the figures.

Congestion due to System Issues: Network congestion

may result from contention between different applications

for the same network resources. That can occur because of

a change in system load (e.g. launches of new applications)

or change in application traffic that increases contention on

shared links between applications.

Figure 7(i) shows four snapshots, read clockwise, of ex-

tracted CRs, including size and severity state, for different

time intervals during a changing workload. Figure 7(i)(a)

shows that ‘Low’ (blue) CRs when most of the workload con-

sists of multiple instances of MPI-based NAMD [77]. The

overall network state was thus ‘Low’. The CRs remained rela-

tively unchanged for 40 minutes, after which two instances

of NAMD completed and Variant Calling [37] was launched.

Three minutes after the launch, new CRs of increased severity
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Figure 7: Case studies: network congestion is shown due to (i) sys-

tem issues (such as introduction of new applications), (ii) failures

(such as network link failure), and (iii) change in communication

pattern within the application.

occurred (Figure 7(i)(b,c)). The ‘High’ (red) 14 and ‘Medium’

(orange) severity CRs overlapped with the applications.

The increase in the severity of congestion was due to high

I/O bandwidth utilization by the Variant Calling application.

The overall network state remained ‘High’ for ∼143 minutes

until the Variant Calling application completed. At that time,

the congestion subsided, as shown in Figure 7(i)(d).

Congestion Due to Network-component Failures:

Network-related failures are frequent [55, 68] and may

lead to network congestion, depending on the traffic on

the network and the type of failure. In [55], the mean time

between failures (MTBF) for directional links in Blue Waters

was found to be approximately 2.46e06 link-hours (or 280

link-years). Given the large number of links (41,472 links) on

Blue Waters, the expected mean time between failure of a

link across the system is about 59.2 hours; i.e., Blue Waters

admins can expect one directional-link failure every 59.2

hours.

Failures of directional links or routers generally lead to

14not visible and hidden by other regions.
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occurrences of ‘High’ CRs, while isolated failures of a few

switch links (which are much more frequent) generally do not

lead to occurrences of significant CRs. In this work we found

that 88% of directional link failures led to congestion; how-

ever, isolated failures of switch links did not lead to significant

CRs (i.e., had ‘Neg’ CRs).

Figure 7(ii) shows the impact of a network blade failure

that caused the loss of two network routers and about 96

links (x,y,z location of failure at coordinates (12,3,4) and

(12,3,3)). Figure 7(ii)(a) shows the congestion CRs before

the failure incident and Figure 7(ii)(b) shows the CRs just

after the completion of the network recovery. Immediately

after failure, the stalls increased because of the unavailability

of links, requiring the packets to be buffered on the network

nodes. The congestion quickly spread into the geometry of

nearby applications in the torus. Failure of a blade increased

the overall size (in number of links) of ‘Low’ CRs by a factor

of 2, and of ‘Medium’ CRs by a factor of 4.2, and created

previously non existent ‘High’ CRs with more than 200 links.

Congestion Due to Intra-Application Issues: Conges-

tion within an application’s geometry (intra-application con-

tention) can occur even with TAS. Figure 7(iii) shows con-

gestion CRs while the uGNI-based shared memory parallel

(SMP) NAMD application on more than 2,000 nodes. The

application is geometrically mapped on the torus starting at

coordinates (15, 18, 0) and ending at coordinates (1, 21, 23)

(wrapping around). The congestion CRs alternate between the

two states shown (state 1 shown in Figure 7(iii)(a), and state 2,

shown in Figure 7(iii)(b)) throughout the application run-time

because of changes in communication patterns corresponding

to the different segments of the NAMD code.

Intra-application contention is less likely to elevate to

cause global network issue, unless the links are involved in

global (e.g., I/O) routes, or if the resulting congestion is heavy

enough to trigger the system-wide mitigation mechanism (see

Section 2.2).

Importance of diagnosis: In this section, we have iden-

tified three high-level causes of congestion, which we cat-

egorize as (a) system issues, (b) network-component fail-

ures, and (c) intra-application contention. For each cause,

system managers could trigger one of the following actions

to reduce/manage congestion. In the case of intra-application

congestion, an automated MPI rank remapping tool such as

TopoMapping [46], could be used to change traffic flow band-

width on links to reduce congestion on them. In the case

of inter-application congestion (caused by system issues or

network failures), a node-allocation policy (e.g., TAS) could

use knowledge of congested regions to reduce the impact of

congestion on applications. Finally, if execution of an appli-

cation frequently causes inter-application congestion, then

the application should be re-engineered to limit chances of

congestion.

(a) Box plot of duration of throttling (b) Box plot of time between triggers

of congestion mitigation events

Figure 8: Characterizing Cray Gemini congestion mitigation events.

6 Using Characterizations: Congestion Re-

sponse

In this section, we first discuss efficacy of Cray CPEs and

then show how our CR-based characterizations can be used to

inform effective responses to performance-degrading levels

of congestion.

Characterizing Cray CPEs: Recall from Section 2 that the

vendor-provided congestion mitigation mechanism throttles

all NIC traffic injection into the network irrespective of the

location and size of the triggering congestion region. This

mitigation mechanism is triggered infrequently by design and

hence may miss detections and opportunities to trigger more

targeted congestion avoidance mechanisms. On Blue Waters,

congestion mitigation events are generally active for small

durations (typically less than a minute), however, in extreme

cases, we have seen them active for as long as 100 minutes.

Each throttling event is logged in netwatch log files.

We define a congestion mitigation event (CME) as a col-

lection of one or more throttling events that were coalesced

together based on a sliding window algorithm [63] with a slid-

ing window of 210 seconds, and we use this to estimate the

duration of the vendor-provided congestion mitigation mech-

anisms. Figure 8a and 8b shows a box plot of duration of

and time between CMEs respectively. The analysis of CMEs

shows that :

• CMEs were triggered 261 times; 29.8% of which did not

alleviate congestion in the system. Figure 9 shows a case

where the size and severity of CRs increases after a series

of throttling events.

• The median time between triggers of CMEs was found to

be 7 hours. The distribution of time between events is given

in Figure 8b.

• CMEs are generally active for small durations (typically

less than a minute), however, in extreme cases, we have

seen them active for as long as 100 minutes.

• 8% of the application runs were impacted with over 700 of

those utilizing > 100 nodes.

These observations motivate the utility of augmenting the

vendor supplied solution of global traffic suppression to man-

age exceptionally high congestion bursts with our more local-

ized approach of taking action on CRs at a higher system-level

of granularity to alleviate sources of network congestion.

CR-based congestion detection to increase mitigation ef-

fectiveness: CR based characterizations can potentially im-
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Figure 9: A case in which a congestion protection event (CPE)

failed to mitigate the congestion

prove congestion mitigation and CEMR effectiveness by more

accurately determining which scenarios should be addressed

by which mechanisms and by using the identified CRs to

trigger localized responses more frequently than Cray CMEs.

That approach is motivated by our discovery (see Section 5.2)

that the network is in a ‘High’ congestion state the major-

ity of the time, primarily because of CRs of small size but

significant congestion severity.

We define a Regions Congestion Event (RCE) as a time-

window for which each time instance has at least one region of

‘High’ congestion. We calculate it by combining the CR eval-

uations across 5-minute sliding windows. Figure 10 shows

boxplots of (a) average credit PT S across all extracted CRs

during RCEs’, (b) average inq PT S across all RCEs’, (c) times

between RCE, and (d) durations of the RCEs’. These mea-

surements show

• Relative to the vendor-provided congestion mitigation

mechanisms, our characterization results in 13× more

events (3390 RCEs) upon which we could potentially act.

• Vendor provided congestion mitigation mechanisms trigger

on 8% (261 of 3390) of RCEs.

• The average PT S of maximum inq- and credit-stall across

all extracted regions present in RCEs is quite high, at 33.8%

and 27.4%, respectively.

• 25% of 3390 RCEs lasted for more than 30 minutes, and

the average duration was found to be approximately an

hour.

CRs discovery could also be used for informing conges-

tion aware scheduling decisions. Communication-intensive

applications could be preferentially placed to not contend for

bandwidth in significantly congested regions or be delayed

from launching until congestion has subsided.

7 Using Characterizations: Diagnosing

Causes of Congestion
Section 5.4 identifies the root causes of congestion and

discusses the the importance of diagnosis. Here we explore

that idea to create tools to enable diagnosis at runtime.

7.1 Diagnosis Methodology and Tool

We present a methodology that can provide results to help

draw a system manager’s attention to anomalous scenarios

and potential offenders for further analysis. We can combine

system information with the CR-characterizations to help

diagnose causes of significant congestion. Factors include

applications that inject more traffic than can be ejected into

the targets or than the traversed links can transfer, either via

communication patterns (e.g., all-to-all or many-to-one) or

I/O traffic, and link failures. These can typically be identified

by observation(s) of anomalies in the data.

Mining Candidate Congestion-Causing Factors For

each congestion Region, CRi, identified at time T , we cre-

ate two tables ACRi
(T ) and FCRi

(T ), as described below.

ACRi
(T ) table: Each row in ACRi

(T ) corresponds to an ap-

plication that is within Nhops ≤ 3 hops away from the bound-

ing box of the congestion region CRi. ACRi
(T ) contains in-

formation about the application and its traffic characteristics

across seven traffic features: (a) application name, (b) max-

imum read bytes per minute, (c) maximum write bytes per

minute, (d) maximum RDMA read bytes per minute, (e) max-

imum RDMA write bytes per minute, (f) maximum all-to-all

communication traffic bytes per minute, and (g) maximum

many-to-one communication traffic bytes per minute, where

the maximums are taken over the past 30 minutes, i.e., the

most recent 30 measurement windows. The list of applica-

tions that are within Nhops away from congestion region CRi

are extracted from the workload data. The measurements for

features (a) to (e) are extracted by querying network perfor-

mance counter data, whereas we estimate the features (f) and

(g) are estimated from Network performance counter data

by taking several bisection cuts over the application geome-

try and comparing node traffic ingestion and ejection bytes

among the two partitions of the bisection cut.

FCRi
(T ) table: Each row in FCRi

(T ) corresponds to an

application that is within Nhops ≤ 3 away from the congestion

boundary of CRi. FCRi
(T ) contains information about failure

events across three failure features: (a) failure timestamp, (b)

failure location (i.e., coordinates in the torus), and (c) failure

type (i.e., switch link, network link, and router failures). Lists

of failure events that are within Nhops away from congestion

region CRi are extracted from network failure data.

Identifying Anomalous or Extreme Factors: The next

step is to identify extreme application traffic characteris-

tics or network-related failures over the past 30 minutes that

have led to the occurrence of CRs. For each traffic feature

in ACRi
(T ), we use an outlier detection method to identify

the top k applications that are exhibiting anomalous behavior.

The method uses the numerical values of the features listed in

table ACRi
(T ). Our analysis framework uses a median-based

outlier detection algorithm proposed by Donoho [40] for each

CRi. According to [40], the median-based method is more ro-

bust than mean-based methods for skewed datasets. Because

CRs due to network-related failure events 15 are rare relative

to congestion caused by other factors, all failure events that

15In this paper, we do not consider the effect of lane failures on congestion.
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(a) Boxplot of average credit

stall across extracted conges-

tion events.

(b) Boxplot of average inq-

stall across extracted conges-

tion events.

(c) Boxplot of time between

congestion events.

(d) Boxplot of duration of con-

gestion.

Figure 10: Characterization of Regions Congestion Events (RCE).

occur within Nhops of CRi in the most recent 30 measurement

windows are marked as anomalous.

Generating Evidence: The last step is to generate evidence

for determining whether anomalous factors identified in the

previous step are truly responsible for the observed congestion

in the CR. The evidence is provided in the form of a statis-

tical correlation taken over the most recent 30 measurement

time-windows between the moving average stall value of the

links and the numerical traffic feature(s) obtained from the

data (e.g., RDMA read bytes per minute of the application)

associated with the anomalous factor(s). For failure-related

anomalous factors, we calculate the correlation taken over

the most recent 30 measurement time-windows between the

moving average of observed traffic summed across the links

that are within Nhops away from the failed link(s) and the stall

values16. A high correlation produces the desired evidence.

We order the anomalous factors using the calculated correla-

tion value regardless of the congestion cause. Additionally,

we show a plot of stall values and the feature associated with

the anomalous factor(s) to help understand the impact of the

anomalous factor(s) on congestion.

The steps in this section were only tested on a dataset

consisting of the case studies discussed in Section 5.4 and 7

because of lack of ground truth labels on root causes. Creation

of labels on congestion causes requires significant human ef-

fort and is prone to errors. However, we have been able to

generate labels by using the proposed unsupervised method-

ology, which provides a good starting point for diagnosis.

7.2 Comprehensive Congestion Analysis

In this section, we describe an example use case in which

our analysis methodologies were used to detect and diagnose

the congestion in a scenario obtained from real data for which

the ground truth of the cause was available. The overall steps

involved in using our methodologies, included in our Monet

implementation, for congestion detection and diagnosis are

summarized in Figure 11 and described in Section 7. Not all

of the steps discussed below are currently automated, but we

are working on automating an end-to-end pipeline.

Step 1. Extraction of CR. Figure 11(a) shows that our anal-

ysis indicated wide spread high-level congestion across the

system (see the left graph in Figure 11(a)). An in-depth anal-

ysis of the raw data resulted in identification/detection of

16Increase in traffic near a failed link leads to congestion as shown in Sec-

tion 5.4.

congestion regions (see the top-right graph in Figure 11(a)).

Step 2. Congestion diagnosis. There are 3 steps associated

with diagnosing the cause of the congestion.

Step 2.1. Mining candidate factors. To determine the cause

of the congestion, we correlated the CR-data with application-

related network traffic (for all applications that overlapped

with or were near the congestion regions) and network in-

formation to generate candidate factors that may have led to

congestion. In this example, there were no failures; hence, this

analysis generated only application-related candidate factors

ACRi
, as shown in Figure 11.

Step 2.2. Identifying anomalous factors. Next, we utilized

the application traffic characteristics from candidate factors

observed over the last 30 minutes (i.e., many-to-one or all-to-

all traffic communication, and file system statistics such as

read or write bytes) to identify anomalous factors by using

a median-based outlier detection algorithm. In our example,

as indicated in Figure 11(b), the offending application was

“Enzo” which was running on 32 nodes allocated along the “Z”

direction at location (X,Y,Z) = (0,16,16) (indicated by a black

circle in Figure 11(a)). At the time of detection, “Enzo” was

reading from the file system at an average rate of 4 GB/min

(averaged over past 30 minutes and with a peak rate of 70

GB/min), which was 16x greater than the next-highest rate

of read traffic by any other application in that time-window.

The ACRi
(T ) for RDMA read bytes/min was 70 GB/min.

The tool identified the RDMA read bytes/min of the “Enzo”

application as the outlier feature. Hence, “Enzo” was marked

as the anomalous factor that led to the congestion.

Step 2.3. Generating evidence. Once the potential cause

had been established, further analysis produced additional

evidence (e.g., distribution and correlation coefficient asso-

ciated with link stalls in the congestion time window) to

validate/verify the diagnosis results produced in Step 2.2.

Figure 11(c), in the top graph, shows a plot of the sum of

stall rates on all links for all the Gemini routers local to the

compute nodes used by the offending application, (i.e., Enzo)

(normalized to the total stall rate throughout the duration of

the application run). The two peaks (marked) in this top plot

correspond to the increase in read bytes (normalized to total

read bytes during the application run) shown in the bottom

plot. Note that abnormal activity (an excessive amount of traf-

fic to the file system) occurred around 10:10 AM (as shown

Figure 11(c)), which was about 20 minutes before the severe

congestion developed in the system (seen in Figure 11(a)). A
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Figure 11: Detection and Diagnosis methodology applied to real-scenario

“Medium” level of congestion was detected in the system span-

ning a few links (i.e., the congestion region size was small) at

the time of the increased read traffic. Thus the cause was diag-

nosed to be “Enzo”. Although, in this example scenario, the

Cray congestion mitigation mechanism was triggered, it was

not successful in alleviating the network congestion. Instead,

the CR size grew over time, impacting several applications.

“Enzo” was responsible for another triggering of the conges-

tion mitigation mechanism at 3:20 PM (see the top graph in

Figure 11(c)). Monet detected and diagnosed it correctly.

8 Related Work

There is great interest in assessing performance anomalies

in HPC systems with the goal of understanding and minimiz-

ing application performance variation [25, 86, 86, 88]. Mon-

itoring frameworks such as Darshan [65], Beacon [87] and

Kaleidoscope [54] focuses on I/O profiling and performance

anomaly diagnosis. Whereas, our work focuses on assess-

ing network congestion in credit-flow based interconnection

networks. Typically congestion studies are based on measure-

ments of performance variation of benchmark applications

in production settings [25, 88] and/or modeling that assumes

steady state utilization/congestion behavior [23, 52, 64, 73],

and thus do not address full production workloads.

There are research efforts on identifying hotspots and miti-

gating the effects of congestion at the application or system-

layer (e.g., schedulers). These approaches include (a) use

of application’s own indirect measures, such as messaging

rates [25], or network counters from switch that are accessi-

ble only from within an allocation [38, 49, 50, 76], and there-

fore miss measurements of congestion along routes involv-

ing switches outside of the allocation; and (b) use of global

network counter data [17, 26, 28, 30], however, these have

presented only representative examples of congestion through

time or executed a single application on the system [26].

In contrast, this work is the first long-term characterization

of high-speed interconnect network congestion of a large-

scale production system, where network resources are shared

by nodes across disparate job allocations, using global net-

work counters. The characterizations and diagnosis enabled

by our work can be used to inform application-level [29] or

system-level CEMRs (e.g., use of localized throttling instead

of network-wide throttling). Perhaps, the closest work to ours

is [22] which is an empirical study of cloud data center net-

works with a focus on network utilization and traffic patterns,

and Beacon [87] which was used on TaihuLight [43] to moni-

tor interconnection network inter-node traffic bandwidth. Like

others, these works did not involve generation and characteri-

zation of congestion regions, diagnosis of congestion causes,

nor a generalized implementation of a methodology for such,

however, we did observe some complimentary results in our

system (e.g., the existence of hot-spot links, the full bisection

bandwidth was not always used, assessment of persistence of

congestion in links).

Finally, for datacenter networks, efforts such as Express-

Pass [32], DCQCN [89], TIMELY [69] focus on prevent-

ing and mitigating congestion at the network-layer whereas

efforts such as PathDump [84], SwitchPointer [85], Path-

Query [72], EverFlow [90], NetSight [51], LDMS [17] and

TPP [53] focus on network monitoring. These approaches are

tuned for TCP/IP networks and are orthogonal to the work pre-

sented here. Our approach is complementary to these efforts

as it enables characterization of congestion regions (hotspots)

and identification of congestion causing events.

9 Conclusions and Future Work

We present novel methodologies for detecting, character-

izing, and diagnosing network congestion. We implemented

these capabilities and demonstrated them using production

data from NCSA’s 27,648 node, Cray Gemini based, Blue

Waters system. While we utilized the scale and data avail-

ability of the Blue Waters system to validate our approach,

the methodologies presented are generally applicable to other

credit-based k-dimensional meshes or toroidal networks. Our

future work will involve extending the presented techniques to

other network technologies and topologies (see Appendix C).
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A HPC Interconnect Background

Here we briefly give an overview of HPC interconnects and

dive deeper into the details of torus networks.

A.1 Interconnection Networks

An interconnection network is a programmable system that

transports data between terminals. The main design aspects

of interconnection networks are (1) topology, (2) routing, (3)

flow control, and (4) recovery. Topology determines the con-

nection between compute nodes and network nodes (routers,

switches, etc.). Routing, flow control, and recovery heavily

depend on the topology of the interconnection system. The

most widely used topologies in high-performance computing

(HPC) are (1) Fat-Tree (e.g. Summit [13]), (2) DragonFly

(e.g., Edison [15]), and (3) Torus (e.g., Blue Waters [67]).

A.2 Torus Networks

Torus networks can support N = kn nodes which are ar-

ranged in a k-ary n-cube grid (i.e., nodes are arranged in

regular n-dimensional grid with k nodes in each dimension).

In the case of Blue Waters, n = 3. In torus networks, each

node serves simultaneously as an input terminal, output ter-

minal and switching node of the network. Torus networks

are regular (i.e., all nodes have the same degree) and are also

edge-symmetric (useful for load-balancing). Torus networks

are very popular for exploiting physical locality between com-

municating nodes, providing low latency and high throughput.

However, the average hop count to route packets to a ran-

dom node is high compared with other network topolgoies

such as Fat-Tree or DragonFly. On the other hand, extra hop

counts provide path diversity, which is required for building

fault-tolerant architecture.

Routing involves selection of the path from the source

node (src) to destination node (dst) among many possible

paths in a given topology. In torus networks, routing is done

through the directional-order routing algorithm. Directional-

order routing does the following:

• Routes the packet in X+/-, Y+, or Z+ until the dimension

is resolved,

• Routes the packet in Y+/- or Z+ until the Y dimension

is resolved, and

• Routes the packet in Z+/- until the Z dimension is re-

solved, at which point the packet must have arrived at its

destination.

B Workload Information

On Blue Waters, all jobs execute in non-shared mode,

without any co-location with another job on the same com-

pute node. Users can submit batch or interactive jobs using

Moab/Torque [14] and configure several parameters for job

resource request such as: (i) number of nodes, (ii) the number

of cores, and (iii) the system walltime (i.e., requested clock

time for the job). Blue Waters puts a 48-hour walltime restric-

tion. Blue Waters uses Integrated System Console (ISC) [44]

to parse and store the job records and its associated metrics

(performance and failure) in its database.

In [39], Di Martino et al. provided detailed characteriza-

tion of more than 5 million HPC application runs completed

during the first 518 production days of Blue Waters. However,

for completeness, this section provides the workload charac-

teristics of the jobs running on Blue Waters during our study

period. Due to loss of data caused by a failure, we do not have

workload information for Jan 2017 and hence the workload

data shown here is from Feb 2017 - July 2017. During our

study period, 2,219k jobs were executed by 467 unique users.

We characterize the job characteristics in terms of i) job type,

and ii) job size.

B.1 Job type
Blue Waters workload is predominantly composed of sci-

entific applications. The most prolific scientific fields are

summarized in Figure 12a in terms of node-hours. The top

scientific discipline during our study period was ‘Astronomi-

cal Sciences’ (21.9%). However, the top scientific disciplines

changes over time based on resource allocation awards given

by US National Science Foundation and University of Illinois.

Definition 4 Node-seconds: is the product of the number of

nodes and the wallclock time (in seconds) used by a job. The

metric captures the scale of the job’s execution across space

and time.

B.2 Job Size
Figure 13b shows a bar plot summarizing relationship be-

tween percentage by node-seconds (see Def. 4) and percent-

age of jobs, whereas Fig. 13a shows a bar plot summarizing

relationship between number of nodes and percentage of jobs.

74% of the jobs are single-node jobs. However, these jobs

contribute only 5% by node-seconds. The large-scale jobs by

number are small, they contribute to 94% of the total node-

seconds.
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Figure 13: Characteristics of jobs running on Blue Waters.

C Existence of Congestion Hotspots and Re-

gions in DragonFly Interconnect
Here we characterize hotspot links on Edison [15], a 2.57

petaflops production system, to showcase continued existence

of network congestion problems on a current state of the art

network interconnect. Edison uses Cray Aries interconnect

which is based on DragonFly topology and uses adaptive rout-

ing [59]. We use one week of LDMS data that was collected

from Edison at one second interval, and amounts to 7.7 TB.

Our analyses shows 1) presence of long duration hotspot links,

and 2) performance variability on a current state of the art

network interconnect.
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Figure 14: Distribution of hotspot link duration in Edison [replicated from

[56]]

Figure 14 characterizes the median, 99%ile and 99.9%ile

duration of the hotspot links by generating the distribution of

the duration for which a link persists to be in congestion at

PT s ≥ PT s Threshold. While the 99.9%ile hotspot duration is

an order of magnitude lesser compared to the observed results

in Gemini (see Figure. 3), which can be explained by the

low diameter topology and use of congestion-aware routing

policies in Aries. The duration of hotspot is longer than a

minute for congestion thresholds less than 15% PT s. More

details on characterization for Edison can be found in [56].
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Figure 15: Variation of MILC runtime on Edison

Although the hotspot link duration has significantly de-

creased, the performance variation due to congestion contin-

ues to be a problem. For example, we observed significant

performance variation of up to 1.67× compared to baseline

for MILC application [25] on Edison (see Figure 15). MILC

is a communication-heavy application susceptible to conges-

tion on the interconnect. The reason for slowdown of the

application can be attributed to presence of congestion in the

links which rapidly evolves (i.e., a link may not be contin-

uously congested but there is always groups of congested

links). Preliminary analysis of network congestion counters
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obtained from Edison [15] suggests existence of congestion

regions that evolve rapidly. Our future work will focus on

applying and extending our methodology to other intercon-

nects technologies that use different topology other than torus

(e.g., Fat-Tree or DragonFly) or use adaptive-routing (e.g.,

UGAL [59]). In emerging network technologies, vastly more

network performance counters are available that can be used

for detecting congestion and hence there is an increased need

for algorithmic methods for discovering and assessing con-

gestion at system and application-level.

D Validation of Congestion Regions Gener-

ated by Region Segmentation

Validation of the region segmentation algorithm was done

by inspecting visualizations of both the unsegmented and

segmented congestion data. We also generated synthetic con-

gestion data and evaluated our algorithm’s performance on it

as a sanity check.

D.1 Results Analysis Discussion

As we do not have any ground truth for our clustering algo-

rithm and the credit and inq stall on each link widely varies

across the system with time (as discussed in previous subsec-

tion), we attempted some sanity checks in order to validate

that the algorithm produced a sensible clustering of the data.

To facilitate this, we implemented visualization tools for visu-

alizing both the raw, unsegmented data, as well as the final,

segmented data. We then ran our algorithm on the conges-

tion data that was recorded at times when we knew there

were congestion events (e.g. when Cray congestion protec-

tion events were triggered), as well as at multiple randomly

sampled timepoints. We then visualized both sets of data and

manually inspected the regions generated, checking visually

to see if they lined up with the visualization of the raw con-

gestion data. For samples that we inspected, the algorithm

worked well for segmenting the data.

As a further test, we generated random congestion data

following a simplified model and scored our algorithm’s ef-

fectiveness at classifying those data. The data was created by

randomly generating regions of congestion in a 24 x 24 x 24

cube representing the 3D torus of the Blue Waters Gemini in-

terconnect. Each congestion region was created by randomly

generating a) a cuboid in which each dimension was between

3 and 9 links inclusive, b) a random stall value s between

20% and 50%, and c) a random integer from {0, 1}. Depend-

ing on the value of the random integer, s was added to the

credit-stall or inq-stall of all the links in the cuboid. Finally,

after all regions were added random Gaussian noise with

(µ,σ) = (0,2.5) was added to both the credit- and inq-stalls

of all the links in the cube to simulate small variances in the

stall values of each link.

We then ran our algorithm on 100 samples, each with a ran-

dom number of regions (from 1 to 8 inclusive), and assigned

a score as well as calculating the precision and recall for that

sample. We scored the match as follows: for a single sam-

ple, let Ai, i = 1 · · ·n be the actual regions and Bi, i = 1 · · ·m
be the regions the algorithm produced. A single sample was

then assigned the score ( 1
n ∑n

i=1

|Ai∩B ji
|

|Ai∪B ji
| )(

n
max(n,m) ), where |Ai|

represents the number of links in the enclosed region, and

the B ji are the regions that "best" overlap their respective Ai.

The B ji are chosen by going through the regions Ai in order

from smallest to largest, and choosing ji such that B ji has the

largest possible overlap with Ai. Regions created by segmen-

tation that have both inq- and credit-stall < 5% are considered

insignificant and were excluded from this processing.

This scoring assigns a score of 1 to a perfect match, which

degrades to 0 when a) the mismatch between the true and the

matching generated region increases, or when b) the algorithm

generates more regions than true regions.

Based on that scoring, the algorithm achieved an average

score of 0.81 (maximum 1.0) with parameters (θp = 12,θr =
8,θd = 2,θs = 20) over 100 samples, with an average preci-

sion of 0.87 and an average recall of 0.89.

D.2 Summary

While it is not possible to fully validate the efficacy of

our segmentation algorithm, the synthetic datasets generated

give us a degree of confidence that the algorithm does the

right thing on simple models of congestion that satisfy our

assumptions (i.e. that congestion tends to spread locally) and

work well with noise. The comparison between the datasets

before and after the segmentation suggests that algorithm does

still work reasonably well in practice, on real datasets.

The region segmentation algorithm was applied to 5 months

of production data collected as part of the operational environ-

ment of a system. The data was obtained from Blue Waters

through various tools and counters(e.g., network performance

counters, link-aggregated data, scheduler and log files) and

hence is reliant on the correctness. The reliability of the sys-

tem software for synchronized data collection at regular in-

tervals (LDMS) is dependent on the system operation staff

which supports it and performance details for this software

are available in its documention.
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Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A

[1–3]

[4–5]
312445

2

3445

12

strategy B

[1–2]

[3–5]

2
123445

optimal output

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.
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Example First, we provide an intuition how SP-PIFO ap-
proximates PIFO behaviors using SP queues in Fig. 1. The ex-
ample illustrates the scheduling behavior of two SP-PIFO sys-
tems which receive the input packet sequence 341452 .
By convention, we write the first packet being enqueued on
the far-right ( 3 ) and the last one on the far-left ( 2 ). Similarly
to [23], we also consider that lower-rank packets have higher
priority (and use corresponding color codes). The figure il-
lustrates the scheduling decision of each system for the sixth
packet ( 2 ), assuming the first 5 have been enqueued already.

A PIFO queue always schedules incoming packets per-
fectly, leading to the sorted output 123445 . In contrast,
the quality of the scheduling of a SP-PIFO scheme depends
on: (i) the number of SP queues available (here, two); and (ii)
the mapping of packet ranks to those queues. Fig. 1 illustrates
two such mapping strategies. Strategy A maps ranks 1–3 (resp.
4–5) to the highest (resp. lowest) SP queue, while Strategy B
maps ranks 1–2 (resp. 3–5) to the highest (resp. lowest) SP
queue. We see that Strategy B is capable of perfectly sorting
the input sequence, i.e. it behaves like a perfect PIFO queue.
In contrast, Strategy A leads to sub-optimal packet inversions,
e.g. 1 is incorrectly scheduled after 3 .

Insights The key challenge in SP-PIFO is to design adapta-
tion strategies that can: (i) closely approximate PIFO behav-
ior; and (ii) be implemented in programmable data planes.
These are hard challenges as the best mapping strategy de-
pends on the traffic mix and the actual ranks being enqueued,
both of which can change on a per-packet basis.

SP-PIFO approximates the best mapping strategy by dy-
namically shifting the ranks mapped to each queue to reduce
the scheduling mistakes it observes in real time. We show
that SP-PIFO’s adaptation strategy achieves almost the same
performance as provably-correct adaptation strategies while
being implementable in programmable data planes.

Performance We use SP-PIFO to implement a wide variety
of scheduling objectives ranging from minimizing flow com-
pletion times to achieving max-min fairness. For all cases,
we show that SP-PIFO achieves performance on-par with the
state-of-the-art. We also demonstrate that SP-PIFO runs at
line rate on existing programmable hardware.

Contributions Our main contributions are:

• A novel approach for approximating PIFO queues using
strict-priority queues (§3).

• An adaptation algorithm which dynamically adapts the
queue mapping according to the network conditions,
closely-approximating an optimal scheme (§4).

• An implementation1 of SP-PIFO in Java and P4 (§5).

• A comprehensive evaluation showing SP-PIFO effec-
tiveness in approximating perfect PIFO behavior with as
little as 8 queues and on actual hardware switches (§6).

1Available at https://github.com/nsg-ethz/sp-pifo
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Figure 2: Overview of SP-PIFO data-plane pipeline.

2 Overview

In this section, we provide an informal overview of how SP-
PIFO manages to closely approximate PIFO behaviors. At a
high level, SP-PIFO is a priority-queuing scheduling disci-
pline (see Fig. 2) which maps incoming packets to n priority
queues. SP-PIFO assumes that packets are tagged with a rank
indicating the intended scheduling order, with lower ranks be-
ing preferred over higher ones. Packets enqueued in a queue
are scheduled according to their order of arrival (i.e., First-In
First-Out), after all packets enqueued in any higher-priority
queue have been scheduled. Unlike classical priority-queuing
disciplines [20], SP-PIFO dynamically adapts the mapping
between the packet ranks and the priority queues according
to the observed network conditions. In particular, SP-PIFO
adapts the mapping so as to minimize the scheduling “unpi-
foness”, that is, the number of times a higher-rank packet is
scheduled before an enqueued lower-rank packet. We refer to
such scheduling mistakes as inversions.

Mapping SP-PIFO maps each incoming packet to queues
according to the queue bounds. These queue bounds iden-
tify, for each queue i, the smallest packet rank that can be
enqueued. Whenever a packet is received, SP-PIFO scans
the queue bounds bottom-up, starting from the lowest-priority
queue, and enqueues the packet in the first queue with a bound
smaller or equal to the packet rank. Given a packet with rank
r ∈ Z≥0 and n priority queues, let qqq be the vector of queue
bounds (q1, · · · ,qn) ∈ Zn such that 0 ≤ q1 ≤ q2 ≤ ·· · ≤ qn.
For instance, consider a vector qqq = {0,3,5} indicating the
bounds of 3 priority queues, with 0 (resp. 5) indicating the
bound of the highest- (resp. lowest-) priority queue. Given qqq,
SP-PIFO enqueues packets with rank 2 in the first (highest-
priority) queue, packets with rank 3 in the second queue and
packets with rank 10 in the third (lowest-priority) queue.

Adaptation “Unpifoness” can be minimized across multi-
ple packets, e.g. by monitoring the rank distribution over
periodic time windows and adapting the bounds through a
gradient descent, or on a per-packet basis (see Fig. 2). De-
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pending on the characteristics of the rank distribution, the
first strategy can provably converge to the optimal mapping.
Unfortunately, its requirements exceed the capabilities of ex-
isting programmable data planes. SP-PIFO addresses these
two limitations: it works for any rank distribution, on existing
hardware. SP-PIFO dynamically adapts q such that the re-
sulting scheduling closely approximates an ideal PIFO queue,
minimizing the amount of observed inversions by dynamically
shifting the ranks mapped to each queue. SP-PIFO operates
online, without prior knowledge of the incoming packet ranks.

SP-PIFO’s adaptation mechanism consists of two stages:
a push-up stage where future low-rank (i.e. high-priority)
packets are pushed to higher-priority queues; and a push-
down stage where future high-rank (i.e. low-priority) packets
are pushed down to lower queues.

Stage 1: Push-up Whenever SP-PIFO enqueues a packet,
it updates the corresponding queue bound to the rank of
the enqueued packet. Doing so, SP-PIFO aims at ensuring
that future lower-ranked packets will not be enqueued in the
same queue, but in a more preferred one. Intuitively, SP-PIFO
“pushes up” packets with low ranks to the highest-priority
queues, where they will drained first. Of course, as the number
of queues is finite—and often, much smaller than the number
of ranks—this is not always possible, leading to inversions.

Stage 2: Push-down Whenever SP-PIFO detects an inver-
sion in the highest-priority queue (i.e., the packet rank is
smaller than the highest-priority queue bound), it decreases
the queue bound of all queues. Doing so, SP-PIFO en-
sures that future higher-rank packets will be enqueued in
lower-priority queues. Intuitively, after an inversion, SP-PIFO
“pushes down” packets with high ranks to the lower-priority
queues in order to prevent them from causing inversions in the
highest-priority queue. SP-PIFO decreases the queue bounds
according to the magnitude of the inversion, i.e. the difference
between the packet rank and the corresponding queue bound:
the bigger the inversion, the more ranks are pushed down.

Example Fig. 3 illustrates the execution of SP-PIFO with two
priority queues when receiving 3414521 . Without loss
of generality, we consider that the queue bounds are initialized
to 0. SP-PIFO enqueues the first packet ( 3 ) in the lowest-
priority queue and updates its queue bound to 3. Likewise,
SP-PIFO also enqueues the second packet, 4 , in the lowest-
priority queue. As its rank (4) is higher than the queue bound
(3), it then updates the queue bound to 4.

The same process is applied to the subsequent packets until
the second 1 is encountered, creating an inversion (grayed
area in Fig. 3). Indeed, SP-PIFO enqueues 1 in the highest-
priority queue after having enqueued 2 . Once the inversion is
detected, SP-PIFO adapts the queue bounds to 1 and 5−1= 4,
respectively. Observe that if 1 and 2 keep arriving, the bound
of the lowest-priority queue will decrease, eventually reach-
ing 2. At this point, future 1 will not experience inversions
anymore as they will have a dedicated queue.

Reacting to inversions
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Figure 3: SP-PIFO mapping and adaptation mechanisms.

3 SP-PIFO design

In this section, we describe the theoretical basis supporting the
design of SP-PIFO. We first phrase the problem of finding the
optimal queue bounds as an empirical risk minimization prob-
lem in which a loss function—how “unpifo” the current map-
ping is—is minimized (§3.1). We then develop an algorithm
based on gradient descent which provably converges to the
optimal bounds for stable rank distributions (§3.2). We show
how the convergence requirements make the algorithm im-
practical (§3.3). In the following, we present SP-PIFO which
relaxes the requirements at the benefit of practicality (§4).

3.1 Problem statement
Let U : Rn×R≥0→ R≥0 be a loss function such that U(qqq,r)
quantifies the approximation error of scheduling a packet with
rank r based on queue bounds qqq compared to an ideal PIFO
queue. Intuitively, a smaller loss equals a better approximation.
Note that U stands for unpifoness.

The adaptation goal is to find the optimal queue bounds qqq∗

that minimize the expected loss for all possible ranks. Let Q
be the space of all valid bound vectors and R the distribution
of packet ranks, then the optimal queue bounds qqq∗ are:

qqq∗ = argmin
qqq∈Q

E
r∼R

[ U(qqq,r) ] (1)

Finding qqq∗ directly is intractable though. Indeed, evaluating
the expected loss U is impossible since the distribution of
packet ranks R is unknown. We address this problem by
considering the empirical loss Uemp observed over a set D
of i.i.d. rank samples. Doing so, we phrase the problem of
finding qqq∗ as an empirical risk minimization (ERM) problem:

qqq∗ = argmin
qqq∈Q

1
|D| ∑

r∈D
Uemp(D,qqq,r) (2)
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Evaluating empirical losses For a given rank r, we mea-
sure the empirical loss Uemp as the expected number of inver-
sions that r would encounter, if the rank distribution D was
scheduled given the queue bounds qqq, weighted by the cost
that each inversion would cause to the system performance.
This cost can be just a constant value, if all inversions are
treated the same, or it can measure the magnitude of the in-
version (i.e., how big is the difference between ranks causing
it). Since r receives inversions only from higher ranks in the
distribution, Uemp can be rewritten as:

Uemp(D,qqq,r) =
1
|D| ∑

r′∈D
r′>r

costqqq(r′,r) (3)

Having formulated the adaptation goal as an empirical risk
minimization, we aim to solve it by analyzing how changes in
qqq influence the empirical risk, and trying to design an iterative
algorithm capable of converging to the minimal risk.

3.2 Gradient-based adaptation algorithm

We first introduce a greedy, gradient-based algorithm, which
provably converges to the optimal queue bounds qqq∗ provided
that the rank distribution stays constant. The algorithm builds
upon the fact that inversions cannot occur between ranks
mapped to different priority queues. This allows to instantiate
the empirical risk minimization in eq. 2 at a queue level by
simply adding the individual losses of each queue. Letting
U(qi) be the loss function corresponding to the queue with
bound qi, this is:

qqq∗ = argmin
qqq∈Q

∑
qi∈qqq

U(qi) (4)

Letting pD(r) and pD(r′) be the empirical probability of
ranks r and r′, respectively, both mapped to the queue with
bound qi, we can define the unpifoness of the queue as:

U(qi) = ∑
qi≤r<qi+1
r<r′<qi+1

pD(r) · pD(r′) · cost(r′,r) (5)

Overview Considering this problem instantiation, the greedy
algorithm first computes the rank distribution over a set of k
packets before minimizing the expected per-queue unpifoness
by incrementing (resp. decrementing) the queue bounds.
Specifically, after processing the k-th packet, the greedy algo-
rithm selects, for each queue, the bound that most decreases
the overall system unpifoness. Although comparing the perfor-
mance of all bound combinations is not possible, we introduce
an efficient computation mechanism that allows to prune the
search space while preserving convergence. We prove the
optimality of the algorithm in Appendix A.

Incoming packets

adaptation window (k = 7)

3414512. . . . . .

3112

445

112

3445

341412

5

unpifoness = 8α

improving allocation
8α < 9α

worsening allocation
25α > 9α

current allocation

unpifoness = 25α

unpifoness = 9α

1

4

1

3

1

5

[q1 = 1,q2 = 3]
(updated bounds)

r1 r2 r3 r4 r5
0

1/7

2/7

packet rank distribution

Figure 4: The gradient-based algorithm greedily minimizes
the expected unpifoness.

Example We illustrate the execution of the algorithm in
Fig. 4. We assume a system with two priority queues and
assume that the packet sequence 3414512 is received
over and over again. We set the adaptation window k to 7
packets. We initialize the queue bounds to 1 and 4.

The algorithm starts by computing the observed rank dis-
tribution after receiving the 7-th packet. Here, it estimates the
probability of receiving a packet of rank 1 as p(1) = 2/7. Sim-
ilarly, p(2) = 1/7, p(3) = 1/7, p(4) = 2/7 and p(5) = 1/7.
It then computes the expected unpifoness that this distribu-
tion would have generated with the current queue bounds
(eq. 3). For the higher-priority queue, this is U1 = p(1) · p(2) ·
cost(2,1)+ p(1) · p(3) ·cost(3,1)+ p(2) · p(3) ·cost(3,2) =
(2/7 ·1/7) ·(2−1)+(2/7 ·1/7) ·(3−1)+(1/7 ·1/7) ·(3−2).
This equation can be simplified to U1 = 7α where α =
(1/7 · 1/7). Similarly, U2 = p(4) · p(5) · cost(5,4) = 2α,
adding up a total of U = 9α.

Next, the algorithm compares the expected unpifoness that
would be obtained if the queue bound was incremented (gradi-
ent up) or decremented (gradient down) and adapts the queue
bound in the direction resulting in the biggest decrease of
unpifoness.

Gradient up Incrementing q2 from 4 to 5 means that only
rank {5} would be mapped to the lower-priority queue. The
resulting unpifoness is U = 25α. The higher unpifoness (25α

instead of 9α) indicates that, by incrementing q2, the system
gets further away from the PIFO behavior. Note that the in-
crease in unpifoness comes from the higher-priority queue as
rank {5} gets an exclusive queue.

62    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Gradient down In contrast, the system unpifoness reduces
from 9α to 8α when decrementing q2 from 4 to 3. Indeed,
U1 = p(1) · p(2) · cost(2,1) = 2α, and U2 = p(3) · p(4) ·
cost(4,3)+ p(3) · p(5) ·cost(5,3)+ p(4) · p(5) ·cost(5,4) =
6α, adding up to U = 8α. As such, the adaptation mechanism
updates the queue bound: q2 = 3.

The above process repeats every 7-th packet, estimating the
rank distribution before greedily adapting the queue bounds.

3.3 Limitations

While the adaptation algorithm described above provably con-
verges to the optimal mapping (see A.1), two key limitations
make it impractical. First, it is not currently implementable
in existing programmable data planes due to resource con-
straints. Second, the algorithm only converges for stable rank
distributions, which is rarely the case, and its convergence
time directly depends on the distribution size, which can be
large. We explain how to overcome these limitations in §4.

Hardware restrictions Monitoring the rank distributions
over periodic adaptation windows requires a high amount
of memory and computational resources, both of which are
scarce in current programmable data planes. In particular,
implementing the greedy algorithm in hardware (see A.2)
requires to: (i) store the value of each queue bound; (ii) com-
pute the current unpifoness; and (iii) estimate the unpifoness
obtained by incrementing or decrementing each queue bound.
As we explain in A.3, the amount of resources required to run
the algorithm on a practical number of queues (8 queues or
more) exceeds the capabilities of current switch designs.

Convergence In A.4, we study the performance of the
gradient-based algorithm and analyze the effects on conver-
gence when the adaptation window, the number of queues,
and the rank range is modified. We show that, for the algo-
rithm to converge, the rank distribution needs to be stable in
time. However, this is unrealistic in most practical scenarios
where not only the rank distribution is unknown but also varies
through time (e.g., virtual times in fair-queuing schemes).

4 Our approach: SP-PIFO

We now present SP-PIFO, an approximation of the gradient-
based adaptation algorithm (§3.2) which is implementable in
existing data planes and rapidly adapts to varying rank distri-
butions. SP-PIFO substitutes the gradient computation by a
simpler adaptation process which minimizes the probability
of inversions per packet, rather than per k-packets.

In the following, we first show how to instantiate the em-
pirical risk minimization problem (eq. 2) at the packet level
and describe how SP-PIFO solves it (§4.1). We then system-
atically characterize how SP-PIFO handles inversions (§4.2).

4.1 Per-packet adaptation algorithm
The SP-PIFO adaptation algorithm (alg. 1) is based on two
competing stages that act in opposing direction. We show that
this combination manages to strike a balance in the number of
inversions observed by all queues, resulting in a good PIFO
approximation. In the following, we first show how to phrase
the empirical risk minimization problem at the per-packet
level before describing both mechanisms.

Problem statement In contrast to §3.2, we aim at minimiz-
ing the cost generated by scheduling each individual packet.
Formally, we aim to find the optimal bound vector qqq∗ that
minimizes the unpifoness for all enqueued packets P :

qqq∗ = argmin
qqq∈Q

U(P ,qqq) (6)

Let r(p) be the rank of a given packet p ∈ P , and let rp(p, qqq)
be the rank perceived as a result of the mapping decision,
which is identified as the highest rank amongst those of pack-
ets sharing the same queue. Considering that the objective for
the bound vector qqq is to perfectly approximate PIFO behav-
iors, we can estimate the unpifoness at enqueue as:

U(P ,qqq) = ∑
p∈P

costqqq(p) (7)

where
costqqq(p) = rp(p, qqq)− r(p) (8)

Computing the rank perceived requires determining the
highest rank among all packets sharing the queue at any given
moment. This not only requires to keep track of all ranks in
each queue, but also selecting the highest, which is computa-
tionally expensive. Since one of the premises of SP-PIFO is
to be implementable in the data plane, we relax this condition
and keep track of only a single parameter qi per queue. These
parameters, the bounds qqq, simplify the cost estimation of a
potential mapping decision at enqueue.

We discuss how we update these parameters as well as the
tradeoffs of this relaxation below.

Stage 1: “Push-up” The first stage increases qqq to minimize
the unpifoness of the queue to which the incoming packet is
mapped. Specifically, the mapping process scans the queues
bottom-up and enqueues the packet in the first queue that
satisfies r(p) ≥ qi. It then increases qi to the rank of the
enqueued packet. By doing so, the mechanism minimizes (i)
the cost for each packet p (at enqueue time); as well as (ii)
the impact that this decision may have on future packets.

This mapping process guarantees a zero-cost packet alloca-
tion for all packets within a queue. That is, as we effectively
keep track of the highest rank per queue, we ensure that no
packet with lower rank is mapped to the same queue. This
holds for all queues except for the highest-priority queue.
There, packets are enqueued even if r(p)< q1.
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Algorithm 1 SP-PIFO adaptation algorithm

Require: An incoming packet with rank r.
1: procedure PUSH-UP
2: for qi : q1 to qn, qi ∈ qqq do . Scan bottom-up
3: if r ≥ qi or i = 1 then
4: qi← r . Update queue bound
5: ENQUEUE(r, i) . Select queue
6: procedure PUSH-DOWN
7: if r < q1 then . Detect inversion
8: cost← qi− r . Compute cost inversion
9: for q j ∈ qqq, j 6= i do

10: q j← q j− cost . Adapt queue bounds

Stage 2: “Push-down” As illustrated in §2, the first stage
can lead to inversions in the highest-priority queue. The sec-
ond stage aims at counteracting that effect by reducing the
number of ranks enqueued in the highest-priority queue. This
is achieved by decreasing all queue bounds by some given
amount. Different decreasing strategies exist. In SP-PIFO,
we decrease each qi proportionally to the cost of the inver-
sion. That is, we decrease all queue bounds by q1 − r(p).
This choice is both (i) practical, as it can be efficiently im-
plemented in hardware; and (ii) functional, as it results in a
reasonable balance between inversions in the highest-priority
queue and shifts in the other queues. Below, we provide some
insights on the nature of this balance and why it is important
for a good PIFO approximation. We simulate the performance
of different decreasing strategies in §4.2.

Tradeoffs Unlike the gradient-based algorithm (§3.2), SP-
PIFO may converge to a sub-optimal solution exhibiting inver-
sions. One can distinguish three sources of inversions. First,
there can be inversions in the highest-priority queue. These
inversions are proportional to the probability of observing
packets with rank r(p)< q1. Second, after the “push-down”
stage, the queue bounds do not necessarily match the highest
rank packet in the queue anymore. This may lead to inversions
for future packets and is proportional to how often, and how
much, queue bounds are decreased. Finally, because only the
highest rank in a queue is tracked, it can happen that a packet
is enqueued in a higher-priority queue because r(p) < qi,
while r(p) is greater than the lowest rank in queue i, caus-
ing an inversion. This is proportional to the number of ranks
between the minimum rank in the queue and the queue bound.

Average-case analysis The exact amount of inversions intro-
duced by each of these three sources is hard to quantify as
queue bounds are shifting with (almost) every packet. Yet, on
average, we can show that the dynamics of SP-PIFO coun-
teract all three sources. On the one hand, it equalizes the
probability of r(p) < q1 with the probability of packets be-
ing mapped to a specific queue, striking a balance between
inversions because there are no higher-priority queues, and in-

versions because of queue bound mismatch. Furthermore, for
this equalizing, the probabilities of specific ranks are weighted
more if they are far away from queue bounds, which keeps
queues more compact to reduce the chance of overlap.

As a result, on average workloads, SP-PIFO provides a
good approximation, and can adapt to arbitrary rank distribu-
tions. Nevertheless, there are adversarial packet orderings cir-
cumventing these mechanisms, resulting in large unpifoness
(§7). We provide the theoretical foundations for these state-
ments in Appendix B and verify them by simulation in §4.2.

4.2 SP-PIFO analysis
We now dive deeper into understanding SP-PIFO using
switch-level simulations. We compare its behavior to that of
an ideal PIFO queue, along with several well-known schedul-
ing schemes (e.g., FIFO). We first describe the high-level
behavior using a uniform rank distribution (§4.2.1), before
systematically exploring the design space (§4.2.2).

Methodology We implement various scheduling schemes
(including SP-PIFO, FIFO, and our gradient-based algorithm)
in Netbench [3, 15], a packet-level simulator. We analyze the
performance of a single switch scheduling 1500 flows of 1MB
(fixed), which start according to a Poisson distribution. We run
the simulation during one second. We limit the transmission
through an output link of 10 Gbps which corresponds to an
average port utilization of 75%. We measure the number of
inversions generated by each rank at dequeue. Whenever a
packet is polled, we check whether its rank is higher than any
of the ranks remaining at any of the queues. When this occurs,
we count an inversion to the rank generating it (i.e., the one
of the polled packet), making sure that inversions are counted
at most once per polled-packet, regardless of the number of
packets affected by it.

We compare four scheduling schemes: (i) SP-PIFO (§4);
(ii) the gradient-based algorithm (§3, see implementation in
A.2); (iii) a strict-priority scheme fixed to the optimal mapping
for a uniform distribution (i.e., bounds distributed uniformly
across ranks, qi = 12i); and (vi) a FIFO queue, as baseline.
All strict-priority schemes (SP schemes) use 8 queues of 10
packets, while the FIFO queue has a capacity of 80 packets.

4.2.1 Characterizing general SP-PIFO behavior

We start by showcasing how SP-PIFO handles inversions by
analyzing its behavior under a uniform rank distribution. That
is, we tag the packets with a rank drawn from a uniform
distribution (between 0 to 100).

Fig. 5a illustrates the number of inversions generated by
each rank for the different SP schemes in comparison with
FIFO. We see that a FIFO queue generates a uniform number
of inversions across all ranks (since they all share the same
queue). In contrast, SP schemes (all the others in Fig. 5a) gen-
erate a progressively-higher number of inversions as rank val-
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Figure 5: SP-PIFO performance (uniform rank distribution).

ues increase. This occurs as higher ranks are mapped to lower-
priority queues, which drain packets less frequently. Since
those queues have a higher occupancy on average, the poten-
tial number of inversions increases. This behavior, however,
is not preserved for the lowest-priority queue (the far-right
peak in the graph) as a result of starvation. Despite having the
largest average queue size, this queue drains fewer packets
and, as such, the number of inversions it sees decreases.

For the fixed-queue bounds, we see that a saw-shape delin-
eates the inversions observed across ranks in different queues,
reaching the x axis for the ranks corresponding to the queue
bounds. Indeed, the lowest rank within each queue never gen-
erates inversions since the other ranks sharing the queue have
higher values. The second-lowest rank can only generate in-
versions to the lowest, and the progression continues until the
highest rank, which can generate inversions to all the lower
ranks sharing the queue.

When considering the gradient-based greedy algorithm
(which is optimal) and SP-PIFO, we see that the saw-shape
vanishes. This is because queue bounds are not fixed any-
more and successive packets of a given rank can be mapped
to multiple queues. In particular, since the rank distribution
sampled at each adaptation window varies, the queue-bound
design in the gradient-based algorithm oscillates. In SP-PIFO,
as a higher variability is produced, the number of inversions
delineates the envelope of the optimal schemes.

4.2.2 Characterizing SP-PIFO design space

We now systematically explore the design space of SP-PIFO
along four dimensions: the number of queues, the adaptation
strategy when encountering an inversion (in the push-down
stage, §4.1), the utilization levels, and the rank distributions.
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Figure 6: SP-PIFO performance (alternative distributions).

SP-PIFO manages to approximate the optimal algorithms
in all rank distributions and utilization levels, with as little
as 8 queues. The best performances are obtained under low
utilizations and with 32 queues.

Number of queues (Fig. 5b) When using only 8 queues,
SP-PIFO is already within ∼20–29% of the gradient-descent
algorithm and the optimal mapping. With 32 queues, it gets
even closer, producing only ∼22% more inversions than the
optimal and achieving on-par behavior to the gradient-descent
algorithm. Overall, it improves FIFO performance ∼3.3×
(resp. ∼10×) when only 8 (resp. 32) queues are used.

Push-down strategies (Fig. 5c) We evaluate four adaptation
strategies for decreasing each queue bound in the push-down
stage: (i) to the value of the next-higher queue bound (“Queue
Bound”); (ii) by the cost of the inversion (q1− r(p), the strat-
egy in SP-PIFO, “Cost”); (iii) by the rank of the packet caus-
ing the inversion (“Rank”); and (iv) by 1 (“1”).

The best performance is obtained for “Queue Bound”,
which produces ∼15% more inversions than the gradient-
based algorithm. This is followed by “Cost” and “Rank”, with
∼22%, and “1” with ∼33%. While the three first techniques
produce similar results, the “push down” effect of “1” is too
small to balance the “push up” stage, resulting in many inver-
sions. While “Queue Bound” is marginally better than “Cost”,
it is more costly to implement, thus SP-PIFO uses the latter.

Utilization (Fig. 5d) SP-PIFO performance is close to the
gradient-based algorithm. For utilizations below 60%, SP-
PIFO is on-par with the gradient-based algorithm. The number
of inversions slightly increases at higher utilizations: 26% and
38% for 80% and 90%.
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Rank distributions (Fig. 6) We analyze the performance
of SP-PIFO under four alternative rank distributions: expo-
nential, inverse exponential, Poisson and convex. SP-PIFO
performs better than FIFO and is close to the gradient-based
algorithm for each distribution.

The performance of SP-PIFO is better for rank distributions
in which more ranks appear in higher-priority queues. The
number of inversions for SP-PIFO in convex and exponential
distributions is only∼21–24% higher than the gradient-based
algorithm. The corresponding numbers for Poisson and in-
verse exponential amount to ∼49–55%. In all cases, SP-PIFO
performs between ∼2.5–3.5× better than a FIFO, with only
8 priority queues.

5 Implementation

In this section, we describe our implementation of SP-PIFO
in P416 [7] and P414.2 Our implementation follows the algo-
rithm described in §4 and spans 190 (P416) and 735 (P414)
lines of code. It performs three main operations: (i) comput-
ing/extracting the rank from a packet header; (ii) mapping
packets to queues (§2); and (iii) updating the queue bounds.

Rank computation We implemented and tested multiple rank
computation functions such as LSTF [17], STFQ [23], and
FIFO+ [9] in P416. We note that the reduced memory usage in
SP-PIFO leaves room to compute ranks directly on the switch.
That said, most ranking algorithms can directly be computed
by the end-hosts [17].

Mapping We store the queue-bound values in individual reg-
isters and access them sequentially using an if-else condi-
tional tree. For each register access, we leverage the ALU to
perform three operations: (i) we read the queue-bound value
and compare it to the packet rank; (ii) we notify the queue-
selection result to the control flow using a single-bit metadata;
and (iii) we update the queue-bound value to the packet rank
if the queue is selected. In the ALU of the last queue, instead
of transferring the mapping decision to the control flow using
a binary metadata, we first check whether an inversion has
occurred before transferring the potential inversion cost using
larger metadata.

Adaptation When the mapping process detects an inversion,
we need to update all queue bounds. While accessing multiple
registers is not restricted by the P4 specification [10], current
architectures do not support it (among others, to guarantee
line rate). We address this problem by relying on the packet-
resubmission primitive to access the queue bounds a second
time and update them with the measured inversion cost. While
resubmission can possibly break the line-rate guarantees, we
only require it occasionally, upon inversions.

2The P414 code is used for running SP-PIFO on the Tofino platform [2].

Memory requirements Our implementation only requires
n registers where n is the number of queues. We leverage n
ALUs to access registers during the mapping process and n−1
additional ALUs to update registers from the resubmission
pipeline in case of inversions. We use n−1 bits of metadata to
access the mapping results of non-top-priority queues in their
respective ALUs from the control flow (i.e., a single 1-bit
metadata field for each queue) and an extra 32-bit field for the
top-priority queue to (potentially) transfer the inversion cost.

Regarding the number of stages, our implementation uses
more stages than the number of queues in order to perform the
sequential access to queue-bound registers during the map-
ping process. Note that alternative designs would be possible
but would come at the expense of line-rate guarantees.

6 Evaluation

We now evaluate SP-PIFO performance and practicality. We
first use packet-level simulations to evaluate how SP-PIFO ap-
proximates well-known scheduling objectives under realistic
traffic workloads (§6.1). We then evaluate SP-PIFO schedul-
ing performance when deployed on hardware switches (§6.2).

6.1 Performance analysis

We consider two scheduling objectives: (i) minimizing Flow
Completion Times (FCTs); and (ii) enforcing fairness. We
consider that ranks are set at the end hosts for the former
objective and computed in the switch for the latter. For both
objectives, we show that SP-PIFO scheduling capabilities
achieve near-optimal performance, with as little as 8 queues.

Methodology We integrated SP-PIFO in Netbench [3, 15],
a packet-level simulator. Similar to [4], we use a leaf-spine
topology with 144 servers connected through 9 leaf and 4
spine switches. We set the access and leaf-spine links to
1Gbps and 4Gbps, respectively. This results in a theoretical
end-to-end Round-Trip-Time (RTT) of 32.12µs when cross-
ing the spine (4 hops) and 26µs under the leaf (2 hops). We
generate traffic flows following two widely-used heavy-tailed
workloads: pFabric web application and data mining [4]. Flow
arrivals are Poisson-distributed and we adapt their starting
rates to achieve different utilization levels. We use ECMP and
draw source-destination pairs uniformly at random.

6.1.1 Minimizing Flow Completion Times

Rank definition & benchmarks We minimize FCTs by
implementing the pFabric algorithm [4] which sets the packet
ranks according to their remaining flow sizes. Specifically, we
compare pFabric performance when run on top of PIFO and
SP-PIFO. We also analyze TCP NewReno with traditional
drop-tail queues and DCTCP with ECN-marking drop-tail
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Figure 7: pFabric: FCT statistics across different flow sizes in data mining workload.
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Figure 8: pFabric: FCT statistics across different flow sizes in web search workload.

queues. Our pFabric implementation does not consider starva-
tion prevention. As suggested in [4], we approximate pFabric
rate control by using standard TCP with a retransmission
time-out of 3 RTTs, balancing the difference in RTOs be-
tween schemes with the proportional queue size. That is, we
use an RTO of 96µs and 8 queues×10 packets for SP-PIFO
(resp. 1 queue×80 packets in PIFO), and an RTO of 300µs
and 146KB drop-tail queues for both TCP and DCTCP, with
ECN marking at 14.6KB, i.e. ∼10 packets.

Summary Fig. 7 and Fig. 8 depict the average and 99th per-
centile FCTs of large (≥ 1MB) and small flows (< 100KB)
for both data mining and web search workloads. We see that
SP-PIFO achieves close-to-PIFO performance in both dis-
tributions. When comparing performance across flow sizes,
we see that SP-PIFO achieves better performance for small
flows. This is not surprising since those flows are mapped into
higher-priority queues. As discussed in §4.2, strict-priority
schemes provide higher unpifoness protection for packets
mapped into higher-priority queues.

When comparing the two traffic distributions, we see that
SP-PIFO performs better under the data mining workload.
This is again expected. While both distributions are heavy-
tailed, the data mining one is more skewed [4] and therefore
easier to handle for SP-PIFO. Indeed, the probability of having
large flows simultaneously sharing the same port (potentially
blocking smaller flows) is lower for the data mining workload.

Data mining (Fig. 7) The average FCTs achieved by PIFO
and SP-PIFO are similar for small flows, i.e. within ∼0.4–
11%. Concretely, SP-PIFO outperforms DCTCP and TCP by
a factor of ∼2–5× and ∼8–30×, respectively. When consid-
ering the 99th percentile, the gap between PIFO and SP-PIFO
slightly accentuates to ∼9.6–26.6%. Still, SP-PIFO outper-
forms DCTCP and TCP by a factor of∼1.5–4.7× and∼12.5–
22×, respectively. The largest performance gap between PIFO
and SP-PIFO occurs at low utilization. In this regime, the num-
ber of packets scheduled is low and the transient adaptation of
SP-PIFO is more visible. Whenever the utilization is >40%,
the difference is consistently below 20%. Finally, SP-PIFO
and PIFO still perform similarly among large flows: within
∼1.9–9%, representing improvements with respect to TCP
and DCTCP of ∼1.4–2.7× and ∼1.5–2.8×, respectively.

Web search (Fig. 8) The results are similar to the data
mining one, with slightly worse performance for SP-PIFO,
especially amongst big flows. Indeed, since the distribution is
less skewed, bigger flows have higher chances to reach higher-
priority queues, blocking transmissions of smaller flows. Still,
we see that the performance of SP-PIFO is within ∼16.54–
32.5% of PIFO for small flows, and between ∼1.3–4.4× and
∼4.7–16.7× better than DCTCP and TCP. Even at the 99th
percentile, the difference between SP-PIFO and PIFO stays
within ∼20.7–32%. Note that, while the percentages might
seem high, the values we are looking at are very small.
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Figure 9: Fairness: FCT statistics for all flows at different loads, over the web search workload.

6.1.2 Enforcing fairness across flows

Rank definition & benchmarks We enforce fairness
across flows by implementing the Start-Time Fair Queueing
(STFQ) rank design [13] on top of PIFO and SP-PIFO. We
benchmark our solution with AFQ [21] (§8). We analyze the
performance for different flow sizes and number of queues.
Specifically, we use 8 queues×10 packets in SP-schemes
(resp. 1 queue×80 packets for single-queue schemes) and
32 queues×10 packets in SP-schemes (resp. 1 queue×320
packets for single-queue schemes). For AFQ, we select the
bytes-per-round parameter which gives the best performance.
In our testbed, this is 320 and 80 BpR for the 8-queue and
32-queue scenario, respectively. As in [21], we use DCTCP as
transport layer for AFQ, PIFO and SP-PIFO (with an RTO of
300µs). We set ECN marking to 48KB, i.e. ∼32 packets. We
generate traffic following the pFabric web search distribution.

Summary Fig. 9a and Fig. 9b depict the average FCTs of
small flows across different levels of utilization, when 8
queues and 32 queues are used. Fig. 9c depicts the FCTs
across flow sizes at 70% utilization and for 32 queues. In all
cases SP-PIFO achieves near-PIFO behavior and is on-par
performance with AFQ (current state-of-the-art).

Impact of the utilization (Fig. 9a & Fig. 9b) SP-PIFO stays
within ∼23–28% (resp. ∼21–28%) of ideal PIFO across
all levels of utilization when 8 queues (resp. 32) are used.
Even in the highest utilizations, it is consistently below∼26%
(resp. ∼25%). SP-PIFO performance is at the level of AFQ,
within ∼3–10% (resp. ∼0.5–11%), generating improvements
of ∼1.4–2.3× and ∼2.7–4.2× (resp. ∼1.4–2.3× and ∼3.7–
7.4×) over DCTCP and TCP. The fact that SP-PIFO perfor-
mance is equivalent with 8 and 32 queues is not surprising:
as the bandwidth-delay product is low, only a reduced queue
size is required for efficient link utilization.

Impact of flow sizes (Fig. 9c) At 70% utilization, we see
that SP-PIFO lies within ∼10–30% of PIFO performance
for all flow sizes and is on-par with AFQ. The only excep-
tion is for very small flows (<10K) in which AFQ performs
20% better. SP-PIFO improves DCTCP and TCP behaviors

for small flows, within ∼1.5–3X and ∼2–13X, respectively.
Considering the 99th percentile, we see that SP-PIFO stays
within ∼8–35% of PIFO and improves between ∼12–78%
and ∼1.5–10.76× with respect to DCTCP and TCP.

Impact of the number of queues (Fig. 10) We analyze the
impact of the number of queues on average FCTs for both
AFQ and SP-PIFO. We set the BpR at MSS for all queue
configurations, as in [21], avoiding AFQ dropping packets
too often for cases of fewer queues. We see that while AFQ
has a higher sensitivity with respect to the number of queues,
SP-PIFO preserves a similar level of performance, without
any configuration or prior traffic knowledge.

6.2 Hardware testbed

We finally evaluate our hardware-based implementation of SP-
PIFO on the Barefoot Tofino Wedge 100BF-32X platform [2].
We perform two experiments. First, we analyze the bandwidth
allocated by SP-PIFO to flows with different ranks when
scheduled over a bottleneck link. Second, we measure the
impact on the FCT when SP-PIFO runs pFabric. We show
that SP-PIFO efficiently schedules traffic at potentially Tbps.

Bandwidth shares We transmit 8 UDP flows of 20Gbps be-
tween two servers. We generate the flows progressively, in
increasing order of priority (decreasing rank). We use 4 pri-
ority queues and schedule the flows over a 10Gbps interface.
We generate the flows using Moongen [12] and use an inter-
mediate switch to amplify them to the required throughput.

Fig. 11 depicts the flows’ bandwidth and how SP-PIFO
manages to virtually extend the number of queues. As ex-
pected, the first 4 flows receive the complete bandwidth, since
they are mapped to dedicated queues. As the number of flows
exceeds the number of queues, flows start to share queue
space and see a reduced bandwidth.

Flow completion times We simultaneously generate 1000
TCP flows of different sizes, going from 1GB to 100GB in
steps of 100MB, and schedule them over a bottleneck link of
7Gbps. We set the rank of each flow to the absolute flow size,
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Figure 10: Fairness: FCT statistics for all flows at different
loads, when the number of queues is modified.
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following [4]. We compare the FCTs achieved by SP-PIFO
scheduling and the ones achieved by a FIFO queue.

Fig. 12 shows the resulting FCTs. As expected, the FIFO
queue leads to increased FCTs by not considering flow size.
In contrast, SP-PIFO prioritizes short flows over long ones,
minimizing their FCTs and the overall transmission time.

7 Discussion

In this section, we discuss the limitations of SP-PIFO and
how we can mitigate them. We first discuss intrinsic limita-
tions that come from using PIFO as a scheduling scheme. We
then discuss specific limitations of SP-PIFO together with
the problem of adversarial workloads. Finally, we suggest
potential hardware primitives that could facilitate PIFO im-
plementations in the future.

PIFO-inherited limitations Individual PIFO queues suffer
from two main limitations. First, they cannot rate-limit their
egress throughput preventing them from implementing non-
work-conserving scheduling algorithms. SP-PIFO also shares
the same limitation. Second, PIFO queues cannot directly im-
plement hierarchical scheduling algorithms. Yet, as proposed
by [23], multiple SP-PIFO schemes (i.e., using different set
of priority queues) can be grouped as a tree to approximate hi-
erarchical scheduling algorithms. The key challenge consists
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Figure 12: Tofino: FCT statistics across different flow sizes
with pFabric ranks.

in figuring out how to allow access of multiple queues with
existing traffic manager capabilities. While this is orthogonal
to this paper, one option would be to recirculate packets, en-
abling access to the traffic manager (and therefore the queues)
multiple times in the same pipeline. Doing so, while limiting
the impact on performance, is an interesting open question.

SP-PIFO-specific limitations The main limitation of SP-
PIFO is that, as an approximation scheme, it cannot guarantee
to perfectly emulate the behavior of a theoretical PIFO queue
for all ranks. We note two things. First, our evaluation (§6)
shows that, for realistic workloads, SP-PIFO performance is
often on-par with PIFO performances. Second, we note that
SP-PIFO can provide strong PIFO-like guarantees for some
ranks by dedicating some queues to them at the price of re-
duced performance for the other ranks. We believe this is an
interesting tradeoff as current switches can support up to 32
queues per port [21].

Adversarial workloads We have argued that, on average,
SP-PIFO can adapt to any kind of rank distribution. This
has certain limitations. First, we assume that all queues are
drained at some point. Nonetheless, a malicious host could
send a large number of high-priority packets and, as a result,
packets in lower-priority queues would never be drained. Such
“starvation” attacks are common to any type of priority scheme.
For instance, a malicious host could try to grab a bigger slice
of the network resources by setting ranks to 0 in slack-based
algorithms [4,9,17] or resetting flow identifiers in fair-queuing
schemes [23]. The problem of starvation in strict-priority
scheduling is also well-known in the context of QoS and
is typically addressed by policing high-priority traffic at the
edge of the network [18].

Aside from starvation attacks we also assume that, for a
given rank distribution, the particular order of ranks is random.
In practice, this is reasonable. While the ranks for individ-
ual flows might have some structure (e.g., monotonically-
increasing ranks), when various flows are scheduled together
the ordering of their packet ranks is randomized. Yet, attack-
ers could try to coordinate large numbers of flows to create
adversarial orderings, which “outplay” the adaptation mecha-
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nisms (§B.3). Nevertheless, any non-malicious flow which is
active at the same time can thwart such strategies by randomly
breaking the adversarial order. Aside from that, the network
could be monitored to detect such adversarial attacks.

Facilitating PIFO in the future On a forward-looking per-
spective, we note some improvements in hardware primi-
tives that would facilitate PIFO implementations in the future.
As we already discussed in §5, a higher number of stages
would facilitate per-queue state storage and a higher number
of queues would directly increase PIFO performance. Fur-
ther than that, multiple and dynamic memory access between
the ingress and egress pipelines would allow state updates
after inversions in the highest-priority queue without having
to rely on resubmission techniques. In the same direction,
access to queue information from the ingress pipeline or
an enhanced flexibility in the management of strict-priority
queues directly from the data plane would enable more accu-
rate unpifoness prediction at enqueue, opening the doors to
higher-performance SP-PIFO algorithms.

8 Related work

Programmable packet scheduling While scheduling has
been extensively studied over the years, the idea of making it
programmable is relatively recent [17,22]. In [24], Sivaraman
et. al. suggested programmable scheduling by proving that
the best scheduling algorithm to use depends on the desired
performance objective. In [17], Mittal et. al. made the obser-
vation that, despite certain algorithms accept configurations
to approximate a wide range of objectives, a universal packet
scheduling outperforming in all scenarios does not exist.

Several abstractions for programmable scheduling have
been proposed afterwards. In addition to PIFO [24], Eif-
fel [19] presents an alternative queue structure which ap-
proximates fine priorities by exploiting the characteristics
that define packet ranks in most scenarios to diminish the
required computational complexity. In contrast to [19, 24],
which rely on new hardware designs, SP-PIFO shows that
efficient programmable packet scheduling can be achieved
today, at scale, and on existing devices.

Exploiting priority queues Other (recent) schemes lever-
age multiple priority queues for specific performance objec-
tives. They highlight the need of programmable scheduling
in existing devices [16], and illustrate how rank designs pro-
ducing close-to-optimal results can already be implemented
in existing data planes. For enforcing fairness, FDPA [8] sim-
plifies the computational cost of per-flow virtual counters or
individual user queues in traditional-fair-queuing schemes
by using arrival-rate information at a user level. AFQ [21],
instead, emulates ideal fair queuing by implementing per-flow

counters on a count-min sketch and dynamically rotating pri-
orities in a strict-priority scheme to imitate the round-robin
behavior. SP-PIFO differs by fixing queue priorities and dy-
namically adapting the mapping of packets to those queues.
This actually makes SP-PIFO implementable at line rate in
existing data planes.

pFabric [4] and PIAS [5] show the use of priority queues
in flow completion time minimization. While pFabric relies
in general on a PIFO-queue design, [4] includes experiments
in which flows are mapped to priority queues based on their
size. While pFabric experiments use thresholds fixed from the
knowledge of flow distributions, SP-PIFO adapts the mapping
design automatically per-packet, without any traffic knowl-
edge required in advance. PIAS [5] approaches the case of
unknown flow sizes and uses Multi-level Feedback Queues
(MLFQ) [11] to achieve the desired Shortest Job First (SJF)
behavior, by gradually switching flows from higher to lower-
priority queues as their number of transmitted bytes increase.

In contrast to these proposals, SP-PIFO supports a much
wider range of performance objectives. SP-PIFO (like
PIFO [24]) can be used to implement any scheduling algo-
rithm in which the relative scheduling order does not change
with future packet arrivals. As illustrated in the evaluation
section (§6), the algorithms presented in AFQ [21], FDPA [8],
pFabric [4] and PIAS [5] can be used as ranking designs (i.e.,
setting packet ranks to scheduling virtual rounds, estimated
arrival rates, shortest remaining processing time of flows, or
number of packets transmitted under the MLFQ aging design)
to be run on top of SP-PIFO.

9 Conclusions

We presented SP-PIFO, a programmable packet scheduler
which closely approximates the theoretical behavior of PIFO
queues, today, on programmable data planes. The key insight
behind SP-PIFO is to dynamically adapt the mapping between
the packet ranks and a (fixed) set of strict-priority queues.

Our evaluation on realistic workloads shows that SP-PIFO
is practical: it closely approximates PIFO behaviors and, in
many cases, perfectly matches them. We also confirm that
SP-PIFO runs on actual programmable hardware.

Overall, we believe that our work shows that the benefits of
programmable packet scheduling—experimenting with new
scheduling algorithms—can be fulfilled today, in existing
networks.
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A Gradient-based algorithm

In this appendix we detail the greedy iterative algorithm pre-
sented in §3.2. We first motivate and proof how the algorithm
converges to the optimal solution (A.1). Second, we show how
to effectively prune the search space making computation effi-
cient while keeping convergence (A.2). Finally, we analyze its
implementation (A.3) and convergence requirements (A.4).

A.1 Greedy optimization

The algorithm (alg. 2) iteratively minimizes the risk by ad-
justing queue bounds, one queue and one step at a time, until
reaching convergence. At each iteration, the algorithm pre-
dicts, for every qi, whether moving the bound by one (in either
direction) decreases the expected risk, and moves the bound in
the direction of maximum decrease. In the following, we dis-
cuss first, how the algorithm can predict the expected change
in risk, and second, why checking a single step is sufficient to
converge.

Algorithm 2 Greedy optimization

Require: k: Step size, qqqinit: Initial bounds
1: procedure ADAPTATION
2: D← /0

3: qqq← qqqinit . Initialize bounds
4: for all p: incoming packet do
5: D←D ∪{rank(p)} . Collect samples
6: if |D|= k then . Adapt bounds
7: P ← COMPUTERANKPROBABILITES(D)
8: repeat
9: qqq← UPDATEMAPPING(qqq, P )

10: until qqq converges
11: D← /0 . Reset samples
12: function UPDATEMAPPING(qqq, P )
13: for qi ∈ qqq do
14: ∆+← RISKFROMINCREMENT(qi, P )
15: ∆−← RISKFROMDECREMENT(qi, P )
16: if (∆+ ≤ 0) and (∆+ ≤ ∆−) then
17: qi← qi +1
18: else if (∆− ≤ 0) and (∆− < ∆+) then
19: qi← qi−1

return qqq

Risk difference In §3.2, we demonstrated that the risk can
be analyzed on a per-queue basis from the cost of mapping
packets with different ranks to the same queue. Consequently,
changes in the risk resulting from changing the bound vector
qqq can be analyzed by comparing the risk difference in affected
queues. To be precise, every change of a single element qi
in qqq affects two queues, queue i and i−1, as ranks are either
moved from i to i−1 (increase in qi) or moved from i−1 to
i (decrease in qi).

Theorem 1 Let r∗ = qi, let Qi be the set of ranks mapped to
queue i (before any changes). Increasing qi by 1 changes the
risk by:

∆
+
i = p(r∗)( ∑

r∈Qi−1

p(r)cost(r∗,r)− ∑
r∈Qi

p(r)cost(r,r∗))

(9)

Let r∗ = qi−1. Decreasing qi by 1 changes the risk by:

∆
−
i = p(r∗)( ∑

r∈Qi

p(r)cost(r∗,r)− ∑
r∈Qi−1

p(r)cost(r,r∗))

(10)

Proof Increasing qi effectively removes the lowest rank from
queue i, which now becomes the highest rank in queue i−1.
As the new highest rank in queue i− 1, it causes possible
inversions and therefore risk for all other ranks in queue i−1,
resulting in the first, positive term in eq. 9. Conversely, as the
lowest rank in queue, it was prone to receive inversions from
any other element in the queue, supposing a risk in queue i
that is removed with the change. This risk reduction results
in the second, negative, term.

The proof for decreasing qi is symmetrical, with the main
difference that now, rank qi−1 is the one changing from queue
i−1 to queue i.

Greedy step Based on the theory presented, the algorithm
computes the risk and either (for every qi):

(a) Does not move qi, if neither incrementing or decrement-
ing reduces the expected risk.

(b) Increments qi, if incrementing decreases the risk more
than decrementing.

(c) Decrements qi, if decrementing decreases the risk more
than incrementing.

This effectively prunes the search space. At every iteration,
the algorithm only requires a constant amount of compar-
isons, and it does not explore directions further in case they
increase the risk. In the following, we show why deciding not
to explore a direction further after a single step is reasonable.

Theorem 2 Let ∆
+
i and ∆

−
i denote the prospective in- and

decreases from incrementing/decrementing qi by 1. Let ∆
++
i

and ∆
−−
i denote the in- and decreases from increment-

ing/decrementing qi by more than 1. Let the cost function
used to compute the differences be non-decreasing in |r∗− r|
and 0 if and only if r∗ = r. Then:

1. If ∆
+
i > 0, then ∆

++
i > 0.

2. If ∆
−
i > 0, then ∆

−−
i > 0.
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Proof

1: If ∆
+
i > 0,

∑
r∈Qi−1

p(r)cost(r∗,r)> ∑
r∈Qi

p(r)cost(r,r∗) (11)

Let r∗∗ = qi +1, i.e. the second-lowest rank in queue i,
which would be moved if we move the queue bound by
more than 1. Moving both r∗ and r∗∗ would cause the
following change in risk:

∆
++
i = (12)

p(r∗)( ∑
r∈Qi−1

p(r)cost(r∗,r)− ∑
r∈Qi

p(r)cost(r,r∗))+

(13)

p(r∗∗)( ∑
r∈Qi−1

p(r)cost(r∗∗,r)− ∑
r∈Qi

p(r)cost(r,r∗∗))

(14)

Note that we can omit the cost between r∗ and r∗∗ in
eq. 14: as the cost function is by definition symmet-
ric, the additional increase in the left-hand term is ex-
actly equal in magnitude to the additional decrease in
the right-hand term, and thus they cancel each other.
Thus we omit the term to not clutter the notation. Next,
again by definition of the cost function, if r∗∗ > r∗ > r,
then cost(r∗∗,r)≥ cost(r∗,r), and if r > r∗∗ > r∗, then
cost(r,r∗∗)≤ cost(r,r∗). Additionally, we note that the
order of arguments in the cost function does not matter,
as it is symmetrical. Applied to the risk of the lower- and
higher-priority queue respectively (eq. 14), this gives:

∑
r∈Qi−1

p(r)cost(r∗∗,r)≥ ∑
r∈Qi−1

p(r)cost(r∗,r)

∑
r∈Qi

p(r)cost(r,r∗∗)≤ ∑
r∈Qi

p(r)cost(r,r∗)
(15)

And in conclusion, the left hand term in eq. 14 is larger
than the left hand term in eq. 13, and the right hand term
in eq. 14 is smaller then the left hand term in eq. 13.
Consequently, if eq. 13 is positive, eq. 14 must also be
positive (as probabilities are always positive), proving
that if one step does increase the risks, two steps will
also increase the risk. The exact same procedure can be
repeated for larger step sizes, which we omit here.

2: This proof is conceptually identical to the other direction,
and we will thus omit it. The guiding principle is the
same: moving more than one rank can only cause higher
increase in risk in the queue the ranks are moved to, and
lower decrease in risk in the queue the ranks are taken
from, compared to the previous ranks. Thus, if already
moving one rank causes a higher increase in risk in one
queue than decrease in the other, moving additional ranks
does not change this.
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Figure 13: Greedy convergence for uniform rank distribution.

Conclusion We have explained how the greedy algorithm
only requires exploring the direction which offers a potential
decrease in risk, and we have proved how the risk does not
decrease with the distance between ranks (it cannot be better
to have a bigger inversion, only equal or worse). This allows
the greedy algorithm to quickly decide if a direction is not
worth investigating, effectively pruning the search space.

A.2 Efficient computation
As tracking the complete rank distribution at each iteration
might be too expensive in terms of memory, and repeating
the adaptation until convergence too costly in terms of com-
plexity, we show in the following lines how the mathematical
formulation of the problem allows a simplified implementa-
tion which only requires 4 counters per queue.

From the empirical probability definition, pD(r) =
|rD |/|D|, we can rewrite eq. 9 and eq. 10 as:

∆
+
i =

|qi|
|D|2

· ( ∑
r∈Qi−1

|r|cost(qi,r)− ∑
r∈Qi

|r|cost(r,qi))

∆
−
i =
|qi−1|
|D|2

· ( ∑
r∈Qi

|r|cost(qi−1,r)− ∑
r∈Qi−1

|r|cost(r,qi−1))

(16)

Since the queue bound qi stays constant throughout the
adaptation window, each of the summations in eq. 16 can
be implemented through a counter which gets updated every
time a new packet arrives, with its carried rank. Note that the
number of counters required increases linearly with the num-
ber of queues. Also, observe that the counters in eq. 16, only
allow the computation of one step in the gradient. However,
this is enough since, as can be seen in Fig. 13, the one-step
version manages to converge in practice.
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Figure 14: Greedy algorithm adaptation microbenchmark.

A.3 Implementation requirements

With the computation presented in A.2, implementing the
gradient-based algorithm on top of n priority queues, requires
n registers for queue-bound storage and (4 · n) registers for
the gradient computation. The mapping process §2 requires
packets to potentially read all the queue-bound values (i.e.,
for packets scheduled in the highest-priority queue). In the
same direction, while most packets only need to update the
two counters corresponding to their queue, the kth packet
in each sequence needs to access all counters to perform
the adaptation decision. This supposes being able to read
n+(4 ·n) different registers for a single packet (without even
considering the updates). Since existing devices only support
up to 12-16 stages, with a single register access per stage [14],
the implementation of the greedy algorithm is not feasible for
a practical number of queues (i.e., n≥ 8).

A.4 Convergence analysis

We now show how the greedy-algorithm performance varies
when modifying the three main degrees of freedom: (i) the
adaptation window (i.e., the number of packets that are moni-
tored before the adaptation mechanism is executed); (ii) the
number of queues available in the strict-priority scheme; and
(iii) the number of ranks in the distribution. For that, we ana-
lyze the unpifoness evolution of a single switch running the
greedy algorithm for a uniform rank distribution from 0 to
100 until convergence. We compute unpifoness as specified
in §3.1, based on the packets scheduled and the queue bounds
used during the adaptation window.

Effects of varying the adaptation window Fig. 14a shows
the unpifoness evolution when we run the greedy algorithm
on top of a strict-priority scheme of 8 queues, and we vary the
adaptation window from 50 to 7000 packets. We observe that,
for the algorithm to converge, the adaptation window needs
to be broad enough to cover a complete sample of the rank
distribution (i.e., one that characterizes all its representative
behaviors). In our case, any adaptation window below 100
packets can not characterize completely the rank distribution.

Indeed, Fig. 14a depicts how the greedy algorithm correctly
converges as soon as more than 200 packets are monitored per
iteration. In general, the broader the adaptation window, the
more precise the rank distribution estimate, and the better the
adaptation decision. However, while a too narrow adaptation
window can suppose missing important information of the
rank distribution and breaking convergence guarantees, a too
broad adaptation window can make the algorithm too slow to
converge, negatively impacting the performance.

Finally, the greedy algorithm only converges if the rank
distribution has a smaller variability than the adaptation rate
(i.e., the rank distribution is stable during the time it takes for
the algorithm to converge). Relating it to the previous point,
simpler rank distributions, which require narrower adaptation
windows, can afford higher levels of variability. In contrast,
complex distributions which take longer to adapt and are
required to keep stable longer for the algorithm to converge.

Effects of varying the number of queues Fig. 14b depicts
the case in which we fix an adaptation window of 1000 pack-
ets, and modify the number of queues from 8 to 32. All queues
have a constant size of 10 packets. We see how the higher
number of queues the lower the unpifoness, and the better the
PIFO approximation. This is expected since each queue can
be perceived as an opportunity to sort packets with different
ranks, and therefore to reduce the number of inversions. Also,
we can see how the number of iterations required by the algo-
rithm to converge does not directly depend on the number of
queues. This results from the fact that each adaptation deci-
sion analyzes (and, if required, updates) potential redesigns
for all the different queue bounds.

Effects of varying the number of ranks Fig. 14c presents
the effects of modifying the range of the uniform rank distri-
bution from 100 to 1000 ranks, when we fix the number of
queues to 8 and the adaptation window to 1000 packets. As
expected, under the same number of queues, a higher number
of ranks implies an increase in unpifoness. Also, as the rank
ranges get closer to the adaptation window, the distribution
estimates get worse, and the adaptation gets tougher.
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B Theoretical analysis of SP-PIFO

SP-PIFO is a highly-dynamic probabilistic system. In partic-
ular, its queue bounds qqq change with nearly every incoming
packet. Nevertheless, in this section we show that the system
has an attractive equilibrium qqq∗ (B.1), how this equilibrium
balances the different causes of inversions (B.2), and we dis-
cuss the limitations and open question of our analysis (B.3).

B.1 Stable equilibrium

Queue-bound dynamics Consider SP-PIFO as a discrete-
time system, where each time step corresponds to an arriving
packet. Let qqqt be the queue bounds at step t, when the t-th
packet arrives. Then, the queue bounds at step t +1 are:

qqqt+1 = qqqt +∆(rt) (17)

where rt is the rank of the t-th packet, and ∆(rt) is the change
this packet causes on the queue bounds. The queue-bound
change is given by the “push-down” and “push-up” stages of
SP-PIFO, respectively. If the packet causes an inversion in
the highest-priority queue, all queue bounds are decreased
by qt

1− rt . Otherwise, there is exactly one queue i such that
qt

i ≤ rt < qt
i+1, and only qi is set to rt , or equivalently, is

increased by rt − qt
i . Finally, let p(rt) be the probability of

rank r for the t-th packet. Then, the expected value of the
queue bounds at step t +1, and the expected difference to the
queue bounds at step t are, respectively: 3

E
[
qt+1

i
]
= E

[
qt

i
]

(18)

+ ∑
qt

i≤rt<qt
i+1

p(rt)(rt −qt
i)︸ ︷︷ ︸

∆
+
i (qqqt ,rt )

(19)

− ∑
rt<qt

1

p(rt)(qt
1− rt)

︸ ︷︷ ︸
∆−(qqqt ,rt )

(20)

⇔ E
[
qt+1

i −qt
i
]
= ∆

+
i (qqq

t ,rt)−∆
−(qqqt ,rt) (21)

Equilibrium As expected, we can see from eq. 21 that the
change of queue bounds is determined by the “push-up” (∆+

i )
and “push-down” (∆−) stages working against each other.
Indeed, if ∆

+
i is larger than ∆−, the queue bound increases,

and vice versa. The system has an equilibrium qqq∗, where ∆
+
i =

∆− and the expected change is 0. Note that this equilibrium
depends on the rank probability.

Attraction The equilibrium qqq∗ is attractive, i.e. if qt
i < q∗i ,

E[qt+1
i −qt

i]> 0, and vice versa. For small perturbations, this
is straightforward. Assume that all queue bounds are in equi-
librium, except qi. If qt

i < q∗i , then ∆
+
i (qqq

t ,rt) > ∆
+
i (qqq

∗,rt),

3For queue i = n, there is no qt
i+1 and there is no upper bound on rt .

because the sum in eq. 19 has (i) more (non-negative) terms;
and (ii) each term is weighted stronger, as the difference
rt −qt

i is larger. On the other hand, ∆−(qqqt ,rt) is either equal
to ∆−(qqq∗,rt) (for i > 1) or even smaller (for i = 1, as there
are less, and lesser weighted, terms in the sum 20). Thus, the
increase is larger than the decrease, and the expected change
to qi is positive. The argument for qt

i > q∗i is symmetrical.
For larger disturbances, the equilibrium is also attractive,

but it might take more than a single time step, as the “push-up”
stage for qi also depends on qi+1: if both qi < q∗i and qi+1 <
q∗i+1, the “push-up” might be too weak to pull qi towards
the equilibrium. However, this is not the case for the lowest-
priority queue qn, for which the “push-up” does not depend
on another queue. Thus, lower-priority queues (at least qn)
might be pulled towards the equilibrium at first, while other
qi are not. Notice that an expected increase of qt

i+1 increases
the “push-up” mechanism for qt+1

i and decreases it for qt+1
i+1

(eq. 19). Eventually, as the lower-priority queue bound is
getting closer to the equilibrium, the higher-priority queue
bound is also pulled towards the equilibrium. This continues
until the highest-priority queue, where an expected increase of
qt

1 also increases the “push-down” mechanism for all bounds
at step t +1 (eq. 20). As a result, over multiple time steps, the
expected effects of the “push-up” and “push-down” stages
equalize, eventually pulling all qi towards q∗i .

B.2 Balance

As explained in §4, there are three main reasons for unpi-
foness: (i) inversions in the highest-priority queue, after which
all queue bounds are decreased; (ii) inversions in a lower-
priority queue after its queue bound has been decreased; (iii)
inversions in a lower-priority queue, if its highest rank “over-
takes” the lowest rank of a higher-priority queue.

As we can see in eq. 19, eq. 20, and eq. 21, all these factors
play a role in the dynamics of SP-PIFO. At the equilibrium,
the probability of “push-down”, which is exactly the probabil-
ity of an inversion in the highest-priority queue (weighted by
its severity), is equalized with the probability of a packet be-
ing mapped to any other queue (again weighted, more on this
below). While this does not directly correspond to inversions,
the more packets are mapped to lower-priority queues, the
higher is the probability of an inversion in those queues after
a “push-down”. SP-PIFO thus keeps a balance between inver-
sions (i) and (ii), as decreasing (i) would require a stronger
“push-down”, which would then increase (ii), and vice versa.

Finally, as mentioned above, the ranks in a queue are
weighted by how far they are away from the queue bound
(rt − qt

i). This penalizes long (in terms of distinct ranks)
queues, which helps to reduce (iii), as the probability for one
queue “overtaking” another increases the further the actual
queue bound is from the highest-rank packet in the queue,
which increases with the length of the queue.
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B.3 Assumptions and limitations
The analysis presented above is based on a few assumptions,
which we argue are justified, yet pose some open questions.

First, we assume that there exists a finite distribution of
ranks. This is given in practice. Since ranks need to be pro-
cessed and stored in hardware, which offers restricted re-
sources, rank ranges must have a limited size.

Second, although SP-PIFO can rapidly adapt to varying
rank distributions (in particular faster than the greedy algo-
rithm), we assume that the rank distribution is stable enough
such that an equilibrium can exist at all. However, it remains
an open question whether there is a point in which the rank-
distribution variation might be too fast for the system to actu-
ally converge to an equilibrium. In that (hypothetical) case,
the analysis presented herein would not be useful to provide
any additional insights on the performance of SP-PIFO.

Finally, we assume that the ranks appear in random order,
independently from each other. At the first glance, this may
seem irrational, as many scheduling algorithms have some
structure in the way how ranks are assigned to packets for a
given flow. Nevertheless, in practical scenarios, many flows
are scheduled together, and even though the ranks for individ-
ual flows might be structured, the combined ranks of packets
across flows become randomized.

Adversarial workloads Based on the previous assump-
tions, we have shown that SP-PIFO is attracted towards an
expected equilibrium, in which the different sources of unpi-
foness are balanced. However, there are also some limitations.

On the one hand, this equilibrium exists only in expecta-
tion, and the queue bounds are also only attracted to it in
expectation. The actual queue bounds depend on the order
in which packets arrive, as do inversions. So, even though
on average, assuming a random rank ordering, the system
might be balanced, there exist particular adversarial rank or-
derings, which “outplay” the two stages to create events of
large unpifoness. An adversary might attempt to abuse this by
coordinating a large number of flows to force an adversarial
ordering of packet ranks. As an example, she might try to
increase all queue bounds as much as possible before trigger-
ing a “push-down” reaction (e.g., by generating sequences of
monotonically-increasing packet ranks). With the sudden de-
crease in queue-bound values, the high-rank packets mapped
in the queues would generate inversions to the new packets.

Nevertheless, any non-malicious coexisting flow can easily
thwart such strategies, by just randomly breaking the adversar-
ial order. Still, it might be interesting to classify all adversarial
orderings, and subsequently monitor the network to actively
detect such type of attacks.
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Abstract
The performance of modern key-value servers or

layer-7 load balancers often heavily depends on the ef-
ficiency of the underlying TCP stack. Despite numer-
ous optimizations such as kernel-bypassing and zero-
copying, performance improvement with a TCP stack is
fundamentally limited due to the protocol conformance
overhead for compatible TCP operations. Unfortunately,
the protocol conformance overhead amounts to as large
as 60% of the entire CPU cycles for short-lived connec-
tions or degrades the performance of L7 proxying by
3.2x to 6.3x.
This work presents AccelTCP, a hardware-assisted

TCP stack architecture that harnesses programmable
network interface cards (NICs) as a TCP protocol acceler-
ator. AccelTCP can offload complex TCP operations such
as connection setup and teardown completely to NIC,
which simplifies the host stack operations and frees a
significant amount of CPU cycles for application process-
ing. In addition, it supports running connection splicing
on NIC so that the NIC relays all packets of the spliced
connections with zero DMA overhead. Our evaluation
shows that AccelTCP enables short-lived connections to
perform comparably to persistent connections. It also im-
proves the performance of Redis, a popular in-memory
key-value store, and HAProxy, a widely-used layer-7
load balancer, by 2.3x and 11.9x, respectively.

1 Introduction
Transmission Control Protocol (TCP) [24] is undeniably
the most popular protocol in modern data networking.
It guarantees reliable data transfer between two end-
points without overwhelming either end-point nor the
network itself. It has become ubiquitous as it simply
requires running on the Internet Protocol (IP) [23] that
operates on almost every physical network.

Ensuring the desirable properties of TCP, however,
often entails a severe performance penalty. This is es-
pecially pronounced with the recent trend that the gap
between CPU capacity and network bandwidth widens.
Two notable scenarios where modern TCP servers suffer
from poor performance are handling short-lived con-
nections and layer-7 (L7) proxying. Short-lived connec-
tions incur a serious overhead in processing small con-
trol packets while an L7 proxy requires large compute
cycles and memory bandwidth for relaying packets be-
tween two connections. While recent kernel-bypass TCP
stacks [5, 30, 41, 55, 61] have substantially improved the
performance of short RPC transactions, they still need to
track flow states whose computation cost is as large as
60% of the entire CPU cycles (Section §2). An alternative
might be to adopt RDMA [37, 43] or a custom RPC pro-
tocol [44], but the former requires an extra in-network
support [7, 8, 70] while the latter is limited to closed
environments. On the other hand, an application-level
proxy like L7 load balancer (LB) may benefit from zero
copying (e.g., via the splice() system call), but it must
perform expensive DMA operations that would waste
memory bandwidth.
The root cause of the problem is actually clear – the

TCP stack must maintain mechanical protocol confor-
mance regardless of what the application does. For in-
stance, a key-value server has to synchronize the state at
connection setup and closure even when it handles only
two data packets for a query. An L7 LB must relay the
content between two separate connections even if its
core functionality is determining the back-end server.

AccelTCP addresses this problem by exploiting mod-
ern network interface cards (NICs) as a TCP protocol ac-
celerator. It presents a dual-stack TCP design that splits
the functionality between a host and a NIC stack. The
host stack holds the main control of all TCP operations;
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it sends and receives data reliably from/to applications
and performs control-plane operations such as conges-
tion and flow control. In contrast to existing TCP stacks,
however, it accelerates TCP processing by selectively
offloading stateful operations to the NIC stack. Once
offloaded, the NIC stack processes connection setup
and teardown as well as connection splicing that re-
lays packets of two connections entirely on NIC. The
goal of AccelTCP is to extend the performance benefit
of traditional NIC offload to short-lived connections and
application-level proxying while being complementary
to existing offloading schemes.

Our design brings two practical benefits. First, it signif-
icantly saves the compute cycles andmemory bandwidth
of the host stack as it simplifies the code path. Connec-
tion management on NIC simplifies the host stack as
the host needs to keep only the established connections
as well as it avoids frequent DMA operations for small
control packets. Also, forwarding packets of spliced con-
nections directly on NIC eliminates DMAoperations and
application-level processing. This allows the application
to spend precious CPU cycles on its main functionality.
Second, the host stack makes an offloading decision flex-
ibly on a per-flow basis. When an L7 LB needs to check
the content of a response of select flows, it opts them
out of offloading while other flows still benefit from con-
nection splicing on NIC. When the host stack detects
overload of the NIC, it can opportunistically reduce the
offloading rate and use the CPU instead.
However, performing stateful TCP operations on

NIC is non-trivial due to following challenges. First,
maintaining consistency of transmission control blocks
(TCBs) across host and NIC stacks is challenging as any
operation on one stack inherently deviates from the
state of the other. To address the problem, AccelTCP
always transfers the ownership of a TCB along with an
offloaded task. This ensures that a single entity solely
holds the ownership and updates its state at any given
time. Second, stateful TCP operations increase the im-
plementation complexity on NIC. AccelTCP manages
the complexity in two respects. First, it exploits modern
smart NICs equipped with tens of processing cores and
a large memory, which allows flexible packet processing
with C and/or P4 [33]. Second, it limits the complexity
by resorting to a stateless protocol or by cooperating
with the host stack. As a result, the entire code for the
NIC stack is only 1,501 lines of C code and 195 lines of
P4 code, which is small enough to manage on NIC.

Our evaluation shows that AccelTCP brings an enor-
mous performance gain. It outperforms mTCP [41] by
2.2x to 3.8x while it enables non-persistent connections

to perform comparably to persistent connections on
IX [30] or mTCP. AccelTCP’s connection splicing of-
fload achieves a full line rate of 80 Gbps for L7 proxying
of 512-byte messages with only a single CPU core. In
terms of real-world applications, AccelTCP improves
the performance of Redis [17] and HAProxy [6] by a
factor of 2.3x and 11.9x, respectively.
The contribution of our work is summarized as fol-

lows. (1) We quantify and present the overhead of TCP
protocol conformance in short-lived connections and
L7 proxying. (2) We present the design of AccelTCP, a
dual-stack TCP processing system that offloads select
features of stateful TCP operations to NIC. We explain
the rationale for our target tasks of NIC offload, and
present a number of techniques that reduce the imple-
mentation complexity on smart NIC. (3)We demonstrate
a significant performance benefit of AccelTCP over exist-
ing kernel-bypass TCP stacks like mTCP and IX as well
as the benefit to real-world applications like a key-value
server and an L7 LB.

2 Background and Motivation
In this section, we briefly explain the need for an NIC-
accelerated TCP stack, and discuss our approach.

2.1 TCP Overhead in Short Connections
& L7 Proxying

Short-lived TCP connections are prevalent in data cen-
ters [31, 65] as well as in wide-area networks [54, 64, 66].
L7 proxying is also widely used in middlebox applica-
tions such as L7 LBs [6, 36] and application-level gate-
ways [2, 19]. Unfortunately, application-level perfor-
mance of these workloads is often suboptimal as the
majority of CPU cycles are spent on TCP stack oper-
ations. To better understand the cost, we analyze the
overhead of the TCP stack operations in these workloads.
To avoid the inefficiency of the kernel stack [38, 39, 60],
we use mTCP [41], a scalable user-level TCP stack on
DPDK [10], as our baseline stack for evaluation. We use
one machine for a server (or proxy) and four clients and
four back-end servers, all equipped with a 40GbE NIC.
The detailed experimental setup is in Section §6.
Small message transactions: To measure the over-
head of a short-lived TCP connection, we compare the
performance of non-persistent vs. persistent connec-
tions with a large number of concurrent RPC transac-
tions. We spawn 16k connections where each transac-
tion exchanges one small request and one small response
(64B) between a client and a server. A non-persistent
connection performs only a single transaction while a
persistent connection repeats the transactions without
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Figure 1: Small packet (64B) performance with non-persistent
and persistent connections

a closure. To minimize the number of small packets, we
patch mTCP to piggyback every ACK on the data packet.
Figure 1 shows that persistent connections outper-

form non-persistent connections by 2.6x to 3.2x. The
connection management overhead is roughly propor-
tional to the number of extra packets that it handles; two
packets per transaction with a persistent connection vs.
six 1 packets for the same task with a non-persistent con-
nection. Table 1 shows the breakdown of the CPU cycles
where almost 60% of them are attributed to connection
setup and teardown. The overhead mainly comes from
TCP protocol handling with connection table manage-
ment, TCB construction and destruction, packet I/O, and
L2/L3-level processing of control packets.
Our experiments may explain the strong preference

to persistent connections in data centers. However, not
all applications benefit from the persistency. When ap-
plication data is inherently small or transferred sporadi-
cally [32, 69], it would result in a period of inactivity that
taxes on server resources. Similarly, persistent connec-
tions are often deprecated in PHP applications to avoid
the risk of resource misuse [28]. In general, supporting
persistent connections is cumbersome and error-prone
because the application not only needs to keep track of
connection states, but it also has to periodically check
connection timeout and terminate idle connections. By
eliminating the connection management cost with NIC
offload, our work intends to free the developers from
this burden to choose the best approach without perfor-
mance concern.
Application-level proxying: An L7 proxy typically
operates by (1) terminating a client connection (2) ac-
cepting a request from the client and determining the
back-end server with it, and creating a server-side con-
nection, and (3) relaying the content between the client
and the back-end server. While the key functionality
of an L7 proxy is to map a client-side connection to a
back-end server, it consumes most of CPU cycles on re-
laying the packets between the two connections. Packet

1SYN, SYN-ACK, ACK-request, response-FIN, FIN-ACK, and ACK.

Connection
setup/
teardown

TCP processing and state update 24.0%
60.5%

TCP connection state init/destroy 17.2%
Packet I/O (control packet) 10.2%
L2-L3 processing/forward 9.1%

Message
delivery

TCP processing and state update 11.0%
29.0%

Message copy via socket buffer 8.4%
Packet I/O (data packet) 5.1%
L2-L3 processing/forward 4.5%

Socket/epoll API calls 5.6%
Timer handling and context switching 3.5%
Application logic 1.4%

Table 1:CPU usage breakdown of a user-level TCP echo server
(a single 64B packet exchange per connection)

64B 1500B
L7 proxy (mTCP) 2.1 Gbps 5.3 Gbps
L7 proxy with splice() (mTCP) 2.3 Gbps 6.3 Gbps
L3 forward at host (DPDK) 7.3 Gbps 39.8 Gbps
L3 forward at NIC 2 28.8 Gbps 40.0 Gbps

Table 2: L7 proxying and L3 forwarding performance on a
single CPU core

relaying incurs a severe memory copying overhead as
well as frequent context switchings between the TCP
stack and the application. While zero-copying APIs like
splice() can mitigate the overhead, DMA operations be-
tween the host memory and the NIC are unavoidable
even with a kernel-bypass TCP stack.
Table 2 shows the 1-core performance of a simple

L7 proxy on mTCP with 16k persistent connections
(8k connections for clients-to-proxy and proxy-to-back-
end servers, respectively). The proxy exchanges n-byte
(n=64 or 1500) packets between two connections, and
we measure the wire-level throughput at clients includ-
ing control packets. We observe that TCP operations
in the proxy significantly degrade the performance by
3.2x to 6.3x compared to simple packet forwarding with
DPDK [10], despite using zero-copy splice(). Moreover,
DMA operations further degrade the performance by
3.8x for small packets.
Summary: We confirm that connection management
and packet relaying consume a large amount of CPU cy-
cles, severely limiting the application-level performance.
Offloading these operations to NIC promises a large
potential for performance improvement.

2.2 NIC Offload of TCP Features
There have been a large number of works and debates
on NIC offloading of TCP features [35, 47, 50, 57]. While
AccelTCP pursues the same benefit of saving CPU cycles

2All 120 flow-processing cores in Agilio LX are enabled.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    79



and memory bandwidth, it targets a different class of
applications neglected by existing schemes.
Partial TCP offload: Modern NICs typically support
partial, fixed TCP function offloads such as TCP/IP
checksum calculation, TCP segmentation offload (TSO),
and large receive offload (LRO). These significantly save
CPU cycles for processing large messages as they avoid
scanning packet payload and reduce the number of in-
terrupts to handle. TSO and LRO also improve the DMA
throughput as they cut down the DMA setup cost re-
quired to deliver many small packets. However, their
performance benefit is mostly limited to large data trans-
fer as short-lived transactions deal with only a few of
small packets.
Full Stack offload: TCP Offload Engine (TOE) takes
a more ambitious approach that offloads entire TCP
processing to NIC [34, 67]. Similar to our work, TOE
eliminates the CPU cycles and DMA overhead of con-
nection management. It also avoids the DMA transfer of
small ACK packets as it manages socket buffers on NIC.
Unfortunately, full stack TOE is unpopular in practice as
it requires invasive modification of the kernel stack and
the compute resource on NIC is limited [12]. Also, oper-
ational flexibility is constrained as it requires firmware
update to fix bugs or to replace algorithms like conges-
tion control or to add new TCP options. Microsoft’s TCP
Chimney [15] deviates from the full stack TOE as the
kernel stack controls all connections while it offloads
only data transfer to the NIC. However, it suffers from
similar limitations that arise as the NIC implements TCP
data transfer (e.g., flow reassembly, congestion and flow
control, buffer management). As a result, it is rarely en-
abled these days [27].

In comparison, existing schemes mainly focus on effi-
cient large data transfer, but AccelTCP targets perfor-
mance improvement with short-lived connections and
L7 proxying. AccelTCP is complementary to existing
partial TCP offloads as it still exploits them for large
data transfer. Similar to TCP Chimney, AccelTCP’s host
stack assumes full control of the connections. However,
the main offloading task is completely the opposite: Ac-
celTCP offloads connection management while the host
stack implements entire TCP data transfer. This design
substantially reduces the complexity on NIC while it
extends the benefit to an important class of modern
applications.

2.3 Smart NIC for Stateful Offload
Smart NICs [1, 3, 14, 25] are gaining popularity as
they support flexible packet processing at high speed
with programming languages like C or P4 [33]. Re-
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Figure 3: Packet forwarding performance on Agilio LX

cent smart NICs are flexible enough to run Open
vSwitch [62], Berkeley packet filter [49], or even key-
value lookup [53], often achieving 2x to 3x performance
improvement over CPU-based solutions [16]. In this
work, we use Netronome Agilio LX as a smart NIC plat-
form to offload stateful TCP operations.
As shown in Figure 2, Agilio LX employs 120 flow

processing cores (FPCs) running at 1.2GHz. 36 FPCs
are dedicated to special operations (e.g., PCI or Inter-
laken) while remaining 84 FPCs can be used for arbitrary
packet processing programmed in C and P4. One can im-
plement the basic forwarding path with a match-action
table in P4 and add custom actions that require a fine-
grained logic written in C. The platform also provides
fast hashing, checksum calculation, and cryptographic
operations implemented in hardware.
One drastic difference from general-purpose CPU is

that FPCs have multiple layers of non-uniform memory
access subsystem – registers and memory local to each
FPC, shared memory for a cluster of FPCs called "island",
or globally-accessible memory by all FPCs. Memory ac-
cess latency ranges from 1 to 500 cycles depending on
the location,where access to smallermemory tends to be
faster than larger ones. We mainly use internal memory
(IMEM, 8MB of SRAM) for flow metadata and external
memory (EMEM, 8GB of DRAM) for packet contents.
Depending on the flow metadata size, IMEM can sup-
port up to 128K to 256K concurrent flows. While EMEM
would support more flows, it is 2.5x slower. Each FPC
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Figure 4: Split of TCP functionality in AccelTCP

can run up to 8 cooperative threads – access to slow
memory by one thread would trigger a hardware-based
context switch to another, which takes only 2 cycles.
This hides memory access latency similarly to GPU.

Figure 3 shows the packet forwarding performance
of Agilio LX as a function of cycles spent by custom C
code, where L3 forwarding is implemented in P4. We
see that it achieves the line rate (40 Gbps) for any pack-
ets larger than 128B. However, 64B packet forwarding
throughput is only 42.9 Mpps (or 28.8 Gbps) even with-
out any custom code. We suspect the bottleneck lies in
scattering and gathering of packets across the FPCs. The
performance starts to drop as the custom code spends
more than 200 cycles, so minimizing cycle consumption
on NIC is critical for high performance.

3 AccelTCP Design Rationale
AccelTCP is a dual-stack TCP architecture that har-
nesses NIC hardware as a TCP protocol accelerator. So,
the primary task in AccelTCP’s design is to determine
the target for offloading. In this regard, AccelTCP di-
vides the TCP stack operations into two categories: cen-
tral TCP operations that involve application data trans-
fer and peripheral TCP operations required for protocol
conformance or mechanical operations that can bypass
the application logic. Central TCP operations refer to
all aspects of application data transfer – reliable data
transfer with handling ACKs, inferring loss and packet
retransmission, tracking received data and performing
flow reassembly, enforcing congestion/flow control, and
detecting errors (e.g., abrupt connection closure by a
peer). These are typically complex and subject to flexi-
ble policies, which demands variable amount of compute
cycles. One can optimize them by exploiting flow-level
parallelism [5, 30, 41, 59] or by steering the tasks into
fast and slow paths [48] on kernel-bypass stacks. How-
ever, the inherent complexity makes it a poor fit for NIC
offloading as evidenced by the full stack TOE approach.
Peripheral operations refer to the remaining tasks

whose operation is logically independent from the ap-
plication. These include traditional partial NIC offload

tasks 3, connection setup and teardown, and blind relay-
ing of packets between two connections that requires
no application-level intervention. Peripheral tasks are
either stateless operations with a fixed processing cost
or lightly stateful operations that synchronize the states
for reliable data transfer. We mainly target these opera-
tions for offloading as they can be easily separated from
the host side that runs applications.
Connection management offload: State synchro-
nization at the boundary of a connection is a key re-
quirement for TCP, but it is a pure overhead from the ap-
plication’s perspective. While NIC offload is logically de-
sirable, conventional wisdom suggests otherwise due to
complexity [15, 48]. Our position is that one can tame the
complexity on recent smart NICs. First, connection setup
operations can be made stateless with SYN-cookies [20].
Second, the common case of connection teardown is
simple state transition, and modern smart NICs have
enough resources to handle a few exceptions.
Connection splicing offload: Offloading connection
splicing to NIC is conceptually complex as it requires
state management of two separate connections on NIC.
However, if the application does not modify the re-
layed content, as is often the case with L7 LBs, we can
simulate a single logical connection with two physi-
cal connections. This allows the NIC to operate as a
fast packet forwarder that simply translates the packet
header. The compute cycles for this are fixed with a
small per-splicing state.
To support the new offload tasks, we structure the

dual-stack design with the following guidelines.
1. Full control by the host side: The host side should
enforce full control of offloading, and it should be able to
operate standalone. This is because the host stack must
handle corner cases that cannot benefit from offload. For
example, a SYN packet without the timestamp option
should be handled by the host stack as SYN-cookie-based
connection setup would lose negotiated TCP options
(Section §4). Also, the host stack could decide to tem-
porarily disable connection offload when it detects the
overload of the NIC.
2. Single ownership of a TCB: AccelTCP offloads
stateful operations that require updating the TCB. How-
ever, maintaining shared TCBs consistently across two
stacks is very challenging. For example, a send buffer
may have unacknowledged data along with the last FIN
packet. The host stack may decide to deliver all data
packets for itself while it offloads the connection tear-
down to NIC simultaneously. Unfortunately, handling

3Such as checksum calculation, TSO, and LRO.
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ACKs and retransmission across two stacks require care-
ful synchronization of the TCB. To avoid such a case,
AccelTCP enforces an exclusive ownership of the TCB at
any given time – either host or NIC stack holds the own-
ership but not both. In the above case, the host stack
offloads the entire data to the NIC stack and forgets
about the connection. The NIC stack handles remaining
data transfer as well as connection teardown.
3. Minimal complexity on NIC: Smart NICs have lim-
ited compute resources, so it is important to minimize
complex operations on NIC. A tricky case arises at con-
nection teardown as the host stack can offload data trans-
fer as well. In that case, the host stack limits the amount
of data so that the NIC stack avoids congestion control
and minimizes state tracking of data packets.

4 AccelTCP NIC Dataplane
In this section, we present the design of AccelTCP NIC
stack in detail. Its primary role is to execute three offload
tasks requested by the host stack. Each offload task can
be enabled independently and the host side can decide
which flows to benefit from it. The overall operation of
NIC offload is shown in Figure 5.

4.1 Connection Setup Offload
An AccelTCP server can offload the connection setup
process completely to the NIC stack. For connection
setup offload, the server installs the metadata such as
local IP addresses and ports for listening on NIC, and
the NIC stack handles all control packets in a three-way
handshake. Then, only the established connections are
delivered to the host stack.
AccelTCP leverages SYN cookies [20] for stateless

handshake on NIC. Stateless handshake enables a more
efficient implementation asmost smartNICs support fast
one-way hashing functions in hardware [1, 3, 14]. When
a SYN packet arrives, the NIC stack responds with an
SYN-ACK packet whose initial sequence number (ISN)
is chosen carefully. The ISN consists of 24 bits of a hash
value produced with the input of the 4-tuple of a connec-
tion and a nonce, 3 bits of encoded maximum segment
size (MSS), and time-dependent 5 bits to prevent replay
attacks. When an ACK for the SYN-ACK packet arrives,
the NIC stack verifies if the ACK number matches (ISN +
1). If it matches, the NIC stack passes the ACK packet up
to the host stack with a special marking that indicates
a new connection and the information on negotiated
TCP options. To properly handle TCP options carried
in the initial SYN, the NIC stack encodes all negotiated
options in the TCP Timestamps option [22] of the SYN-
ACK packet [9]. Then, the NIC stack can retrieve the

information from the TSecr value echoed back with the
ACK packet. In addition, we use extra one bit in the
timestamp field to differentiate a SYN-ACK packet from
other packets. This would allow the NIC stack to bypass
ACK number verification for normal packets. The TCP
Timestamps option is popular (e.g., enabled on 84% of
hosts in a national-scale network [51]), and enabled by
default on most OSes, but in case a client does not sup-
port it, the NIC stack hands the setup process over to
the host stack.

One case where SYN cookies are deprecated is when
the servermust send the data first after connection setup
(e.g., SMTP server). In this case, the client could wait
indefinitely if the client-sent ACK packet is lost as the
SYN-ACK packet is never retransmitted. Such applica-
tions should disable connection setup offload and have
the host stack handle connection setup instead.

4.2 Connection Teardown Offload
The application can ask for offloading connection tear-
down on a per-flow basis. If the host stack decides to
offload connection teardown, it hands over the owner-
ship of the TCB and remaining data in the send buffer
to the NIC stack. Then, the host stack removes the flow
entry from its connection table, and the NIC stack con-
tinues to handle the teardown.

Connection teardown offload is tricky as it must main-
tain per-flow states while it should ensure reliable de-
livery of the FIN packet with the offloaded data. To
minimize the complexity, the host stack offloads con-
nection teardown only when the following conditions
are met. First, the amount of remaining data should be
smaller than the send window size. This would avoid
complex congestion control on NIC while it still benefits
most short-lived connections. 4 Second, if the application
wants to confirm data delivery at close(), the host stack
should handle the connection teardown by itself. For
example, an application may make close() to block until
all data is delivered to the other side (e.g., SO_LINGER
option). In that case, processing the teardown at the host
stack is much simpler as it needs to report the result to
the application. Fortunately, blocking close() is rare in
busy TCP servers as it not only kills the performance, but
a well-designed application-level protocol may avoid it.
Third, the number of offloaded flows should not exceed
a threshold, determined by available memory size on
NIC. For each connection teardown, the host stack first
checks the number of connection closures being handled
by the NIC, and the host stack carries out the connection
teardown if the number exceeds the threshold.

4RFC 6928 [21] suggests 10 MSS as the initial window size.
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Figure 6: Timer bitmap wheel for RTO management on NIC.
TRTO represents the remaining time until retransmission.

The NIC stack implements the teardown offload by
extending the TSO mechanism. On receiving the offload
request, it stores a 26-byte flow state 5 at the on-chip
SRAM (e.g., 8MB of IMEM), segments the data into TCP
packets, and send them out. Then, it stores the entire
packets at the off-chip DRAM (e.g., 8GB of EMEM) for
potential retransmission. This would allow tracking over
256k concurrent flows being closed on NIC.
Timeout management: The teardown process re-
quires timeout management for packet retransmission
and for observing a timeout in the TIME_WAIT state.
AccelTCP uses three duplicate ACKs and expiration of
retransmission timeout (RTO) as a trigger for packet
retransmission. For teardown offload, however, RTO is
the main mechanism as the number of data packets is
often too small for three duplicate ACKs. Also, any side
that sends the FIN first would end up in the TIME_WAIT
state for a timeout. A high-performance server typically
avoids this state by having the clients initiate the con-
nection closure, but sometimes it is inevitable. AccelTCP
supports the TIME_WAIT state, but it shares the same
mechanism as RTO management for the timer.
Unfortunately, an efficient RTO implementation on

NIC is challenging. Formulticore CPU systems, a list or a
hash table implementation wouldworkwell as eachCPU
core handles only its own flows affinitized to it without
a lock. However, smart NICs often do not guarantee

5a 4-tuple of the connection, TCP state, expected sequence and
ACK numbers, and current RTO.

flow-core affinity, so a list-based implementation would
incur huge lock contention with many processor cores.
We observe that RTO management is write-heavy

as each offloaded flow (and each packet transmission)
would register for a new RTO. Thus, we come up with a
data structure called timer bitmap wheel, which allows
concurrent updates withminimal lock contention. It con-
sists of𝑁 timer bitmaps where each bitmap is associated
with a distinct timeout value. The time interval between
two neighboring timer bitmaps is fixed (e.g., 100 us for
Figure 6). When one time interval elapses, all bitmaps
rotate in the clockwise direction by one interval, like
Figure 6-(b). Bitmap rotation is efficiently implemented
by updating a pointer to the RTO-expired bitmap every
time interval. Each timer bitmap records all flows with
the same RTO value, where the location of a bit repre-
sents a flow id (e.g., n-th bit in a bitmap refers to a flow
id, n). When the RTO of a timer bitmap expires, all flows
in the bitmap retransmit their unacknowledged packets.
From the location of each bit that is set, one can derive
the corresponding flow id and find the pointer to its flow
state that holds all the metadata required for retransmis-
sion. Then, all bits in the bitmap are reset to zero and its
RTO is reset to (N x (time interval)). RTO-expired flows
register for a new RTO. When an ACK for the FIN of a
flow arrives, the flow is removed from its RTO bitmap.
One can implement an RTO larger than the maximum
by keeping a counter in the flow state that decrements
every expiration of the maximum RTO.

The timer bitmap wheel allows concurrent updates by
multiple flows as long as their flow ids belong to differ-
ent 32-bit words in the bitmap. Only the flows whose ids
share the same 32-bit word contend for a lock for access.
On the down side, it exhibits two overheads: memory
space for bitmaps and bitmap scanning at RTO expira-
tion. The memory consumption is not a big concern as
it requires only 8KB for each bitmap for 64k concurrent
flows being closed. We reduce the scanning overhead
by having multiple cores scan a different bitmap region
in parallel. Keeping a per-region counter might further
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Figure 7: Connection splicing on NIC dataplane. IP𝐶 , IP𝑃 , IP𝑆 :
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client side and the server side, RBUF𝐶 , RBUF𝑆 : read buffers on
each side, WBUF𝐶 , WBUF𝑆 : write buffers on each side.

reduce the scanning overhead, but we find that the cost
for counter update is too expensive even with atomic
increment/decrement.

4.3 Connection Splicing Offload
Connection splicing offload on NIC allows zero-DMA
data transfer. The key idea is to simulate a single con-
nection by exploiting the NIC as a simple L4 switch that
translates the packet header. An L7 proxy can ask for
connection splicing on NIC if it no longer wants to relay
packets of the two connections in the application layer.
On a splicing offload request, the host stack hands over
the states of two connections to NIC, and removes their
TCBs from its connection table. The NIC stack takes over
the ownership, and installs two L4 forwarding rules for
relaying packets. The host stack keeps track of the num-
ber of spliced connections offloaded to NIC, and decides
whether to offload more connections by considering the
available memory on NIC.

Figure 7 shows the packet translation process. It sim-
ply swaps the 4-tuples of two connections and translates
the sequence/ACK numbers and TCP/IP checksums of
a packet with pre-calculated offsets. While the Figure
assumes that the proxy does not modify any content,
but one can easily support such a case. For example, if a
proxy modifies request or response headers before splic-
ing, the host stack only needs to reflect the extra delta
in sequence and ACK numbers into the pre-calculated
offsets. One limitation in our current scheme is that the
proxy may not read or modify the packets any more
after splicing offload.
Efficient TCP/IP checksum update: Translating a
packet header requires TCP/IP checksum update. How-
ever, recalculating the TCP checksum is expensive as it
scans the entire packet payload. To avoid the overhead,
AccelTCP adopts differential checksum update, which
exploits the fact that the one’s complement addition is

1
2
3 
4
5
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9
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On splicing offload for a flow from IPC(PC) to IPS(PS):
CSOIP IPS + IPC
CSOTCP CSOIP + PS + Pps – PC – Ppc + ΔSEQ+ ΔACK
Store CSOIP and CSOTCP

For any next incoming packets from IPC(PC) to IPS(PS):
Load CSOIP and CSOTCP
CSIP CSIP + CSOIP
CSTCP CSTCP + CSOTCP
If (SEQ #) > (– ΔSEQ), then CSTCP CSTCP – 1
If (ACK #) > (– ΔACK), then CSTCP CSTCP – 1

Figure 8:Differential checksum update. CSO: checksum offset,
CS: checksum. Other notations are in Figure 7. Note that +
and − indicate 1’s complement addition and subtraction.

both associative and distributive. Since only the 4-tuple
of a connection and sequence and ACK numbers are
updated, we only need to add the difference (or offset)
of these values to the checksum. Figure 8 shows the
algorithm. Upon splicing offload request, the NIC stack
pre-calculates the offsets for IP and TCP checksums, re-
spectively (Line 2-4). For each packet for translation, it
adds the offsets to IP and TCP checksums, respectively
(Line 7-8). One corner case arises if a sequence or an
ACK number wraps around. In that case, we need to sub-
tract 1 from the checksum to conform to 1’s complement
addition (Line 9-10).
Tracking teardown state: Since connection splicing
operates by merging two connections into one, the NIC
stack only needs to passively monitor connection tear-
down by the server and the client. When the spliced
connection closes completely or if it is reset by any peer,
the NIC stack removes the forwarding rule entries, and
notifies the host stack of the closure. This allows reusing
TCP ports or tracking connection statistics at the host.

5 AccelTCP Host Stack
The AccelTCP host stack is logically independent of the
NIC stack. While our current implementation is based
on mTCP [41], one can extend any TCP stack to harness
our NIC offloading.

5.1 Socket API Extension
AccelTCP allows easy porting of existing applications
by reusing the epoll()-based POSIX-like socket API of
mTCP. In addition, it extends the API to support flexible
NIC offloading as shown in Figure 9. First, AccelTCP
adds extra socket options to mtcp_setsockopt() to en-
able connection setup and teardown offload to NIC. Note
that the connection teardown offload request is advisory,
so the host stack can decide not to offload the closure
if the conditions are not met (Section §4.2). Second, Ac-
celTCP adds mtcp_nsplice() to initiate splicing two
connections on NIC. The host stack waits until all data
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/* enable/disable setup and teardown offload
- level  : IPPPROTO_TCP  
- optname: TCP_SETUP_OFFLOAD or TCP_TEARDOWN_OFFLOAD
- optval : 1 (enable) or 0 (disable) */

int mtcp_setsockopt(mctx_t m, int sock, int level, int optname,
void *optval, socklen_t optlen);

/* offload connection splicing of two connections */
int mtcp_nsplice(mctx_t m, int sock_c, int sock_s, callback_t* cb);

/* notified upon a closure of spliced connections */
typedef void (*callback_t)(nsplice_meta_t * meta);

Figure 9: Socket API extension for AccelTCP

in the send buffer are acknowledged while buffering any
incoming packets. Then, it installs forwarding rules onto
NIC, sending the buffered packets after header transla-
tion. After calling this function, the socket descriptors
should be treated as if they are closed in the applica-
tion. Optionally, the application may specify a callback
function to be notified when the spliced connections
finish. Through the callback function, AccelTCP pro-
vides (i) remote addresses of the spliced connections, (ii)
the number of bytes transferred after offloaded to NIC
dataplane, and (iii) how the connections are terminated
(e.g., normal teardown or reset by any peer).

5.2 Host Stack Optimizations
We optimize the host networking stack to accelerate
small message processing. While these optimizations
are orthogonal to NIC offload, they bring a significant
performance benefit to short-lived connections.
Lazy TCB creation: A full TCB of a connection ranges
from 400 to 700 bytes even on recent implementa-
tions [5, 41]. However,we find thatmany of the fields are
unnecessary for short-lived connections whose message
size is smaller than the initial window size. To avoid the
overhead of a large TCB, AccelTCP creates the full TCB
only when multiple transactions are observed. Instead,
the host stack creates a small quasi-TCB (40 bytes) for a
new connection. If the application closes the connection
after a single write, the host stack offloads the teardown
and destroys the quasi-TCB.
Opportunistic zero-copy: Recent high-performance
TCP stacks [30, 61, 68] bypass the socket buffer to avoid
extra memory copying. However, this often freezes the
application-level buffer even after sending data, or over-
flows the host packet buffers if the application does
not read the packets in a timely manner. AccelTCP ad-
dresses this problem by opportunistically performing a
zero-copy I/O. When a stream of packets arrive in order,
the application waiting for a read event will issue a read
call. Then, the content of the packets is copied directly to
the application buffer while any leftover is written to the
receive socket buffer. When an application sends data
on an empty socket buffer, the data is directly written to

the host packet buffer for DMA’ing to NIC. Only when
the host packet buffer is full, the data is written to the
send socket buffer. Our scheme observes the semantics
of standard socket operations, allowing easy porting of
existing applications. Yet, this provides the benefit of
zero-copying to most short-lived connections.
User-level threading: mTCP spawns two kernel-level
threads: a TCP stack thread and an application thread
on each CPU core. While this allows independent op-
erations of the TCP thread (e.g., timer operations), it
incurs a high context switching overhead. To address
the problem, we modify mTCP to use cooperative user-
level threading [13]. We find that this not only reduces
the context switching overhead, but it also allows other
optimizations like lazy TCB creation and opportunistic
zero-copying.

6 Evaluation
We evaluate AccelTCP by answering following ques-
tions. First, does stateful TCP offloading and host stack
optimizations demonstrate a high performance in a va-
riety of workloads? (§6.1) Second, does it deliver the
performance benefit to real-world applications? (§6.2)
Finally, is the extra cost of a smart NIC justifiable? (§6.3)
Experiment setup: Our experimental setup consists
of one server (or a proxy), four clients, and four back-
end servers. The server machine has an Intel Xeon Gold
6142 @ 2.6GHz with 128 GB of DRAM and a dual-port
Netronome Agilio LX 40GbE NIC (NFP-6480 chipset).
Each client has an Intel Xeon E5-2640 v3 @ 2.6GHz,
and back-end servers have a mix of Xeon E5-2699 v4
@ 2.2GHz and Xeon E5-2683 v4 @ 2.1GHz. The client
and backend server machines are configured with Intel
XL710-QDA2 40GbE NICs. All the machines are con-
nected to a Dell Z9100-ON switch, configured to run at
40 GbE speed. For TCP stacks, we compare AccelTCP
against mTCP [41] and IX [30]. All TCP stacks employ
DPDK [10] for kernel-bypass packet I/O. Clients and
back-end servers run mTCP patched to use cooperative
user-level threading as AccelTCP. For IX experiments,
we use two dual-port Intel X520-DA2 10GbE NICs, and
enable all four ports bonded with a L3+L4 hash to bal-
ance the load as IX does not support 40GbE NICs. We
verify that any single 10GbE port does not become the
bottleneck based on port-level statistics at the switch.
Hyperthreading is disabled for mTCP and AccelTCP,
and enabled for IX when it improves the performance.
Our current prototype uses CRC32 to generate SYN

cookies for connection setup. To prevent state explosion
attacks, one needs to use a cryptographic hash function
(such as MD5 or SHA2). Unfortunately, the API sup-
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Figure 10: Throughputs of 64B packet transactions

Action Mtps Speedup
Baseline (w/o NIC offload) 0.89 1.0x
+ Enable setup offload (§4.1) 1.21 1.4x
+ Enable teardown offload (§4.2) 2.06 2.3x

+ Enable opportunistic TCB creation
& opportunistic zero-copy (§5.2) 3.42 3.8x

Table 3: Breakdown of contribution by each optimization on
a single CPU core (64B packet transactions)

port for hardware-assisted cryptographic operations in
Agilio NICs is currently incomplete (for both C and P4
code), so we use CRC32 instead here.

6.1 Microbenchmark
We evaluate AccelTCP’s performance for handling short-
lived TCP connections and L7 proxying, and compare
against the performance of the state-of-the-art TCP
stacks: mTCP [41] and IX [30].

6.1.1 Short-lived Connection Performance
We evaluate the benefit of connection management of-
fload by comparing the performance of TCP echo servers
that perform 64B packet transactions with persistent vs.
non-persistent connections. The TCP echo servers main-
tain 16k concurrent connections, and the performance
results are averaged over one-minute period for five runs
in each experiment. In the non-persistent case, a new
connection is created immediately after every connec-
tion closure. AccelTCP offloads connection setup and
offload to NIC while mTCP handles them using CPU.
For IX, we evaluate only the persistent connection case
as IX experiences a crash when handling thousands of
concurrent connections with normal teardown.
Figure 10 compares the throughputs over varying

numbers of CPU cores. AccelTCP achieves 2.2x to 3.8x
better throughputs than non-persistent mTCP, compa-
rable to those of persistent connections. Surprisingly,
AccelTCP outperforms persistent connections by 13% to
54% for up to four CPU cores. This is because AccelTCP
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Figure 11: Performance of short-lived connections for varying
message sizes on a single CPU core
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Figure 12: Comparison of L7 proxying throughputs

benefits from lazy TCB creation (§5.2) while persistent
connections suffer from a CPU bottleneck. However,
its eight-core performance is 22% lower than that of
persistent IX, implying a bottleneck on NIC. Overall,
connection management offload brings a significant per-
formance benefit, which enables short-lived connections
to perform comparably to persistent connections.

Table 3 shows the breakdown of performance in terms
of the contribution by each optimization. We find that
connection setup and teardown offload improve the base-
line performance by 2.3xwhile other host stack optimiza-
tions contribute by extra 1.5x.
Figure 11 compares the goodputs over varying mes-

sage sizes on a single CPU core. AccelTCP maintains the
performance benefit over different message sizes with a
speedup of 2.5x to 3.6x. The performance of messages
larger than one MSS is limited at 20 Gbps, which seems
impacted by our software TSO implementation on NIC.
The current Agilio NIC SDK does not provide an API
to exploit hardware TSO for programmable dataplane.
We believe the single core performance would further
improve with proper hardware support.

6.1.2 Layer-7 Proxing Performance
We now evaluate connection splicing offload with a
simple L7 LB called epproxy that inspects the initial
request, determines a back-end server, and relays the
content between the client and the server. We measure
the wire-level, receive-side throughput (including con-
trol packets) on the client side over different message
sizes. Clients spawn 8k concurrent connections with ep-
proxy, and the proxy creates 8k connections with back-
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Figure 13: L7 proxying performance over varying numbers
of message transactions per connection with 64B packets

end servers. We confirm that both clients and back-end
servers are not the bottleneck. We configure epproxy-
mTCP to use eight cores while epproxy-AccelTCP uses
only a single core as CPU is not the bottleneck. All con-
nections are persistent, and we employ both ports of the
Agilio LX NIC here. The NIC is connected to the host
via 8 lanes of PCIe-v3 6.

Figure 12 shows that AccelTCP-proxy outperforms
epproxy-mTCP by 1.4x to 2.2x even if the latter employs
8x more CPU cores. We make two observations here.
First, the performance of epproxy-AccelTCP reaches full
80 Gbps from 512-byte messages, which exceeds the
PCIe throughput of the NIC. This is because epproxy-
AccelTCP bypasses host-side DMA and fully utilizes
the forwarding capacity of the NIC. Second, epproxy-
AccelTCP achieves up to twice as large goodput as the
epproxy-mTCP. For example, epproxy-AccelTCP actu-
ally performs 2.8x more transactions per second than
epproxy-mTCP for 64B messages. This is because Ac-
celTCP splices two connections into a single one while
mTCP relays two connections. For each request from a
client, epproxy-mTCP must send an ACK as well as a
response packet from the back-end server. In contrast,
epproxy-AccelTCP replays only the response packet
with a piggybacked ACK from the back-end server.

We move on to see if epproxy-AccelTCP fares well on
non-persistent connections. Figure 13 shows the perfor-
mance over varying numbers of message transactions
per connection. AccelTCP performs 1.8x better at a sin-
gle transaction, and the performance gapwidens as large
as 2.4x at 128 transactions per connection. This confirms
that proxying non-persistent connections also benefit
from splicing offload of AccelTCP.

6.2 Application Benchmark
We investigate if AccelTCP delivers the performance
benefit to real-world applications.
Key-value store (Redis): We evaluate the effective-
ness of AccelTCP with Redis (v.4.0.8) [17], a popular

6Theoretical maximum throughput is 63 Gbps according to [58].

1-core 8-core
Redis-mTCP (kernel thread) 0.19 Mtps 1.38 Mtps
Redis-mTCP (user-level thread) 0.28 Mtps 1.94 Mtps
Redis-AccelTCP 0.44 Mtps 3.06 Mtps

Table 4: Redis performance for short-lived connections

0% 25% 50% 75% 100%

AccelTCP

mTCP (user-level thread)

mTCP (kernel thread)

CPU utilization

TCP/IP Redis session init/destroy Redis request handling

Figure 14: CPU breakdown of Redis on a single CPU core

in-memory key-value store. We use Redis on mTCP as
a baseline server while we port it to use AccelTCP for
comparison. We test with the USR workload from Face-
book [29], which consists of 99.8% GET requests and
0.2% SET requests with short keys (< 20B) and 2B val-
ues. For load generation, we use a Redis client similar to
memtier_benchmark [18] written in mTCP. We config-
ure the Redis server and the clients to perform a single
key-value transaction for each connection to show the
behavior when short-lived connections are dominant.
Table 4 compares the throughputs. Redis-AccelTCP

achieves 1.6x to 2.3x better performance than Redis-
mTCP, and its performance scales well with the number
of CPU cores. Figure 14 shows that mTCP consumes
over a half of CPU cycles on TCP stack operations. In
contrast, AccelTCP saves up to 75% of the CPU cycles for
TCP processing. With AccelTCP, session initialization
and destruction of Redis limits the performance. Our
investigation reveals that the overhead mostly comes
from dynamic memory (de)allocation (zmalloc() and
zfree()) for per-connection metadata, which incurs a
severe penalty for handling short-lived connections.
L7 LB (HAProxy): We see if AccelTCP improves the
performance of HAProxy (v.1.8.0) [6], a widely used
HTTP-based L7 LB. We first port HAProxy to use mTCP
and AccelTCP, respectively, and evaluate the through-
put with the SpecWeb2009[26]-like workload. The work-
load consists of static files whose size ranges from 30
to 5,670 bytes with an average file size of 728 bytes. For
a fair comparison, we disable any header rewriting in
the both version after delivering the first HTTP request.
We spawn 8k persistent connections, using simple epoll-
based clients and back-end servers running on mTCP.
Table 5 compares the throughputs with with 1 core and
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1-core 8-core
HAProxy-mTCP 4.3 Gbps 6.2 Gbps
HAProxy-AccelTCP 73.1 Gbps 73.1 Gbps

Table 5: L7 LB performance for SpecWeb2009-like workload

E5-2650v2 Gold 6142
mTCP (XL710-QDA2) 1.00 1.25
AccelTCP (Agilio LX) 1.93 1.96

Table 6: Comparison of normalized performance-per-dollar

8 cores. HAProxy-AccelTCP achieves 73.1 Gbps, a 11.9x
better throughput than HAProxy-mTCP. The average
response time of HAProxy-AccelTCP is 0.98 ms, 13.6x
lower than that of HAProxy-mTCP. We observe that the
performance benefit is much larger than in Section 6.1.2
because HAProxy has a higher overhead in application-
level request processing and packet relaying.

6.3 Cost-effectiveness Analysis
AccelTCP requires a smart NIC, which is about 3-4x
more expensive than a normal NIC at the moment. For
fairness, we try comparing the cost effectiveness by
the performance-per-dollar metric. We draw hardware
prices from Intel [11] and Colfax [4] pages (as of August
2019), and use the performance of 64B packet transac-
tions on short-lived connections. Specifically, we com-
pare the performance-per-dollar with a system that runs
mTCP with a commodity NIC (Intel XL710-QDA2, $440)
vs. another system that runs AccelTCP with a smart
NIC (Agilio LX, $1,750). For CPU, we consider Xeon
E5-2650v2 ($1,170) and Xeon Gold 6142 ($2,950). For
simplicity, we only consider CPU and NIC as hardware
cost. Table 6 suggests that NIC offload with AccelTCP
is 1.6x to 1.9x more cost-effective, and the gap would
widen further if we add other fixed hardware costs.

7 Related Work
Kernel-bypass TCP stacks: Modern kernel-bypass
TCP stacks such as mTCP [41], IX [30], SandStorm [55],
F-Stack [5] deliver high-performance TCP processing of
small message transactions. Most of them employ a fast
user-level packet I/O [10], and exploit high parallelism
on multicore systems by flow steering on NIC. More
recently, systems like ZygOS [63], Shinjuku [42], and
Shenango [59] further improve kernel-bypass stack by
reducing the tail latency, employing techniques like task
stealing, centralized packet distribution, and dynamic
core reallocation. We believe that these works are largely
orthogonal but complementary to ourwork as AccelTCP
would enhance these stacks by offloading connection
management tasks to NIC.

NIC offload: Existing TCP offloads mostly focus on
improving large message transfer either by offloading
the whole TCP stack [50] or by selectively offloading
common send-receive operations [46]. In contrast, our
work focuses on connection management and proxying
whose performance is often critical to modern network
workloads, while we intentionally avoid the complexity
of application data transfer offloading. UNO [52] and
Metron [45] strive to achieve optimal network function
(NF) performance with NIC offload based on runtime
traffic statistics. We plan to explore dynamic offloading
of a subset of networking stack features (or connections)
in response to varying load in the future. To offload TCP
connection management, any L2-L4 NFs that should run
prior to TCP stack (e.g., firewalling or host networking)
must be offloaded to NIC accordingly. Such NFs can
be written in P4 [40, 45, 56] and easily integrated with
AccelTCP by properly placing them at ingress/egress
pipelines of the NIC dataplane.
L7 proxing and short RPCs: Our connection splicing
is inspired by the packet tunneling mechanism of Yoda
L7 LB [36]. However, Yoda operates as a packet-level
translator without a TCP stack, so it cannot modify any
of relayed content. In contrast, an AccelTCP application
can initiate the offload after any content modification.
Also, AccelTCP packet translation runs on NIC hard-
ware, promising better performance. Finally, we note
that eRPC [44] achieves 5.0 Mtps RPC performance (vs.
3.4 Mtps of AccelTCP) on a single core. However, ePRC
is limited to data center environments while AccelTCP is
compatible to TCP and accommodates any TCP clients.

8 Conclusion
In this paper, we have presented AccelTCP that har-
nesses modern programmable NICs as a TCP protocol
accelerator. Drawing the lessons from full stack TOE,Ac-
celTCP’s design focuses on minimizing the interaction
with the host stack by offloading only select features of
stateful TCP operations. AccelTCP manages the com-
plexity on NIC by stateless handshake, single ownership
of a TCB, and conditional teardown offload. In addi-
tion, it simplifies connection splicing by efficient packet
header translation. We have also presented a number of
optimizations that significantly improve the host stack.
We have demonstrated that AccelTCP brings a sub-

stantial performance boost to short-message transac-
tions and L7 proxying. AccelTCP delivers a 2.3x speedup
to Redis on a kernel-bypass stack while it improves the
performance of HAProxy by a factor of 11.9. AccelTCP
is available at https://github.com/acceltcp, and
we hope our effort will renew the interest in selective
NIC offload of stateful TCP operations.
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Appendix A. Host-NIC Communication Interface
The host and NIC stacks communicate with each other
by piggybacking control information in the normal pack-
ets most time. It encodes the type of offload as unused
EtherType values in the Ethernet header, and tags along
other information in the special header between the
Ethernet and IP headers.
Connection setup: When an application listens on a
socket whose setup offload option is enabled, the host
stack sends a special control packet to NIC, carrying the
listening address/port and TCP options that must be de-
livered to the remote host during connection setup (e.g.,
MSS, Window scale factor, Selective ACK, etc.). To no-
tify a new connection, the NIC stack sets the Ethertype
of the ACK packet to 0x090A, and delivers the negoti-
ated options in the TCP Timestamps option. The host
stack extracts only the TCP options, and ignores the
NIC-generated timestamp value.
Connection teardown: For teardown offload, the host
stack creates a TSO packet that holds all remaining data
in the send buffer, and sets the EtherType to 0x090B. It
also encodes other information such as MSS (2 bytes),
current RTO (4 bytes), and current TCP state (2 bytes)
in the special header area. The NIC stack notifies the
host stack of the number of connections being closed
on NIC by either sending a control packet or tagging at
any packet delivered to host.
Connection splicing: For splicing offload, the host
stack uses 0x090C as EtherType, andwrites the sequence
and ACK number offsets (4 bytes each), and a 4-tuple of
a connection in the special header. When the splicing
offload packet is passed to the NIC stack, a race condi-
tion may arise if some packets in the flows are passed
up to the host stack at the same time. To ensure correct
forwarding, the host stack keeps the connection entries
until it is notified that the splicing rules are installed at

NIC. For reporting a closure of spliced connections, NIC
creates a special control packet holding the connection
information and traffic statistics with the EtherType,
0x090D, and sends it up to the host stack. By monitoring
those control packets, the host stack can keep track of
the number of active spliced connections on NIC.
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Abstract
Data-center network stacks are moving into hardware to

achieve 100 Gbps data rates and beyond at low latency and
low CPU utilization. However, hardwiring the network stack
in the NIC would stifle innovation in transport protocols. In
this paper, we enable programmable transport protocols in
high-speed NICs by designing Tonic, a flexible hardware ar-
chitecture for transport logic. At 100 Gbps, transport pro-
tocols must generate a data segment every few nanoseconds
using only a few kilobits of per-flow state on the NIC. By
identifying common patterns across transport logic of dif-
ferent transport protocols, we design an efficient hardware
“template” for transport logic that satisfies these constraints
while being programmable with a simple API. Experiments
with our FPGA-based prototype show that Tonic can support
the transport logic of a wide range of protocols and meet tim-
ing for 100 Gbps of back-to-back 128-byte packets. That is,
every 10 ns, our prototype generates the address of a data
segment for one of more than a thousand active flows for a
downstream DMA pipeline to fetch and transmit a packet.

1 Introduction

Transport protocols, along with the rest of the network
stack, traditionally run in software. Despite efforts to im-
prove their performance and efficiency [1,6,25,32], software
network stacks tend to consume 30-40% of CPU cycles to
keep up with applications in today’s data centers [25,32,38].

As data centers move to 100 Gbps Ethernet, the CPU
utilization of software network stacks becomes increasingly
prohibitive. As a result, multiple vendors have developed
hardware network stacks that run entirely on the network in-
terface card (NIC) [8,10]. However, there are only two main
transport protocols implemented on these NICs, both hard-
wired and modifiable only by the vendors:

RoCE. RoCE is used for Remote Direct Memory Access
(RDMA) [8], using DCQCN [43] for congestion control and
a simple go-back-N method for reliable data delivery.

TCP. A few vendors offload a TCP variant of their choice

to the NIC to either be used directly through the socket API
(TCP Offload Engine [10]) or to enable RDMA (iWARP [7]).

These protocols, however, only use a small fixed set
out of the myriad of possible algorithms for reliable deliv-
ery [16, 21, 24, 27, 33, 34] and congestion control [12, 17, 19,
35,42,43] proposed over the past few decades. For instance,
recent work suggests that low-latency data-center networks
can significantly benefit from receiver-driven transport pro-
tocols [21,24,36], which is not an option in today’s hardware
stacks. In an attempt to deploy RoCE NICs in Microsoft data
centers, operators needed to modify the data delivery algo-
rithm to avoid livelocks in their network but had to rely on
the NIC vendor to make that change [22]. Other algorithms
have been proposed to improve RoCE’s simple reliable deliv-
ery algorithm [31,34]. The long list of optimizations in TCP
from years of deployment in various networks is a testament
to the need for programmability in transport protocols.

In this paper, we investigate how to make hardware trans-
port protocols programmable. Even if NIC vendors open
up interfaces for programming their hardware, it takes a sig-
nificant amount of expertise, time, and effort to implement
transport protocols in high-speed hardware. To keep up with
100 Gbps, the transport protocol should generate and trans-
mit a packet every few nanoseconds. It should handle more
than a thousand active flows, typical in today’s data-center
servers [15, 37, 38]. To make matters worse, NICs are ex-
tremely constrained in terms of the amount of their on-chip
memory and computing resources [30, 34].

We argue that transport protocols on high-speed NICs can
be made programmable without exposing users to the full
complexity of programming for high-speed hardware. Our
argument is grounded in two main observations:

First, programmable transport logic is the key to en-
abling flexible hardware transport protocols. An imple-
mentation of a transport protocol performs several function-
ality such as connection management, data buffer manage-
ment, and data transfer. However, its central responsibility,
where most of the innovation happens, is to decide which
data segments to transfer (data delivery) and when (conges-
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tion control), which we collectively call the transport logic.
Thus, the key to programmable transport protocols on high-
speed NICs is enabling users to modify the transport logic.

Second, we can exploit common patterns in transport
logic to create reusable high-speed hardware modules.
Despite their differences in application-level API (e.g., sock-
ets and byte-stream abstractions for TCP vs. the message-
based Verbs API for RDMA), and in connection and data
buffer management, transport protocols share several com-
mon patterns. For instance, different transport protocols use
different algorithms to detect lost packets. However, once a
packet is declared lost, reliable transport protocols prioritize
its retransmission over sending a new data segment. As an-
other example, in congestion control, given the parameters
determined by the control loop (e.g., congestion window and
rate), there are only a few common ways to calculate how
many bytes a flow can transmit at any time. This enables us
to design an efficient “template” for transport logic in hard-
ware that can be programmed with a simple API.

Using these insights, we design and develop Tonic, a pro-
grammable hardware architecture that can realize the trans-
port logic of a broad range of transport protocols, using a
simple API, while supporting 100 Gbps data-rates. Every
clock cycle, Tonic generates the address of the next segment
for transmission. The data segment is fetched from memory
by a downstream DMA pipeline and turned into a full packet
by the rest of the hardware network stack (Figure 1).

We envision that Tonic would reside on the NIC, re-
placing the hard-coded transport logic in hardware imple-
mentations of transport protocols (e.g., future RDMA NICs
and TCP offload engines). Tonic provides a unified pro-
grammable architecture for transport logic, independent of
how specific implementations of different transport proto-
cols perform connection and data buffer management, and
their application-level APIs. We will, however, describe how
Tonic interfaces with the rest of the transport layer in general
(§2) and how it can be integrated into Linux Kernel to inter-
act with applications using socket API as an example (§5).

We implement a Tonic prototype in ∼8K lines of Ver-
ilog code and demonstrate Tonic’s programmability by im-
plementing the transport logic of a variety of transport pro-
tocols [13, 16, 23, 24, 34, 43] in less than 200 lines of code.
We also show, using an FPGA, that Tonic meets timing for
∼100 Mpps, i.e., supporting 100Gbps of back-to-back 128B
packets. That is, every 10ns, Tonic can generate the transport
metadata required for a downstream DMA pipeline to fetch
and send one packet. From generation to transmission, the
latency of a single segment address through Tonic is∼ 0.1µs,
and Tonic can support up to 2048 concurrent flows.

2 Tonic as the Transport Logic

This section is an overview of how Tonic fits into the trans-
port layer (§2.1), and how it overcomes the challenges of im-

Figure 1: Tonic providing programmable transport logic in a hard-
ware network stack on the NIC (sender-side).

plementing transport logic on high-speed NICs (§2.2).

2.1 How Tonic Fits in the Transport Layer
Sitting between applications and the rest of the stack,

transport-layer protocols perform two main functions:
Connection Management includes creating and configuring
endpoints (e.g., sockets for TCP and queue-pairs for RDMA)
and establishing the connection in the beginning, and closing
the connection and releasing its resources at the end.
Data Transfer involves delivering data from one endpoint
to another, reliably and efficiently, in a stream of segments 1.
Different transport protocols provide different APIs for ap-
plications to request data transfer: TCP offers the abstraction
of a byte-stream to which applications can continuously ap-
pend data, while in RDMA, each “send” call to a queue-pair
creates a separate work request and is treated as a separate
message. Moreover, specifics of managing applications’ data
buffers differ across different implementations of transport
protocols. Regardless, the transport protocol must deliver
the outstanding data to its destination in multiple data seg-
ments that fit into individual packets. Deciding which bytes
comprise the next segment and when it is transmitted is done
by data delivery and congestion control algorithms, which
we collectively call transport logic and implement in Tonic.

Figure 1 shows a high-level overview of how Tonic fits in a
hardware network stack. To decouple Tonic from specifics of
connection management and application-level APIs, connec-
tion setup and tear-down run outside of Tonic. Tonic relies
on the rest of the transport layer to provide it with a unique
identifier (flow id) for each established connection, and to
explicitly add and remove connections using these IDs.

For data transfer on the sender side, Tonic keeps track of
the number of outstanding bytes and transport-specific meta-
data to implement the transport logic, i.e., generate the ad-
dress of the next data segment for each flow at the time desig-
nated by the congestion control algorithm. Thus, Tonic does
not need to store and/or handle actual data bytes; it relies
on the rest of the transport layer to manage data buffers on
the host, DMA the segment whose address is generated in
Tonic from memory, and notify it of new requests for data
transmission on existing connections (see §5 for details).

The receiver-side of transport logic mainly involves gen-
erating control signals such as acknowledgments, per-packet

1We focus on reliable transport as it is more commonly used and more
complicated to implement.
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# Observation Examples
1 Only track a limited window of segments TCP, NDP, IRN
2 Only keep a few bits of state per segment TCP, NDP, IRN, RoCEv2
3 Lost segments first, new segments next TCP, NDP, IRN, RoCEv2
4 Loss detection: Acks and timeouts TCP, NDP, IRN

5 The three common credit calculation TCP, RoCEv2, NDPpatterns: window, rate, and grant tokens

Table 1: Common transport logic patterns.

grant tokens [21, 24, 36], or periodic congestion notification
packets (CNPs) [43], while the rest of the transport layer
manages receive data buffers and delivers the received data
to applications. While handling received data can get quite
complicated, generating control signals on the receiver is
typically simpler than the sender. Thus, although we mainly
focus on the sender, we reuse modules from the sender to
implement a receiver solely for generating per-packet cumu-
lative and selective acks and grant tokens at line rate.

2.2 Hardware Design Challenges
Implementing transport logic at line rate in the NIC is

challenging due to two main constraints:
Timing constraints. The median packet size in data cen-

ters is less than 200 bytes [15, 37]. To achieve 100 Gbps
for these small packets, the NIC has to send a packet every
∼10 ns. Thus, every∼10 ns, the transport logic should deter-
mine which active flow should transmit which data segment
next. To make this decision, it uses some state per flow (e.g.,
acknowledged data segments, duplicate acks, rate/window
size, etc.) which is updated when various transport events
happen (e.g., receiving an acknowledgment or a timeout).
These updates could involve operations with non-negligible
hardware overhead, such as searching bitmaps and arrays.

To allow for more time in processing each event while
still determining the next data segment every ∼10 ns, we
could conceivably pipeline the processing of transport events
across multiple stages. However, pipelining is more tractable
when incoming events are from different flows as they up-
date different states. Processing back-to-back events for the
same flow (e.g., generating data segments while receiving ac-
knowledgments) requires updates to the same state, making
it difficult to pipeline event processing while ensuring state
consistency. Thus, we strive to process each transport event
within 10 ns instead to quickly consolidate the state for the
next event in case it affects the same flow.

Memory constraints. A typical data-center server has
more than a thousand concurrent active flows with kilobytes
of in-flight data [15, 37, 38]. Since NICs have just a few
megabytes of high-speed memory [30,34], the transport pro-
tocol can store only a few kilobits of state per flow on NIC.

Tonic’s goal is to satisfy these tight timing and memory
constraints while supporting programmability with a simple
API. To do so, we identify common patterns across trans-
port logic in various protocols that we implement as reusable
fixed-function modules. These patterns allow us to optimize

these modules for timing and memory, while simplifying the
programming API by reducing the functionality users must
specify. These patterns are summarized in Table 1, and are
discussed in detail in next section, where we describe Tonic’s
components and how these patterns affect their design.

3 Tonic Architecture

Transport logic at the sender is what determines, for each
flow, which data segments to transfer (data delivery) and
when (congestion control). Conceptually, congestion con-
trol algorithms perform credit management, i.e., determine
how many bytes a given flow can transmit at a time. Data
delivery algorithms perform segment selection, i.e., decide
which contiguous sequence of bytes a particular flow should
transmit. Although the terms “data delivery” and “con-
gestion control” are commonly associated with TCP-based
transport protocols, Tonic provides a general programmable
architecture for transport logic that can be used for other
kinds of transport protocols as well, such as receiver-driven
[21, 24, 36] and RDMA-based [8] transport protocols.

Tonic exploits the natural functional separation between
data delivery and credit management to partition them into
two components with separate state (Figure 2). The data de-
livery engine processes events related to generating, track-
ing, and delivery of segments, while the credit engine pro-
cesses events related to adjusting each flow’s credit and send-
ing out segment addresses for those with sufficient credit.

At the cost of lightweight coordination between the two
engines, this partitioning helps Tonic meet its timing con-
straints while concurrently processing multiple events (e.g.,
receipt of acknowledgments and segment transmission) ev-
ery cycle. These events must read the current state of their
corresponding flow, update it, and write it back to memory
for events in the next cycle. However, concurrent read and
write to memory in every cycle is costly. Instead of using a
wide memory to serve all the transport events, the partition-
ing allows the data delivery and credit engines to have nar-
rower memories to serve only the events that matter for their
specific functionality, hence meeting timing constraints.

In this section, we present, in §3.1, how the engines co-
ordinate to fairly and efficiently pick one of a few thou-
sand flows every cycle for segment transmission while keep-
ing the outgoing link utilized. Next, §3.2 and §3.3 describe
fixed-function and programmable event processing modules
in each engine, and how their design is inspired by patterns
in Table 1. We present Tonic’s solution for resolving con-
flicts when multiple events for the same flow are received in
a cycle in §3.4, and its programming interface in §3.5.

3.1 Efficient Flow Scheduling
At any time, a flow can only transmit a data segment if

it (1) has enough credit, and (2) has a new or lost segment
to send. To be work conserving, Tonic must track the set
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Figure 2: Tonic’s architecture (dark red boxes (also with thick borders) are programmable, others are fixed)

of flows that are eligible for transmission (meet both of the
above criteria) and only pick among those when selecting a
flow for transmission each cycle. This is challenging to do
efficiently. We have more than a thousand flows with their
state partitioned across the two engines: Only the credit en-
gine knows how much credit a flow has, and only the data de-
livery engine knows the status of a flow’s segments and can
generate the address of its next segment. We cannot check
the state of all the flows every cycle across both engines to
find the ones eligible for transmission in that cycle.

Instead, we decouple the generation of segment addresses
from their final transmission to the DMA pipeline. We al-
low the data delivery engine to generate up to N segment ad-
dresses for a flow without necessarily having enough credit
to send them out. In the credit engine, we keep a ring buffer
of size N for each flow to store these outstanding segments
addresses. When the flow has enough credit to send a seg-
ment, the credit engine dequeues and outputs a segment ad-
dress from the buffer and signals the data delivery engine to
decrement the number of outstanding segments for that flow.

This solves the problem of the partitioned state across the
two engines. The data delivery engine does not need to keep
track of the credit changes of flows for segment address gen-
eration. It only needs to be notified when a segment address
is dequeued from the buffer. Moreover, the credit engine
does not need to know the exact status of all flow’s segments.
If the flow’s ring buffer is empty, that flow does not have
segments to send. Otherwise, there are already segment ad-
dresses that can be output when the flow has enough credit.

Still, the data delivery engine cannot simply check the
state of all the flows every cycle to determine those that can
generate segments. Instead, we dynamically maintain the set
of active flows in the data delivery engine, i.e., the flows that
have at least one segment to generate and less than N out-
standing segments (see red numbered circles in Figure 2).
When a flow is created, it is added to the active set. Every
cycle, one flow is selected and removed from the set for seg-
ment generation (Step 1). Once processed (Step 2), only if it
has more segments to send and less than N outstanding seg-
ments, is it inserted back into the set (Step 3). Otherwise, it

will be inserted in the set if, later on, the receipt of an ack or
a signal from the credit engine “activates” the flow (Step 9).
Moreover, the generated segment address is forwarded to the
credit engine (Step 4) for insertion in the ring buffer (Step 5).

Similarly, the credit engine maintains the set of ready-to-
transmit flows, i.e., the flows with one segment address or
more in their ring buffers and enough credit to send at least
one segment out. Every cycle, a flow is selected from the set
(Step 6), one segment address from its ring buffer is trans-
mitted (Step 7), its credit is decreased, and it is inserted back
into the set if it has more segment addresses and credit for
further transmission (Step 8). It also signals the data deliv-
ery engine about the transmission (Step 9) to decrement the
number of outstanding segments for that flow.

To be fair when picking flows from the active (or ready-to-
transmit) set, Tonic uses a FIFO to implement round-robin
scheduling among flows in the set (see active list in [39]).
The choice of round-robin scheduling is not fundamental;
any other scheduler that meets our timing constraints can re-
place the FIFO to support other scheduling disciplines [40].

3.2 Flexible Segment Selection
With B bytes of credit, a flow can send S = max(B,MSS)

bytes, where MSS is the maximum segment size. In transport
protocols, data delivery algorithms use acknowledgments to
keep track of the status of each byte of data (e.g., delivered,
lost, in-flight, and not transmitted), and use that to decide
which contiguous S bytes of data to transmit next.

However, there are two main challenges in implementing
data delivery algorithms in high-speed NICs. First, due to
memory constraints, the NIC cannot store per-byte informa-
tion. Second, with a few exceptions [8,34], these algorithms
are designed for software, where they could store and freely
loop through large arrays of metadata to aggregate informa-
tion. This computational flexibility has created significant
diversity across these algorithms. Unfortunately, NIC hard-
ware is much more constrained than software. Thus, we did
not aim to support all data delivery algorithms. Instead, we
looked for patterns that are common across a variety of algo-
rithms while being amenable to hardware implementation.
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3.2.1 Pre-Calculated Fixed Segment Boundaries

Data delivery algorithms could conceivably choose the
next S bytes to send from anywhere in the data stream and
produce segments with variable boundaries. However, since
the NIC cannot maintain per-byte state, Tonic requires data
to be partitioned into fixed-size segments (by a Kernel mod-
ule or the driver, see §5) when the flow requests transmission
of new data. This way, data delivery algorithms can use per-
segment information to select the next segment.

Note that the fixed segment size can be configured for each
flow based on its throughput and latency requirements. With
message-based transport protocols (e.g., RoCEv2), having
fixed segment boundaries fits naturally; the message length
is known and the optimal segment size can be chosen from
the beginning. For protocols with a byte-stream abstraction
(e.g., TCP and NDP), the fixed segment size should be de-
cided on the fly as data is added to the stream. It can be set to
MSS (or larger if using TSO [18]) for high-bandwidth flows.
For flows that generate small data segments and sporadically,
the segment size can be set to a smaller value, depending
on whether it is more desirable to consolidate multiple small
segments into a larger one before notifying Tonic, or to trans-
mit the small segment right away (§5). Regardless, to avoid
storing per-byte state on the NIC, segment size should be de-
cided outside of Tonic and changed infrequently.

3.2.2 Small Per-Segment State for a Limited Window

Independent of a flow’s available credit, data delivery al-
gorithms typically do not transmit a new segment if it is too
far, i.e., more than K segments apart, from the first unac-
knowledged segment, to limit the state that the sender and
receiver need to keep 2. Still, in a 100 Gbps network with a
10µs RTT, K can get as large as∼128 segments. Fortunately,
we observe that storing the following per-segment state is
enough for most data delivery algorithms: (1) Is the segment
acknowledged (in presence of selective acknowledgments)?
(2) If not, is it lost or still in flight? (3) If lost, is it already
retransmitted (to avoid redundant retransmission)?

More specifically, we observe that, in the absence of ex-
plicit negative acknowledgments, data delivery algorithms
accumulate evidence of loss for each segment from posi-
tive acknowledgments, e.g., duplicate cumulative (e.g., TCP
NewReno [23]) or selective acks (e.g., IRN for RDMA and
TCP SACK [16]). Once the accumulated evidence for a seg-
ment passes a threshold, the algorithm can declare it lost with
high confidence. Typically, an evidence of loss for segment
i is also an evidence of loss for every unacknowledged seg-
ment j with j < i. Thus, most of these algorithms can be
rewritten to only keep track of the total evidence of loss for
the first unacknowledged segment and incrementally com-

2In TCP-based protocols, K is the minimum of receive window and con-
gestion window size. However, the limit imposed by K exists when transport
protocols use other ways (e.g., rate) to limit a flow’s transmission pace [8].

pute the evidence for the rest as needed. Based on these
observations (#1 and #2 in Table 1), we use a fixed set of
bitmaps in Tonic’s data delivery engine to track the status of
a flow’s segments and implement optimized fixed-function
bitmap operations for updating them on transport events.

3.2.3 Concurrent Event Processing

For every flow, four main events can affect the generation
of its next segment address. First, the receipt of an acknowl-
edgment can either move the window forward and enable the
flow to generate more segments, or signal segment loss and
trigger retransmissions. Second, the absence of acknowledg-
ments, i.e., a timeout, can also lead to more segments marked
as lost and trigger retransmissions. Third, generation of a
segment address increments the number of a flow’s outstand-
ing segments and can deactivate the flow if it goes above N.
Fourth, segment address transmission (out of the credit en-
gine) decrements the number of outstanding segments and
can enable the flow to generate more segment addresses.

Tonic’s data delivery engine has four modules to handle
these four events (Figure 2). Every cycle, each module reads
the state of the flow for which it received an event from the
memory in the data delivery engine, processes the event, and
updates the flow state accordingly. The flow state in the data
delivery engine consists of a fixed set of variables to track the
status of the current window of segments across events, as
well as the user-defined variables used in the programmable
components (Table 2). As an example of the fixed state vari-
ables, Tonic keeps a fixed set of bitmaps for each flow (ob-
servations in §3.2.2): The acked bitmap keeps track of selec-
tively acknowledged segments, marked-for-rtx keeps track
of lost segments that require retransmission, and rtx-cnt

stores information about their previous retransmissions.
The following paragraphs briefly describe how each event-

processing module affects a flow’s state, and whether there
are common patterns that we can exploit to implement all or
parts of its functionality in a fixed-function manner.

Incoming. This module processes acknowledgments (and
other incoming packets, see §3.3.3). Some updates to state
variables in response to acknowledgments are similar across
all data delivery algorithms and do not need to be pro-
grammable (e.g., updating window boundaries, and mark-
ing selectively acked segments in acked bitmap, see §3.2.2),
whereas loss detection and recovery, which rely on acknowl-
edgments as a signal, vary a lot across different algorithms
and must be programmable by users (#4 in Table 1). Thus,
the Incoming module is designed as a two-stage pipeline: a
fixed-function stage for the common updates followed by a
programmable stage for loss detection and recovery.

The benefit of this two-stage design is that the common
updates mostly involve bitmaps and arrays (§3.2.2), which
are implemented as ring buffers in hardware and costly to
modify across their elements. For instance, in all data de-
livery algorithms, if an incoming packet acknowledges seg-
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ment A cumulatively and segment S selectively, wnd-start is
updated to max(wnd-start, A) and acked[S] to one, and the
boundaries of all bitmaps and arrays are updated based on the
new wnd-start. By moving these updates into a fixed func-
tion stage, we can (i) optimize them to meet Tonic’s timing
and memory constraints, and (ii) provide programmers with
a dedicated stage, i.e., a separate cycle, to do loss detection
and recovery. In this dedicated stage, programmers can use
the updated state variables from the previous stage and the
rest of the variables from memory to infer segment loss (and
perform other user-defined computation discussed in §3.3.3).

Periodic Updates. The data delivery engine iterates over
active flows, sending them one at a time to this module to
check for retransmission timer expiration and perform other
user-defined periodic updates (§3.3.3). Thus, with its 10 ns
clock cycle, Tonic can cover each flow within a few mi-
croseconds of the expiry of its retransmission timer. This
module must be programmable as a retransmission timeout
is a signal for detecting loss (#4 in Table 1). Similar to the
programmable stage of the Incoming module, the program-
mers can use per-flow state variables to infer segment loss.

Segment Generation. Given an active flow and its vari-
ables, this module generates the next segment’s address and
forwards it to the credit engine. Tonic can implement seg-
ment address generation as a fixed function module based on
the following observation (#3 in Table 1): Although different
reliable data delivery algorithms have different ways of infer-
ring segment loss, once a lost segment is detected, it is only
logical to retransmit it before sending anything new. Thus,
the procedure for selecting the next segment is the same irre-
spective of the data delivery algorithm, and is implemented
as a fixed-function module in Tonic. Thus, this module pri-
oritizes retransmission of lost segments in marked-for-rtx

over sending the next new segment, i.e., highest sent+1 and
also increments the number of outstanding segments.

Segment Transmitted. This module is fixed function and
is triggered when a segment address is transmitted out of the
credit engine. It decrements the number of outstanding seg-
ments of the corresponding flow. If the flow was deactivated
due to a full ring buffer, it is inserted into the active set again.

3.3 Flexible Credit Management

Transport protocols use congestion-control algorithms to
avoid overloading the network by controlling the pace of a
flow’s transmission. These algorithms consist of a control
loop that estimates the network capacity by monitoring the
stream of incoming control packets (e.g., acknowledgments
and congestion notification packets (CNPs)) and sets param-
eters that limit outgoing data packets. While the control loop
is different in many algorithms, the credit calculation based
on parameters is not. Tonic has efficient fixed-function mod-
ules for credit calculation (§3.3.1 and §3.3.2) and relegates
parameter adjustment to programmable modules (§3.3.3).

State Variable Description
acked selectively acknowledged segments (bitmap)
marked-for-rtx lost segments marked for retransmission (bitmap)
rtx-cnt number of retransmissions of a segment (bitmap)
wnd-start the address of the first segment in the window
wnd-size size of the window (min(W,rcved window))
highest-sent the highest segment transmitted so far
total-sent Total number of segments transmitted so far
is-idle does the flow have segments to send?
outstanding-cnt # of outstanding segments
rtx-timer when will the rtx timer expire?
user-context user-defined variables for programmable modules

Table 2: Per-flow state variables in the data delivery engine

3.3.1 Common Credit-Calculation Patterns

Congestion control algorithms have a broad range of ways
to estimate network capacity. However, they enforce limits
on data transmission in three main ways (#5 in Table 1):
Congestion window. The control loop limits a flow to at
most W bytes in flight from the first unacknowledged byte.
Thus, if byte i is the first unacknowledged byte, the flow
cannot send bytes beyond i+W . Keeping track of in-flight
segments to enforce a congestion window can get compli-
cated, e.g., in the presence of selective acknowledgments,
and is implemented in the fixed-function stage of the incom-
ing module in the data delivery engine.
Rate. The control loop limits the flow’s average rate (R) and
maximum burst size (D). Thus, if a flow had credit c0 at
the time t0 of the last transmission, then the credit at time t
will be min(R ∗ (t− t0)+ c0,D). As we show in §4, imple-
menting precise per-flow rate limiters under our strict timing
and memory constraints is challenging and has an optimized
fixed-function implementation in Tonic.
Grant tokens. Instead of estimating network capacity, the
control loop receives tokens from the receiver and adds them
to the flow’s credit. Thus, the credit of a flow is the total
tokens received minus the number of transmitted bytes, and
the credit calculation logic consists of a simple addition.

Since these are used by most congestion control algo-
rithms3, we optimize their implementation to meet Tonic’s
timing and memory constraints. Congestion window calcu-
lations are mostly affected by acks. Thus, calculation and
enforcement of congestion window happen in the data deliv-
ery engine. For the other two credit calculation schemes, the
credit engine processes credit-related event, and Tonic users
can simply pick which scheme to use in the credit engine.

3.3.2 Event Processing for Credit Calculation

Conceptually, three main events can trigger credit calcu-
lation for a flow, and the credit engine has different modules
to concurrently process them every cycle (Figure 2). First,
when a segment address is received from the data delivery
engine and is the only one in the flow’s ring buffer, the flow
could now qualify for transmission or remain idle based on

3 Tonic’s credit engine has a modular event-based design (§3.3.2), mak-
ing it amenable for extension to future credit calculation schemes.
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its credit (the Enqueue module). Second, when a flow trans-
mits a segment address, its credit must be decreased and we
should determine whether it is qualified for further transmis-
sion based on its updated credit and the occupancy of its ring
buffer (the Transmit module). Third are events that can add
credit to the flow (e.g., from grant tokens and leaky bucket
rate limiters), which is where the main difference lies be-
tween rate-based and token-based credit calculation.

When using grant tokens, the credit engine needs two ded-
icated modules to add credit to a flow: one to process incom-
ing grant tokens from the receiver, and one to add credit for
retransmissions on timeouts. When using rate, the credit en-
gine does not need any extra modules for adding credit since
a flow with rate R bytes-per-cycle implicitly gains R bytes of
credit every cycle and, therefore, we can compute in advance
when it will be qualified for transmission.

Suppose in cycle T0, the Transmit module transmits a seg-
ment from flow f , and is determining whether the flow is
qualified for further transmission. Suppose that f has more
segments in the ring buffer but lacks L bytes of credit. The
Transmit module can compute when it will have sufficient
credit as T = L

R and set up a timer for T cycles. When
the timer expires, f definitely has enough credit for at least
one segment, so it can be directly inserted into ready-to-tx.
When f reaches the head of ready-to-tx and is processed
by the Transmit module again in cycle T1, the Transmit mod-
ule can increase f ’s credit by (T1− T0) ∗R− S, where S is
the size of the segment that is transmitted at time T1

4. Note
that when using rate, the credit engine must perform division
and maintain per-flow timers. We will discuss the hardware
implementation of these operations in §4.

3.3.3 Flexible Parameter Adjustment

Congestion control algorithms often have a control loop
that continuously monitors the network and adjusts credit
calculation parameters, i.e., rate or window size, based on
estimated network capacity. Parameter adjustment is either
triggered by incoming packets (e.g., acknowledgments and
their signals such as ECN or delay in TCP variants and
Timely, and congestion notification packets (CNPs) in DC-
QCN) or periodic timers and counters (timeouts in TCP vari-
ants and byte counter and various timers in DCQCN), and in
some cases is inspired by segment losses as well (window
adjustment after duplicate acknowledgments in TCP).

Corresponding to these triggers, for specifying parameter
adjustment logic, Tonic’s users can use the programmable
stage of the “Incoming” module, which sees all incoming
packets, and the “Periodic Updates” module for timers and
counters. Both modules are in the data delivery engine and
have access to segment status information, in case segment
status (e.g., drops) is needed for parameter adjustment. The
updated parameters are forwarded to the credit engine.

4Similarly, the Enqueue module can set up the timer when it receives the
first segment of the queue and the flow lacks credit for its transmission.

As we show in §6.1.1, we have implemented several con-
gestion control algorithms in Tonic and their parameter ad-
justment calculations have finished within our 10 ns clock
cycle. Those with integer arithmetic operations did not need
any modifications. For those with floating-point operations,
such as DCQCN, we approximated the operations to a cer-
tain decimal point using integer operations. If an algorithm
requires high-precision and complicated floating-point oper-
ations for parameter adjustment that cannot be implemented
within one clock cycle [19], the computation can be rele-
gated to a floating-point arithmetic module outside of Tonic.
This module can perform the computation asynchronously
and store the output in a separate memory, which merges
into Tonic through the “Periodic Updates” module.

3.4 Handling Conflicting Events
Tonic strives to process events concurrently in order to be

responsive to events. Thus, if a flow receives more than one
event in the same cycle, it allows the event processing mod-
ules to process the events and update the flow’s state vari-
ables, and reconciles the state before writing it back into
memory (the Merge modules in Figure 2).

Since acknowledgments and retransmission timeouts are,
by definition, mutually exclusive, Tonic discards the timeout
if it is received in the same cycle as an acknowledgment for
the same flow. This significantly simplifies the merge logic
because several variables (window size and retransmission
timer period) are only modified by these two events and,
therefore, are never updated concurrently. We can resolve
concurrent updates for the remaining variables with simple,
predefined merge logic. For example, Segment Generation
increments the number of outstanding segments, whereas
Segment Transmitted decrements it; if both events affect the
same flow at the same time, the number does not change.
User-defined variables are updated in either the Incoming or
the Periodic Updates module, and we rely on the program-
mer to specify which updated variables should be prioritized
if both updates happen in the same cycle.

3.5 Tonic’s Programming Interface
To implement a new transport logic in Tonic, program-

mers only need to specify (i) which of the three credit man-
agement schemes to use, (ii) the loss detection and recovery
logic in response to acknowledgments and timeouts, and (iii)
congestion-control parameter adjustment in response to in-
coming packets or periodic timers and counters. The first one
is used to pick the right modules for the credit engine, and the
last two are inserted into the corresponding programmable
stages of the data delivery engine (Figure 2).

To specify the logic for the programmable stage of the In-
coming module, programmers need to write a function that
receives the incoming packet (ack or other control signals),
the number of newly acknowledged segments, the acked
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bitmap updated with the information in the ack, the old and
new value of wnd-start (in case the window moves forward
due to a new cumulative ack), and the rest of the flow’s state
variables (Table 2) as input. In the output, they can mark a
range of segments for retransmission in marked-for-rtx, up-
date congestion-control parameters such as window size and
rate, and reset the retransmission timer. The programming
interface of the Periodic Updates module is similar.

In specifying these functions, programmers can use inte-
ger arithmetic operations, e.g., addition, subtraction, multi-
plication, and division with small-width operands, condition-
als, and a limited set of read-only bitmap operations, e.g., in-
dex lookup, and finding the first set bit in the updated acked

bitmap (see appendix F for an example program). Note that
a dedicated fixed-function stage in the data delivery engine
performs the costly common bitmap updates on receipt of
acks (§3.2.3). We show, in §6.1.1, that a wide range of trans-
port protocols can be implemented using this interface and
give examples of ones that cannot.

4 Hardware Implementation

In this section, we describe the hardware design of the
Tonic components that were the most challenging to imple-
ment under Tonic’s tight timing and memory constraints.
High-Precision Per-Flow Rate Limiting. A flow with rate
R bytes per cycle and L bytes to send will have sufficient
credit for transmission in T = d L

Re cycles. Tonic needs to do
this computation in the credit engine but must represent R as
an integer since it cannot afford to do floating-point division.
This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If R is in bytes per
cycle, we cannot support rates below one byte per cycle or
∼1 Gbps. If we represent R in bytes per thousand cycles,
we can support rates as low as 1 Mbps. However, T = d L

Re
determines how many thousand cycles from now the flow
qualifies for transmission which results in lower rate con-
formance and precision for higher-bandwidth flows. To sup-
port a wide range of rates without sacrificing precision, Tonic
keeps multiple representations of the flow’s rate at different
levels of precision and picks the most precise representation
for computing T at any moment (details in Appendix B).
Efficient Bitmap Operations. Tonic uses bitmaps as large
as 128 bits to track the status of segments for each flow.
Bitmaps are implemented as ring buffers. The head pointer
corresponds to the first unacked segment and moves forward
around the buffer with new acks. To efficiently implement
operations whose output depends on the values of all the bits
in the bitmap, we must divide the buffer into smaller parts in
multiple layers, process them in parallel, and join the results.
One such operation, frequently used in Tonic, is finding the
first set bit after the head. The moving head of the ring buffer
complicates the implementation of this operation since keep-
ing track of the head in each layer requires extra processing,

making it difficult to compute within our 10 ns target. In-
stead, Tonic uses a light-weight pre-processing on the input
ring buffer to avoid head index computation in the layers al-
together (details in Appendix C).
Concurrent Memory Access. Every cycle, five modules in
the data delivery engine, including both stages of the Incom-
ing module, concurrently access its memory (§3.2.3). How-
ever, FPGAs only have dual-ported block RAMs, with each
port capable of either read or write every cycle. Building
memories with more concurrent reads and writes requires
keeping multiple copies of data in separate memory “banks”
and keeping track of the bank with the most recent data
for each address5 [26]. To avoid supporting five concurrent
reads and writes, we manage to partition per-flow state vari-
ables into two groups, each processed by at most four events.
Thus, Tonic can use two memories with four read and write
ports instead of a single one with five, to provide concurrent
access for all processing modules at the same time.

5 Integrating Tonic into the Transport Layer

Tonic’s transport logic is intentionally decoupled from
the specific implementation of other transport functionality
such as connection management, application-level API, and
buffer management. This section provides an example of
how Tonic can interface with the Linux kernel to learn about
new connections, requests for data transmission, and connec-
tion termination 6. After creating the socket, applications use
various system calls for connection management and data
transfer. As Tonic mainly focuses on the sender sider of the
transport logic, we only discuss the system calls and modifi-
cations relevant to the sender side of the transport layer.
Connection Management. connect() on the client initiates
a connection, listen() and accept() on the server listen for
and accept connections, and close() terminate connections.
As connection management happens outside of Tonic, the
kernel implementation of these system calls stays untouched.
However, once the connection is established, the kernel maps
it to a unique flow id in [0,N), where N is the maximum num-
ber of flows supported by Tonic, and notifies Tonic through
the NIC driver about the new connection.

Specifically, from the connection’s Transmission Control
Block (TCB) in the kernel, the IP addresses and ports of
the communication endpoints are sent to Tonic alongside the
flow id and the fixed segment size chosen for the connec-
tion. The kernel only needs to track the TCB fields used for
connection management (e.g., IP addresses, ports, and TCP
FSM), pointers to data buffers, and receiver-related fields.
Fields used for data transfer on the sender, i.e., snd.nxt,
snd.una, and snd.wnd, are stored in and handled by Tonic.
Finally, after a call to close(), the kernel uses the connec-

5 This overhead is specific to FPGAs, and can potentially be eliminated
if the memory is designed as an ASIC.

6 See appendix A for how Tonic can be used with RDMA.
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tion’s flow id to notify Tonic of its termination.
Data Transfer. send() adds data to the connection’s socket
buffer, which stores its outstanding data waiting for delivery.
Tonic keeps a few bits of per-segment state for outstanding
data and performs all transport logic computation in terms
of segments. As such, data should be partitioned into equal-
sized segments before Tonic can start its transmission (§3.2).
Thus, modifications to send() mainly involve determining
segment boundaries for the data in the socket buffer based on
the connection’s configured segment size and deciding when
to notify Tonic of the new segments. Specifically, the kernel
keeps an extra pointer for each connection’s socket buffer, in
addition to its head and tail, called tonic-tail. It points
to the last segment of which Tonic has been notified. head

and updates to tonic-tail are sent to Tonic to use when
generating the next segment’s address to fetch from memory.

Starting with an empty socket buffer, when the applica-
tion calls send(), data is copied to the socket buffer, and
tail is updated accordingly. Assuming the connection’s
configured segment size is C, the data is then partitioned
into C-sized segments. Suppose the data is partitioned into
S segments and B < C remaining bytes. The kernel then
updates tonic-tail to point to the end of the last C-sized
segment, i.e., head + C * S, and notifies Tonic of the update
to tonic-tail. The extra B bytes remain unknown to Tonic
for a configurable time T , in case the application calls send

to provide more data. In that case, the data are added to the
socket buffer, data between tonic-tail and tail are sim-
ilarly partitioned, tonic-tail is updated accordingly, and
Tonic is notified of new data segments.

If there is not enough data for a C-sized segment after time
T , the kernel needs to notify Tonic of the “sub-segment” (a
segment smaller than C) and its size, and update tonic-tail

accordingly. Note that Tonic requires all segments, except
for the last one in a burst, to be of equal size, as all com-
putations, including window updates, are in terms of seg-
ments. Thus, after creating a “sub-segment”, if there is more
data from the application, Tonic can only start its trans-
mission when it is done transferring its current segments.
Tonic notifies the kernel once it successfully delivers the fi-
nal “sub-segment”, at which point, head and tonic-tail will
be equal, and the kernel continues partitioning the remaining
data in the socket buffer and updating Tonic as before. Note
that Tonic can periodically, with a configurable frequency,
forward acknowledgments to the kernel to move head for-
ward and free up space for new data in the socket buffer.

C and T can be configured for each flow based on its la-
tency and throughput characteristics. For high-bandwidth
flows, C can be set to MSS (or larger, if using TSO). For
flows that sporadically generate small segments, setting C
and T is not as straightforward since segments cannot be
consolidated within Tonic. We discuss the trade-offs in de-
ciding these parameters in detail in appendix D.
Other Considerations. As we show in §6, Tonic’s current

design supports 2048 concurrent flows, matching the work-
ing sets observed in data centers [15,37] and other hardware
offloads in the literature [20]. If a host has more open con-
nections than Tonic can support, the kernel can offload data
transfer for flows to Tonic on a first-come first-serve basis,
or have users set a flag when creating the socket and fall
back to software once Tonic runs out of resources for new
flows. Alternatively, modern FPGA-based NICs have a large
DRAM directly attached to the FPGA [20]. The DRAM can
potentially be used to store the state of more connections,
and swap them back and forth into Tonic’s memory as they
activate and need to transmit data. Moreover, to provide visi-
bility into the performance of hardware transport logic, Tonic
can provide an interface for kernel to periodically pull trans-
port statistics from the NIC.
Other Transport Layers. The above design is an exam-
ple of how Tonic can be integrated into a commonly-used
transport layer. However, TCP, sockets, and bytestreams
are not suitable for all applications. In fact, several data-
center applications with high-bandwidth low-latency flows
are starting to use RDMA and its message-based API in-
stead [5,9,22,35]. Tonic can be integrated into RDMA-based
transport as well, which we discuss in appendix A.

6 Evaluation

To evaluate Tonic, we implement a prototype in Verilog
(∼8K lines of code) and a cycle-accurate hardware simulator
in C++ (∼2K lines of code) [11]. The simulator is integrated
with NS3 network simulator [4] for end-to-end experiments.

To implement a transport protocol on Tonic’s Verilog pro-
totype, programmers only need to provide three Verilog files:
(i) incoming.v, describing the loss detection and recovery
logic and how to change credit management parameters (i.e.,
rate or window) in response to incoming packets; this code
is inserted into the second stage of the Incoming pipeline in
the data delivery engine, (ii) periodic updates.v, describ-
ing the loss detection and recovery logic in response to time-
outs and how to change credit management parameters (i.e.,
rate or window) in response to periodic timers and counters;
this code is inserted into the Periodic Updates module in the
data delivery engine, and (iii) user configs.vh, specifying
which of the three credit calculation schemes to use and the
initial values of user-defined state variables and other param-
eters, such as initial window size, rate, and credit.

We evaluate the following two aspects of Tonic:
Hardware Design (§6.1). We use Tonic’s Verilog prototype
to evaluate its hardware architecture for programmability and
scalability. Can Tonic support a wide range of transport pro-
tocols? Does it reduce the development effort of implement-
ing transport protocols in the NIC? Can Tonic support com-
plex user-defined logic with several variables? How many
per-flow segments and concurrent flows can it support?
End-to-End Behavior (§6.2). We use Tonic’s cycle-accurate
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simulator and NS3 to compare Tonic’s end-to-end behavior
with that of hard-coded implementations of two protocols:
New Reno [23] and RoCEv2 with DCQCN [43], both for a
single flow and for multiple flows sharing a bottleneck link.

6.1 Hardware Design
There are two main metrics for evaluating the efficiency

of a hardware design: (i) Resource Utilization. FPGAs
consist of primitive blocks, which can be configured and
connected to implement a Verilog program: look-up tables
(LUTs) are the main reconfigurable logic blocks, and block
RAMs (BRAMs) are used to implement memory. (ii) Tim-
ing. At the beginning of each cycle, each module’s input is
written to a set of input registers. The module must process
the input and prepare the result for the output registers before
the next cycle begins. Tonic must meet timing at 100 MHz to
transmit a segment address every 10 ns. That is, to achieve
100 Gbps, the processing delay of every path from input to
output registers in every module must stay within 10 ns.

We use these two metrics to evaluate Tonic’s programma-
bility and scalability. These metrics are highly dependent on
the specific target used for synthesis. We use the Kintex Ul-
trascale+ XCKU15P FPGA as our target because this FPGA,
and others with similar capabilities, are included as bump-
in-the-wire entities in today’s commercial programmable
NICs [2, 3]. This is a conservative choice, as these NICs
are designed for 10-40 Gbps Ethernet. A 100 Gbps NIC
could potentially have a more powerful FPGA. Moreover,
we synthesize all of Tonic’s components onto the FPGA
to evaluate it as a standalone prototype. However, given
the well-defined interfaces between the fixed-function and
programmable modules, it is conceivable to implement the
fixed-function components as an ASIC for more efficiency.
Unless stated otherwise, we set the maximum number of
concurrent flows to 1024 and the maximum window size to
128 segments in all of our experiments 7.

6.1.1 Hardware Programmability

We have implemented the sender’s transport logic of six
protocols in Tonic as representatives of various types of seg-
ment selection and credit calculation algorithms in the lit-
erature. Table 3 summarizes their resource utilization for
both fixed-function and user-defined modules, and the lines
of code and bytes of user-defined state used to implement
them. While we use the same set of per-flow state variables
(Table 2) for all protocols, not all of them use all the vari-
ables in processing transport events. For instance, bitmaps
are only used by protocols with selective acks. Thus, it is
possible to reduce the resource utilization even more with
some pre-processing to remove the irrelevant variables and
computation from the Verilog design.

7A 100 Gbps flow with 1500B back-to-back packets over 15-µs RTT,
typical in data centers, has at most 128 in-flight segments.

User-Defined
Logic Credit

Type

Look up Tables (LUTs) BRAMsUser-Defined Fixed
LoC state(B) total(K) % total(K) % total %

Reno 48 8 wnd 2.4 0.5 109.4 20.9 195 20
NewReno 74 13 wnd 2.6 0.5 112.5 21.5 211 21
SACK 193 19 wnd 3.3 0.6 112.1 21.4 219 22
NDP 20 1 token 3.0 0.6 143.6 29.0 300 30
RoCE w/ 63 30 rate 0.9 0.2 185.2 35.2 251 26DCQCN
IRN 54 14 rate 2.9 0.6 177.4 33.9 219 22

Table 3: Resource utilization of transport protocols in Tonic.

Reno [13] and New Reno [23] represent TCP variants that
use only cumulative acks for reliable delivery and congestion
window for credit management. Reno can only recover from
one loss within the window using fast retransmit, whereas
New Reno uses partial acknowledgments to recover more ef-
ficiently from multiple losses in the same window. SACK,
inspired by RFC 6675 [16], represents TCP variants that use
selective acks. Our implementation has one SACK block
per ack but can be extended to more. NDP [24] represents
receiver-driven protocols, recently proposed for low-latency
data-center networks [21, 36]. It uses explicit NACKs and
timeouts for loss detection and grant tokens for congestion
control. RoCEv2 w/ DCQCN [43] is a widely-used transport
for RDMA over Ethernet, and IRN [34] is a recent hardware-
based protocol for improving RoCE’s simple data delivery
algorithm. Both use rate limiters for credit management.

Note that, as described in §3.2, not all data delivery al-
gorithms are feasible for hardware implementation as is. For
instance, due to memory constraints on the NIC, it is not pos-
sible to keep timestamps for every packet, new and retrans-
missions, on the NIC. As a result, transport protocols which
rely heavily on per-packet timestamps, e.g., QUIC [27], need
to be modified to work with fewer timestamps, i.e., for a sub-
set of in-flight segments, to be offloaded to hardware.
Takeways. There are three key takeaways from these results:
• Tonic supports a variety of transport protocols.
• Tonic enables programmers to implement new transport

logic with modest development effort. Using Tonic, each
of the above protocols is implemented in less than 200
lines of Verilog code, with the user-defined logic con-
suming less than 0.6% of the FPGA’s LUTs. In contrast,
Tonic’s fixed-function modules, which are reused across
these protocols, are implemented in∼8K lines of code and
consume ∼60 times more LUTs.

• Different credit management schemes have different over-
heads. For transport protocols that use congestion win-
dow, window calculations overlap with and therefore are
implemented in the data delivery engine (§3.3.1). Thus,
their credit engine utilizes fewer resources than others.
Rate limiting requires more per-flow state and more com-
plicated operations (§4) than enforcing receiver-generated
grant tokens but needs fewer memory ports for concurrent
reads and writes (§3.3.2), overall leading to lower BRAM
and higher LUT utilization for rate limiting.
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Figure 3: NewReno’s Tonic vs hard-coded implementation in NS3 (10G line-rate): a) Congestion window updates (single flow, random
drops), b) Transmitted sequence numbers with retransmission in large dots (single flow, random drops), and c) CDF of average throughput of
multiple flows sharing a bottleneck link over 5 seconds (200 flows from 2 hosts to one receiver)

6.1.2 Hardware Scalability

We evaluate Tonic’s scalability by examining how sources
of variability in its architecture (programmable modules and
various parameters) affect memory utilization and timing.
User-defined logic in programmable modules can have
arbitrarily-long chains of dependent operations, potentially
causing timing violations. We generate 70 random programs
for incoming.v (the programmable stage of Incoming mod-
ule in data delivery engine) with different numbers of arith-
metic, logical, and bitmap operations, and analyze how long
the chain of dependent operations gets without violating tim-
ing at 10ns. These programs use up to 125B of state and
have a maximum dependency of 65 logic levels (respectively
six and two times more than the benchmark protocols in Ta-
ble 3). Each logic level represents one of several primitive
logic blocks (LUT, MUX, DSP, etc.) chained together to im-
plement a path in a Verilog program.

We plug these programs into Tonic, synthesize them, and
analyze the relationship between the number of logic levels
and latency of the max-delay path (Table 4). Programs with
up to 32 logic levels consistently meet timing, while those
with more than 43 logic levels do not. Between 32 and 42
logic levels, the latency of the max-delay path is around 10
ns. Depending on the mix of primitives on the max-delay
path and their latencies, programs in that region can poten-
tially meet timing. Our benchmark protocols have 13 to 29
logic levels on their max-delay path and all meet timing.
Thus, Tonic not only supports our benchmark protocols, but
also has room to support future more sophisticated protocols.
User-defined state variables increase the memory width af-
fecting BRAM utilization. We add extra variables to SACK,
IRN, and NDP to see how wide memories can get without
violating timing and running out of BRAMs, repeating the
experiment for each of the three credit management schemes
as they have different memory footprints (Table 4). Tonic
can support 448B of user-defined state with congestion win-
dow for credit management, 340B with rate, and 256B with
grant tokens (Protocols in Table 3 use less than 30B).
Maximum window size determines the size of per-flow
bitmaps stored in the data delivery engine to keep track of
the status of a flow’s segments, therefore affecting memory

Metric Results

Complexity of
User-Defined Logic

logic
levels

( 0 ,31] meets timing
(31,42] depends on operations
(42,65] violates timing

User-Defined State bytes
256 grant token
340 rate
448 congestion window

Window Size segments 256
Concurrent Flows count 2048

Table 4: Summary of Tonic’s scalability results.

utilization, and the complexity of bitmap operations, hence
timing. Tonic can support bitmaps as large as 256 bits (i.e.,
tracking 256 segments), with which we can support a single
100Gbps flow in a network with up to 30µs RTT (Table 4).

Maximum number of concurrent flows determines
memory depth and the size of FIFOs used for flow schedul-
ing (§3.1). Thus, it affects both memory utilization and the
queue operations, hence timing. Tonic can scale to 2048 con-
current flows in hardware (Table 4) which matches the size
of the active flow set observed in data centers [15, 37] and
other hardware offloads in the literature [20].

Takeways. Tonic has additional room to support future
protocols that are more sophisticated with more user-defined
variables than our benchmark protocols. It can track 256
segments per flow and support 2048 concurrent flows. With
a more powerful FPGA with more BRAMs, Tonic can po-
tentially support even larger windows and more flows.

6.2 End-to-End Behavior
To examine Tonic’s end-to-end behavior and verify the fi-

delity of Tonic-based implementation of the transport logic
in different protocols, we have developed a cycle-accurate
hardware simulator for Tonic in C++. We use this sim-
ulator with NS3 to show that Tonic-based implementation
of NewReno and RoCEv2 w/ DCQCN senders match their
hard-coded NS3 implementation. Note that the goal of these
simulations is to analyze and verify Tonic’s end-to-end be-
havior. Tonic’s ability to support 100Gbps line rate has al-
ready been demonstrated in §6.1 using hardware synthesis.
Thus, in our simulations, we use 10Gbps and 40Gbps as
line rate merely to make hardware simulations with multi-
ple flows over seconds computationally tractable.
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Figure 4: RoCEv2 w/ DCQCN in Tonic vs hard-coded in NS3 (40G
line rate, one of two flows on a bottleneck link).

6.2.1 TCP New Reno

We implement TCP New Reno in Tonic based on
RFC 6582, and use NS3’s native network stack for its hard-
coded implementation. Our Tonic-based implementation
works with the unmodified native TCP receiver in NS3. In
all simulations, hosts are connected via 10Gbps links to one
switch, RTT is 10µs, the buffer is 5.5MB, the minimum re-
transmission timeout is 200ms (Linux default), segments are
1000B large, and delayed acks are enabled on the receiver.
Single Flow. We start a single flow from one host to an-
other, and randomly drop packets on the receiver’s NIC. Fig-
ure 3(a) and 3(b) show the updates to the congestion win-
dow and transmitted sequence numbers (retransmissions are
marked with large dots), respectively. Tonic’s behavior in
both cases closely matches the hard-coded implementation.
The slight differences stem from the fact that in NS3’s net-
work stack, all the computation happens in the same virtual
time step while in Tonic every event (incoming packets , seg-
ment address generation, etc.) is processed over a 100ns cy-
cle (increased from 10ns to match the 10G line rate).
Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for 5 sec-
onds. The CDF of average throughput across the 200 flows
for the Tonic-based implementation closely matches that of
the hard-coded implementation (Figure 3(c)). We observe
similarly matching distributions for number of retransmis-
sions. When analyzing the flows’ throughput in millisecond-
long epochs, we notice larger variations in the hard-coded
implementation than Tonic since Tonic, as opposed to NS3’s
stack, performs per-packet round robin scheduling across
flows on the same host.

6.2.2 RoCEv2 with DCQCN

We implement RoCE w/ DCQCN [43] in Tonic, and use
the authors’ NS3 implementation from [44] for the hard-
coded implementation. Our Tonic-based implementation
works with the unmodified hard-coded RoCE receiver. In
all simulations, hosts are connected via 40Gbps links to the
same switch, RTT is 4µs, segments are 1000B large, and we
use the default DCQCN parameters from [44].
Single Flow. DCQCN is a rate-based algorithm which uses
CNPs and periodic timers and counters for congestion con-

trol as opposed to packet loss in TCP. Thus, to observe rate
updates for a single flow, we run two flows from two hosts
to the same receiver for one second to create congestion and
track the throughput changes of one as they both converge
to the same rate. Tonic’s behavior closely matches the hard-
coded implementation (Figure 4). We also ran a single DC-
QCN flow at 100Gbps with 128B back-to-back packets and
confirmed that Tonic can saturate the 100Gbps link.
Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for one
second. Both Tonic and the hard-coded implementation do
per-packet round robin scheduling among the flows on the
same host. As a result, all flows in both cases end up with
an average throughput of 203±0.2Mbps. Moreover, we ob-
serve a matching distribution of CNPs in both cases.

7 Related Work

Tonic is the first programmable architecture for transport
logic in hardware able to support 100 Gbps. In this section,
we review the most closely related prior work.

Commercial hardware network stacks. Some NICs
have hardware network stacks with hard-wired transport pro-
tocols [8, 10]. However, they only implement two proto-
cols, either RoCE [8] or a vendor-selected TCP variant, and
can only be modified by their vendor. Tonic enables pro-
grammers to implement a variety of transport protocols in
hardware with modest effort. In the absence of a publicly-
available detailed description of these NICs’ architecture, we
could not compare our design decisions with theirs.

Non-commercial hardware transport protocols. Recent
work explores hardware transport protocols that run at high
speed with low memory footprint [30, 31, 34]. Tonic facil-
itates innovation in this area by enabling researchers to im-
plement new protocols with modest development effort.

Accelerating network functionality. Several academic
and industrial projects offload end-host virtual switching and
network functions to FPGAs, processing a stream of already-
generated packets [14, 20, 28, 29, 41]. Tonic, on the other
hand, implements the transport logic in the NIC by keeping
track of potentially a few hundred segments at a time to gen-
erate packets at line rate while running user-defined transport
logic to ensure efficient and reliable delivery.
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A Integrating Tonic within RDMA

Remote Direct Memory Access (RDMA) enables applica-
tions to directly access memory on remote endpoints without
involving the CPU. To do so, the endpoints create a queue
pair, analogous to a connection, and post requests, called
Work Queue Elements (WQEs), for sending or receiving data
from each other’s memory. While RDMA originated from
InfiniBand networks, RDMA over Ethernet is getting more
common in data centers [9, 22, 35]. In this section, we use
RDMA to refer to RDMA implementations over Ethernet.

Once a queue pair is created, RDMA NICs can add the
new “connection” to Tonic and use it to on the sender side to
transfer data in response to different WQEs. Each WQE cor-
responds to a separate message transfer and therefore nicely
fits Tonic’s need for determining segment boundaries before
starting data transmission.

For instance, in an RDMA Write, one endpoint posts a
Request WQE to write to the memory on the other endpoint.
Data length, data source address on the sender, and data sink
addresses on the receiver are specified in the Request WQE.
Thus, a shim layer between RDMA applications and Tonic
can decide the segment boundaries and notify Tonic of the
number of segments and the source memory address to read
the data from on the sender. Once Tonic generates the next
segment address, the rest of the RDMA NIC can DMA it
from the sender’s memory and add appropriate headers. An
RDMA Send is similar to RDMA Write, except it requires a
Receive WQE on the receiver to specify the sink address to
which the data from the sender should be written. So, Tonic
can still be used in the same way on the sender side.

As another example, in an RDMA Read, one endpoint re-
quests data from the memory on the other endpoint. So, the
responder endpoint should transmit data to the requester end-
point. Again, the data length, data source address on the re-
sponder, and data sink address on the requester are specified
in the WQE. Thus, the shim layer can decide the segment
boundaries and and transfer the data using Tonic.

Thus, Tonic can be integrated into RDMA NICs to re-
place the hard-coded transport logic on the sender-side of
data transfer. In fact, two of our benchmark protocols, RoCE
w/ DCQCN [43] and IRN [34], are proposed for RDMA
NICs. That said, this is assuming there is a compatible re-
ceiver on the other side to generate the control signals (e.g.,
acknowledgments, congestion notifications, etc.) required

by whichever transport protocol one chooses to implement
on Tonic on the sender side.

While some implementations of RDMA over Ethernet
such as iWarp [7] handle out-of-order (OOO) packets and
implement TCP/IP-like acknowledgments, others, namely
RoCE [8], assume a lossless network and have simpler trans-
port protocols that do not require receivers to handle OOO
packets and generate frequent control signals. However, as
RDMA over Ethernet is getting more common in data cen-
ters, the capability to handle OOO packets on the receiver
and generate various control signals for more efficient trans-
port is being implemented in these NICs as well [34, 43].

Finally, Tonic provides in-order reliable data delivery
within the same flow. Thus, messages sent over the same
flow are delivered to the receiver in the same order. How-
ever, it is sometimes desirable to support out-of-order mes-
sage delivery for a communication endpoint (e.g., a queue
pair), for instance, to increase the performance of applica-
tions when messages are independent from each other, or
when using “unconnected” endpoints (e.g., one sender and
multiple receivers). It is still possible to support out-of-order
message delivery using Tonic by creating multiple flows in
Tonic for the same communication endpoint and using them
concurrently. Extending Tonic to support out-of-order mes-
sage delivery within the same flow is an interesting avenue
for future work.

B High-Precision Per-Flow Rate Limiting

When using rate in the credit engine, if a flow with rate
R bytes per cycle needs L more bytes of credit to transmit
a segment, Tonic calculates T = d L

Re as the time where the
flow will have sufficient credit for transmission. It sets up
a timer that expires in T cycles, and upon its expiry, queues
up the flow in ready-to-tx for transmission (§3.3.2). Since
Tonic cannot afford to do floating-point division within its
timing constraints, R must be represented as an integer.

This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If we represent R
in bytes per cycle, we can compute the exact cycle when the
flow will have enough credit, but cannot support rates lower
than one byte per cycle or ∼1 Gbps. If we instead represent
R in, say, bytes per thousand cycles, we can support lower
rates (e.g., 1 Mbps), but T = d L

Re will determine how many
thousand cycles from now the flow can qualify for transmis-
sion. This results in lower rate conformance and precision
for higher-bandwidth flows. As a concrete example, for a
20 Gbps flow, R would be 25000 bytes per thousand cycles.
Suppose the flow has a 1500-byte segment to transmit. It
will have enough credit to do so in 8 cycles but has to wait
d 1500

25000e= 1 thousand cycles to be queued for transmission.
Instead of committing to one representation for R, Tonic

keeps multiple variables R1, . . . ,Rk for each flow, each rep-
resenting flow’s rate at a different level of precision. As the
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congestion control loop adjusts the rate according to network
capacity, Tonic can efficiently switch between R1, . . . ,Rk to
pick the most precise representation for computing T at any
moment. This enables Tonic to support a wide range of rates
without sacrificing the rate-limiting precision.

C Efficient Bitmap Operations

Tonic uses bitmaps as large as 128 bits to track the status
of a window of segments for each flow. Bitmaps are im-
plemented as ring buffers, with the head pointer correspond-
ing to the first unacknowledged segment. As new acknowl-
edgments arrive, the head pointer moves forward around the
ring. To efficiently implement operations whose output de-
pends on the values of all the bits in the bitmap, we must par-
allelize them by dividing the ring buffer into smaller parts,
processing them in parallel, and joining the results. For large
ring buffers, this divide and conquer pattern is repeated in
multiple layers. As each layer depends on the previous one
for its input, we must keep the computation in each layer
minimal to stay within our 10 ns target.

One such operation finds the first set bit after the head.
This operation is used to find the next lost segment for re-
transmission in the marked-for-rtx bitmap. The moving
head of the ring buffer complicates the implementation of
this operation. Suppose we have a 32-bit ring buffer A32,
with bits 5 and 30 set to one, and the head at index 6. Thus,
f ind f irst(A32,6) = 30. We divide the ring into eight four-
bit parts, “or” the bits in each one, and feed the results into
an 8-bit ring buffer A8, where A8[i] = OR(A32[i : i+3]). So,
only A8[1] and A8[7] are set. However, because the set bit
in A32[4 : 7] is before the head in the original ring buffer, we
cannot simply use one as A8’s head index or we will mistak-
enly generate 5 instead of 30 as the final result. So, we need
extra computation to find the correct new head. For a larger
ring buffer with multiple layers of this divide and conquer
pattern, we need to compute the head in each layer.

Instead, we use a lightweight pre-processing on the in-
put ring buffer to avoid head index computation altogether.
More specifically, using A32 as input, we compute A′32 which
is equal to A32 except that all the bits from index zero to
head (6 in our example) are set to zero. Starting from in-
dex zero, the first set bit in A′32 is always closer to the orig-
inal head than the first set bit in A32. So, f ind f irst(A32,6)
equals f ind f irst(A′32,0) if A′32 has any set bits, and other-
wise f ind f irst(A32,0). This way, independent of the input
head index H, we can always solve f ind f irst(A,H) from
two subproblems with the head index fixed at zero.

D Deciding C and T for Flows Using Tonic
through the Socket API

In §5, we provide an example of how Tonic can be inte-
grated into the Linux Kernel so that applications can use it
through the Socket API. We introduce two parameters: (i)

C, which is the flow’s fixed segment size, and (ii) T , which
is the duration that the Kernel waits for more data from the
application before sending a “sub-segment” (a segment that
is smaller than C) to Tonic. C and T can be configured for
each flow based on its latency and throughput characteristics.
For high-bandwidth flows, C can be set to MSS (or larger, if
using TSO). For flows that only sporadically generate data
segments, setting C and T , as we discuss below, is not as
straightforward.

With a fixed C, increasing T results in more small seg-
ments being consolidated into C-sized segments before being
sent to Tonic for transmission, but at the expense of higher
latency. C determines the size of the segments and number of
sub-segments generated by Tonic. Recall from §5 that a sub-
segment is created when there is not enough data to make
a full C-sized segment within T . Tonic needs all segments,
except for the last sub-segment in a burst, to be of equal size.
Thus, even if more data is added to the socket buffer after the
sub-segment is sent to Tonic for transmission, Tonic has to
successfully deliver all the previous segments before it can
start transmitting the new ones. Thus, it is desirable to pro-
duce larger segments but fewer sub-segments. With a fixed
T , increasing C results in larger segments. However, to pro-
duce fewer sub-segments, C should be picked such that in
most cases, the data within a burst is divisible by C. Bursts
are separated in time by T . So the choice of T affects the
choice of C and vice versa.

For instance, if an application periodically generates 128-
byte requests, C can be easily set to 128 and T based on the
periodicity. As another example, for an application that peri-
odically generates segments of widely-varying sizes, setting
T to zero and C to the maximum expected segment size re-
sults in Tonic transmitting data segments as generated by the
application without consolidation, potentially creating many
sub-segments. For the same application, setting T to zero
and C to the minimum expected segment size could result in
Tonic generating many small segments as all segments will
be broken into the minimum expected segment size. Note
that these trade-offs become more pronounced if Tonic is to
be used for flows that only sporadically generate data seg-
ments. For high-bandwidth flows, C can be set to MSS (or
larger, if using TSO), and T depending on the application’s
traffic pattern and burstiness.
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F New Reno in Tonic

The following is the implementation of New Reno’s loss detection and recovery algorithm on receipt of acknowledgments in
Tonic [23]. Extra comments have been added for clarification.

1 module new_reno_incoming(
2 /* ************************ INPUTS ***************************** */
3 // ACK , NACK , SACK , CNP , etc...
4 input [‘PKT_TYPE_W -1:0] pkt_type ,
5 input [‘PKT_DATA_W -1:0] pkt_data_in ,
6

7 // Segment ID in the cumulative acknowledgment
8 input [‘SEGMENT_ID_W -1:0] cumulative_ack ,
9

10 // Segment ID that is selectively acknowledged , if any
11 input [‘SEGMENT_ID_W -1:0] selective_ack ,
12

13 // Number of segments acknowledged with the received acknowledgment
14 input [‘WINDOW_INDEX_W -1:0] newly_acked_cnt ,
15

16 // Segment ID at the beginning of the window , before and after the
17 // acknowledgment
18 input [‘WINDOW_INDEX_W -1:0] old_wnd_start ,
19 input [‘WINDOW_INDEX_W -1:0] new_wnd_start ,
20

21 // Current time in nanoseconds
22 input [‘TIME_W -1:0] now ,
23

24 //// Per -Flow State
25

26 input [‘MAX_WINDOW_SIZE -1:0] acked ,
27 input [‘MAX_TX_CNT_SIZE -1:0] tx_cnt ,
28 input [‘SEGMENT_ID_W -1:0] highest_sent ,
29 input [‘SEGMENT_ID_W -1:0] wnd_start ,
30 input [‘WINDOW_SIZE_W -1:0] wnd_size_in ,
31 input [‘TIEMR_W -1:0] rtx_timer_amount_in ,
32 input [‘SEGMENT_ID_W -1:0] total_tx_cnt ,
33

34 input [‘USER_VARS_W -1:0] user_vars_in ,
35

36 /* ************************ OUTPUTS **************************** */
37 output [‘FLAG_W -1:0] mark_any_for_rtx ,
38 output [‘SEGMENT_ID_W -1:0] mark_for_rtx_from ,
39 output [‘SEGMENT_ID_W -1:0] mark_for_rtx_to ,
40 output [‘WINDOW_SIZE_W -1:0] wnd_size_out ,
41 output [‘TIMER_W -1:0] rtx_timer_amount_out ,
42 output [‘FLAG_W -1:0] reset_rtx_timer ,
43

44 output [‘USER_VARS_W -1:0] user_vars_out
45 );
46

47 /* ************************ Local Variables ********************
48 *
49 * Declarations ommited for brevity
50 *
51 ************************************************************* */
52

53 /// is the ack new or duplicate?
54 assign is_dup_ack = old_wnd_start == cumulative_ack;
55 assign is_new_ack = new_wnd_start > old_wnd_start;
56

57 /// count duplicated acks
58 assign dup_acks = is_new_ack ? 0:
59 is_dup_ack ? dup_acks_in + 1 : dup_acks_in;
60

61 // How many in_flight packets?
62 assign sent_out = highest_sent - wnd_start;
63 assign in_flight = sent_out - dup_acks;
64

65 // update previous highest ack
66 assign prev_highest_ack_out = is_new_ack ? old_wnd_start : prev_highest_ack_in;
67

68 /// Should we do fast rtx?
69 assign do_fast_rtx = dup_acks == ‘DUP_ACKS_THRESH &
70 (( cumulative_ack > recover_in) |
71 (wnd_size_in > 1 & cumulative_ack - prev_highest_ack_in <= 4));
72

73 // if yes , update recovery sequence and updated ssh_thresh
74 assign recovery_seq_out = do_fast_rtx ? highest_sent : recovery_seq_in;
75
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76 assign half_wnd = in_flight > 2 ? in_flight >> 1 : 2;
77 assign ss_thresh_out = do_fast_rtx ? half_wnd : ss_thresh_in;
78

79 //// if in recovery and this is a new ack , is it a
80 // full ack or a partial ack? (Definition in RFC)
81 assign full_ack = is_new_ack & cumulative_ack > recover_in;
82 assign partial_ack = is_new_ack & cumulative_ack <= recover_in;
83

84 // mark for retransmission
85 assign mark_any_for_rtx = do_fast_rtx | partial_ack;
86

87 assign rtx_start = wnd_start_in;
88 assign rtx_end = wnd_start_in + 1;
89

90 // reset rtx timer if not in recovery
91 assign in_recovery_out = do_fast_rtx | (in_recovery_in & cumulative_ack <= recover_in );
92 assign reset_rtx_timer = ~in_recovery_out;
93

94

95 assign in_timeout_out = (~ full_ack) & in_timeout_in;
96

97 //// decide new window size
98

99 // keep a counter for additive increase
100 assign additive_inc_cntr_out = in_recovery_out & ~in_timeout_in ? 0 :
101 is_new_ack & wnd_size_in >= ss_thresh_in ?
102 (additive_inc_cntr_in == wnd_size_in ? 0 :
103 additive_inc_cntr_in + 1): additive_inc_cntr_in;
104

105

106 assign wnd_size_out = new_wnd_size >= ‘MAX_WINDOW_SIZE ? ‘MAX_WINDOW_SIZE : new_wnd_size;
107

108 always @(*) begin
109 if (do_fast_rtx) begin
110 // set it equals to new ss_thresh , expanded for performance reasons
111 cwnd_out = sent_out - ‘DUP_ACKS_THRESH > 2 ? sent_out >> 1 : 1;
112 end
113 else if (~ in_recovery_in & is_new_ack) begin
114 if (cwnd_in < ss_thresh_out) begin
115 cwnd_out = cwnd_in + newly_acked_cnt;
116 end
117 else if (wnd_inc_cntr_in >= cwnd_in) begin
118 cwnd_out = cwnd_in + 1;
119 end
120 else begin
121 cwnd_out = cwnd_in;
122 end
123 end
124 else begin
125 cwnd_out = cwnd_in;
126 end
127 end
128 assign there_is_more = in_flight >= cwnd_in;
129

130 always @(*) begin
131 if (do_fast_rtx) begin
132 new_wnd_size = sent_out;
133 end
134 else if (~ in_recovery_in & is_new_ack) begin
135 new_wnd_size = cwnd_out;
136 end
137 else begin
138 new_wnd_size = there_is_more ? sent_out : cwnd_in + dup_acks;
139 end
140 end
141

142 //// break up user context into variables
143 assign {prev_highest_ack_in , in_recovery_in , recover_in ,
144 in_timeout_in , wnd_inc_cntr_in , ss_thresh_in ,
145 dup_acks_in , cwnd_in} = user_cntxt_in;
146

147 assign user_cntxt_out = {prev_highest_ack_out , in_recovery_out , recover_out ,
148 in_timeout_out , wnd_inc_cntr_out , ss_thresh_out ,
149 dup_acks_outm , cwnd_out };
150

151

152 endmodule
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Abstract
The emergence of dense, byte-addressable nonvolatile main

memories (NVMMs) allows application developers to com-
bine storage and memory into a single layer. With NVMMs,
servers can equip terabytes of memory that survive power
outages, and all of this persistent capacity can be managed
through a specialized NVMM file system. NVMMs appear
to mesh perfectly with another popular technology, remote
direct memory access (RDMA). RDMA gives a client direct
access to memory on a remote machine and mediates this
access through a memory region abstraction that handles the
necessary translations and permissions.

NVMM and RDMA seem eminently compatible: by com-
bining them, we should be able to build network-attached,
byte-addressable, persistent storage. Unfortunately, however,
the systems were not designed to work together. An NVMM-
aware file system manages persistent memory as files,
whereas RDMA uses a different abstraction — memory re-
gions to organize remotely accessible memory. As a result, in
practice, building RDMA-accessible NVMMs requires expen-
sive translation layers resulting from this duplication of effort
that spans permissions, naming, and address translation.

This work introduces two changes to the existing RDMA
protocol: file memory region (FileMR) and range-based ad-
dress translation. These optimizations create an abstraction
that combines memory regions and files: a client can directly
access a file backed by NVMM file system through RDMA,
addressing its contents via file offsets. By eliminating redun-
dant translations, it minimizes the amount of translations done
at the NIC, reduces the load on the NIC’s translation cache
and increases the hit rate by 3.8× - 340× and resulting in
application performance improvement by 1.8× - 2.0×.

1 Introduction

How scalable computer systems store and access data is
changing rapidly, and these changes are in part motivated
by the blurring of lines between traditionally separate system
components. Nonvolatile main memory (NVMM) provides
byte-addressable memory that survives power outages, blur-
ring the line between memory and storage. Similarly, remote
direct memory access (RDMA) allows a client to directly ac-

∗Now at Google

cess memory on a remote server, blurring the line between lo-
cal and remote memory. At first glance, by combining NVMM
and RDMA, we could unify storage, memory and network
to provide large, stable, byte-addressable network-attached
memory. Unfortunately, the existing systems used to man-
age these technologies are simultaneously overlapping and
incompatible.

NVMMs merge memory and storage. The technology al-
lows applications to access persistent data using load/store
instructions, avoiding the need for a block-based interface
utilized by traditional storage systems. NVMMs are managed
by an NVMM-aware file system, which mediates access to
the storage media. With an NVMM-aware file system, appli-
cations can map a file into their address space, and then access
it using loads and stores instructions, drastically reducing the
latency for access to persistent data.

RDMA merges local and remote memory. RDMA allows a
client to directly access memory on a remote server. Once the
remote server decides to allow incoming access, it registers a
portion of its address space as an RDMA memory region and
sends the client a key to access it. Using the key, the client
can enlist the server’s RDMA network interface (RNIC) to
directly read and write to the server’s memory, bypassing the
CPU. RDMA is popular as it offloads most of the networking
stack onto hardware and provides close-to-hardware abstrac-
tions, exhibiting much better latency compared to TCP/IP
protocol.

Ideally, we could combine NVMM and RDMA into a
unified network-attached persistent memory. Unfortunately,
NVM file systems and the RDMA network protocol were
not designed to work together. As a result, there are many
redundancies, particularly where the systems overlap in mem-
ory. Only RDMA provides network data transfer and only the
NVMM file system provides persistent memory metadata, but
both systems implement protection, address translation, nam-
ing, and allocation across different abstractions: for RDMA,
memory regions, and for NVMM file systems, files. Naively
using RDMA and NVMM file systems together results in a
duplication of effort and inefficient translation layers between
their abstractions. These translation layers are expensive, es-
pecially since RNICs can only store translations for limited
amount of memory while NVM capacity can be extremely
large.

In this paper, we present a new abstraction, called a file
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memory region (FileMR), that combines the best of both
RDMA and NVM file systems to provide fast, network-
attached, file-system managed, persistent memory. It accom-
plishes this goal by offloading most RDMA-required tasks re-
lated to memory management to the NVM file system through
the new memory region type; the file system effectively be-
comes RDMA’s control plane.

With the FileMR abstraction, a client establishes an RDMA
connection backed by files, instead of memory address ranges
(i.e., an RDMA memory region). RDMA reads and writes are
directed to the file through the file system, and addressed by
the file offset. The translation between file offset and physical
memory address is routed through the NVMM file system,
which stores all its files in persistent memory. Access to the
file is mediated via traditional file system protections (e.g.,
access control lists). To further optimize address translation,
we integrate a range-based translation system, which uses ad-
dress ranges (instead of pages) for translation, into the RNIC,
reducing the space needed for translation and resolving the
abstraction mismatch between RDMA and NVMM file sys-
tems.

Our FileMR design with range-based translation provides
a way to seamlessly combine RDMA and NVMM. Compared
to simply layering traditional RDMA memory regions on top
of NVMM, FileMR provides the following benefits:

• It minimizes the amount of translation done at the NIC,
reducing the load on the NIC’s translation cache and
improving hit rate by 3.8× - 340×.

• It simplifies memory protection by using existing file
access control lists instead of RDMA’s ad-hoc memory
keys.

• It simplifies connection management by using persistent
files instead of ephemeral memory region IDs.

• It allows network-accessible memory to be moved or
expanded without revoking permissions or closing a con-
nection, giving the file system the ability to defragment
and append to files.

The rest of this paper is organized as follows. Section 2
describes the necessary background on RDMA and NVMM
file systems. Section 3 describes the design of the FileMR.
Section 4 describes our proposed changes to RDMA stack and
RNICs, and Section 5 introduce two case studies. Section 6
provides experimental results. Section 7 discusses the appli-
cability of the FileMR on real hardware. Section 8 describes
related work, and Section 9 concludes.

2 Background

This section introduces background on both RDMA and
NVMM and describes the motivation for introducing a new

memory abstraction for RDMA, detailing the issue of redun-
dant memory management mechanisms and the reasons exist-
ing systems cannot solve this problem.

2.1 RDMA Networking

RDMA has become a popular networking protocol, especially
for distributed applications [2,20–22,34,36,43,47,55,56,62].
RDMA exposes a machine’s memory to direct access from
the RDMA network interface (RNIC), allowing remote clients
to directly access a machine’s memory without involving the
local CPU.

The RDMA hardware supports a set of operations (called
verbs). One-sided verbs, for instance, “read” and “write”,
directly access remote memory without requiring anything of
the remote CPU, in fact, these verb bypasses the remote CPU
entirely. Two-sided verbs, in contrast, require both machines
to post matching requests, for instance, “send” and “receive”,
which transfer data between registered buffers with addresses
chosen by sender and receiver applications locally.

To establish an RDMA connection, an application registers
one or more memory regions (MRs) that grant the local RNIC
access to part of the local address space. The MR functions
as both a name and a security domain: To give a client access
to a region, the local RNIC supplies the MR’s virtual address,
size and a special 32-bit “rkey”. Rkeys are sent with any
one-sided verb and allow the receiving RNIC to verify the
client has direct access to the region. For two-sided verbs,
a send/recv operation requires both the sender and receiver
to post matching requests, each attached to some local, pre-
registered, memory region, negating the need for rkeys.

To manage outstanding requests, RDMA uses work queues
derived from the virtual interface architecture (VIA) [10]. Af-
ter establishing a connection, an application can initiate an
RDMA verb through its local RNIC by posting work queue en-
tries (WQEs). These entries are written onto a pair of queues
(a queue pair or “QP”); one queue for send/write requests and
one for read/receive requests. Once the entry is written to the
queue pair, the RNIC will execute the RDMA verb and access
the remote machine. Once the verb is completed, the RNIC
will acknowledge the verb’s success by placing a “comple-
tion” in the “completion queue” (CQ). The application can
poll for the completion from the completion queue to receive
notification that the verb completed successfully.

2.2 Nonvolatile Main Memory

Nonvolatile main memory (NVMM) is nonvolatile memory
directly accessible via a load/store interface. NVMM is com-
prised of multiple nonvolatile DIMMs that are attached to
the CPU memory bus and sit alongside traditional DRAM
DIMMs. One or multiple nonvolatile DIMMs can be com-
bined to form a single contiguous physical address space
exposed to the OS [42].
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As NVMM is a persistent media, it requires management
software to provide naming, allocation and protection, and
it is generally managed by a file system. However, unlike
traditional file systems built for slower block devices, NVMM-
aware file systems play a critical role in providing efficient
NVMM access — the DRAM-comparable latency of NVMM
means software overhead can dominate performance. As a
result, NVMM-aware file systems [7,57,59,60] avoid software
overhead along the critical path in two ways:

First, they support the direct access mmap() (DAX-mmap)
capability. DAX-mmap allows applications to map NVMM
files directly into their address spaces and to perform data
accesses via simple loads and stores. This scheme allows
applications to bypass the kernel and file system for most data
accesses, drastically improving performance for file access.

However, NVMM resides within the memory hierarchy,
which can cause complications since caches are not persistent
but can hold data that the application wants to persist. To
persist data, cached writes to NVMM must be followed by
cache-line flush or clean instructions to ensure the data is
actually written back to NVMM, and non-temporal writes can
bypass the CPU caches entirely. A store fence can enforce the
ordering of the writes and guarantee the data will survive a
power failure.

2.3 Managing RDMA and NVMM
Userspace RDMA accesses and NVMM mmapped-DAX ac-
cesses share a critical functionality: they allow direct access
to memory without involving the kernel. Broadly speaking,
we can divide both NVMM file systems and RDMA into a
data plane that accesses the memory and a control plane that
manages the memory exposed to user applications. The data
plane is effectively the same for both: it consists of direct
loads and stores to memory. The control plane, in contrast,
differs drastically between the systems.

For both RDMA and NVMM file systems, the control plane
must provide four services for memory management. First,
it must provide naming to ensure that the application can
find the appropriate region of memory to directly access. Sec-
ondly, it must provide access control, to prevent an application
from accessing data it should not. Thirdly, it must provide a
mechanism to allocate and free resources to expand or shrink
the memory available to the application. Finally, it must per-
form translation between application level names (i.e., virtual
addresses, or memory and file offsets) to physical memory
addresses. In practice, this final requirement means that both
RDMA and NVMM file systems must work closely with the
virtual memory subsystem.

Table 1 summarizes the control plane metadata operations
for RDMA and NVMM. These memory management func-
tionalities are attached to different abstractions in RDMA and
NVMM file systems. For RDMA we use abstractions such as
memory regions and memory windows, and for NVMM file
systems we use files.

Role RDMA / File System FileMR
Naming Both (Redundant) FS Managed
Permissions Both (Redundant) FS Managed
Allocation Both (Redundant) FS Managed
Appending Not Allowed FS Managed
Remapping Not Allowed FS Managed
Defragmentation Not Allowed FS Managed
Translation Both (Incompatible) FS Managed
Persistence FS Only FS Managed
Networking RDMA RDMA
CPU-Bypass RDMA RDMA

Table 1: Control plane roles for RDMA and NVMM. This
table shows the features provided by RDMA and NVMM vs.
FileMR.

2.3.1 Naming

Names provide a hardware-independent way to refer to phys-
ical memory locations. In RDMA applications, the virtual
address of a memory region, along with its “host” machine’s
location (e.g., IP address or GID) serves as a globally (i.e.,
across nodes) meaningful name for regions of physical mem-
ory. These names are transient, since they become invalid
when the application that created them exits, and inflexible
since they prevent an RDMA-exposed page from changing
its virtual to physical address mapping while accessible. To
share a name with a client that wishes to directly access it
via reads and writes, the host gives it the metadata of the MR.
For two-sided verbs (i.e., send/receive) naming is ad-hoc: the
receiver must use an out-of-band channel to decide where to
place the received data.

NVMM-based file systems use filenames to name regions
of physical memory on a host. Since files outlive applica-
tions, the file system manages names independent of applica-
tions and provides more sophisticated management for named
memory regions (i.e., hierarchical directories and text-based
names). To access a file, clients and applications on the host
request access from the file system.

2.3.2 Permissions

Permissions determine what processes have access to what
memory. In RDMA, the RDMA contexts are isolated and
permissions are enforced in two ways. To grant a client direct
read/write access to a memory location, the host shares a
memory region specific “rkey.” The rkey is a 32-bit key that
is attached to all one-sided verbs (such as read and write)
and is verified by the RNIC to ensure the client has access
to the addressed memory region. For every registered region,
the RNIC driver maintains the rkey, along with other RDMA
metadata that provides isolation and protection in hardware-
accessible structures in DRAM.

Permissions are established when the RDMA connection

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    113



between nodes is created, and are granted by the application
code establishing the connection. They do not outlive the
process or survive a system restart. For two-sided verbs pro-
tection is enforced by the receiving application in an ad-hoc
manner: The receiver uses an out-of-band channel to decide
what permissions the sender has.

Access control for NVMM uses the traditional file system
design. Permissions are attached to each file and designated
for both individual users and groups. Unlike RDMA memory
regions and their rkeys, permissions are a property of the
underlying data and survive both process and system restart.

2.3.3 Allocation

RDMA verbs and NVMM files both directly access mem-
ory, so allocation and expansion of available memory is an
important metadata operation.

For NVMM file systems, the file system maintains a list
of free physical pages that can be used to create or extend
files. Creation of a file involves marshalling the appropriate
resources and linking the new pages into the existing file
hierarchy. Similarly, free pages can be linked to or detached
from existing files to grow or shrink the file. Changing the size
of DAX-mmap’d files is easy as well with calls to fallocate
and mremap.

Creating a new RDMA memory region consists of allocat-
ing the required memory resources, pinning their pages, and
generating the rkey. Note that although many RNICs are capa-
ble of handling physical addresses [32], the physical address
of a memory region is often out of the programmer’s control
(it depends, instead, on the implementation of malloc), and
the page is pinned once the region is registered, leading to a
fragmented physical address space.

In addition, changing the mapping of a memory region
is expensive. For example, to increase the memory region
size, the host server needs to deregister the memory region,
reregister a larger region, and send the changes to any inter-
ested clients. The rereg_mr verb combines deregistration and
registration but still carries significant overhead. MPI applica-
tions with public memory pool often use memory windows
to provide dynamic access control on top of a memory region.
This approach does not blend with NVMM file systems since
it still requires static mappings of the underlying memory
region.

Alternatively, programmers can add another memory region
to the connection or protection domain. However, as memory
regions require non-negligible metadata and RDMA does not
support multi-region accesses, this solution adds significant
complexity.

This fixed size limitation also prohibits common file system
operations and optimizations, such as appending to a file,
remapping file content, and defragmentation.
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Figure 1: Address translation for RDMA and NVMM.
RDMA (left) uses NIC-side address translation with pinning,
while NVMM (right) allows the file system to maintain the
layout of a file mapped to user address space.

2.3.4 Address Translation

RDMA and NVMM file system address translation mecha-
nisms ensure that their direct accesses hit the correct physical
page.

As shown in Figure 1, RDMA solves the problem of ad-
dress translation by pinning the virtual to physical address,
that is, as long as a memory region is registered, its virtual and
physical addresses cannot change. Once this mapping is fixed,
the RNIC is capable of handling memory regions registered
on virtual address ranges directly: the RNIC translates from
virtual addresses to physical addresses for incoming RDMA
verbs. To do this translation, the NIC maintains a memory
translation table (MTT) that holds parts of the system page
tables.

The MTT flattens the translation entries for the relevant
RDMA accessible pages and can be cached in the RNIC’s on-
board SRAM [54] to accelerate lookups of this mapping. The
pin-down cache is critical for getting good performance out
of RDMA — the pin-down cache is small (a few megabytes),
a miss is expensive, and due to its addressing mechanism,
most RNICs require all pages in a region be the same size. To
circumvent these limitations, researchers have done signifi-
cant work trying to make the most of the cache for addressing
large memories [14, 22, 35, 36, 43, 48, 56, 62]. While com-
plex solutions exist, the most common recommendation is
to reduce the number of translations needed (e.g., addressing
large contiguous memory regions with either huge pages or
physical addresses).

The NVMM file system handles address translation in
two ways, both different from RDMA. For regular reads and
writes, the file system translates file names with offsets to
physical addresses; this translation is done in the kernel dur-
ing the system call. For memory mapped accesses, mmap estab-
lishes a virtual to physical address mapping from userspace
directly to the file’s contents in NVMM, loading the mapping
into the page table. The file system only interferes on the page
fault handling when a translation is missing between the user
and physical addresses (i.e., a soft page fault); the file system
is bypassed on normal data accesses.

The different translation schemes interfere with each other
to create performance problems. If a page is accessible via
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Figure 2: RDMA Write performance over different mem-
ory region sizes. This figure shows the throughput of 8-byte
RDMA writes affected by the pin-down cache misses. Data
measured on Intel Optane DC Persistent Memory with an
Mellanox CX-3 RNIC.

RDMA, it is pinned to a particular physical address, and fur-
thermore, every page within the region must be the same size.
Therefore the file system is unable to update the layout of the
open file (e.g., to defragment or grow the file). As RDMA
impedes defragmentation of files and prohibits mixing page
sizes in RDMA accessible memory, memory regions backed
by files must use many small pages to address large regions,
overwhelming the pin-down cache and decimating RDMA
performance.

Figure 2 shows the impact of pin-down cache misses on
RDMA write throughput. Each work request writes 8 bytes to
a random 8-byte aligned offset. When the memory region size
is 16 MB, using 4 kB achieves 61.1% of the baseline (sending
physical addresses, no TLB or pin-down cache misses) per-
formance compared to 95.2% when using 2 MB hugepages.
When the region size hits 16 GB, even 2 MB pages is not
sufficient — achieving only 61.2% performance.

3 Design

FileMR is a new type of memory region that extends the
existing RDMA protocol to provide file-based abstractions
for NVMM. It requires minor changes to existing RDMA
protocol and does not rely on any specific design of the file
systems. FileMR can coexist with conventional RDMA mem-
ory regions, ensuring backward compatibility.

As shown in Table 1, the FileMR resolves the conflicts
between RDMA and NVMM file systems that cause unneces-
sary restrictions and performance degradation through several
innovations.

• Merged control plane: With an RDMA FileMR, a
client uses a file offset to address memory, instead of
a virtual or physical address. The FileMR also lever-
ages the naming, addressing, and permissions of the file
system to streamline RDMA access.
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Figure 3: FileMR: Control path and data path. The user
application communicates with the RDMA libraries and file
system in control path, and access local and remote NVMM
directly in datapath.

• Range-based address translation: The FileMR lever-
ages the file system’s efficient, extent-based layout de-
scription mechanism to reduce the amount of states the
NIC must hold. As files are already organized in con-
tinuous extents, we extend this addressing mechanism
to the RNIC, allowing the RNIC’s pin-down cache to
use a space efficient translation scheme to address large
amounts of RDMA accessible memory.

The rest of this section continues as follows. We begin
by describing the assumptions and definitions of FileMR,
followed by the core mechanisms. Then, we describe the
system architecture required to support our new abstraction.

3.1 Assumptions and Definitions

FileMR acts as an efficient and coordinated memory man-
agement layer across the userspace application, the system
software, and the RDMA networking stack. This paper as-
sumes the NVMM is actively managed by system software,
and we describe it as a file system. Note that the concept of a
file system is loosely defined: FileMR can be integrated with
a kernel file system, a userspace file system, or a userspace
NVMM library that accesses raw NVMM (also known as
device-DAX) and provides naming, where a file maps to a
corresponding entity.

This paper assumes NVMM is mapped to application ad-
dress space in its entire lifecycle: As described in Section 2.2,
the most prominent feature of NVMM is to have fine-grained
persistency at a very low cost [63]. The design goal of FileMR
is to enable remote NVMM accesses while retaining the sim-
plicity and efficiency of local NVMM accesses. An alternative
approach is to build holistic systems that manage both storage
(NVMM) and networking (RDMA), these related work will
be discussed in Section 8.2.
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3.2 FileMR

Our new abstraction, the FileMR, is an RDMA memory re-
gion that is also an NVMM file. This allows the RDMA and
NVMM control planes to interoperate smoothly. RDMA ac-
cesses to the FileMR are addressed by file offset, and the
file system manages the underlying file’s access permissions,
naming, and allocation as it would any file. NVMM files are
always backed by physical pages managed by the file system,
so, when using a FileMR, the RDMA subsystem can simply
reuse the translation, permission, and naming information al-
ready available in the file system metadata for the appropriate
checks and addressing.

Figure 3 shows an overview of metadata and data access
with FileMR. For metadata, before creating a FileMR, the
application opens the backing file with the appropriate per-
missions (step 1 ). Next, the application creates the FileMR
(step 2 ) and binds (step 3 ) the region to a file, which com-
pletes the region’s initialization. Binding the FileMR to the
file produces a filekey, analogous to an rkey, that remote clients
can use to access the FileMR. Once the FileMR is created
and bound to a backing file, the file system will keep the file’s
addressing information in sync with the RNIC (step 4 ).

For data access to a remote FileMR and its backing NVMM
file, applications use the FileMR (with the filekey to prove its
permissions) and a file offset. The RNIC translates between
file offsets and physical addresses using translation informa-
tion provided by the file system. In addition to one-sided read
and write verbs to the FileMR, we introduce a new one-sided
append verb that grows the region. When sending the append
verb, the client does not include the remote address, and the
server handles it like an one-sided write with address equal
to current size of FileMR. It then updates the FileMR size
and notifies the file system. As an optimization, to prevent
faulting on every append message, the file system can pre-
allocate translation entries beyond the size of a file. Even
while the backing file is opened and accessible via a FileMR,
local applications can continue to access it using normal file
system calls or mmapped addresses — any change to the file
metadata will be propagated to the RNIC.

3.3 Range-based Address Translation

NVMM file systems try to store file data in large, lin-
ear extents in NVMM. FileMR uses range-based address
translation within the MTT and pin-down cache through
a RangeMTT and range pin-down cache, respectively. This
change is a significant departure from traditional RDMA page-
based addressing. Unlike page-based translations, which trans-
late a virtual to physical address using sets of fixed size pages,
range-based translation (explored and used in CPU-side trans-
lation [5, 11, 23, 38]) maps a variably sized virtual address
range to physical address. Range-based address translation is
useful when addressing large linear memory regions (which
NVMM file systems strive to create) and neatly leverages the
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Figure 4: Overview of FileMR components. Implementing
FileMR requires changes in file system, RDMA stack and
hardware.

preexisting extent-based file organization.
For the FileMR, range-based address translation has two

major benefits: both the space required to store the mapping
and the time to register a mapping scale with the number of
variable-sized extents rather than with the number of fixed
size pages. Registering a page in the MTT and pin-down
cache takes about 5 µs, this process requires locking memory
descriptors and is hard to parallelize. As a result, a single core
can only register memory at 770 MB/s with 4 kB pages. For
NVMMs on the order of terabytes, the result registration time
will be unacceptably long.

3.4 Design Overview
The implementation of the FileMR RDMA extension requires
coordination and changes across several system components:
the file system, the RNIC, the core RDMA stack, and the
application. Figure 4 shows the vanilla RDMA stack (in grey)
along with the necessary changes to adopt FileMR (in green).

To support the FileMR abstraction, the file system is re-
quired to implement the bind() function to associate a
FileMR and a file, and, when necessary, notify the RDMA
stack (and eventually the RNIC’s RangeMTT and pin-down
cache) when the bound file’s metadata changes via callbacks
(see Table 2). These callbacks allow the RNIC to maintain
the correct range-based mappings to physical addresses for
incoming RDMA requests.

Optionally, the file system can also register a set of callback
functions triggered when RNIC cannot find a translation for
an incoming address. This process is similar to on-demand
paging [28, 29] and is required to support our new append
verb, which both modifies the file layout and writes to it.

Supporting the FileMR abstraction also requires changes
to the RNIC hardware. With our proposed RangeMTT, RNIC
hardware and drivers would need to adopt range-based ad-
dressing within both the MTT and pin-down cache. Hardware
range-based addressing schemes [5, 15, 23, 38] can be used to
implement range-based address lookup. In our experiments
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API Description
cm_bind() To notify RNIC of new bound file
cm_init() To initialize RangeMTT entries
cm_update() To update a RangeMTT entry
cm_invalidate() To invalidate a RangeMTT entry
cm_destroy() To destroy a file binding

Table 2: File system to RNIC callbacks for FileMRs. These
callbacks are used by the file system to notify the RDMA
stack and RNIC that file layouts (and consequently address
mappings) have changed.

API Description
bind() Binds an opened file to FileMR
ibv_reg_mr() Creates a FileMR with FILEMR flag
ibv_post_send() Posts append w/ APPEND flag (uverb)
ib_post_send() Posts append w/ APPEND flag (kverb)

Table 3: New/changed RDMA methods. These methods in
the RDMA interface are new or have new flags under the
FileMR system.

we simulate these changes using a software RNIC (see Sec-
tion 4).

The FileMR also adds incremental, backwards compatible
changes to the RDMA interface itself (see Table 3). It adds
a new access flag for memory region creation to identify the
creation of a FileMR. After its creation, the FileMR is marked
as being in an unprovisioned state — the subsequent bind()
call into the file system will allocate the FileMR’s translation
entries in the RangeMTT (via the cm_bind callback from the
file system). The bind() method can be implemented with an
ioctl() (for kernel-level file systems) or a library call (for
user-level file systems). The FileMR also adds the new one-
sided RDMA append verb. Converting existing applications
to use FileMRs is easy as the applications only need to change
its region creation code.

4 Implementation

We implemented the FileMR and RangeMTT for both the
kernel space and userspace RDMA stack in Linux, and our
implementations support the callbacks described in Table 2
and the changed methods in Table 3. The kernel implementa-
tion is based on Linux version 4.18, and userspace implemen-
tation is based on rdma-core (userspace) packages shipped
with Ubuntu 18.04. Table 4 summarizes our implementation
of FileMR with RangeMTT.

For our FileMR implementation on the NIC side, our im-
plementation is based on a software-based RNIC: Software
RDMA over Converged Ethernet (Soft-RoCE) [4,25]. Soft-
RoCE is a software RNIC built on top of ethernet’s layer 2
and layer 3. It fully implements the ROCEv2 specification.
Future research could work to build a FileMR compatible

Item Description
FileMR implementation on RDMA stack

K ibcore Range-based TLB and FileMR kverbs
U libibverbs FileMR verbs in userspace

FileMR support on soft-RoCE
K rxe Device driver and emu. RangeMTT.
U librxe Userspace driver

FileMR support for file system
K nova a NVMM-aware file system

Applications adapting FileMR
U novad Function stubs for remote file accesses
U libpmemlog NVMM log library

Table 4: Summary of FileMR implementation. This table
shows the components modified to implement FileMR. The
first column indicates the change is in kernel space (K) or
userspace (U).

RNIC in real hardware.
To implement our RangeMTT, we followed the design in-

troduced in Redundant Memory Mappings [23]: each FileMR
points to a b-tree that stores offsets and lengths, and we use
the offsets as indices. All RangeMTT entries are page-aligned
addresses, since OS can only manage virtual memory in page
granularity.

Unlike page-aligned RangeMTT, FileMR supports arbi-
trary sizes and allows sub-page files/objects. Each RangeMTT
entry consists of a page address, a length field and necessary
bits. These entries are non-overlapping and can have gaps for
sparse files.

To support the append verb, the FileMR allows translation
entries beyond its size. The append is one-sided but does not
specify remote server addresses in the WR. On the server side,
the RNIC always attempts to DMA to the current size of the
FileMR and increases its size on success. When the translation
is missing, the server can raise an IO page fault when IOMMU
is available and a file system routine will be called to fulfill
the faulty entries. Alternatively, if such support is unavailable,
the server signals the client via a message similar to a receiver
not ready (RNR) error.

Soft-RoCE manages the MTT entries as a flat array of 64-
bit physical addresses with lookup complexity of O(1). We
found similar design is implemented in hardware RNIC driver
such as mlx4. For FileMR with a range pin-down cache miss,
the entry lookup will traverse the registered data structures
with higher time complexity (O(log(n))).

Soft-RoCE does not have a pin-down cache since the map-
pings are in DRAM. To emulate the RangeMTT, we built a
4096-entry 4-way associative cache to emulate the traditional
pin-down cache, and a 4096-entry, 4-way associative range
pin-down cache for FileMR. Each range translation entry con-
sists of a 32 bit page address and a 32-bit length, which allows
a maximal FileMR size of 16 TB (4 kB pages) or 8 PB (2 MB
pages).
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Figure 5: Enabling remote NOVA accesses using FileMR.
Using FileMR, remote file accesses share a similar interface
over RDMA as local NVMM accesses.

We adapted two applications to use FileMR. For a kernel
file system, our implementation is based on NOVA [59], a
full-fledged kernel space NVMM-aware file system with good
performance. We also adapted the FileMR to libpmemlog,
part of pmdk [40], a user-level library that manages local
persistent objects, to build a remotely accessible persistent
log.

5 Case Studies

In this section we demonstrate the utility of our design with
our two case studies. In Section 5.1, we demonstrate how to
use FileMR APIs to enable remote file accesses with consis-
tent addressing for local and remote NVMM. In Section 5.2,
we extend libpmemlog [40], a logging library designed for lo-
cal persistent memory into a remotely accessible log, demon-
strating how FileMR can be applied to userspace libraries.

5.1 Remote File Access in NOVA

In this section, we demonstrate an example usage of our
FileMR by extending a local NVMM file system (NOVA [59]).
By combining the NVMM file system, RDMA, and our new
FileMR abstraction, we can support fast remote file accesses
that entirely bypass the kernel.

NOVA is a log-structured POSIX-compliant local NVMM
file system. In NOVA, each file is organized as a persistent
log of variably sized extents, where the extents reside on
persistent memory. The file data is allocated by the file sys-
tem through per-cpu free lists and maintained as coalescing
entries.

To handle metadata operations on the remote file system,
we added an user-level daemon novad. The daemon opens
the file to establish an FileMR, and receives any metadata

updates (e.g. directory creation) from remote applications and
applies them to the local file system.

On the client side, an application opens the file remotely by
communicating with novad and receiving the filekeys. It can
then send one-sided RDMA verbs to directly access remote
NVMM. At the same time, applications running locally can
still access the file with traditional POSIX IO interface, or
map the file to its address space and issue loads and stores
instructions.

Our combined system can also easily handle data repli-
cation. By using several FileMRs, we can simply duplicate
a verb (with the same or different filekeys depending on
the file system implementation) and send to multiple hosts,
without considering the physical address of the files (so long
as their names are equivalent).

5.2 Remote NVMM Log with libpmemlog

The FileMR abstraction only requires that the backing “file
system” to appropriately implement the bind() method,
RNIC callbacks, and have access to raw NVMM. For in-
stance, a FileMR can be created by an application having
access to the raw NVMM device. In this section, we lever-
age this flexibility and build a remote NVMM log based on
libpmemlog.

We modify the allocator of libpmemlog to use the neces-
sary FileMR callbacks — that is, whenever memory is allo-
cated or freed for the log, the RNIC’s RangeMTT is updated.
The client appends to the log with the new append verb. On
the server side, when the FileMR size is within the mapped
RangeMTT, the RNIC can perform the translation while by-
passing the server application. If not, a range fault occurs
and the library expands the region by allocating and mapping
additional memory.

6 Evaluation

In this section, we evaluate the performance of the FileMR.
First, we measure control plane metrics such as registration
cost, memory utilization of the FileMR, as well as the effi-
ciency of RangeMTT. Then we evaluate application-level data
plane performance from our two case studies and compare
FileMR-based applications with existing systems.

6.1 Experimental Setup

We run our FileMR on servers configured to emulate persis-
tent memory with DRAM. Each node has two Intel Xeon
(Broadwell) CPUs with 10 cores and 256 GB of DRAM,
with 64 GB configured as an emulated NVMM device. We
setup Soft-RoCE on an Intel X710 10GbE NIC connected to
a switch.
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Workload # Files Avg. Size Description
Fileserver 7980 6.82 MB File IOs

Varmail 4511 11.3 kB Random IOs
Redis 2 561 MB Write + Append

SQLite 1 109 MB Write + Sync

Table 5: Workload Characteristics. Description of work-
loads to evaluate registration cost of FileMR and pin-down
cache hit rate.

6.2 Registration Overhead

Allocated Regions We measure the time consumed in
memory region registration using FileMRs versus conven-
tional user-level memory regions backed by NOVA with 4 kB
pages and anonymous buffers with 4 kB and 2 MB pages. This
experiment demonstrates the use case when an application
allocates and maps a file directly, without updating its meta-
data. For FileMR, we also include the time generating range
entries from NOVA logs, which happens when an application
opens the file for the first time.

As shown in Figure 6, registering a large size memory
region consumes a non-trivial amount of time. It takes over
30 seconds to register a 64 GB persistent (File) and volatile
(Alloc-4K) memory region with 4 kB pages. Using hugepages
(Alloc-2M) reduces the registration cost to 20 seconds, while
it only takes 67 ms for FileMR (three orders of magnitude
lower). The FileMR registration time increases modestly as
the region size grows mainly due to the internal fragmentation
of the file system allocator.

For small files, NOVA only creates one or two extents for
the file, while conventional MRs still interacts with the virtual
memory routines of the OS, causing overhead.

Data Fragmentation FileMR benefits from the contiguity
of the file data. The internal fragmentation of a file system
can happen for two reasons: file system aging [19, 45] and
using POSIX IO that changes file layout frequently. To evalu-
ate the FileMR performance in a fragmented file system, we
first warmed up the file system using four IO intensive work-
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Figure 7: FileMR on fragmented files. Compared to tradi-
tional MRs, FileMR saves registration cost and RNIC transla-
tion entries.

loads that issued POSIX IO requests: varmail and fileserver
workloads in filebench [53], Redis [41] and SQLite [46] (us-
ing MobiBench [18]). Once the file system was warmed up
and fragmented, we created memory regions over all files in
NVMM. Table 5 summarizes the workloads.

As shown in Figure 7, running FileMR over the fragmented
file still shows dramatic improvement on region registration
time and memory consumption for MTT entries. Fileserver
demonstrates the case with many files, where FileMR only
creates 0.5% of the entries of traditional memory regions, and
requires only 6.8% of the registration time. For a metadata-
heavy workload (Varmail), FileMR only reduces the number
of entries by 3% (due to the heavy internal fragmentation
and small file size), but it still saves 20% on registration time
because it holds the inode lock, which has less contention.
Redis is a key-value store that persists an append-only file on
the IO path, and flushes the database asynchronously — little
internal fragmentation means that it requires 2% of the space
and time of traditional memory regions. Similarly, SQLite
also uses logging, resulting in little fragmentation, and drastic
space and time savings.

6.3 Translation Cache Effectiveness

The performance degradation of RDMA over large NVMM
is mainly caused by the pin-down cache misses (Figure 2).
Since Soft-RoCE encapsulates RDMA messages in UDP and
accesses all RDMA state in DRAM, we cannot measure the
effectiveness of the cache through end-to-end performance.

Instead, we measure the cache hit ratio of our emulated
pin-down cache and range pin-down cache for FileMR. We
collect the trace of POSIX IO system calls for workloads
described in Table 5, and replay them with one-sided RDMA
verbs to a remote host.

Figure 8 shows the evaluation result. Our emulated range-
based pin-down cache is significantly more efficient (3.8× -
340×) than the page-based pin-down cache. For large allo-
cated files with a few entries, the range-based pin-down cache
shows near 100% hit rate (not shown in figure).
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ntly increases the effectiveness of the pin-down cache.
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Figure 9: Latency breakdown of accessing remote file.
FileMR can access remote file location without indirection
on datapath.

6.4 Accessing Remote Files

To evaluate the datapath performance, we let a client access
files on a remote server running novad (introduced in Sec-
tion 5.1). The client issues random 1 kB writes using RDMA
write verbs, and we measure the latency between the client
application issuing the verb and the remote RNIC DMAs to
the target memory address (memcopy for Soft-RoCE).

We compared FileMR with both mmapped local accesses
and other distributed systems that provide distributed storage
access. We implemented datapath-only versions of Mojim-
Emu [64], LITE-Emu [56] and Orion-Emu [62] for Soft-
RoCE. All these systems avoid translation overhead by send-
ing physical addresses on the wire. We will further discuss
these systems in Section 8.

In Figure 9, we show the latency breakdown of these sys-
tems. Note that the latencies of all systems are higher than
a typical RDMA NIC, because Soft-RoCE is less efficient
than a real RNIC. Also, we omit the latencies of UDP packet
encapsulation and delivery, which dominate the end-to-end
latency. It only takes 1.5 µs to store and persist 4 kB data
to local NVMM. FileMR has lower latency than other sys-
tems because it eliminates the need for any indirection layer

0 2 4 6 8 10 12 14 16
Latency (us)

FileMR

HERD(RPC)

libpmemlog

RDMA Library
TX: Software

TX: RDMA Stack
TX: RNIC

RX: RNIC
RX: Software

DAX

Figure 10: Latency breakdown of accessing remote log.
With the append verb, Remote logging with FileMR achieves
similar performance to local one.

(msync() system call for Mojim, shared memory write for
LITE, and POSIX write for Orion).

6.5 Accessing Remote NVMM logs

Finally, we evaluate our introduction of the new append
verb using our remote log implementation introduced in Sec-
tion 5.2. We compare to a baseline libpmemlog on using
local NVMM (bypassing the network), as well as with log-
ging within the HERD RPC RDMA library [21, 22].

Figure 10 shows the latency breakdown of creating a
64 Byte log entry. It takes 5.5 µs to log locally with
libpmemlog. FileMR adds 53% overhead for remote vs. local
logging, while the HERD RPC-based solution adds 192%
overhead.

7 Discussion

The current FileMR implementation relies on software-based
RDMA protocols. In this section, we discuss the potential
benefits and challenges of applying FileMR on hardware and
other deeper changes to the RDMA protocol. We consider
them to be the future work of this paper.

Data Persistence For local NVMM, a store instruction is
persistent once data is evicted from CPU last-level cache (via
cache flush instructions and memory fences). A mechanism
called asynchronous DRAM refresh (ADR) ensures that the
write queue on a memory controller is flushed to nonvolatile
storage in the event of a power failure. There are no similar
mechanisms in the RDMA world since ADR does not extend
to PCIe devices. Making the task even more difficult, modern
NICs are capable of placing data into CPU cache using di-
rect cache access (DCA) [17], conceivably entirely bypassing
NVMM.

The current workaround to ensure RDMA write persistency
is to disable DCA and issue another RDMA read to the last
byte of a pending write [9], forcing the write to complete
and write to NVMM. Alternatively, the sender requests that
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the receiving CPU purposefully flush data it received; either
embedding the flush request in an extra send verb or the
immediate field of a write verb.

A draft standards working document has proposed adding
a commit [50] verb to the RDMA protocol to solve the write
persistency problem. A commit verb lists memory locations
that need to be flushed to persistence. When the remote RNIC
receives a commit verb, it ensures the all listed locations are
persistent before acknowledging completion of the verb.

With the introduction of FileMR, implementing data per-
sistence is simplified since there is no longer need to track
modified locations at the client: the RNIC already maintains
information about the files. A commit verb can simply request
that all updates to a file are persisted, which is analogous to an
fsync system call to a local file, which is usually light-weight.
Even better, since the commit needs little state, a commit flag
can be embedded to the latest write verb, reducing communi-
cation overhead.

Connection Management Several NVMM-based storage
systems [30,43,56,62] store data across nodes, or use a model
similar to distributed shared memory. This model requires es-
tablishing N2 connections for N servers with NVMM. For
user-level applications, the reliable connection transport en-
forces the protection domain within the scope of a process.
Thus a cluster with N servers running p processes will estab-
lish N2 × p2 connections.

Existing works [12, 12, 49] reduces this complexity by
sharing queue pairs [49], multiplexing connections [27] or
dynamically allocating connections [12] to reduce the RDMA
states. These optimizations work well for MPI-based appli-
cations, but it is challenging to implement them for NVMM
applications, especially for applications with fine-grained ac-
cess control. In particular, a file system supports complex
access control schemes, which may disallow sharing and mul-
tiplexing.

With the FileMR, the file permission is checked at the bind
step, and so each server only requires a single connection
to handle all file system requests, drastically reducing the
amount of states required to store on the RNIC.

For NVMM, data replication is essential for reliability and
availability. Existing RDMA-aware systems on distributed
NVMM [6,33,43,62,64] transfer data multiple times to repli-
cate NVMM because of the limitation (unreliable datagrams
and two-sided verbs) of the existing RDMA protocol. The
RDMA payload could be potentially multicasted by the cur-
rent network infrastructure with FileMR, allowing a single
RDMA verb to modify multiple copies of the same file.

Page Fault on NIC Some ethernet and RNICs support
page fault or on-demand paging [28, 29] (ODP). When using
ODP, instead of pinning memory pages, the IOMMU marks
the page as not present in IO virtual addresses. The RNIC
will raise an interrupt to operating system when attempting
DMA to a non-present page. The IO page fault handler then
fills the entry with the mapping.

With ODP, a page fault is very expensive. In our experiment,
it takes 475 µs to fulfill an IO page fault and complete a 8-byte
RDMA write on a Mellanox CX-4 RNIC. In contrast, it only
takes 1.4 µs to complete when the mapping is cached in the
RNIC. In general, prefetching is a common way to mitigate
the cost of frequent page faults. An optimization for ODP
introduces ioctl(advise_mr) to hint prefetching [44], and
recent research uses madvise system call to help prefetching
local NVMM [8].

The design of FileMR is orthogonal to ODP, though it
leverages the append verb. Fortunately, the file system is
situated to provide better locality by prefetching ranges based
on the file access pattern.

8 Related Work

The FileMR abstraction sits at the intersection of work in
address translation, RDMA, and NVMM systems.

8.1 Address Translation
Reducing the cost of address translations has been the focus
of work spanning decades. We here describe some common,
general approaches and how they can be applied to RDMA
and NVMM.

Using Hugepages Using hugepages is the standard way
to reduce address transaction overhead and TLB pressure.
In Linux, applications can explicitly allocate buffers from
libhugetlbfs, which manages and allocates from a pre-
defined page pool. An alternative is to allow the kernel to
manage hugepages transparently using transparent hugepages
(THP) [3, 37] or page swap [61] in the kernel, where the
OS tries to allocate hugepages and merge smaller pages into
hugepages (via compaction or swapping) in the background.

There are three drawbacks of using hugepages with RDMA
and NVMM considered. First of all, applications [21, 30, 36]
that use libraries such as libhugetlbfs will manage mem-
ory directly and bypass the file system. Second, transparent
hugepage will violate the consistency of the MTT entries
on the RNIC. Finally, since the current memory region uses
a flat namespace, only one type of memory region is sup-
ported, which causes fragmentation when using hugepages.
By introducing range-based translation, FileMR reduces the
number of translation table entries significantly, while retain
the support for file system managing the layout of the files.

Access Indirection Several existing works addressed the
issue of accessing flat memory space by introducing an indi-
rection layer for accesses and optimizing the communication
cost.

LITE [56] uses physical memory region and lets all requests
go into the kernel via shared memory. Remote Region [2]
also redirects requests to kernel but consists of a pseudo-
file system and a user library. Hotpot [43] and Mojim [64]
use customized interfaces over memory mapped regions with
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support such as data replication and allocation. Storm [35]
improves RDMA performance by introducing a new software
stack that creates less RDMA states.

With the customized interface, these systems manage the
data structures and RDMA states internally to reduce the state
handled by RNICs. Programming with these interfaces is un-
intuitive, especially when working with an NVMM library
that manages the data through memory-mapped files and han-
dles allocations with its interface. Additionally, maintaining
a physical memory region allows the remote server access
arbitrary physical addresses, including DRAM.

Virtual Memory Contiguity As the size of the physical
memory keeps increasing while the TLB size has grown
slowly, several previous works discuss the contiguity of vir-
tual memory address space. There are proposals on architec-
ture support for coalesced [38], range [23] or segment [5]
based address management, or accessing physical addresses
with necessary permission checks [15]. In this paper, we as-
sume the NIC hardware is capable of handling range-based
entries using one of these mechanisms. Using software-based
transparent page management [1, 61] can also increase the
contiguity of virtual memory.

8.2 RDMA and NVMM
As discussed in the introduction, building systems that lever-
age the direct memory access of RDMA and NVMM is ap-
pealing. Significant work has already been completed.

Large RDMA Regions Creating memory regions over
large memory with a flat namespace has become a popu-
lar choice for building RDMA-aware systems, even for those
without a persistent memory component. Several systems
use this strategy, including key-value stores [21, 34, 36], dis-
tributed memory allocators [2, 36, 55, 56], transactional sys-
tems, RPC protocols [20, 22, 47], and file systems [43, 62].
To better facilitate this use case, optimizations to the RDMA
protocol such as on-demand paging [28, 29], dynamically
connected transport [12], multi-path RDMA [31] have been
purposed.

NIC Design PASTE [16] is a customized NIC designed
for NVMM. It tightly couples the traditional networking
stack with the NVMM file system. It provides a holistic
design which performs naming and persistence in the net-
working stack. FileMR is designed for RDMA networking
with NVMM file system, and supports general purpose verbs.
FlexNIC [24] is a NIC that supports offloading software
routines, such as key-value interface and packet classifica-
tion down to the NIC. Floem [39] provides a programmable
abstraction that describes the offload scheme. In contrary,
FileMR focuses on a specific use case and can be further
extended to support rich semantics.

Distributed File Systems Building distributed file systems
by providing remote access at the file system level should pro-
vide remote access without interface changes. Orion [62] and

Octopus [30] are two distributed NVMM-aware file systems.
Orion is a kernel level file system that incorporates RDMA
functionalities, and uses physical addresses for RDMA ac-
cesses. Octopus is a user level file system using FUSE [26]
interface with hugepages to reduce page table entries. When
using these file systems, all POSIX file accesses are inter-
cepted and transferred with the file system routines.

There are two major issues in building distributed function-
alities in the file system layer: the overhead of calling file
systems routines and the granularity of access. In Linux, issu-
ing system calls are expensive and involve multiple memory
copies. In a DAX file system, the kernel still copies data from
user buffers for security purposes. For mmapped data, the
kernel supports “flushes” only in page granularity. These op-
erations are expensive on large memories because the kernel
needs to identify the dirty pages and persist them via memory
flushes.

Large Memory and Persistent Connection This paper
focuses on a particular way of utilizing RDMA networking:
create memory regions over large, persistent memory with a
flat namespace and maintain them for remote accesses during
the application lifecycle. Alternative mechanisms for manag-
ing accessible RDMA, including using bounce buffers [52],
registering a transient memory region for every access [51],
and using tricks (DMA MR [62], Fast MR [58], FastReg
MR [13]) require physical addresses in kernel space. We do
not consider these solutions because they violate the file sys-
tem’s ability to manage the physical address space.

9 Conclusion

The conflicting systems on metadata management between
NVMM and RDMA causes expensive translation overhead
and prevents the file system from changing its layout. This
work introduces two modifications to the existing RDMA pro-
tocol: the FileMR and range-based translation, thereby pro-
viding an abstraction that combines memory regions and files.
It improves the performance of RDMA-accessible NVMMs
by eliminating extraneous translations, while conferring other
benefits to RDMA including more efficient access permis-
sions and simpler connection management.
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Abstract
This paper presents design, implementation and evaluation of
i10, a new remote storage stack implemented entirely in the
kernel. i10 runs on commodity hardware, allows unmodified
applications to operate directly on kernel’s TCP/IP network
stack, and yet, saturates a 100Gbps link for remote accesses
using CPU utilization similar to state-of-the-art user-space
and RDMA-based solutions.

1 Introduction
The landscape of cloud infrastructure has changed rapidly
over the last few years. Two trends stand out:

• First, network and storage hardware has improved signifi-
cantly, e.g., network access link bandwidth has transitioned
from 1Gbps to 40Gbps or even 100Gbps [4, 37]; and, fast
non-volatile memory express (NVMe) storage devices that
deliver more than a million input/output operations per
second (IOPS) are being widely deployed [15, 23].

• Second, the need for fine-grained resource elasticity and
high resource utilization has led to large-scale deployments
of disaggregated storage [40,43]; also see [9,11,12,23,24].
As a result, increasingly more applications now access
storage devices over the network.

These changes have shifted performance bottlenecks back to
the software stack — while network and storage hardware
is able to sustain high throughput, traditional remote storage
access stacks (that make remote storage devices available as
local block devices, e.g., iSCSI [35] and light-weight servers
based on Linux) have unsustainable CPU overheads. For in-
stance, traditional iSCSI protocol is known to achieve merely
70K IOPS per CPU core due to its high protocol processing
and synchronization overheads [12, 15, 23, 24]. While this
was not a bottleneck for slower storage devices and/or net-
works, saturating a single modern NVMe storage device now
requires 14 cores, and saturating a 100Gbps link now requires
40 cores!

Responding to this challenge, both academic and industrial
communities have been taking a fresh look at the problem
of designing CPU-efficient remote storage stacks. Recently
standardized NVMe-over-Fabrics (NVMe-oF), specifically,
NVMe-over-RDMA [3,30] keeps the kernel storage stack, but
moves the network stack to the hardware. A complementary
approach argues for moving the entire storage and network
stack to the user space [24]. These proposals can achieve high
performance in terms of IOPS per core, but require changes

in applications and/or network infrastructure; such changes
would be acceptable, if utmost necessary.

This paper explores a basic question: “are infrastructure
changes really necessary for efficient remote storage access”?
Exploring this question may help clarify our response to the
challenges introduced by the two cloud infrastructure trends
discussed above. An affirmative answer would make a strong
argument for user-space stacks and/or specialized network
hardware. However, if performance similar to above solutions
can be achieved by re-architecting the kernel, then it changes
the lens through which we view the design and adoption
of software stacks in future: for example, rather than every
organization asking whether to perform a ground-up redesign
of their infrastructure, organizations that are already adopting
user-space stacks and/or modern network hardware could ask
how to port kernel remote storage stacks to integrate with their
infrastructure. Thus, while the rest of the paper occasionally
descends into kernel minutiae, the question we are asking has
important practical implications.

Our exploration of the above question led to design and
implementation of i10, a new remote storage stack within the
kernel. i10 demonstrates that, at least for applications that
are throughput bound, performance similar to state-of-the-art
user-space and RDMA-based solutions can be achieved with
minimal modifications in the kernel. i10 offers a number of
benefits. First, i10 requires no modifications outside the ker-
nel; thus, existing applications can operate directly on top
of i10 without any modifications, whatsoever. Second, i10
operates directly on top of existing TCP/IP kernel protocol
stack; thus, it requires no modifications in the network stack
and/or hardware. Third, i10 complies with recently standard-
ized NVMe-oF specification [3]; thus i10 can work with all
emerging NVMe devices. Finally, over benchmark workloads,
i10 saturates a 100Gbps link using a commodity server with
CPU utilization similar to state-of-the-art user-space stacks
and NVMe-over-RDMA products [24, 30]. The last benefit is
perhaps the most interesting one as it fills a gaping hole in our
understanding of kernel bottlenecks: as we discuss in Figure 1
and §4, existing bottlenecks for remote storage access are
neither in the storage stack nor in the network stack; rather,
the inefficiency lies at the boundary of the two stacks!

i10 achieves the above benefits using a surprisingly simple
design that integrates two ideas (§2):

End-to-end dedicated resources and batching. Using dedi-
cated resources and batching to optimize the software stack is
a well-known technique, also used in CPU-efficient network
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stacks [6, 13, 19, 29]; however, as we will show, performance
bottlenecks being at the boundary of storage and network
stacks means that prior solutions of dedicating resources at
per-core granularity and batching packets at socket level are
no longer sufficient. i10 dedicates resources at the granularity
of an i10-`ane, creating a highly optimized pipe between each
(core, target) pair, where target refers to the storage stack at
the remote server (and not necessarily individual storage de-
vices at the remote server). i10-`anes have the property that
all control and data packets in any queue are destined to the
same destination, and are to be transmitted on the same TCP
session; thus, they can be efficiently batched at the entrance
of the pipe to reduce network processing overheads (§2).

Delayed Doorbells. When accessing a local NVMe device,
existing storage stacks “ring the doorbell” (signal the storage
device about a new request) immediately upon receiving the
request. i10 observes that while this is efficient for relatively
low-overhead communication over PCI express, immediately
ringing the doorbell leads to high context switching over-
heads for remote accesses where requests traverse over a
high-overhead network stack and network fabric. i10, thus,
introduces the idea of “delayed doorbells”, where the worker
thread in the storage stack delays ringing the doorbell until
multiple requests are processed (or a timeout event happens).
i10 also shows how the granularity of dedicated resources
and batching in i10 interplays well with delayed ringing of
doorbells to achieve the final performance (§2, §4).

i10 design simplicity also enables i10 implementation in
Linux with modest modifications, while operating directly
on an unmodified TCP/IP stack over commodity hardware1.
i10 evaluation, over both benchmark workloads and real appli-
cations, demonstrates that i10 achieves throughput-per-core
comparable to NVMe-over-RDMA [30]. Compared to state-
of-the-art in-kernel remote storage stacks like NVMe-over-
TCP [26], which was incorporated within the Linux kernel
in March 2019, i10 both enables new operating points (e.g.,
being able to saturate 100Gbps links) and also reduces the
CPU utilization by 2.5× for already feasible operating points.
Moreover, i10 maintains these benefits for all evaluated work-
loads including varying read/write ratios, request sizes and
device types. Finally, i10 scales well with number of cores
and with number of remote storage devices.

Going back to our starting point, i10 answers the original
question about the necessity of application and/or network
infrastructure changes for throughput-bound applications. Of
course, this is already a large class of applications; however,
batching used in i10 leads to the same latency-throughput
tradeoff as in CPU-efficient network stacks [6, 13, 19, 29]:
at low loads, latencies may be high (albeit, still at hundred-
microsecond granularity and within 1.7× of NVMe-over-
RDMA latency over storage devices). While not completely

1i10 implementation, along with documentation that enables reproducing
all results, is available at https://github.com/i10-kernel/.

Figure 1: Existing bottlenecks for remote storage access are at
the boundary of the storage and network stacks. The figure
shows throughput-per-core for kernel network, local storage and
remote storage stacks. We use 4KB random read requests between
two servers with NVMe solid state drives connected via a 100Gbps
link (detailed setup in §4). For long-lived flow, the network stack can
sustain as much as ∼30Gbps (roughly 915 kIOPS) per core using
well-known optimizations (e.g., TCP segmentation offload (TSO)
and generic receive offload (GRO)); similarly, the storage stack for
local I/O can sustain ∼350 kIOPS per core. However, when inte-
grated together with existing remote storage stacks, the achievable
throughput reduces to 96 kIOPS (§4).

satisfying, our exploration has led us to believe that user-space
stacks and RDMA-enabled solutions may be more useful for
applications demanding absolutely minimal latency for each
individual request. The question, however, remains open for
such applications.

2 i10 Design
In this section, we describes the i10 design. We start with an
overview (§2.1), followed by a detailed description of how i10
creates highly optimized i10-`anes using dedicated resources
(§2.2), batching (§2.3) and delayed doorbells (§2.4). The
next section provides some of the interesting implementation
details for i10.

2.1 i10 Design Overview
i10 is designed and implemented as a shim layer between the
kernel storage stack (specifically, the block device layer) and
the kernel network stack. Figure 2 shows the high-level design
of i10, including the i10 layer and end-to-end path between
the host application and the target NVMe storage device. i10
does not control how applications are scheduled on the cores;
each application may run on one or more cores, and multiple
applications may share the same core. Applications submit
remote read/write requests to the kernel through the standard
read/write APIs; i10 requires no modifications to these APIs.

i10 achieves its goals using the core abstraction of an i10-
`ane— a dedicated pipe that is used to exchange both control
and data plane messages along a set of dedicated resources.
i10 creates i10-`anes and dedicates resources to each i10-`ane
at the granularity of (core, target)-pair, where target refers
to the block device at the remote server (and not necessarily
individual storage devices). For example, consider that (poten-
tially more than one application running at) a core c submits
read/write requests to two target servers t1 and t2, each hav-
ing multiple storage devices d11, d12, . . . and d21, d22,
. . . . Then, i10 creates two i10-`anes, one c  t1 for all
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Figure 2: End-to-end data path in i10 between one host and two target servers. In this example, app1 is sending read/write requests to
target1 using both core1 and core2, and app2 is sending read/write requests to target2 using core2. Thus, i10 creates three i10-`anes —
one for each of (core1, target1), (core2, target1) and (core2, target2) pairs. Moreover, (green) requests submitted from app2 are copied to the
block layer request queue of core2 and (red) requests submitted from app1 are copied to either the block layer request queue of core1 or core2
depending on which core the request comes from. While block layer request queues may contain requests going to different target servers (e.g.,
the right block layer request queue at host1), each request is copied to the i10 I/O queue for i10-`ane corresponding to the (core, target)-pair.
Finally, if there were an app3 running on core2 sending requests to target2, it would completely share the i10-`ane with app2.

requests going to the former set of storage devices and the
other c  t2 for all requests going to the latter set of stor-
age devices. Note that this is independent of the number of
applications running on the core c. Moreover, if a single appli-
cation running on two cores c1 and c2 submits read/write
requests to two target servers t1 and t2, then i10 will create
four i10-`anes, one for each (core, target) pair.

i10 uses three set of dedicated resources for each i10-`ane
(both at the host and at the target side). We first describe
these dedicated resources and then discuss how they integrate
into an end-to-end path between the host core and the target.
The first dedicated resource is an I/O queue in the i10 layer
(shown in the blue horizontal bar in Figure 2). The second is
a dedicated TCP connection, along with its buffers, between
the host and target i10 queues. Finally, a dedicated i10 worker
thread for each core that interacts with i10 at the host side
and for each core that is needed at the target side. Note that,
for reasons that we will discuss in §2.2, i10 queues and TCP
connections are at the per-lane granularity, and the i10 worker
threads are at a per-core granularity.

We are now ready to describe the end-to-end path between
the host core and the target. Upon receiving a request from
a core, the block layer does its usual operations — gener-
ates a bio instance (that represents an in-flight block I/O
operation in the kernel [28]), initializes the corresponding
request instance using Linux kernel’s support for multiple
per-core block queues (blk-mq) [7, 14] and then, copies the

request to the block layer’s request queue for that core (these
request queues are different from i10 queues). Finally, the
block layer’s request instance is converted to an i10 request;
to be compliant with NVMe-oF standards, i10 requests are
similar to a command Protocol Data Unit (PDU) [3]. Finally,
using the context information within the block layer’s request
data structure, i10 requests are copied to the i10 queue for the
corresponding i10-`ane.

Having a dedicated queue for each i10-`ane implies that
all requests and data packets in a queue are destined to the
same target server, and will be transmitted over the same TCP
connection. Thus, i10 is able to batch multiple requests and
data packets into i10 “caravans”2, all to be processed and
transmitted over the same TCP connection. This allows i10
to significantly reduce the network processing overheads by
aggregating enough data to benefit from well-known opti-
mizations like TSO and GRO. We discuss the precise details
in §2.3.

i10 observes that the original NVMe specification was de-
signed for accessing storage devices over PCI express (PCIe).
Since PCIe provides a low-latency low-overhead communica-
tion between the storage stack and the local storage devices,

2i10 “caravans” are nothing but batches of requests; we use the term
caravans to avoid confusion between i10 batches of requests and traditional
batches — while traditional batches correspond to packets going to the same
application port, i10 batches may be going to different storage devices, albeit
within the same target server.
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it was useful for the case of local access to “ring the door-
bell” (provide a signal to the storage device that a new I/O
request is ready to be served) immediately upon creating a re-
quest. However, in the case of remote accesses where requests
traverse through a relatively high-latency high-overhead net-
work, immediately ringing the doorbell leads to high context
switching overheads for the worker threads. To alleviate these
overheads, i10 introduces the idea of delayed doorbells, where
the block layer worker thread processes multiple requests (or
times out) before ringing the doorbell to wake up the i10
worker thread. This not only reduces the context switching
overheads significantly, but also provides i10-`ane queues
with enough requests/data to generate right-sized caravans.
We describe the precise mechanism in §2.4.

Finally, the i10 caravan is transmitted through the in-kernel
socket interface. As shown in Figure 2, when the caravan
arrives in the target-side i10 queue, i10 parses the caravan
to regenerate the bio instances, corresponding requests and
submits them to the block layer. Upon receiving the requests,
the block layer executes the same steps as it does for accessing
PCIe-connected local storage devices: the request is inserted
to the NVMe submission queue and upon completion, the
result is returned to the NVMe completion queue. After the
local access, the result goes back to the block device layer,
and finally is abstracted as a response caravan by i10 and sent
back to the host server over the TCP connection.

In the following three subsections, we present design details
for the three building blocks of i10: i10-`ane, i10 caravans,
and delayed doorbells.

2.2 i10-`ane
The two obvious options for creating i10-`ane are (1) creating
one i10-`ane per target server, independent of the number of
cores (Figure 3(a)); and (2) creating one i10-`ane per core,
independent of the number of target servers (Figure 3(b)).
At high loads, the first option leads to high write contention
among the block layer worker threads since they will need
to write the requests to the same i10 queue. The second
option is no better either — here, requests destined to different
targets are forced to be in the same i10 queue resulting in
preventing i10 caravans from batching enough requests, or
high CPU overheads (for sorting requests to batch into the
same caravans). Both these overheads become worse in the
most interesting case of high-load regime. i10 avoids these
overheads by creating an i10-`ane for each (core, target)-pair
(Figure 3(c)). That is, for applications that use P host cores to
access data at T target servers, i10 creates P×T i10-`anes,
independent of the number of storage devices at each target.

We now describe the resources dedicated to each i10-`ane.

blk-mq level request queues. i10 exploits per-core request
queue defined in the block layer (using blk-mq [7, 14]). Be-
fore the support for blk-mq, all block layer requests went to
a single request queue per device. While queueing requests

T1 T2

(a) per-target

T2T1

(b) per-core

T1 T2

(c) per-target/per-core

Figure 3: Creating i10-`ane for each (core, target) pair is the
right design. The figure shows host cores, blk-mq, i10 queues, TCP
connections, and target devices T1 and T2. For discussion, see §2.2.

in a single queue could create head-of-line blocking, this de-
sign enabled scheduling so as to minimize the seek time on
hard disks. For modern storage devices that support high-
throughput random reads and writes using multiple cores, the
equation is quite different due to two reasons: (1) multiple
cores operating over a single queue becomes a performance
bottleneck; and, (2) since seek time is not a problem, mini-
mizing head-of-line blocking becomes more important. Thus,
recent versions of Linux kernel enable the block layer to create
per-core request queues and to maintain multi-queue context
information for both blk-mq and underlying remote access
layers. This enables i10 to efficiently demultiplex requests in
blk-mq into individual i10-`ane queues.

i10 I/O queue. i10 creates one dedicated queue for each indi-
vidual i10-`ane. These queues are equivalent to the I/O queues
from the NVMe standard [2] with the only difference that
they communicate with a remote target server, not with local
SSD devices. Once the requests from blk-mq are converted
to NVMe-compatible command PDUs, they are inserted to
i10 queues. The NVMe standard allows creating as many as
64K NVMe queues to enable parallel I/O processing; since
we expect i10 to have no more than 64K simultaneously ac-
tive i10-`anes at any server for most deployments, i10 design
should not be limited by the number of available queues.

TCP socket instance. Each i10-`ane maintains its own TCP
socket instance and establishes a long lived TCP connection
with the target, along with corresponding TCP buffers. The
state needed to be maintained in the kernel for each individual
TCP connection is already quite small. The only additional
state that i10 requires is the mapping between the TCP con-
nections and the corresponding i10-`ane, which again turns
out to be small (§5).

i10 worker thread. i10 creates a dedicated per-core worker
thread whose responsibility is to conceptually move i10 cara-
vans bidirectionally on i10-`anes. This worker thread starts
executing when a doorbell is rung for any of the i10-`anes on
the same core, and aggregates command PDUs in the queue
of the corresponding i10-`ane into caravans. The worker then
moves the caravans to TCP buffers for the corresponding i10-
`ane. Finally, the worker thread goes into the sleep mode until
a new doorbell is rung.

When the caravan reaches the target’s TCP receive buffers,
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Figure 4: Creating i10 caravans at the i10 queues is the right
design for reducing per-request network processing overhead.
See discussion in §2.3.

the corresponding worker thread starts processing the requests
in the caravan. First, it regenerates bio for each request in
the caravan, followed by processing the requests as needed at
the block layer. Upon receiving the signal from completion
processing, the results are inserted into target’s i10 queue and
a caravan is created. It is not necessary for response caravans
to have the same set of requests as in host caravans, because
caravan’s size can be different between host and target (§2.3).

2.3 i10 Caravans
Given that all requests in an i10 queue are going to the same
destination over the same TCP connection, i10 batches mul-
tiple requests into an i10 caravan. This allows i10 to benefit
from standard optimizations like TSO and GRO, which sig-
nificantly reduces the network processing overheads. Our
key insight here is that i10 queues are precisely the place to
create caravans because of two reasons. First, at the block
layer, the blk-mq is per-core and at any given point of time,
may have requests belonging to different targets (as in Fig-
ure 3(c)); thus, batching the requests at the block layer would
require significant CPU processing to sort the requests go-
ing to the same target device. Second, batching at the TCP
layer would require i10 to process each request individually
to send to TCP buffers, thereby creating one event per request;
prior work [19] has shown that such per-request events results
in high CPU processing overheads. By batching at its own
queues, i10 reduces both of these overheads (Figure 4). We
set the maximum amount of data carried by a caravan to be
64KB to align it with the maximum packet size supported by
TSO. However, to prevent a single caravan from batching too
many small-sized requests, each caravan may batch no more
than a pre-defined aggregation size number of requests (§3).

2.4 Delayed Doorbells
The original NVMe specification was designed for accessing
storage devices over PCI express (PCIe). Even though the
standard itself does not prescribe how to use doorbells, the cur-
rent storage stack simply rings the doorbell (that is, updates
the submission queue doorbell register) whenever a request
is inserted into the NVMe submission queue (Figure 5(a)).
Since PCIe provides a low-latency low-overhead communica-
tion between the storage stack and the local storage devices,
ringing the doorbell on a per-request basis reaches the max-
imum throughput of the device with minimal latency. How-
ever, in the case of remote accesses where requests traverse
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Figure 5: Ringing the doorbell per request is effective for local
PCIe-attached local storage, but not for remote storage access
since the latter results in high context switching overhead. See
discussion in §2.4.

through a relatively high-latency high-overhead network, ring-
ing the doorbell on a per-request basis results in high context
switching overheads. In the specific context of i10, ringing
the doorbell implies that as soon as the block layer thread
inserts an i10 request to the i10 queue, it wakes up the i10
worker thread to handle the request immediately (Figure 5(b)).
This incurs a context switch, which at high loads, could result
in high CPU overheads (§4).

i10 alleviates these overheads using the idea of delayed
doorbells. When an i10 queue is empty, a doorbell timer is
set upon arrival of the first request. Then, the doorbell is rung
either when the i10 queue has as many requests as a pre-
defined aggregation size or when the timer reaches a timeout
value, whichever happens earlier. Whenever the doorbell is
rung, i10 caravans are created with all the requests in the i10
queue and the doorbell timer is unset. We note that delayed
doorbells can be used independent of whether or not requests
are batched into caravans. Moreover, this design will cause
extra latency if applications generate low load (resulting in
requests observing “timeout” amount of latency).

3 i10 Implementation Details

We implement i10 host and target in the Linux kernel 4.20.0.
i10 implementation runs on commodity hardware (we do use
the TSO and GRO features supported by most commodity
NICs) and allows unmodified applications to operate directly
on kernel’s TCP/IP network stack. In this section, we discuss
some interesting aspects of i10 implementation.

kernel_sendpage() vs. kernel_sendmsg(). There are
two options to transmit i10 caravans via kernel socket inter-
faces. The first interface, kernel_sendpage() allows avoid-
ing transmission-side data copy when sending each page of
the data, but limits the aggregation size to be no more than 16.
The second, kernel_sendmsg() takes a kernel I/O vector
as a function argument and internally copies every scattered
data of the I/O vector into a single socket buffer. This allows
i10 aggregation size to be larger than 16, which leads to lower
network processing overhead in some cases. Our tests re-
veal that kernel_sendmsg() achieves slightly better overall
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CPU usage (that is, including data copy as well as network
processing overheads), resulting in better overall throughput.
Therefore, we use kernel_sendmsg() for i10 caravans to
achieve better throughput.

i10 no-delay path. For latency-critical applications, it may be
more important to avoid the latency incurred by i10 batching
and delayed doorbells. For example, it may be desirable to
execute a read request on file system metadata such as inode
tables immediately upon submission so as to avoid blocking
further read/write requests that cannot be executed without the
response to the original request. For such cases, i10 supports
a no-delay path — when such a latency-sensitive request
arrives in i10 queue, i10 flushes all outstanding requests in the
queue and processes the latency-sensitive request immediately.
This is implemented using a simple check during the delayed
doorbell ringing process: upon receiving a latency-sensitive
request, the doorbell can be rung immediately, forcing i10 to
create a caravan using all the outstanding requests along with
the latency-sensitive request.

i10 parameters. In general, we expect throughput-per-core
in i10 to improve with increasing aggregation size due to
reduced network processing overheads. However, as we show
in Appendix A in the technical report [16], increasing ag-
gregation size beyond a certain threshold would result in
marginal throughput improvements while requiring larger
doorbell timeout values to be able to aggregate larger number
of requests (thus, inflating per-request latency at low loads).
This threshold — that is, the value that reaches the point of
marginal improvements — of course, depends on kernel stack
implementation. For our kernel implementation, we find 16 to
be the best aggregation size with 50µs doorbell timeout value.
We will use these parameters by default in our evaluation.

TCP buffer configuration. i10 caravans may be as large
as 64KB. To this end, the TCP transmit buffer should have
enough space for receiving caravans. However, TCP buffer
size is generally adjusted by TCP’s auto tuning mechanism —
the Linux TCP implementation automatically increases the
buffer size based on the bandwidth-delay product estimate
for the transmit buffer, unless users specify a static buffer
size via setsockopt(). Therefore, if the remaining trans-
mit buffer is currently less than 64KB, the caravan would be
fragmented even if kernel can provide more memory for the
buffer resulting in higher processing overheads due to more
than one socket call per caravan. For this reason, we explicitly
use a fixed size of TCP buffers via kernel_setsockopt()
at the session establishment stage. We set the buffer size to
8MB in this paper, which is sufficiently large to avoid caravan
fragmentation.

4 i10 Evaluation

In this section, we evaluate an end-to-end implementation of
i10. We first describe our evaluation setup (§4.1). We then

Table 1: Experimental setup used in our evaluation.

H/W configurations

CPU
4-socket Intel Xeon Gold 6128 CPU @ 3.4GHz

6 cores per socket, NUMA enabled (4 nodes)
Memory 256GB of DRAM

NIC
Mellanox ConnectX-5 EX (100G)

TSO/GRO=on, LRO=off, DIM disabled
Jumbo frame enabled (9000B)

NVMe SSD 1.6TB of Samsung PM1725a

S/W configurations

OS Ubuntu 16.04 (kernel 4.20.0)
IRQ irqbalance enabled

FIO
Block size=4KB, Direct I/O=on

I/O engine=libaio, gtod_reduce=off
CPU affinity enabled

start by evaluating i10 performance against state-of-the-art
NVMe-over-RDMA (NVMe-RDMA) [30] and NVMe-over-
TCP (NVMe-TCP) [26] implementations over a variety of
settings including varying loads, varying number of cores,
varying read/write request ratios and varying number of tar-
get servers (§4.2). Next, we use CPU profiling to perform
a deep dive into understanding how different aspects of i10
design contribute to its performance gains (§4.3). Finally,
we evaluate i10 over real applications (§4.4) and compare
its performance with state-of-the-art user-space stacks (§4.5).
Several additional evaluation results (including sensitivity
analysis against aggregation size and doorbell timeout values,
performance with variable request sizes, scalability with mul-
tiple applications sharing the same core, benefits of syscall
batching, etc.) can be found in the technical report [16].

4.1 Evaluation Setup
We use a testbed with two servers, each with 100Gbps links,
directly connected without any intervening switches; while
simple, this testbed allows us to ensure that bottlenecks are at
the server-side thus allowing us to stress test i10. Both servers
have the same hardware/software configurations (Table 1).
Our NICs have one Ethernet port and one InfiniBand port,
allowing us to evaluate both NVMe-TCP and NVMe-RDMA.

Our NICs support dynamically-tuned interrupt moderation
feature that controls the network RX interrupt rate [41], which
helps achieving maximum network throughput with minimum
interrupts under heavy workloads; however, we disable it to
show that i10 does not rely on special hardware features.
Similarly, we do not optimize the Interrupt Request (IRQ)
affinity configuration, but simply use the irqbalance pro-
vided by the OS. Finally, we use FIO [5] application for
our microbenchmarks with a default I/O depth of 128. All
I/O requests are submitted via the asynchronous I/O library
(libaio) and direct I/O is enabled so as to bypass the ker-
nel page cache and to make sure that I/O requests always go
through the network to reach the target device.

i10 and NVMe-RDMA saturate our NVMe solid state
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(a) Average Latency (SSD) (b) Tail Latency (SSD) (c) Average Latency (RAM) (d) Tail Latency (RAM)

Figure 6: Single core performance (4KB random read): when compared to NVMe-TCP, i10 achieves significantly higher throughput-per-
core with comparable latency; when compared to NVMe-RDMA, i10 achieves comparable throughput while achieving average and tail latency
within 1.4× and 1.7×, respectively, for the case of SSDs.

(a) Read (SSD) (b) Write (SSD) (c) Read (RAM) (d) Write (RAM)

Figure 7: Multi-core performance (4KB random read/write): i10 achieves throughput significantly better than NVMe-TCP and comparable
to NVMe-RDMA while operating on commodity hardware; i10 and NVMe-RDMA also achieve near-perfect scalability with number of cores.

drives (SSD) with only 4 cores; hence, we also use RAM
block device to evaluate multi-core scalability. In addition,
our RAM-based experiments allow us to emulate i10 perfor-
mance for the emerging Non-Volatile Main Memory devices
as their performance is close to that of DRAM [45]. Unless
otherwise stated, we use 4 cores for SSD-based and 16 cores
for RAM-based evaluation.

4.2 Performance Evaluation
We now evaluate i10 performance across a variety of settings.
All experiments in this subsection focus on host-side CPU
utilization since target CPU was never the bottleneck (§4.3.2).

4.2.1 Single core performance

Figure 6 presents the single-core performance for all the eval-
uation schemes for both NVMe SSD and RAM block devices.
The key takeaway here is that, when compared to NVMe-
RDMA, i10 offers better throughput at high loads, but slightly
higher latency (still at hundred-microsecond granularity) at
low loads. Intuitively, when the load is high, i10 works with
full-sized caravans without delayed doorbell timeouts, thus
achieving high throughput. For low loads, i10 would wait for
more requests to arrive in the i10 queue until the doorbell
timer expires, which slightly increases its average end-to-end
latency. However, we note that even for low loads, i10 average
latency is comparable to that of NVMe-RDMA — e.g., for
the case of SSDs, where SSD access latency becomes the
bottleneck, i10 achieves an average latency of 189µs while
NVMe-RDMA achieves 105µs (Figure 6(a)). We observe sim-
ilar trends for the tail (99th percentile) latency for the case of
SSDs — as shown in Figure 6(b), i10’s tail latency of 206µs
is within 1.7× of NVMe-RDMA tail latency of 119µs, again

since SSD access latency is the main bottleneck. For the case
of RAM block device, i10 has higher average and tail latency
compared to NVMe-RDMA since kernel overheads start to
dominate; however, i10 still achieves comparable or better
throughput per core. Finally, we also observe that all the three
schemes perform better with RAM block device when com-
pared to SSD since the former significantly reduces the access
latency, not requiring any interrupt handling between device
driver and RAM block device.

4.2.2 Scalability with number of cores

To understand i10 performance with increasing number of
cores, we extend the previous single-core measurements to
use up to 24 cores. Figure 7 presents the results. We observe
that, for the case of random reads, i10 and NVMe-RDMA
saturate the SSD with 4 cores, which is a factor 2.5× im-
provement over NVMe-TCP (Figure 7(a)), while direct access
(where the requests go to local SSD) saturates the SSD using
3 cores. The case of random writes in Figure 7(b) is simi-
lar to Figure 7(a); both NVMe-RDMA and i10 saturate the
maximum random write performance with 3 cores whereas
NVMe-TCP requires 6 cores.

With RAM block device, i10 mostly outperforms both
NVMe-TCP and NVMe-RDMA as shown in Figures 7(c)
and Figures 7(d). Perhaps most interestingly, i10 is able to
saturate the 100Gbps link, achieving 2.8M IOPS with ∼20
cores. We observe that NVMe-RDMA stays around 1.5–2M
IOPS after 10 cores for both random read and write work-
loads. While we believe that this performance saturation is
not fundamental to NVMe-RDMA and is merely a hardware
issue, we have not yet been able to localize the core problem;
we note, however, that similar observations have been made
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(a) SSD (4 cores) (b) RAM block device (16 cores)

Figure 8: i10 maintains its performance against NVMe-TCP and
NVMe-RDMA with workloads comprising varying read/write
ratios (4KB mixed random read/write).

(a) Read (RAM) (b) Write (RAM)

Figure 9: i10 maintains its performance with increasing num-
ber of target devices (4KB random read and write). The trend is
similar to the multi-core/single-target case in Figure 7.

in other recent papers [31].

4.2.3 Performance with varying read/write ratios

Figure 8 presents results for workloads comprising varying
ratio of read/write requests, varying from 0:100 to 100:0, for
both SSD and RAM block device. For the case of SSD (Fig-
ure 8(a)), we observe that throughput in each case is limited
by random write performance except that of the 100% read
ratio case. This observation is consistent with the previous
study that shows random write can interfere with random read
because of wear leveling and garbage collection, where 75%
read shows a similar IOPS with 50% read [24]. Consistent to
results in previous subsections, both i10 and NVMe-RDMA
saturate the SSD while requiring fewer cores than NVMe-
TCP. With RAM block device (Figure 8(b)), the throughput
changes with marginal fluctuation regardless of the read ratio;
nevertheless, i10 continues to achieve comparable or better
throughput than NVMe-RDMA across all workloads.

4.2.4 Scalability with multiple targets

We now evaluate i10 performance with increasing number of
target devices, using up to 48 target RAM block devices. Here,
we only focus on RAM devices since our testbed has a limited
number of SSD devices. The setting here is that of each core
running applications that access data from targets assigned
to the application. The assignment is done in a round-robin
manner — for up to 24 targets, each core will serve one target
and for more than 24 targets, we assign the additional targets
to the cores starting with core0 (e.g., for 36 targets, the first
12 cores serve two targets each and the remaining 12 cores
serve one target each).

In Figure 9, we observe that i10 outperforms both NVMe-
TCP and NVMe-RDMA, saturating the 100Gbps link with
16 or more targets. The 24-target throughput is kept after
24 targets for all schemes as every host core is fully used
(for i10, the 100Gbps link is already saturated). The overall
trend is similar or even slightly better when compared to the
RAM cases of the multi-core scalability scenario (Figure 7)
as the I/O requests are processed in parallel across different
i10-`anes. This result confirms that i10 maintains its perfor-
mance benefits with increasing number of targets incurring
little CPU contention across the various i10-`anes. For the
scenarios where such CPU contention is severe (assuming
an extremely large number of targets), the single-core/multi-
target throughput is further studied in Appendix B in [16].

4.3 Understanding Performance Gains
We now evaluate how various design aspects of i10 contribute
to its end-to-end performance, and then use CPU profiling to
build a deeper understanding of i10 performance gains.

4.3.1 Performance contribution
Figure 10 shows that each of the design aspects of i10— i10-
`ane, i10 caravans, and delayed doorbells — are essential to
achieve the end-to-end i10 performance. In Figure 10(a), we
measure 4KB random read throughput increasing the num-
ber of cores from 1 to 16. The baseline is our i10-`ane per-
formance, which scales well with multiple cores. Enabling
TSO/GRO and jumbo frames makes slightly further improve-
ment over the i10-`ane throughput. With NVMe SSD, i10 con-
tribution is limited by the SSD performance (Figure 10(b)),
but it is clear that with RAM block device, i10 caravans and
delayed doorbells contribute to the performance improvement
significantly, by 38.2% and 23.2% of the total throughput
with 16 cores as shown in Figure 10(c). We also confirm that
these improvement trends are maintained regardless of the
read ratio for both SSD and RAM devices. The above results
therefore indicate that all of the three building blocks are in-
deed necessary to design an end-to-end remote storage I/O
stack that achieves the aforementioned benefits.

4.3.2 Understanding Bottlenecks
We now use CPU profiling for the 4-core case of SSD and
the 16-core case of RAM block device in Figure 10(a), with
the goal of understanding the bottlenecks for each of the
three schemes. Our profiling results in Figure 12, Table 3
and Table 4 divide the entire remote access process into 7
components as described in Table 2. Our key findings are:

(1) i10 spends fewer CPU cycles in network processing:
i10 improves upon NVMe-TCP by a factor of 2.7× in terms
of CPU usage reduction in network processing parts (Network
Tx and Rx combined) for both NVMe SSD and RAM block
device, while showing comparable CPU utilization to NVMe-
RDMA in the same parts. The main problem of NVMe-TCP is
that it underutilizes the network capacity even with such high
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(a) Throughput with varying # cores (b) Throughput (SSD) with varying read % (c) Throughput (RAM) with varying read %

Figure 10: Each of i10-`ane, caravans, delayed doorbells are necessary to achieve the end-to-end i10 performance.

Table 2: Taxonomy of CPU usage.

Component Description

Applications
Submit and receive requests/responses via I/O
system calls (host). Ideally, all cycles would be
spent in this component.

Block TX
Process the requests at the blk-mq layer and ring
the doorbells to the remote storage access layer
(host) or the local storage device (target).

Block RX
Receive the requests/responses from the network
Rx queues or the local storage device.

Net TX
Send the requests/responses from the I/O queues
(NVMe-RDMA uses Queue Pairs in the NIC).

Net RX
Process packets and insert into the network Rx
queues (by the network interrupt handler).

Idle Enter the CPU Idle mode.

Others
Include all the remaining overheads such as task
scheduling, IRQ handling, spin locks, and so on.

Figure 11: For 4K random read, NVMe-TCP does not benefit
from TSO due to the packet sizes being mostly 72B at host and
< 9KB at target, much smaller than ideal 61KB packet size.

CPU usage in network processing. To investigate the reason
further, we measure the packet sizes used in each TCP/IP
processing for 4KB random read, comparing to a long-lived
TCP connection that achieves ∼30Gbps using a single core.
Figure 11 reveals that about 80% of packet sizes generated
by the host are 72 bytes, the I/O request PDU size of NVMe-
TCP. This implies that almost every single small-sized request
consumes CPU cycles for TCP/IP processing, increasing per-
byte CPU usage. The target can generate a larger size of
packets as it sends 4KB response data back to the host, but
still most of them (98%) are under the jumbo frame size

(9000 bytes) while the long-lived TCP connection generates
mostly 61KB packets with TSO. i10 caravans help mitigate
this bottleneck by generating 1152B packets (that is, 72B×16)
at the host and ∼61KB packets at the target; i10 caravans are
thus able to help reduce CPU usage by 30.12% and 31.14%
for SSD and RAM block device in network processing parts,
compared to the baseline i10 that uses only i10-`ane.

(2) i10 minimizes context switching overheads: i10
achieves 1.7× CPU usage reductions over NVMe-TCP in Oth-
ers part that includes task scheduling overheads. NVMe-TCP
involves three kernel threads at the host — one for blk-mq
that corresponds to the application thread, another for the
remote I/O and TCP/IP Tx processing, and the third for the
packet interrupt handling and TCP/IP Rx processing. This
model avoids (i) slow responsiveness to other threads and/or
(ii) long bottom half procedure for the incoming packet in-
terrupts, but can incur high context switching overhead; our
measurement indicates that each context switch takes 1–3µs
per request, consuming more CPU cycles at the host. i10
amortizes this switching overhead using the idea of delayed
doorbells; when compared to i10 design that does not use
delayed doorbells, we observe reduction of CPU usage by
14.2% and 14.15% for NVMe SSD and RAM block device in
the Others part. While the previous work mainly focuses on
the target architecture [24], this host-side optimization turns
out to be essential to improve the remote I/O throughput given
that all the three remote storage access technologies consume
more CPU cycles at the host regardless of the device type.

(3) i10 improves CPU efficiency allowing more cycles for
applications: CPU resources saved in network processing
and in context switching (using caravans and delayed door-
bells) can be utilized by the applications, resulting in im-
proved throughput per core. For instance, i10 allows appli-
cations to use 2.9× and 1.8× more CPU cycles for SSD
and RAM devices, when compared to NVMe-TCP. NVMe-
RDMA also shows 1.9× more CPU usage than NVMe-TCP
on applications with RAM block device.

(4) i10 pushes the performance bottlenecks to the block
layer: Tables 3 and 4 show that i10 pushes the performance
bottlenecks from network processing and other lower layers
(scheduling, etc., including in Others) to upper layers, making
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(a) Host (SSD) (b) Target (SSD) (c) Host (RAM) (d) Target (RAM)

Figure 12: CPU consumption at various system components for i10, NVMe-TCP and NVMe-RDMA. i10 and NVMe-RDMA use
significantly fewer CPU cycles for network processing and task scheduling (in Others) at the host while allowing applications to consume more
CPU cycles, when compared to NVMe-TCP.

Table 3: CPU usage contribution for 4KB random read with NVMe SSD: i10 reduces CPU usages in network processing (Net TX and RX)
using i10 caravans and in task scheduling (Others) using delayed doorbells, which allows more CPU cycles for applications and block layer.
Here, i10-`ane contribution is measured with enabling TSO/GRO and jumbo frames.

Applications Block TX Block RX Net TX Net RX Idle Others

i10-`ane 4.67 7.02 7.88 16.14 20.61 22.66 21.02
i10 Caravans +9.85 +14.54 +16.41 -13.7 -16.42 -16.34 +5.66

Delayed Doorbells -0.75 -2.76 +3.38 +0.73 +6.34 +7.26 -14.2

i10 13.77 18.8 27.67 3.17 10.53 13.58 12.48

Table 4: CPU usage contribution for 4KB random read with RAM block device. The trends are similar to the SSD case above.

Applications Block TX Block RX Net TX Net RX Idle Others

i10-`ane 8.0 12.68 15.9 27.0 15.84 3.51 17.07
i10 Caravans +5.77 +10.88 +8.83 -24.79 -6.35 -1.07 +6.73

Delayed Doorbells +0.63 +0.43 +8.66 +1.42 +2.67 +0.34 -14.15

i10 14.4 23.99 33.39 3.63 12.16 2.78 9.65

the block device layer a new bottleneck point in the kernel.
i10 design did not attempt to perform changes in the block
layer; however, it would be interesting to explore block layer
optimizations to further improve end-to-end performance for
remote (and even local) storage access.

We observe that RDMA still consumes a few CPU cycles to
build and parse the command PDUs in network processing
parts. In our profiling, one main difference between the SSD
and RAM cases is that the RAM block device does not use
IRQ to inform the I/O completion, but calls the the block layer
functions immediately while in the SSD case, it still relies
on the nvme_irq handling after the I/O is completed. This
increases the IRQ handling overhead. Further, NVMe-RDMA
generates another type of IRQ to call the block layer functions
in the host after the network processing is done. This also
slightly increases the IRQ handling overhead in the host.

4.4 i10 performance with RocksDB
To evaluate i10 performance over real applications, we use
RocksDB, a popular key-value store deployed in several pro-
duction clusters [17]. We install RocksDB in the host server
with a remote SSD device mounted with XFS file system.
The RocksDB database and write-ahead-log files are stored
on the remote device. To minimize the effect of the kernel
page cache, we clear the page cache every 1 second during
the experiment. We use db_bench, a benchmarking tool of
RocksDB, for generating the two workloads using default pa-
rameters [18]: ReadRandom and ReadWhileWriting. Before
running the workloads, we populate a 55GB database using
the bulkload workload.

We measure the end-to-end execution time and kernel-side
CPU utilization using a single core. In this experiment, the
doorbell timeout value is set to 1ms as RocksDB is not an
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(a) Execution time (b) CPU usage in kernel

Figure 13: i10 and NVMe-RDMA achieve 1.2× lower latency
and 2× lower CPU utilization when compared to NVMe-TCP
over SSD-based RocksDB.

I/O bound application, and thus requires more time to aggre-
gate appropriate number of requests. Figure 13 shows the
performance of the three schemes, normalized by the NVMe-
TCP performance. Again, we observe that i10 performs com-
parable to NVMe-RDMA while achieving almost 1.2× im-
provements over NVMe-TCP in terms of execution time. The
reason why this improvement is different with that of FIO
benchmarks is that, RocksDB itself is the main CPU cycle
consumer (up to 70% CPU usage) to perform data compres-
sion, key matching, etc. However, i10 still allows RocksDB
to utilize more CPU resources by requiring 2× lower CPU
in the kernel across a fixed number of requests when com-
pared to over NVMe-TCP. Our additional experiments with
Filebench [39], presented in Appendix B in [16], indicate that
if the application is I/O bound, i10 can achieve more than
2× per-core throughput improvements over NVMe-TCP in a
similar setup.

4.5 Comparison with ReFlex
Now we compare i10 with ReFlex, a user-level remote Flash
access stack [24] using FIO. Unfortunately, despite significant
effort, we were unable to install the remote block device
kernel module for ReFlex [8] in our system3, which is required
for ReFlex host to run legacy Linux applications such as
FIO. Thus, we make an indirect comparison with ReFlex,
measuring i10 throughput using the same 10Gbps NICs used
in [24] (that is, Intel 82599ES 10GbE NICs) and the same
FIO script [8]. We also use 1-core i10 target as ReFlex target
server uses 1-core per tenant. In this setup, i10 saturates the
10Gbps link with ∼3 cores, whereas ReFlex-FIO requires
6 cores according to [24]. This result still suggests that i10
would be a good option for remote storage I/O when we use
legacy throughput-bound applications.

We also note that using IX [6]-based ReFlex clients
achieves higher throughput; for instance, ReFlex reports
achieving 850 kIOPS for 1KB read-only request using a sin-
gle core [24], thus requiring only 2 cores to saturate a 10Gbps
link. However, this requires the client server to run IX, pre-
cluding integration with unmodified legacy applications.

3The kernel module is based on an old version of kernel (4.4.0) that does
not include relevant device drivers for our SAS SSD where the OS is installed.
We also failed to boot with our NVMe SSD even with the up-to-date BIOS.

5 Discussion

We discuss a number of possible extensions for i10.

Can we apply i10 techniques to improve iSCSI perfor-
mance? We believe that many of our optimizations may be
useful to improve iSCSI [35] performance; for instance, the
current Linux iSCSI implementation consumes CPU cycles
inefficiently when sending I/O requests and responses, not
fully utilizing TSO/GRO; moreover, it also runs a dedicated
kernel thread for TCP/IP processing. i10 caravans and delayed
doorbells alleviate precisely these bottlenecks, and thus may
be useful for iSCSI.

Integrations with Emerging Transport Designs. i10 de-
sign and implementation was originally motivated by the
question whether state-of-the-art performance for remote stor-
age stacks can be achieved using simple modifications in the
kernel. Thus, i10 design naturally integrates with existing
network stack within the kernel. An intriguing future work
would be to integrate i10 with emerging CPU-efficient net-
work transport designs that use hardware offload.

Overheads of maintaining i10-`anes. Our i10-`ane design
does not introduce any additional overhead at either blk-mq
or TCP/IP protocol layer, but simply exploits the existing
per-core blk-mq that every request goes through regardless
of whether it is remote access or not. The new overheads
introduced by i10-`ane are: i10 caravans, i10 queues, and
TCP socket instances. To minimize memory usage and de-
/allocation overheads of i10 caravan, each i10-`ane maintains
a single full-sized caravan instance (an array of kernel vectors
that cover the aggregation size of requests and 64KB data)
and reuse it whenever a new doorbell is rung. Memory require-
ment for maintaining per-(core, target) i10 I/O queues would
be comparable to the current NVMe implementation, which
creates per-(core, device) NVMe queues. Lastly, a dedicated
socket requires small amount of state and thus, adds a minor
memory overhead. We believe that such minor overheads are
well worth the performance benefits achieved by i10.

Setting the right doorbell timeout value. In some extreme
cases where a single host core needs to use many i10-`anes
(that is, requests from a single core going to a large number of
target servers), i10 may expose a throughput-latency tradeoff.
Assuming the core generates requests at full rate, increasing
number of i10-`anes means that the number of pending re-
quests for each individual i10-`ane will be reduced triggering
doorbell timeout more often (see Appendix B in [16]). The
tradeoff here is that to achieve throughput similar to the results
in the previous section, we will now need larger delayed door-
bell timeout value, resulting in relatively larger latency. This
observation suggests that operators can set a higher timeout
value when (1) applications are throughput bound; and/or (2)
the number of targets per core increases. An interesting future
work here is to explore setting the timeout value dynamically,
depending on the “observed” load on the system.
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Table 5: Comparison of design decisions made in i10 with those in several prior works.

Storage
stack

Network
stack

API App. event
handling

Remote I/O
event handling

Domain protection Modification

Linux kernel Kernel Kernel BSD socket Syscalls Per event Native No

MegaPipe [13] Kernel Kernel lwsocket Batched per event Native App., Kernel

mTCP [19] N/A User-level New API Batched N/A Vulnerable App., NIC driver

IX [6] N/A User-level New API Batched N/A Virtualization H/W App., NIC driver

StackMap [44] Kernel Kernel Ext. netmap Batched per event Vulnerable App., Kernel, NIC driver

ReFlex [24] User-level User-level New API Batched Batched Virtualization H/W App., NIC driver

i10 Kernel Kernel BSD socket Syscalls Batched Native Kernel-only

6 Related Work

Table 5 compares i10 with several of the prior designs on
optimizing the storage and network stacks. We briefly discuss
some of the key related work below.

Existing remote storage I/O stacks. The fundamental per-
formance bottlenecks of traditional remote storage stacks
are well-understood [24]. For instance, iSCSI protocol [35]
was designed to access remote HDDs over 1Gbps networks,
achieving merely ∼70K IOPS per CPU core [12,23,24]. Sim-
ilarly, a light-weight server for remote storage access based
on Linux libevent and libaio achieves ∼75K IOPS per
core [24]. Distributed file systems (e.g., HDFS, GFS, etc.) are
generally optimized for large data transfers, but are not so
efficient for small-sized random read/write requests over high-
throughput storage devices [10,36]. i10 significantly improves
throughput-per-core when compared to existing kernel-based
remote storage stacks, achieving performance close to state-
of-the-art user-space and RDMA-based products.

CPU-efficient network stacks within the kernel. Motivated
by the fact that existing kernel network stacks were not de-
signed for high network bandwidth links, there has been a
significant amount of recent work on designing CPU-efficient
network stacks [13, 27, 38, 42]. These stacks focus primar-
ily on network stacks and are complementary to optimizing
remote storage stacks; nevertheless, several optimization tech-
niques (e.g., syscalls batching/scheduling, per-core accept
queue, etc.) introduced in these works may be useful for i10
as well. For instance, we demonstrate in Appendix B in [16]
that syscall-level batching from [13, 38, 42], when integrated
with i10, helps further improve the performance by 1.2×.

CPU-efficient user-space network stacks. The main moti-
vation of this approach is that the kernel is extremely complex
and high-overhead due to various overheads in system calls,
process/thread scheduling, context switching, and so on. Prior
studies reveal that the current kernel stack has limited net-
work processing power in terms of the number of messages
per second, so it is difficult to saturate network link capacity
if the applications generate only small-sized messages, e.g.,

under tens to hundreds of bytes [6, 19, 44].
To avoid these overheads, user-space solutions place the

entire network protocol stack in the user space and directly
access the NIC through the user-level packet I/O engines
such as DPDK [1] and netmap [34], while bypassing the
kernel [6, 19, 21, 22, 29, 32, 33]. By putting small-sized pack-
ets onto the NIC buffer directly in a batched manner, they
significantly improve the messages per second performance.
ReFlex [24] also implements the remote Flash access stack
in the user space, on top of IX [6]. We note that modifying
applications for using the user-level stacks might not be fun-
damental as recent new systems support the POSIX interfaces
(e.g., TAS [22], Strata [25], and SplitFS [20]). As we have
discussed throughout the paper, i10’s goals are not to beat
the performance of user-space solutions but rather to explore
whether similar performance can be achieved without modifi-
cations in the application and/or network infrastructure.

7 Conclusion

This paper presents design, implementation and evalua-
tion of i10, a new in-kernel remote storage stack for high-
performance network and storage hardware. i10 requires no
modifications outside the kernel, and operates directly on top
of kernel’s TCP/IP network stack. We have demonstrated
that i10 is still able to achieve throughput-per-core compara-
ble to state-of-the-art user-space and RDMA-based solutions.
i10 thus represents a new operating point for remote stor-
age stacks, allowing state-of-the-art performance without any
modifications in applications and/or network infrastructure.
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Abstract
Observability on data communication is always essential

for prototyping, developing, and optimizing communication
systems. However, it is still challenging to observe transac-
tions flowing inside PCI Express (PCIe) links despite them
being a key component for emerging peripherals such as smart
NICs, NVMe, and accelerators. To offer the practical observ-
ability on PCIe and for productively prototyping PCIe devices,
we propose NetTLP, a development platform for software
PCIe devices that can interact with hardware root complexes.
On the NetTLP platform, software PCIe devices on top of
IP network stacks can send and receive Transaction Layer
Packets (TLPs) to and from hardware root complexes or other
devices through Ethernet links, an Ethernet and PCIe bridge
called a NetTLP adapter, and PCIe links. This paper describes
the NetTLP platform and its implementation: the NetTLP
adapter and LibTLP, which is a software implementation of
the PCIe transaction layer. Moreover, this paper demonstrates
the usefulness of NetTLP through three use cases: (1) observ-
ing TLPs sent from four commercial PCIe devices, (2) 400
LoC software Ethernet NIC implementation that performs
an actual NIC for a hardware root complex, and (3) physical
memory introspection.

1 Introduction

PCI Express (PCIe) is a widely used I/O interconnect for
storage, graphic, network, and accelerator devices [16,24,25].
Not limited to connect the peripheral devices, some high-
performance interconnects adopt the PCIe protocol [5,22,35].
Moreover, specifications of future interconnects are designed
by extending the PCIe protocol [10, 14]. Such versatility of
PCIe is derived from the packet-based data communication
and the flexibility of PCIe topology. The PCIe specification
defines building blocks comprising PCIe topologies: endpoint,
switches, bridges, and root complexes. PCIe packets flow
through point-to-point PCIe links between the blocks, and
motherboard manufacturers can expand the PCIe topologies
with these blocks depending on the use cases.

Table 1: Comparison of platforms for prototyping PCIe de-
vices from the viewpoints of software and hardware.

PCIe device
Software Hardware

Root Complex Software QEMU �
Hardware NetTLP FPGA/ASIC

By contrast to the spread of PCIe, it is still difficult for
researchers and software developers to observe PCIe and pro-
totype PCIe devices, although they are crucial for optimizing
performance and developing future PCIe devices. Observ-
ing PCIe transactions is difficult because PCIe transactions
are confined in hardware. PCIe is not just a simple fat-pipe
between hardware elements; it also has several features for
achieving high-performance communication, i.e., hardware
interrupt, virtualization, and CPU cache operations. Utilizing
these features is important for exploiting PCIe efficiently;
however, the concrete behaviors of the transactions in PCIe
links cannot be determined unless special capture devices for
observing PCIe hardware are used.

In addition to the observation, prototyping PCIe devices
lacks productivity. Field Programmable Gate Array (FPGA)
is a major platform for prototyping PCIe devices [26, 40, 44,
45, 50]. However, developing all parts of a PCIe device on
an FPGA still requires significant effort, such as the great
devotion of the NetFPGA project [52] for networking devices.
Another approach is to adopt virtualization or simulation, e.g.,
GEM5 [11,23] and RTL simulators [4,31]. QEMU [9], which
is a famous virtualization platform, can be used for proto-
typing PCIe devices from the software perspective. QEMU
enables researchers and developers to prototype new hardware
architecture; however, its environment is fully softwarized.
QEMU devices can communicate with only the emulated
root complex and cannot communicate with the physical root
complex and other hardware connected to the root complex.

The goal of this paper is to bridge the gap between software
and hardware for PCIe, as shown in Table 1. Our proposed
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platform, called NetTLP, offers softwarized PCIe endpoints
that can interact with hardware root complexes. By using Net-
TLP, researchers and software developers can prototype their
PCIe devices as software PCIe endpoints and test the soft-
ware devices with actual hardware root complexes through
the PCIe protocol. This hybrid platform of software and hard-
ware simultaneously improves both the observability of PCIe
transactions and the productivity of prototyping PCIe devices.

The key technique for connecting softwarized PCIe end-
points to hardware root complexes is to separate the PCIe
transaction layer into software and put the software transac-
tion layer on top of IP network stacks. Our FPGA-based add-
in card, called NetTLP adapter, delivers Transaction Layer
Packets (TLPs) to a remote host over Ethernet and IP net-
works. The substance of the NetTLP adapter is implemented
in software on the IP network stack of the remote host with
LibTLP, which is a software implementation of the PCIe trans-
action layer. The NetTLP platform consisting of the adapter
and library enables software PCIe devices on IP network
stacks to interact with hardware root complex through the
NetTLP adapter. Moreover, TLPs delivered over Ethernet
links can be easily observed by IP networking techniques
such as tcpdump and Wireshark.

In this paper, we describe NetTLP, the novel platform for
software PCIe devices. To achieve the platform, we investi-
gate PCIe from the perspective of packet-based communica-
tion (§2) and then describe the approach to connect the soft-
ware PCIe devices with hardware root complexes and process
TLPs in software (§3) and describe its implementation (§4).
In addition to micro-benchmarks (§5), we demonstrate three
use cases of NetTLP (§6): observing behaviors of a root com-
plex and commercial devices at a TLP-level, prototyping an
Ethernet NIC in software interacting with a physical root
complex, and physical memory introspection using NetTLP.

The contributions of this paper include the following:

• We propose a novel platform for prototyping PCIe de-
vices in software, while the software devices can commu-
nicate with physical hardware such as root complexes,
CPU, memory, and other PCIe devices. This platform
offers high productivity for prototyping PCIe devices
with actual interactions with hardware.

• We provide observability of PCIe transactions confined
in hardware by the softwarized PCIe endpoints on the
IP network stack. Our modified tcpdump can distinguish
the encapsulated TLPs in Ethernet by NetTLP, enabling
us to easily capture TLPs in an IP networking manner.

• We present detailed observation results of PCIe transac-
tions with a root complex and commercial peripherals:
an Intel root complex, Intel X520 10 Gbps NIC, Intel
XL710 40 Gbps NIC, Intel P4500 NVMe, and Samsung
PM1724 NVMe. The observation results by NetTLP re-
veal differences in their behaviors on PCIe transactions,
for example, different usage of TLP tag fields.

CPU Memory

Root ComplexPCIe Switch

PCIe
Device

PCIe
Device

PCIe
Device

PCIe
Device

CPUMemory

Root Complex

PCIe
Device

PCIe
Device

CPU-to-Device/Device-to-CPU
Device-to-Device Remote DMA

Figure 1: A PCIe topology and three communication models.

• We show a prototype of a nonexistent Ethernet NIC
with NetTLP. This prototyping demonstrates the high
productivity of the NetTLP platform; the NIC is certainly
implemented in software, but it performs as an actual
Ethernet NIC for a physical root complex.

• We demonstrate the possibility of developing memory
introspection methods on NetTLP without implement-
ing dedicated devices. As a proof-of-concept, we imple-
mented two applications that gather process information
from a remote host by DMA through NetTLP.

All source codes for hardware and software and captured
data described in this paper are publicly available [1].

2 Background

PCIe is not only an interconnect, but also a packet-based data
communication network. As with IP networks, PCIe has a
layering model composed of a physical layer, a data link layer,
and a transaction layer. The data link layer delivers PCIe
packets across one hop over a PCIe link, while the transaction
layer is responsible for delivering TLPs from a PCIe endpoint
to a PCIe endpoint across the PCIe links. PCIe interconnect is
composed of the following elements that are capable of sup-
porting the layer functionalities: endpoints, switches, bridges,
and root complexes. PCIe switches and root complexes route
and forward PCIe packets in accordance with the addresses
in memory-mapped I/O (MMIO) space or requester IDs. Any
functionalities of PCIe stand at the packet-based communi-
cation, e.g., MSI-X for hardware interrupts is implemented
by memory writes to specific memory addresses. Because of
being such a packet-based network, PCIe topologies and their
communication models are flexible, as depicted in Figure 1.

In IP networks, we can easily prototype and implement any
part of the networks, such as end hosts, switches, and routers,
and observe packets flowing in the networks; however, PCIe
cannot do such things despite PCIe also being a packet-based
network. PCIe was originally designed for I/O interconnects
inside a computer; therefore, it is assumed that all the PCIe
elements were implemented in hardware. This assumption
and the current situation cause difficulty in investigating and
developing PCIe and its elements.
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For investigating PCIe, there are two major platforms:
FPGA and QEMU. FPGA offers programmability on hard-
ware for prototyping PCIe devices. By contrast, developing
PCIe devices on FPGA still involves significant effort. Even
when implementing a device, the device requires purpose-
specific logic and various logic blocks such as PCIe core,
DMA engine, memory controller, etc. Such functional blocks
are not available, unlike software libraries. Moreover, we can-
not observe the PCIe packets sent by the FPGA. We can
see only part of the signals using logic analyzers, or expen-
sive dedicated hardware. On the other hand, QEMU enables
implementing PCIe devices on a full virtualized environ-
ment [15,37]. However, QEMU does not implement the PCIe
protocol, only DMA APIs. QEMU is used as a platform for
researching new PCIe devices and discussing OS abstractions
and implementations without real hardware and the PCIe pro-
tocol. Thus, QEMU PCIe devices cannot interact with the real
host and hardware on the PCIe, although the features of root
complexes have been evolving.

The two platforms have advantages and disadvantages:
FPGA requires significant effort for prototyping and lacks
observability, while QEMU devices cannot interact with hard-
ware elements with the PCIe protocols. These disadvantages
are because the platforms focus on only hardware or soft-
ware. Root complexes and devices—the two major elements
of PCIe—are hardware in FPGA or software in QEMU.

As a third platform, we advocate connecting software and
hardware elements of PCIe. If PCIe devices are moved to soft-
ware and connected to a hardware root complex, we achieve
productive PCIe device prototyping in software and interac-
tions with the real PCIe elements connected to the hardware
root complex. Moreover, we can observe the PCIe transac-
tions at the software PCIe device without resorting to dedi-
cated hardware mechanisms. This relationship is similar to IP
networks; IP network stacks at end hosts are software, while
routers and switches are hardware.

3 NetTLP

To feasibly connect software PCIe devices and hardware root
complexes, we propose to separate the transaction layer of
PCIe into software, as illustrated in Figure 2. The transaction
layer is responsible for the fundamental part of end-to-end
PCIe communications: identifiers, i.e., memory addresses and
requester IDs, routing, and issuing PCIe transactions. The
softwarized transaction layer offers high productivity of PCIe
device prototyping in software on top of the layer and observ-
ability of PCIe transactions by software.

To connect the softwarized transaction layer and the hard-
ware data link layer, NetTLP has chosen a configuration that
bridges a PCIe link and an Ethernet link. Because PCIe and
Ethernet are packet-based networks, it is possible to deliver
TLPs over Ethernet links by encapsulation. Once TLPs go
to an Ethernet network, we can easily observe the TLPs like

Transaction Layer

Data Link Layer

Physical Layer
TX RX

Data Link Layer

Physical Layer
TX RX

SW-HW bridge

PCIe link

Root Complex PCIe device
TLP Software-based 

Transaction Layer

Figure 2: The layering model of PCIe and our approach that
separates the transaction layer into software.

IP packets, implement the transaction layer in software, and
prototype PCIe devices on top of software IP network stacks.

As with NetTLP, ExpEther [47, 48] and Thunderclap [29]
also enable observing and manipulating TLPs. ExpEther ex-
tends PCIe links by delivering TLPs over Ethernet links. TLPs
encapsulated by ExpEther would be observed on an Ethernet
link between an ExpEther adapter and a hardware extension
box in which peripheral devices are installed. In Thunderclap,
Linux running on an ARM CPU on an FPGA processes TLPs
with software. Similarly, some smart NICs can send and re-
ceive TLPs from CPUs on the NICs with abstracted DMA
APIs [30, 33].

In contrast to the existing technologies, NetTLP focuses
on prototyping new PCIe devices in software. For this pur-
pose, manipulating TLPs with software is one of the essential
functionalities. In addition, how devices and CPUs interact
with each other must be designed flexibly. ExpEther does not
focus on this point so that it extends PCIe links over Ethernet,
and the software PCIe devices on Thunderclap pretend exist-
ing devices to reveal vulnerabilities through their drivers. In
the NetTLP platform, researchers and developers can design
how new software devices interact with CPUs through root
complexes. More specifically, it is possible to design and im-
plement the usage of registers of the software devices, e.g.,
descriptor rings, from scratch on the NetTLP platform. This
functionality enables designing and implementing nonexistent
devices and observing its interaction in software (Section 6.2).

3.1 Platform Overview
A key component of NetTLP delivering TLPs over Ethernet
is a NetTLP adapter, which is an FPGA-based add-in card
equipped with a PCIe link connected to the host and an Eth-
ernet link. Another key component is LibTLP, which is a
software library of the PCIe transaction layer on the IP net-
work stack. The NetTLP platform is composed of two hosts,
an adapter host having the NetTLP adapter and a device host
where LibTLP-based applications are run, as illustrated in
Figure 3.

The NetTLP adapter is responsible for the bridge between
the hardware data link layer and the software transaction layer
depicted in Figure 2. The NetTLP adapter delivers TLPs be-
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Figure 3: The overview of the NetTLP platform.

tween a host’s PCIe link and the Ethernet link. When the
NetTLP adapter receives TLPs from the PCIe link, the Net-
TLP adapter encapsulates each TLP in Ethernet, IP, UDP, and
NetTLP header for sequencing and timestamping and sends
the packets to the device host via the Ethernet link. When
the NetTLP adapter receives a UDP packet from the Ethernet
link, the NetTLP adapter checks whether the packet’s payload
is a TLP, decapsulates the packet, and sends the inner TLP to
the PCIe link. As a result, from the perspective of the adapter
host, all TLPs sent from the device host by the software are
recognized as TLPs generated by the NetTLP adapter.

LibTLP implements the PCIe transaction layer in software
and provides abstracted DMA APIs for applications. The ap-
plications on the device host can send and receive TLPs to
the NetTLP adapter on the adapter host through UDP sockets.
By using LibTLP, researchers and software developers can
implement their own PCIe devices in software that perform
actual behaviors of the NetTLP adapter for the root complex
on the adapter host. In addition, splitting software PCIe de-
vices and physical adapters on the distant hosts enables us to
observe actual PCIe transactions flowing through the Ethernet
link. We can capture the encapsulated TLPs by tcpdump at
the device host or capture the TLPs on the Ethernet link by
optical taps or port mirroring on Ethernet switches.

Although a NetTLP adapter is a single peripheral device,
the NetTLP adapter can be applied to some PCIe commu-
nication models in PCIe topologies organized in Figure 1.
Naturally, the NetTLP adapter and the software PCIe device
can become a device on CPU-to-device and device-to-CPU
communications. Applying the NetTLP adapter into device-
to-device communication, also known as peer-to-peer DMA,
realizes interactions between commercial PCIe devices and
software PCIe devices. Section 6.1 shows TLPs sent from
product devices by the NetTLP platform and peer-to-peer
DMA integration. In addition, the NetTLP adapter can be con-
sidered a raw remote memory access device. Applications on
the device host can issue DMA to any address of the memory
on the adapter host through the NetTLP adapter. Section 6.3
demonstrates memory introspection methods exploiting the
remote memory access by NetTLP.

3.2 TLP Processing in Software

Processing PCIe transactions in software is challenging be-
cause PCIe was originally designed to be processed by hard-
ware. This section describes three issues to design NetTLP for
achieving PCIe interactions between hardware and software.

Receiving burst TLPs: The first issue is that LibTLP
needs to receive burst TLPs sent from the hardware. The
minimum TLP length is 12 bytes when the TLP is a memory-
read (MRd) TLP with the 32-bit address field, for instance.
NetTLP adapter encapsulates TLPs with Ethernet, IP, UDP,
and NetTLP headers; thus, the minimum encapsulated packet
length is 64 bytes. This length is the same length as the mini-
mum packet size of IP networks. Meanwhile, the flow control
of PCIe is based on the credit system [7], and PCIe endpoints
can send TLPs continuously as long as the credit remains. In
particular, PCIe devices often send small TLPs using the TLP
tag field to achieve high performance [21]. Because these TLP
transmission intervals are continuous clock units, the through-
put of encapsulated TLPs could momentarily be wire-rate on
the Ethernet link with short packets.

To receive such burst TLPs by software, NetTLP exploits
the TLP tag field to distribute receiving encapsulated TLPs
among multiple hardware queues of an Ethernet NIC and
CPU cores. The tag field is used to distinguish individual
non-posted transactions that can be processed independently.
The NetTLP adapter embeds the lower 4-bit of the tag values
into the lower 4-bit of UDP port numbers when encapsulating
TLPs. As a result, PCIe transactions to the NetTLP adapter
are delivered through different UDP flows based on the tag
field, and the device host can receive the flows by different
NIC queues. This technique, called tag-based UDP port distri-
bution, enables the software side to process TLPs on multiple
cores associated with multiple NIC queues.

Completion Timeout: Another issue is the completion
timeout. In accordance with PCIe specifications, root com-
plexes and PCIe endpoints support a completion timeout
mechanism on the PCIe transaction layer. When a requester
send memory-read requests, the requester sets timeout periods
for each request, and the completer need to send the comple-
tions within the periods. Hence, software PCIe devices on
the NetTLP platform need to be able to send completions
within the hardware-level timeout periods. The timeout period
is configured in the PCIe configuration space. For instance,
the minimum and maximum completion timeout periods of
X520 NIC are 50 microseconds and 50 milliseconds, respec-
tively [6]. Therefore, software PCIe devices built on LibTLP
also must be capable of replying memory requests during such
periods. Fortunately, Linux network stacks on general server
machines are not too slow at the millisecond scale; therefore,
we expect that LibTLP would meet the requirement. Section 5
examines this issue through a latency benchmark.

Encapsulation Overhead: To take TLPs to software on
top of IP network stacks, NetTLP encapsulates TLPs with IP
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headers although encapsulation involves throughput reduction
due to the header overhead. NetTLP encapsulates TLPs into
multiple headers: 14-byte Ethernet, 4-byte FCS, 20-byte IP,
8-byte UDP, and 6-byte NetTLP headers. The throughput
of data transfer over DMA on the NetTLP platform can be
calculated with:

T hroughputdma = BWeth ⇥ T LP_Data
T LP_hdr+T LP_Data+Pkt_Hdr+ET H_Gap

BWeth is the Ethernet link speed, Pkt_Hdr is 52-byte for the
headers and FCS mentioned above, and ET H_Gap is 20-
byte for preamble and inter-frame gaps. From this formula,
throughput with 256-byte T LP_Data (usual max payload
size) and 12-byte T LP_hdr for 3DW memory-write TLP on
10 Gbps links is approximately 7.53 Gbps, which is the theo-
retical limitation with 10 Gbps Ethernet. Although throughput
is required depending on use cases, the overhead is not signif-
icant for just prototyping software PCIe devices.

4 Implementation

We implemented the NetTLP adapter using an FPGA card
and LibTLP on Linux. This section describes the details of
the NetTLP adapter, APIs provided by LibTLP, hardware
interrupts, and limitations of the NetTLP platform.

4.1 NetTLP Adapter
The NetTLP adapter was implemented using the Xilinx
KC705 FPGA development board [51]. This board has Xilinx
Kintex 7 FPGA, an Ethernet 10 Gbps port, and a PCIe Gen
2 4-lane link. We used the board because its PCIe Endpoint
IP core enables user-defined logic to handle raw TLP head-
ers. This feature is suitable for designing the NetTLP adapter.
However, the Xilinx’s newer PCIe IP core, which supports
PCIe Gen 3, does not allow user-defined logic to handle raw
TLP headers. Therefore, the current implementation of the
NetTLP adapter does not support PCIe Gen 3.

Figure 4 shows the overview of the circuit diagram of the
NetTLP adapter. The current NetTLP adapter has three base
address register (BAR) spaces for different roles. BAR0 is
used to configure the NetTLP adapter. The configurations
through BAR0 support changing source and destination MAC
addresses and source and destination IP addresses for encap-
sulating TLPs. The BAR2 space is used for the MSI-X table to
support the hardware interrupts from software PCIe devices.
The detail of MSI-X in NetTLP is described in Section 4.3.
Both BAR0 and BAR2 memory spaces are implemented with
Block RAM on the FPGA, and the NetTLP adapter has the
Peripheral I/O (PIO) engine above the BAR0 and BAR2 to
reply with completion TLPs for operations to the BARs.

BAR4 is different from BAR0 and BAR2; BAR4 space is
connected to the Ethernet PHY and not connected to the PIO
engine. All TLPs from the root complex or other devices to

PCIe Link to Host

Remote Host

PCIe 
Endpoint

PCIe Configuration Register

BAR0: Adapter Register

IP filter + 
IP decap

BAR4:
IP encap

Ethernet PHY

BAR2: MSI-X Table

PIO
Engine

Figure 4: The circuit diagram of the NetTLP adapter.

the BAR4 space are encapsulated in Ethernet, IP, UDP, and
NetTLP headers and transmitted to an external host via the
Ethernet link. Namely, LibTLP on the device host commu-
nicates to the root complex on the adapter host through the
memory region assigned to the BAR4.

When encapsulating TLPs to the BAR4, source and desti-
nation port numbers of the UDP headers are generated based
on the tag field of their TLP headers. This is the tag-based
UDP port distribution described in Section 3.2. In the current
implementation, the UDP port numbers are generated with
0x3000 +(T LP_Tag^0x0F). Thus, the NIC on the device
host receives the TLPs by a maximum of 16 hardware queues.
When the NetTLP adapter receives UDP packets from the
device host, the IP filter logic checks whether the IP addresses
match the configured addresses on BAR0. If the IP addresses
and port numbers are correct, the packets are decapsulated,
and the inner TLPs are sent to the host via the PCIe link.

The driver for the NetTLP adapter depends on types of
software PCIe devices. If a software PCIe device is an Ether-
net NIC, the driver is for the Ethernet NIC, and if a software
PCIe device is an NVMe SSD, the driver is for the NVMe
SSD. Regardless of the driver types, we implemented a sim-
ple driver that supports basic functionalities for the NetTLP
adapter. This driver enables the NetTLP adapter, initializes
MSI-X, and prepares a simple messaging API. The software
PCIe device on the device host can obtain information about
the NetTLP adapter, i.e., addresses of the BAR spaces of the
adapter, PCIe bus and slot numbers, and MSI-X table. Users
of the NetTLP platform can develop drivers for their software
PCIe devices by extending the basic NetTLP driver.

4.2 LibTLP
LibTLP is a userspace library that implements the PCIe trans-
action layer. On top of the transaction layer implementation,
the LibTLP provides a well-abstracted DMA API and a call-
back API for handling each type of TLPs.

Figure 5 shows the DMA API of LibTLP. A LibTLP in-
stance that contains a socket descriptor, a tag value, and a
destination address of a target NetTLP adapter is represented
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Figure 5: The DMA API of LibTLP.

by a nettlp structure initialized by nettlp_init(). The
DMA APIs for DMA reads and DMA writes are invoked
by specifying a nettlp structure. As with the read() and
write() system calls, dma_read() attempts to read up to
count bytes into buf and dma_write() writes up to count

bytes from buf. addr indicates a target address of a DMA
transaction. The return values of the functions are the number
of bytes read or written, or -1 and errno is set on error. For the
DMA reads, applications can notice TLP loss or completion
errors through the return value and errno.

In addition to the DMA API that issues DMAs to the mem-
ory on the adapter host, LibTLP provides a callback API for
handling TLPs from the adapter host to the device host. The
callback API allows applications to register functions for ma-
jor TLP types: memory read (MRd), memory write (MWr),
completion (Cpl), and completion with data (CplD). When
the sockets of the nettlp structures receive TLPs, the regis-
tered functions are invoked for the TLPs. By using this API,
the applications on the device host can respond to MRd TLPs
from the root complex to the BAR4 on the NetTLP adapter
by sending associated CplD TLPs, for instance.

4.3 Hardware Interrupt
For hardware interrupt, the NetTLP platform supports MSI-
X, which is widely used by modern PCIe devices. MSI-X
interrupt is invoked by sending a MWr TLP with particular
data to a specified address from a device. The address and
data for the interrupt are stored in an MSI-X table on a BAR
space specified by the PCIe configuration space of the device.
In other words, to send a hardware interrupt by MSI-X, it is
necessary to refer to the MSI-X table on the BAR.

To achieve MSI-X on the NetTLP platform, there are two
approaches: (1) placing the MSI-X table on the BAR4 and a
software PCIe device on a device host holds the MSI-X table,
and (2) placing the MSI-X table on other BAR spaces under
the PIO engine and a software PCIe device on a device host
gets the MSI-X table through other communication paths. The
current implementation chooses the latter approach. The for-
mer approach does not need any other communication paths
to obtain the MSI-X table from the adapter host. However,
the MSI-X table is initialized by the NetTLP driver, so the
software PCIe device must run on the device host before
the NetTLP driver is loaded on the adapter host. Moreover,
software PCIe device implementations must always be ca-
pable of maintaining the MSI-X table, even if they do not
use MSI-X. These characteristics might inconvenience the
development of software PCIe devices. For these reasons, we
placed the MSI-X table on BAR2 under the PIO engine that is

controlled by only the hardware logic of the NetTLP adapter.
The software PCIe devices can obtain the content of the MSI-
X table through the simple messaging API provided by the
basic NetTLP driver.

4.4 tcpdump and Wireshark
To observe TLPs, we slightly modified tcpdump and imple-
mented a Wireshark plugin. In the NetTLP platform, the en-
capsulated TLPs flow through the Ethernet link between the
NetTLP adapter and the device host; hence, the TLPs can
be easily captured by the monitoring tools of IP networking.
The modified tcpdump can recognize the encapsulated TLPs
and display the contents of TLPs on the popular tcpdump out-
put. The Wireshark plugin also displays the contents of TLPs
on the GUI. These tools offer researchers and developers a
convenient method to observe TLPs.

4.5 Limitations
The current implementation of the NetTLP platform cannot
handle the PCIe configuration space. The PCIe configuration
space manages properties of the PCIe device such as Device
ID, Vendor ID, and address regions of BAR spaces. The PCIe
configuration space is stored in the memory of the PCIe device
hardware. When the host boots up or re-scans PCIe devices,
the devices use the CfgRd and CfgWr TLPs to communicate
with the root complex to set up their PCIe configurations.
In the current implementation of NetTLP adapter, the PCIe
Endpoint IP core for Kintex 7 FPGA manages the PCIe con-
figuration space as shown in Figure 4. The IP core does not
allow user-defined logic to manipulate the configuration reg-
isters by raw TLPs. Therefore, the software PCIe devices
cannot see and change their PCIe configurations. As a result,
the current implementation does not support functionalities
that require the manipulation of PCIe configuration registers,
i.e., changing structures of MSI-X tables and SR-IOV.

5 Micro-benchmarks

To estimate performances of the software PCIe devices and ap-
plications, we conducted micro-benchmarks for the through-
put and latency of DMAs on the NetTLP platform.

In the NetTLP platform, there are two directions of PCIe
transactions: (1) from LibTLP to the NetTLP adapter, and (2)
from the NetTLP adapter to LibTLP. They represent DMA
reads and writes from a software PCIe device to a root com-
plex, and DMA reads and writes from a root complex to a
software PCIe device, respectively. In the former direction,
we assume that PCIe transactions issued from the software
PCIe device can be processed without packet loss because
all of the components on the adapter host is hardware, which
has higher bandwidth (the 16 Gbps PCIe Gen 2 4-lane link
of the NetTLP adapter) than the 10 Gbps Ethernet link. In
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Figure 6: Benchmark setup.

the opposite direction, DMA reads from the root complex to
the software PCIe devices also would not be dropped because
the root complex does not send a memory read request until
receiving a completion for the last read request (non-posted
transaction). Based on this assumption, we measured through-
put of DMA reads and writes from LibTLP (Section 5.1), and
DMA reads from the NetTLP adapter (Section 5.2).

By contrast, the throughput of DMA writes from the root
complex to the software PCIe device cannot be measured. The
root-complex can send MWr TLPs up to the link speed of the
NetTLP adapter without explicit acknowledgment (posted
transactions). The current NetTLP adapter does not have
mechanisms to notify congestion on the Ethernet link to the
root complex; therefore, MWr TLPs are dropped if the 10
Gbps Ethernet link of the NetTLP adapter overflows. Notify-
ing the overflow to the root complex and other devices is a
future work. However, for recent peripherals such as Ethernet
NICs and NVMe SSDs, usual use cases of memory writes
to PCIe devices are updating registers on the devices from
CPUs, and these do not require significant throughput. There-
fore, we argue that the current NetTLP adapter is sufficient to
prototype PCIe devices in software.

Figure 6 depicts the two directions and the components
we used to generate PCIe transactions for the benchmarks.
To generate PCIe transactions from LibTLP to the NetTLP
adapter, we developed a LibTLP-based benchmark applica-
tion called tlpperf. Users can send memory read and write re-
quests to the memory on the adapter host through the NetTLP
adapter from the device host by using tlpperf. For generating
PCIe transactions in the opposite direction, we implemented
a LibTLP-based pseudo memory device, called psmem, and
slightly modified the pcie-bench [34]. psmem on the device
host pretends a memory region associated with the BAR4 of
the NetTLP adapter. As described in Section 4.1, TLPs to
the BAR4 space of the NetTLP adapter are transmitted to the
device host. When psmem receives a MWr TLP, psmem saves
the data and the associating address. When psmem receives a
MRd TLP, psmem sends CplD TLP(s) with proper data asso-
ciating the requested address. In addition, to generate memory
requests to the BAR4 of the NetTLP adapter, we modified
pcie-bench implementation for NetFPGA-SUME. The mod-
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Figure 8: DMA Read
throughput from LibTLP to
the NetTLP adapter versus
the request sizes.

ified pcie-bench can use the BAR4 space as the benchmark
destination instead of main memory.

For the micro-benchmark, we prepared two machines for
the adapter and device hosts. The adapter host was an Intel
Core i9-9820X 10 core CPU and 32 GB DDR4 memory with
an ASUS WS X299 SAGE motherboard. This motherboard
has PCIe switches. The NetTLP adapter and the NetFPGA-
SUME card for pcie-bench were installed on PCIe slots under
the same PCIe switch. The device host was an Intel Core i9-
7940X 12 core CPU, 32 GB DDR4 memory, and Intel X520
10 Gbps NIC with an ASUS PRIME X299-A motherboard.
The device host was connected to the NetTLP adapter on the
adapter host via a 10 Gbps Ethernet link. OSes were Linux
kernel 4.20.2. Note that we enabled hyperthreading on the
device host that had 12 physical cores to fully utilize 16 NIC
queues by the tag-based UDP port distribution.

In the experiments described in this section, all the through-
put results are goodput. The throughput does not include TLP
and encapsulation headers. In addition, all memory requests in
each iteration access the same address. We measured through-
put and latency with random and sequential access patterns;
however, there were no differences because of the memory
access patterns in any experiment. The processing time for the
software part is relatively dominant and obscures differences
in performances because of the memory access patterns.

5.1 LibTLP to NetTLP Adapter
In the first benchmark, we measured the throughput of PCIe
transactions from LibTLP to the memory on the adapter host
through the NetTLP adapter. It is expected that the throughput
would be limited by Linux kernel network stack performance
where tlpperf runs because the data path on the adapter host
is fully hardware and its links are the 16 Gbps PCIe Gen 2
4-lane link and the 10 Gbps Ethernet link.

Figure 7 shows the throughput of DMA reads issued by
tlpperf on the device host. The key indicates request sizes of
each DMA read request. As shown, the throughput linearly
increases along with the number of CPU cores. This result
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Figure 11: DMA Read throughput
from the NetTLP adapter to LibTLP.

indicates that the tag-based UDP port distribution technique
successfully utilizes multiple queues and multiple cores on
the Linux-based device host. On the other hand, the read re-
quest size greater than 512-byte does not contribute to the
throughput because the maximum read request size (MRRS)
is 512-byte. The maximum throughput in this direction, which
is approximately 3.6 Gbps, is less than the PCIe Gen 2 x1 link
speed; however, the required throughput depends on appli-
cations and use cases. For example, Section 6 demonstrates
use cases not depending on throughput. Note that the current
LibTLP uses Linux Socket API; therefore, LibTLP would han-
dle more UDP traffic with high-speed network I/O [28, 39].

Next, we measured the throughput of DMA reads from
tlpperf with 16 cores while increasing the read request sizes
by 16 bytes. The result shown in Figure 8 represents the saw-
tooth pattern, which is also noted in the pcie-bench paper [34].
The saw-tooth pattern is caused by the packetized structure
of the PCIe protocol. MRRS is 512-byte; therefore, when the
request size is not a multiple of 512, the remaining bytes are
transferred by a small size memory read. Such small-sized
TLPs cause throughput reduction. Sizes of the small TLPs
increase as the request sizes increase, so the throughput also
increases until the request size exceeds the next multiple of
512. Slight reductions of the throughput after multiples of
256-byte are caused by the maximum payload size (MPS),
which is 256-byte, in a similar manner. This result where
the saw-tooth pattern appears as well as the hardware-based
measurement by pcie-bench indicates that LibTLP correctly
implements the packetization of the PCIe protocol.

In addition to the throughput, we measured the latency
for DMA reads. The PCIe specification defines completion
timeout; thus, evaluating the DMA read latency is crucial
for prototyping PCIe devices in software. Figure 9 shows
the result of 10000 DMA reads with 1-byte, 256-byte, and
1024-byte read requests generated by tlpperf. The latency
increases with the request sizes; however, 99% latency is less
than 27 microseconds regardless of the request sizes, and the
maximum latency is 45 microseconds with 1024-byte DMA
reads. These results correspond to the completion timeout
range A (50 us to 10 ms). Therefore, we argue that prototyping

PCIe devices in software with hardware root complexes is
feasible from a latency perspective. According to the pcie-
bench [34], DMA read latency inside a physical host is from
400 to 800 nanoseconds. Consequently, software processing
for the network stack and the tlpperf application on the device
host is dominant in the latency of the NetTLP platform.

We next measured the throughput of DMA writes from
LibTLP. In contrast to DMA reads, DMA writes are posted
transactions; therefore, we cannot measure the latency and
throughput of DMA writes correctly. In this experiment, tlp-
perf calculates throughput when MWr TLPs are written to
sockets. Figure 10 shows this measurement result. In addition
to the DMA read results, DMA writes can also effectively use
multiple cores and queues. In contrast to DMA reads, DMA
writes reach the upper throughput with 256-byte DMA writes
because MPS is 256-byte. Note that this throughput can be
considered as transmitting throughput for UDP sockets of the
Linux network stack.

5.2 NetTLP Adapter to LibTLP
For the second direction, we measured the throughput by gen-
erating PCIe transactions from the pcie-bench on the adapter
host to the psmem running on the device host. Figure 11
shows the DMA read throughput on this direction. The result
also represents the saw-tooth pattern as well as the opposite
direction. Moreover, the thing that pcie-bench works with
the software memory device demonstrates that the NetTLP
platform can prototype one of the PCIe devices in software.
Besides, the maximum throughput is approximately 4.7 Gbps.
We confirmed that pcie-bench used TLP tag values from 0x00
to 0x17; thus, psmem with LibTLP could utilize the 16 cores
in parallel by the tag-based UDP port distribution.

Table 2 shows DMA read latency from the pcie-bench on
the adapter host to the psmem on the device host. We mea-
sured 100000 DMA reads for each request size. As shown,
there are no significant differences by request sizes, unlike the
original pcie-bench evaluation in hardware. This result is be-
cause the software processing on the device host—receiving
and sending UDP packets—is dominant. However, the latency
also meets the completion timeout range A.
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Table 2: DMA Read latency from the pcie-bench to the psmem
(microseconds).

Request size Min Median Max Stddev

256 14.312 17.268 87.456 1.321
512 12.2 18.764 68.552 1.550
1024 12.256 20.06 52.608 1.685
2048 11.612 18.588 68.224 2.385

6 Use Cases

This section demonstrates three use cases of NetTLP. We (1)
observed specific behaviors of a commercial root complex
and peripherals by capturing TLPs, (2) implemented a theo-
retical model of an Ethernet NIC as an actual NIC, and (3)
demonstrate memory introspection for physical machines. All
observations and demonstrations in this section were con-
ducted on the same machines used in the micro-benchmarks.

6.1 Capturing TLPs
As the first demonstration, we observe PCIe transactions of a
commercial root complex, two Ethernet NICs, and two NVMe
SSDs by capturing TLPs. The NetTLP adapter delivers TLPs
over Ethernet links; thus, NetTLP enables us to analyze TLPs
by using powerful IP network software with UNIX commands,
i.e., tcpdump. Besides, the flexibility of PCIe topologies en-
ables us to adapt NetTLP to observe various PCIe transactions
issued and processed by different elements.

6.1.1 Root Complex and PCIe Switch

The first observation is to clarify the behavior of root com-
plex. The PCIe specification does not allow PCIe switches to
modify PCIe packets during switching. However, root com-
plexes are permitted to split a PCIe packet into small PCIe
packets when routing the PCIe packets between PCIe devices.
The specification does not describe detailed mechanisms of
TLP splitting on peer-to-peer device communication by root
complexes. Although TLP splitting may negatively affect
performance, its behavior depends on each root complex im-
plementation, and observing the behavior is difficult. As a
demonstration, we clarify this point by comparing actual TLPs
through a root complex or a PCIe switch captured by NetTLP.

To capture the TLPs, we prepared two NetTLP adapters
under the root complex or the PCIe switch on the machine
used in the micro-benchmark. Figure 12a shows the topol-
ogy for this observation. In the test scenario, a DMA read
application on the device host sent a 512-byte MRd TLP to
psmem through the two NetTLP adapters on the adapter host,
and psmem returned CplD TLPs. Moreover, we switched the
intermediate element from the PCIe switch to the root com-
plex by changing PCIe slots where the NetTLP adapters were
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Figure 12: Two topologies for capturing TLPs. We captured
TLPs by port mirroring on the Ethernet switch.

installed. On this topology, we captured TLPs before and af-
ter passing through the PCIe switch or root complex by port
mirroring on the Ethernet switch.

Figure 13 shows the captured TLPs. The x-axis indicates
timestamps when a capture machine captured the TLPs from
the mirror port. Note that the timestamps were stamped by
NIC hardware so that the accuracy was on the nanosecond
scale. The y-axis indicates TLP tag values of the TLPs. The
TLPs were captured twice: before and behind the PCIe switch
or root complex. The graphs on the upper row and lower row
show the TLPs captured on the links connected to the NetTLP
adapter 1 and adapter 2 depicted in Figure 12a, respectively.

Figure 13a confirms that the PCIe switch does not modify
the TLPs as expected. The DMA read application sent a 512-
byte MRd TLP, and psmem returned two 256-byte CplD TLPs.
By contrast, Figure 13b reveals that the root complex split
a 512-byte MRd TLP into eight 64-byte MRd TLPs with
different TLP tag values when routing the TLPs between the
NetTLP adapters. psmem returned eight 64-byte CplD TLPs,
and the root complex rebuilt two 256-byte CplD TLPs from
the small CplD TLPs. As a result, the DMA read application
received the expected CplD TLPs that are aligned with MPS.

6.1.2 Ethernet NIC and NVMe SSD

Next, we measured and compared TLPs generated by com-
mercial NIC and NVMe devices. Knowledge of how product
devices use TLPs would be a useful guideline for develop-
ing PCIe devices with high performance. General peripheral
devices communicate with the CPU by DMA to the main
memory. To capture the TLPs from the devices, we used mod-
ified netmap drivers [39] for Ethernet NICs and a modified
UNVMe [32] for NVMe SSDs to change the DMA address
from main memory to the BAR4 of the NetTLP adapter. As
a result, NetTLP enables capturing the TLPs sent from the
devices on the Ethernet link connected to the NetTLP adapter.

For observing various behaviors of PCIe devices, we pre-
pared different types and speeds of devices: Intel X520 and
XL710 NICs, and Intel P4600 and Samsung PM1725a NVMe
SSDs. Throughput of the devices are as follows: Intel X520 is
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(a) A 512-byte memory read via the PCIe switch. (b) A 512-byte memory read via the root complex.

Figure 13: Comparison of captured TLPs of DMA read across the PCIe switch or the root complex. The graphs on the lower row
indicate the captured TLPs behind the PCIe switch or the root complex.

(a) NIC X520 (PCIe Gen2 8-lane, 10 Gbps). (b) NVMe P4600 (PCIe Gen3 4-lane, Seq write 1575 MB/s).

(c) NIC XL710 (PCIe Gen3 8-lane, 40 Gbps). (d) NVMe PM1725a (PCIe Gen3 8-lane, Seq write 2600 MB/s).

Figure 14: Comparison of tag field usage of the NIC and NVMe devices.

a 10 Gbps Ethernet NIC, Intel XL710 is a 40 Gbps Ethernet
NIC, the sequential write speed of the Intel P4600 NVMe
device is 1575 MB/s, and the sequential write speed of the
Samsung PM1725 is 2600 MB/s. Figure 12b shows the exper-
imental setup of this observation. In this setup, NIC or NVMe
and the NetTLP adapter were installed in PCIe slots under the
same PCIe switch. The devices sent MRd TLPs for sending
packets or writing data to the NVMe SSDs, and the MRd
TLPs were delivered to psmem. psmem then returned CplD
TLPs with Ethernet frames prepared in advance for the NIC
scenario or zero-filled data for the NVMe scenario. For the
NIC scenario, the NICs sent 32 1500-byte packets, and for the
NVMe scenario, the NVMe SSDs wrote 32-MB data to the
SSDs. Note that the block size of the Intel P4600 is 512 bytes
and that of the Samsung PM1725a is 4096 bytes; therefore,
we adjusted the number of NVMe write commands to write
32-MB data. To capture the TLPs, we used port mirroring
on the Ethernet switch between the NetTLP adapter and the
device host where psmem runs as well as the last experiment.

Figure 14 shows the result of captured TLPs of the NIC and
NVMe devices. The result reveals that each PCIe device uses

the TLP tag differently. X520 and P4600 use tag values from 0
to 15, PM1725a uses values from 0 to 63, and XL710 uses val-
ues from 24 to 249. The PCIe link speeds have been improved
along with generations of PCIe; however, MPS has hardly
improved. As a result, these PCIe devices improve data trans-
fer throughput by sending memory requests continuously by
leveraging TLP tags. The numbers of used tag values increase
along with the desired throughput of the devices. According
to the latency measurement in pcie-bench [34], the latency
of a 512-byte DMA read is approximately 580 nanoseconds.
The calculated throughput from this latency is about 7 Gbps
when not using the tag field. Therefore, exploiting the tag field
well is an important matter to achieve the desired throughput
as this observation revealed.

6.2 Prototyping an Ethernet NIC
To confirm that NetTLP can prototype PCIe devices in soft-
ware, we implemented an Ethernet NIC as a proof-of-concept
on the NetTLP platform. The target NIC we implemented
is simple NIC introduced by pcie-bench [34]. The original
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(b) TLPs for receiving a 98-byte ICMP reply packet.

Figure 15: tcpdump output of captured TLPs of the simple NIC implementation. len indicates length of data payload in DWORD.

simple NIC is a theoretical model of a simplistic Ethernet
NIC, which does not have any performance optimizations
such as DMA batching, for understanding PCIe interactions
and calculating bandwidth. This nonexistent NIC model was
a good target for demonstrating the productivity of NetTLP.
NetTLP enables us to prototype such models of PCIe devices
in software and confirm whether the models actually work
with existent hardware root complexes.

The detailed interactions between a host and a simple NIC
device are described in the model’s implementation [2]. On
the TX side, (1) the host updates a 4-byte TX queue tail
pointer, (2) the device reads a 16-byte TX descriptor on the
host memory, (3) the device reads the packet content and trans-
mits the packet, and (4) the device generates 4-byte interrupt.
On the RX side, (1) the host updates a 4-byte RX queue tail
pointer, (2) the device reads a 16-byte RX descriptor on the
host memory, (3) the device writes a received packet to the
host memory, (4) the device generates 4-byte RX interrupt.

Our simple NIC implementation on the NetTLP platform
performs an actual NIC with a physical root complex on the
adapter host following the model’s PCIe interaction. The im-
plementation consists of two parts: a device driver for the
NetTLP adapter and a software simple NIC device implemen-
tation using LibTLP. The device driver based on the basic
driver treats the NetTLP adapter as an Ethernet NIC as well
as usual drivers for hardware NICs. The software simple NIC
creates a tap interface on the device host and uses the tap
interface as its Ethernet port. The Ethernet frames transmitted
to the NetTLP adapter are transferred to the device host as
TLPs over the PCIe links and Ethernet links, and the Ethernet
frames are transmitted to the tap interface. The software sim-
ple NIC implementation is about 400 lines of C codes, and it
actually performs an Ethernet NIC.

TLPs of the simple NIC generated by the root complex
and LibTLP can be observed on the Ethernet link. Figure 15a
shows TLPs captured by the modified tcpdump when sending
an ICMP echo packet through the simple NIC. The driver
writes a TX queue pointer on the BAR4 of the NetTLP adapter

(1st TLP), the simple NIC reads the TX descriptor and the
packet content on 0x3bb26800 (2nd to 5th TLPs), and the
simple NIC generates interrupt to 0xfee1a000 pointed by the
MSI-X table after sending the packet to the tap interface (6th
TLP). On the RX side shown in Figure 15b, the interaction
starts from writing the received ICMP reply packet to the
host memory (1st TLP) because the driver told the RX buffer
to the simple NIC before receiving new packets. Afterward,
the simple NIC updates the RX descriptor (2nd TLP) and
generates an interrupt (3rd TLP). After the host consumes the
received packet, the driver sends the buffer back to the simple
NIC by updating the RX queue tail pointer (4th TLP), and the
simple NIC reads the RX descriptor (5th and 6th TLPs). In
this manner, the NetTLP enables implementing PCIe devices
in software with hardware root complexes. Moreover, the
interactions can be observed by the IP networking technique.

6.3 Physical Memory Introspection

The NetTLP provides flexible programmability for TLP inter-
actions between hardware and software. This characteristic
offers adaption of NetTLP to other use cases, for example,
memory introspection. Methods for monitoring and inject-
ing data on memory have been investigated for both physi-
cal [3,12,29,41,46] and virtual [17,49] environments. NetTLP
also provides accesses to host memory via PCIe, which is sim-
ilar to previous studies. However, the NetTLP adapter is a
channel to manipulate the host memory remotely; therefore,
researchers can implement their introspection and detection
methods on top of LibTLP and IP network stack without im-
plementing dedicated hardware or virtual machine monitors.

As the third use case, we demonstrate the possibility of
adopting NetTLP into remote memory introspection through
two naive applications. The first application is process-list
command similar to an example of LibVMI [27]. The process-
list collects process information on the Linux host equipped
with a NetTLP adapter. Figure 16a shows an example usage
of the process-list. When the process-list is executed, it finds
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(b) codedump to obtain the code area of a specified process.

Figure 16: Two example applications for physical memory introspection by NetTLP. Both applications are executed on the device
host and read the physical memory of the adapter host.

an address of task_struct representing the first process
from the specified System.map of the adapter host. Next, the
process-list starts to walk through task_struct structures of
the adapter host using dma_read().

Next, let us focus on a single process. codedump obtains a
binary of a running process from the adapter host. Figure 16b
shows an example usage of this command. The codedump
finds task_struct for the specified process ID by using the
same methods of the process-list and obtains mm_struct rep-
resenting the virtual memory of the process. The codedump
then converts process-specific addresses for the code area
into corresponding physical addresses by walking through the
page table. Lastly, the dumped code area by DMA reads from
LibTLP can be treated as a usual binary object file that can
even be reassembled by objdump command. In these man-
ners, researchers and developers can easily implement their
memory introspection methods on the NetTLP platform.

7 Related Work

Future Interconnect: Some next-generation interconnect
specifications are designed by extending the functionality of
PCIe. CCIX [13] and CXL [14] introduce cache coherency be-
tween processors and peripherals to their interconnects. CCIX
uses the PCIe data link layer and defines its transaction layer,
and CLX defines CLX extensions on the PCIe data link layer
and transaction layer. OpenCAPI [36] and Gen-Z [18] support
IEEE 802.3 Ethernet and the PCIe physical layer. These in-
terconnects require hardware extensions for both peripherals
and host chipsets. Although such next-generation intercon-
nects introduce new features, they are still packet-based data
communications. NetTLP delivers TLPs over Ethernet by ex-
ploiting the packet-based communications. Thus, we believe
that the NetTLP design can be applied to future interconnects
as long as they adopt the layering model and packet-based
communications.

Difference between NetTLP and RDMA: As with Net-
TLP, Remote DMA (RDMA) protocols also achieve DMA
from distant hosts over Ethernet and IP networks for high
speed interconnect. RoCEv2 encapsulates the Infiniband
header and payload with Ethernet, IP, and UDP headers [8].

iWARP uses Ethernet, IP, and TCP headers [38]. In contrast
to their purposes, NetTLP aims to provide the observability
of PCIe transactions; therefore, it adopts directly encapsu-
lating TLPs in IP and Ethernet. RDMA protocols need to
convert the PCIe protocol into RDMA protocol in RDMA
adapters. Thus, they lack observability of PCIe protocols that
we demonstrated through the use cases.

Device drivers for software PCIe devices: NetTLP has
made PCIe prototyping easier, but it has not contributed to
the productivity of device drivers. Developing device drivers
still requires certain effort. For improving the productivity
of device drivers in the NetTLP platform, there are two ap-
proaches: the first approach is to use frameworks that auto-
matically generate device drivers from templates related to
protocol specifications and device characteristics [42,43]. An-
other approach is to write device drivers in userspace as with
DPDK [20] while using some assists [19].

8 Conclusion

In this paper, we have proposed NetTLP that enables devel-
oping software PCIe devices that can interact with hardware
root complexes. The key technique to achieve the platform
is to separate the PCIe transaction layer into software and
then connect the software transaction layer and the hardware
data link layer by delivering TLPs over Ethernet and IP net-
works. Researchers and developers can prototype their own
PCIe devices in software and observe actual TLPs by the IP
networking techniques such as tcpdump. The use cases in
this paper showed the observation of the TLP-level behaviors
of the root complex and the product NICs and NVMe SSDs,
the 400 LoC software Ethernet NIC implementation interact-
ing with the hardware root complex, and physical memory
introspection. We believe that the high productivity and ob-
servability on the NetTLP platform demonstrated through the
use cases contribute to current and future PCIe development
on both research and industrial communities.
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Abstract— By replicating data across sites in multiple geo-
graphic regions, web services can maximize availability and
minimize latency for their users. However, when sacrificing
data consistency is not an option, we show that service providers
have to today incur significantly higher cost to meet desired la-
tency goals than the lowest cost theoretically feasible. We show
that the key to addressing this sub-optimality is to 1) allow for
erasure coding, not just replication, of data across data cen-
ters, and 2) mitigate the resultant increase in read and write la-
tencies by rethinking how to enable consensus across the wide-
area network. Our extensive evaluation mimicking web service
deployments on the Azure cloud service shows that we enable
near-optimal latency versus cost tradeoffs.

1 Introduction
Replicating data across data centers is important for a web
service to tolerate the unavailability of some data centers [1]
and to serve users with low latency [5]. A front-end web
server close to a user can serve the user’s requests by ac-
cessing nearby copies of relevant data (see Figure 1). Even
in collaborative services such as Google Docs and ShareLa-
TeX, accessing a majority of replicas suffices for a front-end
to read or update shared data while preserving consistency.

However, it is challenging to keep data spread across the
globe strongly consistent as no single design can simultane-
ously minimize read latency, write latency, and cost.
• To preserve consistency, any subset of sites which are ac-

cessed to serve a read must overlap with all subsets used
for writes. Therefore, allowing a front-end to read from
nearby data sites forces other front-ends to write to distant
data sites, thus increasing write latency.

• Similarly, providing low read latency requires having at
least one data site near each front-end, thereby increas-
ing the total number of data sites. This inflates expenses
incurred both for storage and for data transfers to synchro-
nize data sites.
Given these tradeoffs, service providers must determine

how to meet their desired latency goals at minimum cost. Or,
correspondingly, how to minimize read and write latencies
given a cost budget? In this paper, we make the following
contributions towards addressing these questions.
1. We show that existing solutions for enabling strongly
consistent distributed storage are far from optimal in
trading off latency versus cost. The cost necessary to sat-
isfy bounds on read and write latencies is often significantly
higher than the lowest cost theoretically feasible. For exam-
ple, across a range of access patterns and latency bounds,
the state-of-the-art geo-replication protocol EPaxos [51] im-

UserData SiteFront-end Other Data Center

Figure 1: Users issue requests to their nearest front-end servers
which in turn access geo-distributed storage.
poses on average 30% higher storage cost than is optimal
(§5.1.2). This sub-optimality also inflates the minimum la-
tency bounds satisfiable within a cost budget.
2. We demonstrate the feasibility of achieving near-
optimal latency versus cost tradeoffs in strongly consis-
tent geo-distributed storage. In other words, we do not
merely improve upon the status quo, but show that there re-
mains little room for improvement over the tradeoffs enabled
by PANDO, our new approach for consensus across the wide-
area network. PANDO exploits the property that, from any
data center’s perspective, some data centers are more prox-
imate than others in a geo-distributed deployment. There-
fore, beyond reducing the number of round-trips of wide-
area communication when executing reads and writes (as
has typically been the goal in prior work [49, 42, 51]), it is
equally important to reduce the magnitude of delay incurred
on every round-trip. We apply this principle in two ways.
2a. We show how to erasure-code objects across data sites
without reads incurring higher wide-area latencies com-
pared to replicated data. By splitting each object’s data
and storing one split (instead of one replica) per data site, a
service can use its cost budget to spread each object’s data
across more data centers than is feasible with replication. To
leverage this increased geographic spread for minimizing la-
tencies, PANDO separates out two typically intertwined as-
pects of consensus: discovering whether the last write com-
pleted, and determining how to resolve any associated un-
certainty. Since writes seldom fail in typical web service de-
ployments, we enable a client to read an object by first com-
municating with a small subset of nearby data sites; only in
the rare case when it is uncertain whether the last write com-
pleted does the client incur a latency penalty to discover how
to resolve the uncertainty.
2b. In the wide-area setting, we show how to reach con-
sensus in two rounds, yet approximate a one-round pro-
tocol’s latency. Executing writes in two rounds simplifies
compatibility with erasure-coded data, and we ensure that
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this approach has little impact on latency. First, PANDO re-
quires clients to contact a smaller, more proximate subset of
data sites in the first round than in the second round. Second,
after a client initiates the first round, it delegates initiation
of the second round to a more central data center, which re-
ceives all responses from the first round. By combining these
two measures, messaging delays incurred in the first phase of
a write help reduce the latency incurred in the second phase,
instead of adding to it.
3. We compare PANDO to state-of-the-art consensus pro-
tocols via extensive measurement-driven analyses and in
deployments on Azure. In the latency–cost tradeoff space,
we find that PANDO reduces by 88% the median gap between
achievable tradeoffs and the best theoretically feasible trade-
offs. Moreover, PANDO can cut dollar costs to meet the same
latency goals by 46% and lower 95th percentile read latency
by up to 62% at the same storage overhead.

2 Setting and Motivation
We begin by describing our target setting, the approach we
use for enabling globally consistent reads and writes, and the
shortcomings of existing solutions that use this approach.

2.1 System model, goals, and assumptions

We seek to meet the storage needs of globally deployed ap-
plications, such as Google Docs [4] and ShareLaTeX [8], in
which low latency and high availability are critical, yet weak
data consistency (such as eventual or causal) is not an op-
tion. In particular, we focus on enabling a geo-distributed
object/key-value store which a service’s front-end servers
read from and write to when serving requests from users.
We aim to support GETs and conditional-PUTs on any in-
dividual key; we defer support for multi-key transactions to
future work. In contrast to PUTs (which blindly overwrite
the value for a key), conditional-PUTs attempt to write to a
specific version of a key and can succeed only if that version
does not already have a committed value. This is essential
in services such as Google Docs and ShareLaTeX to ensure
that a client cannot overwrite an update that it has not seen.

In enabling such a geo-distributed key-value store, we are
guided by the following objectives:
• Strong consistency: Ensure all reads and writes on any

key are linearizable; i.e., all writes are totally ordered and
every read returns the last successful write.

• Low latency: Satisfy service provider’s SLOs1 (service-
level objectives) for bounds on read and write latencies,
so as to ensure a minimum quality-of-service for all users.
We focus on the wide-area latency incurred when serving
reads or writes, assuming appropriate capacity planning
and load balancing to bound queuing delays.

• Low cost: Minimize cost (sum of dollar costs for stor-
age, data transfers, storage operations, and compute) nec-

1Unlike SLAs, violations of SLOs are acceptable, but need to be minimized.

essary to satisfy latency goals. Since cost for storage op-
erations and data transfers grows with more copies stored,
in parts of the paper, we use storage overhead (i.e., num-
ber of copies stored of every data item) as a proxy for cost.
This frees us from making any assumptions about pricing
policy or the workload (e.g., read-to-write ratio).

• Fault-tolerance: Serve requests on any key as long as
fewer than f data centers are unavailable.
We focus on satisfying input latency bounds in the ab-

sence of conflicts and failures—both of which occur rarely in
practice [11, 2, 48, 29]—but seek to minimize performance
degradation when they do occur (§3.5 and §5.1.2). In addi-
tion, we build upon state-of-the-art cloud services which of-
fer low latency variance between their data centers [34] and
within their intra-data center storage services (e.g., Azure’s
CosmosDB provides a 10 ms tail read latency SLA [12]).

Note that, in order to satisfy desired latency SLOs at min-
imum cost (or to minimize latencies given a cost budget), a
service cannot select the data sites for an object at random.
Instead, as we describe later in Section 4, any service must
utilize its knowledge of an object’s workload (e.g., locations
of the users among whom the object is shared) in doing so.

2.2 Approach

One can ensure linearizability in distributed storage by se-
rializing all writes through a leader and rely on it for
reads, e.g., primary-backup [18], chain replication [68], and
Raft [57]. A single leader, however, cannot be close to all
front-ends across the globe. Front-ends which are distant
from the leader will have to suffer high latencies.

To reduce the need to contact a distant leader, one could
use read leases [21, 52] and migrate the leader based on the
current workload, e.g., choose as the leader the replica clos-
est to the front-end currently issuing reads and writes. How-
ever, unless the workload exhibits very high locality, tail la-
tency will be dominated by the latency overheads incurred
during leader migration and lease acquisition.

To keep read and write latencies within specified bounds
irrespective of the level of locality, we pursue a leaderless
approach. Among the leaderless protocols which allow every
front-end to read and write data from a subset of nearby data
sites (a read or write quorum), we consider those based on
Paxos because it enables consensus. Other quorum-based
approaches [20] which only enable atomic register semantics
(i.e., PUT and GET) are incapable of supporting conditional
updates [35]. While there exist many variants of Paxos, in
all cases, we can optimize latencies in two ways.

First, instead of executing Paxos, a front-end can read
an object by simply fetching the object’s data from a read
quorum. To enable this, a successful writer asynchronously
marks the version it wrote as committed at all data sites. In
the common case, when there are no failures or conflicts, a
read is complete in one round trip if the highest version seen
across a read quorum is marked as committed [44].
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(a) Write latency ≤ 300 ms (b) Storage overhead ≤ 6×
Figure 2: Slices of the three-dimensional tradeoff space where we compare latency estimates for replication-based EPaxos [51],
erasure coding-based RS-Paxos [53], and our solution PANDO against a lower bound. Front-ends are in Azure’s Australia East,
Central India, East Asia, East US, and Korea South data centers, whereas data sites are chosen from all Azure data centers.

Second, instead of every front-end itself executing reads
and writes, we allow for it to relay its operations through a
delegate in another data center. The flexibility of utilizing a
delegate can be leveraged to reduce latency when, compared
to the front-end, that delegate is more centrally placed rela-
tive to the data sites of the object being accessed.

2.3 Sub-optimality of existing solutions

The state-of-the-art Paxos variant for geo-replicated data is
EPaxos [51], as we show in Section 5. For typical replica-
tion factors (i.e., 3 or 5), EPaxos enables any front-end to
read/write with one round of wide-area communication with
the nearest majority of replicas. If lower read latencies than
feasible with 2f + 1 replicas are desired, then one can use a
higher replication factor N , set the size R of read quorums
to be ≥ f + 1 (to ensure overlap with write quorums even in
the face of f failures) and set the size W of write quorums
to N − R + 1 (to preserve consistency).

Figure 2 shows the tradeoffs enabled by EPaxos for an ex-
ample access pattern. For each read latency bound, these
graphs respectively plot the minimum storage overhead and
write latency bounds that are satisfiable. As we discuss later
in the paper, we compute these bounds by solving protocol-
specific mixed integer programs (§4) which take as input
the expected access pattern and latency measurements be-
tween all pairs of data centers (§5.1). We show two two-
dimensional slices of the three-dimensional read latency–
write latency–storage overhead tradeoff space.

To gauge the optimality of the tradeoffs achievable with
EPaxos, we compare it against a lower bound. Given a bound
on read latency, the minimum storage overhead necessary
and the minimum write latency bound that can be satisfied
cannot be lower than those determined by our lower bound.
Though the lower bound may be unachievable by any exist-
ing consensus protocol, we compute it by solving a mixed
integer program which assumes that reads and writes can be
executed in a single round and enforces the following prop-
erties that any quorum-based approach must respect:
• Tolerate unavailability of ≤ f data centers: All data sites

in at least one read and one write quorum must be available
in the event that ≤ f data centers fail.

• Prevent data loss: At least one copy of data must remain
in any write quorum when any f data sites are unavailable.

• Serve reads: The data sites in any read quorum must col-
lectively contain at least one copy of the object.

• Preserve strong consistency: All read–write and write–
write quorum pairs must have a non-empty intersection.

Equally important are constraints that we do not impose: all
read quorums (same for write quorums) need not be of the
same size, and an arbitrary fraction of an object’s data can
be stored at any data site.

Figure 2 shows that EPaxos is sub-optimal in two ways.
First, to meet any particular bound on read latency, EPaxos
imposes a significant cost overhead; in Figure 2(a), EPaxos
requires at least 9 replicas to satisfy the lowest feasible read
latency bound (40 ms), whereas the lower bound storage
overhead is 4x. Recall that, greater the number of copies
of data stored, higher the data transfer costs when reading
and writing. Second, given a cost budget, the read laten-
cies achievable with EPaxos are significantly higher than
the lower bound; in Figure 2(b), where storage overhead is
capped at 6x, we see that the minimum read latency achiev-
able with EPaxos (80 ms) is twice the lower bound (40 ms).

Of course, a lower bound is just that; some of the tradeoffs
that it deems feasible may potentially be unachievable. How-
ever, for the example in Figure 2 and across a wide range
of configurations in Section 5, we show that PANDO comes
close to matching the lower bound. We describe how next.

3 Design
The fundamental source of EPaxos’s sub-optimality in trad-
ing off cost and latency is its reliance on replication.
Replication-based approaches inflate the cost necessary to
meet read latency goals because spreading an object’s data
across more sites entails storing an additional full copy at
each of these sites. To enable latency versus cost tradeoffs
that are closer to optimal, the key is to store a portion of an
object’s data at each data site, like in the lower bound.

Therefore, we leverage erasure coding, a data-agnostic
approach which enables such flexible data placement while
matching replication’s fault-tolerance at lower cost [69]. For
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example, to tolerate f = 1 failures, instead of requiring at
least 2f +1 = 3 replicas, one could use Reed-Solomon cod-
ing [60] to partition an object into k = 2 splits, generate
r = 2 parity splits, and store one split each at k + r = 4
sites; any k splits suffice to reconstruct the object’s data.
Compared to replication, this reduces storage overhead to
2×, thus also reducing the number of copies of data trans-
ferred over the wide-area when reading or writing.

State-of-the-art implementations of erasure coding [9] re-
quire only hundreds of nanoseconds to encode or decode
kilobyte-sized objects. This latency is negligible compared
to wide-area latencies, which range from tens to hundreds
of milliseconds. Moreover, the computational costs for en-
coding and decoding pale in comparison to costs for data
transfers and storage operations (§ 5.1.3).

3.1 Impact of erasure coding on wide-area latency

While there exist a number of protocols which preserve lin-
earizability on erasure-coded data [15, 24], they largely fo-
cus on supporting PUT/GET semantics. To support con-
ditional updates, we consider how to enable consensus on
erasure-coded data with a leaderless approach such as Paxos.
We have one of two options.

One approach would be to extend one of several one-round
variants of Paxos to work on erasure-coded data. However,
most of these protocols require large quorums (e.g., a write
would have to be applied to a super-majority [42] or even
all [49] data sites), rendering them significantly worse than
the lower bound. Whereas, extending EPaxos [51], which
requires small quorums despite needing a single round, to be
compatible with erasure-coded data is far from trivial given
the complex mechanisms that it employs for failure recovery.

Therefore, we build upon the classic two-phase version
of Paxos [40] and address associated latency overheads. In
either phase, a writer (a front-end or its delegate) commu-
nicates with all the data sites of an object and waits for re-
sponses from a write quorum. In Phase 1, the writer dis-
covers whether there already is a value for the version it is
attempting to write and attempts to elect itself leader for this
version. In Phase 2, it sends its write to all data sites. A write
to a version succeeds only if, prior to its completion of both
phases, no other writer has been elected the leader. If the
leader fails during Phase 2 but the write succeeds at a quo-
rum of data sites, subsequent leaders will adopt the existing
value and use it as part of their Phase 2, ensuring that the
value for any specific version never changes once chosen.

This natural application of Paxos on erasure-coded data,
called RS-Paxos [53], is inefficient in three ways.
• Two rounds of wide-area communication. Any reduc-

tion in read latency achieved by enabling every front-end
to read from a more proximate read quorum has twice
the adverse effect on write latency. In Figure 2(b), we
see that when the read latency bound is stringent (e.g., ≤
100 ms), the minimum write latency bound satisfiable with

C

D

E

Data Site

Front-end

Write Quorum

Read Quorum

k = 2
A

B

1: 2:

Figure 3: Example execution of RS-Paxos on an erasure-coded
object, whose data is partitioned into k = 2 splits. For all
readers and writers to be able to reconstruct the last success-
ful write, any write quorum must have an overlap of k or more
data sites with every read and every write quorum.

RS-Paxos is twice that achievable with EPaxos. When the
read latency bound is loose (e.g.,≥ 150 ms), write latency
inflation with RS-Paxos is lower because the data sites are
close to each other and front-ends benefit from delegation.

• Increased impact of conflicts. Executing writes in two
rounds makes them more prone to performance degrada-
tion when conflicts arise. When multiple writes to the
same key execute concurrently, none of the writes may
succeed within two rounds. Either round of each write
may fail at more than a quorum of data sites if other writes
complete one of their rounds at those sites.

• Larger intersections between quorums. As we see in
Figure 2(a), at storage overheads of 4x or more, the mini-
mum read latency bound satisfiable with RS-Paxos is sig-
nificantly higher than that achievable with EPaxos. This
arises because, when an object’s data is partitioned into
k splits, every read quorum must have an overlap of at
least k sites with every write quorum (see Figure 3). Thus,
erasure coding’s utility in helping spread an object’s data
across more sites (than feasible with replication for the
same storage overhead) is nullified.

3.2 Overview of PANDO

What if these inefficiencies did not exist when executing
Paxos on erasure-coded data? To identify the latency ver-
sus cost tradeoffs that would be achievable in this case, we
consider a hypothetical ideal execution of Paxos on erasure-
coded data: one which requires a single round of commu-
nication and can make do with an overlap of only one site
between read–write and write–write quorum pairs. For the
example used in Figure 2, this hypothetical ideal (not shown
in the figure) comes close to matching the lower bound.

Encouraged by this promising result, we design PANDO to
approximate this ideal execution of Paxos on erasure-coded
data. First, we describe how to execute Paxos in two rounds
on geo-distributed data, yet come close to matching the mes-
saging delays incurred with one-round protocols. Second,
leveraging the rarity of conflicts and failures in typical web
service workloads, we describe how to make do with a sin-
gle data site overlap between quorums in the common case.
Finally, we discuss how to minimize performance degrada-
tion when conflicts do arise. In our description, we assume
an object’s data is partitioned into k splits.
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Figure 4: (a) Reusing read quorums in Phase 1 of writes enables reduction in read latency without impacting (Phase 1 + Phase 2)
latency for writes. (b) Example deployment with one-way delays between relevant pairs of data centers shown. Phase 1 quorum size
is 2 and Phase 2 quorum size is 3. If same (Phase 2) quorum were used in both phases of a write, like in RS-Paxos, write latency
would be 120 ms. (c) and (d) By directing Phase 1 responses to a delegate and having it initiate Phase 2, PANDO reduces write latency
to 65 ms (20 ms in Phase 1 + 45 ms in Phase 2), close to the 60 ms latency feasible with one-round writes.

3.3 Mitigating write latency

We reduce the latency overhead of executing Paxos in two
rounds by revisiting the idea of delegation (§ 2.2): a front-
end sends its write request to a stateless delegate, which ex-
ecutes Paxos and returns the response. When data sites are
spread out (to enable low read latencies), two round-trips to
a write quorum incurs comparable delay from the front-end
versus from the delegate. The round-trip from the front-end
to the delegate proves to be an overhead.

To mitigate this overhead, what if 1) transmission of the
message from the front-end to the delegate overlaps with
Phase 1 of Paxos, and 2) transmission of the response back
overlaps with Phase 2? The latency for a front-end to exe-
cute the two-phase version of Paxos would then be roughly
equivalent to one round-trip between the front-end and the
delegate, thus matching the latency feasible with a one-round
protocol. We show how to make this feasible in two steps.

3.3.1 Shrinking Phase 1 quorums

First, we revisit the property of classic Paxos that a writer
needs responses from the same number of data sites in both
phases of Paxos: the size of a write quorum. To ensure that
a writer discovers any previously committed value, Paxos
only requires that any Phase 1 quorum intersect with every
Phase 2 quorum; Phase 1 quorums need not overlap [37]. In
PANDO, we take advantage of this freedom to use a smaller
quorum in the first phase of Paxos than in the second phase.

We observe that the intersection requirements imposed on
Phase 1 and Phase 2 quorums are precisely the properties
required of read and write quorums: any read quorum must
intersect with every write quorum, whereas no overlap be-
tween read quorums is required. Therefore, when executing
Phase 1 of Paxos to write to an object, it suffices to get re-
sponses from a read quorum, thus allowing improvements in
read latency to also benefit leader election. A writer (a front-

end or its delegate) needs responses from a write quorum
only when executing Phase 2.

Figure 4(a) illustrates the corresponding improvements in
write latency. When a quorum of the same size is used in
both phases of a write, a reduction of δ in the read latency
bound results in a 2δ increase in the minimum satisfiable
write latency bound (because of the need for read and write
quorums to overlap). In contrast, our reuse of read quorums
in the Phase 1 of writes ensures that spreading out data sites
to enable lower read latencies has (roughly speaking) no im-
pact on write latency; when read quorums are shrunk to re-
duce the read latency bound by δ, the increase of δ in Phase
2 latency (to preserve overlap between quorums) is offset by
the decrease of δ in Phase 1 latency.

3.3.2 Partially delegating write logic

While our reuse of read quorums in Phase 1 of a write helps
reduce write latency, Phase 2 latency remains comparable
to a one-round write protocol. Therefore, the total write
latency remains significantly higher than that feasible with
one-round protocols.

PANDO addresses this problem via partial use of delega-
tion. Rather than having a front-end executing a write either
do all the work of executing Paxos itself or offload all of this
work to a delegate, we offload some of it to a delegate.

Figures 4(c–d) show how this works in PANDO. A front-
end initiates Phase 1 of Paxos by sending requests to data
sites of the object it is writing to, asking them to send their re-
sponses to a chosen delegate. In parallel, the front-end sends
the value it wants to write directly to the delegate. Once
the delegate receives enough responses (i.e., the size of a
read quorum), it will either inform the front-end that Phase 1
failed (the rare case) or initiate Phase 2 (the common case),
sending the value to be written to all data sites for the object.
Those data sites in turn send their responses directly back
to the front-end, which considers the write complete once it
receives responses from a write quorum.
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Note that partial delegation preserves Paxos’s fault tol-
erance guarantees. To see why, consider the case where a
end-user’s client sends the same request to two front-ends—
perhaps due to suspecting that the first front-end has failed—
and both front-ends execute the request. Paxos guarantees
that at most one of these writes will succeed. Similarly, with
partial delegation, in the rare case when the front-end sus-
pects that the delegate is unavailable, it can simply re-execute
both phases on its own. Paxos will resolve any conflicts and
at most one of the two writes (one executed via the delegate
and the other executed by the front-end) will succeed.

Thanks to the heterogeneity of latencies across different
pairs of data centers, the use of small Phase 1 quorums com-
bined with the delegation of Phase 2 eliminates most of the
latency overhead of two-phase writes. In Figure 4(b-d), the
two techniques reduce write latency down from 120 ms with
classic Paxos to 65 ms with PANDO, only 5 ms higher than
what can be achieved with a one-round protocol. The re-
maining overhead results from the fact that there still has to
be some point of convergence between the two phases.

3.4 Enabling smaller quorums

The techniques we have described thus far lower the mini-
mum write latency SLO that is satisfiable given an SLO for
read latency. However, as we have seen in Figure 2(a), era-
sure coding inflates the minimum read latency SLO achiev-
able given a cost budget (e.g., a bound on storage overhead).
As discussed earlier in Section 3.1, this is due to the need for
larger intersections between quorums when data is erasure-
coded, as compared to when replicated.

Recall that the need for an intersection of k data sites be-
tween any pair of read and write quorums exists so that any
read on an object will be able to reconstruct the last value
written; at least k splits written during the last successful
write will be part of any read quorum. Thus, linearizability
is preserved even in the worst case when a write completes
at the minimum number of data sites necessary to be suc-
cessful: a write quorum. However, since concurrent writes
are uncommon [48, 29] and data sites are rarely unavailable
in typical cloud deployments [11, 2], most writes will be ap-
plied to all data sites. Therefore, in the common case, all
data sites in any read quorum will reflect the latest write.

In PANDO, we leverage this distinction between the com-
mon case and the worst case to optimize read latency (and
equivalently any write’s Phase 1 latency, given that PANDO
uses the same quorum size in both cases) as follows.
Read from smaller quorum in the common case. After
issuing read requests to all data sites, a reader initially waits
for responses from a subset which is 1) at least of size k and
2) has an intersection of at least one site with every write
quorum; we refer to this as a Phase 1a quorum. In the com-
mon case, all k splits have the same version and at least one
of them is marked committed; the read is complete in this
case. An overlap of only one site with every write quorum

k = 2
A

B

C

D

1: 2:
Phase 1b Quorum

Data Site

Front-end

Write Quorum

Phase 1a Quorum

Figure 5: For an object partitioned into k = 2 splits, PANDO

requires an overlap of only one site between any Phase 1a and
Phase 2 quorum. Responses from the larger Phase 1b quorum
are needed only in the case of failure or conflict.

suffices for the reader to discover the latest version of the
object; at least one of the splits received so far by the reader
will be one written by the last successful write to this object.
Read from larger quorum if failure or conflict. At this
juncture, if the last successful write has not yet been applied
to all data sites, the reader may only know the latest version
of the object but not the value of that version. To reconstruct
that value, the reader must wait for responses from more data
sites until the subset it has heard from has an overlap of k
sites or more with every write quorum; this is a Phase 1b
quorum. As a result, a reader must incur the latency penalty
of waiting for responses from farther data sites only if the last
successful write was executed when either some data sites
were unavailable or a conflicting write was in progress.

In the example in Figure 5, Front-end 1 can complete read-
ing based on responses from sites A and B in the common
case since two splits suffice to reconstruct the object. If the
last write was from Front-end 2 and this write completed
only at a subset of sites, there are two cases to consider:
• If Front-end 2’s write has been applied to a write quorum

(say A, C , and D), then the response from site A will help
Front-end 1 discover the existence of this write. Front-end
1 needs an additional response from C in this case to be
able to reconstruct the value written by Front-end 2.

• If Front-end 2’s write has been applied to less than a write
quorum (say, A and D), then Front-end 1 may be unable
to find k splits for this version even from a Phase 1b quo-
rum (A, B , and C ). In this case, that value could not have
been committed to any Phase 2 quorum. Therefore, the
reader falls back to the previous version. PANDO garbage
collects the value for a version only once a value has been
committed for the next version (§4). The overhead of stor-
ing multiple versions of a key will be short-lived in our
target setting where failures and write conflicts are rare.
Phase 1a and 1b quorums can also be used as described

above during the first round of a write. The only difference
in the case of writes is that responses from data sites can be
potentially directed to a delegate at a different data center
than the one which initiates Phase 1.

To preserve correctness of both reads and writes, the min-
imum size of Phase 1a quorums must be max(k , f + 1), and
Phase 1b and Phase 2 quorums must contain at least f + k
data sites. These quorum sizes are inter-dependent because
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any Phase 1a quorum must have a non-empty overlap with
every Phase 2 quorum and any Phase 1b or Phase 2 quorum
must have an overlap of at least k sites with every Phase 2
quorum. For each of the three quorum types, all quorums of
that type are of the same size and any subset of data sites of
that size represent a valid quorum of that type.

Note that, if further reductions in common-case read la-
tency are desired, one could use timed read leases as fol-
lows [21, 52]. Instead of using the normal read path, a front-
end that holds a lease for a key could cache the value or fetch
it from k nearby data sites to avoid the latency of commu-
nicating with a complete Phase 1a quorum. However, this
approach would not benefit tail latency for reads and may
increase latency for writes.

3.5 Reducing impact of conflicting writes

Lastly, we discuss how PANDO mitigates performance degra-
dation when conflicts arise. As mentioned before (§2), since
conflicts rarely occur in practice [48, 29], we allow for vio-
lations of input latency bounds when multiple writes to a key
execute concurrently. However, we ensure that the latency of
concurrent writes is not arbitrarily degraded.

Our high-level idea is to select one of every key’s data
sites as the leader and to make use of this leader only when
conflicts arise. PANDO’s leaderless approach helps satisfy
lower latency bounds by eliminating the need for any front-
end to contact a potentially distant leader. However, when a
front-end’s attempted write fails and it is uncertain whether a
value has already been committed for this version, the front-
end forwards its write to the leader. In contrast to the front-
end retrying the write on its own, relying on the leader can
ensure that the write completes within at most two rounds.

To make this work, we ensure that any write executed
by a key’s leader always supersedes writes to that key be-
ing attempted in parallel by front-ends. For this, we exploit
the fact that front-ends always retry writes via the leader,
i.e., any front-end will attempt to directly execute a write
at most once. Therefore, when executing Paxos, we permit
any front-end to use proposal numbers of the form (0, front-
end’s ID) but only allow the leader to set the first component
to values greater than or equal to 1, so that its writes take
precedence at every data site.

Note that, since we consider it okay to violate the write
latency bound in the rare cases when conflicts occur, we do
not require the leader to be close to any specific front-end.
Therefore, leader election can happen in the background (us-
ing any of a number of approaches [23, 14]) whenever the
current one fails. If conflicting writes are attempted precisely
when the leader is unavailable, these writes will block until a
new leader is elected. Like prior work [51, 40], PANDO can-
not bound worst-case write latency when conflicts and data
center failures occur simultaneously.

A proof of PANDO’s correctness and a TLA+ specification
are in Appendices A and B.

Config
Manager

1. Inter-DC latencies

1. Access Set
2. Failure Tolerance
3. Latency & 

Storage SLOs

1. EC config (k, r)
2. Data sites
3. Quorums
4. Delegates

Latency Model

Application Inputs

Deployment Plan

Figure 6: Selecting a deployment plan with ConfigManager.

4 Implementation
To empirically compare the manner in which different con-
sensus approaches trade off read latency against write la-
tency and cost, we implemented a key-value store which
optimizes the selection of data sites for an object based on
knowledge of how the object will be accessed.
ConfigManager. Central to this key-value store is the Con-
figManager, which sits off the data path (thus not blocking
reads and writes) and identifies deployment plans, one per
access pattern. As shown in Figure 6, a deployment plan
determines the number of splits k that the key’s value is par-
titioned into, the number of redundant splits r , and the k + r
data sites at which these splits are stored; k = 1 corresponds
to replication, and Reed-Solomon coding [60] is used when
k > 1. The deployment plan also specifies the sizes of dif-
ferent quorum types and the choice of delegates (if any).

To make this determination, in addition to the applica-
tion’s latency, cost, and fault-tolerance goals, ConfigMan-
ager relies on the application to specify every key’s access
set: data centers from which front-ends are expected to is-
sue requests for the key. An application can determine an
object’s access set based on its knowledge of the set of users
who will access that object, e.g., in Google Docs, the access
set for a document is the set of data centers from which the
service will serve users sharing the document. When uncer-
tain (e.g., for a public document), the access set can be speci-
fied as comprising all data centers hosting its front-ends; this
uncertainty will translate to higher latencies and cost.

The ConfigManager selects deployment plans by solving
a mixed integer program, which accounts for the particu-
lar consensus approach being used. For example, PANDO’s
ConfigManager selects a delegate and preferred quorums per
front-end, using RTT measurements to predict latencies in-
curred. Given bounds on any two dimensions of the trade-
off space, the ConfigManager can optimize the third (e.g.
minimize max read latency across front-ends given write la-
tency and storage cost SLOs). Given the stability of laten-
cies observed between data centers in the cloud both in prior
work [34] and in our measurements,2 and since our current
implementation assumes an object’s access set is unchanged
after it is created, we defer reconfiguration of an object’s data
sites [19] to future work.

2In six months of latency measurements between all pairs of Azure data
centers, we observe less than 6% change in median latency from month to
month for any data center pair and less than 10% difference between 90th

percentile and median latency within each month for most pairs.
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Executing reads and writes. Unlike typical applications
of Paxos, our use of erasure coding prevents servers from
processing the contents of Paxos logs. Instead of separating
application and Paxos state, we maintain one Paxos log for
every key and aggressively prune old log entries. In order
to execute a write request, a Proxy VM initiates Phase 1 of
Paxos and waits for the delegate to run Phase 2. If the op-
eration times out, the Proxy VM assumes the delegate has
failed and executes both phases itself. Once Phase 2 suc-
cessfully completes, the Proxy VM notifies the client and
asynchronously informs learners so that they may commit
their local state and garbage collect old log entries. The read
path is simpler: a Proxy VM fetches the associated Paxos
state and reconstructs the latest value before returning to the
client. If the latest state happens to be uncommitted, then the
Proxy VM issues a write-back to guarantee consistency.

5 Evaluation
We evaluate PANDO in two parts. First, in a measurement-
based analysis, we estimate PANDO’s benefits over prior so-
lutions for enabling strongly consistent distributed storage.
We quantify these benefits not only with respect to latency
and cost separately, but also the extent to which PANDO helps
bridge the gap to the lower bound in the latency–cost trade-
off space (§2). Second, we deploy our prototype key-value
store and compare latency and throughput characteristics un-
der microbenchmarks and an application workload. The pri-
mary takeaways from our evaluation are:

• Compared to the union of the best available replication-
and erasure coding-based approaches, PANDO reduces
the median gap to the lower bound by 88% in the read
latency–write latency–storage overhead tradeoff space.

• Compared to EPaxos, given bounds on any two of storage
overhead, read latency, and write latency, PANDO can im-
prove read latency by 12–31% and reduce dollar costs (for
storage, compute, and data transfers) by 6–46%, while de-
grading write latency by at most 3%.

• In a geo-distributed deployment on Azure, PANDO offers
18–62% lower read latencies than EPaxos and can reduce
95th percentile latency for two GitLab operations by 19–
60% over EPaxos and RS-Paxos.

5.1 Measurement-based analysis

Setup. Our analysis uses network latencies between all
pairs of 25 Microsoft Azure data centers. We categorize ac-
cess sets (the subset of data centers from which an object is
accessed) into four types: North America (NA), North Amer-
ica & Europe (NA-EU), North America & Asia (NA-AS),
and Global (GL). For NA and NA-EU, we use 200 access
sets chosen randomly. For NA-AS and GL, we first filter
front-end data centers so that they are at least 20 ms apart,
and then sample 200 random access sets. In all cases, we
consider all 25 Azure data centers as potential data sites.

Figure 7: For NA-AS access sets, comparison of GapVolume
with PANDO to EPaxos and RS-Paxos individually and their
union (EP ∪ RSP). In addition, we evaluate EP ∪ PANDO (the
union of EPaxos and PANDO) and Ideal EC (a hypothetical
Paxos variant that supports erasure coding, one-round writes,
and 1-split intersection across quorums).

We compare PANDO to four replication-based approaches
(EPaxos [51], Fast Paxos [42], Mencius [49], and Multi-
Paxos [40]) and the only prior approach which can enable
conditional updates on erasure-coded data (RS-Paxos [53]).
We refer to the union of EPaxos and RS-Paxos (i.e., use ei-
ther approach to satisfy the desired SLOs) as EP ∪ RSP.
Metrics. Our analysis looks at three types of metrics: 1)
read and write latency (in either case, we estimate the max
latency seen by any front-end in the access set) and stor-
age overhead (size of the data stored divided by size of user
data); 2) GapVolume, a metric which captures the gap in the
three-dimensional read latency–write latency–storage over-
head tradeoff space between the lower bound (described in
§2) and the approach in question; and 3) total dollar cost
as the sum of compute, storage, data transfer, and operation
costs necessary to support reads and writes.

5.1.1 Impact on Achievable Tradeoffs

We use GapVolume to evaluate how close each approach is
to the lower bound (§2.3). For any access set, we compute
GapVolume with a specific consensus approach as the gap in
the (read, write, storage) tradeoff space between the surfaces
represented by the lower bound and by tradeoffs achievable
with this consensus approach. We normalize this gap rela-
tive to the volume of the entire theoretically feasible tradeoff
space, i.e., the portion of the tradeoff space above the lower
bound surface. For every access set, we cap read and write
latencies at values that are achievable with all approaches,
and we limit storage overhead to a maximum of 7 as higher
values are unlikely to be tenable in practice.
Proximity to lower bound. Figure 7 shows that PANDO
significantly reduces GapVolume compared to EPaxos and
RS-Paxos for access sets of type NA-AS. We do not show
results for other replication-based approaches because they
are subsumed by EPaxos, i.e., every combination of SLOs
that is achievable with Mencius, Fast Paxos, and Multi-
Paxos is also achievable with EPaxos. PANDO lowers me-
dian GapVolume to 4%, compared to 53% with RS-Paxos
and 44% with EPaxos. Even with EP ∪ RSP (i.e., use two
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Figure 9: Average performance across different metrics. Lower is better in all plots. For each metric, we pick SLO combinations for
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GapVolume NA NA-EU NA-AS GL
PANDO 0.06 0.07 0.04 0.07
EP ∪ RSP 0.37 0.40 0.34 0.34
EPaxos 0.44 0.48 0.44 0.49
RS-Paxos 0.52 0.59 0.53 0.48

Table 1: GapVolume for median access set of various types.
Lower values are better; imply closer to the lower bound.
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Figure 8: For access sets of type NA-AS, contributions of each
of PANDO’s techniques in reducing GapVolume. SP1 = small
Phase 1, PD = partial delegation, 1s = 1-split overlap.

significantly different designs to realize different tradeoffs),
median GapVolume remains at 34%. Table 1 shows similar
benefits for NA, NA-EU, and GL access sets.

Moreover, EP ∪ PANDO (i.e., SLO combinations achiev-
able with any of EPaxos or PANDO) is only marginally closer
to the lower bound (i.e., has lower GapVolume) than PANDO,
and that too only for some access sets. The few SLO combi-
nations that EPaxos can achieve but not PANDO all have low
write latency SLOs, in which case no choice of delegate can
help PANDO overcome the overheads of two-round writes.

Utility of individual techniques. Figure 8 shows that
each of the techniques used in PANDO contribute to the
GapVolume reductions. For the median access set, using
small Phase 1 quorums reduces GapVolume over RS-Paxos
by 36%, adding partial delegation reduces GapVolume by a
further 16%, and finally incorporating 1-split intersection re-
duces GapVolume by an additional 39%. When examining
the improvements for each access set, we observe that both
small Phase 1 quorums and 1-split intersection help across all
access sets by reducing quorum size requirements. Similarly,
we find that partial delegation typically improves GapVol-
ume, indicating that some data sites are often closer to Phase
1 and Phase 2 quorums than the front-end.

Obstacles to matching the lower bound. From the gap
between PANDO and Ideal EC in Figure 7, we surmise that
most of the remaining gap between PANDO and the lower
bound could be closed if one-round writes on erasure-coded
data were feasible. Addressing any potential sub-optimality
thereafter likely requires realizing the lower bound’s flexi-
bility with regards to varying the fraction of an object’s data
across sites (e.g., by using a different erasure coding strat-
egy than Reed-Solomon coding) and varying quorum sizes
across front-ends.

5.1.2 Latency and Storage Improvements

Figure 9 examines improvements in each of read latency,
write latency, and storage overhead independently. To do
this for read latency, we first identify all (write, storage)
SLO pairs that are achievable by all candidate approaches.
For each such pair, we then estimate the lowest read latency
bound that is satisfiable with each approach. We take the ge-
ometric mean [31] across all feasible (write, storage) SLO
pairs for all access sets to compare PANDO’s performance
relative to other approaches. We perform similar computa-
tions for write latency and storage overhead.

We find that PANDO achieves 12–31% lower read latency,
0–3% higher write latency, and 22–32% lower storage over-
head than EPaxos across all types of access sets. Although
PANDO executes writes in two phases, the use of small Phase
1 quorums plus partial delegation provides similar write la-
tency as EPaxos. In all cases, EPaxos outperforms Fast
Paxos, Mencius, and Multi-Paxos. Compared to RS-Paxos,
PANDO reduces read latency by 15–40%, write latency by
11–17%, and storage overhead by 13–22%.
Latency under failures. Figure 10 compares the read la-
tency bounds satisfiable with PANDO and EPaxos when any
one data center is unavailable. During failures, a front-end
may need to contact more distant data sites in order to read or
write data. In this case, for the median access set, we observe
that PANDO supports a read latency bound which is 110 ms
lower than EPaxos. Since erasure coding spreads data more
widely than replication for the same storage overhead, there
are more nearby sites to fall back on when a failure occurs.

However, erasure coding is not universally helpful in fail-
ure scenarios. Upon detecting the loss of its write delegate,
a PANDO front-end will locally identify a new one that min-
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Figure 10: For access sets of type NA-AS, impact of data center
failures on read latency for PANDO and EPaxos (300 ms write
SLO, 5× overhead storage SLO).

imizes latency at the front-end. Still, across NA-AS access
sets, median write latency with PANDO is 10% higher than
EPaxos when any one data site is unavailable, despite the two
approaches having similar latency in the failure-free case. In
addition, under permanently data loss, bringing up a replace-
ment data site requires decoding the data of k separate sites
instead of fetching the same volume of data from one replica.

5.1.3 Cost

Beyond storage, public cloud providers also charge users
for wide-area data transfers, PUT/GET requests to storage,
and for virtual machines used to execute RPCs and en-
code/decode data. These overheads have driven production
systems to adopt two key optimizations. First, replication-
based systems execute reads by fetching version numbers
from remote sites, not data. Second, Paxos-based systems
issue writes only to a quorum (or for PANDO, a superset of a
write quorum that intersects with all Phase 1a quorums likely
to be used). Taking these optimizations into consideration,
we now account for these other sources of cost and evaluate
PANDO’s utility in reducing total cost.

We considered 200 access sets of type NA-AS and set la-
tency SLOs that both RS-Paxos and EPaxos are capable of
meeting: 100 ms for read latency and 375 ms for write la-
tency. We derived the CPU cost of Proxy VMs by measur-
ing the throughput achieved in deployments of our prototype
system. Using pricing data from Azure CosmosDB [3], we
estimated the cost necessary to store 10 TB of data and issue
600M requests, averaged across all access sets; these param-
eters are based on a popular web service’s workload [7] and
a poll of typical MySQL deployment sizes [10].

Across several values for mean object size and read-to-
write ratio, Figure 11 shows that PANDO reduces overall
costs by 6–46% over EPaxos and 35–40% over RS-Paxos.
When objects are large, PANDO’s cost savings primarily
stem from the reduction in the data transferred over the wide-
area network. Note that even though EPaxos uses replica-
tion, it still requires reading remote data when a copy is not
stored at the front-end data center. Whereas, when objects
are small, storage fees dominate and PANDO reduces cost
primarily due to the lower storage overhead that it imposes.
Though erasure coding increases the number of requests
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Figure 11: Comparison of cost for a month in NA-AS to store
10 TB of data and execute 600M requests/month. In all cases,
the costs of Proxy VMs (not shown) were negligible, and read
and write latency SLOs were set to 100 ms and 375 ms.

to storage compared to replication, ConfigManager opts to
erasure-code data only when the corresponding decrease in
storage and data transfer costs help reduce overall cost. Un-
like write requests, which have to first write metadata to stor-
age before transferring and writing the data itself, read re-
quests only issue storage operations to fetch data. This leads
to greater cost reductions for read-dominated workloads.

5.2 Prototype deployment

Next, via deployments on Azure, we experimentally com-
pare PANDO versus EPaxos and RS-Paxos. We use our im-
plementations of PANDO and RS-Paxos and the open-source
implementation of EPaxos [50]. This experimental compari-
son helps account for factors missing from our analysis, such
as latency variance and contention between requests. We
consider one access set of each of our 4 types:
• NA: Central US, East US, North Central US, West US
• NA-EU: Canada East, Central US, North Europe, West

Europe
• NA-AS: Central US, Japan West, Korea South
• GL: Australia East, North Europe, SE Asia, West US
Informed by prior studies of production web service work-
loads [29, 22], we read and write objects between 1–100
KB in size. Unless stated otherwise, we use A1v2 (1 CPU,
2 GB memory) virtual machines and issue requests using
YCSB [28]—a key-value store benchmark.

5.2.1 Microbenchmarks

Tail latency across front-ends. Figure 12 shows 95th
percentile read and write latencies for each of the four ac-
cess sets when running a low contention (zipfian coefficient
= 0.1) workload with 1 KB values and a read:write ratio of 1.
In all cases, when using PANDO, we observe that the slowest
front-end performs similarly to the read latency SLO deemed
feasible by ConfigManager. This confirms the low latency
variance in the CosmosDB instance at each data center and
on the network paths between them. While all approaches
achieve sub-55 ms read latency in NA, only PANDO can pro-
vide sub-100 ms latency in all regions. In GL, NA-AS, and
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Figure 12: Latency comparison with a low contention workload under a storage SLO of 3× overhead. Red lines represent the lowest
latency SLO that ConfigManager identifies as feasible with PANDO. With every approach, in each access set, we measure 95th %ile
latency at every front-end and plot the min and max of this value across front-ends. Pan = Pando, EP = EPaxos, and RSP = RS-Paxos.
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Figure 13: Write latency comparison under contention using a
fully leaderless approach and the leader-based fallback (§3.5).
5th percentile, median, and 95th percentile across 1000 writes
are shown. Note logscale on y-axis.

NA-EU, PANDO improves read latency for the slowest front-
end by 39–62% compared to EPaxos. PANDO falls short of
the write latency offered by EPaxos but comes close.
Latency under high conflict rates. Although our focus is
on workloads with few write conflicts, we seek to bound per-
formance degradation when conflicts occur. To evaluate this,
we setup front-ends in 16 Azure data centers spread across
five continents. We mimic conflicts by synchronizing a sub-
set of front-ends (assuming low clock skew) to issue writes
on the same key and version simultaneously. We show la-
tency for successful conditional writes since other writes will
learn the committed value and terminate shortly afterward.

Figure 13 shows that PANDO is effective at bounding la-
tency for writes in the presence of conflicts. Without a
leader-based fallback, writes in PANDO may need to be tried
many times before succeeding, resulting in unbounded la-
tency growth, e.g., with four concurrent writers, we observe
more than 15 proposals for particular (key, version) pairs. In
contrast, falling back to a leader ensures that a write succeeds
within two write attempts.
Read and write throughput. While erasure coding can de-
crease bandwidth usage compared to replication, it requires
additional computation in the form of coding/decoding and
messaging overhead. We quantify the inflection point at
which CPU overheads dominate by deploying PANDO in a
single data center and measuring the achievable throughput
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Figure 14: Per-machine throughput of different erasure coding
configurations compared to using 3 replicas.
with all data in memory. Each server, which stored 1 split or
1 replica, had two Xeon Silver 4114 processors and 192 GB
of memory. All servers were connected over a 10 Gbps net-
work with full bisection bandwidth. Across multiple value
sizes, we measured the per-server throughput of filling the
system with over 20 GB of data and reading it back.

Figure 14 compares the per-machine throughput achieved
with 3 replicas to two erasure coding configurations, one
with the same storage overhead and another with lower stor-
age overhead. When objects are 10 KB or larger, we find that
bandwidth is the primary bottleneck. Because it has identi-
cal bandwidth demands as replication, the (k = 2, r = 4)
configuration achieves similar read throughput and 0.9–1×
the write throughput of replication for objects larger than 10
KB. Whereas, due to its lower bandwidth consumption, the
(k = 2, r = 3) configuration offers 1.1-1.2× the throughput
of replication for 10 KB–100 KB sized objects. All configu-
rations are CPU-bound with value sizes of 1 KB or smaller.
Since replication requires exchanging fewer messages per re-
quest than erasure coding, it has lower CPU overhead and
can thus achieve higher throughput.

5.2.2 Application Workload

Lastly, we evaluate the utility of PANDO on a geo-distributed
deployment of GitLab [6], a software development applica-
tion that provides source code management, issue tracking,
and continuous integration.
Operations and setup. We evaluate the performance
of two GitLab operations: listing issues targeting a devel-
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Figure 15: Latencies for GitLab requests in Central US.

opment milestone (GetIssues) and (un-)protecting a branch
from changes (ProtectBranch). GetIssues fetches a list of is-
sues for the requested milestone and then fetches 20 issues in
parallel to display on a page. ProtectBranch reads the current
branch metadata then updates its protection status.

We deployed front-ends and storage backends in the NA-
AS access set on A2v2 (2 CPU, 4 GB memory) virtual ma-
chines, and preloaded the system with 100 projects, each
with 20 branches, 10 milestones, and 100 issues. We used a
3× bound on storage overhead and set the write latency SLO
to 175 ms. Every front-end executed 1000 GetIssues and
ProtectBranch requests in an open loop and selected items
using a uniform key distribution.
Performance. Figure 15 shows the latency distribution ob-
served for both operations by the front-end in Central US.
PANDO reduces 95th percentile GetIssues latency by over
59% compared to both EPaxos and RS-Paxos. Because Pro-
tectBranch consists of a write in addition to a read operation,
it incurs higher latency compared to GetIssues, which con-
sists solely of read operations. Despite this, PANDO is able
to lower 95th percentile ProtectBranch latency by 19% over
EPaxos and 28% over RS-Paxos.

6 Related work
Geo-distributed storage. While some prior geo-distributed
storage systems [46, 45, 47, 66] weaken consistency seman-
tics to minimize latencies and unavailability, PANDO follows
others [29, 64, 71, 21] in serving the needs of applications
that cannot make do with weak consistency. Compared to
efforts focused solely on minimizing latency with any spe-
cific replication factor [51, 49, 42], PANDO aims to also min-
imize the cost necessary to meet latency goals. Unlike sys-
tems [13, 70] which focus only on judiciously placing data to
minimize cost, we also leverage erasure coding and rethink
how to enable consensus on erasure-coded data.

Partial delegation in PANDO is akin to the chaining of
RPCs [63] to eliminate wide-area delays. We show that
combining this technique with the use of smaller quorums
in Phase 1 of Paxos helps a two-round execution approxi-
mate the latencies achievable with one-round protocols in a
geo-distributed setting.
Erasure-coded storage. Erasure coding has been widely

used for protecting data from failures [69], most notably
in RAID [58]. While PANDO leverages Reed Solomon
codes [60] for storage across data centers, other codes have
been used to correct errors in DRAM [33], transmit data over
networks [62], and efficiently reconstruct data in cloud stor-
age [67, 38, 61]. In contrast to the typical use of erasure
coding for immutable and/or cold data [54, 32, 59, 55, 27],
PANDO supports the storage of hot, mutable objects.

Previous protocols [15, 24] that support strong consistency
with erasure-coded data provide only atomic register seman-
tics or require two rounds of communication [53]. We show
how to enable consensus on geo-distributed erasure-coded
data without sacrificing latency. Some systems [26, 27] sup-
port strong consistency by erasure coding data but replicat-
ing metadata. We chose to not pursue this route to avoid the
complexity of keeping the two in sync, as well as to mini-
mize latency and metadata overhead.
Paxos variants. Many variants of Paxos [40] have been
proposed over the years [53, 37, 43, 41], including sev-
eral [51, 42, 49] which enable low latency geo-distributed
storage. Compared to Paxos variants that reduce the number
of wide-area round trips [51, 49, 42], PANDO lowers latency
by reducing the magnitude of delay in each round trip.

Flexible Paxos [37] was the first to observe that Paxos
only requires overlap between every Phase 1–Phase 2 quo-
rum pair, and others [16, 56] have leveraged this observa-
tion since. All of these approaches make Phase 2 quorums
smaller, so as to improve throughput and common case la-
tency in settings with high spatial locality. In PANDO, we
instead reduce the size of Phase 1 quorums and reuse these
quorums for reads, thereby enabling previously unachiev-
able tradeoffs between read and write latency bounds in a
workload-agnostic manner.
Compression. Data compression is often used to lower the
cost of storing data [36, 65, 25] or transferring it over a net-
work [30]. In contrast to erasure coding, the effectiveness
of compression depends on both the choice of compression
algorithm used as well as the input data [17]. Compression
and erasure coding are complementary as data can be com-
pressed and then erasure-coded or vice-versa.

7 Conclusion
Today, geo-distributed storage systems take for granted that
data must be replicated across data centers. In this paper, we
showed that it is possible to leverage erasure coding to signif-
icantly reduce costs while successfully mitigating the associ-
ated overheads in wide-area latency incurred for preserving
consistency. The key is to rethink how consensus is achieved
across the wide-area. Importantly, we showed that the la-
tency versus cost tradeoffs achievable with our approach for
enabling consensus, PANDO, are close to optimal.
Acknowledgments. This work was supported in part by
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A The PANDO write protocol: specification
and proof of correctness

In this section, we focus on how PANDO achieves consensus
on a single value and prove that it matches the guarantees
provided by Paxos. Other functionality used in our paper is
layered on top of this base as follows:

• Mutating values. As with Multi-Paxos, we build a dis-
tributed log of values and run PANDO on each entry of
the log. We only ever attempt a write for version i if we
know that i − 1 has already been chosen. This invari-
ant ensures that the log is contiguous, and that all but
possibly the latest version have been decided.

• Partial delegation of writes. One of the key optimiza-
tions used in PANDO is to execute Phase 1 and Phase
2 on different nodes (§3.3.2). We achieve this without
sacrificing fault tolerance as follows. Each proposer is
assigned an id (used for Lamport clocks), but we ad-
ditionally assign a proposer id to each (proposer, dele-
gate) pair. When executing a write using partial delega-
tion, we simply direct responses accordingly, and have
the proposer inform the delegate about which value to
propose (unless one was recovered, in which case the
delegate has to inform the proposer about the change).
In case the delegate fails, a proposer can always choose
to execute a write operation normally, and because it
uses a different proposer id in this case, it will look as
though the write from the proposer and the write from
the (proposer, delegate) pair are writes from two sepa-
rate nodes. We already prove (§A.1) that PANDO main-
tains consistency in this case.

• One round reads. As with other consensus protocols,
we support (common-case) one-round reads by adding
a third, asynchronous phase to writes that broadcasts
which value was chosen and caches this information at
each acceptor. Upon executing a read at a Phase 1a quo-
rum, we check to see if any acceptor knows whether a
value has already been chosen. If we find such a value,
we try to reconstruct it and fall back on the larger Phase
1b quorum in case there are not enough splits present in
the Phase 1a quorum. Otherwise, we follow the write
path, but propose a value only if we were able to re-
cover one (else none have been chosen). We maintain
linearizability with this approach because the task of re-
solving uncertainty is done via the write path.

• Fallback to leader. In PANDO, front-ends directly exe-
cute writes unless a conflict is observed, in which case
they defer the request to a leader (§3.5). From the per-
spective of the consensus protocol, the leader is just an-
other proposer, so no consistency issues may arise even
if multiple leaders exist. However, PANDO prevents
non-leader front-ends from attempting writes more than

A.ppn Promised proposal no. stored at acceptor A
A.apn Accepted proposal no. stored at acceptor A
A.vid Accepted value id stored at acceptor A
A.vlen Accepted value length stored at acceptor A

A.vsplit Accepted value split stored at acceptor A
vidv Unique id for v , typically a hash or random

number
vlenv Length of v (to remove padding)

Split(v ,A) (Computed on proposers) The erasure-
coded split associated with acceptor A

Figure 16: Summary of notation.

once which can lead to unavailability if the leader fails.
It is up to the leader election mechanism to quickly elect
a new leader when the the current one fails.

PANDO’s consistency and liveness properties rely on cer-
tain quorum constraints being met. We describe the con-
straints below under the assumption that data is partitioned
into k splits (Constraint 3 needed only if Phase 1a quorums
are used for reads):

1. The intersection of any Phase 1a and Phase 2 quorums
contains at least 1 split.

2. The intersection of any Phase 1b and Phase 2 quorums
contains at least k splits.

3. A Phase 1a quorum must contain at least k splits.

4. After f nodes fail, at least one Phase 1b and Phase 2
quorum must consist of nodes that are available.

Below is pseudocode for the PANDO write protocol.

Phase 1 (Prepare-Promise)

Proposer P initiates a write for value v :
1. Select a unique proposal number p (typically done us-

ing Lamport clocks).
2. Broadcast Prepare(p) messages to all acceptors.

Acceptor A, upon receiving Prepare(p) message from
Proposer P :

3. If p > A.ppn then set A.ppn ← p and reply
Promise(A.apn,A.vid ,A.vlen,A.vsplit).

4. Else reply NACK.

Proposer P , upon receiving Promise messages from a
Phase 1a quorum:

5. If the values in all Promise responses are NULL, then
skip to Phase 2 with v ′ ← v .

Proposer P , upon receiving Promise messages from a
Phase 1b quorum:
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6. Iterate over all Promise responses sorted in decreasing
order of their apn .

(a) If there are at least k splits for value w associ-
ated with apn , recover the value w (using the as-
sociated vlen and vsplits) and continue to Phase 2
with v ′ ← w .

7. If no value was recovered, continue to Phase 2 with
v ′ ← v .

Phase 2 (Propose-Accept)

Proposer P , initiating Phase 2 to write value v ′ with pro-
posal number p:

8. If no value was recovered in Phase 1, set vidv ′ =
hash(v) (or some other unique number, see Figure 16).
If a value was recovered, use the existing vidv ′ .

9. Broadcast Propose(p, vidv ′ , vlenv ′ ,Split(v ′,A)) mes-
sages to all acceptors.

Acceptor A, upon receiving Propose(p, vid , vlen, vsplit)
from a Proposer P :
10. If p < A.ppn reply NACK
11. A.ppn ← p
12. A.apn ← p
13. A.vid ← vid
14. A.vlen ← vlen
15. A.vsplit ← vsplit
16. Reply Accept(p)

Proposer P , upon receiving Accept(p) messages from a
Phase 2 quorum:
17. P now knows that v ′ was chosen, and can check

whether the chosen value v ′ differs from the initial
value v or not.

A.1 Proof of correctness

Definitions. We let A refer to the set of all acceptors and
use Qa , Qb , and Q2 refer to the sets of Phase 1a, Phase 1b,
and Phase 2 quorums, respectively. Using this notation, we
restate our quorum assumptions:

Q ⊆ A ∀Q ∈ Qa ∪Qb ∪Q2 (1)

|Qa ∩Q2| ≥ 1 ∀Qa ∈ Qa ,Q2 ∈ Q2 (2)

|Qb ∩Q2| ≥ k ∀Qb ∈ Qb ,Q2 ∈ Q2 (3)

Definition 1. A value is chosen if there exists a Phase 2
quorum of acceptors that all agree on the identity of the value
and store splits corresponding to that value.

We now show that the PANDO write protocol provides the
same guarantees as Paxos:

• Nontriviality. Any chosen value must have been pro-
posed by a proposer.

• Liveness. A value will eventually be chosen provided
that RPCs complete before timing out and all acceptors
in at least one Phase 1b and Phase 2 quorum are avail-
able.

• Consistency. At most one value can be chosen.

• Stability. Once a value is chosen, no other value may
be chosen.

Theorem 1. (Nontriviality) PANDO will only choose values
that have been proposed.

Proof. By definition, a value can only be chosen if it is
present at a Phase 2 quorum of acceptors. Values are only
stored at acceptors in response to Propose messages initiated
by proposers.

Theorem 2. (Liveness) PANDO will choose a a value pro-
vided that RPCs complete before timing out and all accep-
tors in at least one Phase 1b and Phase 2 quorum are avail-
able.

Proof. Let t refer to the (maximum) network and execution
latency for an RPC. Since PANDO has two rounds of execu-
tion, a write can complete within 2t as long as a requested
is uncontended. If all proposers retry RPCs using random-
ized exponential backoff, a time window of length ≥ 2t will
eventually open where only a Proposer P is executing. Since
no other proposer is sending any RPCs during this time, both
Phase 1 and Phase 2 will succeed for Proposer P .

Following the precedence of [37], we will show that
PANDO provides both consistency and stability by proving
that it provides a stronger guarantee.

Lemma 1. If a value v is chosen with proposal number p,
then for any proposal with proposal number p′ > p and
value v ′, v ′ = v .

Proof. Recall that PANDO proposers use globally unique
proposal numbers (Line 1); this makes it impossible for two
different proposals to share a proposal number p. Therefore,
if two proposals are both chosen, they must have different
proposal numbers. If v ′ = v then we trivially have the de-
sired property. Therefore, assume v ′ 6= v .

Without loss of generality, we will consider the smallest
p′ such that p′ > p and v ′ 6= v (minimality assumption).
We will show that this case always results in a contradiction:
either the Prepare messages for p′ will fail (and thus no Pro-
pose messages will ever be sent) or the proposer will adopt
and re-propose value v .

Let Q2,p be the Phase 2 quorum used for proposal number
p, and Qa,p′ be the Phase 1a quorum used for p′. By Quo-
rum Property 2, we know that |Q2,p ∩ Qa,p′ | is non-empty.
We will now look at the possible ordering of events at each
acceptor A in the intersection of these two quorums (Q2,p

and Qa,p′):
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• Case 1: A receives Prepare(p′) before
Propose(p, . . .).

The highest proposal number at A would be p′ > p
by the time Propose(p, . . .) was processed, and so A
would reject Propose(p, . . .). However, we know that
this is not the case since A ∈ Q2,p , so this is a contra-
diction.

• Case 2: A receives Propose(p, . . .) before
Prepare(p′).

The last promised proposal number at A is q such that
p ≤ q < p′ (q > p′ would be a contradiction since
Prepare(p′) would fail even though A ∈ Qa,p′ ). By
our minimality assumption, we know that all proposals
z such that p ≤ z < p′ fail or re-propose v . Therefore,
the acceptor A responds with Promise(q , vidv , . . .).

At this point, the proposer has received at least one
Promise message with a non-empty value. Therefore, it does
not take the Phase 1 fast path and waits until it has heard
from a Phase 1b quorum (denoted Qb,p′ ). Using the same
logic as above, the proposer for p′ will receive a minimum
of k Promise messages each referencing value v since there
are k acceptors in Qb,p′ ∩Q2,p (Quorum Property 3). Since
the proposer has a minimum of k responses for v , it can re-
construct value v . Let q denote the highest proposal number
among all k responses.

Besides those in Qb,p′ ∩ Q2,p , other acceptors in Qb,p′

may return values that differ from v . We consider the pro-
posal number q ′ for each of these accepted values:

• Case 1: q ′ < q . The proposer for p′ will ignore the
value for q ′ since it uses the highest proposal number
for which it has k splits.

• Case 2: p′ < q ′. Not possible since Prepare(p′) would
have failed.

• Case 3: p < q ′ < p′. This implies that a
Propose(q ′, v ′′) was issued where v ′′ 6= v . This vi-
olates our minimality assumption.

Therefore, the proposer will adopt value v since it can re-
construct it (the proposer has k splits from the acceptors
in Qb,p′ ∩ Q2,p alone) and the highest returned proposal
number references it. This contradicts our assumption that
v ′ 6= v .

Theorem 3. (Consistency) PANDO will choose at most one
value.

Proof. Assume that two different proposals with proposal
numbers p and q are chosen. Since proposers use globally
unique proposal numbers, p 6= q . This implies that one of
the proposal numbers is greater than the other, assume that
q > p. By Lemma 1, the two proposals write the same
value.

Theorem 4. (Stability) Once a value is chosen by PANDO,
no other value may be chosen.

Proof. The proposal numbers used for any two chosen pro-
posals will not be equal. Thus, with the additional assump-
tion that acceptors store their state in durable storage, this
follows immediately from Lemma 1.
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B TLA+ specification for PANDO reads and writes
In addition to our proof of correctness for PANDO’s write path, we have model checked PANDO’s correctness using TLA+ [39].
The purpose of this exercise was to mechanically verify PANDO’s safety guarantees under a number of scenarios.

We checked the following invariants: consistency and stability for writes, that any value marked chosen at an acceptor was
indeed chosen, and that successful reads only ever returned chosen values. The configurations modeled used 2–3 proposers
(and readers) that could write (read) 2–3 values to (from) 4–6 acceptors when splitting the data into 2–4 splits. We set up 2–3
quorums of each type (Phase 1a, Phase 1b, and Phase 2).

The TLA+ model checker considers all possible histories including those with message reordering and arbitrary (or infinite)
delay in delivering messages. When run on the specification for PANDO (below) and the configurations listed earlier, no
invariant violations were found.

MODULE Pando
EXTENDS Integers, TLC , FiniteSets

CONSTANTS Acceptors, Ballots, Values,
Quorum1a, Quorum1b, Quorum2, K

ASSUME QuorumAssumption
∆
=

∧Quorum1a ⊆ SUBSET Acceptors
∧Quorum1b ⊆ SUBSET Acceptors
∧Quorum2 ⊆ SUBSET Acceptors
Overlap of 1

∧ ∀QA ∈ Quorum1a :
∀Q2 ∈ Quorum2 :
Cardinality(QA ∩Q2) ≥ 1

Overlap of K

∧ ∀QB ∈ Quorum1b :
∀Q2 ∈ Quorum2 :
Cardinality(QB ∩Q2) ≥ K

VARIABLES msgs, The set of messages that have been sent

maxPBal , maxPBal [a] is the highest promised ballot (proposal number) at acceptor a

maxABal , maxABal [a] is the highest accepted ballot (proposal number) at acceptor a

maxVal , maxVal [a] is the value for maxABal [a] at acceptor a

chosen, chosen[a] is the value that acceptor a heard was chosen (or else is None)

readLog readLog[b] is the value that was read during ballot b

vars
∆
= 〈msgs, maxPBal , maxABal , maxVal , chosen, readLog〉

None
∆
= CHOOSE v : v /∈ Values

Type invariants.

Messages
∆
=

[type : {“prepare”}, bal : Ballots]
∪ [type : {“promise”}, bal : Ballots, maxABal : Ballots ∪ { − 1},

maxVal : Values ∪ {None}, acc : Acceptors,
chosen : Values ∪ {None}]

∪ [type : {“propose”}, bal : Ballots, val : Values ∪ {None},
op : {“R”, “W”}]

∪ [type : {“accept”}, bal : Ballots, val : Values, acc : Acceptors,
op : {“R”, “W”}]

∪ [type : {“learn”}, bal : Ballots, val : Values]

TypeOK
∆
= ∧msgs ∈ SUBSET Messages
∧maxABal ∈ [Acceptors → Ballots ∪ { − 1}]
∧maxPBal ∈ [Acceptors → Ballots ∪ { − 1}]
∧maxVal ∈ [Acceptors → Values ∪ {None}]
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∧ chosen ∈ [Acceptors → Values ∪ {None}]
∧ readLog ∈ [Ballots → Values ∪ {None}]
∧ ∀ a ∈ Acceptors : maxPBal [a] ≥ maxABal [a]

Initial state.

Init
∆
= ∧msgs = {}
∧maxPBal = [a ∈ Acceptors 7→ − 1]
∧maxABal = [a ∈ Acceptors 7→ − 1]
∧maxVal = [a ∈ Acceptors 7→ None]
∧ chosen = [a ∈ Acceptors 7→ None]
∧ readLog = [b ∈ Ballots 7→ None]

Send message m .

Send(m)
∆
= msgs ′ = msgs ∪ {m}

Prepare: The proposer chooses a ballot id and broadcasts prepare requests to all acceptors.
All writes start here.
Prepare(b)

∆
= ∧ ¬∃m ∈ msgs : (m.type = “prepare”) ∧ (m.bal = b)
∧ Send([type 7→ “prepare”, bal 7→ b])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Promise: If an acceptor receives a prepare request with ballot id greater than that of any prepare request which it has already responded to, then it responds to
the request with a promise. The promise reply contains the proposal (if any) with the highest ballot id that it has accepted.
Promise(a)

∆
=

∃m ∈ msgs :
∧m.type = “prepare”
∧m.bal > maxPBal [a]
∧ Send([type 7→ “promise”, acc 7→ a, bal 7→ m.bal ,

maxABal 7→ maxABal [a], maxVal 7→ maxVal [a],
chosen 7→ chosen[a]])

∧maxPBal ′ = [maxPBal EXCEPT ! [a] = m.bal ]
∧ UNCHANGED 〈maxABal , maxVal , chosen, readLog〉

Propose (fast path): The proposer waits until it collects promises from a Phase 1a quorum of acceptors. If no previous value is found, then the proposer can
skip to Phase 2 with its own value.
ProposeA(b)

∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)
∧ ∃ v ∈ Values :
∧ ∃Q ∈ Quorum1a :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

IN

Check for promises from all acceptors in Q

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a
Make sure no previous vals have been returned in promises

∧ ∀m ∈ Q1Msgs : m.maxABal = − 1
∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v , op 7→ “W”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Propose (slow path): The proposer waits for promises from a Phase 1b quorum of acceptors. If no value is found accepted, then the proposer can pick its own
value for the next phase. If any accepted coded split is found in one of the promises, the proposer detects whether there are at least K splits (for the particular
value) in these promises. Next, the proposer picks up the recoverable value with the highest ballot, and uses it for next phase.
ProposeB(b)

∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)
∧ ∃Q ∈ Quorum1b :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”
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∧m.bal = b
∧m.acc ∈ Q}

Q1Vals
∆
= [v ∈ Values ∪ {None} 7→

{m ∈ Q1Msgs : m.maxVal = v}]
IN

Check that all acceptors from Q responded

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a
∧ ∃ v ∈ Values :
∧ No recoverable value, use anything

∨ ∀ vv ∈ Values : Cardinality(Q1Vals[vv ]) < K
Check if v is recoverable and of highest ballot

∨ Use previous value if K splits exist

∧ Cardinality(Q1Vals[v ]) ≥ K
∧ ∃m ∈ Q1Vals[v ] :

Ensure no other recoverable value has a higher ballot

∧ ∀mm ∈ Q1Msgs :
∨m.bal ≥ mm.bal
∨ Cardinality(Q1Vals[mm.maxVal ]) < K

∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v , op 7→ “W”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Phase 2: If an acceptor receives an accept request with ballot i, it accepts the proposal unless it has already responded to a prepare request having a ballot
greater than it does.
Accept(a)

∆
=

∧ ∃m ∈ msgs :
∧m.type = “propose”
∧m.bal ≥ maxPBal [a]
∧maxABal ′ = [maxABal EXCEPT ! [a] = m.bal ]
∧maxPBal ′ = [maxPBal EXCEPT ! [a] = m.bal ]
∧maxVal ′ = [maxVal EXCEPT ! [a] = m.val ]
∧ Send([type 7→ “accept”, bal 7→ m.bal , acc 7→ a, val 7→ m.val ,

op 7→ m.op])
∧ UNCHANGED 〈chosen, readLog〉

ProposerEnd: If the proposer receives acknowledgements from a Phase 2 quorum, then it knows that the value was chosen and broadcasts this.

ProposerEnd(b)
∆
=

∧ ∃ v ∈ Values :
∧ ∃Q ∈ Quorum2 :

LET Q2msgs
∆
= {m ∈ msgs : ∧m.type = “accept”

∧m.bal = b
∧m.val = v
∧m.acc ∈ Q}

IN

Check for accept messages from all members of Q

∧ ∀ a ∈ Q : ∃m ∈ Q2msgs : m.acc = a
If this was in response to a read, log the result

∧ Read: log the result

∨ ∧ ∃m ∈ Q2msgs : m.op = “R”
∧ readLog ′ = [readLog EXCEPT ! [b] = v ]

Write: don’t log the result

∨ (∀m ∈ Q2msgs : m.op = “W” ∧ UNCHANGED 〈readLog〉)
∧ Send([type 7→ “learn”, bal 7→ b, val 7→ v ])
∧ UNCHANGED 〈maxABal , maxPBal , maxVal , chosen〉

Learn: A proposer has announced that value v is chosen.
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Learn(a)
∆
=

∧ ∃m ∈ msgs :
∧m.type = “learn”
Process accept before learn, needed for ReadInv, not the protocol
∧maxABal [a] ≥ m.bal
∧ chosen ′ = [chosen EXCEPT ! [a] = m.val ]
∧ UNCHANGED 〈msgs, maxPBal , maxABal , maxVal , readLog〉

Count how many splits of v we have received.

CountSplitsOf (resps, v)
∆
= Cardinality({m ∈ resps : m.maxVal = v})

FastRead: Check if any value returned from a Phase 1a quorum was chosen. If we have enough splits to reconstruct that value, then return immediately. If not,
wait for Phase 1b quorum. If we have a value that was marked chosen, return. Otherwise, perform a write-back.
FastRead(b)

∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)
∧

Fastest path: Phase 1a quorum has k splits and the value is chosen
∨ ∧ ∃Q ∈ Quorum1a :

LET RMsgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

IN Check that all acceptors from Q responded
∧ ∀ a ∈ Q : ∃m ∈ RMsgs : m.acc = a
Check that we have k splits of a chosen value
∧ ∃m ∈ RMsgs :
∧m.chosen 6= None
∧ CountSplitsOf (RMsgs, m.chosen) ≥ K
∧ readLog ′ = [readLog EXCEPT ! [b] = m.chosen]

∧ UNCHANGED 〈msgs, maxPBal , maxABal , maxVal , chosen〉
Fast path: Phase 1b quorum has k splits and the value is chosen
∨ ∧ ∃Q ∈ Quorum1b :

LET RMsgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

IN Check that all acceptors from Q responded
∧ ∀ a ∈ Q : ∃m ∈ RMsgs : m.acc = a
Check that we have k splits of a chosen value
∧ ∃m ∈ RMsgs :
∧m.chosen 6= None
∧ CountSplitsOf (RMsgs, m.chosen) ≥ K
∧ readLog ′ = [readLog EXCEPT ! [b] = m.chosen]

∧ UNCHANGED 〈msgs, maxPBal , maxABal , maxVal , chosen〉
Slow path: Phase 1b recovery and write back
∨ ∧ ∃Q ∈ Quorum1b :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

Q1Vals
∆
= [v ∈ Values ∪ {None} 7→

{m ∈ Q1Msgs : m.maxVal = v}]
IN

Check that all acceptors from Q responded
∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a
∧ ∃ v ∈ Values :

Check if v is recoverable and of highest ballot
Use previous value if K splits exist
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∧ Cardinality(Q1Vals[v ]) ≥ K
∧ ∃m ∈ Q1Vals[v ] :

Ensure no other recoverable value has a higher ballot
∧ ∀mm ∈ Q1Msgs :
∨m.bal ≥ mm.bal
∨ Cardinality(Q1Vals[mm.maxVal ]) < K

readLog will be updated in ProposerEnd
∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v ,

op 7→ “R”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

No value recovered: Return None

∨ ∧ readLog ′ = [readLog EXCEPT ! [b] = None]
∧ UNCHANGED 〈msgs, maxPBal , maxABal , maxVal , chosen〉

Next state.

Next
∆
= ∨ ∃ b ∈ Ballots : ∨ Prepare(b)

∨ ProposeA(b)
∨ ProposeB(b)
∨ ProposerEnd(b)
∨ FastRead(b)

∨ ∃ a ∈ Acceptors : Promise(a) ∨Accept(a) ∨ Learn(a)

Spec
∆
= Init ∧2[Next ]vars

Invariant helpers.

AllChosenWereAcceptedByPhase2
∆
=

∀ a ∈ Acceptors :
∨ chosen[a] = None
∨ ∃Q ∈ Quorum2 :
∀ a2 ∈ Q :
∃m ∈ msgs : ∧m.type = “accept”

∧m.acc = a2
∧m.val = chosen[a]

OnlyOneChosen
∆
=

∀ a, aa ∈ Acceptors :
(chosen[a] 6= None ∧ chosen[aa] 6= None) =⇒ (chosen[a] = chosen[aa])

VotedForIn(a, v , b)
∆
= ∃m ∈ msgs : ∧m.type = “accept”

∧m.val = v
∧m.bal = b
∧m.acc = a

ProposedValue(v , b)
∆
= ∃m ∈ msgs : ∧m.type = “propose”

∧m.val = v
∧m.bal = b
∧m.op = “W”

NoOtherFutureProposal(v , b)
∆
=

∀ vv ∈ Values :
∀ bb ∈ Ballots :
(bb > b ∧ ProposedValue(vv , bb)) =⇒ v = vv

ChosenIn(v , b)
∆
= ∃Q ∈ Quorum2 : ∀ a ∈ Q : VotedForIn(a, v , b)

ChosenBy(v , b)
∆
= ∃ b2 ∈ Ballots : (b2 ≤ b ∧ ChosenIn(v , b2))

Chosen(v)
∆
= ∃ b ∈ Ballots : ChosenIn(v , b)

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    179



Invariants.

LearnInv
∆
= AllChosenWereAcceptedByPhase2 ∧OnlyOneChosen

ReadInv
∆
= ∀ b ∈ Ballots : readLog [b] = None ∨ ChosenBy(readLog [b], b)

ConsistencyInv
∆
= ∀ v1, v2 ∈ Values : Chosen(v1) ∧ Chosen(v2) =⇒ (v1 = v2)

StabilityInv
∆
=

∀ v ∈ Values : ∀ b ∈ Ballots : ChosenIn(v , b) =⇒ NoOtherFutureProposal(v , b)

AcceptorInv
∆
=

∀ a ∈ Acceptors :
∧ (maxVal [a] = None) ≡ (maxABal [a] = − 1)
∧maxABal [a] ≤ maxPBal [a]
∧ (maxABal [a] ≥ 0) =⇒ VotedForIn(a, maxVal [a], maxABal [a])
∧ ∀ c ∈ Ballots :
c > maxABal [a] =⇒ ¬∃ v ∈ Values : VotedForIn(a, v , c)
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Abstract

Modern networks enforce rich and dynamic policies (e.g.,
dynamic service chaining and path pinning) over a number of
complex and stateful NFs (e.g., stateful firewall and load bal-
ancer). Verifying if those policies are correctly implemented
is important to ensure the network’s availability, safety, and
security. Unfortunately, theoretical results suggest that veri-
fying even simple policies (e.g., A cannot talk to B) in state-
ful networks is undecidable. Consequently, any approach for
stateful network verification has to fundamentally make some
relaxations; e.g., either on policies supported, or the network
behaviors it can capture, or in terms of the soundness/com-
pleteness guarantees. In this paper, we identify practical
opportunities for relaxations in order to develop an efficient
verification tool. First, we identify key domain-specific in-
sights to develop a more compact network semantic model
which is equivalent to a general semantic model for checking
a wide range of policies under practical conditions. Second,
we identify a restrictive-yet-expressive policy language to
support a wide range of policies including dynamic service
chaining and path pinning while enable efficient verification.
Third, we develop customized symbolic model checking al-
gorithms as our model and policy specification allows us to
succinctly encode network states using existential first-order
logic, which enables efficient checking algorithms. We prove
the correctness of our approach for a subset of policies and
show that our tool, NetSMC, achieves orders of magnitude
speedup compared to existing approaches.

1 Introduction

Today’s computer networks deploy a large number and vari-
ety of complex stateful functions [44], ranging from stateful
firewalls, NATs, to proxies, and load balancers. Network oper-
ators configure those network functions (NFs) to enforce rich
and dynamic policies, such as dynamic service chaining (e.g.,
all packets should traverse IPS, while only malicious packets
detected by IPS should be sent to FW) [18, 19] and path pin-
ning (e.g., if packets from A to B traverse NF f1 and then f2,
the reverse packets from B to A should traverse f2 and then
f1). Formally verifying if the network correctly implements
the policies is critical to ensure the availability, security, and
safety of the network.

Checking whether policies are correctly enforced, however,
is challenging on stateful networks (networks with stateful
NFs). Even checking simple policies such as isolation poli-
cies (packets from A cannot be delivered to B), an efficiently
solvable problem on stateless networks [23, 25–27, 31], is
undecidable on stateful networks [47]. In practice, policies

enforced on stateful networks will be more complex (see §2).
As such, making practical progress requires non-trivial

trade-offs on the supported network behavior, expressiveness
of policies, and the soundness/completeness guarantees. For
example, recent work VMN [41] simplifies the behavior of a
stateful network by assuming that each NF can buffer multi-
ple packets in an out-of-order way, which makes the problem
decidable for checking a restrictive set of policies. To verify
policies, VMN encodes the network and the policy using first-
order logical formulas which are solved by a general-purpose
SMT solver. However, it is inefficient to even check the iso-
lation policy due to its high complexity (i.e., EXPSPACE-
complete [47]).

In this work, we revisit the stateful network verification
problem and explore a different set of relaxation trade-offs
in order to achieve more efficient verification for practical
scenarios based on the following domain-specific insights:
One-packet at a time network model: Instead of dealing
with multiple packets, we adopt a simpler model where only
one packet exists in every network state. This model is moti-
vated by the fact that packets inducing conflict behavior on
a network are often processed by the network in an order-
preserving way. For example, connection-based NFs often
process packets in a connection in order. Thus, each packet
would be processed by the network exactly in the same way
when traversing the network with other packets as when
traversing alone. Therefore, we can consider only one packet
at a time in each network state. While this model simplifies
the behavior of a network (e.g., we cannot find violations ap-
pearing only under packet interleaving. See §8), we show that
the verification result of a wide range of policies (e.g., isola-
tion) based on this model is correct w.r.t. the more complex
model in previous work [41] for order-preserving networks
(details in §4).
Customized policy and verification algorithm: We design
a restricted-yet-expressive policy language based on a subset
of linear temporal logic and verification algorithms based on
symbolic model checking (SMC) to achieve further speedup
of the verification. While our model of network behavior
reduces the state space of the problem, checking simple poli-
cies (e.g., isolation) efficiently is still hard. Naive approaches
based on reducing the problem to constraint solving using
general-purpose solvers is not particularly efficient since it
would not benefit from the simpler model (see §7).

There are two key challenges to apply the SMC framework
to stateful networks: 1) how to succinctly encode a large num-
ber of network states and 2) how to efficiently support the
computation required in SMC. To this end, we leverage the
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customized policy structure to use simple existential first or-
der logic (EFO) formulas to succinctly encode a large number
of network states. Furthermore, we develop efficient algo-
rithms required in the SMC framework by leveraging the
simple network model and extending classic algorithms in
other domains (e.g., query containment in database theory).

Based on the key insights discussed above, we implement
NetSMC, a symbolic model checker for stateful networks.
We prove the correctness of our algorithms w.r.t. a general
network semantic model for a subset of policies (e.g., isola-
tion properties). For other policies requiring reasoning about
packet interleaving, NetSMC is a sound-but-incomplete bug
finding tool that is very efficient. We show the effectiveness
of NetSMC via several use cases using real-world NFs such
as pfSense [3] and HAProxy [2] running in Cloudlab [43].
We evaluate NetSMC on various network topologies and poli-
cies and show that NetSMC scales to networks with hundreds
of stateful NFs and is > 200X faster than the state-of-the-
art stateful network verification tool VMN [41] on typical
fattree-topology networks.

2 Motivation

We motivate the stateful network verification problem by
describing several practical policies, followed by the key chal-
lenges of the verification problem.

2.1 Stateful Network Verification Examples

Isolation. Consider a network (Fig. 1a) with a stateful fire-
wall to protect the Department from the Internet. Network
operators may enforce the isolation policy: traffic from un-
trusted hosts in the Internet cannot be sent to the Department.
Conditional reachability. Continuing the example above,
the network operators may additionally enforce the policy
to allow all traffic from the Department and to allow traffic
from those trusted hosts in the Internet that have a connection
already established from a host in Department.
Flow affinity. Consider a load balancer that distributes traffic
among n servers as shown in Fig. 1b. To keep the service
provisioning undisrupted, the network operator wants to en-
force the following flow affinity policy: if a packet from a
host Client is load balanced to a server, then all future packets
in the same flow should always be sent to the same server.
Dynamic service chaining. Fig. 1c shows a multi-stage in-
trusion prevention system (IPS) consisting of a light IPS and a
heavy IPS. Each device in the network is configured such that
all traffic from the Department is sent to the light IPS, which
performs basic detection such as counting the number of bad
connections for each host. If a host is detected suspicious
by light IPS (e.g. issuing more than 10 bad connections), all
future packets from the host should be directed to the heavy
IPS for further processing; otherwise its traffic is directly sent
to the Internet.
Path pinning. Often a network needs to deploy multiple in-
stances of the same middlebox function for better throughput.

Buzz & Symnet VMN NetSMC

Model One-packet Out-of-order One-packet
Policy lang. Assertion LTL-based LTL-based
Correctness Sound Sound, Sound,

Complete Cond. complete

Table 1: Comparison with network verification tools.
Consider the network shown in Fig. 1d which is configured
to forward traffic between the Department and the Internet
to one of the firewalls. An interesting path pinning policy is:
if a packet from H1 in the Department to H2 in the Internet
goes through the i-th firewall, then all future packets from H2
to H1 should traverse the same firewall.

2.2 Challenges

Stateful network verification is more challenging compared
to stateless verification. In general, this problem has been
shown to be undecidable even for simple isolation policies
(see Theorem 1 in [47]). As such, any practical progress
needs to make practical relaxations on at least one of the
following dimensions: the supported network behavior, the
expressiveness of policies, and the correctness guarantees.

As an example, VMN [41] recovers the decidability of the
problem by assuming that an NF buffers packets in an out-of-
order fashion instead of FIFO. VMN reduces the verification
problem to encoding network configurations and policies as
first-order logical constraints which can be solved by an SMT
solver. Since solving general first-order constraints is undecid-
able, VMN targets policies in the form of “if packet p reaches
node B then p must not satisfy some property P in the past”,
so that the encoded constraints fall in a decidable fragment.
Even with the above simplification the verification problem
induces high complexity (i.e., EXPSPACE-hard [47]). Thus,
VMN is not scalable to large-size networks even for checking
simple isolation policies as shown in §7.

3 Overview

The undecidability result [47] means that any approach in this
space has to seek some relaxations or tradeoffs in order to
make the problem tractable. One of our contributions is identi-
fying and exploring a different point in this space of practical
relaxation choices in order to develop an efficient verification
tool in practical network scenarios. Table 1 summarizes key
difference of our trade-offs compared with existing work.

More specifically, our trade-off is based on the following
two key domain-specific insights: First, the key challenge to
stateful network verification is to handle interleaving among
multiple packets in the network (e.g., packet p1 is processed
by NF A before packet p2, but p2 is processed by NF B be-
fore p1). In practice, however, networks often exhibit intrinsic
order-preserving property in several scenarios, where packets
that induce conflict network behavior are processed in the
same order. For example, a syn packet is often processed
by the network before a synack packet is sent into and pro-
cessed by the network. Motivated by this observation, we
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Figure 1: Examples

adopt a semantic model that only allows one packet being
considered at each network state. In effect, we consider a
sequential execution model of networks, similar to the ones
considered in stateful network testing tools [18, 45]. Second,
even with this simple model verifying simple isolation poli-
cies is still hard (i.e. PSAPCE-hard) and naively employing a
general-purpose tool is not efficient for large-size networks
(see §7). Motivated by recent success in customized stateless
network verification tools (e.g., HSA [26], VeriFlow [27]),
we design a customized policy language and verification tech-
nique for stateful networks based on the symbolic model
checking (SMC) framework. We are able to identify efficient
symbolic representations for network states and develop effi-
cient SMC algorithms.

Next, we discuss our key design choices before delving into
more detailed algorithmic designs in the following sections.
Network model (§4). To model the behavior of a stateful
network, we need two key components, an NF model that
can capture various NF behavior and the modeling of packets
traversing the network as we discussed above.

We need an expressive yet restrictive model that can model
various NF behavior while supporting efficient verification.
On one end of the spectrum, we could use a general purpose
language (e.g., C in Buzz [18]), but that leads to highly ineffi-
cient verification. Motivated by existing NF models [7, 52], a
stateful NF can be modeled as: 1) a set of state tables indexed
by packet header fields, and 2) a set of rules that modify those
state tables based on packet matching and table testing results
of the incoming packet. Such restricted formalization enables
efficient checking algorithms in SMC as we show in §6.
Policy specification language (§5). As shown in §2, stateful
network policies have temporal properties, so a temporal spec-
ification language such as linear temporal logic (LTL) [42]
is a natural choice for specifying such policies. While it is
expressive enough for a wide set of network policies, the full
set of LTL is computationally difficult to handle.

Our insight is that the set of network policies of interest
fall into the intersection of LTL and computational tree logic
(CTL) which has more efficient verification algorithms [13].
Therefore, we identify a subset of LTL that is intuitive and
expressive to specify a wide range of policies while using
efficient verification algorithms based on CTL. As we show
in §6, reasoning about policies in this set of policies also
enables us to use succinct symbolic encoding of network
states and efficient checking algorithms required in SMC.
Efficient verification algorithm (§6). We design customized
verification techniques based on classic SMC framework

for efficiency. Algorithms for the symbolic model checking
framework are well known. However, there are a set of chal-
lenges to instantiate the framework in the context of stateful
network verification. First, we need a succinct symbolic repre-
sentation for a large set of network states, particularly for the
internal state (e.g., connection state tables) of NFs. Second,
the symbolic model checking algorithm requires computing
the pre-image of a symbolic state (i.e., the set of states that
can transition to this state in one step), and the termination
of the symbolic model checking framework requires efficient
computation to check containment of two sets of states in
the symbolic representation. How to efficiently support the
computations remains another challenge. While classic data
structures such as BDD are widely used in other contexts, it is
not suitable in the context of stateful networks due to the large
state space. For example, a stateful firewall maintains state
for each flow and thus the number of states is as large as 2F

where F , the maximal number of flows a firewall tracks, can
be in the order of thousands. Our design of the network model
and policies allows us to address those two challenges. First,
we succinctly encode a large set of states into a fragment of
existential first-order logic (EFO). As an example for a state-
ful firewall, we may use 9x,y.Trust[x,y] = 1 to represent all
network states where there is a legitimate flow (a src-dst pair
for simplicity) recorded by the connection table Trust. Our
choice of the policy language ensures that any symbolic state
emerged during the computation of SMC can be encoded in
EFO. Second, our simple NF model allows us to efficient com-
pute the pre-image of a symbolic state . Moreover, using EFO,
we identify the connection between containment checking
of sets of states in EFO and conjunctive query containment
problem in the database community [11, 29]. We adapt the
query containment checking algorithm to efficiently check
the containment of two sets of network states.

4 Stateful Network Model

We present our stateful network model, including the NFs and
semantic rules. We illustrate the expressiveness of our NF
model via example encodings of common network functions.

4.1 NF Model

We summarize the syntax in Fig. 2. Inspired by prior
work [7,52], each NF includes local state which are key-value
maps and a set of rules for processing packets and updating
local state. NFs’ computations are restricted to state check-
ing, simple counting, and non-deterministic value choice. This
model is more expressive than the one used by the verification
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Field Name f 2 {srcip, dstip, srcport. . . }
Value v 2 Int [ IP [ ...
Packet pkt ::= {���!fi = vi}
Location l 2 Loc
Located Packet lp ::= (l,pkt)

State Table T 2 TableNames
Expression e ::= v | f | pickFrom(D) | T [�!ei ]
Atomic Test at ::= True | loc2 D | f 2 D | T [�!ei ] 2 D
Test t ::= at | ¬at | t,t
Update u ::= T [�!ei ] := e | inc(T [�!ei ], v) | dec(T [�!ei ], v)
Action a ::= fwd(e) | drop | modify( f , e)
Command c ::= u | a | c;c
Rule r ::= t ) c
NF Config R ::= · | r; R
NF NF ::= (

�!
l ,
�!
T ,R)

Network Topo topo 2 Loc! Loc
Network Config N ::= (topo, [NF1, ..,NFk])
Table Valuation D 2 TableNames! dT
Network State s ::= (lp,D)

Figure 2: Syntax of stateful network model.

tool VMN [41] and is efficient (§6).
Basics. We write pkt to denote packets, which are records of
packet fields (notation {�!ti } is a shorthand for {t1, · · · , tn}).
Packet field names, denoted f , are drawn from a set of pre-
defined names, including common field names such as srcip,
dstip, srcport and user-defined application specific field
names. We use Loc to denote the set of all locations (e.g., inter-
faces at a switch) in the network, including two special ones:
Drop (denoting that packets are dropped) and Exit (denoting
that packets exit the network). A located packet, denoted lp,
is a pair of a location and a packet.
NF. We model all the network devices as network functions,
denoted NF, which is a tuple consisting of a set of locations�!
l (i.e. interfaces), a set of tables

�!
T for storing internal state

(e.g. a stateful firewall may use state tables to store connection
state), and a list of rules R that process packets and update its
state. Stateless devices’ state tables are empty.

A rule r consists of a list of tests on packet fields and state
tables, denoted t, and a sequence of commands, denoted c,
for updating the state and generating the outgoing packet. For
instance, a stateful firewall may drop or forward the packet
(captured by c) depending on the result of testing the packet
headers and the internal state (captured by t). A rule r is fired,
i.e., its commands are executed, when the current packet and
state tables pass the tests in r.

We allow the following atomic tests: trivial tests that return
true; tests that check the current location of the incoming
packet; tests that check whether a field value or the value of
a state table entry is in a specified finite domain D (e.g., an
interval). Common features such as longest prefix matching
for IP addresses can be modeled using f 2 D. A command c
is a sequence of updates to state tables, denoted u and actions
applied to packets, denoted a.

We write e to denote expressions that can be used by rules
of NFs, which include constants, packet field values indexed
by field names, values picked (nondeterministically) from a
domain D (pickFrom(D)), and values stored in state tables.
Each state table is a finite key-value map, where we write
T [�!ei ] to denote the value in an entry indexed by the key �!ei .

A state table can be updated. The update T [�!ei ] := e up-
dates the entry indexed by the key �!ei to the value of e. We al-
low simple counting operations to model IDS/IPS. inc(T [�!ei ],
v) increments the value in the table entry by a constant v;
dec(T [�!ei ], v) performs decrementing similarly. We consider
the following actions for incoming packets: forwarding, drop-
ping, and modifying the value of a packet field. We do not
model multicasting or broadcasting in this paper.

Upon receiving a packet pkt at a location l, an NF attempts
to match the located packet lp = (l,pkt) with all of its rules.
The matching succeeds if all atomic tests in the rule are true
given lp and the current state tables. For an atomic test that
involves a field name f (e.g., f 2D), that field name evaluates
to the value of the field f in the packet pkt. As an example, an
atomic test Trust[dst,src]=1 first evaluates src and dst to be
the source and destination addresses of the incoming packet
pkt, then uses the concrete values as the key to look up the
entry in the table Trust, and finally checks if the corresponding
entry is 1. If the matching succeeds, all actions and updates of
the rule are applied sequentially. Without loss of generality,
we assume that exactly one rule can match an incoming packet.
It is straightforward to translate other models such as the one
based on first-match into this model.

4.2 NF Examples

To demonstrate the expressiveness of our model, we show ex-
ample encodings of several stateful network functions. Writ-
ing a NF model is a one-time effort, and can be automated
(c.f. [48]), which is out of the scope of this work.
Stateful firewall. A stateful firewall protects an internal net-
work by restricting accesses from external hosts. Fig. 3 shows
the code snippet of a stateful firewall. Here, we assume that
the internal network is connected to location 0 of the stateful
firewall, and the outside network is connected to location 1.
The stateful firewall uses a state table Trust to keep track of
the flows that are established by the internal network. Initially,
all entries in Trust have value 0. When a packet comes from
the internal network, the firewall forwards it directly to the
outside, and updates the state table entry for that flow to 1
(the 1st rule). When a packet comes from outside (location 1),
the firewall first checks the state table to see whether a packet
in the reverse direction has been seen (i.e., the table entry is
1); if so, the packet is forwarded (the 2nd rule); otherwise the
packet is dropped (the 3rd rule).
Load balancer. A load balancer forwards packets destined
for a virtual destination of a service (e.g., online searching) to
one of the backend servers that implement the service. Fig. 4
shows a load balancer for a service with virtual IP address
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loc=0 => Trust[src,dst]:= 1, fwd(1);
loc=1, Trust[dst,src]=1 => fwd(0);
loc=1, Trust[dst,src]=0 => drop;

Figure 3: Stateful firewall.

VIP, where we assume that servers are connected to location
1 and clients are connected to location 0. The load balancer
maintains two state tables, Connected for storing whether a
client has been assigned to a server and Server for storing
the address of the server assigned to each client. Initially all
table entries have value 0, indicating that no server has been
assigned to any client. The first rule corresponds to the case
where a client was assigned to a server (i.e. Connect[src]=1),
and the load balancer needs to modify the destination address
of the packet to the address of the assigned server as stored
in the Server table. Similarly, the second rule accounts for the
case where the client has not been assigned to any servers
(i.e., Connect[src]=0). In this case, the load balancer picks a
server from all the backend servers D, updates the state tables,
and modifies the packet destination accordingly. Note that the
use of pickFrom(D) abstracts away the concrete mechanism
of choosing the server for a client. For packets not destined to
the service, the load balancer may drop the packets as shown
in the third rule. Last, for traffic going from servers to clients,
the load balancer simply modify the source address of the
packet to the virtual address, as indicated by the last rule.

loc=0, dst=VIP, Connected[src]=1 =>
modify(dst, Server[src]), fwd(1);

loc=0, dst=VIP, Connected[src]=0 =>
Server[src]:=pickFrom(D), Connected[src]:=1,
modify(dst, Server[src]), fwd(1);

loc=0, dst!=VIP => drop;
loc=1 => modify(src, VIP), fwd(0);

Figure 4: Load balancer.

4.3 Network Semantic Model

Network configuration. We consider a network configura-
tion N as a set of links, denoted topo, together with a set of
NFs in the network. We model the execution of a stateful
network as a state transition system, where each state cor-
responds to a snapshot of the network (referred to network
state) and a transition between two network states denotes an
atomic step of feasible network execution. In each network
state, we need to consider the valuation of state tables of each
NF as well as the packets in the network. We use a function
D, which maps each state table T to a function dT , to denote
the valuation of all NF state tables.
Packet processing in the network. To model packets in the
network, a general approach is to associate each NF inter-
face with an infinite FIFO queue buffering packets to be pro-
cessed. As mentioned in §1, unfortunately, policy checking in
such models is undecidable. Recent progress [41] relaxes this
model by assuming packets are buffered in an out-of-order

way. While this out-of-order model recovers decidability for
some policies, it still incurs high computational complexity.

For efficient verification, we consider a model where only
one packet exists in any network state. We model a network
state as a pair (lp,D), where lp is a located packet being pro-
cessed and D is a table valuation. Our model has three types
of transitions: (1) At a network state (lp,D), the packet is
received by a NF and NF modifies the located packet to lp0

and updates the state tables to D0, and the network evolves
to state (lp0,D0); (2) When a packet pkt is moved from one
end l of a link to the other end l0, a network state ((l,pkt),D)
can evolve to ((l0,pkt),D); (3) When the current packet pkt
is dropped or exits the network, a new packet at an ingress
location is brought into the network.That is, ((O,pkt),D) can
evolve to ((I,pkt0),D), where O is Drop or Exit, I denotes an
ingress location, and pkt0 is an arbitrary packet. We write

E = s0
lp0/lp1����! · · ·

lpn�1/lpn�����! sn to denote execution traces,
where si is a network state, lpi�1/lpi denotes the processed
located packet and the resulting located packet in step i re-
spectively. We assume no indefinite loops for any packet;
transient loops are allowed. Detailed rules are in Appendix A.
Connecting to packet-interleaving model. Our one-packet
model excludes packet interleaving behaviors, and thus cannot
find all policy violations. To answer the question: when can
packet interleaving be safely ignored, we first formalize when
do the two models agree and what do they agree on.

Let us write E•(N) to denote the set of all closed (i.e., both
the initial and final states have only packets at locations Drop
or Exit) finite execution traces of the network N under the
packet interleaving semantics; similarly, we write Eone(N) to
denote the set of all finite closed network execution traces
under the one-packet model. We assume that each packet
has an unique ID, that is not modified by any NFs. Given a

network execution trace E = s0
lp0/lp1����! · · ·

lpn�1/lpn�����! sn 2 Eone

of a network N and a packet ID id, we define per-packet
trace for a packet with ID id, denoted E|id , as the sequence
[lpi1/lpi1+1 . . . lpik/lpik+1] obtained by keeping only those
lpi/lpi+1 pairs whose packet ID is id. Per-packet trace for
E 2 E• can be defined similarly.

It turns out that most network policies are checkable on
per-packet traces. For example, checking the policy “packets
from N1 cannot reach N2” can be achieved by examining
packet-traces for every packet in the network. Then, when are
the per-packet traces of the one-packet model the same as the
per-packet traces of the packet interleaving model?

Our key insight is that a wide range of network scenarios
are intrinsically order-preserving, where packets whose inter-
leaving matters (i.e., swapping their process orders induces
divergent network behavior) are processed in the same order
by all NFs in the network. For example, the state update of
connection-based stateful NFs is triggered by control pack-
ets of a connection, which are often sent to and processed
by the network in order (e.g., a syn packet is processed be-
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fore a synack packet). Thus, a network with connection-based
stateful NFs is order-preserving. As another example, mod-
ern network devices often integrate a pipeline of NFs where
packets traverse them in order. Networks with such stateful
devices on the edge of the network such that any packet only
traverses one of them is also an order-preserving network. The
formal definitions are in Appendix C. We can show that for
order-preserving networks, the packet interleaving model and
the one-packet model agree on per-packet traces. Formally:

Lemma 1 Given an order-preserving network N, 8E 2
E•(N), 9E 0 2 Eone(N), s.t. 8id, E|id = E 0|id .

The above lemma is the building block for proving the con-
ditional soundness and completeness results of our algorithm.

5 Network Policies

To strike a reasonable balance between efficiency and expres-
siveness, we use a subset of the linear temporal logic (LTL)
as our specification language. This language is expressive
enough to specify a wide range of policies as we show in §7
and also is more efficient for policy checking compared to
the full set of LTL formulas. Policies in this language can be
translated to equivalent ones in the computational tree logic
(CTL), thus allowing more efficient checking algorithms of
CTL to be used [14]. Further, a simple fragment of first order
logic can be used to reason about network states (details in
§6). We envision tools could be used to build policy templates
(e.g., [41]) or GUI (e.g., [18]), to ease the policy specifica-
tion process. We provide a high-level overview of our policy
specification language with details in Appendix B. We show
an example policy specification from §2. We end by a theo-
rem stating that the one-packet and packet interleaving model
agree on checking several practical policies.
Syntax. The syntax of our specification language is shown
below. Predicates, denoted q, include equality checks between
a packet field value, the current location of the packet, and a
state table value and a variable (a symbolic value).

Predicate q ::= f = x |loc= x |T [�!ei ] = x
Basic formula g ::= q |¬g |g1^ g2 |g1_ g2
Temporal formula r ::= g |Fg |fg |X(g! r)

|G(g! r) |g(g! r)
Policy P ::= 8����!xi 2 Di.r

We write g to denote basic formulas, which include predi-
cates and propositional connectives. A temporal formula is
denoted r, whose semantics is defined on an execution trace
E, assuming the first state of E is the current state. An execu-
tion trace E satisfies Fg if g is true on some future network
state in E. We do not have the U operator in LTL but in-
troduce two special operators f and g to specify properties
that should hold during the traversal of the current packet
in the network. More concretely, fg is the short-hand for
(loc 6= Drop^ loc 6= Exit)Ug. E satisfies fg if g holds on
some future network state in the current packet’s traversal.

gg is the short-hand for gU(loc= Drop_loc= Exit). It is
true on E if g is true on every network state in the current
packet’s traverse. Nested temporal formulas is only allowed
in the restricted forms: X(g! r), G(g! r) and g(g! r),
where X(g! r) states that starting on the next state g is true
entails r is true, and G(g! r) ( g(g! r), resp.) intuitively
asserts that whenever g holds (during the traversal of the cur-
rent packet, resp.) r should also hold. A network policy is a
closed temporal formula, universally quantified at the outer-
most layer. A network N satisfies a policy P, denoted N |= P
iff for all execution E starting from an initial network state of
N, E satisfies P. Formally definitions are in Appendix B.

The predicates here are customized to one-packet model in
that a packet field name uniquely identifies the packet in the
network state. By prefixing each packet field with a packet ID
(i.e., id. f ), we can express (equivalent) policies for networks
with packet interleaving.
An example. We show the specification of the dynamic ser-
vice chaining policy in §2. More examples can be found in §7.
For space constraint, we consider a sub-policy of the dynamic
service chaining policy: if a host is detected suspicious by
Light IPS then all of its future packets should be directed to
Heavy IPS. Suppose Light IPS keeps an internal state table
named susp which counts bad connection numbers from each
host, and a host is suspicious when the count is larger than
10. The top-level structure of the policy is 8x.G(g(x)! r(x)),
which specifies that for all host x whenever g(x) holds r(x)
should also hold. Here, g(x) = (src= x^ susp[x]> 10) spec-
ifies that the susp count of x is larger than 10 and the current
packet is from x; r(x) specifies that whenever a packet is sent
from x, it will eventually reach H (i.e. the location of Heavy
IPS) before being dropped or exiting the network. We can
specify this policy as follows.

8x 2 Dept. G(src= x^ susp[x]> 10!
G(src= x! f(loc= H)))

Model equivalence. We write N |=• P to denote that a net-
work N satisfies policy P in the packet interleaving model; we
use N |=one P to denote that N satisfies P in the one-packet
model. A policy Pone specified for the one-packet model can
be translated to a policy for the packet-interleaving model,
denoted P•. For example, the translated isolation polity in
Appendix F is 8id.G(id.loc = A! ((id.loc 6= B)U(id.loc =
Drop_ id.loc = Exit)). We prove the following theorem stat-
ing that checking a number of policies is not affected by
ignoring the packet interleaving (Appendix D).

Corollary 2 For all order-preserving networks N, N |=• P•

if and only if N |=one Pone, if P is the isolation, tag preserva-
tion, or tag-based isolation policy.

6 NetSMC Checking Algorithms

We view the verification of policies on a network as a model
checking problem. Our choice of the policy language in the
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S := {s|s not satisfies p}

SPre :=COMPUTEPREIMAGE(N, S)

SPre ✓ S? S := S[SPre

return S
yes

no

Figure 5: Generic SMC algorithm workflow to check G p

restricted LTL form allows us to use the more efficient CTL
model checking algorithm. In addition, to handle the large
state space we adopt the symbolic model checking (SMC)
framework for CTL. In this section, we first provide some
background of SMC to highlight key challenges in implement-
ing an SMC tool, and then discuss our approaches to address
those challenges.

6.1 Background on SMC

Symbolic model checking is a verification technique that has
been proven to be effective and efficient in many domains [14,
35]. Given a system model N and a policy P to be checked, a
generic SMC framework computes the set of system states S
that violates P (i.e. the set of states satisfying ¬P). Then the
algorithm checks whether an initial state is in the set S. If so,
a violation of the policy P is found; otherwise, P is verified.

To compute the set of states S satisfying ¬P, an SMC algo-
rithm computes the set of states that satisfies each sub-formula
of ¬P bottom-up, following the structure of ¬P. As an exam-
ple, Figure 5 shows the generic SMC algorithm to compute
the set of states that violates G p, i.e., from those states there
exists an execution trace of the system that violates p.

Initially, the algorithm computes the set of states violating
the sub-formula p. Then it repeatedly adds states that can
reach some state violating p. In each iteration of the loop, the
algorithm computes the set of states SPre that can transition to
a state in S in one step (i.e., SPre = {s|9s0 2 S.s! s0}, called
the pre-image of S). The algorithm converges when every
state in SPre is contained in S, and then returns the desired set.

To enable efficient SMC, we need a succinct symbolic en-
coding for a large set of states (e.g. S and SPre) while support-
ing efficient computation over them as shown in pre-image
computation and subset checking. In the following, we present
key components of our algorithm to address these challenges.

6.2 Symbolic Network States in EFO

To illustrate the intuition of our symbolic encodings, consider
the firewall example in Fig. 3, where we are interested in
checking whether packets from external networks can reach
the internal network. Based on the firewall model, a packet
from the outside is only allowed to go through if the tests
in the second rule return true. The tests return true for all

network states where an entry with value 1 exists in the table
Trust. That is, the network states of interest can be encoded
as 9x,y.Trust[x,y] = 1. Thanks to our policy specification,
any set of states generated in the checking of (violation of) a
policy can be encoded in such an existential form (see details
later in this section). Therefore, we can use the following
fragment of existential first-order logic (EFO) as our symbolic
state encoding. The existential quantifications are only at the
outermost level (we thus omit quantifiers) and we operate on
the inner formulas without quantifiers.

Atomic Predicates a ::= x 2 D | x 6= y
| loc = x | f = x | T [�!xi ] = y

Clauses b ::=
V

i ai
State Formulas f ::=

W
i bi

A set of network states is encoded using a state formula, writ-
ten f, in a DNF form. We say that a network state (lp,D) is
encoded by f, if there exists a substitution of concrete values
for all free variables in f such that (lp,D) satisfies f under
that substitution. We write Sat(f) to denote the set of net-
work states encoded by f. The atomic predicates, a, include
membership predicate, inequality check, and test for fields,
location and state tables. For the firewall example above, the
state formula f is (Trust[x,y] = 1), encoding all network states
where the firewall has an entry in Trust with value 1. As we
show in the following, the encoding of EFO enables efficient
computation of key components in SMC.

6.3 Computing Pre-Image

Next, we describe how to compute the state formula of the
pre-image of a symbolic state S, denoted Pre(S), (i.e. COM-
PUTEPREIMAGE). That is, given a state formula f, we need
to compute the state formula fPre, such that Sat(fPre) =
Pre(Sat(f)). We develop an algorithm that directly generates
fPre by transforming f based on the network model.
Notation. Before explaining the algorithm, we define some
auxiliary notations. Without loss of generality, we assume that
for each clause b in f, each field f appears at most once (any
formula can be rewritten to this form). We write var( f ,b)
to denote the variable being compared to f in b. That is,
var( f ,b) = x if f = x appears in b. If f does not appear in b,
var( f ,b) returns a fresh variable. We write b\a to denote the
formula resulted from removing the clause a from b.
Top-level algorithm. Our pre-image computing algorithm
(shown in Alg. 1) considers all three types of network transi-
tions (c.f. §4). The top-level function COMPUTEPREIMAGE
takes as inputs the network model and the state formula f and
returns fPre. The loop (lines 2-5) goes over every rule in every
network function to generate a pre-image that could reach
f using that rule. Function COMPUTEPRERULE accounts
for the network transitions under NF processing; Function
COMPUTELINK on line 6 computes the pre-image for link
traversal; Function COMPUTELASTPKT on line 7 computes
the pre-image when f represents the state where a new packet
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Algorithm 1 Computing the pre-image of a state formula.
1: function COMPUTEPREIMAGE(N, f)
2: for all NF in the network do

3: (L,
�!
T ,R) NF

4: fNF :=
W

l2L,r2R
W

b2fr((loc= l)^b)
5: where fr := COMPUTEPRERULE(r, f)
6: flink := COMPUTELINK(f)
7: fpkt := COMPUTELASTPKT(f)
8: return

W
NF fNF_fpkt _flink

9: function COMPUTEPRERULE(r, f)
10: t) c r
11: fc:= COMPUTEPRECMD(c, f)
12: return

W
b2fc(

V
at2t trans(at)^b)

13: function COMPUTEPRECMD(c, f)
14: match c with

15: | a) return COMPUTEPREACTION(a, f)
16: | u) return COMPUTEPREUPDATE(u, f)
17: | c1,c2 ) f2 := COMPUTEPRECMD(c2, f)
18: return COMPUTEPRECMD(c1, f2)
19: function COMPUTELASTPKT(f)
20: f0:=False
21: for all b in f do

22: b0 := b\loc=var(loc,b)
23: for all f = x in b do

24: b0 := b0\ f=x

25: for all ingress location l do

26: b1 := (var(loc,b) = l)^b0 ^ (loc= Drop)
27: b2 := (var(loc,b) = l)^b0 ^ (loc= Exit)
28: f0 := f0 _b1_b2

29: return f0

enters the network. The algorithm returns the disjunction of
all formulas for each possible transition. Note that the re-
turned state formula is still in EFO, which enables us to only
consider EFOs for state containment. Next, we describe two
key functions. We omit the third as it is similar.
Packet transitions. Function COMPUTELASTPKT computes
the pre-image when a new packet comes to the network. It
computes the pre-image of each clause b in f, and returns
the disjunction of all computed pre-images. If a network state
((l0,pkt0),D) is the result of the transition, then the state before
this transition has the same state tables but a different packet.
Therefore, all constraints on packet fields and locations are
removed from b (line 22-24) as they do not apply to the
packet in the pre-image. Furthermore, the location of the
packet in the pre-image must be either Drop or Exit, and l0
must be an ingress location. Thus, constraints loc = Drop,
loc = Exit are added, the same for var(loc,b) = l for each
ingress location l (line 26, 27).
NF transitions. The function COMPUTEPRERULE iteratively
computes the pre-image fc under the actions and updates in r

Algorithm 2 Sub-functions of computing the pre-image.
1: function COMPUTEPREACTION(a, f)
2: match a with

3: | fwd(e)) (ge,xe) := F(e)
4: return

W
b2f b\loc^ge^ (var(loc,b) = xe)

5: | drop)
6: return

W
b2f b\loc^(var(loc,b) = Drop)

7: | modify( f , e)) (ge,xe) := F(e)
8: return

W
b2f b\ f ^ge^ (var( f ,b) = xe)

9: function COMPUTEPREUPDATE(u, f)
10: T[�!ei ]:=e u
11: (gei ,xei) := F(ei) for all ei
12: (ge,xe) := F(e)
13: g :=

V
i gei ^ge

14: for all b j in f do

15: f j := COMPUTECLS(u, bi, [(gei ,xei)], (ge,xe))
16: return

W
i
W

b2fi g^b
17: function COMPUTECLS(u, b, [(gei ,xei)], (ge,xe))
18: let tList be the list of state tests T (�!x ) = y in b
19: match tList with

20: | nil) return b
21: | h::hs) f0 = COMPUTECLS(u, b\h)
22: T[�!ei ]:=e u, (T (�!x ) = y) h
23: b0 := (�!x =�!xei)^ (y = xe)
24: b j := h^ (x j 6= xe j) for j = 1, ..,m
25: return

W
b02f0((b0^b0)_

W
j(b j ^b0))

(line 9 in Alg. 1). The pre-image under rule r is obtained by
adding constraints of the tests t in r using the helper function
trans (not shown due to space) which translates each atomic
test into a clause. Key sub-routines are summarized in Alg. 2.

Function COMPUTEPREACTION computes the pre-image
of an action a. Consider the case where a is modify( f , e).
The semantics of modify require the value of field f be mod-
ified to the value of e. Thus, the algorithm first considers
the value returned by the expression e using the helper func-
tion F , which returns a clause ge together with a variable
xe given expression e. The intuitive meaning is that if ge
is satisfied, then the value of e is equal to xe (F’s formal
definitions is omitted). As an example for e = (T [src,dst]),
ge =(src= y1^dst= y2^T [y1,y2] = y3), and xe = y3. Then
the algorithm adds the constraint ge and var( f ,b) = xe. Fur-
thermore, since the value for f is modified, the constraints
associated with f from b can be removed as they do not apply
to the pre-image.

Function COMPUTEPREUPDATE computes the pre-image
under an update T [�!ei ] := e; inc and dec are similar. The
function computes the pre-images for each clause b using
the sub-procedure COMPUTECLS, and returns the union of
them. Function COMPUTECLS recursively enumerates all
possible effects of u to b to compute its pre-image. More
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concretely, the function considers two cases that u may impact
a constraint T (�!x ) = y in b: 1) T (�!x ) = y is updated by u,
and 2) T (�!x ) = y is not updated by u. In the first case, it must
be the cases that �!x = �!xei and y = xe, where xei denotes the
value read from ei (b0 shown in line 23). In the second case,
xi 6= xei for at least one xi (line 24). We obtain the pre-image
of b as a disjunction of the two case shown in line 25.

6.4 Containment of Network States

As shown in Figure 5, we need an efficient approach to check
the containment of two sets of network states. Given two state
formulas f1 and f2, we need to check if Sat(f1) ✓ Sat(f2).
This is equivalent to checking 9�!x .f1 ) 9�!y .f2, where �!x
(�!y , resp.) denotes all free variables in f1 (f2, resp.). While
this can be solved using a general-purpose SMT solver, as we
show in the evaluation section, this is quite inefficient.

Instead, we observe that the state containment problem
of EFO is a variant of the query containment problem well-
studied in database theory [11]. In short, query containment
aims to determine if the result of a database query q1 is con-
tained in that of q2 for all database instances I. To make the
connection clearer, consider the state formula f1 = (src =
x^dst= y^Trust[y,x] = 1). This formula can be viewed as
the following (conjunctive) query on a database with three
tables: src, dst and Trust. q1(x,y) :�src(x),dst(y),Trust(y,x)

Each concrete network state can be viewed as a database
instance with the schema defined by packet fields and state
tables. Furthermore, each state formula f is a union of con-
junctive queries, where each clause b in f is a conjunctive
query with inequalities between variables.

In database theory, to determine whether a conjunctive
query q1 is contained in another conjunctive query q2, it is
equivalent to checking whether there is a homomorphism from
q2 to q1, i.e. a function h that maps variables in q2 to variables
and constants in q1, such that for all R(x1,x2, ..) in q2, there
is an R(h(x1),h(x2), ..) in q1 [11].

However, there are still a few challenges in applying the
algorithm to our problem. First, as shown in [29], when
there are inequalities, there may not exist a homomorphism
even when f1 is contained in f2. For example, f1 = (x1 6=
x3^T [x1,x2] = 1^T [x2,x3] = 1) is contained in f2 = (y1 6=
y2 ^ T [y1,y2] = 1), but there is not homomorphism from
f2 to f1. Second, in query containment problem a variable
ranges over a continuous domain (e.g. rational numbers) [29],
while in network verification a variable can only take dis-
crete values such as IP addresses. As a result again, there may
not exist a homomorphism, even if a set of states encoded
in f1 is contained in the set of states encoded in f2, E.g.,
f1 = (x 2 {0}^ y 2 {0}^T1[x] = 1^T1[y] = 0) is contained
in f2 = (T2[z] = 0) since no states are encoded by f1, but no
homomorphism exists.

To address the first challenge, we break each clause in f1
into atomic clauses, which has been shown to handle inequal-
ities [29]. We call a clause b an atomic clause w.r.t. a state

formula f2, if all variables in b are distinct, and for all vari-
ables x in b and y in f2, the domain of x is either contained
in or disjointed with the domain of y. For the first example
above, f1 can be break into the following three atomic clauses,
namely, b1 = (x1 6= x2 ^ x2 6= x3 ^ x1 6= x3 ^T [x1,x2] = 1^
T [x2,x3] = 1), b2 = (x1 6= x2^T [x1,x2] = 1^T [x2,x2] = 1),
and b3 = (x1 6= x3 ^ T [x1,x1] = 1^ T [x1,x3] = 1). We see
that there is a homomorphism from f2 to b3. For the sec-
ond challenge, we check for emptiness of clauses, and show
that given a state formula f2 and an atomic clause b w.r.t.
f2, Sat(b)✓ Sat(f2) if and only if there is a homomorphism
from some b0 2 f2 to b, or Sat(b) is empty. Now we can ver-
ify the containment in the second example above. We obtain
our algorithm of checking containment by putting these two
pieces together (Alg. 3).

Algorithm 3 Checking containment
1: function CHECKCMT(f1, f2)
2: for all b in f1 do

3: let [b0, ..,bk] be the set of atomic clauses w.r.t. f2
obtained from b

4: for all i = 0 to k do

5: if ISEMPTY(bi) then continue

6: if there is no homomorphism from b0 to bi for
all b0 2 f2 then

7: return False
8: return True

We prove the correctness of our algorithm w.r.t. the one-
packet semantics: if NetSMC says policy verified, then all
possible executions of the network satisfy the policy; and if
NetSMC says policy violated, then there exists an execution
that violates the policy. Formally:

Theorem 3 (Correctness) Given a stateful network N and
a policy P, NetSMC returns True if and only if N satisfies the
policy P under the one-packet model.

The above theorem uses our one-packet semantics. Com-
bined with theorems like Lemma 1 , the verification results of
our tool on a large set of practical scenarios are correct w.r.t.
the general packet interleaving semantic model as well.

7 Evaluation

We implement a prototype tool NetSMC in Python based on
the algorithms above. We evaluate NetSMC and show that:
• NetSMC can scale to large-size networks and is orders of

magnitude more efficient than existing approaches (§7.1);
• Our custom algorithm on containment checking in

NetSMC is effective and is 42 times more efficient than
naive approaches based on general-purpose solvers (§7.1);

• NetSMC can check a wide range of network policies in
various practical network scenarios, which can not be easily
supported in alternative tools (§7.2).
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Figure 6: Scalability with NF complexity
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Figure 7: Scalability with network complexity.

Evaluation setup: We ran NetSMC on a server with 20 cores
(2.8GHz) and 128GB RAM. We first evaluate NetSMC’s scal-
ability by varying the complexity of NFs, topologies, and
policies (§7.1). For comparison, we use the open-source im-
plementation of VMN [41], a state-of-the-art stateful network
verification tool. We also demonstrate the effectiveness and
expressiveness in a range of network scenarios using real
NFs based on emulation in Cloudlab [43] (§7.2). We use pf-
Sense [3] as stateful firewalls and NATs, HAProxy [2] as load
balancers. For the case study that required dynamic rule in-
stallation (e.g., path pinning), we used the Mininet-based em-
ulation with POX [34] as the SDN controller. We ensure high-
fidelity of NetSMC NF models using Alembic [38], which
can automatically synthesize NF models from NF implemen-
tations. For NFs that are not readily available from Alembic
(e.g., POX programs), we manually translate NF programs
into equivalent NetSMC models.

7.1 Scalability

NF complexity. Stateful NFs may implement complex func-
tionalities using multiple configuration rules. To evaluate the
scalability of NetSMC w.r.t. the complexity of NFs, we con-
sider three types of stateful NFs: (1) a stateful firewall, (2) a
load balancer, and (3) a content cache. To create NF config-
urations with varying complexity, we connect n hosts and n
servers to each NF, and for each pair of hosts and servers, we
add a rule to the NF. For example, for the stateful firewall, we
add rules to limit access from servers to hosts.

Fig. 6 shows the runtime on verifying isolation of a server
to a host. NetSMC is orders of magnitude faster than VMN on
all tested NFs. Particularly, for the stateful firewall experiment,
VMN takes 1477 seconds to verify the policy with 300 hosts,
while NetSMC only takes 51 seconds (28⇥). In the load
balancer experiment, VMN takes 2693 seconds with 400 hosts
while NetSMC only takes 0.03 seconds. We observe similar
speedup in the cache experiment.

Topology complexity. We consider the fattree [4] topology
and Ai3 and Sprint, from Topology Zoo [30]. For fattree, we
create a range of topologies by varying the number of ports
per switch. For Ai3 and Sprint, we systematically extend
each switch with multiple switches to generate topologies
with varying size. For each topology with n switches, we add
additional 2n/3 stateful NFs where each switch is attached
to at most one stateful NF. We use each tool to verify the
isolation policy of two hosts in each network. Since VMN
critically relies on the slicing technique, we slice the flow-
space of all tested networks before applying both tools.

Fig. 7 shows the runtime of verification tools w.r.t. the num-
ber of stateful NFs in the network. We make the following ob-
servations. First, NetSMC is at least two orders of magnitude
faster than VMN. Specifically, VMN spends 1072 seconds
on the fattree network with 8 stateful NFs, while NetSMC
only uses 5 seconds (200⇥ faster). Furthermore, VMN cannot
scale to larger networks within 12 hours, while NetSMC can
successfully verify the desired policy for networks with 147
stateful NFs in half an hour. For Ai3 and Sprint network, we
see similar performance speedup. For example, VMN uses
2011 seconds on the Ai3 network with 34 stateful NFs while
NetSMC only uses 11 seconds (175⇥).
Effectiveness of customized algorithm. To evaluate the ben-
efit of our custom algorithms, we consider an alternative ap-
proach by using Z3 to solve the containment problem of
network states in NetSMC (shown as NetSMC/Z3 in Fig. 7).
We observe that our custom algorithm on containment check-
ing significantly improves the scalability. When using Z3 to
check containment, the tool uses 1844 seconds to verify the
policy for the fattree network with 48 stateful NFs, which is
16⇥ slower than our custom approach. On Ai3 and Sprint, we
measured 42⇥ and 25⇥ speedup respectively.
Policy complexity. To evaluate the scalability of NetSMC
w.r.t. the complexity of the policy to be checked, we use
NetSMC to check a range of service chaining policies with
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varied number of NFs on the chain. Since VMN’s implemen-
tation does not support this type of policy, we consider the
variant of NetSMC that uses Z3 for containment checking for
comparison. Fig. 8 plots the results. First, we observe that
NetSMC can scale up to reasonably large policies. Particu-
larly, NetSMC can check the service chaining policy with 20
NFs in 20 minutes. Second, we observe again that our custom
algorithm on containment checking significantly improves
the performance: on 12 NFs, our custom model checking
algorithm is 23⇥ faster than the Z3 variant.
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Figure 8: Scalability with policy complexity.
Comparison with general-purpose model checkers. To
evaluate the benefit of our custom symbolic model check-
ing algorithm, we further compare NetSMC with a classi-
cal BDD-based symbolic model checker NuSMV [12] and
a SMT-based model checker Cubicle [15]. Since NuSMV
cannot effectively model the state tables using small BDD
structures, we model state tables with fixed sizes in NuSMV.
We repeat the stateful firewall experiment as described above.
With table size 16, NuSMV takes 1163 seconds on verify the
reachability policy, while NetSMC only uses 0.015 seconds
without size constraint on the state tables. NetSMC is 750X
faster than Cubicle. The result confirms that our encoding of
symbolic states and custom algorithms for stateful networks
are more efficient than general-purpose encodings and tools.

7.2 Effectiveness and Expressiveness

Red-blue team exercise: To validate the effectiveness of
NetSMC, we conduct a red-blue team exercise in a range
of network scenarios using real NFs. In each scenario, the
red team (Author 2 and Author 3) set up a network with
intended policies in CloudLab and then delele/modify NF
rules (which are kept secret from the blue team) to introduce
misconfiguration. The blue team (Author 1) uses NetSMC to
check intended policies on the network, so as to identify and
fix the misconfiguration.
• Blocking hosts behind NAT [19]: The red team sets up
a network with two subnetworks (N1 and N2) and two NFs
using pfSense with the intended policy to block a host h1 in
N1 from reaching another host h2 in N2. However, using
NetSMC, the blue team identifies a violation that packets
from h1 can still reach h2. The root cause is that the red team
mistakenly adds a NAT rule in the first NF such that h1’s
address is translated and bypassing the firewall rule installed
on the second NF blocking h1’s address. The blue team fixes
this misconfiguration by adding the firewall rule on the first

Time
Policy & network scenario Verification Bug find
Conditional reach.: A stateful firewall
with ACL rules.

0.06s 0.03s

Data isol. [41]: A content cache with
a client and a server.

2.23s 0.0007s

Pipeline [41]: A stateful firewall with
two hosts and servers.

0.001s 0.0006s

Flow affinity: As described in Fig. 1b. 0.19s 0.04s
Dynamic service chaining: As de-
scribed in Fig. 1c.

0.1s 0.008s

Reachability: Two cascaded NATs [1]
(Outside can reach the inside server).

0.001s 0.005s

Tag-based isol.: Network as in Fig. 1c.
(A packet labeled by a specific tag
should not pass a specific MB).

0.04s 0.94s

Tag preservation: Network as in
Fig. 1c. (A packet’s tag labeled by
a MB should be not be modified).

0.03s 0.98s

NAT consistency: If a NAT modifies
a packet’s port then all future packets
in the flow should have the same port.

0.09s 0.078s

Table 2: Example policies supported by NetSMC.

NF and NetSMC verifies the policy.
• Opposite rules in firewalls: The red team sets up a network
with two subnetworks (N1 and N2) and two stateful firewalls
in each subnetwork (fw1 in N1 and fw2 in N2) to protect the
subnetworks. The intended policy is to allow N1’s packet to
reach N2. The blue team uses NetSMC to check this policy
and find a violation that packets from N1 is allowed by fw1
but denied at fw2. The blue team fixes the misconfiguration
by removing the rule blocking N1 on fw2. Using the new
model after the fix, NetSMC successfully verifies the policy.
• Consistent load balancing: The red team configures
HAProxy to enforce the policy that packets from the same
host should always be load balanced to the same server. Us-
ing NetSMC, the blue team finds a violation where one flow
is sent to server 1 while another is sent to server 2. Checking
the configuration, the blue team identifies that HAProxy is
misconfigured in the “round robin” mode thus violating the
policy. The blue team then reconfigures the LB in the “Source”
mode. NetSMC successfully verifies the desired policy.
• Path pinning: The red team sets up the network scenario
in Fig. 1d with two hosts for the Department and Internet.
To enforce the path pinning policy, the red team uses a POX
controller to program the forwarding rules on s1. The blue
team uses NetSMC to check the path pinning policy, which
finds a violation where the first packet from Department is
sent to FW1 but the return packet is sent to FW2. The root
cause is that the controller mistakenly installed a wrong rule
on the switch for the return packets. The blue team fixes the
problem by using consistent rules on the controller. Then,
NetSMC then successfully verifies the policy.
Policy expressiveness. We show a wide range of policies that
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can be specified and checked using NetSMC, summarized in
Table 2. For each case, we simulate networks in NetSMC
as described in the table and introduce misconfiguration by
deleting/modifying rules in NFs. NetSMC identifies the mis-
configuration in all cases and can verify all policies after
fixing the bugs. We report the time of verifying the policy or
finding bugs. We can see that NetSMC significantly expands
the scope of efficiently verifiable network policies. Today’s
stateless verification tools cannot model any network sce-
narios considered in the table, and existing stateful network
verification tools [5, 41] cannot specify some of the policies
(summarized in Appendix D).

8 Limitation and Discussion

One-packet model: NetSMC is built on top of the one-packet
model, and thus may not find violations caused by packet
interleaving. For instance, in the second example of the red-
blue team exercise, if fw1 drops all packets from N1 once
receiving packets from N2, while fw2 allows packets from N1
to reach N2 after seeing packets from N2 to N1, then NetSMC
declares packets from N1 cannot reach N2. However, the
following violating trace is missed by the one-packet model:
first, a packet p1 from N1 passes fw1, then fw2 processes
packet p2 from N2 to N1. Next, fw2 allows p1 to reach N2.
NF Model: NetSMC only supports header matching, state ta-
ble checking, and simple counting; more complex operations,
such as computing average values, are not supported.
Policy: Our policy language cannot express policies need-
ing arbitrary quantification, nesting of temporal operators, or
generic until path formulas. For instance, the policy that “at
some time in the future, a packet from h1 to h2 is delivered”,
F(loc = h1! f(loc = h2)), is beyond our scope.
Network failures: Currently NetSMC does not model net-
work failures directly and can only check policies in the pres-
ence of failure by enumerating each failure scenario and run
NetSMC in each case, which may not be efficient.

9 Related Work

Our stateful network model is motivated by existing work on
network modeling and programming languages [6, 7, 21, 28,
36, 37, 52]. Our NF model shares key characteristics with the
models in NetEgg [52] and SNAP [7].

There is a rich body of work for testing and verifying for-
warding behaviors in stateless networks [23, 25–27, 31, 32,
46, 49, 50, 53, 53, 54]. While those work can efficiently check
a number of policies such as reachability and loop freedom,
it is nontrivial to extend those work to support stateful data
planes, which are the target of our work.

For example, Header Space Analysis (HSA) [26] models
each packet as a point in the high-dimension space of packet
headers and each switch as a transfer function from a subspace
into another. Based on symbolic reasoning of the transfer func-
tions, HSA can efficiently verify policies such as reachability
and loop freedom. Adapting HSA for stateful network veri-

fication would need to introduce some notion of state to the
transfer function, which would require a complete redesign
of the verification algorithm.

Veriflow [27] uses an alternative “trie” like encoding and
focuses on checking policies incrementally when network
configurations change. Whenever a rule change occurs on a
switch, Veriflow computes the packet space that is influenced
by the change, and only applies verification to the delta part.
Again, adding state to the trie structure and its associated
algorithms is non-trivial.

NoD [31] is based on a generic Datalog framework to
check reachability policies, where both networks and policies
are encoded in Datalog. NoD can potentially be extended to
model stateful network functions. However, Datalog is limited
in its expressive power in terms of network policies; temporal
properties such as flow affinity and dynamic service chaining
cannot be easily specified. It is also unclear if such a stateful
extension (if exists) scales.

Our work is closely related to recent efforts on stateful data
plane testing and verification. Buzz [18] and SymNet [45]
generate test cases for stateful networks based on symbolic
execution. VMN [41] verifies isolation properties based on
SMT encodings. Alpernas et al. present abstractions to check
isolation properties [5]. Those projects, except VMN, only
support a subset of our policies. We cannot express generic
policies involving past operations; while VMN cannot ex-
press some policies NetSMC supports. Our approach is also
different in the network model and we build a highly custom
symbolic model checker to improve the efficiency.

There are several complementary proposals on verify-
ing control planes: Batfish [20], ERA [17], ARC [22] and
Minesweeper [9] analyze routing control planes. NICE [10],
VeriCon [8], SDNRacer [16], FlowLog [39] and Kuai [33]
target SDN controllers. Work on verifying firewalls [24, 40,
51, 55] can handle statefulness in firewalls, but it is not clear
whether those techniques can generalize to handle more ex-
pressive network functions and policies.

10 Conclusions

This paper explores a different design space in building effi-
cient verification tools for stateful networks. We identify key
domain-specific insights to define a compact model of stateful
networks, customize policy specifications, and develop effi-
cient custom symbolic model checking algorithms for verifica-
tion. We implement NetSMC and show that it achieves orders
of magnitude speedup compared to alternative approaches,
while supporting a wide range of policies.
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Appendix

A Semantics of Stateful Network Model

The top-level transition rules are of the form: s! s0. We use
a number of auxiliary transitions summarized below:

JeKlp;D = v Expression evaluation
JatKlp;D = b Atomic test evaluation
JtKlp;D = b Test evaluation
c; lp;D! lp0;D0 Command evaluation
r; lp;D! lp0;D0 Rule evaluation
NF; lp;D! lp0;D0 NF evaluation

The semantic rules of our stateful network model are sum-
marized in Figure 10, Figure 11, and Figure 9.

s! s0

NET-TRANS-NF
NF = (L,_,_) l 2 L

lp = (l,pkt) NF;(l,pkt);D! (l0,pkt0);D0

(lp,D)! ((l0,pkt0),D0)

topo(l) = l0

((l,pkt),D)! ((l0,pkt),D)
NET-LINK

l = Drop/Exit l0 2 IngressLocs
((l,_),D)! ((l0,pkt),D)

NET-PACKET

Figure 9: One-packet semantics of network execution.
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JeKlp;D = v

PICKFROM
v 2 D

JpickFrom(D)Klp;D = v

FIELD
lp = (_,pkt) pkt. f = v

J f Klp;D = v

STATE-TABLE
8i,JeiKlp;D = vi dT = D(T ) dT (

�!vi ) = v

JT [
���!
i = ei]Klp;D = v

JatKlp;D = b

TEST-LOC-TRUE
lp = (l,_)

Jloc= lKlp;D = True

TEST-LOC-FALSE
lp = (l0,_) l 6= l0

Jloc= lKlp;D = False

TEST-FIELD-TRUE
J f Klp,D 2 D

J f 2 DKlp;D = True

TEST-FIELD-FALSE
J f Klp,D 62 D

J f 2 DKlp;D = False

TEST-TABLE-TRUE

JT [
���!
i = ei]Klp;D = v

JT [
���!
i = ei] = vKlp;D = True

TEST-TABLE-FALSE

JT [
���!
i = ei]Klp;D = u u 6= v

JT [
���!
i = ei] = vKlp;D = False

TEST-NEG

J¬atKlp;D = ¬JatKlp;D

JtKlp;D = b

TEST-SEQUENCE-TRUE

Jt1Klp;D = True

Jt1, t2Klp;D = Jt2Klp;D

TEST-SEQUENCE-TRUE

Jt1Klp;D = False

Jt1, t2Klp;D = False

Figure 10: Semantics of network function.

B Policy Semantics

We define the semantics of open formulas r over a tuple
(V,E,N) (Figure 2), where V is the valuation function of all
free variables appearing in r, E is an infinite network execu-
tion trace (i.e., a sequence of network states), and N is the
network configuration. We write Ei to denote the i-th state in
E and E[i..] as the suffix of E starting at the i-th state, Simi-
lar to the semantic rules, we omit the network configuration
N for simplicity of presentation. (V,E) satisfying r, written
(V,E), |= r is formally defined below.

• (V,E) |= g iff E0 |= g in the standard way.
• (V,E) |= Gr iff (V,E[i..]) |= r for all i� 0
• (V,E) |= gr iff there is an i� 0 where Ei = (lp,D), s.t.

1) lp = (Drop,_) or lp = (Exit,_) and
2) for all j < i, (V,E[ j..]) |= r.

c; lp;D! lp0;D0

UPDATE
JeKlp;D = v 8i,JeiKlp;D = vi

dT = D(T ) d0T = dT [
�!vi 7! v] D0 = D[T 7! d0T ]

T [
���!
i = ei]:=e; lp;D! lp;D0

INC
8i,JeiKlp;D = vi dT = D(T )

d0T = dT [
�!vi 7! dT (

�!vi )+ v] D0 = D[T 7! d0T ]
inc(T [

���!
i = ei],v); lp;D! lp;D0

DEC
8i,JeiKlp;D = vi dT = D(T )

d0T = dT [
�!vi 7! dT (

�!vi )� v] D0 = D[T 7! d0T ]
dec(T [

���!
i = ei],v); lp;D! lp;D0

ACTION-FORWARD
lp = (l,pkt) JeKlp;D = v lp0 = (v,pkt)

fwd(e); lp;D! lp0;D

ACTION-DROP

drop;(l,pkt);D! (Drop,pkt);D

ACTION-MODIFY
lp = (l,pkt) JeKlp;D = v pkt0 = pkt[ f 7! v]

modify( f ,e); lp;D! (l,pkt0);D

SEQUENCE

c1; lp;D! lp0;D0

(c1;c2); lp;D! c2; lp0;D0

r; lp;D! lp0;D0

RULE
JtKlp;D = True c; lp;D! lp0;D0

t) c; lp;D! lp0;D0

NF; lp;D! lp0;D0

NF
l p = (l,pkt)

l 2 L r j 2 R r j; lp;D! lp0;D0

(L,
�!
Tj ,R); lp;D! lp0;D0

Figure 11: Semantics of network function (cont.).

• (V,E) |= Fg iff (V,E[i..]) |= g for some i
• (V,E) |= fg iff there is an i� 0 s.t. 1) Ei |= g and 2) for all

j < i where E[ j] = (lp,D), lp 6= (Drop,_) and lp 6= (Exit,_)
• (V,E) |= Xr iff (V,E[1..]) |= r.
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C One packet vs. packet interleaving model

We identify sufficient conditions under which our one packet
model is equivalent to the interleaving model considered
in [41] w.r.t. a set of policies. First, we give the formal se-
mantics of the interleaving model; then we show sufficient
conditions under which our one packet model is equivalent to
the interleaving model, followed by our proofs establishing
the equivalence.

Executions in packet interleaving network model: A net-
work state in the packet interleaving model is a pair (Q,D),
where Q is the set of packets buffered at each network loca-
tion and D is the valuation function of state tables as usual.
The network state of the one-packet model is a special case
where |Q| = 1. We use ID(p) to denote the ID of packet p
and ID(lp) has its natural meaning. The top-level transition
rules of the packet interleaving model are given in Fig. 12,
where the three rules generalized the corresponding rules in
the one packet model. Each transition in the transition system

of the packet-interleaving model is of the form of s
lp/lp0
===)NF s0,

where lp/lp0 denote the (located) packet that is processed by
the transition and lp (lp0, resp.) denote the packet before (after,
resp.) the transition, NF denotes the NF that processes that
packet or null (which we typically ignore) if the packet is
transmitted by a link or injected into the network.

A network execution trace E is a sequence of transitions
s0 ) s1 ) · · ·) sn. A closed network execution trace is a
finite network execution where the both initial state s0 and
the final state sn contain no packets buffered at any location
except for Drop and Exit. We use E•(N) to denote the set
of all closed network execution traces of a given network N
under the packet interleaving semantics; similarly, we use
Eone(N) to denote the set of all closed network execution
traces under the one-packet model. We assume that there is
no indefinite loops for any packet traversal; transient loops
are allowed to appear.

Formalization of processing-order preserving: We give
necessary definitions first before we formalize the processing-
order preserving condition.

Definition 4 (Non-conflict) Given NF, lp1, lp2, we say that
lp1 is non-conflicting with lp2 at NF if 8D0,D1,D2, lp01, lp

0
2

s.t. NF; lp1;D0 ! lp01;D1 and NF; lp2;D1 ! lp02;D2, 9D01 s.t.
NF; lp2;D0! lp02;D01 and NF; lp1;D01! lp01;D2.

We define processing-order preserving based on packet
orders. Particularly, given a set of packets, a packet order� is
a strict total order on the IDs of the packets. Given two located
packets lp1 and lp2, we denote lp1 � lp2 if ID(lp1)� ID(lp2).

Definition 5 (Processing-order preserving trace) Given a
network N, a network execution trace E = s0 =) . . .=) sn (un-
der the packet interleaving model) in E•(N), a packet order
�, E is processing-order preserving (or order-preserving in

(Q,D) l p/l p0
===)NF (Q,D0)

NET-TRANS-NF
NF = (L,_,_)

l 2 L pkt 2 Q(l) NF;(l,pkt);D! (l0,pkt0);D0
Q0 = Q[l0 7! (Q(l0)[{pkt0})][l 7! (Q(l)\{pkt})]

(Q,D) (l,pkt)/(l0,pkt0)
========)NF (Q0,D0)

NET-LINK
topo(l) = l0 pkt 2 Q(l)

Q0 = Q[l0 7! (Q(l0)[{pkt})][l 7! (Q(l)\{pkt})]

(Q,D) (l,pkt)/(l0,pkt0)
========)null (Q

0,D)

NET-TRANS-IN
l 2 IngressLocs Q0 = Q[l 7! (Q(l)[{pkt})]

(Q,D) �/(l,pkt)
=====)null (Q

0,D)

Figure 12: Semantics of packet interleaving execution.

short) under � if 8lp1, lp2,NF such that lp2 � lp1 and lp1
is conflicting with lp2 at NF, there do not exist transitions

s j
lp1/lp01===)NF s j+1 and sk

lp2/lp02===)NF sk+1 in E where k � j+1.

We call a network N processing-order preserving if there
is a packet order � such that for all E 2 E•(N), E is order
preserving under �. Some example processing-order preserv-
ing networks includes: (1) a network with no stateful NFs; (2)
a network where any single packet only traverses one stateful
NF; (3) a network with connection-based NFs where packets
in a connection are delivered in order.

Equivalence between one packet model and packet inter-

leaving model: Given a closed network execution trace

E = s0
lp1/lp2===) · · ·

lpn�1/lpn=====) sn in E•(N) of a network N and
an ID id, we call the per-packet trace of id, denoted E|id , as
the sequence [lpi1/lpi1+1 . . . lpik/lpik+1] obtained by project-
ing all lpi/lpi+1 pairs (except for the first pair corresponding
to the NET-TRANS-IN rule) with the ID id from the sequence
[lp1/lp2 . . . lpn�1/lpn]. We define the per-packet trace for exe-
cutions in the one-packet model similarly.
Lemma 1 Given an order-preserving network N, 8E 2
E•(N), 9E 0 2 Eone(N), s.t. 8id, E|id = E 0|id .
PROOF. Let � be the packet order satisfying the

order-preserving of N. Suppose E = s0
lp0/lp00===) s1

lp1/lp01===)

, ...,
lpn�1/lp0n�1======) sn. We define the out-of-order index I of

E as number of disordered transitions w.r.t. �. Formally
I(E,�) = Âi<n |{ j| j < i, lpi � lp j}|.

We prove this lemma by induction over the out-of-order
index of E.
Base case: Since I(E,�) = 0, we know that lpi 6� lpi�1 for all
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i� 1, i.e., ID(lpi�1) = ID(lpi) or ID(lpi�1)� ID(lpi). Since
E is closed, there is an execution trace (lp0,D0)! (lp1,D1)!
. . .! (lpn,Dn) (if some lpi is empty, simply ignore that state)
in the one-packet model where Di is the table valuation in si,
and the per-packet trace for all packets are the same.
Inductive case: We have the inductive hypothesis: For all
E 2 E•(N) where I(E,�)  k, there is an execution trace
E 0 2 Eone(N) s.t. E|id = E 0|id . Now consider the case where
I(E,�) = k+ 1. Since I(E,�) > 0, there exists i > 0 such

that si�1
lpi�1/lp0i�1======) si

lpi/lp0i===) si+1 and lpi � lpi�1. We claim

that there must exists a network state s0i such that si�1
lpi/lp0i===)

s0i
lpi�1/lp0i�1======) si+1. This is easy to see when the transition

si
lpi/lp0i===) si+1 is obtained from rule NET-LINK or NET-TRANS-

IN. Suppose the transition is from NET-TRANS-NF and the

NF that processes lpi on si is NF. If transition si�1
lpi�1/lp0i�1======) si

is not from NET-TRANS-NF or does not correspond to the
processing NF NF, the claim is also obvious. When both
transitions correspond to the process of the packets on NF,
from the processing-order preserving definition, lpi must be
non-conflicting with lpi�1 at NF. Thus from Lemma 6 the
claim is still true. By swapping the processing of lpi�1 and
lpi we obtain an order-preserving execution trace E 00 from E
such that E 00|id = E|id for all id and I(E 00,�) = k. From the
inductive hypothesis, there is an execution trace E 0 2 Eone(N)
s.t. E 0|id = E 00|id = E|id for all id. ⇤

Lemma 6 For all network N, located packets lp1, lp
0
1, lp2, lp

0
2,

NF 2 N, and network states s1,s2,s3 of N, if s1
lp1/lp01===)NF

s2
lp2/lp02===)NF s3 and lp1 is non-conflicting with lp2 at NF, then

9s02 s.t. s1
lp2/lp2===)NF s02

lp1/lp01===)NF s3.

PROOF. Immediate from definition of non-conflicting.

D Soundness and Completeness of Checking

Per-Packet-Trace Policies

From Lemma 1, we can show that checking a range of poli-
cies involving per-packet traces is equivalent between the
packet interleaving network model and the one packet model
provided that network is processing-order preserving.

Per-packet-trace policies. We define per-packet-trace poli-
cies (for the one-packet model) as follows.

jone ::= 8����!xi 2 Di.G(g1! gg2) |8
����!
xi 2 Di.G(g1! g2)

A translation function, denoted h·i, turns a formula for the
one-packet model to a corresponding formula for the packet-
interleaving model. It is defined as follows, which essentially
introduces a packet ID into the formula. We only show se-
lected rules and the rest are inductively defined over the struc-
ture of the formula.

h8����!xi 2 Di.G(g1! gg2)i =
8id.8����!xi 2 Di.G(hg1iid!
hg2iid U(id.loc= Drop_ id.loc= Exit))

h f = xiid = id. f = x
hloc= xiid = id.loc= x
h f iid = id. f hxiid = x hviid = v

We can prove the following theorem.

Theorem 7 For all order-preserving network N, N |=one jone

if and only if N |=• hjonei.

PROOF. We only prove the case for the first form of
jone. Proofs for the second is very similar. Let jone =

8����!xi 2 Di.G(g1! gg2).
( ) Suppose N 6|=one jone. By the definition of the pol-

icy, there exists �!vi for �!xi and an execution trace E =
(lp0,D0) ! . . . ! (lpn,Dn) 2 Eone(N), and some i, j, such
that 0 i j n, (V,E[i..]) |= g1, and (V,E[ j..]) 6|= g2, where
V = [����!xi 7! vi]. and for all k, lk s.t. i < k < j and lpk = (lk,_),
lk 62 {Drop,Exit}.

By the semantics of one-packet model, 8m s.t. i < m < j,
ID(l pm) = ID(lpi) = ID(lp j) = pid.

We can then construct an execution trace E 0 2 E•(N) by
injecting one packet at a time to simulate E, and the only
trivial difference between E and E 0 is that incoming packets
takes an extra step, rather than being enqueued right after the
previous packet exits.

It’s straightforward to show that (V [id 7! pid],E 0[i..]) |=
hg1iid and (V [id 7! pid],E 0[ j..]) 6|= hg2iid, and i < k < j and
(V [id 7! pid],E 0[k..]) |= id.loc 6=Drop^ id.loc 6=Exit, since
there is only one packet with ID pid in the packet queue.

By the formula semantics, (V [id 7! pid],E 0[i..]) 6|= hg g2iid.
It follows that ( /0,E 0) 6|= hjonei, so N 6|=• hjonei, which con-
tradicts with our assumption.

(!) Suppose N 6|=• hjonei. By the definition of the pol-
icy, there exists �!vi for �!xi , pid for id and an execution
trace E = s0 ) . . .) sn 2 E•(N), and some i, j, such that
0  i  j  n, (V,E[i..]) |= hg1iid, and (V,E[ j..]) 6|= hg2iid,
where V = [����!xi 7! vi, id 7! pid]. And for all k s.t. i < k < j,
(V,E[k..]) |= id.loc 6= Drop^ id.loc 6= Exit.

By the network semantics, the located packet with ID
pid in Ei must have entered the queue at some point. Let
i0  i be the index of the first such state in E, such that

E = · · ·
lpi0/lp0i0====) si0 · · · . Similarly, we identify j0  j such that

j0 is the first state where the located packet in E j has arrived

at the packet queue. W.o.l.g. E = · · ·
lpi0/lp0i0====) si0 · · ·

lp j0/lp0j0
====)

s j0 · · · . It is straightforward that for all k s.t. i0 < k < j0,
(V,E[k..]) |= id.loc 6=Drop^ id.loc 6= Exit (Dropped or Ex-
ited packets cannot come back with the same pid). Note that
ID(lp0i0) = ID(lp0j0) = pid.

By Lemma 1, there is an execution trace E 0 2 Eone(N)
where E 0|pid = E|pid. By the semantics of the one packet
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model, E 0 = · · ·E 00 · · · , where E 00|pid = E|pid and E 00 contains
processing of only packets with ID pid. So, (V\id,E 0) 6|=
g1! g g2.

It follows that N 6|=one jone, which contradicts with our
assumption. ⇤

Corollary 8 NetSMC is sound and complete w.r.t. the packet
interleaving model when checking isolation, tag preservation,
tag-based isolation policies.

This follows from Theorem 7 and Theorem 3.

Comparison with VMN: VMN accepts policies of the form:
8n, p : G¬(rcv(d,n, p) ^ predicate(p)) (see Appendix B.2
in [41]) where predicate(p) may include past events. We
can express all the policies in VMN that do not have past
events in predicate(p) (i.e., a basic formula). Isolation, tag-
based isolation, and tag preservation fall into this category.
Further, in the three cases. NetSMC is sound and complete
w.r.t. VMN.

The conditional isolation in VMN cannot be expressed in
our policy language, since it involves past events and requires
a generic until operator, which we do not support. On the
other hand, NAT consistency, conditional reachability, flow
affinity, double NAT, and dynamic service chaining cannot
be expressed in VMN. In these cases, NetSMC is sound and
conditional complete w.r.t. the one-packet model.

E Policy Translation to CTL

Our choice of the policy language as a subset of LTL allows
us to translate policies to equivalent forms in CTL. Thus
we can use the model checking algorithm of CTL to check
those policies. To simplify our notation in the proof, we write
(V,s) |= r to denote that 8E s.t. E0 = s, (V,E) |= r.

Theorem 9 For all network N and policy P, N |= P if and
only if N |= PCT L.

PROOF. Suppose P = 8����!xi 2 Di.r and thus PCT L =

8����!xi 2 Di.rCT L. (If) Since N |= PCT L, by the definition over the
structure of r 8V,s s.t. V [xi] 2Di and s is an initial state of N,
(V,s) |= rCT L. By Lemma 10, (V,s) |= r. Thus N |= P. (Only
if) Since N |= P, by the definition, 8V,s s.t. V [xi] 2Di and s is
an initial state of N, (V,s) |= r. By Lemma 10, (V,s) |= rCT L.
Thus N |= PCT L. ⇤

Lemma 10 For all network N, temporal formula r, valuation
function V for variables appeared in r, state s in N, (V,s) |= r
if and only if (V,s) |= rCT L.

PROOF. Proof by induction over the structure of r.
Case 1 r = g: This is immediate from the definition.
Case 2 r = Fg: (If) Since (V,s) |= AFg, for all execution
trace E where E0 = s, there is some i � 0 s.t. Ei |= g. Thus,
(V,s) |= Fg. (Only if) Since (V,s) |= Fg, for all execution
trace E where E0 = s, there is some i � 0 s.t. Ei |= g. Thus,

(V,s) |= AFg.
Case 3 r = fg: (If) Since (V,s) |= A((loc 6= Drop^ loc 6=
Exit)Ug), for all execution trace E where E0 = s, there is some
i� 0 s.t. Ei |= g and for all j < i, the location of E j is not Drop
nor Exit. Thus, (V,E) |= fg. Thus, (V,s) |= fg. (Only if) Since
(V,s) |= fg, for all execution trace E where E0 = s, there is
some i � 0 s.t. Ei |= g and for all j < i the location of E j
is not Drop nor Exit. Thus, (V,s) |= A((loc 6= Drop^loc 6=
Exit)Ug).
Case 4 r = G(g! r0): From Lemma 12, we only need to
show for all s0, (V,s0) |= g! r0 if and only if (V,s0) |= g!
rCT L. First, when (V,s0) 6|= g, we have (V,s0) |= g! r0 and
(V,s0) |= g! rCT L. Second, when (V,s0) |= g, from the induc-
tive hypothesis, (V,s0) |= r0 if and only if (V,s0) |= rCT L.
Case 5 r = g(g! r1): Similar to the proof of Case 4 and use
Lemma 11.
Case 6 r = X(g! r1): Similar to the proof of Case 4 and use
Lemma 12. ⇤

Note that the r in the following two lemmas are generic
temporal formulas, not confined to our policy syntax.

Lemma 11 For all network N, temporal formula r, valua-
tion function V for variables appeared in r, if for all state
s, (V,s) |= r is equivalent to (V,s) |= rCT L, then for all state
s0, (V,s0) |= gr is equivalent to (V,s0) |= A((rCT L)U(loc =
Drop_loc= Exit)).

PROOF. (If) By the definition of (V,s0) |= A((rCT L)U(Drop_
Exit)), for all execution trace E where E0 = s0 and i � 0
where the location of Ei is Drop or Exit, (V,E j) |= rCT L for all
j < i. By the assumption, (V,E j) |= r. Thus, (V,E[ j..]) |= r.
Therefore, (V,E) |= gr. Thus, (V,s0) |= gr.
(Only if) Suppose (V,s0) 6|= A((rCT L)U(loc= Drop_loc=
Exit)). By its definition, there is a execution trace E and
i � 0 such that E0 = s0 and (V,Ei) 6|= rCT L and for all j 
i, the location of E j is not Drop nor Exit. Since (V,Ei) 6|=
rCT L, we have (V,Ei) 6|= r; i.e. there is a execution trace E 0
where E 00 = Ei such that (V,E 0) 6|= r. Consider the execution
trace E 00 = E[0..i� 1] ++E 0. Note that E 00[i..] = E 0, thus
(V,E 00[i..]) 6|= r. In addition, for all j  i, the location of E 00j
is not Drop nor Exit. Thus (V,E 00) 6|= gr, which contradicts
to that (V,s0) |= gr. ⇤

Lemma 12 For all network N, temporal formula r, valua-
tion function V for variables appeared in r, if for all state
s, (V,s) |= r is equivalent to (V,s) |= rCT L, then for all
state s0, (V,s0) |= Gr is equivalent to (V,s0) |= AG(rCT L) and
(V,s0) |= Xr is equivalent to (V,s0) |= AX(rCT L).

PROOF. Similar to above. ⇤
F Formal Specification of Example Policies

Isolation: Packets sent from host A can never reach host B:

G(loc= A! g(loc 6= B))
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Tag-based isolation: Packets tagged with T cannot reach
the middlebox MB.

G(tag= T ! g(loc 6= MB))

Tag preservation: The tag T should not be modified by NFs.

G(tag= T ! g(tag= T ))

NAT consistency: If a NAT modifies a packet’s port then all
future packets in the flow should have the same port.

8i. G(flow= i^loc= NAT _IN!
X(srcport= p^loc= NAT _OUT !
G(flow= i^loc= NAT _IN!
X(srcport= p))))

Conditional reachability: Whenever a packet sent from a
host A reaches host B, all packets sent from host B afterwards
can reach A.

G(loc= A! g(loc= B! G(loc= B! f (loc= A))))

Flow affinity: Packets in the same flow should be load-
balanced ot the same server.

8i. G(flow= i^loc= S1!
G(loc=C^flow= i!
f(loc= S1)))

Double NAT: Packets from the outside can always reach the
inside (despite two NATs).

G(loc= OUT ! f(loc= IN))

Dynamic service chaining: After a host from Dept has sent
more than 10 suspicious packets, all of its packets should pass
heavy IPS H.

8x 2 Dept. G(src= x^ susp[x]> 10!
G(src= x! f(loc= H)))
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Abstract: Today’s distributed network control planes are

highly sophisticated, with multiple interacting protocols op-

erating at layers 2 and 3. The complexity makes network

configurations highly complex and bug-prone. State-of-the-

art tools that check if control plane bugs can lead to violations

of key properties are either too slow, or do not model com-

mon network features. We develop a new, general multilayer

graph control plane model that enables using fast, property-

customized verification algorithms. Our tool, Tiramisu can

verify if policies hold under failures for various real-world

and synthetic configurations in < 0.08s in small networks

and < 2.2s in large networks. Tiramisu is 2-600X faster than

state-of-the-art without losing generality.

1 Introduction
Many networks employ complex topologies and distributed

control planes to realize sophisticated network objectives. At

the topology level, networks employ techniques to virtual-

ize multiple links into logically isolated broadcast domains

(e.g., VLANs) [8]. Control planes employ a variety of rout-

ing protocols (e.g., OSPF, eBGP, iBGP) which are configured

to exchange routing information with each other in intricate

ways [9, 21]. Techniques to virtualize the control plane (e.g.,

virtual routing and forwarding (VRF)) are also common [8].

Bugs can easily creep into such networks through errors

in the detailed configurations that the protocols need [9, 21].

In many cases, bugs are triggered when a failure causes the

control plane to reconverge to new paths. Such bugs can lead

to a variety of catastrophic outcomes: the network may suf-

fer from reachability blackholes [5]; services with restricted

access may be rendered wide open [4]; and, expensive paths

may be selected over inexpensive highly-preferred ones [4].

A variety of tools attempt to verify if networks could vi-

olate important policies. In particular, control plane analyz-

ers [6,12–14,23,29] proactively verify if the network satisfies

policies against various environments, e.g., potential failures

or external advertisements. State-of-the-art examples include:

graph-algorithm based tools, such as ARC [14] which models

all paths that may manifest in a network as a series of weighted

digraphs; satisfiability modulo theory (SMT) based tools, such

as Minesweeper [6] which models control planes by encoding

routing information exchange, route selection, and failures

using logical constraints/variables; and, explicit-state model

checking (ESMC) based tools, such as Plankton [23]1 which

models routing protocols in a custom language, such that an

explicit state model checker can explore the many possible

data plane states resulting from the control plane’s execution.

Unfortunately, these modern control plane tools still fall

1Plankton was developed contemporaneously with our system

short because they make a hard trade-off between perfor-

mance and generality (§2). ARC abstracts many low level

control plane details which allows it to leverage polynomial

time graph algorithms for verification, offering the best perfor-

mance of all tools. But the abstraction ignores many network

design constructs, including commonly-used BGP attributes,

and iBGP. While these are accounted for by the other classes

of tools [6, 23] that model control plane behavior at a much

lower level, the tools’ detailed encoding renders verification

performance extremely poor, especially when exploring fail-

ures (§8). Finally, all existing tools ignore VLANs, and VRFs.

This paper seeks a fast general control plane verification

tool that also accounts for layer 2.5 protocols, like VLANs.

We note that today’s trade-off between performance and

generality is somewhat artificial, and arises from an unnatural

coupling between the control plane encoding and the verifi-

cation algorithm used. For example, in existing graph-based

tools, graph algorithms are used to verify the weighted di-

graph control plane model. In SMT-based tools, the detailed

constraint-based control plane encoding requires a general

constraint solver to be used to verify any policy. ESMC-based

tools’ encoding forces a search over the many possible data

plane states, mirroring software verification techniques that

exhaustively explore the execution paths of a general program.

The key insight in our framework, Tiramisu, is to decouple

encoding from verification algorithms. Tiramisu leverages a

new, rich encoding for the network that models various control

plane features and network design constructs. The encoding

allows Tiramisu to use different custom verification algo-

rithms for different categories of policies that substantially

improve performance over the state-of-the-art.

Tiramisu’s network model uses graphs as the basis, similar

to ARC. However, the graph model is multi-layered and uses

multi-attribute edge weights, thereby capturing dependencies

among protocols (e.g., iBGP depending on OSPF-provided

paths) and among virtual and physical links, and accounting

for filters, tags, and protocol costs/preferences.

For custom verification, Tiramisu notes that most policies

studied in the literature can be grouped into three categories

(Table 1): (i) policies that require the actual path that mani-

fests in the network under a given failure; (ii) policies that

care about certain quantitative properties of paths that may

manifest (e.g., maximum path length); and, finally, (iii) poli-

cies that merely care about whether a path exists. Tiramisu

leverages the underlying model’s graph structure to develop

performant verification algorithms for each category.

To verify category (i) policies, Tiramisu efficiently solves

the stable paths problem [15] using the Tiramisu Path Vector

Protocol (TPVP). TPVP simulates control plane computa-
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tions across multiple devices and interdependent protocols by

operating on the Tiramisu network model. TPVP’s domain-

specific path computation is faster than the general search

strategies used in SMT solvers, making Tiramisu orders of

magnitude faster in verifying category (i) policies. TPVP also

outperforms ESMC-based tools, because TPVP’s use of rout-

ing algebra [16, 25] atop the Tiramisu rich graph allows it

to compute paths in one shot, whereas ESMC-based tools

emulate protocols, and explore their state, one at a time in

order to account for inter-protocol dependencies.

For category (ii), Tiramisu’s insight is to use integer linear

program (ILP) formulations that only model the variables that

are relevant to the policy being verified. Tiramisu significantly

outperforms SMT- and ESMC-based tools, whose computa-

tion of specific paths requires them to (needlessly) explore a

much larger variable search space.

For category (iii), Tiramisu uses a novel graph traversal

algorithm to check path existence. The algorithm invokes

canonical depth-first search on multiple Tiramisu subgraphs,

to account for tags (e.g., BGP communities) whose use on a

path controls the path’s existence. For such policies, Tiramisu

matches ARC’s performance for simple control planes; but

Tiramisu is much more general.

Finally, for many of the policies in categories (i) and (ii),

Tiramisu leverages the underlying model’s graph structure to

develop a graph algorithm-based accelerator for further verifi-

cation speed-up. We show how to use a variant of a dynamic

programming-based algorithm for the k shortest paths prob-

lem [31] to curtail needlessly exploring paths that manifest

under many not-so-relevant failure scenarios.

We implemented Tiramisu in Java [2] and evaluated it with

many real and synthetic configurations, spanning campus, ISP,

and data center networks. We find that Tiramisu significantly

outperforms the state-of-the-art, and is more general—some

of the networks have layer-2/3 features that Minesweeper and

Plankton don’t model. Using category-specific algorithms

on complex networks, Tiramisu verified category i, ii, and

iii policies in 60, 80 and 3ms, respectively. Compared to

Minesweeper, Tiramisu is 80X, 50X, and 600X faster for cat-

egory i, ii, and iii policies, respectively. On iBGP networks,

Tiramisu outperforms Plankton by up to 300X under failures.

Tiramisu’s TYEN acceleration improves performance by 1.3-

3.8X. Tiramisu scales well, providing verification results in

∼100ms per traffic class for networks with ∼160 routers.

2 Motivation

In this section, we provide an overview of state-of-the-art

control plane verifiers. We then identify their key drawbacks

that motivate Tiramisu’s design.

2.1 Existing control plane verifiers

State-of-the-art control plane verifiers are based on three dif-

ferent techniques: graph algorithms [14], symbolic model

checking [6,12,29], and explicit-state model checking [13,23].

We review the most advanced verifier in each category.

Graph algorithms: ARC [14] models a network’s control

plane using a set of directed graphs. Each graph encodes the

network’s forwarding behavior for a specific traffic class–i.e.,

packets with specific source and destination subnets. In the

graphs, vertices represent routing processes (i.e. instances of

routing protocols running on specific devices); directed edges

represent possible network hops enabled by the exchange

of advertisements between processes; edge weights encode

OSPF costs or AS path lengths. ARC verifies a policy by

checking a simple graph property: e.g, src and dst are always

blocked if they are in separate components. By leveraging

graph algorithms, ARC offers orders-of-magnitude better per-

formance [14] than simulation-based verifiers [13]. However,

ARC’s simple graph model does not cover: widely used layer-

3 protocols (e.g., iBGP), any layer-2 primitives (e.g., VLANs),

and many protocol attributes (e.g., BGP community).

Symbolic model checking: Minesweeper [6] verifies a net-

work’s policy compliance by formulating and solving a satis-

fiability modulo theory (SMT) problem. The SMT constraints

encode the behavior of the network’s control and data planes

(M) as well as the negation of a target policy (¬P). If the

SMT constraints (M∧¬P) are unsatisfiable, then the policy

is satisfied. To provide extensive network design coverage,

Minesweeper uses many variables, which results in a large

search space. Minesweeper verifies all policies on this large

general SMT model. To verify for k failures, Minesweeper’s

SMT solver may, in the worst case, enumerate all possible

combinations of k-link failures.

Explicit-state model checking: Plankton [23] models dif-

ferent control plane protocols (e.g., OSPF, BGP) using the

Path Vector Protocol (PVP) [15] in a modeling language

(Promela). It tracks dependencies among protocols defined in

a network’s control plane based on packet equivalence classes

(PECs). It then uses an explicit state model checker, SPIN,

to search on the overall state space of this model and find a

state that violates a policy. To speedup verification, Plankton

runs multiple independent SPIN instances in parallel. Plank-

ton uses other optimizations including device equivalence to

reduce the failure scenarios to explore. Despite these opti-

mizations, Plankton still enumerates the state space of many

failure scenarios, and checks them sequentially (§8).

2.2 Challenges

We now identify three high-level challenges that affect exist-

ing verifiers’ performance and/or correctness.

Cross-layer dependencies. Consider the network in Fig-

ure 1a. Router B is an eBGP peer of router E, and router

C is an iBGP peer of routers B and D. B and D are connected

to switch S1 on VLAN 1. All routers except E belong to the

same OSPF domain; the cost of link C–D is 5 and others is 1.

In this network, C learns a route to E through its iBGP

neighbor B; the route’s next hop is the IP address of B’s

loopback interface. In order for C to route traffic through B,
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(a) With protocol dependencies

(b) With BGP attributes

Figure 1: Example networks

C must compute a route to B using OSPF. The computed

path depends on the network’s failure state. In the absence of

failures, OSPF prefers path C→ B (cost 1). When the link

B–C fails, OSPF prefers a different path: C→ D→ B (cost

6). Unfortunately, traffic for E is dropped at D, because D

never learns a route to E; E is not in the same OSPF domain,

and routes learned (by C) via iBGP are not forwarded. If B

and D were iBGP peers, or B redistributed its eBGP-learned

routes to OSPF , then this blackhole would be avoided.

ARC’s simplistic graph abstraction cannot model iBGP and

thus cannot model iBGP-OSPF dependencies. Hence, ARC

cannot be used to verify policies in this network. Minesweeper

can model iBGP, but its encoding is inefficient. To model

iBGP, Minesweeper creates n additional copies of the network

where n represents number of routers running iBGP. Each

copy models forwarding towards the next-hop address asso-

ciated with each iBGP router. This increases Minesweeper’s

SMT model size by nX, which significantly degrades its per-

formance. In Plankton, the iBGP-OSPF dependency is en-

coded as a dependency between PECs, which prevents Plank-

ton from fully parallelizing its SPIN instances. Hence, Plank-

ton loses the performance benefits of parallelism.

Cross-layer dependencies also impact other network sce-

narios. Assume the B−S1 link in Figure 1a was assigned to

VLAN 2. Now B and D are connected to the same switch S1

on different VLANs; internally, S1 runs two virtual switches,

one for each VLAN. Hence, traffic between B and D cannot

flow through switch S1. By default, ARC, Minesweeper, and

Plankton, assume layer-2 connectivity. Thus, according to

these verifiers, B and D are reachable and traffic can flow

between them, which is incorrect.

The overall theme is that protocols “depend” on each

other—e.g., iBGP depends on OSPF, BGP and OSPF de-

pend on VLANs, etc.—and these dependencies must be fully,

correctly and efficiently modeled.

Protocol attributes. Consider the network in Figure 1b. All

routers (A–D) run eBGP. B adds community “c1” to the ad-

vertisements it sends to C, and D blocks all advertisements

from C with community “c1”. Additionally, D prefers routes

learned from B over A by assigning local preference (lp) val-

ues 80 and 50, respectively.

The path that D uses to reach A depends on communities

and local preference. There are three physical paths from D

to A: (i) D→ A, (ii) D→ B→ A, and, (iii) D→ C→ B→
A. However, since router B adds community “c1” to routes

advertised to C, and D blocks advertisements from C with

this community, path iii is unusable. Furthermore, path ii is

preferred over the shorter path i due to local preference.

Since ARC uses Dijkstra’s algorithm to compute paths, it

can only model additive path metrics like OSPF cost and AS-

path length; it cannot model non-additive properties such as

local preference, communities, etc. Hence, ARC incorrectly

concludes that path iii is valid and (shortest) path i is pre-

ferred. Although Minesweeper and Plankton can model these

attributes, they suffer from other drawbacks mentioned earlier.

Failures. Assume there are no communities in the network

in Figure 1b, and routers A and D are configured to run OSPF

in addition to eBGP. This network can tolerate a single link

failure without losing connectivity.

According to ARC, traffic from D to A can flow through

four paths: Dbgp → Cbgp → Bbgp → Abgp, Dbgp → Bbgp →
Abgp, Dbgp→ Abgp, and Dosp f → Aosp f . To evaluate the net-

work’s failure resilience, ARC calculates the min-cut of this

graph, which is 3, and concludes that it can withstand two

arbitrary, simultaneous link failures. This is incorrect because

edges Dosp f → Aosp f and Dbgp → Abgp are both unusable

when the physical link D–A fails.

As mentioned in §2.1, Minesweeper and Plankton enumer-

ate multiple failure scenarios and this makes them very slow

to verify for failures. For example, in this 5-link network, to

verify reachability with 1 failure, Minesweeper (and Plankton

without optimization) may explore 5 failure scenarios before

establishing reachability.

An overall issue is that irrespective of the policy,

Minesweeper and Plankton need to compute the actual path

taken in the network. ARC, on the other hand, represents poli-

cies as graph properties, e.g. mincut, connectivity, etc. It then

uses fast polynomial time algorithms to compute these prop-

erties. However, ARC’s simplistic graph abstraction cannot

model all network features. Our goal is to create a tool that

combines the network coverage of Minesweeper and Plankton,

with the performance benefits of ARC.

3 Overview
Motivated by the inefficiencies and coverage limitations of

existing network verifiers (§2), we introduce a new network

verification tool called Tiramisu.Tiramisu is rooted in a rich

graph-based network model that captures forwarding and fail-

ure dependencies across multiple routing and switching layers

(e.g., BGP, OSPF, and VLANs). Since routing protocols are

generally designed to operate on graphs and their constituent

paths, graphs offer a natural way to express the route propaga-

tion, filtering, and selection behaviors encoded in device con-

figurations and control logic. Moreover, graphs admit efficient

analyses that allow Tiramisu to quickly reason about impor-

tant network policies—including reachability, path lengths,

and path preferences—in the context of multi-link failures. In

this section, we highlight how Tiramisu’s graph-based model

and verification algorithms address the challenges discussed

in §2. Detailed descriptions, algorithms, and proofs of cor-
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Category Policy Meaning Comments

i: compute path PREF Path Preference Can use TYEN

with TPVP MC Multipath Consistency

ii: compute actual KFAIL Reachability < K failures Can use TYEN

numeric graph BOUND All paths have length < K

property with ILP EB All paths have equal length

iii: identify BLOCK Always Blocked

connectivity wth WAYPT Always Waypointing

TDFS CW Always Chain of Waypoints

BH No Blackhole

Table 1: Policies Verified

rectness, are presented in later sections.

3.1 Graph-based network model

To accurately and efficiently model cross-layer dependencies,

Tiramisu constructs two inter-related types of graphs: routing

adjacencies graphs (RAGs) and traffic propagation graphs

(TPGs). The former allows Tiramisu to determine which rout-

ing processes may learn routes to specific destinations. The

latter models more detail, especially, all the prerequisites for

such learning to occur—e.g., OSPF must compute a route to

an iBGP neighbor in order for the neighbor to receive BGP

updates. Our verification algorithms run on the TPGs.

Routing adjacencies graph. A RAG (e.g, Figure 2a) encodes

routing adjacencies. Two routing processes are adjacent if

they are configured as neighbors (e.g., BGP) or configured to

operate on interfaces in the same layer-2 broadcast domain

(e.g., OSPF). A RAG contains a vertex for each routing pro-

cess, and a pair of directed edges for each routing adjacency.

Tiramisu runs a domain-specific “tainting” algorithm on the

RAG to determine which routing processes may learn routes

for a given prefix p.

Traffic propagation graph. In addition to routing adjacen-

cies, propagation of traffic requires: (i) a route to the desti-

nation, (ii) layer-2 and, in the case of BGP, layer-3 routes to

adjacent processes, and (iii) physical connectivity. A TPG

(e.g., Figure 2b) encodes these dependencies. Vertices are cre-

ated for each VLAN on each device and each routing process.

Directed edges model the aforementioned dependencies as

follows: (i) a VLAN vertex is connected to an OSPF/BGP ver-

tex associated with the same router if, according to the RAG,

the process may learn a route to a given subnet; (ii) an OSPF

vertex is connected to the vertices for the VLANs on which it

operates, and a BGP vertex is connected to an OSPF and/or

VLAN vertex associated with the same router; (iii) a VLAN

vertex is connected to a vertex for the same VLAN on another

device if the devices are physical connected. Additionally,

multi-attribute edge labels are assigned to edges to encode

filters and “costs” associated with a route. With this structure,

Tiramisu is able to correctly model a much wider range of

networks than state-of-the-art graph-based models [14]. All

verification procedures operate on the TPG.

3.2 Verification algorithms

Tiramisu’s verification process is rooted in the observation

that network policies explored in practice and in academic

research (Table 1) fall into three categories: (i) policies con-

cerned with the actual path taken under specific failures—

e.g., path preference (PREF); (ii) policies concerned with

quantitative path metrics—e.g., how many paths are present

(KFAIL) and bounds on path length (BOUND); and (iii) poli-

cies concerned with the existence of a path—e.g., blocking

(BLOCK) and waypointing (WAYPT). Verifying policies in the

first category requires high fidelity modeling of the control

plane’s output—namely, enumeration/computation of precise

forwarding paths—whereas verifying policies in the last cat-

egory requires low fidelity modeling of the control plane’s

output—namely, evidence of a single plausible path. For opti-

mal efficiency, Tiramisu’s core insight is to introduce category-

specific verification algorithms that operate with the minimal

level of fidelity required for accurate verification.

TPVP. To verify category i policies, Tiramisu efficiently

solves the stable paths problem [15] using the Tiramisu Path

Vector Protocol (TPVP). TPVP extends Griffin’s “simple path

vector protocol” (SPVP) [15]. In TPVP, each TPG node con-

sumes the multi-dimensional attributes of outgoing edges,

and uses simple arithmetic operations (based on a routing

algebra [26]) to select among multiple available paths. In

simple networks (that use a single routing protocol) TPVP

devolves to a distance vector protocol, which computes paths

under failures in polynomial time. For such networks, TPVP

is comparable to ESMC tools [23], but is faster than general

SMT-based tools [6]. For general networks with dependent

control plane protocols, TPVP is faster than SMT-based tools,

because it uses a domain-specific approach to computing

paths, compared to an SMT-based general search strategy.

TPVP also beats ESMC tools by emulating the control plane

in one shot as opposed to emulating the constituent protocols

and exploring their state space one at a time to account for

inter-protocol dependencies.

ILP. For category ii policies, Tiramisu leverages general in-

teger linear program (ILP) encodings that compute network

flows through the TPG, rather than precise paths. The ILPs

only consider protocol attributes that impact whether paths

can materialize (e.g., BGP communities), and they avoid path

computation. Thus, Tiramisu is much faster than state-of-the-

art approaches that always consider all attributes (e.g., BGP

local preferences) and enumerate actual paths [6, 23] (§8).

TDFS. Finally, Tiramisu depth-first search (TDFS) is a novel

polynomial-time graph traversal algorithm to check for the ex-

istence of paths and verify category iii policies. TDFS makes

a constant number of calls to the canonical DFS algorithm.

Each call is to a subgraph of the TPG that models the interac-

tion between tag-based (e.g., BGP-community-based) route

filters along a path that control if a path can materialize.

Tiramisu further improves over state-of-the-art verifiers

for some category i and ii policies by avoiding unnecessary

path computation. Specifically, we note that some category

i and ii properties require knowing when certain paths are

taken (i.e., after how many link failures, or after how many

more-preferred paths have failed). For such properties, ex-
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(a) RAG

(b) TPG

Figure 2: Graphs for network in Figure 1a

haustively exploring all failures by running TPVP for each

scenario, while sufficient, is overkill. To avoid enumerating

not-so-useful failure scenarios, Tiramisu leverages the graph

structure of the network model to run a variant of Yen’s dy-

namic programming based algorithm for k-shortest paths [31],

to directly compute a preference order of paths that manifest

under arbitrary failures. Our variant, TYEN, invokes TPVP

in a limited fashion from within Yen’s execution, minimiz-

ing path exploration. For PREF over k paths, we simply use

TYEN to compute the top-k paths over the TPG. Likewise, we

use TYEN to accelerate KFAIL, a category ii policy. Note that

TYEN can only be applied to networks whose path metrics

are monotonic [16].

4 Tiramisu Graph Abstraction

In this section, we describe in detail the two types of graphs

used in Tiramisu: routing adjacencies graphs (RAGs) and

traffic propagation graphs (TPGs). TPGs are partially based

on RAGs, and both are based on a network’s configurations

and physical topology.

4.1 Routing adjacencies graphs

RAGs encode routing adjacencies to allow Tiramisu to deter-

mine which routing processes may learn routes to specific IP

subnets. Tiramisu constructs a RAG for each of a network’s

subnets. For example, Figures 2a, and 3a show the RAGs for

subnet Z for the networks in Figure 1.

Vertices. A RAG has a vertex for each routing process. For

example, Bbgp and Bospf in Figure 2a represent the BGP and

OSPF processes on router B in Figure 1a. A RAG also has a

vertex for each device with static routes for the RAG’s subnet.

Edges. A RAG contains an edge for each routing adjacency.

Two BGP processes are adjacent if they are explicitly config-

ured as neighbors. Two OSPF process are adjacent if they are

configured to operate on router interfaces in the same Layer

2 (L2) broadcast domain (which can be determined from the

topology and VLAN configurations). These adjacencies are

represented using pairs of directed edges—e.g., Ebgp⇆ Bbgp

and Bospf ⇆Cospf —since routes can flow between these pro-

cesses in either direction. However, if two processes are iBGP

neighbors then a special pair of directional edges are used—

e.g., Bbgp
L99
99K

Cbgp—because iBGP processes do not forward

routes learned from other iBGP processes. A routing adja-

cency is also formed when one process (the redistributor)

(a) RAG

(b) TPG

Figure 3: Graphs for network in Figure 1b

distributes routes from another process on the same device

(the redistributee). This is encoded with a unidirectional edge

from redistributee to redistributor. Vertices representing static

routes may be redistributees, but will not have any other edges.

Taints. To determine which routing processes may learn

routes to specific destinations, Tiramisu runs a “tainting” al-

gorithm on the RAG. All nodes that originate a route for the

subnet associated with the RAG (including vertices corre-

sponding to static routes) are tainted. Then taints propagate

freely across edges to other vertices, with one exception: when

taints traverse an iBGP edge they cannot immediately traverse

another iBGP edge. For example, in Figure 2a, Ebgp is tainted,

because it originates a route for Z. Then taints propagate from

Ebgp to Bbgp to Cbgp, but not to Dbgp. No OSPF vertices are

tainted, because no OSPF processes originate a route for Z

and no processes are configured to redistribute routes.

The tainting algorithm assumes all configured adjacencies

are active and no routes are filtered. However, for an adjacency

to be active in the real network, certain conditions must be

satisfied: e.g., Bosp f must compute a route to C’s loopback

interface and vice versa in order for Bbgp to exchange routes

with Cbgp. These dependencies are encoded in TPGs.

4.2 Traffic propagation graph

A process P on router R can advertise a route for subnet S

to an adjacent routing process P′ on router R′ if all of the

following dependencies are satisfied: (i) P learns a route for

S from an adjacent process, or P is configured to originate a

route for S; (ii) neither P or P′ filters the advertisement; (iii)

another process/switch on R learns a route to R′, or R is con-

nected to the same subnet/layer-2 domain as R′; and (iv) R is

physically connected to R′ through a sequence of one or more

links. TPGs encode these dependencies. Tiramisu constructs

a TPG for every pair of a network’s IP subnets. Figures 2b

and 3b show the TPGs that model how traffic from subnet Y

is propagated to subnet Z for the networks in Figure 1.

Vertices. A TPG’s vertices represent the routing information

bases (RIBs) present on each router and the (logical) traffic

ingress/egress points on each router/switch. Each routing pro-

cess maintains its own RIB, so the TPG contains a vertex for

each process: e.g., Bbgp and Bospf in Figure 2b correspond to

the BGP and OSPF processes on router B in Figure 1a.

Traffic propagates between routers and switches over

VLANs. Consequently, the TPG contains a pair of in-

gress/egress vertices for each of a device’s VLANs: e.g.,

S1v1:in and S1v1:out in Figure 2b correspond to the VLAN on

switch S1 in Figure 1a. Tiramisu creates implicit VLANs

for pairs of directly connected interfaces: e.g., Bvlan:BE:in,
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Bvlan:BE:out, Evlan:BE:in, and Evlan:BE:out in Figure 2b corre-

spond to the directly connected interfaces on routers B and E

in Figure 1a.

The TPG also includes vertices for the source and desti-

nation (target) of the traffic being propagated: e.g., Y and Z ,

respectively, in Figure 2b.

Edges. A TPG’s edges reflect the virtual and physical “hops”

the traffic may take. Edges model dependencies as follows:
• Layers 1 & 2: For each VLAN V on device D, the egress

vertex for V on D is connected to the ingress vertex for V

on device D′ if an interface on D participating in V has

a direct physical link to an interface on D′ participating

in V : e.g., Bvlan1:out→ S1vlan1:in in Figure 2b corresponds

to the physical link between B and S1 in Figure 1a. Also,

the ingress vertex for V on D is connected to the egress

vertex for V on D to model L2 flooding: e.g., S1vlan1:in→
S1vlan1:out.

• OSPF’s dependence on L2: The vertex for OSPF pro-

cess P on router R is connected to the egress vertex for

VLAN V on R if P is configured to operate on V : e.g.,

Dospf → Dvlan:CD:out and Dospf → Dvlan:1:out in Figure 2b

model OSPF operating on router D’s VLANs in Figure 1a.

• BGP’s dependence on connected and OSPF routes: For

each peer N of the BGP process P on router R, an edge is

created from the vertex for P to the egress vertex for VLAN

V on R if N’s IP address falls within the subnet assigned

to V : e.g., Ebgp:B → Evlan:BE:out in Figure 2b models the

BGP process on router E communicating with the adjacent

process on directly connected router B in Figure 1a. If

no such V exists, then the vertex for P is connected to

the vertex for OSPF process P′ on R: e.g., Bbgp → Bospf

models the BGP process on B communicating with the

adjacent process on router C (which operates on a loopback

interface) via an OSPF-computed path.

• Routes to the destination: Every VLAN ingress vertex on

router R is connected to the vertex for process P on R if the

vertex for P in the RAG is tainted: e.g., Bvlan:BC:in→Bbgp

in Figure 2b is created due to the taint on Bbgp in Figure 2a,

which models that fact that the BGP process on B may

learn a route to subnet Z from the adjacent process on E.

If the destination subnet T is connected to R and at least

one routing process on R originates T , then every VLAN

ingress vertex on R is connected to the vertex for T : e.g.,

Evlan:BE:in→ Z in Figure 2b.

If the source subnet S is connected to R and the vertex for

process P on R is tainted in the RAG, then the vertex for S

is connected to the vertex for P: e.g., Y →Cbgp in Figure 2b.

Filters. As mentioned in §4.1, a RAG may overestimate

which processes learn a route to a subnet due to route and

packet filters not being encoded in the RAG. A TPG models

filters using two approaches: edge pruning and edge attributes.

Tiramisu uses edge pruning to model prefix- or neighbor-

based filters. A BGP process P may filter routes imported

from a neighbor P′ (or P′ may filter routes exported to P)

based on the advertised prefix or neighbor from (to) whom the

route is forwarded. Tiramisu models such a filter by removing

from the vertex associated with P, the outgoing edge that

corresponds to P′. For example, if router B in Figure 1a had an

import filter, or router E had an export filter, that block routes

for Z, then edge Bbgp→ Bvlan:BE:out would be removed from

Figure 2a. Note that import and export filters are both modeled

by removing an outgoing edge from the vertex associated with

the importing process. OSPF is limited to filtering incoming

routes based on the advertised prefix. Tiramisu models such

route filters by removing all outgoing edges from the vertex

associated with the OSPF process where the filter is deployed.

Lastly, packets sent (received) on VLAN V can be filtered

based on source/destination prefix. Tiramisu models such

packet filters by removing the outgoing (incoming) edge that

represents the physical link connecting V to its neighbor.

Tiramisu uses edge attributes to model tag- (e.g., BGP

community- or ASN-) based filters. If a BGP process P fil-

ters routes imported from a neighor P′ (or P′ filters routes

exported to P) based on tags, then Tiramisu adds a “blocked

tags” attribute to the outgoing edge from the vertex associ-

ated with P that corresponds to P′. For example, the edge

Dbgp→ Dvlan:CD:out in Figure 3b is annotated with bt = {c1}
to encode the import filter router D applies to routes from C

in Figure 1b. Edges can also include “added tags” and “re-

moved tags” attributes: e.g., Cbgp→Cvlan:BC:out is annotated

with at = {c1} to encode the export filter router B applies

to routes advertised to C. Notice that tag actions defined in

import and export filters are both added to an outgoing edge

from the vertex associated with the importing process.

Costs/preferences. Each routing protocol uses a different set

of metrics to express link and path costs/preferences. For

example, OSPF uses link costs, and BGP uses AS-path length,

local preference (lp), etc. Similarly, administrative distance

(AD) allows routers to choose routes from different protocols.

Hence a single edge weight cannot model the route selection

decisions of all protocols. Tiramisu annotates the outgoing

edges of OSPF, BGP, and VLAN ingress vertices with a vector

of metrics. Depending on the edge, certain metrics will be

null: e.g., OSPF cost is null for edges from BGP vertices.

5 Category (i) Policies
We now describe how Tiramisu verifies policies that require

knowing the actual path taken in the network under a given

failure (§3.2). One such policy is path preference (PREF).

For example, Ppre f = p1≫ p2≫ p3, states when path p1

fails, p2 (if available) should be taken; and when p1 and

p2 both fail, p3 (if available) should be taken. A path can

become unavailable if a link or device along the path fails. We

model such failures by removing edges (between egress and

ingress VLAN vertices) or vertices from the TPG. To verify

PREF, we need to know what alternate paths materialize, and

whether a materialized path is indeed the path meant to be
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taken according to preference order. Similar requirements

arise for verifying multipath consistency (MC).

In this section, we introduce an algorithm, TPVP, to com-

pute the actual path taken in the network. TPVP can be used

to exhaustively explore failures to verify category (i) policies,

but it is slow. We show how to accelerate verification using a

dynamic-programming based graph algorithm.

5.1 Tiramisu Path Vector Protocol

Griffin et al. observed that BGP attempts to solve the stable

paths problem and proposed the Simple Path Vector Protocol

(SPVP) for solving this problem in a distributed manner [15].

Subsequently, Sobrinho proposed routing algebras for mod-

eling the route computation and selection algorithms of any

routing protocol in the context of a path vector protocol [25].

Griffin and Sobrinho then extended these algebras to model

routing across administrative boundaries—e.g., routing within

(using OSPF) and across (using BGP) ASes [16]. However,

they did not consider the dependencies between protocols

within the same administrative region—e.g., iBGP’s depen-

dence on an OSPF. Recently, Plankton addressed these de-

pendencies by solving multiple stable paths problems, and

proposed the Restricted Path Vector Protocol (RPVP) for solv-

ing these problems in a centralized manner [23].

Below, we explain how the Tiramisu Path Vector Proto-

col (TPVP) leverages routing algebras and extends SPVP to

compute paths using our graph abstraction. Since SPVP was

designed for Layer 3 protocols, TPVP works atop a simpli-

fied TPG called the Layer 3 TPG (L3TPG). Tiramisu uses

path contraction to replace L2 paths with an L3 edge con-

necting L3 nodes, to model the fact that advertisements can

flow between routing processes as long as there is at least one

L2 path that connects them. Recall that the incoming edges

of VLAN egress vertices and the outgoing edges of VLAN

ingress vertices include (non-overlapping) edge labels (§4.2);

these are combined and applied to the L3 edge(s) that replace

the L2 path(s) containing these L2 edges.

Routing algebras. Routing algebras [16, 25] model routing

protocols’ path cost computations and path selection algo-

rithms. An algebra is a tuple (Σ,�,L,⊕,O) where:

• Σ is a set of signatures representing the multiple metrics

(e.g., AS-path length, local pref, ...) associated with a path.

• � is the pre f erence relation over signatures. It models

route selection, ranking paths by comparing multiple met-

rics of multiple path signatures in a predefined order (e.g.,

first compare local pref, then AS-path length, ...)

• L is set of labels representing multi-attribute edge-weight.

• ⊕ is a function L×Σ→ Σ, capturing how labels and sig-

natures combine to form a new signature; i.e., ⊕ models

path cost computations. ⊕ has multiple operators, each

computing on certain metrics.2

• O is the signature attached to paths at origination.

2For example, ADD operator adds OSPF link costs and AS-path lengths.

LP operator sets local pref, TAGS operator prohibits paths with a tag, etc.

In Tiramisu, path signatures contain metrics from all possi-

ble protocols (e.g., OSPF cost, AS-path length, AD, ...), but�
and ⊕ are defined on a per-protocol basis and only operate on

the metrics associated with that protocol. For example, ⊕BGP

sets local pref and adds AS-path lengths from a label (λ ∈ L),

but copies the OSPF cost and AD directly from the input

signature (σ ∈ Σ) to the output signature (σ′ ∈ Σ). Similarly,

�BGP compares local pref, AS-path lengths, and OSPF link

costs3 but does not compare AD.

TPVP. TPVP (Algorithm 1) is derived from SPVP [15]. For

each vertex in the L3TPG, TPVP computes and selects a

most-preferred path to dst based on the (signatures of) paths

selected by adjacent vertices. However, TPVP extends SPV P

in two fundamental ways: (i) it uses a shared memory model

instead of message passing, akin to RPV P [23]; and (ii) it

models multiple protocols in tandem by computing path sig-

natures and selecting paths using routing algebra operations

corresponding to different protocols: e.g., ⊕BGP and �BGP

are applied at vertices corresponding to BGP processes.

For each peer v of each vertex u (v is a peer of u if u→ v ∈
L3TPG) TPVP uses variables pu(v) and σu(v) to track the

most preferred path to reach dst through v and the path’s sig-

nature, respectively. Likewise, variables pu and σu represent

the most preferred path and its signature to reach dst from u.

In the initial state, TPVP sets the path and sign values of all

nodes except dst to null (line 2). pdst is set to ε and σdst is set

to O, since it “originates” the advertisement (line 3). Similar

to SPV P, there are three steps in each iteration. First, for each

node u, TPVP computes all its pu(∗) and σu(∗) values based

on the path signatures of its neighbors and outgoing edge

labels λu→∗ (lines 7–10). It calculates the best path based on

the preference relation (line 11). If the current pu changes

from previous iteration, then the network has not converged

and the process repeats (lines 12–13).

Theorem 1. If the network control plane converges, TPVP

always finds the exact path taken in the network under any

given failure scenario.

We prove Theorem 1 is in Appendix C.1. The proof shows

that TPVP and the TPG correctly model the permitted paths

and ranking function to solve the stable paths problem.

Plankton [23] leverages basic SPVP to model the network.

But because basic SPVP cannot directly model iBGP, to ver-

ify networks that use iBGP, Plankton runs multiple SPVP

instances. As mentioned in §2.1, BGP routing depends on

the outcome of OSPF routing. Hence, Plankton runs SPVP

multiple times: first for multiple OSPF instances, and then

for dependent BGP instances. In contrast, because Tiramisu’s

TPVP is built using routing algebra atop a network model with

rich edge attributes, we can bring different dependent routing

protocols into one common fold of route computation. Thus,

we can analyze iBGP networks, and, generally, dependent

protocols, “in one shot” by running a single TPVP instance.

3OSPF cost is used as a tie-breaker in BGP path selection [10].
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Algorithm 1 Tiramisu Path Vector Protocol

1: procedure T PV P(L3T PG)
2: ∀i ∈ {V −dst} : pi =∅,σi = φ

3: pdst = [dst],σdst = O ⊲ dst originates the route

4: converged = f alse

5: while ¬converged do

6: converged = true

7: for each u ∈ L3T PG do

8: for each v ∈ peers(u) do

9: pu(v) = edgeu→v ◦ pv ⊲ add edge to path

10: σu(v) = λu→v ⊕type(u) σv

11: compute pu and σu using � over σu(∗)
12: if pu has changed then

13: converged = f alse

In Appendix D, we show that TPVP can verify other poli-

cies, like “Multipath Consistency (MC)”, that requires materi-

alization of certain paths.

5.2 Tiramisu Yen’s algorithm

To verify PREF, Tiramisu runs TPVP multiple times to com-

pute paths for different failure scenarios. For example, while

verifying Ppre f , Tiramisu runs TPVP for all possible failures

(edge removals) that render paths p1 and p2 unavailable.

Then, it checks if TPVP always computes p3 (if available).

While correct, this is tedious and slow overall.

We can accelerate the verification of this policy by leverag-

ing the graph structure of the L3TPG and developing a graph

algorithm that avoids unnecessary path explorations/compu-

tations. Specifically, we observed that there are similarities

between analyzing PREF and finding the k shortest paths in

a graph [31]. This is because, in the k shortest paths prob-

lem, the kth shortest path is taken only when k−1 paths have

failed. To avoid enumerating all possible failures of all k−1

shorter paths, Yen [31] introduced an efficient algorithm for

this problem that uses dynamic programming to avoid failure

enumeration. Yen uses the intuition that the kth shortest path

will be a small perturbation of the previous k− 1 shortest

paths. Instead of searching over the set of all paths, which is

exponential, Yen constructs a polynomial candidate set from

the previous k−1 paths, in which the kth path will be present.

To accelerate PREF, our TYEN algorithm makes two simple

modifications to Yen. Yen uses Dijkstra to compute the short-

est path. We replace Dijkstra with TPVP. Next, we add a con-

dition to check that during the ith iteration, the ith computed

path follows the preference order specified in PREF. The de-

tailed description of Yen and TYEN are in Appendix A. Note

that Yenand hence TYEN, assumes the path-cost composition

function is strictly monotonic. Hence, TYEN acceleration can

be leveraged only on monotonic networks.

6 Category (ii) Policies

We now describe how Tiramisu verifies policies pertaining to

quantitative path metrics, e.g., KFAIL and BOUND. For such

policies, Tiramisu uses property-specific ILPs. These ILPs run

fast because they abstract the underlying TPG and only model

protocol attributes that impact whether paths can materialize

(e.g., communities).

6.1 Tiramisu Min-cut

KFAIL states that src can reach dst as long as there are < K

link failures. ARC [14] verifies this policy by computing the

min-cut of a graph; if min-cut is ≥ K, then KFAIL is satisfied.

However, standard min-cut algorithms do not consider how

route tags (e.g., BGP communities) impact the existence

of paths. For example, in Figure 3b, any path that includes

Dbgp:c→ Dvlan:CD:out followed by Cbgp:b→Cvlan:BC:out is pro-

hibited due to the addition and filtering of tags on routers

B and D, respectively. In this manner, tags prohibit paths

with certain combinations of edges in the TPG, making the

TPG a “correlated network”. It is well known that finding the

min-cut of a correlated network is NP-Hard [30]. Note that

traffic flows in the direction opposite to route advertisements.

Hence, the prohibited paths have tag-blocking edges followed

by tag-adding edges.

We propose an ILP which accounts for route tags, but ig-

nores irrelevant edge attributes (e.g., edge costs), to compute

the min-cut of a TPG For brevity, we explain the constraints

at a high-level, leaving precise definitions to Appendix B.1.

Equation numbers below refer to equations in Appendix B.1.

The objective of the ILP is to minimize the number of

physical link failures (Fi) to disconnect src from dst.

Objective: minimize ∑
i∈pEdges

Fi (1)

Traffic constraints. We first define constraints on reachabil-

ity. The base constraint states that src originates the traffic

(Eqn 2). To disconnect the graph, the next constraint states

that the traffic must not reach dst (Eqn 3). For other nodes, the

constraint is that traffic can reach a node if it gets propagated

on any of its incoming edges (Eqn 4).

Now we define constraints on traffic propagation. Traffic

can propagate through an edge e if: it reaches the start node

of that edge; the traffic does not carry a tag that is blocked on

that edge; and, if the edge represents an inter-device edge, the

underlying physical link has not failed. This is represented as

shown in Eqn 5.

Tags. We now add constraints to model route tags. The base

constraints state that each edge that blocks on a tag forwards

that tag, and each edge that removes that tag does not forward

it further (Eqn 6 and Eqn 7). For other edges, we add the

constraint that edge e forwards a tag t iff the start node of

edge e receives traffic with that tag (Eqn 8). Finally, we add

the constraint that an edge e carries a blocked tag iff that

blocked tag can be added by edge e (Eqn 9).

We prove the correctness of this ILP in Appendix C.2 based

on the correctness of Tiramisu’s modeling of permitted paths.

Using TYEN for KFAIL with ACLs. This ILP is not accurate

when packet filters (ACLs) are in use. ACLs do not influence

advertisements. Hence, routers can advertise routes for traffic
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that get blocked by ACLs. Recall that during graph creation,

Tiramisu removes edges that are blocked by ACLs §4.2. This

leads to an incorrect min-cut computation as shown below:

Assume src and dst are connected by three paths P1, P2

and P3 in decreasing order of path-preference. Also assume

these paths are edge disjoint and path P2 has a data plane

ACL on it. If a link failure removes P1, then the control plane

would select path P2. However, all packets from src will be

dropped at the ACL on P2. In this case, a single link failure

(that took down P1) is sufficient to disconnect src and dst.

Hence the true min-cut is 1. On the other hand, Tiramisu

would remove the offending ACL edge from the graph. The

graph will now have paths P1 and P3, and the ILP would

conclude that the min-cut is 2, which is incorrect.

We address this issue as follows. Nodes can become un-

reachable when failures either disconnect the graph or lead to

a path with an ACL. We compute two quantities: (1) N: Mini-

mum failures that disconnects the graph, and, (2) L: Minimum

failures that cause the control plane to pick a path blocked by

an ACL. The true min-cut value is min(N,L).
First we use our min-cut ILP to compute N. To compute L,

in theory, we could simply run TPVP to exhaustively explore

k-link failures for k = 1,2, .., and determine the smallest fail-

ure set that causes the path between src and dst to traverse an

ACL. However, this is expensive.

We can accelerate this process by leveraging TYEN, similar

to our approach for PREF. We first construct a TPG without

removing edges for ACLs. Then, we run TYEN until we find

the first path with a dropping ACL on it. Say this was the Mth

preferred path. Then, we remove all edges from the graph

that do not exist in any of the previous M− 1 paths. Next,

we use our min-cut ILP to compute the minimal failures L to

disconnect this graph. This represents the minimal failures to

disconnect previous M−1 paths and pick the ACL-blocked

path. If min(L,N)≥ K then KFAIL is satisfied.

Overall, to compute KFAIL, the above requires Tiramisu to

run (a) TYEN to compute M paths; and (b) two min-cut ILPs

to compute N and L respectively. Note that to verify KFAIL,

Minesweeper will explore all combinations of k link failures.

6.2 Tiramisu Longest path

Always bounded length policy (BOUND) states that for a given

K, BOUND is true if under every failure scenario, traffic from

src to dst never traverses a path longer than K hops. Enumer-

ating all possible paths and finding their length is infeasible.

However, this policy can be verified efficiently by viewing

it as a variation of computing a quantitative path property,

namely the longest path problem: for a given K, BOUND is

true if the longest path between src and dst is ≤ K.

Finding the longest path between two nodes in a graph is

also NP hard [19]. To verify BOUND, we thus propose another

ILP whose objective is to maximize the number of inter device

edges (dEdges) traversed by traffic (Ai).

Objective: maximize ∑
i∈dEdges

Ai (2)

We present detailed constraints and a proof of correctness

in Appendices B.2 and C.2, respectively.

Constraints. We first add constraints to ensure that traffic

flows on one path, src sends traffic, and dst receives it (Eqn 11

and Eqn 12). For other nodes, we add the flow conservation

property, i.e., the sum of incoming flows is equal to the sum of

outgoing flows (Eqn 13). Finally, we add constraints on traffic

propagation: traffic will be blocked on edge e if it satisfies the

tag constraints (Eqn 14).

In Appendix D, we show that a similar ILP can be used to

verify other policies of interest—e.g., all paths between src

and dst have equal length (EB).

7 Category (iii) Policies

Finally, we describe how Tiramisu verifies policies that only

require us to check for just the existence of a path, e.g., “al-

ways blocked” (BLOCK). For these policies, we use a new

simple graph traversal algorithm. Tiramisu’s performance is

fastest when checking for such policies (§8).

Standard graph traversal algorithms, like DFS, also do

not account for tags. DFS will identify the prohibited path

from Figure 3b (Dbgp:c→ Dvlan:CD:out followed by Cbgp:b→
Cvlan:BC:out) as valid, which is incorrect. To support tags, we

propose TDFS, Tiramisu Depth First Search (Algorithm 2).

TDFS makes multiple calls to DFS to account for tags.

TDFS. As mentioned in §4, edges can add, remove or block

on tags. In presence of such edges, the order in which these

edges are traversed in a path determines if dst is reachable.

TDFS first checks if dst is unreachable from src according

to DFS (line 3, 4). If they are reachable, then TDFS checks

if all paths that connect src to dst (i) have an edge (say X)

that blocks route advertisements and hence traffic (for dst)

with a tag (line 5 to 6), (ii) followed by an edge (say Y) that

adds the tag to the advertisements for dst (line 7 to 8), and

(iii) has no edge between X and Y that removes the tag (line

9 to 10). If all these conditions are satisfied, then src and dst

are unreachable. If any of these conditions are violated, the

nodes are reachable.

We prove the correctness of TDFS in Appendix C.3.

The above algorithm naturally applies to verifying BLOCK.

It can similarly be used to verify WAYPT (“always waypoint-

ing”): after removing the waypoint, if src can reach dst, then

there is a path that can reach dst without traversing the way-

point. TDFS can also verify “always chain of waypoints

(WAYPT)” and “no blackholes (BH)” (Appendix D).

8 Evaluation

We implemented Tiramisu in Java (≈ 7K lines of code) [2].

We use Batfish [13] to parse router configurations and

Gurobi [3] to solve our ILPs. We evaluate Tiramisu on a

variety of issues:

• How quickly can Tiramisu verify different policies?

• How does Tiramisu perform compared to state-of-the-art?
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Algorithm 2 Always blocked with tags

1: procedure T DFS(G,src,dst)
2: tA, tR, tB← edges that add, remove, or block on tag (respectively)

3: if dst is unreachable by DFS (G, src) then

4: return true (nodes are already unreachable)

5: if dst is reachable by DFS (G-tB, src) then

6: return false (∃ path src dst where tagged-routes are not blocked)

7: if ∃eb ∈ tB s.t. dst is reachable by DFS (G-tA, eb) then

8: return false (tag-blocking edges can get ads for dst without tags)

9: if ∀eb ∈ tB,ea ∈ tA: ea is unreachable by DFS (G-tR, eb) then

10: return false (tags always removed before reaching blocking edges)

11: return true
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• How does Tiramisu’s performance scale with network size?

Our experiments were performed on machines with dual 10-

core 2.2 GHz Intel Xeon Processors and 192 GB RAM.

8.1 Network Characteristics
In our evaluation, we use configurations from (a) 4 real uni-

versity networks, (b) 34 real datacenter networks operated by

a large online service provider, (c) 7 networks from the topol-

ogy zoo dataset [20], and (d) 5 networks from the Rocketfuel

dataset [27]. The university networks have 9 to 35 devices

and are the richest in terms of configuration constructs. They

include eBGP, iBGP, OSPF, static routes, packet/route filters,

BGP communities, local preferences, VRFs and VLANs. The

datacenter networks have 2 to 24 devices and do not employ

local preference or VLANs. The topology zoo networks have

33 to 158 devices, and the Rocketfuel networks have 79 to

315 devices. The configs for topology zoo and Rocketfuel

were synthetically generated for random reachability poli-

cies [11, 23] and do not contain static routes, packet filters,

VRFs or VLANs. Details on the TPGs for these networks are

in Appendix E. The main insight is that the number of rout-

ing processes and adjacencies per device varies. Hence, the

number of nodes and edges in the TPG do not monotonically

increase with network size.

Policies. We consider five polices: (PREF) path preference,

(KFAIL) always reachable with < K failures, (BOUND) always

bounded length, (WAYPT) always waypointing, and (BLOCK)

always unreachable. Recall that: PREF is category i and is

accelerated by TYEN calling TPVP from within; KFAIL and

BOUND are category ii and use ILPs; BLOCK and WAYPT are

category iii and use TDFS.

8.2 Verification Efficiency

We examine how efficiently Tiramisu can construct and verify

these TPGs. First, we evaluate the time required to generate

the TPGs. We use configurations from all the networks. Fig-

ure 4 shows the time taken to generate a traffic class-specific

TPG for all networks. Tiramisu can generate these graphs,

even for large networks, in ≈ 1 ms.

Next, we examine how efficiently Tiramisu verifies various

policies. Since the university networks are the richest in terms

of configuration constructs, we use them in this experiment.

Because of VRF/VLAN, Minesweeper, Plankton and ARC

cannot model these networks. Figure 5 shows the time taken

to verify PREF, KFAIL, BOUND, and BLOCK. Since WAYPT

uses TDFS, it is verified in a similar order-of-magnitude time

as BLOCK. Hence for brevity, we do not show their results.

In this and all the remaining experiments, the values shown

are the median taken over 100 runs for 100 different traffic

classes. Error bars represent the std. deviation.

We observe that BLOCK can be verified in less than 3 ms.

Since it uses a simple graph traversal algorithm (TDFS), it is

the fastest to verify among all policies. In fact, for BLOCK,

our numbers are comparable to ARC [14]. The time taken to

verify PREF is higher than BLOCK, because TPVP and TYEN

algorithms are more complex, as they run our path vector

protocol to convergence to find paths (and in TYEN’s case,

TPVP is invoked several times). Finally, KFAIL and BOUND,

both use an ILP and are the slowest to verify. However, they

can still be verified in ≈ 80 ms per traffic class.

Although Uni2 and Uni3 have fewer devices than Uni4,

their TPGs are larger (§E), so it takes longer to verify policies.

8.3 Comparison with Other tools

Next, to put our performance results in perspective, we com-

pare Tiramisu with other state-of-art verification tools.

Minesweeper [6] In this experiment we use datacenter net-

works and consider policies PREF, BOUND, WAYPT, and

BLOCK. Minesweeper takes the number of failures (K) as

input and checks if the policy holds as long as there are ≤ K

failures. To verify a property under all failure scenarios, we

set the value of K to one less than the number of physical links

in the network. Figure 6 shows the time taken by Tiramisu

and Minesweeper to verify these policies, and Figure 7 shows

the speedup provided by Tiramisu.

PREF is the only policy where speedup does not increases

with network size. This is because larger networks have longer

path lengths and more possible candidate paths, both of which

affect the complexity of the TYEN algorithm. The number

of times TYEN invokes TPVP increases significantly with

network size. Hence the speedup for PREF is relatively less,

especially at larger network sizes. For BOUND, the speedup

is as high as 50X . For policies that use TDFS (BLOCK and

WAYPT), Tiramisu’s speedup is as high as 600-800X .

Next, we compare the performance of Tiramisu and

Minesweeper for the same policies but without failures, e.g.

“currently reachable” instead of “always reachable”. Tiramisu

verifies these policies by generating the actual path using

TPVP. Figure 8 (a, b, c, and d) shows the speedup provided

by Tiramisu for each of these policies. Even for no failures,
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Figure 7: Speedup under all failures: Tiramisu vs Minesweeper (datacenter networks)

Tiramisu significantly outperforms Minesweeper across all

policies. Minesweeper has to invoke the SMT solver to find a

satisfying solution even in this simple case.

To shed further light on Tiramisu’s benefits w.r.t.

Minesweeper, we compare the number of variables used by

Minesweeper’s SMT encoding and Tiramisu’s ILP encoding

to verify KFAIL and BOUND. We observed that Tiramisu uses

10-100X fewer variables than Minesweeper. For Tiramisu, we

also found that BOUND uses fewer variables than KFAIL.

Plankton [23] Next, we compare Tiramisu against Plankton

using the Rocketfuel topologies. We generate two sets of

configurations: one with only OSPF and one with iBGP and

OSPF. We run Plankton with 32 cores to verify reachability

with one failure, i.e. k=1 in KFAIL. Figure 9(a) shows the time

taken by Plankton (SPVP on 32 cores) and Tiramisu (ILP

on 1 core) to verify this policy. Due to dependencies, Plank-

ton (P-iBGP) performs poorly for iBGP networks. It gave an

out-of-memory error for large networks. For small networks,

Tiramisu (T-iBGP) outperforms Plankton by 100-300X . On

networks that run only OSPF, Plankton (P-OSPF) performed

better on a single network with 108 routers. Communica-

tion with the authors revealed that Plankton may have gotten

lucky by quickly trying a link failure that violated the policy.

Disregarding that anomaly, Tiramisu (T-OSPF) outperforms

Plankton by 2-50X on the OSPF-only networks.

Batfish [13] Data-plane verifiers, like Batfish, generate data

planes and verify policies on each generated data plane.

ARC [14] showed that Batfish is impractical to use even

for small failures. Here, we show that even without failures,

Tiramisu outperforms Batfish. We run Batfish with all its op-

timization, on the datacenter networks to verify reachability

without failures. As mentioned earlier, Tiramisu verifies this

policy using TPVP. Figure 9(b) shows that it outperforms

Batfish by 70-100X .

Bonsai Bonsai [7] introduced a compression algorithm to im-

prove scalability of configuration verifiers like Minesweeper,

to verify certain policies exclusively under no failures. We

repeat the previous experiment to evaluate Bonsai (built on

Minesweeper). Figure 9(b) shows that Tiramisu still outper-

forms Bonsai, and can provide speedup as high as 9X .

8.4 Scalability

Here, we evaluate Tiramisu’s performance to verify PREF,

KFAIL, BOUND, and, BLOCK, on large networks from the

topology zoo. Figure 10 shows the time taken to verify these

policies. Tiramisu can verify these policies in < 0.12 s.

For large networks, time to verify PREF (TYEN) is as high

as BOUND. Again, this is due to larger networks having longer

and more candidate paths. Large networks also have high di-

versity in terms of path lengths. Hence, we see more variance

in the time to verify PREF compared to other policies.

For large networks, the time to verify KFAIL is significantly

higher than other policies. This happens because KFAIL’s ILP

formulation becomes more complex, in terms of number of

variables, for such large networks. As expected, verifying

BLOCK is significantly faster than all other policies, and it is

very fast across all network sizes.

Impact of TYEN acceleration. In our analysis of PREF and

KFAIL, we invoke TYEN’s acceleration. To evaluate how much

acceleration TYEN provided, we now measure the time taken

to verify PREF on the Rocketfuel and datacenter networks,

with and without TYEN’s optimization. Our main conclusions

are (i) on small networks (< 20 devices), TYEN provides a

acceleration as high as 1.4X , and (ii) on large networks (>

100 devices), TYEN provides acceleration as high as 3.8X .

Evaluation Summary. By decoupling the encoding from al-

gorithms, Tiramisu uses custom property-specific algorithms

with graph-based acceleration to achieve high performance.

9 Extensions and limitations
Although we describe Tiramisu’s graphs in the context of

BGP and OSPF, the same structure can be used to model

other popular protocols (e.g., RIP and EIGRP). Additionally,

virtual routing and forwarding (VRFs) can be modeled by

replicating routing process vertices for each VRF in which

the process participates. To verify policies for different traffic

classes, Tiramisu generates a TPG per traffic class. To reduce

the number of TPGs, we can compute non-overlapping packet

equivalence classes (PEC) [17,23] and create a TPG per PEC.
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Unlike SMT-based tools, Tiramisu does not symbolically

model advertisements. Consequently, Tiramisu cannot deter-

mine if there exists some external advertisement that could

lead to a policy violation; Tiramisu can only exhaustively ex-

plore link failures. Tiramisu must be provided concrete instan-

tiations of external advertisements; in such a case, Tiramisu

can analyze the network under the given advertisement(s) and

determine if any policies can be violated. A related issue is

that Tiramisu cannot verify control plane equivalence: two

control planes are equivalent, if the behavior of the control

planes (paths computed) is the same under all advertisements

and all failure scenarios. In essence, while Tiramisu can re-

place Minesweeper for a vast number of policies, it is not a

universal replacement. Minesweeper’s SMT-encoding is use-

ful to explore advertisements. Additionally, Tiramisu cannot

check quantitative advertisement policies—e.g., does an ISP

limit the number of prefixes accepted from a peer.

Tiramisu’s modeling of packet filters in the TPG only con-

siders IP-based filtering. Consequently, in networks with

protocol- or port-based packet filters, Tiramisu may over-

or under-estimate reachability for packets using particular

ports or protocols. Additionally, Tiramisu does not account

for packet filters that impact route advertisements—e.g., filter-

ing packets destined for a particular BGP neighbor—or route

filters where multiple tags affect the same destination—e.g.,

community groups, AS-path filters, etc. We plan to extend

Tiramisu in the future to address these limitations.

Finally, Tiramisu cannot correctly model a control plane

where (1) iBGP routes lead to route deflection, and (2) an

iBGP process assigns preferences (lp) or tag-based filters to

routes received from its iBGP neighbors (Appendix C).

10 Related Work

We surveyed various related works in detail in earlier sections.

Here, we survey others that were not covered earlier.

ERA [12] is another control plane verification tool. It

symbolically represents advertisements which it propagates

through a network and transforms it based on how routers

are configured. ERA can verify reachability against arbitrary

external advertisements, but it does not have the full coverage

of control plane constructs as Tiramisu to analyze a range of

policies. Bagpipe [29] is similar in spirit to Minesweeper and

Tiramisu, but it only applies to a network that only runs BGP.

FSR [28] focuses on encoding BGP path preferences.

Batfish [13] and C-BGP [24] are control plane simula-

tors. They analyze the control plane’s path computation as a

function of a given environment, e.g., a given failure or an

incoming advertisement, by conducting low level message

exchanges, emulating convergence, and creating a concrete

data plane. Tiramisu also conducts simulations of the control

plane; but, for certain policies, Tiramisu can explore multiple

paths at once via graph traversal and avoid protocol simula-

tion. For other policies, Tiramisu only simulates a path vector

protocol. Although P-Rex [18] is modeled for fast verification

under failures, it focuses solely on MPLS.

11 Conclusion

While existing graph-based control plane abstractions are fast,

they are not as general. Symbolic and explicit-state model

checkers are general, but not fast. In this paper, we showed that

graphs can be used as the basis for general and fast network

verification. Our insight is that, rich, multi-layered graphs,

coupled with algorithmic choices that are customized per

policy can achieve the best of both worlds. Our evaluation of

a prototype [2] shows that we offer 2-600X better speed than

state-of-the-art, scale gracefully with network size, and model

key features found in network configurations in the wild.
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A Yen’s and TYEN Algorithm
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Figure 11: Example for Yen’s Algorithm

Yen’s algorithm. We use the graph in Figure 11 to explain

this algorithm. Although line numbers below refer to TYEN,

those lines of code also apply to the original Yen’s algorithm.

Yen uses two lists: listA (to keep track of the shortest path

seen so far) and listB (to keep track of candidates for the next

shortest path). At the start, Yen finds the first shortest path

(line 2) from src to dst using any shortest path algorithm (e.g.

Dijkstra’s). In Figure 11, it is A→ B→C→ D. Let this path

be P. Yen adds P to listA.

During each iteration of k, Yen takes every node n in path

P (line 13, 14), and finds the rootPath and spurPath of that

node. The rootPath of n is the subpath of P from src to node n

(line 15). The spurPath is the shortest path from node n to dst

(line 20) after making the following changes to the graph: i) to

avoid loops, Yen removes all rootPath node except n from the

graph, ii) to avoid recomputation, Yen removes all outgoing

edges e from n, where e is part of any path PA from listA

having the same rootPath (line 17, 18). For example, if PA is

A→ B→C→ D and B is n, then A→ B is the rootPath and

e is edgeB→C. By condition (i), Yen removes A and edgeA→B.

By condition (ii), it removes edgeB→C. Then, it computes

spurPath as B→ F → D. Yen combines the rootPath and

spurPath to form a new path P′ (line 21) that is not blocked

by tags. P′ is added to listB if it doesn’t already exist in listA

or listB (line 23).

After traversing each node n in path P, Yen picks the short-

est path from listB and reruns the previous steps with this

path as the new P. This continues till Yen finds k paths.

Tiramisu Yen. To verify PREF, we make two simple modi-

fications to Yen (TYEN). First, we replace Dijkstra with TPVP.

Next, we add a condition to check that during each ith itera-

tion of k, the ith path follows the preference order specified

in PREF. To achieve this, TYEN associates each path with a

variable, eRemoved. eRemoved keeps track (line 22) of edges

that were removed from L3TPG (line 17-19) to compute that

path. During each iteration of P, TYEN identifies the most

preferred path specified in PREF that did not have an edge in

P.eRemoved (line 8). If it varies from P, then preference is

violated (line 9, 10).

Algorithm 3 Tiramisu Yen

Input:

G is the graph

src, dst are source and destination nodes

K is no. of path specified in path-preference policy

PREF, a map of preference level and path

1: procedure TYEN (G,src,dst,K)
2: P← path from src to dst returned by TPVP

3: pathsSeen← 0

4: P.eRemoved ← [], as best path requires no edge removal

5: listA← [], tracks paths already considered as P

6: listB← [], tracks paths not yet considered

7: while pathsSeen < K do

8: mostPre f ← most preferred path in PREF whose edges

don’t overlap with P.eRemoved

9: if P 6= mostPre f then

10: return false, since path preference is violated

11: pathsSeen← pathsSeen + 1

12: add P to listA

13: for i← 0 to P.length - 1 do

14: sNode← ith node of P

15: rootPath← subpath of P from src to sNode

16: for each sp ∈ listA do ⊲ paths in listA

17: if sp has same rootPath at sNode then

18: remove out edge of sNode in sp, so path sp is not

considered

19: remove all nodes and edges of rootPath except sNode to

avoid loops

20: spurPath← path from sNode to dst returned by TPVP

21: P′← rootPath + spurPath

22: eRemoved← all edges removed in this iteration

23: add P′ to end of listB if P′ is valid and P′ /∈ [listA, listB]

24: append P′.eRemoved to include eRemoved

25: add back all nodes and edges to the graph

26: P← remove first path from listB

27: return true, since loop didn’t find preference violation

B Tiramisu ILPs
Table 2 lists the boolean indicator variables and functions

used in the ILPs.

B.1 Tiramisu Min-cut

We now present the complete ILP for KFAIL (§6.1). We repeat

the description of the constraints to ensure ease of reading.

The objective is to minimize the number of physical link
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Name Description

V
ar

ia
b

le

Fe set as 1 if edge e fails

Ae set as 1 if traffic propagates on edge e

Rn set as 1 if traffic reaches node n

Be set as 1 if edge e carries blocked tag

Tn,t set as 1 if node n forwards tag t

F
u

n
ct

io
n

nodes returns all nodes of graph

edges returns all edges of graph

dEdges returns all inter-device edges of graph

pEdges returns all physical edges of the network

oNodes returns all nodes except src and dst

iE(n) returns incoming edges of node n

oE(n) returns outgoing edges of node n

iN(n) returns start nodes of all incoming edges of

node n

at(e) returns tags added by edge e

rt(e) returns tags removed by edge e

bt(e) returns tags blocked on edge e

ot(e) returns tags /∈ [at(e),rt(e)]
start(e) returns start node of edge e

end(e) returns end node of edge e

phy(e) returns physical edge associated with edge e

Table 2: Variables and Functions

failures required to disconnect src from dst.

Objective: minimize ∑
i∈pEdges

Fi (1)

Forwarding constraints. We first discuss the constraints

added to represent traffic forwarding. The base constraint

states that src originates the traffic. To disconnect the graph,

the next constraint states that the traffic must not reach dst.

Rsrc = 1 (2)

Rdst = 0 (3)

For other nodes, the constraint is that traffic can reach a node

n if it gets propagated (Ae) on any incoming edge e.

∀n ∈ oNodes,Rn =
∨

e∈iE(n)

Ae (4)

(Logical AND/OR can be expressed as ILP constraints.)

Traffic can propagate through an edge e: if it reaches the start

node of e (start(e)); if the traffic does not carry a tag that is

blocked on e (¬Be); and if e represents an inter-device edge,

the underlying physical link does not fail (¬Fphy(e)). This is

represented as

∀n ∈ oNodes,∀e ∈ iE(n) :

Ae = Rstart(e)∧¬Be∧¬Fphy(e) (5)

Tag Constraints. We now add constraints to model route tags.

Route tags propagate in route advertisements from processes

that add tags to processes that remove tags or block adver-

tisements based on tags. However, the TPG models traffic

propagation, which occurs in the opposite direction of route

propagation. Hence, instead of modeling the flow of tags from

the nodes that add them to the nodes that block/remove them,

we model the flow of blocked tags from the nodes that block

them to the nodes that remove/add them. The base constraints

state that each edge that blocks on the tag “forwards” the

blocked tag, and each edge that removes the blocked tag does

not forward it.

∀e ∈ edges,∀t ∈ bt(e) :

Te,t = 1 (6)

∀e ∈ edges,∀t ∈ rt(e) :

Te,t = 0 (7)

For other edges, we add the constraint that edge e forwards a

blocked tag t iff the start node of e (start(e)) receives traffic

with t.

∀e ∈ edges,∀t ∈ ot(e) :

Te,t =
∨

i∈iE(start(e))

Ti,t (8)

Finally, we add the constraint that an edge e carries blocked

traffic iff e receives a tag that is added by e.

∀e ∈ edges :

Be =
∨

t∈at(e)

Te,t (9)

B.2 Tiramisu Longest Path

We now present the complete ILP for BOUND (§6.2). For ease

of reading, we repeat our description of the constraints.

Recall that our objective is to maximize the number of inter

device edges (dEdges) traversed by traffic (Ai).:

Objective: maximize ∑
i∈dEdges

Ai (10)

Path constraints. To ensure traffic flows on only one path,

src sends traffic, and dst receives traffic, we add the following

constraints:

∑
out∈oE(src)

Aout = 1 (11)

∑
in∈iE(dst)

Ain = 1 (12)

For other nodes, we add the flow conservation property, i.e.

the sum of incoming flows is equal to the outgoing flows.

∀n ∈ oNodes : ∑
in∈iE(n)

Ain = ∑
out∈oE(n)

Aout (13)

Traffic constraints. Next, we add constraints on traffic prop-

agation. Traffic will be blocked on edge e if it satisfies the tag

(Be) constraints. This is similar to Eqn 9.

∀e ∈ edges : Ae ≤ ¬Be (14)
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C Proofs
We first prove the correctness of TPVP (§C.1). This theorem

is then used to prove the correctness of our ILPs(§C.2) and

TDFS (§C.3).

C.1 TPVP

In this section, we prove that we correctly model and solve

the stable paths problem. Griffin et al [15] showed that an

instance of the stable paths problems is a graph together with

the permitted paths P at each node and the ranking functions

for each node. Hence, we first need to prove that we correctly

model the permitted paths P and the ranking function. We

will use the following lemmas to prove them. Finally, we will

prove that as long as the network converges, TPVP finds the

exact path taken in the network and hence the solution to the

stable path problem.

Lemma 2. All permitted paths p ∈ P that a routing process

v ∈V may take in the actual network to reach the destination,

exists in the TPG (p ∈ T PG).

Proof: Consider the path vi → vi+1 ...→ vn, where v rep-

resents a node in the graph. We will inductively prove that

for any path p ∈ P , a node vi has a path to the dst node in

the TPG, if there is an equivalent path that traverses the same

routing processes (i.e. the traffic matches the RIB entries of

these routing processes) and vlan-interfaces on the real net-

work.

When i = n, then the node vi represents the destination (dst)

of traffic.

Assume there is a path from node vi+1 to vn and this is mod-

eled correctly. We will now prove that vi is connected to vi+1

in the TPG if vi can use vi+1 to reach the next-hop router (in

its path towards the destination node). Node vi can be one of

the following types of nodes

Case (i): node vi is an OSPF node According to §4.2, node

vi+1 will be a VLAN-egress node. TPG connects vi and vi+1

if OSPF is configured to operate on that V LAN interface.

OSPF uses its configured interfaces [22] to (a) receive link-

state advertisement from its neighbors, and (b) forward/send

traffic towards its neighbors. Hence, OSPF will use the VLAN-

egress node to forward traffic to its neighbors/next-hop router.

Hence case (i) is modeled correctly.

Case (ii): node vi is an BGP node According to §4.2,

node vi+1 will be either an OSPF node or an VLAN-egress

node. These instances represent BGP using either an OSPF-

computed route or a connected subnet to reach the next hop

router. Assume vi+1 is an OSPF node. BGP process is al-

lowed to communicate with its neighboring adjacent process

through an OSPF-computed path. Hence these nodes can be

connected in the actual network. Assume vi+1 is a VLAN-

egress node for VLAN interface V . TPG connects them if

BGP’s next-hop IP address falls within the subnet assigned to

VLAN interface V . Similar to case (i), this interface is use to

receive advertisements and send traffic to the next-hop router.

Hence case (ii) is modeled correctly.

Case (iii): node vi is a VLAN-ingress node According

to §4.2, node vi+1 will be either an OSPF/BGP node rep-

resenting the processes running on the same router, or an

egress node for the same VLAN on that router. Assume vi+1

is an OSPF/BGP node. In the TPG, all traffic enters a router

through a VLAN-ingress node. In the actual network, all in-

coming traffic looks up the global RIB of the router to move

to the next-hop router. A router’s global RIB contains entries

from all the RIBs of all of its routing processes. The TPG con-

nects the VLAN-ingress node to an OSPF/BGP node if that

node is tainted in the RAG. Since only those processes that

have a RIB entry for the dst are tainted, this is modeled cor-

rectly. Assume vi+1 is an VLAN-egress node. TPG connects

them iff the underlying device is a switch. Since flooding

occurs at Layer-2, this is modeled correctly.

Case (iv): node vi is a VLAN-egress node According

to §4.2, node vi+1 will be a VLAN-ingress node. TPG con-

nects them if they belong to the same VLAN and their un-

derlying routers are connected in the physical topology. This

models basic physical connectivity in the real network. Hence,

case (iv) is modeled correctly.

Case (v): node vi is the src node According to §4.2, node

vi+1 will be either an OSPF node or a BGP node. The src

node is like any other VLAN-ingress node, with the difference

being that the src originates the traffic. Hence, using similar

arguments as case (iii), case (v) is modeled correctly.

Lemma 3. TPVP will not choose a path p /∈ P from a routing

process v ∈ V to the destination, that the routing process v

cannot choose in the actual network.

Proof: A TPG is partially based on the physical topology.

In the TPG, the only inter-device edge is the edge between

the VLAN-egress node of a device and the VLAN-ingress

node of its neighboring device. Hence, the TPG will not have

any path that does not exist in the actual physical network

topology.

In the TPG, OSPF and BGP nodes are connected to a VLAN-

egress node if they processes is configured to operate on that

VLAN. Additionally, a VLAN-ingress node is connected to

OSPF and BGP nodes if those processes are tainted in the

RAG. Hence, the TPG will correctly connect the interfaces

with its associated routing process, and won’t have any path

due to incorrect route adjacency.

Next, we prove that Tiramisu correctly models

prefix/neighbor-based and tag-based filters. The TPG

models prefix/neighbor-based filters by removing edges from

the node associated with the process that uses those filters.

Hence, the TPG will not have any path that is blocked due to

prefix/neighbor-based filters in the actual network.

The only path that may exist in the TPG and not in the

network is the path blocked by tags. TPVP uses routing

algebra [16, 25] to model route computation and route

selection operations. [16] showed that routing algebra can

model and filter routes based on tags. Routing algebra uses

“tag” attributes in their edge labels and path signatures. Their
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⊕ (operation) function models both addition of tags and

blocking routes based on tags. Hence TPVP will not choose a

path that is blocked by tags.

Hence TPVP will not choose a path p that cannot be chosen

in the actual network.

Lemma 4. L3TPG has the same set of layer 3 paths as the

actual network and has no path that cannot exist in the actual

network.

Proof: Since advertisements can flow between layer 3

nodes as long as there is at least one layer 2 path that connects

them, Tiramisu uses path contraction to replace layer 2 paths

with a layer 3 edge.

Assume there is a layer 3 path P∗ in the L3TPG that does not

exist in the network. Since path contraction replaces subpaths

with edges and does not add paths, P∗ with (layer 2 nodes

inbetween) must exist in the original TPG. I.e. If nodes are

connected in the layer-3 graph, then they have to be connected

even before path contraction. This contradicts Lemma 3.

Assume there is a layer 3 path P# in the network that does not

exist in the L3TPG. Since path contraction replaces subpaths

with edges and does not eliminate paths, P# with (layer 2

nodes inbetween) must not exist in the original TPG. This

contradicts Lemma 2.

In the following lemmas, we operate on the contracted

L3TPG.

Lemma 5. For all routing process v ∈V , given a set of paths

P , best(P ,v) matches the path that v would choose when

paths P are given as choices in the actual network.

Proof: TPVP uses routing algebras to model the ranking

behavior of actual protocols (OSPF and BGP). Routing alge-

bras model route selection/path ranking using a � preference

relation over path signatures. This correctly models the route

selection algorithm in the underlying network. Hence the path

chosen by best(P ,v) for each routing process v ∈V matches

the path chosen in the actual network.

Lemma 6. For all routing process v ∈V , the set of paths P

considered by TPVP matches the paths that v can choose from

in the actual network.

Proof: Our networks may run either (i) only OSPF pro-

cesses, (ii) only BGP processes, or (iii) both OSPF and BGP

processes. We leverage Lemma 5 to prove the correctness for

each scenario.

Case (i): OSPF-only network In the L3TPG, we have only

OSPF nodes. From Lemma 5, we know that OSPF nodes will

make the same choice as the actual OSPF processes. Hence

case (i) is modeled correctly.

Case (ii): BGP-only network In the L3TPG, we have only

BGP nodes. From Lemma 5, we know that BGP nodes will

make the same choice as the actual BGP processes. Hence

case (ii) is modeled correctly.

Case (iii): OSPF+BGP network In the layer 3 TPG, we

have both BGP and OSPF nodes. Here choices made by

OSPF or BGP nodes may depend on the opposite protocol’s

choices.

Case (iii-a): both node vi and vi+1 are BGP nodes. This is

similar to case (ii). Hence it is modeled correctly.

The next three cases represent instances where BGP uses an

OSPF computed path to reach its next hop.

Case (iii-b): node vi is a BGP node, node vi+1 is an OSPF

node, and vi+1 is connected to a single BGP node. Since

OSPF has only one choice, it will select the BGP process as

its next hop and case (iii-b) is modeled correctly.

Case (iii-c): node vi is a BGP node, node vi+1 is an OSPF

node, and vi+1 is connected to multiple BGP nodes hav-

ing equal preference (same cost). Since BGP processes

are equally preferred, OSPF cost is used to select the best

path/route [1]. Case (i) showed that given a set of OSPF-costs,

the OSPF node will make the right choice. Hence, this case

(iii-c) is modeled correctly.

Case (iii-d): node vi is a BGP node, node vi+1 is an OSPF

node and vi+1 is connected to multiple BGP nodes having

different preferences. Since an OSPF node cannot make a

decision using BGP preferences, Tiramisu cannot model this

scenario. In the real network, this scenario arises when an

iBGP process assigns preferences (lp) or tag-based filters to

routes received from its iBGP neighbors.

Case (iii-e): node vi is a BGP node, node vi+1 is an OSPF

node and vi+1 is connected to one or multiple OSPF nodes.

This scenario can only happen if BGP and OSPF have route

redistribution. In this scenario, vi+1 makes the choice for intra-

domain routing and vi makes the choice for inter-domain rout-

ing. Using similar arguments as case (i) and case (ii), choices

made by vi+1 and vi will be correct.

Case (iii-f): node vi is an OSPF node. Assume node vi+1 is

an OSPF node. This is similar to case (i). Hence it is modeled

correctly. Assume node vi+1 is a BGP node. This will lead to

similar scenarios as case (iii-c) to case (iii-e). Hence, using

similar arguments, case (iii-f) is modeled correctly as long as

iBGP processes do not assign preferences to routes received

from its iBGP neighbors.

Theorem 1. If the network control plane converges, TPVP

always finds the exact path taken in the network under any

given failure scenario.

Proof: Lemma 2 and 3 showed that we correctly model

permitted paths P . Lemma 5 and 6 showed that we correctly

model path selection/ranking function. Now, we need to prove

that under convergence, TPVP is equivalent to PVP.

The body of the loop code of TPVP (line 7 to 11) is equiva-

lent to the PV P code that runs at each node [26]. The termi-

nation conditions of PV P and TPVP (line 12 to 13) are also

similar. Both of them establish convergence when there are

no new messages in the distributed and shared buffers respec-

tively. And finally, both of them are executed after removing

edges to represent failures.

The main difference between PV P [15, 26] and TPVP is

the following: In PVP, there is no restriction on the order in

which messages are processed by different routers. As long

as the network converges and there exists a stable path, PV P
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will find it irrespective of the order in which messages are

sent and processed. In TPVP, we process and send messages

in a fixed round-robin order (line 5). Since any ordering of

messages in PV P leads to a valid solution, a fixed ordering

of messages should also lead to a valid solution. Hence if the

network converges, TPVP finds the exact path.4

C.2 ILP

We will first use two lemmas to prove that TPVP and the

min-cut ILP consider the same set of paths. Recall that the

min-cut ILP can be applied directly only on a TPG with no

ACLs; in §6.1, we showed how it deals with ACLs.

Lemma 7. The min-cut ILP only considers paths computed

by TPVP.

Proof: Assume the min-cut ILP considered a path that was

not computed by TPVP. This implies the path was ignored

by TPVP but not the ILP. This is not possible because (i)

according to Lemma 2 and 3, TPVP correctly models permit-

ted paths, and (ii) the ILP and TPVP exclude the same set

of paths, i.e. both of them exclude paths based on tags. The

ILP constraints on tags (Eqn 6 and 14) ensure that all paths

blocked by tags are ignored by the ILP.

Lemma 8. The min-cut ILP considers all paths computed by

TPVP.

Proof: Assume the min-cut ILP did not consider a path

computed by TPVP. This implies the path was ignored by

the ILP but not by TPVP. Similar to Lemma 7, this is not

possible because (i) the ILP correctly models permitted paths

(Lemma 2 and 3), and (ii) the ILP and TPVP exclude the same

set of paths.

Theorem 9. In the absence of ACLs, the min-cut ILP com-

putes the minimal failures to disconnect the src and dst in the

TPG.

Proof: By Lemma 7 and 8, the ILP considers the same set

of paths as TPVP. Next, we will show that this ILP computes

a valid cut. Then, we will show that the cut is minimum.

Assume the ILP does not compute a valid cut. This means

there is a path where all its edges Ae are equal to 1. However

that also means that by Eqn 4, one of Rstart(e) is Rdst and Rdst

is equal to 1. This contradicts Eqn 3.

Assume the ILP computes an invalid cut. This means there

is still a path where all its edges Ae are equal to 1. Using the

same argument, this will again contradict Eqn 4 with Eqn 3.

Assume the cut computed by ILP is not the minimum. This

will contradict the objective function (Eqn 1) which mini-

mizes the number of edge failures (removals) to disconnect

the graph.

Next, we prove the correctness of the longest-path ILP.

Theorem 10. The longest-path ILP computes the length of

the longest inter-device path between src and dst in the TPG.

Proof: Note that the longest-path ILP is modeled for the

4Note that Tiramisu assumes network convergence. The routing alge-

bra that models TPVP will have all the algebraic properties required for

convergence.

same TPG as the min-cut ILP. Although the ILPs are different,

the constraints used to block based on tags are the same. Using

similar arguments as min-cut ILP, we can prove the following

two lemmas

Lemma 11. The longest-path ILP only considers paths com-

puted by TPVP.

Proof: Similar to Lemma 7

Lemma 12. The longest-path ILP considers all paths com-

puted by TPVP.

Proof: Similar to Lemma 8

Hence, by Lemma 11 and 12, this ILP also considers the

same set of paths as TPVP. Next, we will show that this ILP

computes a valid path. Then, we will show that this path is

the longest.

Assume, the ILP finds an invalid path. This means there is

some node which has an outgoing flow without any incom-

ing flow. This contradicts the flow conservation constraint

(Eqn 13). Assume, the ILP misses a valid path. This means

there is some node which does not have an outgoing flow but

has an incoming flow. This also contradicts Eqn 13.

Assume the path computed by ILP is not the longest. This

will contradict the objective function (Eqn 10) which maxi-

mizes the number of edges traversed to reach the destination.

C.3 TDFS

Theorem 13. TDFS identifies a src-dst pair as always un-

reachable iff there never exists a path from src to dst under

all possible failures

Proof: Assume there existed some path in the network that

TDFS did not consider. This implies the path was ignored by

TDFS and not TPVP. We will now prove by contradiction

why this is not possible.

There are four types of paths that can exist in the network

to establish reachability. We will show that TDFS will capture

each of those paths.

Case (a): assume a path p1 exists from src to dst which does

not traverse any edge with tags. Assume this path is ignored

by TDFS. Line 5 of TDFS runs DFS after removing edges that

block on tags. In this case, no edges are removed. Since p1

connects src to dst, DFS will return true and TDFS will say

dst is reachable from src. This contradicts our assumption.

Case (b): assume a path p2 exists from src to dst which does

not traverse any edge that blocks on a tag. Assume this path is

ignored by TDFS. Line 5 of TDFS runs DFS after removing

edges that block on tags. Since p2 connects src to dst without

traversing any of these removed edges, DFS will return true

and TDFS will say dst is reachable. This again contradicts

our assumption.

Case (c): assume a path p3 exists from src to dst that tra-

verses an edge that blocks on tags but does not traverse any

edge which adds tags to an advertisement. Assume this path

is ignored by TDFS. Line 7 of TDFS runs DFS after (i) estab-

lishing that all paths go through edges that block on tags, and,

(ii) removing edges that add tags. Because of (i), we know all
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p3 will traverse a tag blocking edge. Since p3 connects src to

dst (and hence a tag-blocking edge to dst) without traversing

the removed edges, DFS will return true and TDFS will say

dst is reachable. This again contradicts our assumption.

Case (d): assume a path p4 exists from src to dst which

traverses an edge that blocks on tags, followed by an edge

that removes that tag and an edge that adds that tag. Assume

TDFS ignores this path. Line 9 of TDFS runs DFS after (i)

establishing that all paths go through both edges that block

on a tag and add that tag, and (ii) removing edges that remove

that tag.

TDFS will return false if DFS states that the tag-blocking

edge cannot reach the tag-adding edge. This can happen in

two scenarios. In the first scenario, the tag-blocking edge

could not reach the tag-adding edge even before node removal.

In the second scenario, the tag-blocking edge could reach the

tag-adding edge, but the removal of the tag-removing edge

disconnected them. p3 already captures the first scenario. And

p4 represents the second scenario. TDFS captures both these

scenarios. Hence, this again contradicts our assumption.

Assume there exists some path P# that is considered by

TDFS as a valid path but does not exist in the network. As

mentioned in Lemma 3, the only path that exists in the TPG

and not in the network is the path blocked by tags. Hence, P#

must be blocked by tags. However, Line 11 of TDFS returns

true if all paths that connect src to dst traverses a tag-blocking

edge X , followed by a tag-adding edge Y , and no tag removing

edge between X and Y . Hence, TDFS correctly identifies

and ignores paths based on tags. This again contradicts our

assumption.

D Other Policies
Some of the other policies that Tiramisu can verify are listed

below:

Always Chain of Waypoints (CW). Similar to waypoint-

ing, we remove nodes associated with each waypoint, one

at a time. Using TDFS, we check if nodes associated with

one of the preceding waypoints in the chain can reach nodes

associated with one of the following waypoints in the chain.

Equal Bound (EB). This policy checks that all paths from

src to dst are of the same length. The objective of the ILP

in §6.2 can be changed to find the shortest path length. If

the longest and shortest path length varies, then this policy is

violated.

Multipath Consistency (MC). Multipath consistency is

violated when traffic is dropped along one path but blocked by

an ACL on another. To support multipath in TPVP, we change

the p∗ variable to keep track of multiple most preferred path

signatures to reach dst. Using TPVP, Tiramisu can identify

the number of best paths to reach dst. We run TPVP on graphs

with and without removing edges for ACLs. If the number
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Figure 12: Size of multilayer graphs of all networks

of paths varies with and without ACLs, then the policy is

violated.

Always no black holes (BH). Black holes occur when traf-

fic gets forwarded to a router that does not have a valid for-

warding entry. Blackholes are caused by i) ACLs: routers

advertises routes for traffic that is blocked by their ACLs; ii)

static routes: the next-hop router of a static route cannot reach

dst. Tiramisu uses TDFS to check these conditions. For (i)

Tiramisu first creates the graph without removing edges for

ACLs. Let R be the router with a blocking ACL. If src can

reach router R and R can reach dst (using TDFS), then traffic

will reach router R under some failure, and then get dropped

because of the ACL. For (ii) if src can reach the router with

the static route and the next-hop router cannot reach dst, then

the traffic gets dropped.

E Protocols/Modifiers in Network

We used university, datacenter, topology zoo, and Rocketfuel

configurations in our evaluation §8. Table 3 shows what per-

centage of networks in these datasets support each network

protocol/modifier.
% of Networks

Protocols/Modifiers University Datacenter Topology Zoo Rocketfuel

eBGP 100% 100% 100% 100%

iBGP 100% 0% 100% 100%

OSPF 100% 97% 100% 100%

Static routes 100% 100% 0% 0%

ACLs 100% 100% 0% 0%

Route Filters 100% 97% 100% 0%

Local Prefs 50% 0% 100% 0%

VRF 100% 0% 0% 0%

VLAN 100% 0% 0% 0%

Community 100% 100% 100% 0%

Table 3: Configuration constructs used in networks
Figure 12 characterizes the size of the TPGs generated by

Tiramisu for these networks. It shows the number of nodes and

edges used to represent the graph. We observe two outliers

in both Figure 12a and Figure 12b. These occur for networks

Uni2 (24 devices) and Uni3 (26 devices), from the university

dataset. These networks have multiple VRFs and VLANs, and

Tiramisu creates multiple nodes (and edges between these

nodes) for different VRFs, routing processes and VLAN in-

terfaces. Note also that for the other networks, the number

of routing processes per device varies. Hence, the number of

nodes and edges do not monotonically increase with network

size.
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Abstract

Building a formally-verified software middlebox is attractive
for network reliability. In this paper, we explore the feasibil-
ity of verifying “almost unmodified” software middleboxes.
Our key observation is that software middleboxes are already
designed and implemented in a modular way (e.g., Click). Fur-
ther, to achieve high performance, the number of operations
each element or module performs is finite and small. These
two characteristics place them within reach of automated
verification through symbolic execution.

We perform a systematic study to test how many existing
Click elements can be automatically verified using symbolic
execution. We show that 45% of the elements can be auto-
matically verified and an additional 33% of Click elements
can be automatically verified with slight code modifications.
To allow automated verification, we build Gravel, a software
middlebox verification framework. Gravel allows develop-
ers to specify high-level middlebox properties and checks
correctness in the implementation without requiring manual
proofs. We then use Gravel to specify and verify middlebox-
specific properties for several Click-based middleboxes. Our
evaluation shows that Gravel avoids bugs that are found in
today’s middleboxes with minimal code changes and that the
code modifications needed for proof automation do not affect
middlebox performance.

1 Introduction
Middleboxes (e.g., NATs, firewalls, and load balancers) play
a critical role in modern networks. Yet, building functionally
correct middleboxes remains challenging. Critical bugs have
routinely been found in middlebox implementations. Many of
these bugs [8–12] directly lead to system failure or informa-
tion leaks. Worse still, malformed packets can trigger some
of these bugs and expose severe security vulnerabilities.

Given the importance of building functionally correct
middleboxes, researchers have turned to formal verification
and have made significant progress [14, 40]. Crucially, these
efforts tackle real middlebox implementations rather than
abstract middlebox models and verify non-trivial program
properties. However, just as with using software verification
in other areas of computer systems, this can incur a non-trivial
amount of proof effort (e.g., 10:1 proof to code ratio in Vi-
gNAT [40]). At the same time, the excessive proof effort
prevents researchers from exploring verification of high-level
middlebox-specific properties (e.g., a middlebox rejects unso-
licited external connection). As a consequence, recent verifica-
tion efforts focus either entirely on low-level code properties

(e.g., free of crashes, memory safety) [14] or on proving equiv-
alence to pseudocode-like low-level specifications [39, 40].

In this paper, we ask whether it is possible to make soft-
ware middlebox verification completely automated with mini-
mal proof effort. In particular, our goal is two-fold. First, we
want verification to work on real-world “almost unmodified”
middlebox implementations without requiring manual proofs.
Second, we want developers to be able to express and ver-
ify high-level properties directly translated from RFCs (e.g.,
RFC5382 [29] for NAT) without writing manual proofs to-
wards each of these properties. To deliver on these goals, we
seek to replicate the automated reasoning approach used in
some recent verification projects that focus on file systems
and OS system calls [30, 34]. Specifically, we would like to
use symbolic execution to automatically encode a middlebox
implementation and its high-level specification using satisfia-
bility modulo theories (SMT) and then use solvers to verify
that the implementation is consistent with the specification.

Our key observation regarding the suitability of this ap-
proach is that many existing middleboxes are already de-
signed and implemented in a modular way (e.g., Click [23])
for reusability. As they aim for high performance, the number
of operations they perform on each packet is finite and small.
Both characteristics place these middleboxes within reach of
automated verification through symbolic execution. Thus, one
goal of this paper is to identify domain-specific analyses that
enable symbolic execution to exploit these characteristics and
distill SMT encodings for middlebox implementations.

We begin by studying whether we can use automated ver-
ification on existing software middleboxes. We perform a
systematic study on all 290 Click elements and 56 Click con-
figurations (≈60K lines of code) in Click’s official repository
to test whether they are suitable for automated verification.
We find that a baseline symbolic executor can derive sym-
bolic expressions for 45% of the elements and 16% of the
configurations. We then introduce a set of domain-specific
static analyses and code modifications (such as replacing el-
ement state by SMT-encoded abstract data types) to enable
the symbolic execution of a more substantial fraction of Click
elements. These techniques allow us to symbolically execute
an additional 33% and 50% of elements and configurations,
respectively.

Encouraged by the results of the empirical study, we de-
signed and implemented Gravel, a framework for automated
software verification of middleboxes written using Click [23].
Gravel provides developers with programming interfaces to
specify high-level trace-based properties in Python. Gravel
symbolically executes the LLVM intermediate representation
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compiled from an element’s C++ implementation. Gravel
then uses Z3 [38] to verify the correctness of the middlebox
without the burden of manual proofs.

We then evaluate Gravel by porting five Click middleboxes:
MazuNAT, a load balancer, a stateful firewall, a web proxy,
and a learning switch. We verify their correctness against
high-level specifications derived from RFCs and other sources.
Only 133 out of 1687, 63 out of 1151, 63 out of 1447, 50 out
of 953, and 0 out of 594 lines of code need to be modified to
make them automatically verifiable. The high-level specifi-
cation of the middlebox-specific properties can be expressed
concisely in Gravel, using only 177, 70, 68, 39, and 91 lines
of code. Our evaluation shows that Gravel can avoid bugs
similar to those found in existing unverified middleboxes. Fi-
nally, we show that the code modifications do not degrade the
performance of the ported middleboxes.

2 Encoding Existing Software Middleboxes
To understand the feasibility of applying automated verifica-
tion to existing software middleboxes, we perform an empiri-
cal study of all the 290 Click elements and 56 Click configu-
rations1 in Click’s official repository [23]. In this section, we
first explain what is automated verification and then describe
ways to enhance the effectiveness of automated verification
for middleboxes. Finally, we show that 78% of Click elements
and 66% of Click configurations are amenable to automated
verification after some limited modifications to the code.

2.1 Automating verification using symbolic execution

A well-established approach to software verification is de-
ductive verification. In this style, a developer generates a
collection of proof obligations from the software and its spec-
ifications. Proof assistants, such as Coq [7], Isabelle [32],
and Dafny [24], are highly expressive, allowing mathematical
reasoning in high-order logic. However, the verification pro-
cess is mostly manual, requiring significant effort from the
developer to convey his/her knowledge of why the software is
correct to the verification system. For example, when applied
to a NAT, VigNAT [40] shows a 10:1 proof-to-code ratio.

Recently, researchers have started exploring the feasibil-
ity of automating the verification process through exhaustive
symbolic execution, which encodes the middlebox implemen-
tation into a symbolic expression that can be checked against
a high-level specification. This style of software verification
reduces the developers’ manual proof effort and has already
been used successfully to verify file systems [34] and oper-
ating systems [30]. However, this style is more limited than
deductive verification, putting restrictions on the program-
ming model. For example, Hyperkernel requires loops in its
system call handlers to have compile-time bounds on their
iteration counts.

1Our empirical study focuses on the Click elements and configurations
that process packets in a run-to-completion model.

class CntSrc : public Element {
// omitting constructor and destructor
Packet *process_packet(Packet *pkt) {

if (pkt->ip_header->saddr == target_src_)
cnt_++;

return pkt;
}
IPAddress target_src_;
uint64_t cnt_;

}

Figure 1: A C++ implementation of a simple packet
counter.

To see an example of symbolic execution based verifica-
tion, Figure 1 shows a simple packet counter. This code in-
crements a counter when the source IP address of a packet
matches a signature (i.e., target_src_). Here we model this
process_packet function as f : S×P 7→ S×P, where S is the
set of all possible internal states (target_src_ and cnt_) and
P denotes the set of all possible packets. For simplicity, this
formulation assumes that at most one outgoing packet is gen-
erated for each incoming packet. Symbolically executing this
code snippet generates the following symbolic expression:

∀s, s′ ∈ S, ∀p, p′ ∈ P, f (s, p) = (s′, p′)⇒
(p′ = p)∧ (s′.target_src = s.target_src)

∧(p.saddr = s.target_src⇒ s′.cnt = s.cnt +1)
∧(p.saddr 6= s.target_src⇒ s′.cnt = s.cnt))

This symbolic expression says that for all possible inputs,
outputs and state transitions: (1) the input packet should be
the same as the output packet; (2) the target_src_ should
not change; (3) if the packet’s source IP address matches
target_src_, the cnt_ in the new state should be the cnt_ in
the old state plus 1; (4) if the packet’s source IP address does
not match target_src_, the cnt_ should not change.

Symbolic execution alone is not enough for automated ver-
ification; it only ensures that we can automatically generate
the above expression. To ensure automated verification, when
the developer verifies the above expression against a specifi-
cation using an off-the-shelf theorem solver (such as Z3 [38]),
the solver needs to be able to solve it efficiently.

A program is suitable for automated verification if:

1. Symbolic execution of the program halts and yields a
symbolic expression.

2. The resulting symbolic expression is restricted to an ef-
fectively decidable fragment of first-order logic.

Condition 1 means the program has to halt on every pos-
sible input. Condition 2 depends on which fragment of first-
order logic a solver can solve efficiently. This fragment
changes as solver technologies improve over time. Empir-
ically, we know that if we can restrict the symbolic expression
to only bit vectors and equality with uninterpreted functions,
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a solver can tackle the expression efficiently [30].

2.2 Baseline effectiveness of symbolic execution

We now study the feasibility of automating verification by
examining middleboxes written using Click. We perform an
empirical study on both Click elements and Click configu-
rations, which are datagraphs formed by composing Click
elements. This study allows us to measure both the fraction of
Click code and the fraction of automatically verifiable Click
programs. To perform this empirical analysis, we implement
a baseline symbolic executor to analyze whether an element
or a configuration satisfies the conditions mentioned above.
Since elements are C++ classes, the symbolic executor first
analyzes all the member fields to determine whether the state
could be encoded with SMT (Condition 2). It then performs
symbolic execution over the compiled LLVM byte code2 of
the element to check if Condition 1 is met. However, since
both conditions are undecidable, we choose to use the fol-
lowing two conservative criteria. (In fact, we describe in the
subsequent section how we augment our baseline symbolic
executor with domain-specific extensions.)

Absence of pointers in element state. When the symbolic
executor analyzes each of an element’s members, it checks
whether the element state can be expressed solely by bit vec-
tors and uninterpreted functions. Though one could use bit
vectors to encode the entire memory into a symbolic state, it
would be difficult to efficiently solve expressions containing
such a symbolic state due to the sheer size of the search space.
Therefore, we choose a conservative criterion, the absence of
pointers in element states, as it is easy to see that elements
without pointers always have bounded state. Each element in
Click can only have a finite number of member variables, and
each non-pointer variable can only consume a finite amount
of memory. Thus, the state space of a Click element without
pointers can always be expressed by constant size bit vectors.
Of course, such criteria introduce false negatives, for exam-
ple, using pointers to access a bounded data structure (e.g.,
fixed-size array).

Absence of loops and recursions. To determine whether
Click elements’ execution is bounded (Condition 1), the sym-
bolic executor invokes the packet processing code using a
symbolic element state and a symbolic packet content. The
symbolic executor detects potential unbounded execution by
searching for loops and recursive function calls and only per-
forms execution on those elements that do not contain them.
The symbolic executor performs the check by comparing each
jump/call target with the history of executed instructions.

Table 1 shows the results of running this baseline symbolic
executor. We found that 130 of the existing Click elements
(45%) are suitable for automated verification. Among the ones
that failed our test, 143 elements failed because of pointers,

2We chose to use LLVM byte code rather than C++ abstract syntax tree as
the former makes it easier to reason about the control flow by eliminating C++
related complexities (e.g., function overloading and interface dispatching).

and 78 elements failed because of unbounded execution. 61
of the elements have both pointers and unbounded execution.
A Click configuration is amenable to automated verification
if and only if all the Click elements in the configuration can
be automatically verified. Among the 56 configurations in the
official Click repository, only 9 out of the 56 Click configura-
tions (16%) are suitable for automated verification.

2.3 Enhancing symbolic execution

We now augment our baseline executor with additional tech-
niques that aid symbolic execution. We also examine the
impact of performing a small number of code modifications
to make the middleboxes amenable to automated verification.
Some of the techniques described below are broadly applica-
ble but are likely more effective for middlebox programs that
operate on packet data with well-defined protocol specifica-
tions. The remaining techniques are domain-specific analyses
that are suitable only for packet processing code.

Code unrolling. When detecting a backward jump, the sym-
bolic executor unrolls the loop and executes its loop body.
The executor keeps count of how many times it executes the
backward jump instruction and raises an error if the number
goes beyond a pre-defined threshold. This technique is use-
ful when the source code has loops with a static number of
iterations or loops whose iteration count is a small symbolic
value, as would be the case for code that processes protocol
fields of known size.

Pointer analysis to detect immutable pointers and static
arrays. In general, we can classify the use of pointers into
three categories: pointers to singleton objects, pointers cor-
responding to arrays, and pointers used to build recursive
data structures. These use cases introduce two distinct chal-
lenges in the symbolic execution of Click code with pointers.
First, the symbolic executor needs to determine whether two
pointers point to overlapping memory regions and update the
symbolic state of elements correctly irrespective of which
pointer is used for the update. Second, when pointers are used
to implement recursive data structures, such as linked list or
tree, the data structure access often involves loops whose itera-
tion counts depend on the symbolic state of the elements. Our
symbolic executor first identifies how pointers are used and
then uses the appropriate technique for symbolic execution.

We first use an analysis pass to identify immutable pointers
by checking which of the pointer fields in a Click element
remain unmodified after allocation. At the same time, we
determine which of the other program variables serve as pos-
sible aliases for a given pointer field. Further, for pointers
pointing to an array of data items, the symbolic executor also
performs a static bounds check on accesses performed using
the pointers to ensure that all accesses are within allocated
regions. By doing so, the symbolic executor can prove an
invariant that accesses performed using the array pointer do
not touch other memory regions.

After performing these analyses, the symbolic executor
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limits itself to handling accesses through immutable and una-
liased pointers that refer to either singleton objects or arrays.
For each pointer referring to a singleton object, the executor
associates a corresponding symbolic value. For each pointer
referring to an array of data, the symbolic executor uses an
uninterpreted function in SMT to represent the contents of
the array. The symbolic executor uses uninterpreted functions
that map array index (64-bit integer) to bytes (8-bit integer)
to model the content of the array. We choose to use this
offset-to-bytes mapping as the unified representation for both
array and packet content since reinterpreting a sequence of
bytes in memory as a different type is a common practice
in packet processing (e.g., parsing packet header, endianness
conversion). We record updates to the array as a sequence
of (possibly symbolic) index/value pairs. Since the functions
are “uninterpreted”, they model all possible values of the ar-
ray data. Compared with bit vectors, representing states with
uninterpreted functions makes symbolic execution scale to
larger state size [6, 34].

Our symbolic executor does not handle pointers that are
used to build a recursive data structure, such as a linked list,
except in the case of certain abstract data types for which we
are able to provide SMT encodings (as discussed next).

SMT encodings of commonly used abstract data types.
Our next technique avoids the symbolic execution of the data
structure implementation by hiding the implementation un-
der a well-defined data structure interface. This technique
allows us to integrate implementations that may contain un-
bounded loops or recursive data structures into our analysis.
When performing the symbolic execution, we can simply
provide an encoding in SMT for common data structures,
such as HashSet. Note that not all data structures can have
their interfaces encoded in SMT. The key challenge here is
to prevent the explosion of the state space; the size of the
encoding should not depend on the actual size of the data
structure. We managed to encode three commonly used data
structures in Click, Vector, HashSet, HashMap, into SMT. (See
Appendix A.)

Replace element state with abstract data types. With the
SMT encoding of common data types, another technique we
could apply is to modify the element implementation by re-
placing its states with the data types mentioned above. This
process requires the developer to inspect how the packet pro-
cessing code uses a specific element state. If all the accesses
performed on the state can be modeled using the interface of a
data type with SMT encoding, we could replace the state with
the SMT-encoded counterpart and run the symbolic execution
on the modified implementation instead.

Consider the CheckIPAddress element (Figure 2). This el-
ement serves as a source IP packet filter. Before our pro-
posed modifications, CheckIPAddress stores a list of bad IP
addresses (bad_src_). A packet is dropped if the source IP
address of the packet is listed in the bad IP address list. In

class CheckIPAddress : public Element {
// omitting constructor and destructor
Packet *process_packet(Packet *pkt) {

auto saddr = pkt->ip_header->saddr;
- for (size_t i = 0; i < num_bad_src_; i++)
- if (bad_src_[i] == saddr)
+ if (bad_src_.find(saddr) != bad_src_.end())

return NULL;
return pkt;

}
- IPAddress *bad_src_;
- size_t num_bad_src_;
+ HashSet<IPAddress> bad_src_;
}

Figure 2: Modification of CheckIPAddress’s implementa-
tion to remove the usage of pointers and loops.

this element, bad_src_ and num_bad_src_ together represents
a fixed size array containing the bad IP addresses. To check
whether the source IP address of a received packet matches
any address in the array, CheckIPAddress uses a “for” loop
to go through this array. CheckIPAddress is not suitable for
automated verification: (1) The size of the array that bad_src_
is pointing to is not known by the symbolic executor; thus,
it may flag out-of-bound memory access. (2) If the executor
tries to unroll the loop, it faces a path explosion problem as
the number of iterations in the loop can be large.

To make this element meet the conditions for automated
verification, we can modify its implementation, as shown in
Figure 2. This change is based on the observation that the
way bad_src_ and num_bad_src_ are used complies with the
HashSet interface. The change replaces the pointer-size pair
bad_src_ and num_bad_src_ with a HashSet. Besides that, the
“for” loop to check whether the source IP is in the bad IP
address list is also replaced with a find method call. The
code changes remove both the use of pointers and unbounded
loops. Since the semantics of HashSet and its find interface is
modeled with SMT, we can symbolically execute the element.

Concretization of control flow structures. Middleboxes
perform packet classification based on the value of specific
fields in the packet header. Packet classification is imple-
mented using finite-state machines, and it is often optimized
by statically compiling the classification rules into a state
machine model that is stored in memory. When processing
an incoming packet, the classifier performs state transitions
using the rules until the state machine reaches one of the end
states. If the values of the state transition table are abstract,
then the classification process would appear to be unbounded.

We address this issue and enable the symbolic execution of
the classification tasks. We load the Click configuration con-
taining concrete classification rules and run the state machine
creation code of the classification element. We then ingest the
raw bytes representing the transition rules into symbols with
concrete values. We use symbolic execution to verify that the
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Technique # Elements # Conf.
Unmodified 130 (45 %) 9 (16 %)
Code unrolling 138 (48 %) 9 (16 %)
Fix-sized array detection 185 (63 %) 9 (16 %)
SMT-encoded abstract datatype 218 (75 %) 13 (23 %)
Replacing with abstract datatype 222 (77 %) 15 (27 %)
Concretization 226 (78 %) 37 (66 %)

Table 1: Number of Click elements and configuration
that can be symbolically executed.

contents of the memory region representing the state transi-
tion table remain unchanged during program execution. We
then symbolically execute the packet classification code but
replace the symbolic transition rules with the concrete values
identified in the first step. The executor can thus process the
packet classification code within a statically bounded number
of steps.

2.4 Overall effectiveness of symbolic execution

We now repeat our analysis of Click elements and configura-
tions after enhancing our symbolic executor with these addi-
tional techniques. Table 1 shows the result. Our techniques
improve the fraction of elements that can be symbolically
executed from 45% to 78%. The fraction of Click configu-
rations that are suitable for automated verification improves
from 16% to 66%.

Our symbolic executor cannot handle 22% of the Click ele-
ments. Among the 64 unsupported elements, 19 of them could
not be symbolically executed because there are loops that tra-
verse the payload of the packets (e.g., AES element for encryp-
tion). Another 26 elements use customized data structures that
contain pointers that can not be modeled with SMT. One such
example is LookupIP6Route element that uses a match table
with longest prefix matching as opposed to a traditional exact
match hash table. 11 elements contain loops whose number
of iterations is based on the current (symbolic) element state.
For example, the AggregateFilter element, which aggregates
incoming packets according to their header values, has to loop
over a queue to determine which aggregation group a packet
should belong to. 8 elements have pointer accesses that are
deeply coupled with the rest of the code that replacing with ab-
stract data types is not feasible. For example, IP6NDSolicitor
uses a set of linked lists to handle the response messages of
the neighbor discovery protocol.

Three approaches can potentially improve Gravel’s ability
to verify more Click elements automatically. The first ap-
proach is to model more data structures using SMT. Currently,
Gravel only supports HashMap, HashSet, and Vector. The sec-
ond approach is to allow developers to write annotations to
rule out part of the implementation that is not relevant to the
specification. For example, if the developers only want to
prove that the AES element does not change the TCP header of
the packet, the symbolic executor can skip over the loop that

... ... void Element::handler(...) {
...
}
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proof or
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compiler
front-end

LLVM IR

compiler
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Element
Implementation (C++)

Figure 3: Development Flow of Gravel. Top three boxes
denote inputs from middlebox developers; rounded boxes
denote compilers and verifiers of Gravel; rectangular
boxes denote intermediate and final outputs.

traverses the packet payload. The third approach is to use an
interactive theorem prover (e.g., Coq [7], Dafny [24]) to ver-
ify the correctness of element-level implementations. These
interactive theorem provers can verify higher-order logic than
what SMT can verify. For example, more sophisticated data
structures such as priority queues or an LRU cache could be
more easily verified with the help of an interactive prover.

3 The Gravel Framework
Gravel is a framework for specifying and verifying Click [23]-
based software middleboxes. It aims to verify high-level
properties, such as a load balancer’s connection persistency,
against a low-level C++ implementation. Gravel uses sym-
bolic execution to translate the C++ implementation into a
symbolic expression automatically, and it uses the techniques
described in the previous section to enhance the effective-
ness of symbolic execution. In this section, we describe how
Gravel allows developers to specify the desired high-level
properties using Python code and a domain-specific library
containing verification primitives. In Section 4, we describe
how we check whether the symbolic expression derived from
the implementation provides the desired properties.

3.1 Overview

Figure 3 shows the workflow of Gravel. Gravel expects three
inputs from middlebox developers:

1. Click configuration, which is a directed graph of elements.
2. A set of high-level middlebox specifications.
3. Element-level specifications for all Click elements used

in the configuration.3

3Gravel provides specifications for commonly used elements.
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Like building a normal Click middlebox, Gravel first takes
as input a directed graph of Click elements. In Click, a middle-
box is decomposed into smaller packet processing “elements”.
Each element keeps private state that is accessible only to it-
self and has a set of handlers for events such as incoming
packet or timer events. Elements can also have many input
and output ports through which elements can be connected
with others and transfer packets. The directed graph from a
Click configuration connects Click elements together to form
the dataplane for packet processing. The topology of the di-
rected graph remains unchanged during the execution of the
middlebox.

Gravel then requires a formalization of the high-level
middlebox properties. To check properties automatically with
an SMT solver, they need to be expressed using first-order
logic. In Gravel, properties are formalized as predicates over
a trace of events. Gravel includes a Python library for devel-
opers to specify middlebox-specific properties.

Gravel also requires a specification for each Click element.
The element-level specification describes each element’s pri-
vate state and packet processing behavior. The element-level
specification provides a simplified description of an element’s
behavior and omits low-level details such as performance
optimizations. Gravel again provides a Python library for
developers to write element-level specifications.

With these three inputs, Gravel verifies the correctness of
the middlebox in two steps. First, Gravel checks whether
a Click configuration composed using Click elements sat-
isfies the desired high-level properties of the middlebox. A
high-level property is expressed as a symbolic trace of the
middlebox’s behavior (in Python). Gravel verifies the high-
level property by symbolically executing the datagraph of
elements using element-level specifications (in Python). Then,
Gravel verifies that the low-level C++ implementation of each
element has equivalent behavior as the element-level speci-
fication. Gravel compiles the low-level C++ implementation
into LLVM intermediate representation (LLVM IR) and then
symbolically executes the LLVM IR to obtain a symbolic
expression of the element. Gravel then checks whether the
element-level specification holds in the element’s symbolic
expression. If there is any bug in the Click configuration or the
implementation of the elements, Gravel outputs a counterex-
ample that contains element states and an incoming packet
that makes the middlebox violate its specification.

3.2 A Sample Application: ToyLB

The rest of this section describes the Gravel framework in
the context of a simple running example corresponding to a
Layer-3 load balancer, ToyLB. ToyLB receives packets on
its incoming interface and forwards them to a pool of servers
in a round-robin fashion. It steers traffic by rewriting the
destination IP on the packet. ToyLB resembles popular Layer-
3 load balancer designs used by large cloud providers [16,19].

The ToyLB middlebox is decomposed into five elements, as

Input

CheckIPHeader

CheckTCPHeader FlowTable

RoundRobinSwitch

TCP
Checksum

Output

Figure 4: Breakdown of ToyLB’s functionalities into
packet-processing elements.

shown in Figure 4. When there is an incoming packet, it first
goes through two header-checking elements, CheckIPHeader
and CheckTCPHeader. These two elements act like filters and
discard any packet that is not a TCP packet. Then, the
FlowTable element checks whether the packet belongs to
a TCP flow that has been seen by ToyLB earlier. If so,
FlowTable rewrites the packet with the corresponding back-
end server’s IP address stored in the FlowTable and sends the
packet to the destination server. Otherwise, the FlowTable con-
sults a RoundRobinSwitch scheduler element to decide which
backend server should the new connection bind to. After the
RoundRobinSwitch decides which backend server to forward
the packet to, RoundRobinSwitch notifies the FlowTable of the
decision. The FlowTable stores the decision into its internal
state and also rewrites the destination address of the packet
into the destination server. For further simplicity, low-level
functionalities such as ARP lookup are omitted in ToyLB.

We next describe how Gravel can be used to model high-
level specifications of middleboxes such as ToyLB and then
outline how the element-level properties are specified. Later,
in §4, we show how Gravel performs verification.

3.3 High-level Specifications

Gravel models the execution of a middlebox as a state ma-
chine. State transitions can occur in response to external
events such as incoming packets or passage of time. The
time event can be used to implement garbage collection for
middlebox states. For each state transition, the middlebox
may also send packets out.

Gravel provides a specification programming interface, em-
bedded in Python, for developers to specify high-level proper-
ties. Developers can use the interface to describe middlebox
behavior over a symbolic event sequence. (See Appendix A.)

Packets in Gravel’s high-level specification are expressed
using key-value map abstraction, where the keys are the name
of header fields and values are the content of the fields. This
abstraction makes the specification concise and hides the
implementation details that are less related to high-level prop-
erties (e.g., the position of IP addresses in the packet header).

Gravel provides three kinds of core interfaces (see Ap-
pendix A) in its high-level specification: (1) a set of sym_*

functions that allow developers to create symbolic representa-
tions of different types of states such as IP address, packet, or
middlebox state; (2) middlebox’s event-handling functions,
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like handle_packet(state, pkt), handle_time(state, timestamp),
that takes as input the current state of the middlebox and
the incoming packet/time event, and returns an (optional)
output packet and the resulting middlebox state after a state
transition; and (3) the verify(formula) function call that first
encodes the given logical formula in SMT and invokes the
SMT solver to check if formula is always true. Besides that,
Gravel also provides some helper functions for developers to
encode high-level middlebox properties.

To make this concrete, we next describe how to encode
two high-level properties of ToyLB using this specification
programming interface. We describe how to encode two load
balancer properties: (1) liveness and (2) connection persis-
tence. We first consider the liveness guarantee.

PROPERTY 1 (ToyLB liveness). For every TCP packet re-
ceived, ToyLB always produces an encapsulated packet.

In Gravel, this can be specified as:

def toylb_liveness():
# create symbolic packet and symbolic ToyLB state
p, s0 = sym_pkt(), sym_state()
# get the output packet after processing packet p
o, s1 = handle_packet(s0, p)
verify(Implies(is_tcp(p), Not(is_none(o))))

In this liveness formulation, we first construct a symbolic
packet p and the symbolic state of the middlebox s0. Then,
we let the middlebox with state s0 process the packet p by
invoking the handle_packet function. After that, the state of the
middlebox changes to s1, and the output from the middlebox
is o. If o is None, the middlebox has not generated an outgoing
packet. This high-level specification says that, if the incoming
packet is a TCP packet, the middlebox has an outgoing packet.

Note that the formulation of liveness property is abstract,
given that it does not say anything about the states of the
middlebox. We don’t even formulate the set of data structures
used by ToyLB. This brevity is indeed the benefit of using
high-level specifications. These formulations are concise and
are directly related to the desired middlebox properties.

Now, we move to a more complex load balancer property—
connection persistency. This property is crucial to a load bal-
ancer as it ensures that packets from the same TCP connection
are always forwarded to the same backend server.

PROPERTY 2 (ToyLB persistency). If ToyLB forwards a
TCP packet to a backend b at time t, subsequent packets of
the same TCP connection received by ToyLB before time
t + WINDOW, where WINDOW is a pre-defined constant,
will also be forwarded to b.

Formulation of Property 2 is more complex than the live-
ness property because it requires a forwarding requirement
(i.e., the forwarding of packets of a certain TCP connection
to b) to hold over all possible event sequences between time t
and time t +WINDOW. This complexity means that we can-
not formulate connection persistency with traces containing
only a single event, but rather, we need to use induction to

verify that the property holds on event traces of unbounded
length.

Gravel allows us to specify Property 2 as an inductive in-
variant. First, we formulate the forwarding condition that
should be held during the time window. The steer_to function
defined below determines whether a packet received at time t

will be forwarded to the backend server with address dst_ip.
The code snippet first lets the middlebox handle a time event
with timestamp t, followed by the handling of pkt. We ascer-
tain whether the packet is forwarded to dst_ip by checking
that the output from the packet processing is not None and that
the resulting packet’s destination address is dst_ip.

def steer_to(state, pkt, dst_ip, t):
o0, s_n = handle_time(state, t)
o1, s_n2 = handle_packet(s_n, pkt)
return And(Not(is_none(o1)),

o1.ip4.dst == dst_ip,
payload_eq(o1, pkt))

Then, for the base case of induction, we specify that once
ToyLB forwards a packet of a particular TCP connection to
a backend, subsequent packets from the same connection re-
ceived within a period WINDOW will be forwarded to the
same backend. Similar to the formulation of the liveness
property, the following code snippet first creates two sym-
bolic packets and a symbolic middlebox state, then invokes
handle_packet to obtain the output packet as well as the new
state after packet processing. After that, the code requires
the verifier to prove that if p0 is forwarded to dst_ip, then a
packet, p1, in the same connection received any time before
the expiration time ddl is also forwarded to dst_ip, assuming
that the middlebox state hasn’t changed from state s1.

def base_case():
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
o, s1 = handle_packet(s0, p0)
dst_ip, t0 = sym_ip(), s0.curr_time()
t = sym_time()
ddl = t0 + WINDOW
verify(Implies(And(Not(is_none(o)),

o.ip4.dst == dst_ip,
from_same_flow(p0, p1)),

ForAll([t], Implies(t <= ddl,
steer_to(s1, p1, dst_ip, t)))))

In addition to the base case invariant, the specification
includes two inductive cases showing that processing an ad-
ditional event (e.g., a packet from a different connection or
time event) does not change the forwarding behavior. The
two inductive cases specify that the invariant steer_to(...)

holds on the middlebox states when processing packets or
time events if the timestamp is before the expiration time.

def step_packet():
dst_ip, p0, p1 = sym_ip(), sym_pkt(), sym_pkt()
s0, t0, p_other = sym_state(), sym_time(), sym_pkt()
o, s1 = handle_packet(s0, p_other)
verify(Implies(And(steer_to(s0, p0, dst_ip, t0),

from_same_flow(p0, p1)),
steer_to(s1, p1, dst_ip, t0)))
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def step_time():
dst_ip, p0, p1 = sym_ip(), sym_pkt(), sym_pkt()
s0, t0, t1 = sym_state(), sym_time(), sym_time()
_, s1 = handle_time(s0, t1)
verify(Implies(And(steer_to(s0, p0, dst_ip, t0),

t1 < t0, from_same_flow(p0, p1)),
steer_to(s1, p1, dst_ip, t0)))

3.4 Element-level Specifications

Verifying high-level specifications directly from low-level
C++ implementations is hard because of the gap in their
semantics. Similar to all the seminal work [20, 30, 34] in
software verification, we break down the verification pro-
cess using refinement. Gravel requires the developer to give
specifications of each element. As long as the element-level
specifications capture the behavior of their corresponding ele-
ments’ implementation, we can simply use the element-level
specifications to prove the high-level specifications. Com-
pared to deductive verification, this incurs a lower verifica-
tion effort because element-level specifications are short (§5).
Element-level specifications can be reused across different
middleboxes. The element-level specification in Gravel con-
sists of two parts: the definition of abstract states that will
be used by the element during execution, and a set of event
handling behaviors in response to incoming packets and time
events.

Element states. Specification of a Gravel element starts
with a declaration of the state associated with the element. To
ensure efficient encoding with SMT, Gravel requires the state
to be bounded. More specifically, elements’ state in Gravel
may contain: (1) fixed-size variables including bit vectors;
(2) maps from one finite set to another (e.g., a map from IP
address space to 64-bit integer). For example, in ToyLB, the
state of FlowTable is defined as:

class FlowTable(Element):
num_in_ports = 2
num_out_ports = 2

decisions = Map([AddrT, PortT, AddrT, PortT], AddrT)
timestamps = Map([AddrT, PortT, AddrT, PortT], TimeT)
curr_time = TimeT
...

This part of element-level specifications defines three compo-
nents of FlowTable’s state:
• decisions maps from a TCP connection to a backend server

address. FlowTable identifies a TCP connection by the tuple
of source and destination addresses and port numbers. This
map is used to store the results from the Selector element.

• timestamps stores the latest times at which packets were
received for each TCP flow stored in decision.

• curr_time stores the current time.
Here the types such as AddrT and TimeT are pre-defined inte-
gers of different bit widths. Besides the state, the code also in-
forms Gravel as to how many input/output ports the FlowTable

element has through num_in_ports/num_out_ports.

def flowtable_process_packet(s, p, in_port):
flow = p.ip4.saddr, p.tcp.sport, \

p.ip4.daddr, p.tcp.dport
# the case when flowtable has record of the flow
known_flow = And(

# packet is received from the network
in_port == IN_TCP_FILTER,
# flowtable has record of the flow
flow in s.decisions)

# construct the encapsulated packet
fwd_pkt = p.copy()
fwd_pkt.ip4.dst = s.decisions[flow]
# update the timestamp of the flow with current time
after_fwd = s.copy()
after_fwd.timestamps[flow] = s.curr_time
known_flow_action =

Action(known_flow,
{PORT_TO_EXT: fwd_pkt}, after_fwd)

Figure 5: Example of an element-level action.

Event handlers. Gravel requires each element to have a
handler function for packets received from its input ports.
This packet handler needs to be specified in the element-
level specification. The specification of the packet handler
describes the operations the element performs when handling
packets. Besides that, an optional time event handler can also
be specified. In Gravel, the two event handlers are defined as
functions with the following signatures:

flowtable_process_packet(state, pkt, in_port) → actions
flowtable_process_time(state, timestamp) → actions

The return value of each event handler (actions) is a list of
condition-action pairs. Each entry in the list describes the
action an element should take under certain conditions. In the
python code, developers can write:

Action(cond, { port_i : pkt_i }, new_state)

to denote an action that sends pkt_i to output port port_i
while also updating the element state to new_state. This ac-
tion will be taken when condition cond holds. To make it con-
crete, let us consider the packet handler of FlowTable. Upon
receiving a packet, FlowTable does one of the followings:

• If the packet is from the CheckTCPHeader element, and
the decisions map contains a record for the connection,
FlowTable rewrites the destination address and sends the
packet to TCP Checksum element, as shown in Figure 5.

• If the FlowTable does not have a record for a packet, the
packet is sent to RoundRobinSwitch element.

• If the packet is sent from RoundRobinSwitch, FlowTable
records the destination decided by RoundRobinSwitch and
forwards the packet to TCP Checksum.

Similarly, FlowTable’s behavior in response to time changes
is also specified as condition-actions:

def flowtable_process_time(self, s, time):
new = s.copy()
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# update the "curr_time" state
new.curr_time = time
# records with older timestamps should expire
def should_expire(k, v):

return And(s.timestamps.has_key(k),
time >= WINDOW + s.timestamps[k])

new.decisions = new.decisions.filter(should_expire)
new.timestamps = new.timestamps.filter(should_expire)
return Action(True, {}, new)

When FlowTable is notified of a time change, it updates its
curr_time to the given time value. Gravel offers a filter inter-
face for its map object, which takes a predicate, should_expire,
and deletes all the entries that satisfy the predicate. FlowTable
uses this to remove all the records that were inactive for a
period longer than a constant WINDOW value. ToyLB’s complete
element-level specifications are in Appendix B.

Summary: Overall, we presented an example of (1) how to
specify high-level trace-based middlebox properties, and (2)
how to write element-level specifications to make verification
modular. We provide a framework for developers to articulate
complex trace-based properties. These high-level properties
are implementation-independent. Element-level specifications
decouple verification problem into two orthogonal problems:
that element-level specifications conform to the high-level
properties and that elements’ implementations comply with
their element-level specifications.

4 Verifier Implementation
Gravel proves the middlebox properties with two theorems:

THEOREM 1 (Graph Composition). The element-level speci-
fications, when composed using the given Click configuration,
complies with the high-level specification of the middlebox.

THEOREM 2 (Element Refinement). The C++ implementa-
tion of Click is a refinement of that element’s specification.
That is, every possible state transition and packet processing
action of the C++ implementation must have an equivalent
counterpart in the element-level specification.

Theorem 1 verifies that the composition of element-level
specifications meets the requirement in the high-level specifi-
cations. Theorem 2 verifies that Click’s C++ implementation
of each element meets its element-level specification.

4.1 Graph Composition

Gravel verifies the Graph Composition theorem (Theorem 1)
in two steps. First, Gravel symbolically executes the event se-
quence specified in high-level specifications. Second, Gravel
checks whether the high-level specifications hold on the re-
sulting state and outgoing packets from symbolic execution.

Gravel performs symbolic execution on the directed graph.
Before the symbolic execution, Gravel creates a symbolic
state of the entire middlebox, which is a composition of the
symbolic states of all elements in the middlebox. Remember
that the high-level specification describes required middle-
box behavior on an event sequence. The goal of the symbolic

execution is to reproduce the sequence symbolically. For
example, if the high-level specification contains an incom-
ing packet, Gravel generates a symbolic packet at the source
element of the directed graph. This symbolic packet, when
processed by the first element of the graph, can trigger han-
dlers of other downstream elements, which are symbolically
executed as well. If the element-level specification contains
a branch (e.g., depending on the packet header, a packet can
be forward to one of the two downstream elements), Gravel
performs symbolic execution in a breadth-first search manner.

After performing symbolic execution for each event type,
Gravel records the updated state of each element as well as the
packet produced by each output element. Gravel provides this
information as the return value of the handle_* functions in
the high-level specification. Gravel then invokes the functions
defined in the high-level specification. Once the verify func-
tion is invoked, Gravel encodes the high-level specifications
into SMT form and uses a solver to see if they always hold.

Loops in the graph. Gravel allows the directed graph of
elements to contain loops in order to support bi-directional
communications between elements, such as FlowTable and
RoundRobinSwitch in ToyLB (§3). However, loops may in-
troduce non-halting execution when we symbolically exe-
cute the datagraph. Gravel addresses this issue by setting
a limit on the number of elements traversed by the sym-
bolic executor. When the symbolic execution hits this limit,
Gravel raises an alert and fails the verification. For exam-
ple, in ToyLB, the FlowTable is hit at most twice: when
FlowTable cannot find a record for a certain packet, the
packet is sent to RoundRobinSwitch, which will later send
the packet back to FlowTable; upon receiving packets from
RoundRobinSwitch, FlowTable records the selected backend
server into its own records and does not send the packet
back to RoundRobinSwitch. Thus, the maximum number of
elements traversed during the symbolic execution is 6, and
developers can safely set 6 as the limit for ToyLB.

The graph composition verifier is implemented with 1981
lines of Python. It exposes a similar set of interfaces as Click
configuration language so that developers could port existing
code into the verifier. The verifier uses the Python binding of
Z3 to generate symbolic packets and element states.

4.2 Element Refinement

Gravel verifies the Element Refinement theorem (Theorem 2)
in two steps. First, a symbolic expression of the element is
generated for each event handler’s compiled LLVM interme-
diate representation. Second, Gravel checks if the element’s
specification holds on the symbolic expression.

Before performing the symbolic execution, Gravel first uses
the LLVM library to extract the memory layout of the C++
class of the element, along with the types of each of its mem-
ber variables. The verifier can later use this information to
determine which field is accessed when it encounters memory
access in LLVM bytecode. As mentioned in §2.3, to bound the
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symbolic execution step and state size, abstract data structures
are executed by using their abstract SMT model instead of ac-
tual code. A complete list of the data structures and interfaces
replaced is given in Appendix A.

For packet content access and modification, Gravel’s sym-
bolic executor is compatible with Click’s Packet interface. In
the LLVM bytecode, packet content accesses are compiled
into memory operations over a memory buffer. To establish
the relation between packet header fields and memory offsets,
Gravel needs to extract the symbolic header field value for
each output packet after the symbolic execution. Gravel first
computes offsets for each header field. Note that these off-
sets are also symbolic values as they depend on the content
of other packet fields. After that, Gravel extracts the value
of each header field from the memory buffer of the packet.
Each extracted value is then encoded into an SMT formula
and compared against fields from the abstract packet using an
SMT solver. Gravel concludes that the packet and the memory
buffer are equivalent when values of all fields are equivalent.

At the end of symbolic execution, the verifier gets a list of
ending states, along with the packets sent out at each output
port and the path conditions under which it can be reached.
For each entry in the list, Gravel uses Z3 to find an equivalent
counterpart in the element specification. If such a counterpart
exists for all entries, the refinement of the element is proved.

Gravel’s element refinement verifier is implemented in C++
using the LLVM library. The verifier invokes LLVM library’s
IR parser and reader to load and symbolically execute the
compiled LLVM bytecode of each Click element. Besides the
SMT encoding of all LLVM instructions used in the compiled
Click elements, the verifier also has the SMT encoding of the
abstract data types as described in §2. The refinement verifier
and the symbolic executor consists of 10396 lines of C++.

4.3 Trusted Computing Base

The trusted computing base (TCB) of Gravel includes the
verifier (used for proving Theorem 1 and Theorem 2), the
high-level specifications, the tools it depends on (i.e., the
Python interpreter, the LLVM compiler framework, and the
Z3 solver), and Click runtime. Note that the specification of
each element is not trusted.

5 Evaluation
This section aims to answer the following questions:

• How much effort is needed to port existing Click applica-
tions? Can Gravel scale to verify the Click applications?

• Can Gravel’s verification framework prevent bugs?
• How much run-time overhead does the code modification

introduce to middleboxes in order for them to be automati-
cally verifiable by Gravel?

5.1 Case Studies

To evaluate whether Gravel can work for existing Click appli-
cations, we port five Click applications to Gravel. For each

LOC Verif. LOC
Time (s) changed

MazuNAT Impl 1687 – 133
Spec (element) 443 64.60 –
Spec (high-level) 177 3.78 –

Firewall Impl 1151 – 63
Spec (element) 73 32.30 –
Spec (high-level) 70 0.67 –

Load
Balancer

Impl 1447 – 63
Spec (element) 101 10.87 –
Spec (high-level) 68 1.48 –

Proxy Impl 953 – 50
Spec (element) 92 30.63 –
Spec (high-level) 39 0.72 –

Switch Impl 594 – 0
Spec (element) 131 27.73 –
Spec (high-level) 91 1.61 –

Table 2: Development effort and verification time of using
Gravel on five Click-based middleboxes.

application, we choose a set of high-level middlebox-specific
properties either by formalizing them directly or extracting
them from existing RFCs. We use Gravel to verify that these
properties hold. Gravel also verifies the low-level properties,
such as memory safety and bounded execution.

MazuNAT: MazuNAT is a NAT that has been used by Mazu
Networks. MazuNAT consists of 33 Click elements. (See Ap-
pendix C.) MazuNAT forwards traffic between two network
address spaces, the internal network, and the external network.
It mainly performs two types of packet rewriting:

1. For a packet whose destination address is the NAT, the
NAT rewrites its destination IP address and port with the
corresponding endpoint in the internal network.

2. For a packet going from the internal to the external net-
work, NAT assigns an externally visible source IP address
and port to the connection. The NAT also needs to keep
track of assigned addresses and ports to guarantee persis-
tent address rewriting for packets in the same connection.

One common property we verified for all five middleboxes
is that the middlebox does not change the packets’ payload:

PROPERTY 3 (Payload Preservation). For any packet that is
processed by the middlebox, the middlebox never modifies
the payload of the packet.

For NAT-specific properties, we verified that MazuNAT
meets the requirements proposed in RFC5382 [29].4 These
requirements are proposed to make NATs transparent to ap-
plications running behind them [17].

PROPERTY 4 (Endpoint-Independent Mapping). For packets
p1 and p2 from the same internal IP, port (X : x), where

4We omit the set of requirements related to ICMP becuase MazuNAT
does not support ICMP.
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• p1 targets external endpoint (Y1 : y1) and gets its source
address and port translated to (X ′1 : x′1)

• p2 targets external endpoint (Y2 : y2) and gets its source
address and port translated to (X ′2 : x′2)

the NAT should guarantee that (X ′1 : x′1) = (X ′2 : x′2).

PROPERTY 5 (Endpoint-Independent Filtering). Consider
external endpoints (Y1 : y1) and (Y2 : y2). If the NAT allows
connections from (Y1 : y1), then it should also allow connec-
tions from (Y2 : y2) to pass through.

PROPERTY 6 (Hairpinning). If the NAT currently maps in-
ternal address and port (X1 : x1) to (X ′1 : x′1), a packet p origi-
nated from the internal network whose destination is (X ′1 : x′1)
should be forwarded to the internal endpoint (X1 : x1). Further-
more, the NAT also needs to create an address mapping for
p’s source address and rewrite its source address accordingly.

These properties are essential to ensure the transparency of
the NAT and are required for TCP hole punching in peer-to-
peer communications.

We also prove that the MazuNAT preserves the address
mapping for a constant amount of time:

PROPERTY 7 (Connection Memorization). If at time t, the
NAT forwards a packet from a certain connection c, then for
all states s′ reachable before time t +THRESHOLD, where
THRESHOLD is a predefined constant value, packets in c are
still forwarded to the same destination.

Property 7 guarantees that the NAT can translate the ad-
dress of all packets from a TCP connection consistently. The
constant THRESHOLD defines a time window where the TCP
connection should be memorized by the NAT. The NAT has
the freedom to recycle the resources used for storing connec-
tion information after the time window expires.

Load Balancer: Besides the round-robin load balancer men-
tioned in §3, we also verified a load balancer using Ma-
glev’s hashing algorithm [16]. Its element graph looks ex-
actly the same as in Figure 4. The only difference is that the
RoundRobinSwitch element is replaced by a hashing element
that uses consistent hashing. The load balancer steers packets
by rewriting the destination IP address.

We verified connection persistency for both of the load
balancers. The goal of connection persistency is to make load-
balancing transparent to the clients.

PROPERTY 8 (Load Balance Persistence). For all packets
p1 and p2 from connection c, if the load balancer steers p1 to
a backend server, then the load balancer steers p2 to the same
backend server before c is closed.

Stateful Firewall: The stateful firewall is adapted from the
firewall example in the Click paper [23]. Besides performing
static traffic filtering, it also keeps track of connection states
between the internal network and the external network. The

firewall updates connection states when processing TCP con-
trol packets (e.g., SYN, RST, and FIN packets), and removes
records for connections that are finished or disconnected.

We prove that the stateful firewall can prevent packets
from unsolicited connections [28]. Also, the firewall should
garbage collect finished connections.

PROPERTY 9 (Firewall Blocks Unsolicited Connection). For
any connection c, no packet in c from the external network is
allowed until a SYN packet has been sent out for c.

PROPERTY 10 (Firewall Garbage-collects Records). For any
connection c, no packet in c from the external network is
allowed after the firewall sees a FIN or RST packet for c.

Web Proxy: The Web proxy transparently forwards all web
requests to a dedicated proxy server. When the middlebox
receives a packet, it first identifies if it is a web request by
checking the TCP destination port. For web request packets,
the proxy rewrites the packet header to redirect them to the
proxy server. The proxy also memorizes the sender of the web
request to forward the reply messages back to the sender.

We prove that the web proxy middlebox forwards packets
in both directions.

PROPERTY 11 (Web Proxy Bi-directional). For a web re-
quest packet p with 5-tuple (SA,SP,DA,DP,PROTO), if the
middlebox forwards p to the proxy server and rewrites the
5-tuple to (SA’,SP’,DA’,DP’,PROTO), then a packet from the
reply flow with 5-tuple (DA’,DP’,SA’,SP’,PROTO) should be
forwarded back to the sender.

Learning Switch: The Learning switch implements the basic
functionality of forwarding Ethernet frames and MAC learn-
ing. The switch learns how to send to an Ethernet address A
by watching which interface packets with source Ethernet ad-
dress A arrives. If the switch has not learned how to send to an
Ethernet address, it broadcasts the packet to all its interfaces.

We prove the following properties about the switch.

PROPERTY 12 (Forwarding Non-interference). For any Eth-
ernet address A, the behavior of how the switch forwards pack-
ets targeting A is not be affected by packets whose source
Ethernet address is not A.

PROPERTY 13 (Broadcasting until Learnt). For any address
A, if the switch broadcasts packets targeting A, it keeps broad-
casting until a packet from A is received by the switch.

5.2 Verification Cost

To understand the cost of middlebox verification on Gravel,
we evaluate the amount of development effort and the verifi-
cation time. Table 2 shows the result.

Development effort. We find that porting existing Click
applications to Gravel requires little effort and that writing
specifications with Gravel are also easy. We only modified
133 lines of code in MazuNAT to make it compatible with
Gravel. The firewall and load balancer required only 63 lines

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    231



Middlebox Bug ID Description Can be prevented? Why/Why not?
Load
Balancer

bug #12 Packet corruption 3 high-level specification
bug #11 Counter value underflow 3 element refinement
bug #10 Hash function not balanced 7 not formalized in specification
bug #6 throughput not balanced 7 not formalized in specification

Firewall bug #822 Counter value underflow 3 element refinement
bug #691 segfault by uninitialized pointer 3 element refinement
bug #1085 Malformed configuration leading crash 7 Gravel assumes correct init

NAT bug #658 Invalid packet can bypass NAT 3 element refinement
bug #227 Stale entries may not expire 3 high-level specification
bug #148 Infinite loop 3 element refinement

Table 3: Bugs from real-world software middleboxes.

of code modifications. Our proxy required 50 lines of code
to be changed, and the switch requires no modification. Most
of the required code changes come from the IPRewriter el-
ement. We had to remove the priority queue that is used for
flow expiration and instead use a linear scan to expire old
mappings. Other code changes include removing pointers
to other elements in FTPPortMapper, replacing ARPTable in
ARPQuerier with hashmaps, and the change of CheckIPHeader
mentioned in §2. The specifications are concise. The high-
level specification is below 200 lines of code and the element-
level specifications are less than 450 lines of code for all
five middleboxes. The associated developer effort is also
small. For the web proxy and learning switch, it took less
than one person-day for both the high-level properties and
the element specifications. The load balancer and the state-
ful firewall each required a full day’s effort in order to port
them to Gravel and verify their correctness. The most compli-
cated middlebox in our case study, MazuNAT, took about 5
person-days to port and specify. Five elements (Classifier,
IPClassifier, IPRewriter, CheckIPHeader, and EtherEncap)
are reused across these middleboxes, and thus we reuse their
element-level specifications.

Verification time. With Gravel’s two-step verification pro-
cess, Gravel’s verifier can efficiently prove that the middlebox
applications provide the desired properties. Most of the veri-
fication time is spent on proving the equivalence of the C++
implementation of each element and its element-level specifi-
cation. Verification of the high-level specifications from the
element-level specifications took less than 4 seconds for the
different applications. Overall, even for MazuNAT, the overall
verification time is just over a minute.

5.3 Bug prevention

When verifying MazuNAT with Gravel, we found that the orig-
inal MazuNAT implementation did not possess the endpoint
independent mapping property (Property 4). MazuNAT uses
a 5-tuple as the key to memorize rewritten flows. This means
that when MazuNAT forwards a packet coming from the ex-
ternal network, the packet’s source IP address and source port
affects the forwarding behavior, violating Property 4. To fix

this, we changed the IPRewriter element to use only a part of
the 5-tuple when memorizing flows.

To evaluate the effectiveness of Gravel at a broader scope,
we manually analyze bugs from several open-source middle-
box implementations. We wanted to understand whether these
bugs can happen if the middlebox is built using Gravel. We
examine bug trackers of software middleboxes with similar
functionalities as those in our case studies (i.e., NAT, load
balancer, firewall) and search the CVE list for related vulner-
abilities. We inspect bug reports from the NAT and firewall
of the netfilter project [31], and the Balance load balancer [3].
Since the netfilter project contains components other than the
NAT and the firewall, we use the bug tracker’s search func-
tionality to find bugs relevant only to its NAT and firewall
components. We inspect the most recent 10 bugs for all three
kinds of middleboxes and list the result in Table 3.

Of the 30 bugs we inspected, we exclude 10 bugs for fea-
tures that are not supported in our middlebox implementations,
3 bugs related to documentation issues, 5 bugs on command-
line interface, and 2 bugs on performance.

From the remaining 10 bugs, Gravel’s verifier is able to
catch 7 of them. Among these bugs, Bug #12 in the load
balancer and bug #227 in the NAT can be captured by the
verification of the high-level specification as they lead to the
violation of Property 3 and Property 7 respectively. Other
bugs involving integer underflow or invalid memory access
can be captured by the C verifier. Note that there are still three
bugs Gravel cannot capture, such as incorrect initialization
of the system and properties that are not in our high-level
specifications (e.g., unbalanced hashing).

5.4 Run-time Performance

To examine the run-time overhead introduced by the code
modifications we made, we compare the performance of the
middleboxes before and after the code modifications. We run
these Click middleboxes on DPDK [13].

Our testbed consists of two machines each with Intel Xeon
E5-2680 (12 physical cores, 2.5 GHz), running Linux (v4.4)
and has a 40 Gbps Mellanox ConnectX-3 NIC. The two ma-
chines are directly connected via a 40 Gbps link. We run the
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Throughput (Gbps) Latency (µs)

NAT Unverified 37.39 (± 0.03) 14.43 (± 0.19)
Gravel 37.41 (± 0.04) 15.14 (± 0.22)

LB Unverified 37.38 (± 0.04) 14.82 (± 0.23)
Gravel 37.37 (± 0.04) 14.86 (± 0.20)

Firewall Unverified 37.37 (± 0.05) 15.21 (± 0.20)
Gravel 37.38 (± 0.04) 15.11 (± 0.24)

Proxy Unverified 37.36 (± 0.05) 14.54 (± 0.19)
Gravel 37.35 (± 0.06) 14.35 (± 0.18)

Switch Unverified 37.36 (± 0.05) 15.02 (± 0.19)
Gravel 37.39 (± 0.07) 14.96 (± 0.29)

Table 4: Performance of verified middleboxes, compared
to their unmodified counterparts.

middlebox application with DPDK on one machine and use
the other machine as both the client and the server.

The code modification to make these Click applications
compatible with Gravel has minimal run-time overhead. We
measure the throughput of 5 concurrent TCP connections
using iperf, and use NPtcp for measuring latency (round trip
time of a 200-byte TCP message). Table 4 shows the results.
The code modifications introduce negligible overheads in
terms of throughput and latency.

6 Related Work
Middlebox verification. Verifying the correctness of middle-
boxes is not a new idea. Software dataplane verification [14]
uses symbolic execution to catch low-level programming er-
rors in existing Click elements [23]. Our work is also based on
Click, but we target high-level middlebox-specific properties,
such as load balancer’s connection persistency. In addition,
we show that 78% of existing Click elements are amenable
for automated verification with slight code modifications. Vi-
gNAT [40] proves a NAT with a low-level pseudocode spec-
ification. Vigor [39] generalizes VigNAT to a broader class
of middleboxes and verifies the underlying OS network stack
and the packet-processing framework. We believe it is non-
trivial to extend VigNAT and Vigor to specify and verify the
set of high-level trace-based NAT properties (e.g., hairpinning,
endpoint-independence) Gravel can verify.

We note though that specifying the correctness of programs
is a fundamentally hard problem. Gravel chooses to let devel-
opers specify high-level specifications on a symbolic trace of
packets. We find specifications using Gravel’s specification
interface to be more abstract than psuedo-code like NAT spec-
ification in VigNAT [40]. However, even with Gravel, writing
specifications is still hard. For example, specifying the con-
nection persistency property for ToyLB requires the usage
of induction (§3.3). Empirically, we find that a trace-based
specification is flexible enough to express the correctness of
middleboxes in the RFCs we examined.

Network verification. In the broader scope of network
verification, most existing work [1, 2, 4, 15, 21, 22, 26, 27,

33, 37] targets verifying network-wide objectives (e.g., no
routing loop) assuming an abstract network operation model.
Gravel, along with other middlebox verification work [14,
39, 40], aims to verify the low-level C++ implementation of
a single middlebox’s implementation. As switches become
programmable [5], researchers have built tools to debug [36],
verify [18, 25] P4 programs. Similar to Gravel, this line of
work relies heavily on symbolic execution. Our work targets
“almost unmodified” middleboxes written in C++.

Currently, Gravel only supports verification of middleboxes
implemented with Click. However, since our key observation
on Click middleboxes, that the number of operations per-
formed processing each packet is finite and small, may also
hold on non-Click middleboxes, we believe that Gravel’s ver-
ification techniques can also be applied on other middleboxes.
For example, the eXpress Data Path (XDP) in the Linux ker-
nel also constrains the packet processing code to be loop-free.
It also only allows a limited set of data structures for main-
taining global states. These properties make it seem plausible
that one could apply Gravel’s verification techniques to it.

SMT-based automated verification. Automated software
verification using symbolic execution has recently become
popular. This technique has been used to successfully verify
file systems [34], operating systems [30], and information
flow control systems [35]. However, this technique usually re-
quires a complete re-implementation of the target application
because of the restricted programming model. We conduct
a systematic study on (§2) whether unmodified Click-based
software middleboxes can be automatically verified.

7 Conclusion

Verifying middlebox implementations has long been an at-
tractive approach to obtain network reliability. We explore the
feasibility of verifying “almost unmodified” software middle-
boxes. Our empirical study on existing Click-based middle-
boxes shows that existing Click-based middleboxes, with
small modifications, are suitable for automated verification us-
ing symbolic execution. Based on this, we have designed and
implemented a software middlebox verification framework,
Gravel. Gravel allows verifying high-level trace-based middle-
box properties of “almost unmodified” Click applications. We
ported five Click applications to Gravel. Our evaluation shows
that Gravel can avoid bugs found in existing middleboxes with
small proof effort. Our evaluation also shows that the modifi-
cations required for automated verification incur negligible
performance overheads. Gravel’s source code is available at
https://github.com/Kaiyuan-Zhang/Gravel-public.
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A Gravel Programming Interface
A.1 High-level Specification Interface

Table 5 gives a list of the interfaces Gravel offers to the devel-
opers. The core interfaces of Gravel includes:

• Functions that generates symbolic value (bitvectors) of
different sizes (the sym_* API).

• Functions that performs graph composition and returns
the result of packet or event processing (handle_*)

• The verify function which informs Gravel’s verifier the
verification task to perform.

Besides the core interfaces, Gravel also provides a set of
helper functions to ease the formalization effort. These func-
tions include functions that access header fields and functions
that checks whether two packets are from the same TCP flow.
Table 5 also lists some examples of helper functions.

A.2 Modeling Abstract Data Structure

As discussed in §4, Gravel masks the actual C++ implementa-
tion of several data structures and replace them with an SMT
encoding during the symbolic execution in order to gener-
ate SMT expressions that could be efficiently reasoned about
by SMT solvers. Table 6 lists all the interfaces that Gravel’s
symbolic executor masks during the verification process. This
section gives more details on how Gravel generates SMT en-
coding for these data structure interfaces in a way that the
resulting formular can be effciently solved.

Unlike bounded data such as the content of a network
packet or an integer field in element state, which can be en-
coded as a symbolic byte sequence using the bitvector theory
of SMT, these data structures have a large state space. This
means that encoding them with bitvectors does not results
in practically solvable expression. For example, the state of
a HashMap<IPAddress, IPAddress> could grow up to 264−1
bytes. This sheer size makes it infeasible to be encoded using
bitvectors.

Gravel’s symbolic executor choose to use a different ap-
proach and represents data structures as a set of uninterpreted
functions. In the aforementioned HashMap example, Gravel
represents the map as two functions:

fcontain : {0,1}32 7→ {⊥,>}
fvalue : {0,1}32 7→ {0,1}32

fcontain maps from the key space {0,1}32 to boolean space
and represents whether certain key is present in the HashMap.
Similarly, fvalue represents the mapping between hashmap
keys and the corresponding values.

Each of the data structure interfaces is also modeled by
Gravel as operations performed on uninterpreted functions.
For the find(K k) interface of HashMap, Gravel first gets the
symbolic value representing whether the key is in the map
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Function name Description
Core Interfaces:

sym_*() → SymValT Create a symbolic value of corresponding type
handle_packet(s, pkt, in_port) → o1, · · ·, on, ns Handle the packet and returns the outputs and new state
handle_time(s, timestamp) → o1, · · ·, on, ns Handle time event, return value is same as handle_packet

verify(formula) Encode given formula and verify that a formula always holds
Helper Functions:

is_none(output) → Bool Check if an output is None

payload_eq(p1, p2) → Bool Determine if two packets have the same payload
from_same_flow(p1, p2) → Bool Determine if two packets are from the same TCP connection
is_tcp(pkt) → Bool Check if a packet is TCP packet

Table 5: Gravel’s specification programming interface.

by computing fcontain(k). Based on the result, Gravel takes
different actions:

If fcontain(k) =>, find(k)= fvalue(k)

If fcontain(k) =⊥, find(k)=⊥

In the actual implementation, ⊥ is represented as
HashMap::end().

The intert(K k, V v) interface performs update on the
content of the HashMap. In Gravel, this is modeled as creating
a new set of uninterpreted functions, f ′contain and f ′value such
that:

∀k′ ∈ {0,1}32·
f ′contain(k

′) = ( fcontain(k′)∨ (k = k′))

∧(k 6= k′)⇒ f ′value(k
′) = fvalue(k′)

∧ f ′value(k) = v

Similarly, erase(K k) replaces fcontain with a new function
f ′contain such that:

∀k′ ∈ {0,1}32 · f ′contain(k
′) = fcontain(k′)∧ (k 6= k′)

Besides modeling interfaces from existing Click code base,
Gravel also adds a set of iteration interfaces that corresponds
to commonly used data structure traverse paradigms. These
interfaces could be used to abstract away loops in the Click
implementation and making more elements feasible for auto-
mated verification.

Gravel currently provides two interfaces for HashMap, map
and filter. for map interface, Gravel takes as parameter a
function g and replace fvalue with a function f ′value where:

∀k ∈ {0,1}32 · f ′value(k) = g(k, fvalue)

Similarly, filter takes a predicate p and create a function
f ′contain such that:

∀k ∈ {0,1}32 · f ′contain(k) = p(k, fvalue)

The modeling of interfaces of Vector and HashSet are sim-
ilar to the modeling of HashMap mentioned above. The main
difference are that HashSet only uses fcontain function, where
as Vector uses a symbolic integer to denote the size of the
vector and does not have a fcontain function.

B ToyLB’s Element-level Specification
This section gives a detailed description of the element-level
specification of ToyLB. As mentioned in §3, element-level
specification in Gravel is given as a list of “condition-action”
pairs. In Gravel, developers write python functions that gen-
erates the list of possible actions for an element. For example,
The CheckIPHeader element only forwards packets that are
both IP packets and are not from a known “bad” address:

def checkipheader_process_packet(s, p, in_port):
is_bad_src = p.ip.src in s.bad_src
return [Action(And(p.ether.ether_type == 0x0800,

Not(is_bad_src)),
{0: p},
s)]

Remember that the Action is used to create a condition-action
entry, which denotes an action that the element takes under
certain condition (§3).

Similarly, CheckTCPHeader filters all packets that are not
TCP packets.

def checktcpheader_process_packet(s, p, in_port):
return [Action(p.ip.proto == 6,

{0: p},
s)]

RoundRobinSwitch not only performs address rewriting for
incoming packets, it also updates packet header fields and its
own state:

def roundrobinswitch_process_packet(s, p, in_port):
ns, np = s.copy(), p.copy()
dst_ip = s.addr_map[s.cnt]
ns.cnt = (s.cnt + 1) % s.num_backend
np.ip4.dst = dst_ip
return [Action(True, {0: np}, ns)]
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The FlowTable element have a more complex specification
as it takes one of three actions based on both the content of
the incoming packet and its own state:

def flowtable_process_packet(s, p, in_port):
flow = p.ip4.saddr, p.tcp.sport, \

p.ip4.daddr, p.tcp.dport
# the case when flowtable has record of the flow
known_flow = And(

# packet is received from the network
in_port == IN_TCP_FILTER,
# flowtable has record of the flow
flow in s.decisions)

# construct the encapsulated packet
fwd_pkt = p.copy()
fwd_pkt.ip4.dst = s.decisions[flow]
# update the timestamp of the flow with current time
after_fwd = s.copy()
after_fwd.timestamps[flow] = s.curr_time

known_flow_action =
Action(known_flow,

{PORT_TO_EXT: fwd_pkt}, after_fwd)

# the case when flowtable does not know the flow
consult_sched = And(

in_port == INPORT_NET,
Not(flow in s.decisions))

unknown_flow_action =
Action(consult_sched, {PORT_TO_SCHED: p}, s)

# packet from the Scheduler
register_new_flow = in_port == IN_SCHED
# extract the new_flow
new_flow = p.inner_ip.saddr, p.tcp.sport, \

p.inner_ip.daddr, p.tcp.dport
# add the record of the new_flow to FlowTable
after_register = s.copy()
after_register.decisions[new_flow] = p.ip4.daddr
after_register.timestamps[new_flow] = s.curr_time
register_action =

Action(register_new_flow, {PORT_TO_EXT: p},
after_register)

return [known_flow_action,
unknown_flow_action,
register_action]

C Verifying Properties of MazuNAT
The MazuNAT middlebox is the most complicated applica-
tion Gravel verifies in the case study (§5.1). Figure 6 shows
the directed graph of Click elements extracted from its con-
figuration file.

The three properties of MazuNAT proved by Gravel are
extracted from RFC [29]. They are important to provide trans-
parency guarantees for application running inside the net-
work. Here we give the formalization of them in Gravel using
Gravel’s Python interface.

Payload Preservation (Property 3). The specification of
Property 3 simply says that the payload of any packet for-
warded by the middlebox remains the same. Note that this is a
general property that can be verified on multiple middleboxes.

def test_payload_unchanged(self):

p, s = sym_pkt(), sym_state()
for source in sources:

ps, _ = handle_packet(s, source, p)
for sink in sinks:

verify(Implies(Not(ps[sink].is_empty()),
ps[sink].payload == p.payload))

Endpointer Independent Mapping (Property 4. For
Property 4, the specification starts by creating two symbolic
packets, p1 and p2. It then invoke the process_packet on both
packets (using the same symbolic state s). After that, it asks
the verifier to check if the rewritten packets sending to the
external network have the same source address.

def to_external(p, s):
return p.ip.dst != s.public_ip

def same_src(p1, p2):
return And(is_tcp_or_udp(p1), is_tcp_or_udp(p2),

p1.ip.src == p2.ip.src,
src_port(p1) == src_port(p2))

def test_ep_independent_map(self):
p1, p2, s = sym_pkt(), sym_pkt(), sym_state()

out1, _ = handle_packet(s, 'from_intern', p1)
out2, _ = handle_packet(s, 'from_intern', p2)
o1 = out1['to_extern']
o2 = out2['to_extern']
verify(Implies(And(to_external(p1, s),

to_external(p2, s),
same_src(p1, p2)),

same_src(o1, o2)))

Endpoint Independent Filtering (Property 5). The high-
level specification of Property 5 starts with creating symbolic
packet p1 and symbolic state s. Then it creates a new packet
p2 by replace only the source address and port with fresh sym-
bolic values. After that the specification uses process_packet

to get the resulting packets from processing p1 and p2. Finally,
we ask the verifier to check whether the resulting packets (o1
and o2 in the code snippet below) are sent to the same desti-
nation.

def test_ep_independent_filter(self):
p1, s = sym_pkt(), sym_state()
ps1, _ = handle_packet(s, 'from_extern', p1)
p2 = p1.copy()
p2.ip.src = sym_ip()
p2.tcp.src = sym_port()
p2.udp.src = sym_port()
ps2, _ = handle_packet(s, 'from_extern', p2)
for sink in sinks:

o1 = ps1[sink]
o2 = ps2[sink]
verify(Implies(Not(o1.is_empty()),

And(Not(o2.is_empty()),
o1.ip.dst == o2.ip.dst,
dst_port(o1) == dst_port(o2))))

Hairpinning (Property 6). As shown below, rather than in-
specting the state of elements in MazuNAT to determine
whether a address mapping is established. Gravel uses the
packet forwarding behavior as the indicator. The specification
says that if a packet p1 from external network is forwarded
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Function name Description
Vector<T>:

const T& get(unsigned int) Get value by index
void set(unsigned int i, T v) Set i-th value of vector to v

void map(void(*)(T) f) Apply function f for all value in vector
HashMap<K, V>:

V &find(K k) Lookup by key k

void insert(K k, V v) Insert key-value pair k, v into the hashmap
void erase(K k) Delete key k from the hashmap
void map(void(*)(K k, V v) f Apply function f to all key-value pair in hashmap
void filter(bool(*)(K k, V v) p) Filter key-value pairs in the hashmap with predicate p

HashSet<T>:

T &find(T v) Check if v is present in hashset
void insert(T v) Insert v into the hashset
void erase(T v) Delete v from the hashset
void filter(bool(*)(T v) p) Filter with predicate p

Table 6: Data structure interfaces supported by Gravel.

to internal network. any packet p2 with the same destination
address and port received from internal network is also for-
warded to the same destination in the internal network.

def test_hairpinning(self):
p1, p2, s = sym_pkt(), sym_pkt(), sym_state()
out1, _ = handle_packet(s, 'from_extern', p1)
out2, _ = handle_packet(s, 'from_intern', p2)
o1 = out1['to_intern']
o2 = out2['to_intern']
verify(Implies(And(p1.ip.dst == p2.ip.dst,

p1.ip.proto == p2.ip.proto,
dst_port(p1) == dst_port(p2),
o1.not_empty()),

And(o2.not_empty(),
o1.ip.dst == o2.ip.dst,
o1.tcp.dst == o2.tcp.dst)))

Connection memorization (Property 7). The formalization
of Property 7 uses the same inductive approach as in the
ToyLB example. As shown below, the specification is decom-
posed into a base case and two inductive cases. The base case
states that when a packet from internal network is forwarded
to external world by MazuNAT, the translation will be still
effective within the time window THRESHOLD.

def test_memorize_init(self):
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
o, s1 = handle_packet(s0, 'from_intern', p0)
ext_port = o['to_extern'].tcp.src

t = s0['rw'].curr_time
ddl = t + THRESHOLD
verify(Implies(is_tcp(p0),

steer_to(c, s1, p0, ext_port, ddl)))

Then, the two inductive cases show that processing a packet
from other flows or any time event before the end of the time
window do not effect existing translation mappings.

def test_memorize_step_pkt(self):
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
t = sym_time()

p_diff = sym_pkt()
ext_port = sym_port()
_, s1 = handle_packet(s0, 'from_intern', p_diff)
verify(Implies(And(steer_to(c, s0, p0, ext_port, t),

from_same_flow(p0, p1)),
steer_to(c, s1, p0, ext_port, t)))

def test_memorize_step_time(self):
ext_port = fresh_bv('port', 16)
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
t0, t1 = sym_time(), sym_time()
_, s1 = handle_time(s0, 'rw', t1)
verify(Implies(And(steer_to(c, s0, p0, ext_port, t0),

z3.ULT(t1, t0),
from_same_flow(p0, p1)),

steer_to(c, s1, p1, ext_port, t0)))
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Figure 6: The directed graph of elements in MazuNAT.
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Abstract
Realtime network verification ensures the correctness of

network by incrementally checking data plane updates in real
time (e.g., < 1ms per rule update). Even state-of-the-art meth-
ods can already achieve sub-millisecond verification time,
such speed is achieved mostly for pure IP forwarding devices,
and is unrealistic for real-world networks, due to two reasons.
(1) Their network models cannot express the forwarding be-
havior of real devices, which have various functions including
IP forwarding, ACL, NAT, policy-based routing, etc. (2) Their
update algorithms do not scale in space and/or time: multi-
field rules (e.g., ACL rules) can make these tools run out of
memory and/or incur long verification time. To scale real-
time verification to real networks, we propose APKeep based
on a new modular network model that is expressive for real
devices, and propose new algorithms that can achieve low
memory cost and fast update speed at the same time. Our
experiments show that for real-world update traces consisting
of IP forwarding rules and ACL rules, existing methods either
run out of memory or incur a prohibitively long verification
time, while APKeep still achieves a sub-millisecond verifica-
tion time. We also show that APKeep can verify an update of
NAT rule mostly in less than 1 millisecond.

1 Introduction

Computer networks are prone to faults due to protocol miscon-
figurations, software bugs, and hardware failures [7,17,26,35].
Manually troubleshooting the faults often costs a network
downtime up to several hours [7]. How to prevent network
faults by ensuring network correctness becomes a fundamen-
tal problem posed to network operators and researchers.

Network verification seeks to automatically check network
correctness at both control plane [9, 12, 13, 16, 18, 19, 30]
and data plane [10, 15, 20, 22–24, 27, 36–40]. Compared to
control plane verification which focuses on detecting protocol
misconfigurations, data plane verification directly checks the
data plane, which is closer to the actual forwarding behaviors

of packets, and thus can catch a broader range of faults due to
switch software bugs and hardware failures.

More recently, realtime data plane verification allows op-
erators to check the correctness of data plane as it updates
in realtime [20, 22, 24, 37–39]. To achieve this, realtime data
plane verifiers often partition packets into equivalence classes
(ECs), and maintain a model of forwarding behavior for these
ECs. When the data plane updates, they incrementally update
the model, and check the updated model against correctness
properties.

State-of-the-art realtime data plane verifiers have already
achieved sub-millisecond verification time [20, 24]. However,
such speed is mostly achieved for pure forwarding devices.
For real devices consisting of various functions other than for-
warding, these verifiers exhibit two fundamental limitations.

Network model is not expressive for real devices. Apart
from IP forwarding, real devices have many other functions
including access control list (ACL), network address trans-
lation (NAT), etc., which are composed in specific orders to
implement various processing logic. For example, inside a
typical router, multiple ACLs can be chained and applied at
multiple ports to filter inbound and/or outbound packets [1].
Some routers may perform NAT on packets matching an ACL.
Tools like VeriFlow [24] and Delta-net [20] assume simple
models which only express forwarding functions. Models of
NetPlumber [22] and AP Verifier [38, 39] can express more
functions, but are hard to extend. For example, most vendors
provide variants of policy-based routing [8], and adding such
a feature requires heavy modification of their models. Even
for the same set of functions, different devices may also have
different pipelines, and writing a model for each of them is
clearly not scalable.

Verification algorithms are not scalable for real devices.
Range EC-based methods like VeriFlow and Delta-net repre-
sent each EC as a range of packet headers, thereby achieving
a fast verification speed for IP forwarding rules. For example,
Delta-net can check an update of IP forwarding rule in tens
of microseconds on average. However, when there are multi-
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field rules, e.g., ACL rules, range EC-based methods may
suffer from the problem of EC explosion, where the number
of ECs grows exponentially with the number of multi-field
rules. We find that for a real-world dataset consisting of only
686 ACL rules, an open-source version of VeriFlow and our
multi-field extension of Delta-net can create up to 15 million
ECs, causing either prohibitively long verification times or
memory overflows.

AP Verifier computes the minimum number of ECs with
respect to the network behavior. The downside, however, is
that the update of ECs is more difficult, and can cost up to 10
milliseconds [37].

To overcome the above limitations and bring realtime net-
work verification closer to the real world, this paper presents
APKeep, a new realtime data plane verifier.

APKeep builds on a new network model that is modu-
lar and expressive. It models networks in a granularity of
logical functions instead of physical devices. Each function,
e.g., forwarding, filtering, rewriting, is modeled as a logically-
independent element, which holds a set of logical ports cor-
responding to different actions on packets. APKeep views
packets forwarded to the same port (i.e., undergoing the same
actions) at each element as an EC, and encodes each EC with a
logical predicate. The modularity of our model makes it easy
to support common functions and vendor-specific composi-
tions of functions in real devices. In addition, it also reduces
the update scope and makes the update more efficient.

APKeep uses novel algorithms to compute and maintain
the minimum number of ECs in realtime. A key reason
for EC explosion of existing methods is that they create ECs
based on the match fields of rules, resulting in a lot of unnec-
essary ECs with the same forwarding behavior. In addition,
they cannot compress these ECs after creation. APKeep sig-
nificantly reduces the number of ECs based on two principles.
(1) Creating ECs only when necessary. APKeep creates ECs
only when it needs more ECs to express new forwarding be-
haviors. (2) Merging ECs when possible. APKeep tracks the
forwarding behavior of each EC, and merges multiple ECs
with the same forwarding behavior. We proved that by ap-
plying the above principles, APKeep always maintains the
minimum number of ECs during update.

In summary, our contribution is three-fold:
• We introduce a new network model that is modular and

expressive for modeling real network devices.
• We design APKeep, which uses novel algorithms to fast

update the network model for realtime verification.
• We show APKeep achieves a sub-millisecond verifica-

tion time for update traces consisting of IP forwarding
rules, ACL rules, and NAT rules.

Roadmap. We present the design overview (§ 2) and details
(§ 3) of APKeep, followed by a case study (§ 4). Then, we
show the experiment results (§ 5). After discussing related
work (§ 6) and potential issues (§ 7), we conclude (§ 8).

2 Design Overview

This section overviews the design of APKeep. We will first
introduce the network model that APKeep builds on, and then
show how APKeep can fast update the model.

2.1 The Modular Network Model

To achieve realtime network verification for real networks,
the network model should satisfy three key requirements: (1)
expressive for common functions in real devices, e.g., IP for-
warding, ACL, NAT, policy-based routing, etc.; (2) extensible
for different devices with different vendor-specific implemen-
tations of these functions; (3) efficient to update for achieving
realtime verification.

We propose Port-Predicate Map (PPM), a new network
model that meets all the above requirements. To demonstrate
how PPM works, we use the example network shown at the
top-left corner of Figure 1. In this network, switch C has four
functions or modules (two ACLs, one forwarding, and one
NAT), each having its own rules. If packets arrive at port1,
two ACLs ACL1 and ACL2 are applied in sequence; if they
arrive at port2, only ACL1 is applied. Then, the packets will
be sent to an output port according to the forwarding rules. If
the output port is port5, packets will go through an NAT.

As an alternative, we could model a device as a monolithic
box. This approach has the following drawbacks. First, it will
be difficult to extend the model for new functionalities. For
example, a device from another vendor may have a different
chaining of modules (e.g., NAT before IP forwarding), or a
new function (e.g., overriding IP forwarding with user poli-
cies). Then, we need to compose another device model. In
addition, it will also make the update inefficient. For example,
suppose a rule is inserted into ACL1, then we need to update
the ECs allowed by the two input ports.

Element. Instead of modeling a network as a set of devices,
PPM models at a granularity of element, defined as a logically-
independent function (e.g., IP forwarding, ACL, or NAT).
Each element has its own set of rules, and holds a set of
logical ports. Different from physical ports, i.e., interfaces,
logical ports represent generic actions including “output to
VLAN 10”, “permit SSH traffic”, “rewrite dstIP to 10.0.0.1”.
This allows elements to express a broad range of functions
other than IP forwarding. In specific, an element holds one
port for each distinct action of rules in the element, and a
special port for the default action is reserved for packets not
matching any rules. When a packet arrives at an element, it
will be “forwarded to” to exactly one port of the element, i.e.,
taking the actions of that port. Currently, PPM supports three
types of elements, and more types can be added in the future.
• A forwarding element has rules that match IP prefixes

and whose actions are “output packets to a specific set
of interfaces”. A forwarding element holds one port for
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Figure 1: An example showing how APKeep divides devices into elements.

each distinct set of interfaces, and a de f ault port for the
default action, e.g., dropping packets.
• A filtering element has rules that match 5-tuples and

whose actions are either “permit” or “deny”. A filtering
element holds exactly two ports: permit and deny.
• A rewriting element has rules which match 5-tuples

and whose actions are “rewrite a specific header field to
a specific value”. A rewriting element holds one port for
each distinct rewriting action, and an id port correspond-
ing to no packet rewrite.

When a device has multiple functions, we break it into
multiple elements. As shown in the left bottom of Figure 1,
device C breaks into a forwarding element FW-C, two filtering
elements ACL1-C, ACL2-C, and a rewriting element NAT-C.

Equivalence Class. Let E be the set of all elements in the
network, and H be the set of all packet headers. For each
header h ∈H and element e ∈E , let Porte(h) be the port that
h would be “forwarded to”, assuming h has been received
by e. Then, we have the following definition for equivalence
class (EC).

Definition 1. We say C = {c1,c2, . . . ,cn} is a set of equiva-
lence classes (ECs) with respect to element set E and header
set H if: (1) ci∧ c j = /0, i 6= j; (2) ∨n

i=1ci = H ; (3) ∀h1,h2 ∈
H , h1 6= h2: ∃c ∈ C , h1,h2 ∈ c ⇒ ∀e ∈ E ,Porte(h1) =
Porte(h2)

1. We say C is the minimum set of ECs if it is the
smallest set satisfying the above conditions.

APKeep encodes an EC with a logical predicate, i.e., Boolean
formula. The reason to use predicate instead of range as in [20,
24] is that a predicate can encode an arbitrary set of packet
headers, such that multiple range-based ECs having the same
forwarding behavior can be represented as a single predicate.
This allows APKeep to merge ECs with the same forwarding
behavior, thereby avoiding explosion of ECs (§ 2.2).

Port-Predicate Map. For each predicate c and each element
e, let Porte(c) = Porte(h),∀h ∈ c. Suppose p = Porte(c), then
we say port p holds predicate c. Define the predicate set of

1Condition (3) says that for each h1 and h2 in H such that h1 6= h2, we
have: if there exists an c in C such that h1 and h2 both belong to c, then for
each element e in E , Porte(h1) = Porte(h2)

port p as: Pred(p) = {c ∈ C |Porte(c) = p,e ∈ E}. We can
see that Pred is a map from port to predicates, which encodes
the network forwarding behavior: given a packet h at element
e, suppose it belongs to predicate c, then h will be forwarded
by e to the port p satisfying c ∈ Pred(p).

Element Topology. PPM uses the element topology to de-
scribe how elements are chained to process packets in the net-
work. The right of Figure 1 shows the element topology of the
example. First, each node represents an “application” of the
corresponding element. For example, since ACL1-C is applied
to port1 and port2, there are two nodes ACL1-C-Port1-in
and ACL1-C-Port2-in. The forwarding element FW-C is ap-
plied once, and thus it corresponds to a single node. Creating
a separate node for each application allows elements to be
agnostic of input ports where packets are received. Second,
each node has a set of ports, each holding a set of predicates,
in the same way as its corresponding element. Thus, we only
need to update a single element rather than all its nodes. For
example, when a rule is inserted into ACL1, we only update
the element ACL1, rather than its two nodes. Third, nodes are
connected based on the physical topology, and how the ele-
ments are applied inside devices. For example, a port of A is
connected to port1 of C in the network topology. Then, in
the element topology, the port of A connects to the in port
of ACL1-C-Port1-in, whose permit port connects to the in
port of ACL2-C-Port1-in, and its permit port connects to
the port1 of FW-C. The element topology will be used to
construct forwarding graphs for verification (§ 3.3).

As shown above, PPM achieves modularity by break-
ing the composite functions inside a device into logically-
independent elements. This brings the following benefits.

Expressiveness. Using the three types of elements as build-
ing blocks, PPM can express the forwarding, ACL, and NAT
functions. Besides that, we will show how PPM can express
the policy-based routing function offered by a major device
vendor (§ 4).

Extensibility. Even most devices share roughly the same set
of functions, the implementations and compositions of these
functions are often vendor-specific. Writing a model for each
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different device wastes time and effort. PPM models each
device at the function level with elements, therefore it is rel-
atively easy to model devices with vendor-specific composi-
tions of functions by properly chaining the elements.

Reduced update scope. First, updates of multiple elements
are decoupled, and when a rule is updated, we only need to up-
date the element where the rule is updated, without affecting
other elements. For example, multiple ACLs may be chained
and applied to an interface. If a rule is inserted to one ACL,
we only need to update the element of that ACL. Secondly, the
application of elements is decoupled away from the elements
themselves. For example, an ACL can be applied to multiple
interfaces, and we only need to update the element of the
ACL once, instead of updating all these interfaces. As another
example, an operator may activate/deactivate an existing ACL
on a port, or even migrate an ACL from a port to another [33].
In this case, we do not need to update the element of the ACL,
as the forwarding behavior of the element is not affected.

2.2 The Update of Network Model
In the following, we show how APKeep updates the network
model using a simple example in Figure 2. As shown in (a),
the device has an ACL applied to its input port, followed by a
forwarding module. For simplicity, we assume there are two
match fields: dstIP represented with 2 bits x1,x2, and dstPort
represented with 2 bits y1,y2. The forwarding module matches
only dstIP with longest prefix match, and the ACL matches
both dstIP and dstPort according to priorities (larger number
means higher priority). We assume that by default, the ACL
denies all packets and the forwarding module forwards all
packets to port1. Initially, we have one EC a, which appears
at the port port1 of element FW, and the port deny of element
ACL. We will insert two ACL rules R1 and R2 shown in (b),
and two forwarding rules R3 and R4 shown in (c).

First, we insert an ACL rule R1, whose match fields are
x1x2 = 0∗,y1y2 = 00, as shown at the top of (d). APKeep
analyzes how R1 will affect the behaviors of element ACL.
Specifically, APKeep finds R1 overrides the default deny rule
in the red dashed rectangle. However, since R1 also has a
deny action, packets in the rectangle will not change. Thus,
APKeep does not update the EC a, which still appears at
port1 of FW and deny of ACL, as shown at the bottom of (d).
In contrast, if we create range-based ECs based on match
fields, we will split EC a into three ECs, each of which is a
rectangle in the header space.

Suppose another ACL rule R2 is inserted. Since R2 has a
lower priority than R1, APKeep finds R2 can match only the
shaded area, where it overrides default deny rule. As a result,
packets matching the shaded area will change their behavior
from deny to permit. To reflect that change, APKeep decides
to transfer those packets from port deny to port permit. Since
the packets are a portion of EC a, it splits a into two ECs, i.e.,
b for the shaded area, and another one by subtracting b from a.

Then, APKeep transfers b to port permit, as shown at the bot-
tom of (e). The reason that the EC b can be a non-rectangle
area is that ECs are encoded with predicates. Specifically,
the match fields of R1 and R2 can be represented as predi-
cates x̄1ȳ1ȳ2 and ȳ1, respectively. Then, b can be calculated by
logical operations as b = ȳ1∧¬(x̄1ȳ1ȳ2) = (ȳ1x1)∨ (ȳ1y2).

Suppose a forwarding rule R3 is inserted. R3 overrides the
default rule in the red dashed rectangle, which changes its port
from port1 to port2. APKeep creates two new EC c and d by
splitting a and b, respectively, and transfers them to port2, as
shown in (f). The insertion of another forwarding rule R4 is
similar and shown in (g). At this time, APKeep finds two ECs
d and f appear at the same port at both elements, meaning
that they have the same forwarding behavior – permitted by
the ACL and forwarded to port2. Thus, APKeep merges d
and f into a single EC. Similarly, APKeep merges c and e into
a single EC, as shown in (h). The merging of ECs translates
into logical disjunction of predicates. For example, d and f
are merged into an EC represented by (x̄1x̄2ȳ1y2)∨ (x1x̄2ȳ1).

Finally, after inserting R1 through R4, APKeep creates 4
ECs. In contrast, if we create range-based ECs based on match
fields, we will need 10 ECs, one for each rectangle of (h). The
above is just an over-simplified example with only two fields
which have 3-4 values. In real scenarios, the reduction rate
can be as high as 99.99% (see Table 3). Actually, we prove
that APKeep always maintains the minimum number of ECs
during update (see Theorem 1).

The reason that APKeep can update such a small number of
ECs is two-fold: (1) Creating new ECs only when necessary.
APKeep creates a new EC only when part of an existing EC
changes its forwarding behavior and the EC needs to be split
into two ECs. In contrast, creating new ECs whenever the
match fields of the new rule split some existing ECs will result
in many redundant ECs. (2) Merging ECs whenever possible.
APKeep tracks the forwarding behaviors of ECs, and merges
multiple ECs if they have the same forwarding behavior. In
contrast, range-based EC presentation mostly does not allow
ECs to be merged.

The update of ECs in APKeep is much faster compared to
AP Verifier due to the following reason. APKeep can quickly
identify the changes of forwarding behaviors, and incremen-
tally update predicates instead of re-computing them (§ 3.2).
In contrast, AP Verifier maintains a port predicate for each de-
vice port, and computes atomic predicates (minimum number
of ECs) based on all port predicates. When a rule is updated,
it needs to first update the port predicates, and if new port
predicates are created, it re-computes the atomic predicates
based on the updated port predicates. We observe an up to
200× speedup in our experiments.

3 Design Details

This section presents the design of APKeep. Figure 3 shows
the architecture of APKeep, which consists of three layers:
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Figure 2: An example of incremental update for rule insertion.
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The driver layer serves as the interface between network
data plane and the model layer. In the bootstrap stage, the
config parser reads in the network topology and configura-
tion files, and generates the vendor-neutral data plane config,
describing the configuration of interfaces, VLANs, ACLs, etc.
for each device. The update parser fetches the FIB/ACL/NAT
(changes) from each device and generates data plane updates,
including insertion/deletion/modification of rules.
The model layer is the core of APKeep system. The model
builder constructs PPM model by creating all the elements
based on the data plane config. The model updater continu-
ously updates the PPM model by processing each data plane
update in sequence.
The verifier layer hosts verification applications on top of
the model layer. The forwarding graph constructor generates
forwarding graphs based on the PPM model, and on top of the
graphs, various applications can be deployed to check network
invariants, operator policies, or conduct what-if analysis.

In the following, we show how APKeep builds and updates
the PPM model, and performs verification. Then, we show
how APKeep supports packet rewrites, and present some op-
timization techniques.

3.1 Building PPM
For each device, APKeep constructs a device model based on
its configuration of interfaces, ACLs, NAT, etc., and decom-
poses the device model into a set of elements. Currently, AP-
Keep offers three types of elements, i.e., forwarding element,
filtering element, and rewriting element. Initially without any
rules, a forwarding element has a de f ault port; a filtering ele-
ment has a permit port and a deny port; a rewriting element
has an id port. For forwarding and rewriting elements, more
ports can be created on-the-fly during rule insertions.

After creating elements, APKeep constructs the element
topology by augmenting the physical topology with intra-
device element connections, based on how elements are com-
posed inside the device. For example, if an ACL ACL1 is
declared to filter inbound traffic at port port1, then there is a
connection from the permit port of ACL1 to the port1 port of
the forwarding element.

Initially there is only one True predicate, standing for the
set of all possible packets. For each element, the True predi-
cate is held by its de f ault, deny, or id port, depending on the
element type. APKeep initializes the predicate set Pred(p)
(§ 2.1) to {True} if p is de f ault, deny, or id port, and to
empty set otherwise.

3.2 Updating PPM
For each rule update, APKeep updates the PPM using three
steps: (1) encoding the match fields of the rule, (2) identifying
the changes of forwarding behavior, and (3) updating the
predicates and the map from port to predicates. The following
only shows the case for rule insertion, and rule deletion differs
only slightly in Step (2). Rule modification can be seen as a
pair of rule deletion and insertion.

Let r be the rule to be inserted, specified as a 3-tuple
(priority,match,action), and let e be the element where r
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Algorithm 1: IdentifyChangesInsert(r, R )
Input: r: the newly inserted rule; R : the list of existing rules,

sorted by decreasing priorities.
Output: C: the set of changes due to the insertion of rule r.

1 C←{};
2 r.hit← r.match;
3 foreach r′ ∈ R do
4 if r′.prio > r.prio and r′.hit ∧ r.hit 6= /0 then
5 r.hit← r.hit ∧¬r′.hit;

6 if r′.prio < r.prio and r′.hit ∧ r.hit 6= /0 then
7 if r′.port 6= r.port then
8 C←C∨{(r.hit ∧ r′.hit,r′.port,r.port)};
9 r′.hit← r′.hit ∧¬r.hit;

10 Insert r into R ;
11 return C;

is inserted.

Step 1. Encoding match fields. Assume each packet header
has h bits, each of which can be represented as a Boolean
variable. Then, the match field of a rule corresponds to a set
of packet headers, and can be represented as Boolean formula
of h variables. For example, an IP match field of 128.0.0.∗
can be represented as x1∧ x̄2∧·· ·∧ x̄24. We adopt the methods
of [37] to encode the Boolean formulas of match fields based
on Binary Decision Diagram (BDD [11]). BDD is a data
structure that can canonically represent Boolean formulas,
and it allows efficient logical operations including conjunction
(∧), disjunction (∨), and negation (¬). By encoding the match
fields with BDDs, we can efficiently compute and update
predicates leveraging these logical operations. We use r.match
to denote the match fields of r, encoded with BDD.

Step 2. Identifying changes. This step identifies the changes
of forwarding behavior at element e, by analyzing how the in-
sertion of r affects existing rules of e. Here, a behavior change
takes the form of (δ, f rom, to), meaning packets satisfying
predicate δ, which are originally forwarded to port f rom, will
now be forwarded to port to. Note that this step is locally
performed at e.

Before introducing the algorithm, we define the hit and
port fields for each rule. First, note that multiple rules may
have overlapping match fields, and packets will take the action
of the rule with the highest priority. Thus, some headers in
r.match may not “hit” rule r due to the presence of some
higher-priority rules. To represent the headers that actually
“hit” a rule, we define the hit field for each rule r as:

r.hit , ¬(∨r′.prio>r.prior′.match)∧ r.match (1)

If h ∈ r.hit, we know that h will take the action of r. Initially
when there is only one default rule, the hit field of the default
rule is equal to its match field, i.e., True. Second, recall that
each element has a port corresponding to each distinct action

of rules in the element. We use r.port to denote the port
corresponding to the action field of r. As an example, if r is
a forwarding rule whose action field is “output to interface
eth0/0”, then r.port = eth0/0.

Algorithm 1 summarizes the procedure to identify the set
of all behavior changes when a rule is inserted. It calculates
the hit field r.hit by subtracting the match fields of higher-
priority rules from r.match (Line 3-5), and identifies all behav-
ior changes by analyzing how r.hit “overrides” lower-priority
rules with different ports (Line 6-9). The algorithm for rule
deletion differs only slightly and is not given here.
Step 3. Updating predicates. In this stage, APKeep takes the
set of behavior changes caused by the inserted rule, denoted
by C, and computes the set of transferred predicates, denoted
by D. The process is summarized in Algorithm 2. In order
to track which ports hold a given predicate, the algorithm
maintains a map Port from each predicate c to the set of ports
holding c, defined as Port(c) = {Porte(c)|e ∈ E}. We term
Port(c) as the port set of predicate c.

Initially, the set of transferred predicates D is set to empty
(Line 1). For each change (δ, f rom, to), we iterate over each
predicate p in the predicate set of f rom, and check whether
p overlaps with δ (Lines 2-4). If so, we further perform the
following three steps (Lines 5-10).

(1) Splitting predicates. In this step, we check whether
p belongs to δ (Line 5). If not so, we need to split p into
two new predicates p∧δ and p∧¬δ. by invoking the Split
function (Line 6). As shown in Lines 11-17, the function
Split(p, p1, p2) first updates the predicate set of each port
in Port(p), by replacing p with p1 and p2 (Lines 12-13).
Then, it initializes the port set of p1 and p2 with that of p
(Lines 14-15). Finally, it updates the set of transferred predi-
cates if needed (Lines 16-17).

(2) Transferring predicates. This step transfers the pred-
icate p ∧ δ from port f rom to port to by invoking the
Transfer function (Line 7), as shown in Lines 18-22.

(3) Merging predicates. This step checks whether each
predicate p′ held by port to has the same port set with p
(Line 8). If so, p′ and p have the same forwarding behavior,
and we merge them into a new predicate p∨ p′, by invoking
the Merge function (Line 9), as shown in Lines 23-28.

After the above three steps, we update δ by subtracting
p from it, and proceed to the next predicate of port f rom
(Line 10).

Theorem 1. APKeep maintains the minimum set of equiva-
lence classes after each rule update.

The proof is given in Appendix A.

3.3 Verification

Checking Invariants. APKeep can check network invariants
including loop-freedom and blackhole-freedom, which are
defined as follows.
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Algorithm 2: Update(C)
Input: C: the set of changes identified in the first stage.
Output: D: the set of transferred predicates.

1 D←{};
2 foreach (δ, f rom, to) ∈C do
3 foreach p ∈ Pred( f rom) do
4 if p∧δ 6= /0 then
5 if p∧δ 6= p then
6 Split(p, p∧δ, p∧¬δ);

7 Transfer(p∧δ, f rom, to);
8 if ∃p′ 6= p,Port(p′) = Port(p) then
9 Merge(p, p′, p∨ p′);

10 δ← δ∧¬p;

11 Function Split(p, p1, p2):
12 foreach port ∈ Port(p) do
13 Pred(port)← Pred(port)∪{p1, p2}\{p};
14 Port(p1)← Port(p);
15 Port(p2)← Port(p);
16 if p ∈ D then
17 D← D∪{p1, p2}\{p};

18 Function Transfer(p, f rom, to):
19 Pred( f rom)← Pred( f rom)\{p};
20 Pred(to)← Pred(to)∪{p};
21 Port(p)← Port(p)∪{to}\{ f rom};
22 D← D∪{p};
23 Function Merge(p1, p2, p):
24 foreach port ∈ Port(p1) do
25 Pred(port)← Pred(port)∪{p}\{p1, p2};
26 Port(p)← Port(p1);
27 if p1 ∈ D or p2 ∈ D then
28 D← D∪{p}\{p1, p2};

29 return D;

• Loop. A packet traverses the same device for the second
time, without being modified.
• Blackhole. A packet arrives at a device but does not

match any forwarding rule.
Similar to Delta-net, APKeep checks invariants by construct-
ing and traversing a delta forwarding graph (DFG), a graph
with each edge labeled with the ECs allowed on the edge.
The difference is that APKeep updates the PPM model rather
than DFG, and only constructs DFG based on the PPM model
when checking invariants. Specifically, given a set of trans-
ferred predicates, APKeep constructs the DFG by adding the
transferred predicates and the corresponding edges on the
element topology. Then, APKeep traverses the DFG with a
set of predicates P, which is initialized to the transferred pred-
icates. When an edge is visited, P is intersected with the set
of predicates on that edge. The traversal terminates when P
becomes empty, reaching an edge with no next hop (blackhole
detected), or the same node is visited twice (loop detected).

The construction and traversal algorithms of DFG are given
in Appendix B.

Checking policies. Operators may need to check user-defined
policies such as hosts in a specific prefix can or cannot access
a web server, traffic from subnet1 to subnet2 should pass the
firewall, etc. We show how APKeep can support this task.
Here, we define a policy as a pair of match condition and
path constraint, where the match condition can be specified
by header fields (e.g., 5-tuple), and a path constraint can be
specified by a regular expression. Given a policy, APKeep can
convert its match condition into a policy predicate, i.e., a BDD
denoted as q, and its path constraint into an automata denoted
as A. APKeep can check whether the policy is satisfied after
an update as follows.

Let D be the transferred predicates after an update. APKeep
computes a new set of predicates Dq←{δ∈D|δ∧q 6= f alse},
and constructs the DFG Gq based on Dq. Then, APKeep tra-
verses Gq while updating an instance of automata A for each
pi ∈ Dq, denoted as Ai. Specifically, APKeep updates the au-
tomata Ai if the predicate pi visits a new node in DFG. The
policy is satisfied if after traversal, all the automata enter the
absorbing states; otherwise, the policy is violated. Note here
multiple policies can be checked in parallel, and for each
policy, the updating of each automata can also be parallelized.

What-if analysis. Operators can use APKeep to conduct
“what-if analysis”, e.g., will the invariants break if a specific
link fails? APKeep answers such a query by retrieving all the
predicates traversing the link, constructing a DFG using these
predicates, and traversing the DFG to check invariants. The
time to answer such a query heavily depends on the total num-
ber of ECs. We will show APKeep achieves a much shorter
running time than Delta-net (§ 5.4).

3.4 Supporting Packet Rewrites

APKeep supports packet rewrites with rewriting elements. A
rewriting element consists of a list T of rewrite rules, where
each T ∈ T matches on 5-tuples, and rewrites the header to
a specific value. APKeep creates a port for each rule in the
rewriting element.

Based on the match fields of rewrite rules, we can com-
pute predicates, and assign them to each port of the rewriting
element, just as the forwarding and filtering element. The dif-
ferent part is: (1) how to encode packet rewrites using logical
operations; (2) how to update predicates in the presence of
rewrites.

Encoding packet rewrites. we adopt the methods in [39]
to encode packet rewrites with logical operations as follows.
First, it uses the existential quantification on predicate. Let p
be a predicate, and x be one of the Boolean variables that p is
defined on. The existential quantification of x is defined as:

∃x.p = p|x=true∧ p|x= f alse (2)
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, where p|x=true sets the value of variable x in p as true.
Suppose the header has two bits x1,x2, then an NAT rule T
that rewrites it to x1 = 1, x2 = 0 can be encoded as a logical
function:

T (p) = (∃x1∃x2.p)∧ (x1∧ x̄2) (3)

The existential quantification operation is supported by BDD.

Updating predicates in the presence of rewrites. Recall
that for verification, we need to traverse a DFG which is
constructed based on PPM. When there are only forwarding
and filtering elements, we only need to perform intersections
on predicate sets during traversal. However, when there are
rewriting elements, predicates need to be transformed, and
we need to ensure two conditions:

(1) Each predicate should be unambiguously transformed,
i.e., the transformation should be defined for each predicate
in PPM. For example, suppose p is split into p1 and p2, we
should know how to transform each of them; otherwise, when
traversing with only p1 or p2 in the predicate set, the rewriting
element does not know how to transform it.

(2) The result of transformation should be represented by a
set of predicates in PPM such that the traversal can proceed.
For example, suppose a predicate p is held by the port of
rewrite rule T , and T (p) = p′. If p′ cannot be represented by
a set of predicates in PPM, the traversal cannot continue since
p′ is not “recognized” by other elements.

In order to satisfy these two conditions, we apply the fol-
lowing two operations: (1) when a predicate p of a rewriting
port is split into p1 and p2, we compute p1′ = T (p1) and
p2′ = T (p2), and apply operation (2). (2) if the transforma-
tion result p cannot be represented as a set of predicates, we
create new predicates to represent p. Note that this may split
a predicate of some rewriting port and trigger operation (1).

Algorithm 3 summarizes how APKeep handles rule updates
for rewriting elements. First, it updates the predicates with
Algorithm 2 (Line 1). The difference lies in that the algorithm
also maintains a rewrite table, where for each entry (k,v),
k is a predicate before rewrite, and v is a set of predicates
after rewrite. After transferring one predicate p to the port
of another rule r′, we need to apply the rewrite rule r′ on p,
and ensure the values in the rewrite table are still predicates
(Lines 2-12).

3.5 Optimization

Delayed predicate merging. In Algorithm 2, APKeep
merges two predicates instantly if they have the same port
set. However, for some datasets, we find that some predicates
are repeatedly merged and split, resulting in a waste of time.
Thus, we adopt a delayed predicate merging: when a predicate
can be merged, we record it, and when the total number of
predicates exceeds a threshold (500 by default), we merge all
the recorded predicates. To fast determine whether a predicate
can be merged, we maintain a hash table where the key is an

Algorithm 3: UpdateRewrite(C,R T )
Input: C: the set of changes identified in the first stage; R T :

the rewrite table.
Output: D: the set of transferred predicates.

1 D← UpdateRW(C);
2 while true do
3 updated← f alse;
4 foreach (k,v) ∈ R T do
5 foreach p ∈ v do
6 if p /∈ P then
7 foreach p

′ ∈ P do
8 if p

′ ∧ p 6= f alse and p
′ ∧¬p 6= f alse

then
9 SplitRW (p

′
, p
′ ∧ p, p

′ ∧¬p);

10 updated← true;

11 if updated = f alse then
12 break;

13 Function SplitRW(p, p1, p2):
14 Split(p, p1, p2);
15 foreach (k,v) ∈ R T do
16 if p ∈ v then
17 v← v∪{p1, p2}\{p};

18 R T .remove(p);
19 R T .add(p1,{T (p1)});
20 R T .add(p2,{T (p2)});
21 return D;

ordered list of ports, and the value is a set of predicates that
appear at all these ports.

Separate update for different types of elements. Updating
both forwarding rules and ACL rules may result in a large
number of predicates. For example, suppose there are n ECs
generated by forwarding rules, and an ACL rule matching a
destination port range will create n new ECs. AP Verifier [37]
proposed to compute the atomic predicates for forwarding
and ACL rules, separately. We adopt this approach and update
two sets of predicates, one for forwarding elements, and one
for ACL elements. When traversing the forwarding graph,
we need to carry two sets of predicates, and set intersection
only happen between the same set of predicates. Different
from [37], our algorithm avoids false positives when verifying
invariants. For example, when a node is visited twice, we
evaluate whether there exist two predicates, one from each
set, that have non-empty conjunction. If so, the loop exists;
otherwise, the loop is a false positive.

4 Case Study

We study the expressiveness of our PPM model by showing
how to model a vendor-specific function with the three built-in

248    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



default

permit

deny

FW-C
ACL1-C

in

A C

D

eth0/0
FW

Eeth1/2

A

P1

Element Topology

Switch C Physical Topology

D

E

!ACL1

eth1/1

eth0/0
eth1/2

eth1/1

Figure 4: Modeling traffic policy in APKeep.

element types.
Policy-Based Routing (PBR) is a function commonly avail-

able in many routers and switches. It allows operators to
override the IP forwarding rules such that packets are for-
warded based on criteria other than destination IP address.
Different vendors may implement their own version of PBR,
and here we study one such implementation offered by a large
device vendor.

The vendor offers a function named traffic policy, defined
as a set of classifier-behavior pairs. The following shows a
traffic policy p1 applied to inbound traffic of interface eth0/0
at switch C. p1 is defined by a classifier c1 and a behavior
b1, meaning that packets satisfying c1 will be forwarded
according to b1. c1 is defined using an ACL ACL1, and the
behavior is redirecting traffic to interface eth1/1. The top-
left and top-right of Figure 4 show the processing logic of
switch C and the network topology, respectively.

interface eth0/0
traffic-policy p1 inbound
#
traffic policy p1 match-order config
classifier c1 behavior b1
#
traffic classifier c1 operator or precedence 5
if-match acl ACL1
#
traffic behavior b1
permit
redirect interface eth1/1

In our PPM model, the above traffic policy can be easily
modeled by creating an ACL element ACL1-C, and properly
chaining it into the forwarding graph, as shown in the bottom
of Figure 4: (1) connecting its in port to the upstream port
originally connected to eth0/0, (2) connecting its permit
port to the downstream port originally connected to eth1/1,
(3) connecting its deny port to the eth0/0 port of FW-C.

The above is just the simplest form of traffic policy, and in
a more general case, a policy can contain multiple classifier-
behavior pairs, and each classifier can contain multiple ACLs.
Then, we need to create multiple elements, one for each ACL,
and cascade them together.

In addition to 5-tuples, a traffic policy also matches various
information including VLAN ID, layer-3 packet length, time
ranges, etc. Since the predicate-based EC representation has
no restriction on the match fields, we can encode these match
conditions by adding more fields. For example, we can add a

Table 1: Dataset statistics.
Network Nodes Links Forwarding rules ACL rules Updates

Airtel1 68 260 6.89×104 0 1.42×107

Airtel2 68 260 9.84×104 0 5.05×108

4Switch 12 16 1.12×106 0 1.12×106

Internet2 9 56 1.26×105 0 2.52×105

Stanford∗ 16 74 3.84×103 0 7.68×103

Purdue∗ 1,646 3,094 3.52×106 0 7.04×106

Stanford 124 182 3.84×103 686 9.05×103

Purdue 2,159 3,607 3.52×106 2,707 7.05×106

16-bit field to encode the packet length from 0 to 65535, and
a 5-bit field to encode the hour-level time range. Note since
PPM models the packet forwarding behaviors of symbolic
packets, the fields to add do not have to be packet headers.

Apart from PBR, the traffic policy function also supports
other behaviors including traffic statistics, flow mirroring, etc.,
which do not change the forwarding behaviors, and rate lim-
iting, congestion avoidance, which selectively drop packets.
As all previous data plane verifiers, PPM cannot model these
features.

5 Evaluation

5.1 Setup

Implementation. We implemented APKeep with around 5K
lines of Java code. Currently, we have implemented config
parsers for three different vendors, which translate vendor-
specific configuration files into a unified representation in
JSON format. We also implemented an update parser for
one vendor, whose devices support fetching data plane state
including FIBs and ACLs. For verification, we implemented
an invariant checker that can detect loop and blackhole, and
a what-if analyzer that can reason about the possible impact
of link failures. For BDD operations, we use JDD, a BDD
library for Java [34].

Dataset. Table 1 shows the datasets we use. The first six
consist of updates of IPv4 forwarding rules, and the last two
consist of updates of both IPv4 forwarding rules and ACL
rules. The first three datasets are generated by Delta-net [20]
using the ONOS SDN-IP application [6], and the Internet2
dataset is from [5]. The Stanford dataset [2] consists of both
IPv4 forwarding rules and ACL rules, and the original Pur-
due dataset [32] consists of only ACL rules. We generate
forwarding rules for the Purdue dataset, using shortest path
routing. Finally, we remove the ACL rules from these two
datasets, and obtain another two pure-IP datasets Stanford∗

and Purdue∗. Since the last five datasets are snapshots of rules,
we generate a sequence of updates from each of them as fol-
lows. First, we add all the ACL rules (if any), one rule per
ACL each time, and then all the forwarding rules, one rule
per device each time. After that we delete these rules in the
reverse order as they are inserted.
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Figure 5: The distribution of verification time for APKeep.

Methods to compare. We compare APKeep with four data
plane verification tools.
AP Verifier [37]. We use its open-source implementation in
Java [4], and also the authors’ implementation of incremen-
tal update algorithms [3]. We modify it to process our rule
updates, and implement an incremental loop checker for it.
Delta-net [20]. We implement an extended version of Delta-
net using C++, referred to as Delta-netMF. It handles single-
field IP forwarding rules in the same way as Delta-net, and
handles multi-field ACL rules using a multi-layered tree ap-
proach as in VeriFlow. Note, Delta-netMF may not be the
best approach for extending Delta-net so that it can apply to
multiple fields.
VeriFlow [24]. We use its open-source implementation in C.
Since VeriFlow only supports match fields expressed with
prefixes, an ACL rule matching port ranges may be split into
multiple ones which match prefixes.
NetPlumber [22]. We use its open-source implementation in
C++ [2]. Since NetPlumber takes transfer function (TF) rule
as input, we translate our rule updates into equivalent TF rule
updates. Prior to update, we insert all the default rules created
by NetPlumber since the insertion and deletion of them take
a long time, as confirmed by the paper. We attach one source
node to each device for NetPlumber to inject “flows” in the
network model.

Apart from the above four methods, we also consider
APKeep−, standing for APKeep without merging predicates.
For benchmark purpose, we let each method check loops after
each update. All the experiments run on a Linux desktop with
a 3.0GHz Intel Core i5 CPU and 32GB RAM.

5.2 Verification Time
Figure 5 shows the verification time of APKeep. We can see
for all datasets, the verification time is less than 250µs for
90% of updates. Table 2 compares the average running time
of APKeep with the other methods. For datasets with only IP
forwarding rules, the running time of APKeep is comparable
to Delta-netMF, and much shorter than the other methods. For
the 4Switch dataset, APKeep is 253×, 128×, and 937× faster
than AP Verifier and VeriFlow, and NetPlumber, respectively.
Note that NetPlumber is relatively slow since it models each
rule as a node, and computes all the flows through these rules.

Thus, its model is more fine-grained than APKeep, but in-
curs a relatively high cost. Surprisingly, APKeep− is even
faster than APKeep on some datasets. The reason is that these
datasets have a rather small number of ECs (see Table 3), and
therefore merging ECs incurs additional overhead without
paying off. However, for the 4Switch dataset, APKeep− is
much slower as it has 271,793 ECs, while APKeep has only
557 ECs. For datasets with multiple match fields, all other
methods including APKeep− either incur a prohibitively long
running time or run out of memory. For the Purdue dataset,
only APKeep runs to completion, with an average running
time of 13µs; all other methods either time out or run out
of memory. This demonstrates existing methods can hardly
meet the realtime requirement when the rules to update match
multiple fields.

5.3 Number of Equivalence Classes

We observe that the number of ECs heavily impacts the run-
ning time of realtime data plane verifiers. To confirm this, we
report the number of ECs maintained by APKeep, APKeep−,
and Delta-netMF in Table 3.

We can see that when there is a single match field,
APKeep− computes slightly fewer ECs than Delta-netMF. The
reduction is due to the fact that predicates can encode arbi-
trary packet sets, rather than ranges. By merging predicates,
APKeep computes much fewer ECs than APKeep−. This in-
dicates that using predicates alone cannot efficiently reduce
the number of ECs.

The number of ECs computed by Delta-netMF grows from
2283 to 15 million after only 686 ACL rules are inserted
in the Stanford dataset, and reaches over 100 million after
2,707 ACL rules are inserted in the Purdue dataset. Note that
Delta-netMF actually does not run to completion for Stanford
and Purdue datasets, and the numbers are counted by running
only the functions related to the creation of ECs. In contrast,
APKeep computes only 515 and 4,160 ECs for these two
datasets, a 99.99% reduction compared with Delta-netMF.

The above results show that range-based EC representa-
tion easily leads to an explosion of ECs when there are only
a small number of rules with multiple match fields. On the
other hand, by representing ECs with predicates, and updating
the minimum number predicates, APKeep can dramatically
reduce the total number of ECs, thereby achieving a fast veri-
fication speed with small memory footprint.

Figure 6 shows the number of ECs maintained by APKeep
and Delta-netMF during the updates. The Airtel1 dataset con-
sists of rule insertions and deletions which are generated to
react to link failures. Thus, the number of rules is small during
update, and the total number of ECs is also quite small. The
4Switch dataset only has rule insertions; and the last three
datasets insert all rules and remove them later. Thus, for In-
ternet2 and Stanford, APKeep finally has only one and two
predicates, respectively. For the Purdue dataset, since both
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Table 2: Average verification time of different methods (DMF is shorthand for Delta-netMF). TO means timeout (> 24h), and MO
means memory overflow (> 32GB).

Network Average verification time (µs) Percentage < 250µs
AP Verifier VeriFlow NetPlumber DMF APKeep− APKeep AP Verifier VeriFlow NetPlumber DMF APKeep− APKeep

Airtel1 80 59 3,804 3 5 7 91.3% 99.9% 3.8% 99.9% 99.9% 99.8%
Airtel2 135 48 TO 4 4 6 77.4% 99.9% TO 99.9% 99.9% 99.9%
4Switch 5,316 2,706 19,678 4 2,190 21 7.8% 8.2% 0.8% 99.9% 75.1% 99.8%
Internet2 1,660 144 2,123 3 9 12 24.2% 93.3% 9.9% 99.9% 99.5% 99.7%
Stanford∗ 1,953 468 8,700 9 98 94 13.3% 96.1% 23.6% 99.9% 93.6% 96.4%
Purdue∗ 777 648 MO 15 2 9 83.7% 66.5% MO 99.9% 99.9% 99.9%
Stanford 2,072 4.8×106 9,532 MO 3.1×105 127 24.3% 0.4% 34.0% MO 11.8% 91.7%
Purdue TO TO MO MO MO 13 TO TO MO MO MO 99.8%
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Figure 6: Number of equivalence classes maintained by APKeep and Delta-netMF during updates.

Table 3: Number of ECs for APKeep and Delta-netMF.
Network Delta-netMF APKeep− APKeep Reduction Rate

Airtel1 2,799 1,401 16 99.4%
Airtel2 2,799 1,401 64 97.8%
4Switch 443,443 271,793 557 99.9%
Internet2 22,212 14,819 216 99.0%
Stanford∗ 2,283 1,515 494 78.4%
Purdue∗ 1,176 939 267 77.4%
Stanford 15,100,968 842,734 515 99.99%
Purdue >104,743,229 >168,891 4,160 99.99%

Table 4: Verification time for “what if” queries. The results
for Delta-net were from paper [20], whose experiments ran
on a 3.47GHz Intel Xeon CPU.

Network # Rules Average query time (ms) +Loops (ms)
Delta-net APKeep Delta-net APKeep

Airtel 38,100 0.04 0.02 2.3 0.13
4Switch 1,120,000 21.1 0.48 128.1 1.37

Delta-netMF and APKeep− cannot run to completion, we only
show the number for the first 3000 updates.

5.4 Answering “What if” Queries
We evaluate the running time for APKeep to answer “what if”
queries. In particular, we consider the query “what is the fate
of packets that use a link if the link fails?”. To answer this
query, Delta-net constructs a forwarding graph using those
ECs on that link, and is reported to be 10× faster than Veri-
Flow. Thus, we only compare our results to those of Delta-net.
In Table 4, Columns 3-4 show the average query time, and
Columns 5-6 show the average query time if we additionally
check loops. We can see that APKeep is 17× and 93× faster
than Delta-net in overall query time for the Airtel and 4Switch
datasets, respectively. The reason is that the number of ECs
in APKeep is much smaller than that in Delta-net.

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3 4 5 6 7 8

C
D

F

Time (x102 µs)

Stanford*

#NATs=0
#NATs=5

#NATs=10
#NATs=15

#NATs=20

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3

C
D

F

Time (x102 µs) 

Internet2

Figure 7: The cumulative distribution of verification time
when different number of NATs are added.

5.5 Updating Rewrite Rules

We evaluate the time for APKeep to handle updates of rewrite
rules. We use the Stanford∗ and Purdue∗ dataset, and add NAT
rules into the network as follows. First, for each dataset, we
find all the edge ports: an edge port holds a non-empty set of
predicates, and is not connected to any other switches. Then,
for each edge port, we randomly select a predicate associated
with it, and compute an IP prefix that satisfies the predicate.
Finally, for each IP prefix, we generate 25 NAT rules, each of
which translates an IP address to another address belonging
to a different IP prefix. We place the updates of NAT rules
after the updates of forwarding rules.

Figure 7 shows the running time of APKeep for different
numbers of NATs ranging from 0 to 20. Since each NAT has
25 rules, the number of NAT rules ranges from 0 to 1000. We
can see that the running time of APKeep is mostly less than
1ms, and scales well with the number of NAT rules.

6 Related Work
Offline data plane verification was originally studied by
Xie et al. [36], and later advanced by FlowChecker [10],
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Anteater [27], HSA [23], and NoD [25]. These tools take a
snapshot of the data plane state, and check whether it satisfies
network invariants like blackhole-freedom, loop-freedom, etc.
AP Verifier [37–39] uses Binary Decision Diagraph (BDD) to
compute a predicate for each port, and uses all port predicates
to generate atomic predicates, which are the minimum set of
ECs. APKeep differs in that it builds on a modular element-
level model that is much more expressive than the monolithic
model used by AP Verifier. In addition, APKeep incrementally
updates the ECs instead of re-computing them from scratch,
thereby achieving up to 200× speedup compared to the incre-
mental version of AP Verifier (Table 2). To scale verification
to large networks, Libra [40] uses MapReduce to parallelize
verification. Plotkin et al. [29] propose to transform large
networks into smaller ones for scalable verification, based on
network surgery and symmetry. APKeep can leverage this
technique to reduce network size, thereby scaling to larger
networks. RCDC [15] decomposes data plane verification into
the validation of local contracts. However, RCDC assumes
structured datacenter networks so as to track the topology
and address locality, while APKeep targets general networks.
SymNet [31] and VMN [28] focus on verifying stateful data
planes with middleboxes.

Realtime data plane verification incrementally checks
the network data plane for each update in real time. Net-
Plumber [22] builds on the plumbing graph model, where
each node is a rule and a flow is a set of packets traversing
the same sequence of rules. Thus, the model has a finer grain
than PPM, while the downside is that updating the model is
relatively slow (Table 2). VeriFlow [24] achieves a smaller ver-
ification time (< 1ms) by computing the equivalence classes
(ECs) affected by an update, and checking the forwarding
graph of each affected EC. Delta-net [20] further reduces
the verification time by incrementally maintaining a single
EC-labelled graph, rather than constructing multiple graphs
for each update. VeriFlow and Delta-net can achieve sub-
millisecond verification time for updates of single-field IP
forwarding rules. Howerver, they may suffer from the prob-
lem of EC explosion when there are multi-field rules, and
cannot handle updates of rewriting rules.

Representation of ECs. Bjørner et al. propose ddNF [14],
a new data structure for representing ECs, and show it out-
performs BDD on datasets consisting of forwarding rules.
However, the set of ECs represented using ddNF may not be
minimal. #PEC [21] introduces a new lattice-theoretic method
which can construct the minimum number of ECs, faster than
using BDD. #PEC may serve as a better foundation for multi-
field extension of Delta-net, and it would also be interesting
to study how to leverage #PEC to further speed up APKeep.

Control plane verification checks whether protocol configu-
rations are correct [9,12,13,16,18,19,30]. They are orthogo-
nal to APKeep, while tools like Batfish [18] may use APKeep
to speed up the verification of generated data planes.

7 Discussion
Model modularity vs. number of ECs. Modeling the net-
work at a fine granularity can make the update more efficient,
while may also increase the number of ECs. The reason is
that the model may have more different forwarding behaviors,
which need to be represented with more ECs. For example,
even two packets behave the same at a device level, their be-
haviors may differ in the intra-device processing, and thus
should be represented with different ECs. Thus, there is a
tradeoff between the model granularity and the number of
ECs. It will be interesting to further navigate such tradeoff in
the future.

Fetching data plane state. APKeep fetches the whole data
plane state only once in the bootstrap stage, and only fetches
data plane updates afterwards, whose cost can be much less
compared to fetching the whole data plane. To ensure time-
liness, APKeep needs to fetch the updates from devices at a
sufficient frequency. We are aware some new devices have al-
ready provided APIs for fetching FIB updates, and we expect
this feature will be supported by more devices in the future.

Ensuring update consistency. Since the data plane state is
in continuous transition, a violation can be falsely triggered
by a transient state. APKeep can be made robust to such
inconsistency as follows. If an update fails the verification
of an invariant, APKeep flags it as suspicious without raising
an alarm. After a configured time window, APKeep checks
the invariant again to confirm whether the update is a true
violation. Detailed design is left as one of our future work.

Why microsecond-level verification. One major purpose of
speeding up incremental verification is to ensure the network
model, which verification is based on, can keep up with fast
network updates. For example, in a large datacenter with 1k
devices, a 1ms model update time only allows the verifier to
keep up with an average network update rate of 1 update per
device every second. Thus, further speeding up data plane
verifiers can scale the verification to larger network size and
higher data plane update rate.

8 Conclusion
This paper presented APKeep, a new realtime data plane veri-
fier. APKeep builds atop PPM, a modular network model that
is expressive for real devices, and incrementally maintains
the minimum number of equivalence classes in realtime. We
showed that for real updates consisting of both forwarding
and ACL rules, all other methods either ran out of memory or
incurred a prohibitively long verification time, while APKeep
still achieved a sub-millisecond verification time.
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A Proof of Theorem 1

Proof. According to Definition 1, it is easy to see that a set
of ECs is minimum if the other direction of condition (3)
also holds, i.e., if two packets are forwarded to the same
port at each element, then they must belong to the same EC.
Therefore, define (3)’ by replacing “⇒” with “⇔” in (3),
and we need to prove that conditions (1)(2)(3)’ hold for all
predicates in the PPM model.

Clearly, these conditions hold initially when there are no up-
dates: each element has a single default rule, and there is only
one True predicate, which is assigned to the default/deny/id
port depending on element type. We prove the theorem by
induction: if the conditions hold before an update, then they
still hold after the update.

Let e be the element whose rule is updated. For condition
(1)(2), it is clear that transfer operations do not modify
predicates, and thus have no effect on these conditions. Also,
since split and merge only move part of one predicate into
another one, they will not break these conditions, either. In
the following, we show both directions of (3)’ hold.

⇒: Suppose h1,h2 ∈ c after update, we show they ap-
pear in the same set of ports. There are two cases. (1) h1
and h2 belong to the same predicate before update. Then,
we know Ports(h1) = Ports(h2),∀s, and the update only
changes Porte(h1) and Porte(h2). Then, we only need to show
Porte(h1) = Porte(h2) after update. Clearly this holds if nei-
ther h1 or h2 changes its port at e. Suppose at least one of them
changes its port at e, and let Porte(h1) = Porte(h2) = pa be-
fore update. Without loss of generality, suppose h1 changes its
port to pb 6= pa, we prove by contradiction that h2 must have
also changed its port to pb. Assume h2 either keeps its port un-
changed or changes its port to pc 6= pb. Suppose h1 ∈ c1 and
h2 ∈ c2 after transferring predicates, then c1 appears at port
pb, and c2 appears at port pa or pc. Since c1 and c2 appear in
different ports at e, they cannot be merged, contradicting our
assumption that h1,h2 ∈ c after update. (2) h1 and h2 belong
to different predicates before update. Let h1 ∈ c1 and h2 ∈ c2
before update, then c1 and c2 must have been merged into c.
That is, c1 and/or c2 must have been transferred to the same
port after update, which implies that h1 and h2 must have
changed their ports to the same one at e.

⇐: Suppose Ports(h1) = Ports(h2),∀s after update, there
are two cases. (1) h1,h2 ∈ c′ before update. Then, Ports(h1) =
Ports(h2),∀s before update, implying that both h1 and h2 do
not change their ports or change to the same port. If they
do not change their ports, then they will still belong to the
same predicate (either c′ if c′ is not split or c′ ∧¬δ if c is
split). If they change their ports, then a predicate including
h1,h2 (either c′ if c′ is not split or c′ ∧ δ if c′ is split) will
be transferred to a new port, and they will still belong to
the same predicate, no matter whether the transferred pred-
icate is merged or not. (2) h1 ∈ c1,h2 ∈ c2 before update,
then we know Porte(h1) 6= Porte(h2) before update, and thus
at least one of them must have changed its port. Without
loss of generality, suppose h1 has changed its port such that
Ports(h1) = Ports(h2) after the change, and let c′ be the trans-
ferred predicate satisfying h1 ∈ c′. This will trigger our algo-
rithm to merge c′ and c2.
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Algorithm 4: ConstructDeltaForwardingGraph(D)
Input: D: the set of transferred predicates.
Output: G: the forwarding graph used for invariant checking.

1 V ←{}, E←{}, A←⊥;
2 foreach δ ∈ D do
3 foreach port ∈ Port(δ) do
4 s1← the node holding port;
5 if s1 /∈V then
6 V ←V ∪{s1};
7 s2← the node connected to port;
8 if s2 /∈V then
9 V ←V ∪{s2};

10 if (s1,s2) /∈ E then
11 A(s1,s2)←{};
12 E← E ∪{(s1,s2)};
13 A(s1,s2)← A(s1,s2)∪{δ};

14 return G(V,E,A);

B Algorithms for Constructing Delta For-
warding Graphs and Checking Invariants

Constructing delta forwarding graphs. Algorithm 4 sum-
marizes the process of constructing delta forwarding graphs.
It takes the set of transferred predicates, denoted as D, com-
puted by Algorithm 2, and returns a delta forwarding graph,
denoted as G(V,E,A). Here, V is the set of nodes, E is the set
of edges, and A : E→ 2C is a map from each edge to the set
of predicates allowed on that edge (C denotes the set of all
predicates). That is, A(s1,s2) is the set of predicates that can
be sent from switch s1 to switch s2. First, V , E, and A are ini-
tialized (Line 1). For each predicate δ in D, APKeep iterates
over each port in the port set of δ (Lines 2-3). If the node s1
holding port is not in the node set V , then s1 is added into V
(Lines 4-6). Similarly, if the node directly connected to port
is not in V , then s2 is also added into V (Lines 7-9). Note here
if the port is “default”, we assume it is connected to a virtual
node named “default”. If the edge (s1,s2) is not in the edge
set E, then it is added into E, and the mapping A(s1,s2) is
initialized to empty set (Lines 10-12). Finally, the transferred
predicate δ is added into the set A(s1,s2) (Line 13).
Checking invariants. With the delta forwarding graph G,
operators can check network invariants by traversing G. Al-
gorithm 5 shows an example program for checking blackhole-
freedom and loop-freedom (defined in § 3.3). The algorithm
starts the traversal from each node s ∈V . Here V includes all
nodes corresponding to the element where the rule is updated.
Before each traversal, the algorithm initializes pset, the cur-
rent set of predicates, to D, and history, the nodes that have
been visited, to empty set (Lines 2-3). The traversal stops
when pset becomes empty (Line 6-7) or the visited node is
already in history (Line 8-10), meaning a loop is detected,

Algorithm 5: CheckInvariants(G,D,V )
Input: G: the forwarding graph used for invariant checking, D:

the set of transferred predicates, V : the set of nodes to
start check.

1 foreach s ∈V do
2 pset← D;
3 history←{};
4 Traverse (s, predicates,history);

5 Function Traverse(s, pset,history):
6 if pset = /0 then
7 return;

8 if s ∈ history then
9 Alter(’loop’);

10 return;

11 foreach (s,s′) ∈ E do
12 if s′ = de f ault then
13 Alter(’backhole’);
14 return;

15 Traverse (s′, pset ∧A(s,s′),history∪{s});
16 return;

Table 5: Memory cost. TO means timeout (> 24h), and MO
means memory overflow (> 32GB).

Network Memory cost (MB)
AP Verifier VeriFlow NetPlumber Delta-netMF APKeep

Airtel1 417 508 4,283 61 180
Airtel2 5170 16,049 TO 74 193
4Switch 7,722 2,520 1,749 785 936
Internet2 360 206 613 44 87
Stanford∗ 6 16 4,971 25 3
Purdue∗ 1,465 1,414 MO 3,414 648
Stanford 6 98 8,607 MO 3
Purdue TO TO MO MO 744

or the next hop is de f ault (Line 12-14), meaning packets in
pset match no forwarding rule in the corresponding device,
i.e., a blackhole is detected. Otherwise, the algorithm updates
pset and history and traverses the next hop (Line 15).

C Memory Cost

We compare the memory cost of APKeep with the other four
methods. Not surprisingly, for single-field datasets, the mem-
ory cost of APKeep is comparable to Delta-netMF, and both
of them have smaller memory footprint than others. For the
multi-field Stanford dataset, Delta-netMF runs out of 32GB
memory. For the multi-field Purdue dataset, AP Verifier and
VeriFlow do not run to completion within 24 hours; Net-
Plumber and Delta-netMF run out of 32GB memory. APKeep
still maintains a small memory footprint for these two multi-
field datasets.
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Abstract
Network verification tools focus almost exclusively on var-
ious safety properties such as “reachability” invariants, e.g.,
is there a path from host A to host B? Thus, they are inappli-
cable to providing strong correctness guarantees for modern
programmable networks that increasingly rely on stateful
network functions. Correct operations of such networks de-
pend on the validity of a larger set of properties, in particular
liveness properties. For instance, a stateful firewall that only
allows solicited external traffic works correctly if it eventually
detects and blocks malicious connections, e.g., if it eventually
blocks an external host E that tries to reach the internal host I
before receiving a request from I.

Alas, verifying liveness properties is computationally ex-
pensive and, in some cases, undecidable. Existing verification
techniques do not scale to verify such properties. In this work,
we provide a compositional programming abstraction, model
the programs expressed in this abstraction using compact
Boolean formulas, and show that verification of complex prop-
erties is fast on these formulas, e.g., for a 100-host network,
these formulas result in 8⇥ speedup in the verification of key
properties of a UDP flood mitigation function compared to a
naive baseline. We also provide a compiler that translates the
programs written using our abstraction to P4 programs.

1 Introduction

In recent years, network verification has emerged as a cru-
cial framework to check if networks satisfy important prop-
erties. While there are a variety of tools that differ in their
focus (e.g., verifying current data plane snapshot vs. verify-
ing a network’s control plane under failures), they all share
a common attribute: they focus mainly on verifying vari-
ous flavors of reachability invariants: Is a point in the net-
work reachable from another point [33, 34, 42, 43]? Is there
a loop-free path between them [33, 34, 42, 43]? Is the path
congested [27,29,38]? Does it traverse a waypoint [41,58]? Is

⇤Work done during an internship at Johns Hopkins University.

the reachability preserved under link failures or external mes-
sages [10, 26]? Are all datacenter shortest paths available for
routing [30]? etc. Crucially, these tools leave out a richer set
of properties that depend on networks guaranteeing liveness.

Networks today increasingly deploy complex and stateful
network functions such as intrusion detection/prevention sys-
tems (IDPS) that monitor traffic for malicious activity and
policy violations, and they prevent such activities. To rely on
such networks, operators need to verify if “something good
(a desired property) eventually happens” [47]—i.e., liveness.
As a concrete example, consider a stateful firewall with the
policy that a host E external to an enterprise is only allowed
to send traffic to an internal host I if I sends a request to E
first. The liveness property here is “will a host E that should
be allowed to send traffic to I (i.e., E was first contacted by I)
eventually get whitelisted?”, or more precisely that “the event
of I sending traffic to E leads to the firewall’s whitelisting of
E” (§3). Existing reachability-centric tools cannot verify this
property: the existence of paths from I to E does not show
whether any packet has actually traversed that path; similarly,
the reachability of I from E does not give any guarantees
whether it was established before or after I sent traffic to E.

Recent work has shown that reachability verification can be
made efficient by operating on Equivalence Classes (ECs), i.e.,
groups of packets that experience the same forwarding behav-
ior [33,34,43] on a static snapshot of the network state. How-
ever, verifying liveness is not amenable to such techniques
as liveness properties reason about progress and concern the
succession of events in dynamic systems. They cannot be
verified on a static snapshot of the system.

A dynamic network, in which the state changes, can be
modeled as a state machine and, conceptually, existing static
verification approaches [35] could be extended to reason about
properties of the states and transitions of this machine (§3).
However, this naive approach results in state explosion as the
network size increases and is therefore impractical (§3, §4).

In this paper, we argue that the goal of verifying liveness
properties is achievable using a top-down function-oriented
strategy that rethinks network abstractions with the efficiency
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of verification in mind. To realize this vision: (a) we pro-
vide network programmers with a simple, familiar abstrac-
tion of one big switch to express their intent. This abstrac-
tion enforces the logical separation of different network func-
tions (§2). (b) We then model the program as a compact
“packet-less” data structure that, unlike the common approach
of modeling the forwarding behavior for classes of pack-
ets [33,34,42,43], abstracts away the explicit notion of packets
and focuses instead on the entities responsible for implement-
ing functions: packet handling rules. (c) We build and evaluate
a prototype of our system.

Abstraction: We provide a unified abstraction of one big
switch for both control and data planes that conceptually han-
dles all packets. This abstraction closely resembles the sim-
ple, familiar data plane abstraction of one big switch directly
connecting all hosts [36, 49]. In contrast to the data plane
one-big-switch, our abstraction does not require a separate
control plane to program it. To reduce verification time, we
enforce a functional decomposition by requiring the user to
implement each function using a separate logical flow table.

Modeling and verification: For verifying properties, sim-
ilar to prior work [28], we focus exclusively on network be-
haviors visible to users. This enables us to model the system
behavior using a compact “packet-less” data structure that ab-
stracts away any details invisible to users, such as the hop-by-
hop journey of the packet inside the network [33,34,42,43,52]
or even the explicit notion of packets or classes of packets (§3).
The packet-less structure models changes in the forwarding
behavior as Boolean transitions. We demonstrate the verifica-
tion efficiency of the packet-less model experimentally (§4),
e.g., for a UDP flood mitigation function, within a 1,000sec.
time-bound, it enables verifying a key liveness property (host
A is eventually blocked) for networks that are 3.5⇥ larger
than those verifiable with the aforementioned naive approach
(extending static verification to deal with network states and
dynamic transitions).

Implementation and evaluation: We develop a prototype
of our design that exposes two interfaces (to express functions
on the one-big-switch abstraction and specify verification
properties) and a P4 compiler that converts such functions to
programs executable on today’s programmable devices. Our
evaluations show the expressiveness of our interfaces, their
low overhead, and the efficiency of our verification design,
e.g., for a 100-host network, the packet-less model verifies
key liveness properties of a UDP flood mitigation function
8⇥ faster than a packet-based baseline—a gap that increases
with the network scale (§4).

2 A Unified Switch Abstraction

To simplify programming and relieve network programmers
of the burden of writing distributed, multi-tier programs, we
provide the abstraction of a single, centralized switch that con-
ceptually handles every packet. This approach for simplifying

programming by having a single unified abstraction for both
the control plane and data plane is inspired by Maple [59] and
deployed in Flowlog [46]. In contrast to Maple that allows
programmers to use standard programming languages and
Flowlog’s SQL-like language, we start with the most basic
and familiar data plane abstraction in networks: one switch
that directly connects all hosts. We then augment this abstrac-
tion to make it programmable. Similar to Maple and Flowlog,
we proactively compile the programs written on our abstrac-
tion to control and data plane programs executable in today’s
networks (§4). We describe our abstraction, its distinction
from the common one-big-switch abstraction, and how sev-
eral canonical network functions can be programmed on it, in
turn.

One-big-switch: A common data plane abstraction in net-
working is that of one logical switch with multiple flow tables,
each containing a set of rules, that directly connects all users’
hosts together [5, 32, 36, 44]. A rule generally includes: (a) a
match field to match against packet headers and ingress ports,
(b) priority to determine the matching precedence of rules,
(c) counters that are updated when packets are matched, (d)
timers that show the time that the rule will be expired and
removed from the switch, and (e) actions that are executed
when a packet matches the match field of an unexpired rule
that has the highest priority among all unexpired rules. These
actions could result in changes in the packet, dropping it,
or forwarding it. We use R.match, R.priority, R.counter,
R.timer, and R.action to denote the match, priority, counter,
timer, and action of rule R.

Our goal is to provide a similar abstraction to this familiar
abstraction while making it programmable and amenable to
fast verification. In particular, rather than a static, stateless
switch, the programmer should be able to implement dynamic
functions whose behaviors change over time based on traf-
fic. Plus, she should be able to focus solely on the high-level
functionality that she wishes her switch to provide (e.g., the
firewall policies), and the provider of the abstraction is respon-
sible for handling the low-level, distributed implementation
of the functionality including reachability (e.g., ensuring that
all required packets are correctly forwarded through the fire-
wall). To further assist the user in developing her desired
functions, an ideal framework should also provide modular
programming and separate the functionality of a program
into independent modules. Towards these goals, we make the
following alteration in the one-big-switch abstraction [5, 36]:

Add/delete actions: In addition to the standard SDN ac-
tions (forward, drop, etc.), we allow the execution of a rule
to add or remove rules from the switch. As an example, to
program a stateful firewall that allows an external host E to
talk to an internal host I only after I sends E a request, the
switch needs a rule that, upon receiving a request from I to E,
alters its state to allow E to I communication.

Actions add(R) and delete(R) show that the execution
of the rule results in, respectively, adding and deleting rule
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rule active prio match action
R0 true 100 src=I, dst=E delete(R0), delete(R1), delete(R3), send(IDPS)

R1 true 100 src=E, dst=I delete(R0), delete(R1), delete(R4), drop()

R2 true 50 src=I, dst=E send(IDPS)

R3 true 50 src=E, dst=I drop()

R4 true 50 src=E, dst=I send(IDPS)

R5 true 10 * send(IDPS)

rule active prio match action

R0 false 100 src=I drop()

R1 false 50 src=I, dst=D drop(), add(R0)

R2 false 50 src=I, dst=F send(), add(R1)

R3 true 40 dst=I, port=2222 send(), add(R2)

R4 true 10 * send()

Firewall IDPS

R
outer

Figure 1: One-big-switch implements firewall and IDPS.

R. To each rule R, we add a boolean variable R.active to
show if the rule is currently active on the switch, i.e., pack-
ets are matched against it. As an example, the initial state
R0.active=true; R1.active=false; R0.action=add(R1)
shows that, unlike R0, rule R1 is not initially active and will
be activated as a result of R0’s execution.

Actionable measurements: For a rule Ri, we allow users
to define match fields as predicates not just on packet headers
(e.g., src=A) but also as conditions in the forms of li  c j < ui
on counters, where c j is the jth counter and li and ui are con-
stants. This condition expresses that for the rule to match
a packet, the value of counter c j should be in the [li,ui) in-
terval.1 We assume that counters are bounded in the range
[0,m). Counters enable the network programmer to easily
write critical network functions that depend on traffic statis-
tics such as security applications that detect SYN flood, port
scanning, DNS amplification, etc. [7, 16, 23] and campus net-
work monitors [35] that block users once their usage exceeds
the quota specified by the campus policy. Whenever a rule
with a counter is executed on a packet, the counter value is in-
cremented by one. We allow multiple rules to share a counter.

Other optimizations: To improve programmability and
verification speed, we also perform the following optimiza-
tions: (a) Functional decomposition: the user is provided
separate tables for each of her network functions, e.g., one
table for her firewall, one table for her load balancer, etc. If a
packet matching a rule R in function F1 needs to be sent to an-
other function F2, e.g., an IDPS rule needs to send a packet to
the traffic scrubber, this is expressed as R.action=send(F2)
in table F1. (b) Declarative routing: Our abstraction provides
routing and forwarding as a service, that we call the router,
to its users. This liberates the user from computing paths and
updating them after infrastructure changes, such as changes in
policy, topology, and addressing. The user only declares the
goal that a packet should reach a destination and delegates the
task of figuring out how this is done to the provider. Action
rules send(A) and send() simply express the intent of the user
to forward a matching packet to the endpoint with ID A and
to the packet’s destination, respectively. In our prototype, for

1If the rule only increases the value of c j when executed without defining
a condition on c j , we assume li=0, and ui= m, where m is the maximum
value supported for counters.

implementing our declarative routing service, we deploy a
basic shortest path forwarding function [1]. (c) Symbolic rule
representation: the original one-big-switch rules can express a
restricted subset of predicates on explicit packet headers, e.g.,
src-IP=10.0.0.1 ^ dst-IP=10.0.0.2. Declarative rout-
ing enables us to provide a higher-level abstraction to express
any general predicate on sets of endpoint identities and header
fields, e.g., the programmer can declare a forwarding policy
for packets sent to or from a set of hosts called T via a sin-
gle rule R: R.match=(src=T_dst=T), R.action=send(),
without managing low-level details such as the physical loca-
tions and IP addresses of T ’s hosts.

The changes above turn the data plane one-big-switch ab-
straction into a unified abstraction that can be efficiently veri-
fied: add/delete actions and actionable measurements make
the abstraction programmable, and other optimizations ac-
celerate the verification process by reducing the program
size (§4). To further assist with efficient verification, our
abstraction is designed to have less expressive power than
Turing-complete control plane programming languages [46]
such as Floodlight [4] and Pyretic [44]. We find experimen-
tally that despite being computationally universal, in practice,
control planes perform only a limited set of operations, e.g.,
adding and deleting rules based on traffic patterns. Our one-
big-switch abstraction is designed to be capable of performing
similar computations and is therefore expressive enough to
program a wide range of network functions. Table 1 lists the
functions of a few common control planes and recent network
abstractions that we re-wrote on top of our abstraction (im-
plementations in §8). To support the functions that cannot be
expressed on top of our abstraction, such as content-based
security policies, our framework allows the use of external
libraries in conjunction with our abstraction. However, we
can only verify the programs expressed on our abstraction.

Examples. Figure 1 shows an illustrative example where
the user deploys two tables to implement a chain of two
canonical functions: a stateful firewall followed by an IDPS.
The first table implements a stateful firewall at the periphery of
an enterprise that allows endpoint E (e.g., as an external host)
to talk to I (e.g., as an internal host) only if I sends a request
to E first. Initially, the table has high priority rules that “watch
for” traffic between I and E (R0 and R1). If traffic from E to I
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rule active prior match action

R0 true 100 src=I, 0 ≤ c0 < v1 send()
R1 true 100 dst=I, 0 ≤ c0 < v1 send()
R2 true 100 src=I, v1 ≤ c0 < v2 send(rate-limiter)
R3 true 100 dst=I, v1 ≤ c0 < v2 send(rate-limiter)
R4 true 100 src=I, v2 ≤ c0 < m drop()
R5 true 100 dst=I, v2 ≤ c0 < m drop()

Monitor

R
outer

Figure 2: One-big-switch implements a monitor.

is observed first, the execution of rule R1 drops the traffic and
changes the state to block E from reaching I. Receiving traffic
from I to E first, however, triggers the execution of R0 which
in turn allows bidirectional traffic between I and E to pass
through the firewall. Packets not discarded by the firewall are
always sent to the next function, the IDPS explained below,
for further monitoring. Note that when defining rules in the
one-big-switch abstraction, the match fields of the rules must
be defined in a way that at least one rule matches each received
packet.

The second table implements an IDPS that detects and
blocks Trojans. The IDPS determines if the internal host I
is infected and needs to be blocked based on a recognizable
fingerprint of a backdoor application [16] with the following
sequence of operations: (i) I receives a connection on port
2222, (ii) I connects to an FTP server F , and (iii) I tries to
connect to the database server D.

Initially, the table contains two active rules: R3 that matches
traffic destined to I on port 2222, and a lower priority rule R4
that matches all other traffic. Both rules forward the traffic
to its destination. The execution of R3, however, corresponds
with the (i) operation above. Once triggered, it activates R2
that is executed once I tries to reach F (operation (ii)). R2’s
execution, in turn, activates R1, and once I tries to send traffic
to D (operation (iii)), it gets blocked (R1 activates R0). Once
the traffic goes through this pipeline of tables, it is handed to
the router to be delivered to its destination.

Figure 2 shows another example for an application that im-
plements a simple campus policy in which an inside-campus
host I is allowed to send and receive data before hitting a
utilization cap v1. Once its usage exceeds v1, but before it
reaches v2, its traffic is routed through a rate limiter. After its
usage passes v2, its access is blocked.2 A survey of campus
network policies shows that universities commonly deploy
such usage-based rate-limiting [35]. While for simplicity, we
only provide examples of linear chaining of functions in this
section (e.g., IDPS after firewall), our abstraction is general
enough to express arbitrary dependencies between functions.
An example is provided in §8.

2In practice, such policies are usually enforced periodically, e.g., the rules
(along with their counters set to 0) are re-installed daily.

3 Function Verification

A standard approach for verifying liveness properties of dy-
namic systems is modeling the behavior of the system as a
transition system and expressing its desired properties using
temporal logics. The complexity and scalability of this ap-
proach depend on the size of the state machine. In this section,
we show how we can model stateful dynamic network func-
tions as compact, Boolean “packet-less” transition systems
that can be verified efficiently. In §4, we show experimentally
that this approach significantly reduces the average verifi-
cation time for canonical applications compared to a naive
packet-based baseline.

3.1 Network as a Transition System
We can model the network as a transition system, an analyti-
cal framework for reasoning about the behavior of dynamic
systems where nodes represent the states of the system (each
state corresponds to a valuation of system variables) and edges
represent state transitions [8]. Each transition system has a
set of initial states as well as a labeling function that maps
each node to a set of properties that hold in that state. More
formally, a transition system TS is a tuple (S, Act, I, AP, L):
• S is a set of states,
• Act is a set of actions,
• ! ✓ S⇥Act⇥S is a transition relation,
• I ✓ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S ! 2AP is a labeling function.
For convenience, we write s !a s0 instead of (s, a, s0).

Intuitively, a transition system starts in some initial state s0 2 I
and evolves according to the transition relation !. That is,
if s is the current state, then a transition s !a s0 is selected
nondeterministically and taken, i.e., the action a is performed,
and the system evolves from state s into state s0.

In networks, the state of the network at each point is its
forwarding state (e.g., rules and counters), and transitions are
the events that change the state, e.g., policy updates. We next
show the properties that can be expressed on these transition
systems, explain what makes liveness verification hard, and
demonstrate how we can model the network as a compact
“packet-less” transition system.

Atomic propositions: Atomic propositions are Boolean-
valued propositions that express simple known facts about
the state of the system. We define these propositions as (h,a)
pairs where h and a are, respectively, an equivalence class of
packets, and a list of actions (e.g., send(I)). For the network
transition system T S, an atomic proposition (h,a) holds in a
state s 2 S if action a applies to all the packets in h.

Labeling function: A labeling function L relates a set
L(s) 2 2AP of atomic propositions to any state s 2 S.3 In the
network transition system T S, L maps each state to the set

3Recall that 2AP denotes the power set of atomic propositions.
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of atomic propositions that hold in that state. That is, (h,a)
exists in L(s) if the list of actions a is applied to all the packets
in h in state s.

Properties: An execution of a program can be shown as an
infinite sequence of states: s0,s1..., where each state si results
from executing a single action in state si�1.4 A program’s
behavior is the set of all such sequences. A property is also
defined as a set of such sequences [6]. A property holds in
a program if the set of sequences defined by the program is
contained in the property [6]. A partial execution is a finite
sequence of program states.

Temporal logic to express properties: Temporal logic is
an extension of ordinary logic that facilitates expressing prop-
erties via adding assertions about time. Here, we adopt linear
temporal logic (LTL) [19], which can express various liveness
and safety properties [37, 47]. Temporal logic assertions are
built up from atomic propositions using the ordinary logi-
cal operations ^,_, and ¬ and some temporal operators—if
P and S are atomic propositions: (1) GP implies “now and
forever” P holds, (2) FP implies “now or sometime in the
future” P holds,5 (3) P ! S shows logical implication and
implies that if P is true now then S will always be true, (4)
PUS implies P remains true “until” S becomes true, and (5) OP
implies P holds in the “next” state. Using the above temporal
operators, we can express various properties, e.g., F((src=E
^ dst=I), send(I)) [47] asserts that eventually E-to-I packets
are delivered, i.e., E can eventually reach I.

3.2 Liveness vs. Safety
A key categorization of properties in distributed systems is
into safety and liveness. The categorization is important as
the two groups are proved using different techniques [6]. In-
formally, a safety property stipulates that some “bad thing”
(deadlocks, two processes executing in critical sections si-
multaneously, etc.) never happens and liveness guarantees
that “something good” (termination, starvation freedom, guar-
anteed service, etc.) eventually happens [47]. That is, for a
property P to be a safety property, if P does not hold for an
execution, then at some point, some irremediable “bad thing”
must happen. Most of the properties verified in networks to-
day are safety: if a property—such as reachability invariants
(E is always reachable from I) [33, 34, 42, 43], waypoint (a
certain class of traffic always traverses an intrusion detec-
tion system) [41, 58], congestion-freedom [27, 29, 38], and
loop-freedom [33, 34, 42, 43]—is violated, then there is an
identifiable point—such as a change in the latest snapshot of
the network— at which the “bad thing” happens [6].

A partial execution g is live for a property P if and only
if there is a sequence of states b such that P holds in gb. A

4Terminating executions are modeled as sequences where the last state
reached by the terminating trace repeats infinitely.

5Note that F is the dual of G, i.e., FP is equivalent to ¬G¬P, where P is an
atomic proposition [47].

property for which all partial executions are live is a live-
ness property. In contrast to safety, for liveness properties,
no partial execution is irremediable—it is always possible
for the required “good thing” to happen in the future [6].
This makes detecting liveness violations challenging as it fun-
damentally requires an exhaustive search of the entire state
space of the network. In the next section, we discuss our ap-
proach to overcoming this challenge by modeling networks
with compact transition systems. Some examples of liveness
properties in networks are (a) the intrusion detection system
eventually detects all infected hosts, (b) all hosts eventually
become reachable, e.g., after routing convergence, and (c)
showing a recognizable fingerprint of a backdoor application
leads-to the host being blocked. More generally, “event A
leads-to event B” and “event B eventually happens” are two
classes of liveness properties [47] as it is always possible for
“something good” (i.e., event B) to happen. An example of a
property that includes liveness is total correctness which is
composed of partial correctness (the program never generates
an incorrect output; a safety property) and termination (the
program generates an output; a liveness property) [6].

3.3 Packet-less Model
Feasibility of model checking is tied inherently to handling
state explosion [19]. To mitigate this problem, we try to pro-
vide a compact “packet-less” structure that models only the
entities that perform the functions in the network: packet han-
dling rules. Plus, we model rules in the most abstract form:
as Boolean variables, abstracting away all of the attributes of
rules, such as their match fields, actions, and priorities. This
is in contrast to pervasive network verification techniques that
model the network behavior in terms of packets and equiva-
lence classes of packets (ECs) [34, 35, 43].

Boolean variables and formulas provide a more compact
way to represent the state space of a transition system. State-
of-the-art model checkers like NuSMV [18] use symbolic
techniques, such as Binary Decision Diagrams (BDDs), for
efficiently exploring transition systems that have a Boolean
representation. Such representations enable model checkers
to explore extremely large state spaces efficiently [15]. We
next explain how we can encode the behavior of dynamic
network functions as packet-less models. We then show in
§4 that this approach of packet-less modeling results in a
significant reduction in the verification time of canonical
network functions compared to a packet-based approach.

Compact, packet-less models: We initially model the net-
work as a transition system T S with a single Boolean variable
corresponding to each rule. This variable is true if the rule
is active in the network and false otherwise. As a starting
point, we abstract away counters, assuming that rules do not
depend on them. (We will later refine this model to incorpo-
rate counter semantics.) Each node in this structure shows
one state of the network defined by a valuation of Boolean
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Figure 3: Packet-less models of the (a) IDPS and (b) monitor.

rule variables. S is the set of all these states. A rule can be
executed in a state if, for at least one packet that it matches,
it is the highest priority rule with value=true in that state.
Actions are the execution of rules that update the forwarding
state by adding or deleting rules, and transitions show how
the state evolves as a result of these actions. If in a network
state s 2 S, rule Ri can be executed and its execution adds or
deletes rules, then there is a transition s !Ri s0,s0 2 S, where
for each added rule R j, R j=true in s0 and for each deleted
rule Rk, Rk=false in s0. In the initial state, the value of each
Ri is equal to the initial value of Ri.active in the original
program. Figure 3 shows the packet-less models for the IDPS
and the campus monitor functions in Figures 1 and 2 (not
including labeling functions).

Despite being more efficient, not explicitly modeling pack-
ets causes some key challenges: (1) Abstracting away the
notion of packets makes it challenging to incorporate the
semantics of traffic statistics such as counters. (2) As §3.1
explains, properties are defined on packets and whether a prop-
erty holds in a network state depends on the actions of the
highest priority rule that matches the packet. Thus, it is chal-
lenging to verify properties on a structure that abstracts away
any explicit notion of packets, headers, priorities, etc. For the
IDPS function in Figure 1, for example, the packet-less model
has two rules in the initial state that can match packets sent
to I with port number 2222, as Figure 3 (a) shows. With each
rule modeled as a Boolean variable, it is not possible to de-
termine which matching rule handles a packet (and therefore
verify properties). We address these challenges next.

3.3.1 Boolean Formulas of Counters

The first challenge of the Boolean packet-less modeling is
preserving the semantics of stateful programs with traffic
counters. Recall that in packet-less models, we initially ab-
stracted away counters. We next show how to refine these
models to incorporate semantics of counters.

Refining states: To model counters, we observe that if the
only variable that changes across a set of network states is
a counter value and the value of this counter does not pass
counter conditions, then the forwarding behavior remains the
same in all those states. In the monitor function, the network
behavior is identical for all counter values between 0 and v1.
This allows us to track counter predicates, Boolean-valued
functions on counters, instead of actual counter values. In the
monitor function, we can define the following three predicates:

(0 c0 < v1), (v1  c0 < v2), and (v2  c0 <m). In the initial
state, only the first predicate, (0  c0 < v1), is true.

The fact that the forwarding behavior is determined not
by exact counter values but by counters passing thresholds
makes counters amenable to predicate abstraction, a powerful
technique to mitigate the challenges of verifying programs
with large base types such as integers [19]. This technique
reduces the size of the model by tracking only predicates on
data and eliminating invisible data variables.

Concretely, counter conditions partition an interval into
subintervals that may have distinct forwarding behaviors. Let
Ri be a rule that depends on the jth counter, c j, i.e., it is active
if c j’s value is in the [li,ui) range, and Pj = order([i(li [ui)),
i.e., an ordered list (in non-decreasing order) of all lower and
upper bounds of all rules that depend on c j. Pj,k, l j,k, and u j,k
denote, respectively, the kth subinterval of counter c j, its lower
bound, and its upper bound. In the monitor program, P0,0 =
[0,v1) is the first subinterval of the first counter, l0,0 = 0, and
u0,0 = v1. When the counter value is in this subinterval, rule
R0 can handle packets as its counter conditions, (l0  c0 < u0),
are satisfied, i.e., (l0  l0,0)^ (u0,0  u0) where l0 = 0 and
u0 = v1. R2, on the other hand, cannot handle packets because
its counter conditions are not satisfied in this subinterval, i.e.,
(l2 6 l0,0)^ (u0,0 6 u2) where l2 = v1 and u2 = v2.

We refine T S by adding a Boolean variable R0
i for every

rule Ri. Our goal is to set the value of this variable to true in
a state s if the counter conditions of Ri are satisfied in s and
to false otherwise. For any rule Rk that does not depend on
counters, R0

k=true.6 The numbers in Pj are the only places
where R0

i variables of the rules that depend on c j can change.
In the monitor program, P0 = [0,v1,v2,m] lists the only points
in the [0,m) range where the condition of a rule that depends
on counter c0 such as R0 can transition from true to false

and vice versa.
For each counter c j in a state in the packet-less model,

we partition the state into |Pj|� 1 states, where |Pj| is the
number of points in Pj, e.g., P0=4 in the monitor example.
Each of these |Pj|�1 states corresponds to one subinterval.
Suppose that Ri is a rule that depends on counter c j, i.e., Ri
can handle packets when the value of the counter satisfies
its counter conditions: li  c j < ui. The value of R0

i in each
refined state should show whether the counter conditions of
rule Ri are satisfied in the corresponding subinterval Pj,k :
R0

i = ((li  l j,k)^ (u j,k  ui)).
In any given state s 2 S and for a subinterval of Pj,k, the net-

work behavior is determined by the rules that (a) are active in
that state (i.e., Ri=true) and (b) either do not depend on coun-
ters or their counter conditions are satisfied in that subinterval
(i.e., R0

i=true), e.g., in the monitor example’s initial state, R0
and R1 are active (i.e., R0=R1=true) and their counter con-
ditions are satisfied in the first subinterval P0,0 = [0,v1) (i.e.,

6Note that it is possible to avoid defining these variables for the rules that
do not depend on counters. We define these variables for all rules here for
ease of exposition.

262    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



!"# = !%# = !& = '()*, " ≤ & ≤ -
!.# = !/# = !0# = !-# = 1234*

Initial state
!.# = !/# = !& = '()*, " ≤ & ≤ -
!"# = !%# = !0# = !-# = 1234*

!0# = !-# = !& = '()*, " ≤ & ≤ -
!"# = !%# = !.# = !/# = 1234*

Figure 4: The refined structure for the monitor function.

R0
0=R0

1=true).
In summary, the set of variables in the packet-less model

T S includes a pair of Boolean variables Ri and R0
i for each

rule. The values of these variables at any point define the state
of the packet-less model at that point. In the initial state, for
every rule Ri, the value of Ri is equal to Ri.true in the original
program. In the initial state, R0

i=true iff Ri either does not
depend on any counters or if it depends on counter c j and its
counter conditions are satisfied in the first subinterval of c j,
Pj,0, i.e., ((li  l j,0)^ (u j,0  ui)).

In the refined model, a rule Ri can be executed in a state
if (a) for at least one packet that Ri matches, it is the highest
priority rule, (b) Ri is active in that state (i.e., Ri=true), and
(c) Ri either does not depend on any counters or its counter
conditions are satisfied in that subinterval (i.e., R0

i=true).

Transitions in the refined model: Let sk and sk+1 be, re-
spectively, the kth and (k+1)th refined state if state s is refined
for counter c j, i.e., the states representing the Boolean formu-
las for subintervals k and k+1 of Pj. We add a transition from
state sk to state sk+1 if there is at least one rule Ri that depends
on c j and can be executed in sk. The reason is that c j increases
monotonically so if a counter-dependent rule can be executed
in sk, it can result in c j transitioning to the next subinterval
(corresponding to state sk+1). For each transition s !a s0 in
the original packet-less model before refinement, where a is
the execution of a rule Ri that adds or deletes rules, there is a
transition sk !a s0k if Ri can be executed in sk. As before, for
each added rule R j that Ri adds, R j=true in s0k and for each
rule Rk that Ri deletes, Rk=false in s0k. Figure 4 shows the
Boolean packet-less states and the transitions for the monitor
function in Figure 2 (see Figure 3 (b) for its corresponding
pre-refinement packet-less model). There is a transition from
the initial partitioned state (in which R0

0 = R0
1=true) to a state

in which R0
0 = R0

1=false, reflecting the fact that the network
state evolves from an initial state that satisfies the counter con-
ditions of these rules to one where the counter conditions of
these rules are no longer satisfied. If the program has multiple
counters, the state and transition refinements are performed
sequentially for each counter.

3.3.2 Boolean Formulas of Properties

We explained earlier how we could express atomic proposi-
tions in terms of packets and the desired actions on them. Prop-
erties are built out of atomic propositions, and in a transition

system such as the packet-based model in prior work [35], the
atomic proposition (h,a) holds for a state iff the list of actions
a is applied to all the packets in h in that state. The second
challenge of packet-less modeling is evaluating a proposition
on Boolean packet-less models. In this part, we explain how
an (h,a) proposition can be expressed as a Boolean formula
on rules exploiting a priori known rule priorities.

We say that a rule Ri can be applied if (a) Ri is active, i.e.,
Ri=true and (b) Ri either does not depend on any counters or
its counter conditions are satisfied, i.e., R0

i=true. For a rule
to be executed, in addition to satisfying the conditions above,
for at least one packet that it matches, it should be the highest
priority rule.

Let W0,n = [R0,R1, ...,Rn] and W 0
0,n = [R0

0,R
0
1, ...,R

0
n] be,

respectively, the list of rules Ri and the list of variables
R0

i, sorted in non-increasing order of the priorities of
rules, i.e., Ri.priority � R j.priority, R0

i.priority �
R0

j.priority if i < j. Our goal is to express whether a propo-
sition holds in a state as a Boolean formula on this list. We
achieve this with a recursive function: Let K((h,a),W0,n,W 0

0,n)
be a function that is true if W0,n and W 0

0,n satisfy the propo-
sition (h,a) and false otherwise. For the two special cases,
where (1) h is empty and (2) h is not empty and the list of rules
is empty, we assume that K((h,a),W0,n,W 0

0,n) evaluates to, re-
spectively, true and false because any condition holds for
a non-existing packet (item (1) above, h =?) and an empty
set of rules does not satisfy any conditions for packets (item
(2) above, h 6=? and the list of rules=[]). In other conditions,
we have the following cases:

Case 1: If the highest priority rule R0 matches some
packets in h, i.e., if (h\R0.pkts) 6= ?, where Ri.pkts de-
notes the set of packets that Ri matches, and its action in-
cludes the actions in the proposition, i.e., a ⇢ R0.action,
then for the proposition to hold, one of these two conditions
should hold (a) either R0 can be applied (R0 ^R0

0) and for
all the packets of h that do not match R0, the proposition
should hold for the next, lower-priority matching rules, i.e.,
(R0 ^R0

0)^ (K((h�R0.pkts,a),W1,n,W 0
1,n)), or (b) R0 can-

not be applied (¬(R0 ^R0
0), R0 either is not installed in the

network or its counter conditions are not satisfied), but in
this case, for all the packets of h, the proposition should hold
for the next, lower-priority matching rules, i.e., ¬(R0 ^R0

0)^
(K((h,a),W1,n,W 0

1,n)). In other words, K((h,a),W0,n,W 0
0,n) =

((R0 ^ R0
0) ^ (K((h � R0.pkts,a),W1,n,W 0

1,n))) _ (¬(R0 ^
R0

0)^ (K((h,a),W1,n,W 0
1,n))).

Case 2: If the highest priority rule R0 matches some pack-
ets in h, i.e., if (h\R0.pkts) 6= ?, and its action does not
include the actions in the proposition, then for the propo-
sition to hold, it should not be possible to apply R0, i.e.,
¬(R0 ^R0

0). Otherwise, it matches the packets but does not
apply the intended actions on them. Plus, for all the pack-
ets of h, the proposition should hold for the next, lower-
priority matching rules, i.e., K((h,a),W0,n,W 0

0,n) = ¬(R0 ^
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R0
0)^ (K((h,a),W1,n,W 0

1,n)).
Case 3: If the highest priority rule R0 does not match

any packets in h, then irrespective of whether R0 can be
applied or not, for all the packets of h, the proposition
should hold for the next, lower-priority matching rules, i.e.,
K((h,a),W0,n,W 0

0,n) = K((h,a),W1,n,W 0
1,n).

Applied recursively to the ordered list (according to prior-
ity) of all rules in the network, K((h,a),W0,n,W 0

0,n) expresses
the proposition (h,a) as a Boolean formula on Ri and Ri’ vari-
ables. As an example, in the IDPS function of Figure 1, the
proposition ((src=I,dst=E),send()) is translated to

K(((src=I,dst=E),send()),W0,4,W 0
0,4) =

¬(R0 ^R0
0)^ (K(((src=I,dst=E),send()),W1,4,W 0

1,4)) =
¬(R0 ^R0

0)^K(((src=I,dst=E),send()),W2,4,W 0
2,4) =

¬(R0 ^R0
0)^K(((src=I,dst=E),send()),W3,4,W 0

3,4) =
¬(R0 ^R0

0)^K(((src=I,dst=E),send()),W4,4,W 0
4,4) =

¬(R0 ^R0
0)^

( ( (R4 ^R0
4)^K((?,send()), [])) _

(¬(R4 ^R0
4)^K(((src=I,dst=E),send()), []))) =

¬(R0 ^R0
0)^ (R4 ^R0

4).

This Boolean formula results from applying the rules spec-
ified in cases (2), (3), (3), (3), (1), and the first two spe-
cial cases, respectively. It has different truth values in dif-
ferent states in Figure 4 depending on the truth values of
rules in those states, e.g., it is true in the initial state S0
where R0=false and R4=true, meaning that the assertion
((src=I,dst=E),send()) holds (I may talk to E in this state),
but is false in the final state (I is blocked), where R0=true
and R4=true. Note that R0

i variables are always true in this
example as the rules do not depend on counters.

In the network transition system T S, labeling function
L maps each state to the set of atomic propositions that
hold in that state. That is, (h,a) exists in L(s) if the list of
actions a is applied to all the packets in h in state s, i.e.,
K((h,a),W0,n,W 0

0,n)=true where W0,n and W 0
0,n are, respec-

tively, the list of rules Ri and the list of variables R0
i (sorted in

non-increasing order of rule priorities) in s.

4 Implementation and Evaluation

To evaluate the performance of our design, we build a pro-
totype that enables network operators to program and verify
their functions and a compiler that converts these functions
to programs executable on programmable switching ASICs.
After a brief overview of our prototype, we show that our
network abstraction and specification language are expres-
sive and impose only minimal overhead. We also show that
compared to a packet-based baseline, the packet-less model’s
verification of different properties is faster and more scalable,
e.g., for a network with 100 hosts, the packet-less model re-
sults in 8⇥ speedup in the verification of liveness properties

of a UDP flood mitigation function compared to the packet-
based model.

4.1 Implementation
Interfaces: Our system exposes two interfaces: a one-big-
switch interface that enables a network operator to program
her functions on our abstraction (§2) and a specification in-
terface that allows her to express her desired properties (§3).
Our generator then automatically builds the packet-less model
and the Boolean formula representing the specification as ex-
plained in §3 and interacts with NuSMV, a state-of-the-art
model checker [18], to verify specification properties.

Compiling the abstraction to P4 programs: P4 [14] is
a language for expressing the packet processing of pro-
grammable data planes. Along with the programmable data
plane, the control plane is responsible for populating the tables
defined by the P4 program. We build a compiler to compile
a one-big-switch program using our abstraction to a P4_16
program for the P4 behavioral model [3], an open-source pro-
grammable software switch. Along with the software switch,
we develop a control plane which adds and deletes table rules.
We describe some of the salient features of the compilation:

(a) Functional decomposition: We map each table in the
abstraction to a P4 table, whose match fields and actions are
constructed using the rules in the table. Network function
traversal policies are implemented using P4 control flow con-
structs, e.g., to traverse a firewall table fw conditionally:

if (meta.visit_fw) == 1)

fw.apply();

where meta.visit_fw is a metadata variable used by the ta-
bles before the firewall table to ensure the packet goes through
the firewall table.

(b) Actionable measurement: We use P4’s registers to
support incrementing and matching on counters shared across
multiple rules. If a table in the abstraction uses counters, we
create a separate P4 table which is responsible for updat-
ing the shared counters and transferring the counter state to
metadata such that the function table can use the value for
matching. This helps us confine register accesses to a single
table. Thus, packet processing can happen at the line rate [54].

(c) Add/delete actions: Currently, P4 data planes do not
support add/delete actions, i.e., rule actions that add or delete
other table rules, due to hardware limitations of existing
platforms. We support this functionality by cloning the
packet [55] to the control plane, acting similar to the Pack-
etIn functionality in OpenFlow [2]. When a rule in the pro-
gram has an add/delete action, our switch program clones
the packet in the data plane and sends it to the switch-local
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Function source Function One-big-switch Packets calling P4 LoC Compilation
LoC controller [%] time[ms]

Pyretic [44]/Kinetic [35]

Simple counter 1 0 144 1.8
Port knocking 3 6⇥10�3 133 1.8
Simple firewall 2 0 128 1.6
IP rewrite 2 0 134 1.8
Simple rate limiter 3 0 141 2.1

Floodlight [4] Firewall/ACL 2 0 132 1.7
Chimera [13] Phishing/Spam detection 3 6⇥10�3 151 2.3

FAST [45]

Simple stateful firewall 3 0.3 133 2.1
FTP monitor 2 0 135 2.1
Heavy-hitter detection 2 0 148 2.0
Super spreader detection 2 0 148 2.0
Sampling based on flowsize 6 0 189 2.5

Bohatei [23]
Elephant flow detection 3 0 182 2.4
DNS amplification mitigation 3 7⇥10�3 135 1.9
UDP flood mitigation 2 0 148 1.8

Table 1: Applications written on one-big-switch.

control plane; the control plane (which we also generate) then
adds/deletes table rules as decided by the add/delete actions in
the program. This approach has the overhead of punting some
packets (specifically, first packets in a connection matching
specific rules) to the local switch CPU—this is a cost we pay
for lack of data plane support for add/delete actions.

4.2 Evaluation
Expressiveness: Despite its simplicity, our one-big-switch
abstraction enables developers to express a broad range of
applications and network functions. Table 1 shows a list of
functions that we have developed in our framework. Full
descriptions of these programs are provided in §8. Network
policies can be succinctly expressed on our one-big-switch
abstraction in only a few lines of code (column 3 in Table
1), e.g., a simple stateful firewall policy that allows only the
traffic whose connection was initiated by a host in a given
department can be expressed in 3 lines of code on the one-
big-switch abstraction. The compiled P4 code of the same
policy is expressed in 133 lines of code (comprising of 100
lines of boilerplate code for headers and parsers) and ⇠50
lines of code for the P4 control plane for cloning the packets
at the data plane and adding rules from the control plane.
Various specification properties, including the most common
specification patterns in practice [21], can also be specified in
the temporal logic presented in §3.

Limited overhead: Add/delete actions of our abstraction
are not directly supported in the switching ASIC today. Our
P4 compiler implements these by involving the controller
whenever a rule has such actions. To measure the overhead
of involving the controller, we deploy the functions listed in
Table 1 and replay a packet trace of a university datacenter
[12], with over 102K packets and 1,791 IP addresses and
measure the frequency of calling the controller. This overhead
is modest for all functions, i.e., 0-0.3% (column 4, Table 1).

Verification time: We test the efficiency of bounded-time

verification of packet-less and packet-based models at scale
to answer questions such as, what functions and properties
are verifiable with each approach? How does the verification
time scale with respect to the network (and hence the model)
size? How does it scale with respect to the property size? To
do so, for the functions in Table 1 with per-host policies (e.g.,
the heavy-hitter detector, port knocking, rate limiter, phish-
ing/spam detector, and UDP flood mitigation function), we
define one policy for each host in the network. The heavy
hitter detector, for example, deploys a per-source IP counter
that is incremented for every new SYN packet and starts drop-
ping packets when the counter exceeds a threshold (Table 4).
For the functions that define policies between communicating
pairs of hosts or on flows, e.g., FTP monitor and DNS amplifi-
cation mitigation functions, we run the same datacenter trace
as above to find the communicating pairs and matching flows
and define one policy for each. For functions that classify
hosts into sets, e.g., the firewall function with sets of internal
and external hosts, we randomly assign each host to a set.
Finally, for counter bounds, we draw random samples from
the uniform distribution on the set of possible values.

We measure the verification time for various functions,
properties, and network scales for packet-less and packet-
based models. Note that increasing the network size in this
manner results in larger models. For each experiment, we run
20 repeated trials, each trial with a time budget of 1,000 sec.,
i.e., we stop the verification process when the verification
time exceeds 1,000 sec. We give a brief overview of our
packet-based baseline below before presenting our results.

Packet-based transition systems as the baseline: A pow-
erful technique for scaling static verification is slicing the
network into a set of equivalence classes (ECs) of pack-
ets [33,34,43]. Each EC is a set of packets that always experi-
ence the same forwarding actions throughout the network [43].
As shown in prior work, this approach can be extended to
model dynamic networks [35]. To do so, one can detect a pro-
gram’s ECs using verifiers that classify packets into ECs [43].
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Rule Init Priority Match Action
R0 true 100 (protocol=UDP) & (source IP=A) & (c0 < X) send()
R1 true 100 (protocol=UDP) & (source IP=A) & (X  c0 < m) drop()

Table 2: A UDP flood mitigation function.

Alternatively, and similar to Kinetic [35], the programmer may
be tasked with providing ECs and their transition systems.

In the packet-based transition system, each node represents
a state of the network, i.e., the set of ECs in that state. For
instance, for the IDPS in Figure 1, in the initial state, two ECs
exist in the network: EC0 that includes all packets destined to
I and with port number 2222 and EC1 that includes all remain-
ing packets. Transitions are the events that change the state
of the network, e.g., receiving packets from the ECs whose
forwarding actions update the network’s forwarding behavior.
In the example above, receiving packets from EC0 transitions
the system into another state in which three different ECs
exist: EC2 that includes all packets from I that are destined
to F , EC3 that includes all packets not included in EC2 that
are sent to I with port number 2222, and EC4 that includes all
packets not included in EC2 and EC3.

We implement this packet-based model as our baseline.
For classifying packets into ECs in this baseline, we use the
heuristic developed in VeriFlow [43]. Despite their similar-
ities, the packet-based model and Kinetic [35] have a few
key differences: the greater expressiveness of our program-
ming abstraction (e.g., to allow for matching on shared packet
counters) increases the difficulty of the verification problem.
Plus, in contrast to Kinetic that requires operators to provide
the state machine as an input, the packet-based model au-
tomatically generates these from the rules written on our
one-big-switch abstraction.7 Thus, despite their conceptual
similarities, we refrain from calling our baseline Kinetic.

Our results demonstrate that the packet-less model is faster
than the packet-based model for different categories of live-
ness properties such as “leads-to” (e.g., host A sending traffic
to host B leads to A being blocked) and “eventually” (e.g., host
A is eventually blocked). Figure 5 (a) and (b) show examples
for a UDP flood mitigation function (Table 2) which deploys
a per-source IP counter that is incremented for every UDP
packet and starts dropping packets when the counter exceeds
a threshold. Verifying a leads-to property—host A sending
more packets than a threshold leads to it being blocked—in a
network with 100 hosts, for example, is 7.8⇥ faster with the
packet-less model than the packet-based model (85 vs. 667
sec.). In 1,000 sec., the packet-less model verifies a different
liveness property, “eventually” (A is eventually blocked), for
networks that are 3.5⇥ larger than those verifiable with the
packet-based model (105 hosts vs. 30). By reducing the size of
the state machine, the packet-less model also improves the ver-

7In Kinetic, a knowledgeable operator can conceivably provide compact
state machines, smaller than the packet-based model, and hence experience
lower verification times.
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Figure 5: Packet-less verification reduces the verification time of
different properties for a flood mitigation function.

ification time for safety properties. Figure 5 (c) and (d) show
examples for an “absence” property (host A is never reach-
able) and “universality” (A is always reachable), respectively.
Similarly, verifying the same liveness and safety properties,
e.g., “eventually” and “universality”, in a stateful firewall (Ta-
ble 13) is, respectively, 3.3⇥ and 4.9⇥ faster with the packet-
less model than the packet-based model in a 30-host network
(figures not shown).

We observe that greater degrees of state sharing across
rules (e.g., counters shared by multiple rules) result in slower
verification for both approaches, but the performance degra-
dation is more pronounced for the packet-based model, e.g.,
for a rate limiter (Table 5), in 1,000 sec., we can verify an
“eventually” property in networks with up to 90 hosts with
the packet-less model (v.s. 105-host networks for the UDP
flood detection application above), and for networks with at
most 15 hosts with the packet-based model (v.s. 30 hosts for
the UDP flood detection application above). Figure 6 shows
the results for a liveness and a safety property for this func-
tion. The packet-less model can verify them for network 6⇥
larger than the packet-based model, and even for small-scale
networks, it is at least two orders of magnitude faster.

In addition to testing the scalability with respect to the
network (and consequently the model) size, we also scale
properties. Verification time is a function of the size of the
transition system and the property formula, e.g., there exists an
LTL model-checking algorithm whose running time depends
linearly on the size of the transition system and exponentially
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Property LTL specification [17, 21] Meaning and example
Leads-to (a.k.a Response) G(P ! FS) P must always be followed by S, a host showing a malicious activity

must always be followed by the IDPS blocking the host.
Universality GP P always holds, e.g., A is always blocked.
Absence G¬P P never holds, e.g., A can never send traffic to B.
Eventually (a.k.a Existence) FP P eventually happens, e.g., A can eventually reach B.
Precedence FP ! (¬PU(S^¬P)) P must always be proceeded by S, e.g., blocking a host must always be

proceeded by the host exhibiting some malicious activity.

Table 3: List of properties verified.
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Figure 6: Verification times for a rate limiter.
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Figure 7: The property size does not impact the verification time.

on the length of the LTL formula [20]. Although in practice,
the structure size is usually the dominant factor in determin-
ing the verification time, in our approach, the size of property
formulas can potentially be large and increase the verification
time.8 To test the sensitivity of the verification time to the
property size, we first construct atomic propositions for reach-
ability of randomly selected (with replacement) hosts, e.g.,
(dst=A,send(A)). Then, we use logical operations to build
formulas of various sizes out of these atomic propositions,
as explained in §3, e.g., (dst=A,send(A))^(dst=B,send(B))
for a property with size 2. Finally, we use these assertions
to construct the liveness and safety properties listed in Table
3. We observe that scaling the property size does not affect
the verification time of either approach. For the same UDP
flood mitigation function as above, in a network with 200
hosts, changing the property size from 1 to 200, results in
a standard deviation of less than 7.2. This holds even for
smaller networks where the relative impact of the property
size is expected to be greater. Figure 7 shows two examples
for verifying F(^h2S(dst=h,send(h)), i.e., eventually, all the
hosts in the set S will become reachable, for small networks
with 10, 20, and 100 hosts.

8Recall that in a packet-less model, we also need to express properties in
terms of Boolean formulas on rules (§3.3.2).

5 Related Work

Static network verifiers [33,34,39,42,43,61] verify various as-
pects of reachability invariants such as loop-freedom and lack
of blackholes on a snapshot of the network. More recently,
reachability verification and enforcement techniques are ex-
tended to incorporate degrees of dynamism [10, 22, 26, 40, 48,
60], e.g., with failures and policy changes [26, 27, 29, 31, 38,
52], with mutable data planes [48], and with focusing on con-
trollers instead of snapshots of the data plane [10, 11, 22, 60].
However, the targeted properties in all these proposals are
safety invariants such as reachability and loop-freedom. Our
focus on verifying a computationally more complex category
of properties (liveness) drives our novel packet-less model,
which is distinct from prior models. Plus, some of the assump-
tions in prior work restrict the set of network functions that
they can verify. VMN, for example, models network functions
in which (a) flows are independent, and (b) forwarding is not
affected by transaction orderings. We find that many crucial
network functions such as IDPS and Trojans detectors [16]
do not possess those properties.

We share the goal of designing verifiable programming lan-
guages with VeriCon [9], FlowLog [46], and Kinetic [35], but
since our programs are compiled to P4 programs (instead of
the OpenFlow rules that VeriCon’s CSDN language, FlowLog,
and Kinetic programs are compiled to), we are able to express
programs that these frameworks cannot, e.g., programs with
multiple rules that share counters. Plus, VeriCon’s use of first-
order logic makes it infeasible to specify dynamic properties
such as liveness. Finally, VeriCon, FlowLog, and Kinetic are
packet-based. Kinetic, for example, extends the Pyretic con-
troller [44] to add support for the verification of dynamic
networks based on packet equivalent classes [35]. In Kinetic,
the programmer needs to specify “located packet equivalence
classes” (LPECs), maximal regions of the flow space (e.g.,
packets with a given source IP) that experience the same
forwarding behavior in each state, and their associated finite
state machines (FSMs) that encode the handling of LPECs.
We show experimentally and theoretically that compared to
packet-based approaches deployed in these proposals, our
packet-less approach results in faster verification.

Many recent projects in network verification leverage clas-
sical concepts of model checking to control the state explo-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    267



Rule Init Priority Match Action
R0 true 100 (TCP flag=SYN) & (source IP=A) & (0  c0 < X) send()
R1 true 100 (TCP flag=SYN) & (source IP=A) & (X  c0 < m) drop()

Table 4: A heavy-hitter detection function.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (0  c0 < v1) send(port=1)
R1 true 100 (source IP=A) & (v1  c0 > v2) send(port=2)
R2 true 100 (source IP=A) & (v2  c0 < v3) send(port=3)
R3 true 100 (source IP=A) & (v3  c0 < v4) send(port=4)
R4 true 100 (source IP=A) & (v4  c0 < v5) send(port=5)
R5 true 100 (source IP=A) & (v5  c0 < m) drop()

Table 5: A simple rate limiter.

sion challenge in verifying dynamic systems such as slic-
ing [48, 50], symbolic execution [48, 57, 63], and abstraction
refinement [53]. Our work shares similarities with these in
terms of the high-level techniques for scaling verification (e.g.,
we also use symbolic modeling and abstraction). As our tar-
geted properties (liveness vs. safety invariants) are different,
however, our application of these techniques diverges from
existing works, e.g., we deploy symbolic representation not to
abstract packet header fields (as NoD does for verifying reach-
ability invariants in dynamic networks [40]), but to abstract
away packets altogether. Works on verifying networks via test-
ing [24] and simulations [25, 51] are complementary to our
approach. Via applying model checking, we strive to provide
a fully automatic verifier that, unlike testing and simulation,
searches the state space of our abstraction exhaustively.

6 Limitations and Future Work

The focus of our work is on functional correctness; this leaves
out large sets of functions and properties, including those
focused on path and traffic engineering properties (is a path
congested? is the load balanced across multi-paths? etc.). Our
one-big-switch abstraction is not suited for programming such
functions. Plus, while a familiar abstraction to operators, the
one-big-switch abstraction is relatively low-level. An inter-
esting direction for future research is developing higher-level
abstractions amenable to efficient liveness verification.

Our verifier is not a “full-stack” one; it is not designed
to verify low-level properties such as memory safety and
crash freedom that tools such as Vigor [62] and VigNAT [63]9

can verify and does not verify the compiled P4 code. Conse-
quently, tools such as compiler verifiers (such as p4v [39]),
P4 debuggers (e.g., Vera [56])), and testers are still essen-
tial to guarantee the faithful implementation of our verified

9VigNAT [63] partitions programs into stateful and stateless components.
While the stateless component is verified automatically via applying symbolic
model checking, the verification of the stateful part is done via theorem
proving and requires human assistance. In Vigor [62], the function code that
cannot be symbolically executed is stored in a specialized library and verified
by experts using theorem proving (i.e., writing proofs).

abstractions, e.g., to detect and debug switch firmware and
P4 compiler bugs. Finally, while our packet-less modeling
improves the verification time compared to a packet-based
model and enables the verification of complex properties such
as liveness ones, the absolute verification times remain high
for large-scale networks (note the logarithmic scale in fig-
ures). Further reducing the verification complexity of stateful
functions remains an open challenge.

7 Conclusion

Modern networks rely on a variety of stateful network
functions to implement rich policies. Correct operation
of such networks relies on ensuring that they support key
liveness properties. Unfortunately, despite exciting recent
work on network verification, no existing approach is
practical for, or applicable to, validating liveness. We take
a top-down approach to this problem by first designing a
new programming model built with verification in mind. It
offers natural extensions to the convenient one-big-switch
abstraction and allows decomposition of different network
functions. We develop a novel encoding of these programs
under dynamic events such as network state changes using
Boolean formulas that can capture rich semantics (e.g.,
counters) while also ensuring that the encoding remains
bounded-size and amenable to fast liveness verification. We
develop a compiler that translates our programs into those
runnable on modern hardware. Our evaluation shows that
the programming model can succinctly express a variety of
functions, our compilation is fast, our encoding is compact
and orders of magnitude more scalable to verify than naive
encodings, i.e., it results in substantial verification speedup.
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8 Appendix

Table 1 lists the functions that can be represented in our
language. Below we write these functions on our one-big-
switch abstraction.

Simple counter: A packet counter for every source, desti-
nation IP address pair (Table 6).

Port knocking: Open a certain port O by attempting to
open a connection on a prespecified closed port K (Table 7).

Simple firewall: Allows traffic between certain source,
destination MAC addresses (Table 8).

IP rewrite: Rewrite IP address of all traffic coming from
and directed to a particular IP address (Table 9).

Simple rate limiter: There are multiple implementations
of this function. The first example (Table 5) assumes different
ports are capable of sending traffic at different rates. It uses
per-source IP counters to decide the traffic rate.

The second example (Table 10) uses counters on subsets
of traffic to decide what traffic will be forwarded normally,
redirected to a rate limiter, or dropped.

Firewall/ACL: Allows or Blocks traffic based on certain
packet fields (Table 11).

Phishing/Spam detection: A per-MTA (Mail Transfer
Agent) counter to detect MTAs that send a large amount of
mail (Table 12).

Simple stateful firewall: A firewall that allows only the
traffic whose connection was initiated by a host in I, where I
is the set of departmental addresses (Table 13).

FTP monitor: Allows traffic on data port only if it received
a signal on the control port (Table 14).

Heavy-hitter detection: A per-source IP counter that is
incremented for every new SYN. It starts dropping packets
when the counter exceeds a threshold value (Table 4).

Super spreader detection: Similar to heavy-hitter detec-
tion, the counter is incremented for every SYN. But it is also
decremented for every FIN.

Sampling based on the flow size: This can be done using
two tables. The first table (Table 15) uses counters to classify
the flow size into three categories - small, medium, and large.
It adds this metadata information into the packet (e.g., using
the QoS field). The second table (Table 16) samples packets
based on its flow size, using its own counters.

Elephant flow detection: This is similar to sampling based
on flow size, where flows of large size are elephant flows.

DNS amplification mitigation: Allows DNS reply
(source port=53) to a particular IP only if it receives a DNS
request/query from that IP (Table 17).

UDP flood mitigation: A per-source IP counter that is
incremented for every UDP packet. It starts dropping packets
when the counter exceeds a threshold value (Table 2).

Application chaining: Our language can represent non-
linear chaining of applications. For example, consider a sys-
tem that wants to rate-limit phishing and heavy-hitter traffic.
This can be represented in our language using three tables.
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Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (0  c0 < m) send()

Table 6: Simple counter.

Rule Init Priority Match Action
R0 true 100 (source MAC=M) & (destination port=K) add(R1),add(R2)
R1 false 100 (source MAC=M) & (destination port=O) send()
R2 false 100 (destination MAC=M) & (destination port=O) send()

Table 7: Port knocking.

Rule Init Priority Match Action
R0 true 100 (source MAC=A) & (destination MAC=B) send()
R1 true 100 (source MAC=B) & (destination MAC=A) send()

Table 8: Simple firewall.

Rule Init Priority Match Action
R0 true 100 (source IP=A) modify(source IP=X),send()
R1 true 100 (destination IP=X) modify(destination IP=A),send()

Table 9: IP rewrite.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (0  c0 < v1) send()
R1 true 100 (source IP=A) & (v1  c0 < v2) send(rate limiter)
R2 true 100 (source IP=A) & (v2  c0 < m) drop()

Table 10: Simple rate limiter 2.

Rule Init Priority Match Action
R0 true 100 (source IP=A1) & (destination IP=B1) & (source MAC=M1) & (destination MAC=N1) send()

& (source port=P1) & (destination port=Q1)

R1 true 100 (source IP=A2) & (destination IP=B2) & (source MAC=M2) & (destination MAC=N2) drop()
& (source port=P2) & (destination port=Q2)

Table 11: Floodlight firewall/ACL.

Rule Init Priority Match Action
R0 true 100 SMTP.MTA=A add(R1),add(R2),delete(R0),send()
R1 false 100 (SMTP.MTA=A) & 0 c0< X send()
R2 false 100 (SMTP.MTA=A) & X  c0< m drop()

Table 12: Phishing/spam detection.

Rule Init Priority Match Action
R0 true 100 (source IP=I) & (destination IP=E) add(R1),delete(R0),send()
R1 false 100 (destination IP=I) & (source IP=E) send()
R2 true 50 source IP=I drop()

Table 13: Simple stateful firewall.

The first table does phishing detection (Table 12), the second
one does heavy-hitter detection (Table 4), and third one does
rate-limiting (Table 5). The first table sends suspicious traffic

to the third table (instead of drop()) and normal traffic to the
second table (instead of send()). The second table sends suspi-
cious traffic to the third table (instead of drop()) and forwards
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Rule Init Priority Match Action
R0 true 100 (destination port=portcontrol) & (source IP=A) & (destination IP=B) add(R1),delete(R0),send()
R1 false 100 (source port=portdata) & (source IP=B) & (destination IP=A) send()

Table 14: FTP monitor.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (0  c0 < v1) modify(flow=small),send(Sampler Table 2)
R1 true 100 (source IP=A) & (destination IP=B) & (v1  c0 < v2) modify(flow=medium),send(Sampler Table 2)
R2 true 100 (source IP=A) & (destination IP=B) & (v2  c0 < m) modify(flow=large),send(Sampler Table 2)

Table 15: Sampling based on the flow size - Sampler Table 1.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (flow=small) & (c0 = 5) c0 = 0,send()
R1 true 100 (source IP=A) & (destination IP=B) & (flow=medium) & (c0 = 500) c0 = 0,send()
R2 true 100 (source IP=A) & (destination IP=B) & (flow=large) & (c0 = 50000) c0 = 0,send()

Table 16: Sampling based on the flow size - Sampler Table 2.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (destination port=53) delete(R0),add(R2),add(R3),send()
R1 true 10 source port=53 drop()
R2 false 100 (source IP=A) & (destination IP=B) & (destination port=53) send()
R3 false 100 (source IP=A) & (destination IP=B) & (source port=53) send()

Table 17: DNS amplification mitigation.

non-suspicious traffic normally using send() action.
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Sol: Fast Distributed Computation Over Slow Networks
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Abstract
The popularity of big data and AI has led to many optimiza-
tions at different layers of distributed computation stacks.
Despite – or perhaps, because of – its role as the narrow waist
of such software stacks, the design of the execution engine,
which is in charge of executing every single task of a job,
has mostly remained unchanged. As a result, the execution
engines available today are ones primarily designed for low
latency and high bandwidth datacenter networks. When either
or both of the network assumptions do not hold, CPUs are
significantly underutilized.

In this paper, we take a first-principles approach toward
developing an execution engine that can adapt to diverse net-
work conditions. Sol, our federated execution engine archi-
tecture, flips the status quo in two respects. First, to mitigate
the impact of high latency, Sol proactively assigns tasks, but
does so judiciously to be resilient to uncertainties. Second, to
improve the overall resource utilization, Sol decouples com-
munication from computation internally instead of commit-
ting resources to both aspects of a task simultaneously. Our
evaluations on EC2 show that, compared to Apache Spark in
resource-constrained networks, Sol improves SQL and ma-
chine learning jobs by 16.4× and 4.2× on average.

1 Introduction
Execution engines form the narrow waist of modern data
processing software stacks (Figure 1). Given a user-level
intent and corresponding input for a job – be it running a SQL
query on a commodity cluster [9], scientific simulations on
an HPC environment [52], realtime stream processing [12],
or training an AI/ML algorithm across many GPUs [7] – an
execution engine orchestrates the execution of tasks across
many distributed workers until the job runs to completion
even in the presence of failures and stragglers.

Modern execution engines have primarily targeted dat-
acenters with low latency and high bandwidth networks.
The absence of noticeable network latency has popularized
the late-binding task execution model in the control plane
[10, 36, 43, 48] – pick the worker which will run a task only
when the worker is ready to execute the task – which max-
imizes flexibility. At the same time, the impact of the net-
work on task execution time is decreasing with increasing
network bandwidth; most datacenter-scale applications today
are compute- or memory-bound [7, 42]. The availability of

Coordinator/
Driver Worker1 Worker2 WorkerN…

Execution Engine

Resource 
Scheduler

Storage System

SQL
Queries AI/ML Graph

Processing
Stream 

Processing

DAG Generators (e.g., Query Planner)

Figure 1: Execution engine forms the narrow waist between di-
verse applications and resources.

high bandwidth has led to tight coupling of a task’s roles to
hide design complexity in the data plane, whereby the same
task reads remote input and computes on it too. Late-binding
before execution and tight coupling during execution work
well together when the network is well-provisioned.

Many emerging workloads, however, have to run on net-
works with high latency, low bandwidth, or both. Large orga-
nizations often perform interactive SQL and iterative machine
learning between on- and off-premise storage [4, 16, 24, 27].
For example, Google uses federated model training on glob-
ally distributed data subject to privacy regulations [11, 58];
telecommunications companies perform performance analy-
sis of radio-access networks (RAN) [30,31]; while others trou-
bleshoot their appliances deployed in remote client sites [39].
Although these workloads are similar to those running within
a datacenter, the underlying network can be significantly con-
strained in bandwidth and/or latency (§2). In this paper, we
investigate the impact of low bandwidth and high latency on
latency-sensitive interactive and iterative workloads.

While recent works have proposed solutions for bandwidth-
sensitive workloads, the impact of network constraints on
latency-sensitive workloads has largely been overlooked.
Even for bandwidth-sensitive workloads, despite many re-
source schedulers [28, 56], query planners [45, 50], or
application-level algorithms [24, 57], the underlying execu-
tion engines of existing solutions are still primarily the ones
designed for datacenters. For example, Iridium [45], Tetrium
[28], and Pixida [33] rely on the execution engine of Apache
Spark [54], while many others (e.g., Clarinet [50], Geode [51])
are built atop the execution engine of Apache Tez [47].
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Unfortunately, under-provisioned networks can lead to
large CPU underutilization in today’s execution engines. First,
in a high-latency network, late-binding suffers significant co-
ordination overhead, because workers will be blocked on
receiving updates from the coordinator; this leads to wasted
CPU cycles and inflated completion times of latency-sensitive
tasks. Indeed, late-binding of tasks to workers over the WAN
can slow down the job by 8.5×–30× than running it within the
local-area network (LAN). Moreover, for bandwidth-intensive
tasks, coupling the provisioning of communication and com-
putation resources at the beginning of a task’s execution leads
to head-of-line (HOL) blocking: bandwidth-sensitive jobs hog
CPUs even though they bottleneck on data transfers, which
leads to noticeable queuing delays for the rest.

By accounting for network conditions, we present a fed-
erated execution engine, Sol, which is API-compatible with
Apache Spark [54]. Our design of Sol, which can transparently
run existing jobs and WAN-aware optimizations in other lay-
ers of the stack, is based on two high-level insights to achieve
better job performance and resource utilization.

First, we advocate early-binding control plane decisions
over the WAN to save expensive round-trip coordinations,
while continuing to late-bind workers to tasks within the LAN
for the flexibility of decision making. By promoting early-
binding in the control plane, we can pipeline different execu-
tion phases of the task. In task scheduling, we subscribe tasks
for remote workers in advance, which creates a tradeoff: bind-
ing tasks to a remote site too early may lead to sub-optimal
placement due to insufficient knowledge, but deferring new
task assignments until prior tasks complete leaves workers
waiting for work to do, thus underutilizing them. Our solution
deliberately balances efficiency and flexibility in scheduling
latency-bound tasks, while retaining high-quality scheduling
for latency-insensitive tasks even under uncertainties.

Second, decoupling the provisioning of resources for com-
munication and computation within data plane task execu-
tions is crucial to achieving high utilization. By introducing
dedicated communication tasks for data reads, Sol decou-
ples computation from communication and can dynamically
scale down a task’s CPU requirement to match its available
bandwidth for bandwidth-intensive communications; the re-
maining CPUs can be redistributed to other jobs with pending
computation.

Our evaluations show that Sol can automatically adapt to di-
verse network conditions while largely improving application-
level job performance and cluster-level resource utilization.
Using representative industry benchmarks on a 40-machine
EC2 cluster across 10 regions, we show that Sol speeds up
SQL and machine learning jobs by 4.9× and 16.4× on av-
erage in offline and online settings, respectively, compared
to Apache Spark in resource-constrained networks. Even in
datacenter environments, Sol outperforms Spark by 1.3× to
3.9×. Sol offers these benefits while effectively handling
uncertainties and gracefully recovering from failures.
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Figure 2: While execution engines are widely deployed on cloud
platforms, the underlying network conditions can be diverse in
latency and bandwidth.

2 Background and Motivation
2.1 Execution Engines

The execution engine takes a graph of tasks – often a directed
acyclic graph (DAG) – from the higher-level scheduler as
its primary input. Tasks performing the same computation
function on different data are often organized into stages, with
dependencies between the stages represented by the edges of
the execution DAG. Typically, a central coordinator in the
execution engine – often referred to as the driver program of
a job – interacts with the cluster resource manager to receive
required resources and spawns workers across one or more
machines to execute runnable tasks.1 As workers complete
tasks, they notify the coordinator to receive new runnable
tasks to execute.

Design space. The design of an execution engine should be
guided by how the environment and workload characteristics
affect delays in the control plane (i.e., coordinations between
the coordinator and workers as well as amongst the workers)
and in the data plane (i.e., processing of data by workers).
Specifically, a task’s lifespan consists of four key components:
• Coordination time (tcoord) represents the time for orches-

trating task executions across workers. This is affected
by two factors: network latency, which can vary widely
between different pairs of sites (Figure 2(a)), and the in-
herent computation overhead in making decisions. While
the latter can be reduced by techniques like reusing sched-
ules [37,49], the former is determined by the environment.

• Communication time (tcomm) represents the time spent in
reading input and writing output of a task over the network
and to the local storage.2 For the same amount of data,
time spent in communication can also vary widely based
on Virtual Machine (VM) instance types and LAN-vs-
WAN (Figure 2(b)).
• Computation time (tcomp) represents the time spent in

running every task’s computation.
• Queuing time (tqueue) represents the time spent waiting

1A task becomes runnable whenever its dependencies have been met.
2Most transfers after the input-reading stages happen over the network.
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Figure 3: TPC query completion times in different network set-
tings using different execution engines (scale factor is set to 100).

for resource availability before execution. Given a fixed
amount of resources, tasks of one job may have to wait
for tasks of other jobs to complete.

We first take into account tcomp, tcoord , and tcomm in char-
acterizing the design of execution engines for a single task.
By assuming tcomp � tcoord , tcomm (i.e., by focusing on the
execution of compute-bound workloads such as HPC [21], AI
training [7] and in many cases within datacenters), existing
execution engines have largely ignored two settings in the
design space.

First, the performance of jobs can be dominated by the
coordination time (i.e., tcoord � tcomm, tcomp), and more time
is spent in the control plane than the data plane. An exam-
ple of such a scenario within a datacenter would be stream
processing using mini-batches, where scheduling overhead
in the coordinator is the bottleneck [49]. As tcoord → O(100)
ms over the WAN, coordination starts to play a bigger role

even when scheduler throughput is not an issue. As
tcomp

tcoord

and
tcomm

tcoord
decrease, e.g., in interactive analytics [30, 31] and

federated learning [11], coordination time starts to dominate
the end-to-end completion time of each task.

Second, in bandwidth-bound workloads, more time is likely
to be spent in communication than computation (i.e., tcomm >
tcoord , tcomp). Examples of such a scenario include big data
jobs in resource-constrained private clusters [36] or across
globally distributed clouds [24, 45, 50, 51], and data/video
analytics in a smart city [25].

In the presence of multiple jobs, inefficiency in one job’s
execution engine can lead to inflated tqueue for other jobs’
tasks. For latency-sensitive jobs waiting behind bandwidth-
sensitive ones, tqueue can quickly become non-negligible.

2.2 Inefficiencies in Constrained Network Conditions

While there is a large body of work reasoning about the per-
formance of existing engines in high-bandwidth, low-latency
datacenters [41, 42], the rest of the design space remains un-
explored. We show that existing execution engines suffer
significant resource underutilization and performance loss in
other settings.
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Figure 4: CPU utilization throughout a machine learning job.

Performance degradation due to high latency. To quan-
tify the impact of high latency on job performance, we ana-
lyzed the individual query completion times of 110 queries on
two industrial benchmarks: TPC-DS and TPC-H. We use two
popular execution engines – Apache Spark [54] and Apache
Tez [47] – on a 10-site deployment; each site has 4 machines,
each with 16 CPU cores and 64 GB of memory. We consider
four network settings, each differing from the rest in terms of
either bandwidth or latency as follows: 3

• Bandwidth: Each VM has a 10 Gbps NIC in the high-
bandwidth and 1 Gbps in the low-bandwidth setting.

• Latency: Latency across machines is <1 ms in the low-
latency setting, while latencies across sites vary from
O(10)–400 ms in the high-latency setting.

Figure 3 shows the distributions of average query comple-
tion times of Spark and Tez, where we use a dataset of scale
factor 100.4 We found that the availability of more bandwidth
has little impact on query completion times; different query
plans and task placement decisions in Spark and Tez did not
improve the situation either. However, job completion times
in the high-latency setting are significantly inflated – up to
20.6× – than those in the low-latency setting. Moreover, we
observe high network latency can lead to inefficient use of
CPUs for a latency-bound machine learning job (Figure 4).

The root cause behind this phenomenon is the late-binding
of tasks to workers in the control plane. In existing execution
engines, decision making in the control plane, such as task
scheduling [50] and straggler mitigation [8], often requires
realtime information from data plane executions, whereas
data processing is initiated by control plane decisions. With
high coordination latency, this leads to wasted CPU cycles as
each blocks on acquiring updates from the other.

CPU underutilization due to low bandwidth. To under-
stand the impact of low bandwidth on resource efficiency, we
analyzed bandwidth-sensitive workloads using a scale factor
of 1000 on the same experimental settings as above.

Figure 5 reports both the CPU and network utilizations
throughout the execution of a representative query (query-

3We use the latency profile of 10 sites on EC2 and set a large TCP
window size to reach the network capacity [34]. For the high-bandwidth
setting and the low-bandwidth one, we refer to the available LAN bandwidth
on m4.10xlarge and m4.2xlarge instances, respectively.

4A scale factor of X means a X GB dataset.
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Figure 5: Resource utilization over a bandwidth-bound query’s
lifespan (scale factor is set to 1000).

25 from the TPC-DS benchmark), which involves two large
shuffles (in stage 2 and stage 3) over the network. Dur-
ing task executions, large data reads over the network are
communication-intensive, while computations on the fetched
data are CPU-intensive. We observe that, when tasks are
bandwidth-constrained, their overall CPU utilization plum-
mets even though they continue to take up all the available
CPUs. This is due to the coupling of communication with
computation in tasks. In other words, the number of CPUs
involved in communication is independent of the available
bandwidth. The end result is head-of-line (HOL) blocking of
both latency- and bandwidth-sensitive jobs (not shown) by
bandwidth-bound underutilized CPUs of large jobs.

Shortcomings of existing works. Existing works on WAN-
aware query planning and task placement [28, 45, 50, 51]
cannot address the aforementioned issues because they focus
on managing and/or minimizing bandwidth usage during task
execution, not on the impact of latency before execution starts
or CPU usage during task execution.

3 Sol: A Federated Execution Engine
To address the aforementioned limitations, we present Sol, a
federated execution engine which is aware of the underlying
network’s characteristics (Figure 6). It is primarily designed
to facilitate efficient execution of emerging distributed work-
loads across a set of machines which span multiple sites (thus,
have high latency between them) and/or are interconnected by
a low bandwidth network. Sol assumes that machines within
the same site are connected over a low-latency network. As
such, it can perform comparably to existing execution engines
when deployed within a datacenter.

Design goals. In designing Sol, we target a solution with
the following properties:
• High-latency coordinations should be pipelined. Coordi-

nations between control and data planes should not stall
task executions. As such, Sol should avoid synchronous
coordination (e.g., workers blocking to receive tasks) to
reduce overall tcoord for latency-bound tasks. This leads
to early-binding of tasks over high-latency networks.

• Underutilized resources should be released. Sol should
release unused resources to the scheduler, which can be
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Figure 6: Sol components and their interactions. Low-latency
sites synchronously coordinate within themselves and asyn-
chronously coordinates across high-latency links.

repurposed to optimize tqueue for pending tasks. This calls
for decoupling communication from computation in the
execution of bandwidth-intensive tasks without inflating
their tcomm and tcomp.

• Sol should adapt to diverse environments automatically.
The network conditions for distributed computation can
vary at different points of the design space. Sol should,
therefore, adapt to different deployment scenarios with
built-in runtime controls to avoid reinventing the design.

System components. At its core, Sol has three primary
components:
• Central Coordinator: Sol consists of a logically central-

ized coordinator that orchestrates the input job’s execution
across many remote compute sites. It can be located at
any of the sites; each application has its own coordina-
tor or driver program. Similar to existing coordinators, it
interacts with a resource manager for resource allocations.

• Site Manager: Site managers in Sol coordinate local
workers within the same site. Each site manager has a
shared queue, where it enqueues tasks assigned by the
central coordinator to the workers in this site. This allows
for late-binding of tasks to workers within the site and en-
sures high resource utilization, wherein decision making
can inherit existing designs for intra-datacenter systems.
The site manager also detects and tackles failures and
stragglers that are contained within the site.

• Task Manager: At a high level, the task manager is the
same as today: it resides at individual workers and man-
ages tasks. However, it manages compute and communi-
cation resources independently.

Figure 7 shows a high-level overview explaining the inter-
action among these components throughout our design in the
control plane (§4) and the data plane (§5).

4 Sol Control Plane
Modern execution engines primarily target datacenters with
low latency networks [7, 12, 47, 54], wherein late-binding of
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. Operations in Central Coordinator
1: for Site s in all sites do
2: while currentTaskNum(s) < targetQueLen(s) do . §4.3
3: if Exist available tasks t for scheduling to s then
4: Push t to Site Manager in s
5: else
6: Breakdown task dependency judiciously . §4.4

. Operations in Site Manager
7: if Receive task assignment then
8: Queue up task
9: else if Receive task completion then

10: Notify coordinator and schedule next task t
11: if Task t requires large remote read then
12: Issue fetch request to the scheduled worker . §5.1
13: else
14: Launch task t
15: else if Input is ready for computation task t then
16: Activate and launch task t . §5.3

. Operations in Task Manager
17: if Receive task assignment t then
18: Execute task t
19: else if Detect task completion then
20: Notify Site Manager for new task assignment
21: else if Receive data fetch request then
22: Initiate communication task . §5.2

Figure 7: The interaction between the central coordinator, site
manager and task manager.

tasks to workers maximizes flexibility. For example, the co-
ordinator assigns new tasks to a worker after it is notified of
new resource availability (e.g., due to task completion) from
that worker. Moreover, a variety of on-demand communica-
tion primitives, such as variable broadcasts and data shuffles,
are also initiated lazily by the coordinator and workers. In
the presence of high latency, however, late-binding results in
expensive coordination overhead (§2.2).

In this section, we describe how Sol pushes tasks to sites to
hide the expensive coordination latency (§4.1), the potential
benefits of push-based execution (§4.2) as well as how we
address the challenges in making it practical; i.e., how to
determine the right number of tasks to push to each site (§4.3),
how to handle dependencies between tasks (§4.4), and how
to perform well under failures and uncertainties (§4.5).

4.1 Early-Binding to Avoid High-Latency Coordination

Our core idea to hide coordination latency (tcoord) over high-
latency links is early-binding tasks to sites. Specifically, Sol
optimizes tcoord between the central coordinator and remote
workers (i) by pushing and queuing up tasks in each site; and
(ii) by pipelining task scheduling and execution across tasks.

Figure 8 compares the control flow in traditional designs
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Figure 8: Task execution control flows in traditional designs vs.
Sol. In Sol, tasks (denoted by colored rectangles) are queued at a
site manager co-located with workers.
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Figure 9: Sol adopts the push-based model to pipeline task
scheduling and data fetch.

with that in Sol. In case of late-binding, workers have to wait
for new task assignments from the remote coordinator. In con-
trast, the site manager in Sol directly dispatches a task already
queued up in its local queue and asynchronously notifies the
coordinator of task completions as well as the resource status
of the site. The coordinator makes new task placement deci-
sions and queues up tasks in site managers asynchronously,
while workers in that site are occupied with task executions.

Furthermore, this execution model enables us to pipeline
tcoord and tcomm for each individual task’s execution. When
the coordinator assigns a task to a site, it notifies the corre-
sponding upstream tasks (i.e., tasks in the previous stage) of
this assignment. As such, when upstream tasks complete, they
can proactively push their latency-bound output partitions di-
rectly to the site where their downstream tasks will execute,
even though the control messages containing task placements
may still be on-the-fly. As shown in Figure 9, pull-based
data fetches experience three sequential phases of communi-
cation; in contrast, the scheduling of downstream tasks and
their remote data reads are pipelined in the push-based model,
improving their completion times.

4.2 Why Does Early-Binding Help?

Assume that the coordinator continuously allocates tasks to
a remote site’s k CPUs. For each task completion, the pull-
based model takes one RTT for the coordinator to receive
the task completion notification and then send the next task
assignment; during this period, the task is queued up in the
coordinator for scheduling. Hence, on average, i−1

k RTTs are
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Figure 10: Job performance with Site- and Worker-Queue ap-
proaches. Variance in task durations increases from (a) to (c).

wasted before the ith task runs. The push-based model can
save up to i−1

k RTTs for the ith task by pipelining inter-task
assignments and executions. Our analysis over 44 datacenters
using the measured inter-site latencies shows that, compared
to late-binding, the push-based model can achieve an average
improvement of 153 ms for the data fetch of every down-
stream task (more details in Appendix A). Such gaps become
magnified at scale with a large number of small tasks, e.g., a
large fan-out, latency-sensitive job.

One may consider pulling multiple tasks for individual
workers at a time, but the push model provides more flexibility.
Pushing from the coordinator can react to online scheduling
better. When tasks arrive in an online manner, multiple tasks
may not be available for pulling at a time. e.g., when a new
task keeps arriving right after serving a pull request, pulling
multiple tasks degenerates into pulling one by one.

Moreover, by late-binding task assignments within the site,
our site-manager approach enables more flexibility than push-
ing tasks to individual workers (i.e., maintaining one queue
per worker). To evaluate this, we ran three workloads across
10 EC2 sites, where all workloads have the same average task
duration from TPC-DS benchmarks but differ in their distribu-
tions of task durations. Figure 10 shows that the site-manager
approach achieves superior job performance owing to better
work balance, particularly when task durations are skewed.

4.3 How to Push the Right Number of Tasks?

Determining the number of queued-up tasks for site managers
is crucial for balancing worker utilization versus job com-
pletion times. On the one hand, queuing up too few tasks
leads to underutilization, inflating tqueue due to lower system
throughput. On the other hand, queuing up too many leads to
sub-optimal work assignments because of insufficient knowl-
edge when early-binding, which inflates job completion times
as well (see Appendix B for more details).

Our target: Intuitively, as long as a worker is not waiting to
receive work, queuing more tasks does not provide additional
benefit for improving utilization. To fully utilize the resource,
we expect the total execution time of the queued-up tasks
will occupy the CPU before the next task assignment arrives,
which is the key to strike the balance between utilization and
job performance.

Our solution: When every task’s duration is known, the
number of queued-up tasks can adapt to the instantaneous
load such that the total required execution time of the queued-
up tasks keeps all the workers in a site busy, but not pushing
any more to retain maximum flexibility for scheduling across
sites. However, individual task durations are often highly
skewed in practice [8], while the overall distribution of task
durations is often stable over a short period [20, 44].

Even without presuming task-specific characteristics or
distributions, we can still approximate the ideal queue length
at every site dynamically for a given resource utilization target.
We model the total available cycles in each scheduling round
as our target, and the duration of each queued-up task is a
random variable. This can be mapped into a packing problem,
where we have to figure out how many random variables to
sum up to achieve the targeted sum.

When the individual task duration is not available, we ex-
tend Hoeffding’s inequality, and inject the utilization target
into our model to determine the desired queue length (Ap-
pendix C for a formal result and performance analysis). Ho-
effding’s inequality is known to characterize how the sum of
random variables deviates from its expected value with the
minimum, the average, and the maximum of variables [23].
We extend it but filter out the outliers in tasks, wherein we
rely on three statistics – 5th percentile, average, and 95th
percentile (which are often stable) – of the task duration by
monitoring the tasks over a period. As the execution proceeds,
the coordinator in Sol inquires the model to generate the target
queue size, whereby it dynamically pushes tasks to each site
to satisfy the specified utilization. Note that when the network
latency becomes negligible, our model outputs zero queue
length as one would expect.

4.4 How to Push Tasks with Dependencies?

In the presence of task dependencies, where tasks may depend
on those in their parent stage(s), pushing tasks is challenging,
since it creates a tradeoff between the efficiency and qual-
ity of pipelining. For latency-sensitive tasks, we may want
to push downstream tasks to save round-trip coordinations
even before the upstream output is available. However, for
bandwidth-intensive tasks, pushing their downstream tasks
will not bring many benefits; this may even miss optimal
task placements due to insufficient knowledge about the out-
puts from all upstream tasks [45, 50]. Sol, therefore, has to
reconcile between latency- and bandwidth-sensitive tasks at
runtime without presuming task properties.

To achieve desired pipelining efficiency for latency-bound
tasks, Sol speculates the best placements for downstream
tasks. Our straw-man heuristic is first pushing the downstream
task to the site with the least work, with an aim to minimize
the queueing time on the site. Moreover, Sol can refine its
speculation by learning from historical trends (e.g., recurring
jobs) or the iterative nature of many jobs. For example, in
stream processing and machine learning, the output partitions
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for task rescheduling. (1) Upon receiving the update, C waits un-
til it gathers required information, then reschedules task, and (3)
cancels task in W2.

computed for every batch are largely similar [55], so are their
task placements [49]. As such, Sol can reuse the placement
decisions in the past run.

However, even when a bandwidth-intensive task is pushed
to a suboptimal site, Sol can gracefully retain the scheduling
quality via worker-initiated re-scheduling. Figure 12 shows
the control flow of the recovery process in Sol and the base-
line. In Figure 12(b), we push upstream tasks to workers W1
and W2, and downstream tasks are pushed only to W2. As
the upstream task in W1 proceeds, the task manager detects
large output is being generated, which indicates we are in the
regime of bandwidth-intensive tasks. (0) Then W1 notifies the
coordinator C of task completion and a CANCEL message
to initiate rescheduling for the downstream task. (1) Upon re-
ceiving the CANCEL message, the coordinator will wait until
it collects output metadata from W1 and W2. The coordinator
then reschedules the downstream task, and (2) notifies W2
to cancel the pending downstream task scheduled previously.
Note that the computation of a downstream task will not be
activated unless it has gathered the upstream output.

As such, even when tasks are misclassified, Sol performs
no worse than the baseline (Figure 12(a)). First, the recovery
process does not introduce more round-trip coordinations due
to rescheduling, so it does not waste time. Moreover, even in
the worst case, where all upstream tasks have preemptively
pushed data to the downstream task by mistake, the total
amount of data transfers is capped by the input size of the
downstream. However, note that the output is pushed only if it
is latency-sensitive, so the amount of wasted bandwidth is also
negligible as the amount of data transfers is latency-bound.

4.5 How to Handle Failures and Uncertainties?

Fault tolerance and straggler mitigation are enforced by the
local site manager and the global coordinator. Site managers
in Sol try to restart a failed task on other local workers; failures
of long tasks or persistent failures of short tasks are handled
via coordination with the remote coordinator. Similarly, site
managers track the progress of running tasks and selectively
duplicate small tasks when their execution lags behind. Sol
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Figure 13: High-level overview of data plane decoupling.

can gracefully tolerate site manager failures by redirecting
workers’ control messages to the central coordinator, while a
secondary site manager takes over (§7.5).

Moreover, Sol can guarantee a bounded performance loss
due to early-binding even under uncertainties. To ensure a
task at the site manager will not experience arbitrarily large
queueing delay, the site manager can withdraw the task as-
signment when the task queueing delay on this site exceeds ∆.
As such, the total performance loss due to early-binding is (∆
+ RTT), since it takes one RTT to push and reclaim the task.

5 Decoupling in the Data Plane
In existing execution engines, the amount of CPU allocated
to a task when it is reading data is the same as when it later
processes the data. This tight coupling between resources
leads to resource underutilization (§2.2). In this section, we
introduce how to improve tqueue by mitigating HOL blocking.

5.1 How to Decouple the Provisioning of Resource?

To remove the coupling in resource provisioning, Sol intro-
duces dedicated communication tasks,5 which fetch task input
from remote worker(s) and deserialize the fetched data, and
computation tasks, which perform the computation on data.
The primary goal of decoupling is to scale down the CPU
requirements when multiple tasks have to fetch data over
low-bandwidth links.

Communication and computation tasks are internally man-
aged by Sol without user intervention. As shown in Figure 13,
1 when a task is scheduled for execution, the site manager
checks its required input for execution and reserves the pro-
visioned resource on the scheduled worker. 2 Bandwidth-
insensitive tasks will be dispatched directly to the worker to
execute. 3a However, for tasks that need large volumes of
remote data, the site manager will notify the task manager
on the scheduled worker to set up communication tasks for
data preparation. 3b At the same time, the corresponding
computation tasks be marked as inactive and do not start their
execution right away. Once input data is ready for computa-
tion, the site manager will activate corresponding computation
tasks to perform computation on the fetched data.

5Each communication task takes one CPU core by default in our design.
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Although decoupling the provisioning of computation and
communication resource will not speed up individual tasks,
it can greatly improve overall resource utilization. When the
input for a task’s computation is being fetched by the com-
munication task, by oversubscribing multiple computation
tasks’ communication to fewer communication tasks, Sol can
release unused CPUs and repurpose them for other tasks. In
practice, even the decoupled job can benefit from its own
decoupling; e.g., when tasks in different stages can run in
parallel, which is often true for jobs with complicated DAGs,
computation tasks can take up the released CPUs from other
stages in decoupling.

5.2 How Many Communication Tasks to Create?

Although decoupling is beneficial, we must avoid hurting the
performance of decoupled jobs while freeing up CPUs. A
key challenge in doing so is to create the right number of
communication tasks to fully utilize the available bandwidth.
Creating too many communication tasks will hog CPUs, while
creating too few will slow down the decoupled job.

We use a simple model to characterize the number of re-
quired communication tasks. There are two major operations
that communication tasks account for: (i) fetch data with CPU
cost CI/O every time unit; (ii) deserialize the fetched data si-
multaneously with CPU cost Cdeser in unit time. When the
decoupling proceeds with I/O bandwidth B, the total require-
ment of communication tasks N can be determined based on
the available bandwidth (N = B × (CI/O +Cdeser)).

Referring to the network throughput control, we use an
adaptive tuning algorithm. When a new task is scheduled for
decoupling, the task manager first tries to hold the provisioned
CPUs to avoid resource shortage in creating communication
tasks. However, the task manager will opportunistically can-
cel the launched communication task after its current fetch
request completes, and reclaim its CPUs if launching more
communication tasks does not improve bandwidth utilization
any more.6 During data transfers, the task manager moni-
tors the available bandwidth using an exponentially weighted
moving average (EWMA).7 As such, the task manager can
determine the number of communication tasks required cur-
rently: Ncurrent =

⌈Bcurrent
Bold

×Nold
⌉
. Therefore, it will launch

more communication tasks when more bandwidth is available
and the opposite when bandwidth decreases. Note that the
number of communication tasks is limited by the total provi-
sioned CPUs for that job to avoid performance interference.

5.3 How to Recover CPUs for Computation?

Sol must also ensure that the end-to-end completion time on
computation experiences negligible inflation. This is because
when the fetched data is ready for computation, the decoupled

6This introduces little overhead, since the data fetch is in a streaming
manner, wherein the individual block is small.

7 Bcurrent = α Bmeasured + (1−α) Bold , where α is the smoothing factor
(α = 0.2 by default) and B denotes the available bandwidth over a period.
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Figure 14: Three strategies to manage decoupled jobs. We adopt
the Greedy strategy: 1 when the downstream tasks start, they hold
the reserved CPUs. 2 But the task manager will reclaim the un-
used CPUs, and 3 activate the computation task once its input
data is ready. The first trough marks the stage boundary.

job may starve if continuously arriving computation tasks
take up its released computation resources.

We refer to not decoupling as the baseline strategy, while
waiting for the entire communication stage to finish as the
lazy strategy. The former wastes resources, while the latter
can hurt the decoupled job. Figure 14 depicts both.

Instead, Sol uses a greedy strategy, whereby as soon as
some input data becomes ready (from upstream tasks), the site
manager will prioritize the computation task corresponding
to that data over other jobs and schedule it. As such, we can
gradually increase its CPU allocation instead of trying to
acquire all at once or holding onto all of them throughout.

5.4 Who Gets the Freed up CPUs?

Freed up CPUs from the decoupled jobs introduce an addi-
tional degree of freedom in scheduling. Resource schedulers
can assign them in a FIFO or fair manner. As the duration of
communication tasks can be estimated by the remaining data
fetches and the available bandwidth, the scheduler can plan
for the extra resources into the future, e.g., similar to [19].

6 Implementation
While our design criteria are not married to specific execution
engines, we have implemented Sol in a way that keeps it
API compatible with Apache Spark [2] in order to preserve
existing contributions in the big data stack.

Control and Data Plane To implement our federated archi-
tecture, we add site manager modules to Spark, wherein each
site manager keeps a state store for necessary metadata in task
executions, and the metadata is shared across tasks to avoid
redundant requests to the remote coordinator. The central
coordinator coordinates with the site manager by heartbeat
as well as the piggyback information in task updates. During
executions, the coordinator monitors the network latency us-
ing EWMA in a one second period. This ensures that we are
stable despite transient latency spikes. When the coordinator
schedules a task to the site, it assigns a dummy worker for the
pipelining of dependent tasks (e.g., latency-bound output will
be pushed to the dummy worker). Similar to delay scheduling,
we set the queueing delay bound ∆ to 3 seconds [56]. Upon
receiving the completion of upstream tasks, the site manager
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can schedule the downstream task more intelligently with late-
binding. Meanwhile, the output information from upstream
tasks is backed up in the state store until their completions.

Support for Extensions Our modifications are to the core
of Apache Spark, so users can enjoy existing Spark-based
frameworks on Sol without migrations of their codebase.
Moreover, for recent efforts on WAN-aware optimizations,
Sol can support those more educated resource schedulers or
location-conscious job schedulers by replacing the default,
but further performance analysis of higher-layer optimizations
is out of the scope of this paper. To the best of our knowl-
edge, Sol is the first execution engine that can optimize the
execution layer across the design space.

7 Evaluation
In this section, we empirically evaluate Sol through a series
of experiments using micro and industrial benchmarks. Our
key results are as follows:
• Sol improves performance of individual SQL and machine

learning jobs by 4.9×–11.5× w.r.t. Spark and Tez execu-
tion engines in WAN settings. It also improves streaming
throughput by 1.35×–3.68× w.r.t. Drizzle (§7.2).

• In online experiments, Sol improves the average job per-
formance by 16.4× while achieving 1.8× higher utiliza-
tion (§7.3).

• Even in high bandwidth-low latency (LAN) setting, Sol
improves the average job performance by 1.3× w.r.t.
Spark; its improvement in low bandwidth-low latency
setting is 3.9× (§7.4).

• Sol can recover from failures faster than its counterparts,
while effectively handling uncertainties (§7.5).

7.1 Methodology

Deployment Setup We first deploy Sol in EC2 to evaluate
individual job performance using instances distributed over
10 regions.8 Our cluster allocates 4 m4.4xlarge instances in
each region. Each has 16 vCPUs and 64GB of memory. To in-
vestigate Sol performance on multiple jobs in diverse network
settings, we set up a 40-node cluster following our EC2 set-
ting, and use Linux Traffic Control to perform network traffic
shaping to match our collected profile from 10 EC2 regions.

Workloads We use three types of workloads in evaluations:
1. SQL: we evaluate 110 industry queries in TPC-DS/TPC-

H benchmarks [5, 6]. Performance on them is a good
demonstration of how good Sol would perform in real-
world applications handling jobs with complicated DAGs.

2. Machine learning: we train three popular federated learn-
ing applications: linear regression, logistic regression, and
k-means, from Intel’s industry benchmark [26]. Each train-
ing data consists of 10M samples, and the training time

8California, Sydney, Oregon, Ohio, Tokyo, Mumbai, Seoul, Singapore,
Sao Paulo and Frankfurt.

of each iteration is dominated by computation.
3. Stream processing: we evaluate the maximum throughput

that an execution design can sustain for WordCount and
TopKCount while keeping the end-to-end latency by a
given target. We define the end-to-end latency as the time
from when records are sent to the system to when results
incorporating them appear.

Baselines We compare Sol to the following baselines:
1. Apache Spark [54] and Apache Tez [47]: the mainstream

execution engines for generic workloads in datacenter and
wide-area environments.

2. Drizzle [49]: a recent engine tailored for streaming appli-
cations, optimizing the scheduling overhead.

Metrics Our primary metrics to quantify performance are
the overarching user-centric and operator-centric objectives,
including job completion time (JCT) and resource utilization.

7.2 Performance Across Diverse Workloads in EC2

In this section, we evaluate Sol’s performance on individual
jobs in EC2, with query processing, machine learning, and
streaming benchmarks.

Sol outperforms existing engines Figure 15 shows the dis-
tribution of query completion times of 110 TPC queries in-
dividually on (10, 100, 1000) scale factor datasets. As ex-
pected, Sol and Spark outperform Tez by leveraging their
in-memory executions. Meanwhile, Sol speeds up individual
queries by 4.9× (11.5×) on average and 8.6× (23.3×) at the
95th percentile over Spark (Tez) for the dataset with scale
factor 10. While these queries become more bandwidth- and
computation- intensive as we scale up the dataset, Sol can
still offer a noticeable improvement of 3.4× and 1.97× on
average compared to Spark on datasets with scale factors 100
and 1000, respectively. More importantly, Sol outperforms
the baselines across all queries.

Sol also benefits machine learning and stream processing.
For such predictable workloads, Sol pipelines the scheduling
and data communication further down their task dependencies.
Figure 16 reports the average duration across 100 iterations
in machine learning benchmarks, where Sol improves the
performance by 2.64×-3.01× w.r.t. Spark.

Moreover, Sol outperforms Drizzle [49] in streaming work-
loads. Figure 17 shows that Sol achieves 1.35×–3.68× higher
throughput than Drizzle. This is because Sol follows a push-
based model in both control plane coordinations and data
plane communications to pipeline round-trips for inter-site
coordinations, while Drizzle optimizes the coordination over-
head between the coordinator and workers. Allowing a larger
target latency improves the throughout, because the fraction
of computation time throughout the task lifespan increases,
and thus the benefits from Sol become less relevant.

Sol is close to the upper bound performance To explore
how far Sol is from the optimal, we compare Sol’s perfor-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    281



100 101 102

Query Completion Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Upper Bound
Sol
Spark
Tez

(a) Scale Factor = 10

100 101 102

Query Completion Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Upper Bound
Sol
Spark
Tez

(b) Scale Factor = 100

100 101 102

Query Completion Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Upper Bound
Sol
Spark
Tez

(c) Scale Factor = 1000

Figure 15: Performance of Sol, Spark, and Tez on TPC query processing benchmark.
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Figure 16: Performance on machine learning.
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Figure 17: Performance on stream processing. Higher is better.

mance in the high latency setting against Sol in a hypothetical
latency-free setting 9 , which is a straightforward upper bound
on its performance. While high latencies lead to an order-of-
magnitude performance degradation on Spark, Sol is effec-
tively approaching the optimal. As shown in Figure 15 and
Figure 16, Sol’s performance is within 3.5× away from the
upper bound. As expected in Figure 15(c), this performance
gap narrows down as Sol has enough work to queue-up for
hiding the coordination delay.

7.3 Online Performance Breakdown

So far we have evaluated Sol in the offline setting with indi-
vidual jobs. Here we move on to evaluate Sol with diverse
workloads running concurrently and arriving in an online
fashion with our cluster. Specifically, we evaluate Sol in an
online setting, where we run 160 TPC queries – randomly
drawn from the (10, 100)-scale TPC benchmarks – run as

9We create a 40-node cluster in a single EC2 region.
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Figure 18: Resource utilization over time.

foreground, interactive jobs, and bandwidth-intensive Cloud-
Sort jobs [3] – each has 200 GB or 1 TB GB input – in the
background. The TPC queries are submitted following a Pois-
son process with an average inter-arrival time of 10 seconds,
while the CloudSort jobs are submitted every 300 seconds.

We evaluate Sol and Spark using two job schedulers:
1. FIFO: Jobs are scheduled in the order of their arrivals,

thus easily resulting in Head-of-Line (HOL) blocking;
2. Fair sharing: Jobs get an equal share of resources, but the

execution of early submitted jobs will be prolonged.
These two schedulers are prevalent in real deployments [1,22],
especially when job arrivals and durations are unpredictable.

Improvement of resource utilization Figure 18 shows a
timeline of normalized resource usage for both network band-
width and total CPUs with the FIFO scheduler. A groove in
CPU utilization and a peak in network utilization dictate the
execution of bandwidth-intensive background jobs. Similarly,
a low network utilization but high CPU utilization implicate
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Figure 19: JCT with online job arrival using different cluster
schedulers. Sol- is Sol without data plane decoupling.

the execution of foreground jobs. We observe Sol improves
the CPU utilization by 1.8× over Spark. The source of this
improvement comes from both control and data planes: (i) Sol
pipelines high-latency coordinations, and thus workers are
busy in running tasks all the time. (ii) Sol flexibly repurposes
the idle CPU resources in the presence of bandwidth-intensive
jobs, thus achieving higher utilizations by orchestrating all
jobs. Note that the CPU resource is not always fully satu-
rated in this evaluation, because the cluster is not extremely
heavy-loaded given the arrival rate. Therefore, we believe
Sol can provide even better performance with heavy work-
loads, wherein the underutilized resource can be repurposed
for more jobs with decoupling. Results were similar for the
fair scheduler too.

Improvement of JCTs Figure 19(a) and Figure 19(b) re-
port the distribution of job completion times with FIFO and
fair schedulers respectively. The key takeaways are the follow-
ing. First, simply applying different job schedulers is far from
optimal. With the FIFO scheduler, when CloudSort jobs are
running, all the frontend jobs are blocked as background jobs
hog all the available resources. While the fair scheduler miti-
gates such job starvation by sharing resource across jobs, it
results in a long tail as background jobs are short of resources.

Instead, Sol achieves better job performance by improving
both the intra-job and inter-job completions in the task exe-
cution level: (i) Early-binding in the control plane improves
small jobs, whereby the cluster can finish more jobs in a given
time. Hence, even the simple pipelining can achieve an aver-
age improvement of 2.6× with the FIFO scheduler and 2.5×
with the fair scheduler. (ii) With data plane decoupling, the
latency-sensitive jobs can temporarily enjoy under-utilized
resource without impacting the bandwidth-intensive jobs. We
observe the performance loss of bandwidth-intensive job is
less than 0.5%. As the latency-sensitive jobs complete faster,
bandwidth-intensive jobs can take up more resource. As such,
Sol further improves the average JCTs w.r.t. Spark with both
FIFO (average 16.4×) and fair schedulers (average 8.3×).

7.4 Sol’s Performance Across the Design Space

We next rerun the prior online experiment to investigate Sol’s
performance in different network conditions with our cluster.
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Figure 20: Sol performance in other design space.
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Figure 21: Sol performance under latency variations.

High bandwidth-low latency network In this evaluation,
each machine has 10 Gbps bandwidth, and the latency across
machines is <1 ms. Figure 20 shows the distribution of JCTs.
The benefits of data plane decoupling depend on the time
spent on data exchanges over the network. Although jobs are
prone to finishing faster in this favorable environments, Sol
can still improve over Spark by 1.3× on average by mitigating
the HOL blocking with the decoupling in task executions.

Low bandwidth-low latency network In practice, users
may deploy cheap VMs to perform time-insensitive jobs due
to budgetary constraints. We now report the JCT distribution
in such a setting, where each machine has 1 Gbps low band-
width and negligible latency. As shown in Figure 20(b), Sol
largely outperforms Spark by 3.9×. This gain is again due
to the presence of HOL blocking in Spark, where bandwidth-
intensive jobs hog their CPUs when tasks are reading large
output partitions over the low-bandwidth network.

Note that the high latency-high bandwidth setting rarely
exists. As such, Sol can match or achieve noticeable improve-
ment over existing engines across all practical design space.

7.5 Sol’s Performance Under Uncertainties

As a network-aware execution engine, Sol can tolerate differ-
ent uncertainties with its federated design.

Uncertainties in network latency While Sol pushes tasks
to site managers with early-binding under high network la-
tency, its performance is robust to latency jitters. We evaluate
Sol by continuously feeding our cluster with inference jobs;
each scans a 30 GB dataset and the duration of each task is
around 100 ms. We snapshot a single site experiencing tran-
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Figure 22: Impact of different failures on iteration duration for
Sol and Spark: (a) Sol site manager failure, (b) task failure, (c)
node failure , and (d) site-wide failure.

sient or lasting latency variations. As shown in Figure 21,
Sol proceeds more tasks than Spark with early-binding of
tasks. Moreover, Sol can efficiently react to RTT variations
by adaptively tuning its queue size.

Uncertainties in failure Figure 22 compares Sol’s perfor-
mance with Spark under different failures. In this evaluation,
we train a long running linear regression in our 10-site deploy-
ment, and each iteration performs two stages: training on the
data and the aggregation of updates. When the site manager
fails (a), Sol restarts the site manager on other local machines,
and reschedules the missing queued-up tasks. The recovery
of site managers is pipelined with task executions, experi-
encing little overhead in job performance. Task failures (b)
and machine failures (c) in Spark require a tight coordination
with the remote coordinator, but Sol handles such failures by
coordinating the site manager. Upon detecting task failures,
the site manager restarts the task on other locally available
machines with its metadata, while asynchronously notifying
the coordinator. As such, Sol suffers little overhead by hiding
the failures silently. Although the coordinator needs to take
charge of rescheduling in both Sol and Spark under site-wide
failures (d), tasks in Sol complete faster.

8 Discussion and Future Work
Fine-grained queue management. By capturing the range
of task durations, Sol pushes the right number of tasks to site
managers at runtime. However, Hoeffding’s inequality can
be suboptimal, especially when the variance of task dura-
tions becomes much greater than their average [23]. Further
investigations on the queue management of site managers
are needed. To this end, one possible approach is to build a
context-aware machine learning model (e.g., reinforcement
learning) to decide the optimal queue length [13].

Performance analysis of geo-aware efforts. As the first
federated execution engine for diverse network conditions, Sol
can serve a large body of existing efforts for geo-distributed
data analytics [28, 45, 50]. Although these works do not tar-
get latency-bound tasks, for which Sol shows encouraging
improvements with control plane optimizations, it would be
interesting to investigate Sol’s improvement for bandwidth-
intensive workloads after applying techniques from existing
geo-distributed frameworks.

9 Related Work
Geo-distributed storage and data analytics Numerous ef-
forts strive to build frameworks operating on geo-distributed
data. Recent examples include geo-distributed data storage
[35, 53] and data analytics frameworks [4, 24]. Geode [51]
aims at generating query plans that minimize data transfers
over the WAN, while Clarinet [50] and Iridium [45] develop
the WAN-aware query optimizer to optimize query response
time subject to heterogeneous WAN bandwidth. These op-
timizations for data analytics lie on the scheduler layer and
could transparently leverage Sol for further gains (§6).

Data Processing Engines The explosion of data volumes
has fostered the world of MapReduce-based parallel computa-
tions [18]. Naiad [40] and Flink [12] express data processing
as pipelined fault-tolerant data flows, while the batch process-
ing on them performs similar to Spark [54]. The need for ex-
pressive user-defined optimizations motivates Dryad [29] and
Apache Tez [47] to enable runtime optimizations on execution
plans. These paradigms are designed for well-provisioned net-
works. Other complementary efforts focus on reasoning about
system performance [41, 42], or decoupling communication
from computation to further optimize data shuffles [14, 15].
Our work bears some resemblance, but our focus is on design-
ing a network-aware execution engine.

Speeding up data-parallel frameworks Although Nim-
bus [37] and Drizzle [49] try to speed up execution en-
gines, they focus on amortizing the computation overhead
of scheduling for iterative jobs. Hydra [17] democratizes the
resource management for jobs across multiple groups. While
Yaq-c [46] discusses the tradeoff between utilization and job
performance in queue management, its solution is bound to
specific task durations without dependencies. Moreover, we
optimize task performance inside execution engines.

10 Conclusion
As modern data processing expands due to changing work-
loads and deployment scenarios, existing execution engines
fall short in meeting the requirements of diverse design space.
In this paper, we explored the possible designs beyond those
for datacenter networks and presented Sol, a federated exe-
cution engine that emphasizes an early-binding design in the
control plane and decoupling in the data plane. In comparison
to the state-of-the-art, Sol can match or achieve noticeable
improvements in job performance and resource utilization
across all practical points in the design space.
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A Benefits of Pipelining
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Figure 23: Improvement of Push-based Model in (§4.2) .

To investigate the benefit of pipelining the scheduling and
data fetch of a downstream task, we assume zero queuing time
and emulate the inter-site coordinations with our measured
latency across 44 datacenters on AWS, Azure and Google
Cloud. We define the improvement as the difference between
the duration of the pull-based model and that of our proposed
push-based model for every data fetch (Figure 9). Our results
in Figure 23 report we can achieve an average improvement
of 153 ms.

Understandably, such benefit is more promising in consid-
eration of the task queuing time, as pushing the remote data
is even pipelined with the task spin-wait for scheduling.

B Impact of Queue Length
We quantify the impact of queue size with the aforementioned
three workloads (in (§4.2)). In this experiment, we analyze
three distinct sites, where the network latency from Site A, B
and C to the centralized coordinator is 130 ms, 236 ms and
398 ms, respectively. As shown in Figure 24, queuing up too
many or too few tasks can hurt job performance.

C Determining the Queue Length
Lemma 1. For a given utilization level δ and confidence
interval α (i.e., Pr[Util. > δ]> α), the queue length K for S
working slots satisfies:

K ≥M− C
2
+

1
2Davg

√
(CDavg)2−4MCDavg (1)

where D5th and D95th denote the 5th and 95th percentile of
task durations respectively, and Davg denotes the average task
duration. M = δRT T×S

Davg
, C = 1

2

(D95th−D5th
Davg

)2 · logα. The first
term M depicts the expectation, while the rest capture the
skewness of distributions and confidence.

This is true for any distribution of task durations. Unfor-
tunately, we omit the proof for brevity. Davg, D5th and D95th
are often stable in a large cluster, and thus available from the
historical data. α is the configurable confidence level, which
is often set to 99% [32, 38], and δ is set to ≥ 100% to guaran-
tee full utilization. Note that from Eq. 1, when task durations
follow the uniform distribution, our model ends up with the
expectation M. Similarly, when the RTT becomes negligible,
this outputs zero queue length.
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Figure 24: Impact of Queue Size on Job Completion Time (JCT).

Our evaluations show this model can provide encouraging
performance, wherein we reran the prior experiments with the
workloads mentioned above (§4.3). We provide the results for
workloads with Pareto and TPC-DS distributions by injecting
different utilizations in theory, since results for the Uniform
distribution are concentrated on a single point (i.e., the ex-
pectation M). As shown in Figure 25, the queue length with
100% utilization target locates in the sweet spot of JCTs.
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Figure 25: JCT performance with different utilization targets.

Note that when more task information is available, one
can refine this range better; e.g., the bound of Eq. (1) can be
improved with Chernoff’s inequality when the distribution of
task durations is provided.
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Abstract: Modern distributed machine learning (ML) train-
ing workloads benefit significantly from leveraging GPUs.
However, significant contention ensues when multiple such
workloads are run atop a shared cluster of GPUs. A key ques-
tion is how to fairly apportion GPUs across workloads. We
find that established cluster scheduling disciplines are a poor
fit because of ML workloads’ unique attributes: ML jobs have
long-running tasks that need to be gang-scheduled, and their
performance is sensitive to tasks’ relative placement.

We propose THEMIS, a new scheduling framework for ML
training workloads. It’s GPU allocation policy enforces that
ML workloads complete in a finish-time fair manner, a new
notion we introduce. To capture placement sensitivity and
ensure efficiency, THEMIS uses a two-level scheduling archi-
tecture where ML workloads bid on available resources that
are offered in an auction run by a central arbiter. Our auction
design allocates GPUs to winning bids by trading off fairness
for efficiency in the short term, but ensuring finish-time fair-
ness in the long term. Our evaluation on a production trace
shows that THEMIS can improve fairness by more than 2.25X

and is ~5% to 250% more cluster efficient in comparison to
state-of-the-art schedulers.

1 Introduction
With the widespread success of machine learning (ML) for
tasks such as object detection, speech recognition, and ma-
chine translation, a number of enterprises are now incorporat-
ing ML models into their products. Training individual ML
models is time- and resource-intensive with each training job
typically executing in parallel on a number of GPUs.

With different groups in the same organization training ML
models, it is beneficial to consolidate GPU resources into a
shared cluster. Similar to existing clusters used for large scale
data analytics, shared GPU clusters for ML have a number of
operational advantages, e.g., reduced development overheads,
lower costs for maintaining GPUs, etc. However, today, there
are no ML workload-specific mechanisms to share a GPU
cluster in a fair manner.

Our conversations with cluster operators indicate that fair-
ness is crucial; specifically, that sharing an ML cluster be-
comes attractive to users only if they have the appropriate
sharing incentive. That is, if there are a total N users sharing
a cluster C, every user’s performance should be no worse than
using a private cluster of size C

N
. Absent such incentive, users

are either forced to sacrifice performance and suffer long wait
times for getting their ML jobs scheduled, or abandon shared
clusters and deploy their own expensive hardware.

Providing sharing incentive through fair scheduling mech-

anisms has been widely studied in prior cluster scheduling
frameworks, e.g., Quincy [18], DRF [8], and Carbyne [11].
However, these techniques were designed for big data work-
loads, and while they are used widely to manage GPU clusters
today, they are far from effective.

The key reason is that ML workloads have unique charac-
teristics that make existing “fair” allocation schemes actually
unfair. First, unlike batch analytics workloads, ML jobs have
long running tasks that need to be scheduled together, i.e.,
gang-scheduled. Second, each task in a job often runs for a
number of iterations while synchronizing model updates at
the end of each iteration. This frequent communication means
that jobs are placement-sensitive, i.e., placing all the tasks
for a job on the same machine or the same rack can lead to
significant speedups. Equally importantly, as we show, ML
jobs differ in their placement-sensitivity (Section 3.1.2).

In Section 3, we show that having long-running tasks means
that established schemes such as DRF – which aims to equally
allocate the GPUs released upon task completions – can arbi-
trarily violate sharing incentive. We show that even if GPU
resources were released/reallocated on fine time-scales [13],
placement sensitivity means that jobs with same aggregate
resources could have widely different performance, violating
sharing incentive. Finally, heterogeneity in placement sensi-
tivity means that existing scheduling schemes also violate

Pareto efficiency and envy-freedom, two other properties that
are central to fairness [34].

Our scheduler, THEMIS, address these challenges, and sup-
ports sharing incentive, Pareto efficiency, and envy-freedom
for ML workloads. It multiplexes a GPU cluster across ML

applications (Section 2), or apps for short, where every app
consists of one or more related ML jobs, each running with
different hyper-parameters, to train an accurate model for a
given task. To capture the effect of long running tasks and
placement sensitivity, THEMIS uses a new long-term fairness
metric, finish-time fairness, which is the ratio of the running
time in a shared cluster with N apps to running alone in a 1

N

cluster. THEMIS’s goal is thus to minimize the maximum fin-
ish time fairness across all ML apps while efficiently utilizing
cluster GPUs. We achieve this goal using two key ideas.

First, we propose to widen the API between ML apps and
the scheduler to allow apps to specify placement preferences.
We do this by introducing the notion of a round-by-round
auction. THEMIS uses leases to account for long-running ML
tasks, and auction rounds start when leases expire. At the start
of a round, our scheduler requests apps for their finish-time
fairness metrics, and makes all available GPUs visible to a
fraction of apps that are currently farthest in terms of their
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fairness metric. Each such app has the opportunity to bid for
subsets of these GPUs as a part of an auction; bid values
reflect the app’s new (placement sensitive) finish time fairness
metric from acquiring different GPU subsets. A central arbiter
determines the global winning bids to maximize the aggregate
improvement in the finish time fair metrics across all bidding
apps. Using auctions means that we need to ensure that apps
are truthful when they bid for GPUs. Thus, we use a partial

allocation auction that incentivizes truth telling, and ensures
Pareto-efficiency and envy-freeness by design.

While a far-from-fair app may lose an auction round, per-
haps because it is placed less ideally than another app, its bid
values for subsequent auctions naturally increase (because a
losing app’s finish time fairness worsens), thereby improving
the odds of it winning future rounds. Thus, our approach con-
verges to fair allocations over the long term, while staying
efficient and placement-sensitive in the short term.

Second, we present a two-level scheduling design that con-
tains a centralized inter-app scheduler at the bottom level,
and a narrow API to integrate with existing hyper-parameter
tuning frameworks at the top level. A number of existing
frameworks such as Hyperdrive [29] and HyperOpt [3] can in-
telligently apportion GPU resources between various jobs in
a single app, and in some cases also terminate a job early if its
progress is not promising. Our design allows apps to directly
use such existing hyper parameter tuning frameworks. We de-
scribe how THEMIS accommodates various hyper-parameter
tuning systems and how its API is exercised in extracting
relevant inputs from apps when running auctions.

We implement THEMIS atop Apache YARN 3.2.0, and
evaluate by replaying workloads from a large enterprise trace.
Our results show that THEMIS is at least 2.25X more fair
(finish-time fair) than state-of-the-art schedulers while also
improving cluster efficiency by ~5% to 250%. To further
understand our scheduling decisions, we perform an event-
driven simulation using the same trace, and our results show
that THEMIS offers greater benefits when we increase the
fraction of network intensive apps, and the cluster contention.

2 Motivation
We start by defining the terminology used in the rest of the
paper. We then study the unique properties of ML workload
traces from a ML training GPU cluster at Microsoft. We end
by stating our goals based on our trace analysis and conversa-
tions with the cluster operators.

2.1 Preliminaries
We define an ML app, or simply an “app”, as a collection of
one or more ML model training jobs. Each app corresponds
to a user training an ML model for a high-level goal, such
as speech recognition or object detection. Users train these
models knowing the appropriate hyper-parameters (in which
case there is just a single job in the app), or they train a closely
related set of models (n jobs) that explore hyper-parameters

such as learning rate, momentum etc. [21, 29] to identify and
train the best target model for the activity at hand.

Each job’s constituent work is performed by a number of
parallel tasks. At any given time, all of a job’s tasks collec-
tively process a mini-batch of training data; we assume that
the size of the batch is fixed for the duration of a job. Each task
typically processes a subset of the batch, and, starting from
an initial version of the model, executes multiple iterations of
the underlying learning algorithm to improve the model. We
assume all jobs use the popular synchronous SGD [4].

We consider the finish time of an app to be when the best
model and relevant hyper-parameters have been identified.
Along the course of identifying such a model, the app may
decide to terminate some of its constituent jobs early [3, 29];
such jobs may be exploring hyper-parameters that are clearly
sub-optimal (the jobs’ validation accuracy improvement over
iterations is significantly worse than other jobs in the same
app). For apps that contain a single job, finish time is the time
taken to train this model to a target accuracy or maximum
number of iterations.

2.2 Characterizing Production ML Apps
We perform an analysis of the properties of GPU-based ML
training workloads by analyzing workload traces obtained
from Microsoft. The GPU cluster we study supports over
5000 unique users. We restrict our analysis to a subset of the
trace that contains 85 ML training apps submitted using a
hyper-parameter tuning framework.

GPU clusters are known to be heavily contented [19], and
we find this also holds true in the subset of the trace of ML
apps we consider (Figure 1). For instance, we see that GPU
demand is bursty and the average GPU demand is ~50 GPUs.

We also use the trace to provide a first-of-a-kind view
into the characteristics of ML apps. As mentioned in Section
2.1, apps may either train a single model to reach a target
accuracy (1 job) or may use the cluster to explore various
hyper-parameters for a given model (n jobs). Figure 2 shows
that ~10% of the apps have 1 job, and around ~90% of the
apps perform hyper-parameter exploration with as many as
100 jobs (median of 75 jobs). Interestingly, there is also a sig-
nificant variation in the number of hyper-parameters explored
ranging from a few tens to about a hundred (not shown).

We also measure the GPU time of all ML apps in the trace.
If an app uses 2 jobs with 2 GPUs each for a period of 10
minutes, then the GPU time for — the tasks would be 10
minutes each, the jobs would be 20 minutes each, and the app
would be 40 GPU minutes. Figure 3 and Figure 4 show the
long running nature of ML apps: the median app takes 11.5
GPU days and the median task takes 3.75 GPU hours. There
is a wide diversity with a significant fraction of jobs and apps
that are more than 10X shorter and many that are more than
10X longer.

From our analysis we see that ML apps are heterogeneous
in terms of resource usage, and number of jobs submitted.
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Figure 1: Aggregate GPU demand of
ML apps over time

Figure 2: Job count distribution across
different apps

Figure 3: ML app time ( = total GPU
time across all jobs in app) distribution

Figure 4: Distribution of Task GPU
times

Running times are also heterogeneous, but at the same time
much longer than, e.g., running times of big data analytics
jobs (typically a few hours [12]). Handling such heterogene-
ity can be challenging for scheduling frameworks, and the
long running nature may make controlling app performance
particularly difficult in a shared setting with high contention.

We next discuss how some of these challenges manifest in
practice from both cluster user and cluster operator perspec-
tives, and how that leads to our design goals for THEMIS.

2.3 Our Goal
Our many conversations with operators of GPU clusters re-
vealed a common sentiment, reflected in the following quote:

“ We were scheduling with a balanced approach ... with guidance

to ‘play nice’. Without firm guard rails, however, there were always

individuals who would ignore the rules and dominate the capacity. ”

— An operator of a large GPU cluster at Microsoft

With long app durations, users who dominate capacity im-
pose high waiting times on many other users. Some such users
are forced to “quit” the cluster as reflected in this quote:

“Even with existing fair sharing schemes, we do find users frus-

trated with the inability to get their work done in a timely way... The

frustration frequently reaches the point where groups attempt or

succeed at buying their own hardware tailored to their needs. ”

— An operator of a large GPU cluster at Microsoft

While it is important to design a cluster scheduler that
ensures efficient use of highly contended GPU resources,
the above indicates that it is perhaps equally, if not more
important, for the scheduler to allocate GPU resources in a
fair manner across many diverse ML apps; in other words,
roughly speaking, the scheduler’s goal should be to allow all
apps to execute their work in a “timely way”.

In what follows, we explain using examples, measurements,
and analysis, why existing fair sharing approaches when ap-
plied to ML clusters fall short of the above goal, which we
formalize next. We identify the need both for a new fairness
metric, and for a new scheduler architecture and API that
supports resource division according to the metric.

3 Finish-Time Fair Allocation
We present additional unique attributes of ML apps and dis-
cuss how they, and the above attributes, affect existing fair
sharing schemes.

3.1 Fair Sharing Concerns for ML Apps
The central question is - given R GPUs in a cluster C and N

ML apps, what is a fair way to divide the GPUs.
As mentioned above, cluster operators indicate that the pri-

mary concern for users sharing an ML cluster is performance
isolation that results in “timely completion”. We formalize
this as: if N ML Apps are sharing a cluster then an app should
not run slower on the shared cluster compared to a dedicated
cluster with 1

N
of the resources. Similar to prior work [8],

we refer to this property as sharing incentive (SI). Ensuring
sharing incentive for ML apps is our primary design goal.

In addition, resource allocation mechanisms must satisfy
two other basic properties that are central to fairness [34]:
Pareto Efficiency (PE) and Envy-Freeness (EF) 1

While prior systems like Quincy [18], DRF [8] etc. aim at
providing SI, PE and EF, we find that they are ineffective for
ML clusters as they fail to consider the long durations of ML

tasks and placement preferences of ML apps.
3.1.1 ML Task Durations
We empirically study task durations in ML apps and show how
they affect the applicability of existing fair sharing schemes.

Figure 4 shows the distribution of task durations for ML
apps in a large GPU cluster at Microsoft. We note that the
tasks are, in general, very long, with the median task roughly
3.75 hours long. This is in stark contrast with, e.g., big data
analytics jobs, where tasks are typically much shorter in dura-
tion [26].

State of the art fair allocation schemes such as DRF [8]
provide instantaneous resource fairness. Whenever resources
become available, they are allocated to the task from an app
with the least current share. For big data analytics, where
task durations are short, this approximates instantaneous re-
source fairness, as frequent task completions serve as oppor-
tunities to redistribute resources. However, blindly applying
such schemes to ML apps can be disastrous: running the much
longer-duration ML tasks to completion could lead to newly
arriving jobs waiting inordinately long for resources. This
leads to violation of SI for late-arriving jobs.

Recent “attained-service” based schemes address this prob-
lem with DRF. In [13], for example, GPUs are leased for a
certain duration, and when leases expire, available GPUs are
given to the job that received the least GPU time thus far;

1Informally, a Pareto Efficient allocation is one where no app’s allocation
can be improved without hurting some other app. And, envy-freeness means
that no app should prefer the resource allocation of an other app.
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VGG16 Inception-v3
4 P100 GPUs on 1 server 103.6 images/sec 242 images/sec

4 P100 GPUs across 2 servers 80.4 images/sec 243 images/sec
Table 1: Effect of GPU resource allocation on job throughput. VGG16 has a
machine-local task placement preference while Inception-v3 does not.

this is the “least attained service”, or LAS allocation policy.
While this scheme avoids the starvation problem above for
late-arriving jobs, it still violates all key fairness properties
because it is placement-unaware, an issue we discuss next.
3.1.2 Placement Preferences
Next, we empirically study placement preferences of ML apps.
We use examples to show how ignoring these preferences in
fair sharing schemes violates key properties of fairness.
Many apps, many preference patterns: ML cluster users
today train a variety of ML apps across domains like com-
puter vision, NLP and speech recognition. These models have
significantly different model architectures, and more impor-
tantly, different placement preferences arising from different
computation, communication needs. For example, as shown
in Table 1, VGG16 has a strict machine-local task placement
preference while Inception-v3 does not. This preference in-
herently stems from the fact that VGG-like architectures have
very large number of parameters and incur greater overheads
for updating gradients over the network.

We use examples to show the effect of placement on DRF’s
allocation strategy. Similar examples and conclusions apply
for the LAS allocation scheme.
Ignoring placement affects SI: example: Consider the In-
stance 1 in Figure 5. In this example, there are two placement
sensitive ML apps - A1 and A2, both training VGG16. Each
ML app has just one job in it with 4 tasks and the cluster
has two 4 GPU machines. As shown above, given the same
number of GPUs both apps prefer GPUs to be in the same
server than spread across servers.

For this example, DRF [8] equalizes the dominant resource
share of both the apps under resource constraints and allocates
4 GPUs to each ML app. In Instance 1 of Figure 5 we show
an example of a valid DRF allocation. Both apps get the
same type of placement with GPUs spread across servers.
This allocation violates SI for both apps as their performance
would be better if each app just had its own dedicated server.
Ignoring placement affects PE, EF: example: Consider In-
stance 2 in Figure 5 with two apps - A1 (Inception-v3) which
is not placement sensitive and A2 (VGG16) which is place-
ment sensitive. Each app has one job with four tasks and the
cluster has two machines: one 4 GPU and two 2 GPU.

Now consider the allocation in Instance 2, where A1 is al-
located on the 4 GPU machine whereas A2 is allocated across
the 2 GPU machines. This allocation violates EF, because
A2 would prefer A1’s allocation. It also violates PE because
swapping the two apps’ allocation would improve A2’s per-
formance without hurting A1.

In fact, we can formally show that:
Theorem 3.1. Existing fair schemes (DRF, LAS) ignore place-
ment preferences and violate SI, PE, EF for ML apps.

A1

A2
A1 A2

Instance 1: 2 4-GPU Instance 2: 1 4-GPU; 2 2-GPU
Figure 5: By ignoring placement preference, DRF violates sharing incentive.

�!
G [0,0] [0,1] = [1,0] [1,1]
r rold

200
400 = 1

2
100
400 = 1

4

Table 2: Example table of bids sent from apps to the scheduler
Proof Refer to Appendix.

In summary, existing schemes fail to provide fair sharing
guarantees as they are unaware of ML app characteristics.
Instantaneous fair schemes such as DRF fail to account for
long task durations. While least-attained service schemes
overcome that limitation, neither approach’s input encodes
placement preferences. Correspondingly, the fairness metrics
used - i.e., dominant resource share (DRF) or attained service
(LAS) - do not capture placement preferences.

This motivates the need for a new placement-aware fairness
metric, and corresponding scheduling discipline. Our obser-
vations about ML task durations imply that, like LAS, our fair
allocation discipline should not depend on rapid task comple-
tions, but instead should operate over longer time scales.

3.2 Metric: Finish-Time Fairness
We propose a new metric called as finish-time fairness, r.
r = Tsh

Tid
.

Tid is the independent finish-time and Tsh is the shared

finish-time. Tsh is the finish-time of the app in the shared
cluster and it encompasses the slowdown due to the placement
and any queuing delays that an app experiences in getting
scheduled in the shared cluster. The worse the placement, the
higher is the value of Tsh. Tid , is the finish-time of the ML app
in its own independent and exclusive 1

N
share of the cluster.

Given the above definition, sharing incentive for an ML app
can be attained if r  1. 2

To ensure this, it is necessary for the allocation mechanism
to estimate the values of r for different GPU allocations.
Given the difficulty in predicting how various apps will react
to different allocations, it is intractable for the scheduling
engine to predict or determine the values of r.

Thus, we propose a new wider interface between the app
and the scheduling engine that can allow the app to express
a preference for each allocation. We propose that apps can
encode this information as a table. In Table 2, each column has
a permutation of a potential GPU allocation and the estimate
of r on receiving this allocation. We next describe how the
scheduling engine can use this to provide fair allocations.

3.3 Mechanism: Partial Allocation Auctions
The finish-time fairness ri(.) for an ML app Ai is a function
of the GPU allocation ~Gi that it receives. The allocation policy

2Note, sharing incentive criteria of r  1 assumes the presence of an
admission control mechanism to limit contention for GPU resources. An
admission control mechanism that rejects any app if the aggregate number of
GPUs requested crosses a certain threshold is a reasonable choice.
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Pseudocode 1 Finish-Time Fair Policy
1: Applications {Ai} . set of apps
2: Bids {ri(.)} . valuation function for each app i

3: Resources
�!
R . resource set available for auction

4: Resource Allocations {
�!
G i} . resource allocation for each app i

5: procedure AUCTION({Ai}, {ri(.)},
�!
R )

6: �!
G i,p f = arg max ’i 1/ri(

�!
Gi) . proportional fair (pf) allocation per app i

7: �!
G

�i

j,p f
= arg max ’ j!=i 1/r j(

�!
Gj) . pf allocation per app j without app i

8: ci =
’ j!=i 1/r j (

�!
G j,p f )

’ j!=i 1/r j (
�!
G
�i

j,p f
)

9: �!
Gi = ci *

�!
G i,p f . allocation per app i

10: �!
L = Âi 1� ci *

�!
G i,p f . aggregate leftover resource

11: return {
�!
Gi},

�!
L

12: end procedure
13: procedure ROUNDBYROUNDAUCTIONS({Ai}, {ri(.)})
14: while True do
15: ONRESOURCEAVAILABLEEVENT ~R0:
16: {A

sort

i
} = SORT({Ai}) on rcurrent

i

17: {A
f ilter

i
} = get top 1� f fraction of apps from {Asort }

18: {r f ilter

i
(.)} = get updated r(.) from apps in {A

f ilter

i
}

19: {
���!
G

f ilter

i
},
�!
L = AUCTION({A

f ilter

i
}, {r f ilter

i
(.)}, ~R0)

20: {A
un f ilter

i
} = {Ai}�{A

f ilter

i
}

21: allocate
�!
L to {A

un f ilter

i
} at random

22: end while
23: end procedure

takes these ri(.)’s as inputs and outputs allocations ~Gi.
A straw-man policy that sorts apps based on their reported

ri values and allocates GPUs in that order reduces the max-
imum value of r but has one key issue. An app can submit
false information about their r values. This greedy behavior
can boost their chance of winning allocations. Our conversa-
tions with cluster operators indicate that apps request for more
resources than required and they require manual monitoring
(“We also monitor the usage. If they don’t use it, we reclaim

it and pass it on to the next approved project”). Thus, this
simple straw-man fails to incentivize truth-telling and violates
another key property, namely, strategy proofness (SP).

To address this challenge, we propose to use auctions in
THEMIS. We begin by describing a simple mechanism that
runs a single-round auction and then extend to a round-by-
round mechanism that also considers online updates.
3.3.1 One-Shot Auction
Details of the inputs necessary to run the auction are given
first, followed by how the auction works given these inputs.
Inputs: Resources and Bids. ~R represents the total GPU
resources to be auctioned, where each element is 1 and the
number of dimensions is the number of GPUs to be auctioned.

Each ML app bids for these resources. The bid for each ML
app consists of the estimated finish-time fair metric (ri) values
for several different GPU allocations (~Gi). Each element in
~Gi can be {0,1}. A set bit implies that GPU is allocated to
the app. Example of a bid can be seen in Table 2.
Auction Overview. To ensure that the auction can provide
strategy proofness, we propose using a partial allocation

auction (PA) mechanism [5]. Partial allocation auctions have
been shown to incentivize truth telling and are an appropriate
fit for modeling subsets of indivisible goods to be auctioned
across apps. Pseudocode 1, line 5 shows the PA mechanism.

There are two aspects to auctions that are described next.
1. Initial allocation. PA starts by calculating an intrinsically
proportionally-fair allocation ~Gi,p f for each app Ai by maxi-
mizing the product of the valuation functions i.e., the finish-
time fair metric values for all apps (Pseudocode 1, line 6).
Such an allocation ensures that it is not possible to increase
the allocation of an app without decreasing the allocation of
at least another app (satisfying PE [5]).
2. Incentivizing Truth Telling. To induce truthful reporting
of the bids, the PA mechanism allocates app Ai only a fraction
ci < 1 of Ai’s proportional fair allocation ~Gi,p f , and takes
1� ci as a hidden payment (Pseudocode 1, line 10). The ci is
directly proportional to the decrease in the collective valuation
of the other bidding apps in a market with and without app Ai

(Pseudocode 1, line 8). This yields the final allocation ~Gi for
app Ai (Pseudocode 1, line 9).

Note that the final result, ~Gi is not a market-clearing alloca-
tion and there could be unallocated GPUs~L that are leftover
from hidden payments. Hence, PA is not work-conserving.
Thus, while the one-shot auction provides a number of prop-
erties related to fair sharing it does not ensure SI is met.
Theorem 3.2. The one-shot partial allocation auction guaran-
tees SP, PE and EF, but does not provide SI.
Proof Refer to Appendix. The intuitive reason for this is
that, with unallocated GPUs as hidden payments, PA does not
guarantee r  1 for all apps. To address this we next look
at multi-round auctions that can maximize SI for ML apps.
We design a mechanism that is based on PA and preserves
its properties, but offers slightly weaker guarantee, namely
min max r. We describe this next. It runs in multiple rounds.
Empirically, we find that it gets r  1 for most apps, even
without admission control.

3.3.2 Multi-round auctions
To maximize sharing incentive and to ensure work conserva-
tion, our goal is to ensure r  1 for as many apps as possible.
We do this using three key ideas described below.
Round-by-Round Auctions: With round-by-round auctions,
the outcome of an allocation from an auction is binding only
for a lease duration. At the end of this lease, the freed GPUs
are re-auctioned. This also handles the online case as any auc-
tion is triggered on a resource available event. This takes care
of app failures and arrivals, as well as cluster reconfigurations.

At the beginning of each round of auction, the policy so-
licits updated valuation functions r(.) from the apps. The
estimated work and the placement preferences for the case
of ML apps are typically time varying. This also makes our
policy adaptive to such changes.
Round-by-Round Filtering: To maximize the number of
apps with r  1, at the beginning of each round of auctions
we filter the 1� f fraction of total active apps with the greatest
values of current estimate of their finish-time fair metric r.
Here, f 2 (0,1) is a system-wide parameter.

This has the effect of restricting the auctions to the apps that
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are at risk of not meeting SI. Also, this restricts the auction to
a smaller set of apps which reduces contention for resources
and hence results in smaller hidden payments. It also makes
the auction computationally tractable.

Over the course of many rounds, filtering maximizes the
number of apps that have SI. Consider a far-from-fair app i

that lost an auction round. It will appear in future rounds with
much greater likelihood relative to another less far-from-fair
app k that won the auction round. This is because, the win-
ning app k was allocated resources; as a result, it will see its
r improve over time; thus, it will eventually not appear in the
fraction 1� f of not-so-fairly-treated apps that participate in
future rounds. In contrast, i’s r will increase due to the wait-
ing time, and thus it will continue to appear in future rounds.
Further an app that loses multiple rounds will eventually lose
its lease on all resources and make no further progress, caus-
ing its r to become unbounded. The next auction round the
app participates in will likely see the app’s bid winning, be-
cause any non-zero GPU allocation to that app will lead to a
huge improvement in the app’s valuation.

As f ! 1, our policy provides greater guarantee on SI.
However, this increase in SI comes at the cost of efficiency.
This is because f ! 1 restricts the set of apps to which avail-
able GPUs will be allocated; with f ! 0 available GPUs can
be allocated to apps that benefit most from better placement,
which improves efficiency at the risk of violating SI.
Leftover Allocation: At the end of each round we have left-
over GPUs due to hidden payments. We allocate these GPUs
at random to the apps that did not participate in the auction in
this round. Thus our overall scheme is work-conserving.

Overall, we prove that:
Theorem 3.3. Round-by-round auctions preserve the PE, EF
and SP properties of partial auctions and maximize SI.
Proof. Refer to Appendix.

To summarize, in THEMIS we propose a new finish-time
fairness metric that captures fairness for long-running, place-
ment sensitive ML apps. To perform allocations, we propose
using a multi-round partial allocation auction that incentivizes
truth telling and provides Pareto efficient, envy free alloca-
tions. By filtering the apps considered in the auction, we max-
imize sharing incentive and hence satisfy all the properties
necessary for fair sharing among ML applications.

4 System Design
We first list design requirements for an ML cluster scheduler
taking into account the fairness metric and auction mechanism
described in Section 3, and the implications for the THEMIS
scheduler architecture. Then, we discuss the API between the
scheduler and the hyper-parameter optimizers.

4.1 Design Requirements
Separation of visibility and allocation of resources. Core
to our partial allocation mechanism is the abstraction of mak-
ing available resources visible to a number of apps but al-

locating each resource exclusively to a single app. As we
argue below, existing scheduling architectures couple these
concerns and thus necessitate the design of a new scheduler.
Integration with hyper-parameter tuning systems. Hyper-
parameter optimization systems such as Hyperband [21], Hy-
perdrive [29] have their own schedulers that decide the re-
source allocation and execution schedule for the jobs within
those apps. We refer to these as app-schedulers. One of our
goals in THEMIS is to integrate with these systems with mini-
mal modifications to app-schedulers.

These two requirements guide our design of a new two-

level semi-optimistic scheduler and a set of corresponding
abstractions to support hyper-parameter tuning systems.

4.2 THEMIS Scheduler Architecture
Existing scheduler architectures are either pessimistic or fully
optimistic and both these approaches are not suitable for real-
izing multi-round auctions. We first describe their shortcom-
ings and then describe our proposed architecture.
4.2.1 Need for a new scheduling architecture
Two-level pessimistic schedulers like Mesos [17] enforce pes-
simistic concurrency control. This means that visibility and
allocation go hand-in-hand at the granularity of a single app.
There is restricted single-app visibility as available resources
are partitioned by a mechanism internal to the lower-level
(i.e., cross-app) scheduler and offered only to a single app at
a time. The tight coupling of visibility and allocation makes it
infeasible to realize round-by-round auctions where resources
need to be visible to many apps but allocated to just one app.

Shared-state fully optimistic schedulers like Omega [30]
enforce fully optimistic concurrency control. This means that
visibility and allocation go hand-in-hand at the granularity of
multiple apps. There is full multi-app visibility as all cluster
resources and their state is made visible to all apps. Also, all
apps contend for resources and resource allocation decisions
are made by multiple apps at the same time using transactions.
This coupling of visibility and allocation in a lock-free manner
makes it hard to realize a global policy like finish-time fairness
and also leads to expensive conflict resolution (needed when
multiple apps contend for the same resource) when the cluster
is highly contented, which is typically the case in shared GPU
clusters.

Thus, the properties required by multi-round auctions, i.e.,
multi-app resource visibility and single-app resource alloca-
tion granularity, makes existing architectures ineffective.
4.2.2 Two-Level Semi-Optimistic Scheduling
The two-levels in our scheduling architecture comprise of
multiple app-schedulers and a cross-app scheduler that we
call the ARBITER. The ARBITER has our scheduling logic.
The top level per-app schedulers are minimally modified to
interact with the ARBITER. Figure 6 shows our architecture.

Each GPU in a THEMIS-managed cluster has a lease associ-
ated with it. The lease decides the duration of ownership of the
GPU for an app. When a lease expires, the resource is made
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Figure 6: THEMIS Design. (a) Sequence of events in THEMIS - starts with
a resource available event and ends with resource allocations. (b) Shows
a typical bid valuation table an App submits to ARBITER. Each row has a
subset of the complete resource allocation and the improved value of rnew.

available for allocation. THEMIS’s ARBITER pools available
resources and runs a round of the auctions described earlier.
During each such round, the resource allocation proceeds in
5 steps spanning 2 phases (shown in Figure 6):

The first phase, called the visibility phase, spans steps 1–3.

1 The ARBITER asks all apps for current finish-time fair
metric estimates. 2 The ARBITER initiates auctions, and
makes the same non-binding resource-offer of the available
resources to a fraction f 2 [0,1] of ML apps with worst finish-
time fair metrics (according to round-by-round filtering de-
scribed earlier). To minimize changes in the ML app scheduler
to participate in auctions, THEMIS introduces an AGENT that
is co-located with each ML app scheduler. The AGENT serves
as an intermediary between the ML app and the ARBITER. 3
The apps examine the resource offer in parallel. Each app’s
AGENT then replies with a single bid that contains preferences
for desired resource allocations.

The second phase, allocation phase, spans steps 4–5. 4
The ARBITER, upon receiving all the bids for this round,
picks winning bids according to previously described partial
allocation algorithm and leftover allocation scheme. It then
notifies each AGENT of its winning allocation (if any). 5 The
AGENT propagates the allocation to the ML app scheduler,
which can then decide the allocation among constituent jobs.

In sum, the two phase resource allocation means that our
scheduler enforces semi-optimistic concurrency control. Sim-
ilar to fully optimistic concurrency control, there is multi-app
visibility as the cross-app scheduler offers resources to multi-
ple apps concurrently. At the same time, similar to pessimistic
concurrency control, the resource allocations are conflict-free
guaranteeing exclusive access of a resource to every app.

To enable preparation of bids in step 3, THEMIS imple-
ments a narrow API from the ML app scheduler to the AGENT
that enables propagation of app-specific information. An
AGENT’s bid contains a valuation function (r(.)) that pro-
vides, for each resource subset, an estimate of the finish-time
fair metric the app will achieve with the allocation of the
resource subset. We describe how this is calculated next.

4.3 AGENT and AppScheduler Interaction
An AGENT co-resides with an app to aid participation in
auctions. We now describe how AGENTs prepare bids based
on inputs provided by apps, the API between an AGENT
and its app, and how AGENTs integrate with current hyper-
parameter optimization schedulers.
4.3.1 Single-Job ML Apps
For ease of explanation, we first start with the simple case of
an ML app that has just one ML training job which can use
at most job_demandmax GPUs. We first look at calculation
of the finish-time fair metric, r. We then look at a multi-job
app example so as to better understand the various steps and
interfaces in our system involved in a multi-round auction.
Calculating r(�!G ). Equation 1 shows the steps for calculating
r for a single job given a GPU allocation of

�!
G in a cluster

C with RC GPUs. When calculating r we assume that the
allocation

�!
G is binding till job completion.

r(�!G ) = Tsh(
�!
G )/Tid

Tsh = Tcurrent �Tstart+

iter_le f t ⇤ iter_time(
�!
G )

Tid = Tcluster ⇤Navg

iter_time(
�!
G ) =

iter_time_serial ⇤S(�!G )

min(||�!G ||1, job_demandmax)

Tcluster =
iter_total ⇤ iter_serial_time

min(RC, job_demandmax)

(1)

Tsh is the shared finish-time and is a function of the allo-
cation

�!
G that the job receives. For the single job case, it has

two terms. First, is the time elapsed (= Tcurrent �Tstart ). Time
elapsed also captures any queuing delays or starvation time.
Second, is the time to execute remaining iterations which
is the product of the number of iterations left (iter_le f t)
and the iteration time (iter_time(

�!
G )). iter_time(

�!
G ) depends

on the allocation received. Here, we consider the common-
case of the ML training job executing synchronous SGD.
In synchronous SGD, the work in an iteration can be paral-
lelized across multiple workers. Assuming linear speedup,
this means that the iteration time is the serial iteration time
(iter_time_serial) reduced by a factor of the number of GPUs
in the allocation, ||�!G ||1 or job_demandmax whichever is
lesser. However, the linear speedup assumption is not true
in the common case as network overheads are involved. We
capture this via a slowdown penalty, S(�!G ), which depends on
the placement of the GPUs in the allocation. Values for S(�!G )
can typically be obtained by profiling the job offline for a
few iterations. 3 The slowdown is captured as a multiplicative
factor, S(�!G )� 1, by which Tsh is increased.

3S(�!G ) can also be calculated in an online fashion. First, we use crude
placement preference estimates to begin with for single machine (=1), cross-
machine (=1.1), cross-rack (=1.3) placement. These are replaced with ac-
curate estimates by profiling iteration times when the ARBITER allocates
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Tid is the estimated finish-time in an independent 1
Navg

clus-
ter. Navg is the average contention in the cluster and is the
weighted average of the number of apps in the system during
the lifetime of the app. We approximate this as the finish-time
of the app in the whole cluster, Tcluster multiplied by the aver-
age contention. Tcluster assumes linear speedup when the app
executes with all the cluster resources RC or maximum app
demand whichever is lesser. It also assumes no slowdown.
Thus, it is approximated as iter_total⇤iter_serial_time

min(RC , job_demandmax)
.

4.3.2 Generalizing to Multiple-Job ML Apps
ML app schedulers for hyper-parameter optimization systems
typically go from aggressive exploration of hyper-parameters
to aggressive exploitation of best hyper-parameters. While
there are a number of different algorithms for choosing the
best hyper-parameters [3, 21] to run, we focus on early stop-
ping criteria as this affects the finish time of ML apps.

As described in prior work [9], automatic stopping algo-
rithms can be divided into two categories: Successive Halving
and Performance Curve Stopping. We next discuss how to
compute Tsh for each case.
Successive Halving refers to schemes which start with a total
time or iteration budget B and apportion that budget by peri-
odically stopping jobs that are not promising. For example,
if we start with n hyper parameter options, then each one is
submitted as a job with a demand of 1 GPU for a fixed number
of iterations I. After I iterations, only the best n

2 ML training
jobs are retained and assigned a maximum demand of 2 GPUs
for the same number of iterations I. This continues until we
are left with 1 job with a maximum demand of n GPUs. Thus
there are a total of log2n phases in Successive Halving. This
scheme is used in Hyperband [21] and Google Vizier [9].

We next describe how to compute Tsh and Tid for successive
halving. We assume that the given allocation

�!
G lasts till app

completion and the total time can be computed by adding up
the time the app spends for each phase. Consider the case of
phase i which has J = n

2i�1 jobs. Equation 2 shows the calcu-
lation of Tsh(i), the shared finish time of the phase. We assume
a separation of concerns where the hyper-parameter optimizer
can determine the optimal allocation of GPUs within a phase

and thus estimate the value of S(�!G j). Along with iter_le f t,
serial_iter_time, the AGENT can now estimate Tsh( j) for each
job in the phase. We mark the phase as finished when the
slowest or last job in the app finishes the phase (max j). Then
the shared finish time for the app is the sum of the finish times
of all constituent phases.

To estimate the ideal finish-time we compute the total time
to execute the app on the full cluster. We estimate this using
the budget B which represents the aggregate work to be done
and, as before, we assume linear speedup to the maximum
number of GPUs the app can use app_demandmax.

unseen placements. The multi-round nature of allocations means that errors
in early estimates do not have a significant effect.

Tsh(i) = max j{T (
�!
G j)}

Tsh = Â
i

Tsh(i)

Tcluster =
B

min(RC,app_demandmax)

Tid = Tcluster ⇤Navg

(2)

The AGENT generates r using the above procedure for
all possible subsets of {�!G} and produces a bid table similar
to the one shown in Table 2 before. The API between the
AGENT and hyper-parameter optimizer is shown in Figure 7
and captures the functions that need to implemented by the
hyper-parameter optimizer.
Performance Curve Stopping refers to schemes where the
convergence curve of a job is extrapolated to determine which
jobs are more promising. This scheme is used by Hyper-
drive [29] and Google Vizier [9]. Computing Tsh proceeds
by calculating the finish time for each job that is currently
running by estimating the iteration at which the job will be
terminated (thus Tsh is determined by the job that finishes last).
As before, we assume that the given allocation

�!
G lasts till app

completion. Since the estimations are usually probabilistic,
i.e., the iterations at which the job will converge has an error
bar, we over-estimate and use the most optimistic convergence
curve that results in the maximum forecasted completion time
for that job. As the job progresses, the estimates of the con-
vergence curve get more accurate and improves the accuracy
of the estimated finish time Tsh. The API implemented by
the hyper-parameter optimizer is simpler and only involves
getting a list of running jobs as shown in Figure 7.

We next present an end-to-end example of a multi-job app
showing our mechanism in action.
4.3.3 End-to-end Example.
We now run through a simple example that exercises the
various aspects of our API and the interfaces involved.

Consider a 16 GPU cluster and an ML app that has 4 ML
jobs and uses successive halving, running along with 3 other
ML apps in the same cluster. Each job in the app is tuning a
different hyper-parameter and the serial time taken per itera-
tion for the jobs are 80,100,100,120 seconds respectively.4
The total budget for the app is 10,000 seconds of GPU time
and we assume the job_demandmax is 8 GPUs and S(�!G ) = 1.

Given we start with 4 ML jobs, the hyper-parameter op-
timizer divides this into 3 phases each having 4,2,1 jobs,
respectively. To evenly divide the budget across the phases,
the hyper-parameter optimizer budgets ⇡ 8,16,36 iterations
in each phase. First we calculate the Tid by considering the
budget, total cluster size, and cluster contention as: 10000⇥4

16 =
2500s.

Next, we consider the computation of Tsh assuming that 16

4The time per iteration depends on the nature of the hyper-parameter
being tuned. Some hyper-parameters like batch size or quantization used
affect the iteration time while others like learning rate don’t.
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class JobInfo(int itersRemaining,

float avgTimePerIter,

float localitySensitivity);

// Successive Halving

List<JobInfo> getJobsInPhase(int phase,

List<Int> gpuAlloc);

int getNumPhases();

// Performance Curve

List<JobInfo> getJobsRemaining(List<Int> gpuAlloc);

Figure 7: API between AGENT and hyperparameter optimizer

||�!G ||1 0 1 2 4 8 16
r rold 4 2 1 0.5 0.34

Table 3: Example of bids submitted by AGENT

GPUs are offered by the ARBITER. The AGENT now computes
the bid for each subset of GPUs offered. Consider the case
with 2 GPUs. In this case in the first phase we have 4 jobs
which are serialized to run 2 at a time. This leads to Tsh(1) =
(120⇥8)+(80⇥8) = 1600 seconds. (Assume two 100s jobs
run serially on one GPU, and the 80 and 120s jobs run serially
on the other. Tsh is the time when the last job finishes.)

When we consider the next stage the hyper-parameter opti-
mizer currently does not know which jobs will be chosen for
termination. We use the median job (in terms of per-iteration
time) to estimate Tsh(i) for future phases. Thus, in the sec-
ond phase we have 2 jobs so we run one job on each GPU
each of which we assume to take the median 100 seconds
per iteration leading to Tsh(2) = (100⇥16) = 1600 seconds.
Finally for the last phase we have 1 job that uses 2 GPUs
and runs for 36 iterations leading to Tsh(3) =

(100⇥36)
2 = 1800

(again, the “median” jobs takes 100s per iteration). Thus Tsh =
1600+1600+1800 = 5000 seconds, making r = 5000

2500 = 2.
Note that since placement did not matter here we considered
any 2 GPUs being used. Similarly ignoring placement, the
bids for the other allocations are shown in Table 3.

We highlight a few more points about our example above.
If the jobs that are chosen for the next phase do not match
the median iteration time then the estimates are revised in the
next round of the auction. For example, if the jobs that are
chosen for the next round have iteration time 120,100 then the
above bid will be updated with Tsh(2) = (120⇥16) = 32005

and Tsh(3) =
(120⇥36)

2 = 2160. Further, we also see that the
job_demandmax = 8 means that the r value for 16 GPUs
does not linearly decrease from that of 8 GPUs.

5 Implementation
We implement THEMIS on top of a recent release of Apache
Hadoop YARN [1] (version 3.2.0) which includes, Subma-
rine [2], a new framework for running ML training jobs atop
YARN. We modify the Submarine client to support submitting
a group of ML training jobs as required by hyper-parameter
exploration apps. Once an app is submitted, it is managed by

5Because the two jobs run on one GPU each, and the 120s-per-iteration
job is the last to finish in the phase

a Submarine Application Master (AM) and we make changes
to the Submarine AM to implement the ML app scheduler
(we use Hyperband [21]) and our AGENT.

To prepare accurate bids, we implement a profiler in the
AM that parses TensorFlow logs, and tracks iteration times
and loss values for all the jobs in an app. The allocation of
a job changes over time and iteration times are used to ac-
curately estimate the placement preference (S ) for different
GPU placements. Loss values are used in our Hyperband
implementation to determine early stopping. THEMIS’s AR-
BITER is implemented as a separate module in YARN RM.
We add gRPC-based interfaces between the AGENT and the
ARBITER to enable offers, bids, and final winning allocations.
Further, the ARBITER tracks GPU leases to offer reclaimed
GPUs as a part of the offers.

All the jobs we use in our evaluation are TensorFlow pro-
grams with configurable hyper-parameters. To handle allo-
cation changes at runtime, the programs checkpoint model
parameters to HDFS every few iterations. After a change in
allocation, they resume from the most recent checkpoint.

6 Evaluation
We evaluate THEMIS on a 64 GPU cluster and also use a
event-driven simulator to model a larger 256 GPU cluster. We
compare against other state-of-the-art ML schedulers. Our
evaluation shows the following key highlights -
• THEMIS is better than other schemes on finish-time fair-

ness while also offering better cluster efficiency (Figure 9-10-
11-12).

• THEMIS’s benefits compared to other schemes improve
with increasing fraction of placement sensitive apps and in-
creasing contention in the cluster, and these improvements
hold even with errors – random and strategic – in finish-time
fair metric estimations (Figure 14-18).

• THEMIS enables a trade-off between finish-time fairness
in the long-term and placement efficiency in the short-term.
Sensitivity analysis (Figure 19) using simulations show that
f = 0.8 and a lease time of 10 minutes gives maximum fair-
ness while also utilizing the cluster efficiently.

6.1 Experimental Setup
Testbed Setup. Our testbed is a 64 GPU, 20 machine cluster
on Microsoft Azure [23]. We use NC-series instances. We
have 8 NC12-series instances each with 2 Tesla K80 GPUs
and 12 NC24-series instances each with 4 Tesla K80 GPUs.
Simulator. We develop an event-based simulator to evaluate
THEMIS at large scale. The simulator assumes that estimates
of the loss function curves for jobs are known ahead of time so
as to predict the total number of iterations for the job. Unless
stated otherwise, all simulations are done on a heterogeneous
256 GPU cluster. Our simulator assumes a 4-level hierarchical
locality model for GPU placements. Individual GPUs fit onto
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(a) CDF GPUs per job (b) CDF jobs per app
Figure 8: Details of 2 workloads used for evaluation of THEMIS

Model Type Dataset

10%

Inception-v3 [33] CV ImageNet [7]
AlexNet [20] CV ImageNet

ResNet50 [16] CV ImageNet
VGG16 [32] CV ImageNet
VGG19 [32] CV ImageNet

60%

Bi-Att-Flow [31] NLP SQuAD [28]
LangModel [41] NLP PTB [22]

GNMT [38] NLP WMT16 [37]
Transformer [35] NLP WMT16

30% WaveNet [25] Speech VCTK [40]
DeepSpeech [15] Speech CommonVoice [6]

Table 4: Models used in our trace.

slots on machines occupying different cluster racks.6

Workload. We experiment with 2 different traces that have
different workload characteristics in both the simulator and
the testbed - (i) Workload 1. A publicly available trace of
DNN training workloads at Microsoft [19,24]. We scale-down
the trace, using a two week snapshot and focus on subset
of jobs from the trace that correspond to hyper-parameter
exploration jobs triggered by Hyperdrive. (ii) Workload 2.
We use the app arrival times from Workload 1, generate jobs
per app using the successive halving pattern characteristic of
the Hyperband algorithm [21], and increase the number of
tasks per job compared to Workload 1. The distribution of
number of tasks per job and number of jobs per app for the
two workloads is shown in Figure 8.

The traces comprise of models from three categories - com-
puter vision (CV - 10%), natural language processing (NLP
- 60%) and speech (Speech - 30%). We use the same mix of
models for each category as outlined in Gandiva [39]. We
summarize the models in Table 4.
Baselines. We compare THEMIS against four state-of-the-art
ML schedulers - Gandiva [39], Tiresias [13], Optimus [27],
SLAQ [42]; these represent the best possible baselines for
maximizing efficiency, fairness, aggregate throughput, and ag-
gregate model quality, respectively. We also compare against
two scheduling disciplines - shortest remaining time first
(SRTF) and shortest remaining service first (SRSF) [13]; these
represent baselines for minimizing average job completion

6The heterogeneous cluster consists of 16 8-GPU machines (4 slots and
2 GPUs per slot), 6 4-GPU machines (4 slots and 1 GPU per slot), and 16
1-GPU machines

time (JCT) with efficiency as secondary concern and mini-
mizing average JCT with fairness as secondary concern, re-
spectively. We implement these baselines in our testbed as
well as the simulator as described below:
Ideal Efficiency Baseline - Gandiva. Gandiva improves
cluster utilization by packing jobs on as few machines as pos-
sible. In our implementation, Gandiva introspectively profiles
ML job execution to infer placement preferences and migrates
jobs to better meet these placement preferences. On any re-
source availability, all apps report their placement preferences
and we allocate resources in a greedy highest preference first
manner which has the effect of maximizing the average place-
ment preference across apps. We do not model time-slicing
and packing of GPUs as these system-level techniques can be
integrated with THEMIS as well and would benefit Gandiva
and THEMIS to equal extents.
Ideal Fairness Baseline - Tiresias. Tiresias defines a new
service metric for ML jobs – the aggregate GPU-time allo-
cated to each job – and allocates resources using the Least
Attained Service (LAS) policy so that all jobs obtain equal
service over time. In our implementation, on any resource
availability, all apps report their service metric and we allo-
cate the resource to apps that have the least GPU service.
Ideal Aggregate Throughput Baseline - Optimus. Opti-
mus proposes a throughput scaling metric for ML jobs – the
ratio of new job throughput to old job throughput with and
without an additional GPU allocation. On any resource avail-
ability, all apps report their throughput scaling and we allocate
resources in order of highest throughput scaling metric first.
Ideal Aggregate Model Quality - SLAQ. SLAQ proposes a
greedy scheme for improving aggregate model quality across
all jobs. In our implementation, on any resource availability
event, all apps report the decrease in loss value with allo-
cations from the available resources and we allocate these
resources in a greedy highest loss first manner.
Ideal Average App Completion Time - SRTF, SRSF. For
SRTF, on any resource availability, all apps report their re-
maining time with allocations from the available resource and
we allocate these resources using SRTF policy. Efficiency is
a secondary concern with SRTF as better packing of GPUs
leads to shorter remaining times.

SRSF is a service-based metric and approximates gittins
index policy from Tiresias. In our implementation, we as-
sume accurate knowledge of remaining service and all apps
report their remaining service and we allocate one GPU at
a time using SRSF policy. Fairness is a secondary concern
as shorter service apps are preferred first as longer apps are
more amenable to make up for lost progress due to short-term
unfair allocations.
Metrics. We use a variety of metrics to evaluate THEMIS.

(i) Finish-time fairness: We evaluate the fairness of
schemes by looking at the finish-time fair metric (r) distribu-
tion and the maximum value across apps. A tighter distribu-
tion and a lower value of maximum value of r across apps
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Figure 9: [TESTBED] Comparison of finish-time fairness across schedulers
with Workload 1

Figure 10: [TESTBED] Comparison of finish-time fairness across schedulers
with Workload 2
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Figure 11: [TESTBED] Comparison of total GPU times across schemes with
Workload 1. Lower GPU time indicates better utilization of the GPU cluster

indicate higher fairness. (ii) GPU Time: We use GPU Time

as a measure of how efficiently the cluster is utilized. For two
scheduling schemes S1 and S2 that have GPU times G1 and
G2 for executing the same amount of work, S1 utilizes the
cluster more efficiently than S2 if G1 < G2. (iii) Placement
Score: We give each allocation a placement score ( 1). This
is inversely proportional to slowdown, S , that app experiences
due to this allocation. The slowdown is dependent on the ML
app properties and the network interconnects between the
allocated GPUs. A placement score of 1.0 is desirable for as
many apps as possible.

6.2 Macrobenchmarks
In our testbed, we evaluate THEMIS against all baselines on
all the workloads. We set the fairness knob value f as 0.8
and lease as 10 minutes, which is informed by our sensitivity
analysis results in Section 6.4.

Figure 9-10 shows the distribution of finish-time fairness
metric, r, across apps for THEMIS and all the baselines. We
see that THEMIS has a narrower distribution for the r values
which means that THEMIS comes closest to giving all jobs an
equal sharing incentive. Also, THEMIS gives 2.2X to 3.25X

better (smaller) maximum r values compared to all baselines.
Figure 11-12 shows a comparison of the efficiency in terms

of the aggregate GPU time to execute the complete workload.
Workload 1 has similar efficiency across THEMIS and the
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Figure 12: [TESTBED] Comparison of total GPU times across schemes with
Workload 2. Lower GPU time indicates better utilization of the GPU cluster

Job Type GPU Time # GPUs rTHEMIS rTiresias

Long Job ~580 mins 4 ~1 ~0.9
Short Job ~83 mins 2 ~1.2 ~1.9

Table 5: [TESTBED] Details of 2 jobs to understand the benefits of THEMIS
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Figure 13: [TESTBED] CDF of place-
ment scores across schemes

Figure 14: [TESTBED] Impact of
contention on finish-time fairness

baselines as all jobs are either 1 or 2 GPU jobs and almost
all allocations, irrespective of the scheme, end up as efficient.
With workload 2, THEMIS betters Gandiva by ~4.8% and out-
performs SLAQ by ~250%. THEMIS is better because global
visibility of app placement preferences due to the auction
abstraction enables globally optimal decisions. Gandiva in
contrast takes greedy locally optimal packing decisions.
6.2.1 Sources of Improvement
In this section, we deep-dive into the reasons behind the wins
in fairness and cluster efficiency in THEMIS.

Table 5 compares the finish-time fair metric value for a
pair of short- and long-lived apps from our testbed run for
THEMIS and Tiresias. THEMIS offers better sharing incentive
for both the short and long apps. THEMIS induces altruistic
behavior in long apps. We attribute this to our choice of r
metric. With less than ideal allocations, even though long
apps see an increase in Tsh, their r values do not increase
drastically because of a higher Tid value in the denominator.
Whereas, shorter apps see a much more drastic degradation,
and our round-by-round filtering of farthest-from-finish-time
fairness apps causes shorter apps to participate in auctions
more often. Tiresias offers poor sharing incentive for short
apps as it treats short- and long-apps as the same. This only
worsens the sharing incentive for short apps.

Figure 13 shows the distribution of placement scores for
all the schedulers. THEMIS gives the best placement scores
(closer to 1.0 is better) in workload 2, with Gandiva and Opti-
mus coming closest. Workload 1 has jobs with very low GPU
demand and almost all allocations have a placement score of 1
irrespective of the scheme. Other schemes are poor as they do
not account for placement preferences. Gandiva does greedy
local packing and Optimus does greedy throughput scaling
and are not as efficient because they are not globally optimal.
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6.2.2 Effect of Contention
In this section, we analyze the effect of contention on finish-
time fairness. We decrease the size of the cluster to half and
quarter the original size to induce a contention of 2X and
4X respectively. Figure 14 shows the change in max value
of r as the contention changes with workload 1. THEMIS
is the only scheme that maintains sharing incentive even in
high contention scenarios. SRSF comes close as it preferably
allocates resources to shorter service apps. This behavior is
similar to that in THEMIS. THEMIS induces altruistic shedding
of resources by longer apps (Section 6.2.1), giving shorter
apps a preference in allocations during higher contention.
6.2.3 Systems Overheads
From our profiling of the experiments above, we find that
each AGENT spends 29 (334) milliseconds to compute bids at
the median (95-%). The 95 percentile is high because enumer-
ation of possible bids needs to traverse a larger search space
when the number of resources up for auction is high.

The ARBITER uses Gurobi [14] to compute partial allo-
cation of resources to apps based on bids. This computation
takes 354 (1398) milliseconds at the median (95-%ile). The
high tail is once again observed when both the number of
offered resources and the number of apps bidding are high.
However, the time is small relative to lease time. The net-
work overhead for communication between the ARBITER
and individual apps is negligible since we use the existing
mechanisms used by Apache YARN.

Upon receiving new resource allocations, the AGENT
changes (adds/removes) the number of GPU containers avail-
able to its app. This change takes about 35 (50) seconds at
the median (95-%ile), i.e., an overhead of 0.2% (2%) of the
app duration at the median (95-%ile). Prior to relinquishing
control over its resources, each application must checkpoint
its set of parameters. We find that that this is model dependent
but takes about 5-10 seconds on an average and is driven
largely by the overhead of check-pointing to HDFS.

6.3 Microbenchmarks
Placement Preferences: We analyze the impact on finish-
time fairness and cluster efficiency as the fraction of network-
intensive apps in our workload increases. We synthetically
construct 6 workloads and vary the percentage of network-
intensive apps in these workloads from 0%-100%.

From Figure 15, we notice that sharing incentive degrades
most when there is a heterogeneous mix of compute and net-
work intensive apps (at 40% and 60%). THEMIS has a max r
value closest to 1 across all scenarios and is the only scheme to
ensure sharing incentive. When the workload consists solely
of network-intensive apps, THEMIS performs ~1.24 to 1.77X

better than existing baselines on max fairness.
Figure 16 captures the impact on cluster efficiency. With

only compute-intensive apps, all scheduling schemes utilize
the cluster equally efficiently. As the percentage of network
intensive apps increases, THEMIS has lower GPU times to exe-

0 20 40 60 80 100
% Network Intensive Apps

0

2

4

6

8

10

M
ax

 F
ai

rn
es

s Themis
Gandiva
SLAQ
Tiresias

SRTF
SRSF
Optimus

Figure 15: [SIMULATOR] Impact of placement preferences for varying mix
of compute- and network-intensive apps on max r
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Figure 16: [SIMULATOR] Impact of placement preferences for varying mix
of compute- and network-intensive apps on GPU Time

cute the same workload. This means that THEMIS utilizes the
cluster more efficiently than other schemes. In the workload
with 100% network-intensive apps, THEMIS performs ~8.1%
better than Gandiva (state-of-the-art for cluster efficiency).
Error Analysis: Here, we evaluate the ability of THEMIS to
handle errors in estimation of number of iterations and the
slowdown (S ). For this experiment, we assume that all apps
are equally susceptible to making errors in estimation. The
percentage error is sampled at random from [-X , X] range for
each app. Figure 17 shows the changes in max finish-time
fairness as we vary X . Even with X = 20%, the change in
max finish-time fairness is just 10.76% and is not significant.
Truth-Telling: To evaluate strategy-proofness, we use sim-
ulations. We use a cluster of 64 GPUs with 8 identical apps
with equivalent placement preferences. The cluster has a sin-
gle 8 GPU machine and the others are all 2 GPU machines.
The most preferred allocation in this cluster is the 8 GPU ma-
chine. We assume that there is a single strategically lying app
and 7 truthful apps. In every round of auction it participates
in, the lying app over-reports the slowdown with staggered
machine placement or under-reports the slowdown with dense
machine placement by X%. Such a strategy would ensure
higher likelihood of winning the 8 GPU machine. We vary the
value of X in the range [0,100] and analyze the lying app’s
completion time and the average app completion time of the
truthful apps in Figure 18. We see that at first the lying app
does not experience any decrease in its own app completion
time. On the other hand, we see that the truthful apps do better
on their average app completion time. This is because the hid-
den payment from the partial allocation mechanism in each
round of the auction for the lying app remains the same while
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Figure 19: [SIMULATOR] Sensitivity of fairness knob and lease time.

the payment from the rest of the apps keeps decreasing. We
also observe that there is a sudden tipping point at X > 34%.
At this point, there is a sudden increase in the hidden payment
for the lying app and it loses a big chunk of resources to other
apps. In essence, THEMIS incentivizes truth-telling.

6.4 Sensitivity Analysis
We use simulations to study THEMIS’s sensitivity to fairness
knob f and the lease time. Figure 19 (a) shows the impact
on max r as we vary the fairness knob f . We observe that
filtering (1� f ) fraction of apps helps with ensuring better
sharing incentive. As f increases from 0 to 0.8, we observe
that fairness improves. Beyond f = 0.8, max fairness wors-
ens by around a factor of 1.5X . We see that the quality of
sharing incentive, captured by max r, degrades at f = 1 be-
cause we observe that only a single app with highest r value
participates in the auction. This app is forced sub-optimal
allocations because of poor placement of available resources
with respect to the already allocated resources in this app. We
also observe that smaller lease times promote better fairness
since frequently filtering apps reduces the time that queued
apps wait for an allocation.

Figure 19 (b) shows the impact on the efficiency of cluster
usage as we vary the fairness knob f . We observe that the ef-
ficiency decreases as the value of f increases. This is because
the number of apps that can bid for an offer reduces as we
increase f leading to fewer opportunities for the ARBITER to
pack jobs efficiently. Lower lease values mean than models
need to be check-pointed more often (GPUs are released on
lease expiry) and hence higher lease values are more efficient.

Thus we choose f = 0.8 and lease = 10 minutes.

7 Related Work
Cluster scheduling for ML workloads has been targeted by a
number of recent works including SLAQ [42], Gandiva [39],
Tiresias [13] and Optimus [27]. These systems target different

objectives and we compare against them in Section 6.
We build on rich literature on cluster scheduling disci-

plines [8, 10–12] and two level schedulers [17, 30, 36]. While
those disciplines/schedulers don’t apply to our problem, we
build upon some of their ideas, e.g., resource offers in [17].
Sharing incentive was outlined by DRF [8], but we focus on
long term fairness with our finish-time metric. Tetris [10]
proposes resource-aware packing with an option to trade-
off for fairness using multi-dimensional bin-packing as the
mechanism for achieving that. In THEMIS, we instead focus
on fairness with an option to trade-off for placement-aware
packing, and use auctions as our mechanism.

Some earlier schemes [11,12] also attempted to emulate the
long term effects of fair allocation. Around occasional barri-
ers, unused resources are re-allocated across jobs. THEMIS dif-
fers in many respects: First, earlier systems focus on batch ana-
lytics. Second, earlier schemes rely on instantaneous resource-
fairness (akin to DRF), which has issues with placement-
preference unawareness and not accounting for long tasks.
Third, in the ML context there are no occasional barriers.
While barriers do arise due to synchronization of parameters
in ML jobs, they happen at every iteration. Also, resources
unilaterally given up by a job may not be usable by another
job due to placement preferences.

8 Conclusion
In this paper we presented THEMIS, a fair scheduling frame-
work for ML training workloads. We showed how existing
fair allocation schemes are insufficient to handle long-running
tasks and placement preferences of ML workloads. To address
these challenges we proposed a new long term fairness ob-
jective in finish-time fairness. We then presented a two-level
semi-optimistic scheduling architecture where ML apps can
bid on resources offered in an auction. Our experiments show
that THEMIS can improve fairness and efficiency compared
to state of the art schedulers.
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A Appendix
PROOF OF THEOREM 3.1. Examples in Figure 5 and Sec-
tion 3.1.2 shows that DRF violates SI, EF, and PE. Same
examples hold true for LAS policy in Tiresias. The service
metric i.e. the GPU in Instance 1 and Instance 2 is the same
for A1 and A2 in terms of LAS and is deemed a fair allocation
over time. However, Instance 1 violates SI as A1 (VGG16)
and A2 (VGG16) would prefer there own independent GPUs
and Instance 2 violates EF and PE as A2 (VGG16) prefers
the allocation of A1 (Inception-v3) and PE as the optimal
allocation after taking into account placement preferences
would interchange the allocation of A1 and A2.

PROOF OF THEOREM 3.2. We first show that the valuation
function, r(.), for the case of ML jobs is homogeneous. This
means that r(.) has the following property: r(m⇤�!G ) = m⇤
r�!G .

Consider a job with GPUs spread across a set of some
M machines. If we keep this set of machines the same, and
increase the number of GPUs allocated on these same set of
machines by a certain factor then the shared running time (Tsh)
of this job decreases proportionally by the same factor. This is
so because the slowdown, S remains the same. Slowdown is
determined by the slowest network interconnect between the
machines. The increased allocation does not change the set
of machines M. The independent running time (Tid) remains
the same. This means that r also proportionally changes by
the same factor.

Given, homogeneous valuation functions, the PA mecha-
nism guarantees SP, PE and EF [5]. However, PA violates SI
due to the presence of hidden payments. This also make PA
not work-conserving.

PROOF OF THEOREM 3.3. With multi-round auctions we
ensure truth-telling of r estimates in the visibility phase. This
is done by the AGENT by using the cached r(.) estimates from
the last auction the app participated in. In case an app gets
leftover allocations from the leftover allocation mechanism,
the AGENT updates the r estimate again by using the cached
r(.) table. In this way we guarantee SP with multi-round
auctions.

As we saw in Theorem 3.2, an auction ensures PE and
EF. In each round, we allocate all available resources using
auctions. This ensures end-to-end PE and EF.

For maximizing sharing incentive, we always take a frac-
tion 1� f of apps in each round. A wise choice of f ensures
that we filter in all the apps with r > 1 that have poor sharing
incentive. We only auction the resources to such apps which
maximizes sharing incentive.
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Abstract
We describe the design and implementation of a consistent
and fault-tolerant metadata index for a scalable block storage
system. The block storage system supports the virtualized
execution of legacy applications inside enterprise clusters
by automatically distributing the stored blocks across the
cluster’s storage resources. To support the availability and
scalability needs of the block storage system, we develop a
distributed index that provides a replicated and consistent key-
value storage abstraction.

The key idea underlying our design is the use of fine-
grained replicated state machines, wherein every key-value
pair in the index is treated as a separate replicated state ma-
chine. This approach has many advantages over a traditional
coarse-grained approach that represents an entire shard of data
as a state machine: it enables effective use of multiple storage
devices and cores, it is more robust to both short- and long-
term skews in key access rates, and it can tolerate variations in
key-value access latencies. The use of fine-grained replicated
state machines, however, raises new challenges, which we ad-
dress by co-designing the consensus protocol with the data
store and streamlining the operation of the per-key replicated
state machines. We demonstrate that fine-grained replicated
state machines can provide significant performance benefits,
characterize the performance of the system in the wild, and re-
port on our experiences in building and deploying the system.

1 Introduction
Enterprise clusters often rely on the abstraction of a block
storage volume to support the virtualized execution of appli-
cations. Block storage volumes appear as local disks to virtual
machines running legacy applications, even as the storage ser-
vice distributes volume data across the cluster. The storage
system provides ubiquitous access to volumes from any node
in the cluster and ensures durability and availability through
replication.

Our work is in the context of a commercial enterprise clus-
ter product built by Nutanix, a software company that special-
izes in building private clouds for enterprises. VMs deployed
in these clusters rely on a cluster block storage system, called
Stargate. As with other block storage systems [8,10,27,29,31],
Stargate provides a virtual disk abstraction on which applica-
tions/VMs can instantiate any file system. However, unlike
most other block storage systems, Stargate co-locates both
computing and storage on the same set of cluster nodes. This
∗University of Washington
†University of Michigan
‡Nutanix

approach provides cost, latency, and scalability benefits: it
avoids needing to provision separate resources for computing
and storage, it allows for local access to storage, and it lets
both storage and compute scale with the cluster size.

A key component of such a system is the metadata index,
which maps the logical blocks associated with a virtual disk to
its actual physical locations. Just like the overall system, this
mapping layer should provide high performance and strong
consistency guarantees in the presence of failures. These
requirements suggest a design with the following elements:
(a) achieve high throughput and scalability by distributing the
index as key-value pairs and utilizing all the cluster nodes, (b)
ensure availability and consistency by replicating key-value
pairs and using a consensus algorithm, such as Paxos [16] or
Viewstamped Replication [25], to implement replicated state
machines (RSMs), and (c) ensure durability of a node’s shard
of key-value state by employing a node-level durable data
structure such as the log-structured merge tree (LSM).

This traditional approach to building a distributed index has
drawbacks in our specific context where: (a) all operations,
including metadata operations, have to be made durable be-
fore they are acknowledged, (b) there is significant variation
in operation execution latency, and (c) the distributed index
service has to share compute and storage with the rest of Star-
gate and application VMs. In particular, the use of a per-shard
consensus operation log, which records the order of issued
commands, introduces inefficiencies, such as short- and long-
term load imbalances on storage devices, sub-optimal batch-
ing of storage operations, and head-of-line blocking caused
by more expensive operations.

To address these issues, we develop a design that uses fine-
grained replicated state machine (fRSMs), where each key-
value pair is represented as a separate RSM and can operate
independently. This approach allows for flexible and dynamic
scheduling of operations on the metadata service and enables
effective use of the storage and compute resources. To effi-
ciently realize this approach, we use a combination of tech-
niques to streamline the state associated with the object radi-
cally. In particular, our approach uses no operation logs and
maintains only a small amount of consensus state along with
the perceived value of a key. We also address performance
and consistency issues by co-designing the consensus proto-
col and the local node storage, providing strong guarantees
on operation orderings, and optimizing failure recovery by en-
hancing the LSM data structure to handle the typical failure
scenarios efficiently. It is worth noting that our innovation is
not in the consensus protocol (as we merely borrow elements
from Paxos and Viewstamped Replication), but in exploring
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an extreme operating point that is appropriate for balancing
load across storage and compute resources in a managed en-
vironment with low downtimes.

We present experimental evaluations of our implementa-
tion both in a controlled testbed as well as in production de-
ployments. Compared with traditional coarse-grained RSMs,
fRSMs achieve 5.6× and 2.3× higher throughput for skewed
and uniform scenarios in controlled testbeds. The resulting
implementation is part of a commercial storage product that
we have deployed on thousands of clusters over the past eight
years. To date, we have not had a data loss event at any of
these deployed production sites. We have also been able to
leverage the metadata store for other applications such as
write-ahead logs and distributed hypervisor management.

2 Motivation
We begin with a description of our setting and our goals. We
then describe a baseline approach and discuss its shortcom-
ings that motivate our work.

2.1 Metadata Storage Overview

Setting. Our work targets clusters that are typically used by
enterprises as private clouds to perform on-premise comput-
ing. Customers instantiate virtual machines (VMs) that run
legacy applications. The cluster management software then
determines which node to run each VM on, migrating them
as necessary to deal with faults and load imbalances.

Our Stargate storage system provides a virtual disk abstrac-
tion to these VMs. VMs perform reads and writes on the vir-
tual disk blocks, and Stargate translates them to the appro-
priate accesses on physical disks that store the correspond-
ing blocks. Stargate stores the blocks corresponding to vir-
tual disks on any one of the cluster nodes on which user VMs
are executed, thus realizing a hyper-converged cluster infras-
tructure that co-locates compute and storage. An alternate ap-
proach would be to use a separate cluster of storage nodes
(as is the case with solutions such as SAN) and provide the
virtual disk abstraction over the network. Nutanix employs
co-location as it reduces infrastructure costs and allows the
storage system to flexibly migrate data blocks accessed by a
VM to the node on which the VM is currently hosted, thereby
providing low latency access and lowering network traffic.
Metadata storage. In this paper, we focus on how Stargate
stores the metadata index that maps virtual disk blocks to phys-
ical locations across the cluster. One can implement the virtual
disk abstraction by maintaining a map for each virtual disk
(vDisk) that tracks the physical disk location for every block in
that vDisk. Our design, outlined below, introduces additional
levels of indirection to support features such as deduplication,
cloning and snapshotting. It also separates physical maps from
logical maps to allow for decoupled updates to these maps.

A virtual disk is a sequence of extents, each of which is
identified by an ExtentID. An extent can be shared across vir-
tual disks either because of the deduplication of disk blocks

VM 1
Init: x = 1
op1: write x = 2

op1 start op1 finish

op1 write propagation

event1: node B fails

VM 1
Init: x = 1
op1: write x = 2
op2: read x = 1 

VM 1
Init: x = 1
op1: write x = 2
op2: read x = 1 
op3: read x = 2

event2: node B recovers

time T

op2 op3event1 event2

<node A, node C><node A, node B> <node A, node C>

op1 timeout

Figure 1: Example timeline that satisfies linearizability but complicates
reasoning about failures. The notation <node A, node B> means that the
VM is on node A and the leader of the replica group maintaining key X
is on node B. The value of key x is 1 at the start of the timeline. A VM,
initially running on node A, issues a write to x, partially performs it on
node B, and suffers a timeout due to B’s failure. After another node C
becomes the leader, the VM reads 1 from x and expects to continue to
see x set to 1, barring new writes issued subsequently. If the old leader
were to recover, it could propagate its updated copy of x and interfere
with the VM’s logic.

or snapshotting/cloning of virtual disks. Extents are grouped
into units called extent groups, each of which has an asso-
ciated ExtentGroupID, and each extent group is stored as a
contiguous unit on a storage device. Given this structure,
the storage system uses the vDisk Block Map to map por-
tions of a vDisk to ExtentIDs, the ExtentID Map to map ex-
tents to ExtentGroupIDs, and the ExtentGroupID Map to map
ExtentGroupIDs to physical disk locations. These maps are
shared between VMs and the cluster storage management sys-
tem, which might move, compress, deduplicate, and garbage-
collect storage blocks. All accesses to a given vDisk are seri-
alized through a vDisk controller hosted on one of the clus-
ter nodes. Stargate migrates vDisk controllers and VMs upon
node failures.

Goals. In determining how to store Stargate’s metadata index,
apart from maximizing availability and efficiency, we have
the following goals:

• Durability: To minimize the probability of data loss, any
update to the metadata must be committed to stable storage
on multiple nodes in the cluster before Stargate acknowl-
edges the write as complete to the client. Note that our sys-
tem should maintain consistent metadata even when the en-
tire cluster comes down (e.g., due to a correlated failure).

• Consistency: Operations on the metadata index should be
linearizable, i.e., all updates to a block’s metadata should
be totally ordered, and any read should return the last com-
pleted write. This guarantee provides strong consistency
semantics to client VMs and various background services
that operate on the metadata.

• Reasoning about failures: Under linearizability, even if a
read issued after a failure does not reflect a write issued
before the failure, this does not mean that the write failed;
the update could have been arbitrarily delayed and might
get applied later, causing subsequent reads to observe the
updated value (see Figure 1). The system should provide
stronger guarantees to client VMs so that they can reason
about operation failures. In particular, any subsequent read
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Figure 2: Baseline system architecture representing a coarse-grained
replicated state machine built using LSM and Paxos.

of the metadata after an operation timeout must confirm
whether the prior operation succeeded or not, and succes-
sive reads of a piece of metadata should return the same
value as long as there are no concurrent updates initiated
by other agents in the system.

2.2 Baseline Design

Let us now consider a baseline approach for realizing the
above-mentioned goals. This baseline takes the traditional
approach of (a) sharding the metadata index across multiple
nodes and multiple cores or SSDs on a given node, (b) using
a consensus protocol for ordering operations on any given
shard, and (c) executing operations on a durable data structure
such as a log-structured merge tree.

In the baseline, all nodes in the cluster participate in im-
plementing a distributed key-value store. We partition keys
into shards, use consistent hashing to map shards to replica
sets, and consider a leader-based consensus protocol wherein
each node serves as the leader for one or more shards in the
system. Leader-less designs (such as EPaxos [23]) can lower
the communication costs as they eliminate the coordination
overheads for the leader, but provide limited benefits in our
setting. First, when storage and compute are co-located, there
is limited value in moving communication costs from the
leader to a client that is sharing network resources with a dif-
ferent server in the cluster. Second, as we will demonstrate
later, storage and compute resources are bigger bottlenecks
in our setting than the network. Due to our design choice of
co-locating compute and storage, the metadata service shares
resources with client VMs, which have a higher priority.

We consider a layered design wherein the lower layer cor-
responds to a consensus protocol, and the upper layer corre-
sponds to a state machine implementing a durable data struc-
ture such as a log-structured merge tree. The timeline for pro-
cessing a request proceeds as follows.
Consensus layer processing. For every shard, one of the
replicas of the shard becomes the leader by sending “prepare"

messages to a quorum of replicas. When the leader receives a
mutating command such as a write, it sequences and propa-
gates this command to all replicas (including itself) using a
consensus protocol such as Paxos [16], Viewstamped Repli-
cation [25], or Raft [26]. Each shard that a node is assigned
to is associated with a specific core and a specific SSD on
that node; the core is responsible for sequencing updates to
the shard, and the corresponding operation log is stored on
the SSD. The system maximizes efficiency by committing
commands to the SSD in batches, with every node batching
updates destined to one of its SSDs until the prior write to
that SSD is complete. Once a batched write is completed, all
operations in that batch are considered “accepted". After the
leader receives a quorum number of accepts for a command, it
can then execute the command locally and send “learn" mes-
sages to all followers, indicating that the command has been
“chosen." The chosen status does not have to be recorded in
stable storage as it can be recreated upon failures. A central-
ized approach with primary-backup replication [3] can elimi-
nate the use of a consensus protocol and simplify the system
design. Such a design, however, limits both the operational
scale and performance, and wouldn’t satisfy the system re-
quirements that we had outlined above.
LSM layer processing. At every node, the LSM layer pro-
cesses all chosen commands in the order determined by the
consensus layer. LSM processing is streamlined to include
just the in-memory Memtable and the stable SSTables. In
particular, this is a slightly customized version of a tradi-
tional LSM implementation as the commit log, which is avail-
able from the consensus layer, can be eliminated from the
LSM code. The Memtable access and compaction operations
need to be synchronized with other concurrent operations to
support multi-core operations. The leader acknowledges a
command as complete to the client after a quorum of nodes
has recorded the command, and the leader has executed the
command in its chosen order because the success of some
commands (e.g., compare-and-swap) can be determined only
when they are executed after all previously accepted com-
mands have been applied. Leases enable the leader to serve
reads on the LSM without any communication with other
nodes. However, the leader must synchronize every read on a
key with ongoing updates to the same key.
Ordering guarantees. RSMs built using consensus proto-
cols provide linearizability. Further, an RSM can guarantee in-
order execution of operations issued by a client. This helps the
client reason about the execution status of its operations that
have timed out – if the result of a later operation implies that
an earlier operation has not been performed, the client can not
only deduce that the prior operation has not yet completed but
also get the guarantee that the service will never perform the
operation. This guarantee can be provided even after RSM re-
configurations. Upon leadership and view changes, protocols
such as Viewstamped Replication ensure that operations par-
tially performed in a previous view are not completed in sub-
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sequent views. These guarantees provide clients with some
capability to infer the completion status of their operations.

2.3 Performance Implications of Baseline Design

This baseline design, however, results in several sources of
inefficiency. We quantify them with micro-benchmarks using
the same computing setup as our evaluations (see Section 4.1).

• Load imbalance due to skew: The skew in load across
shards can lead to an imbalance across SSDs and CPU
cores. For instance, differences in popularity across keys
can result in long-term skew, whereas random Poisson ar-
rival of requests can cause short-term skew. Figure 3 quan-
tifies the skews across shards for random Poisson arrival.

• Sub-optimal batching: If there are n nodes in a replica set,
each with m SSDs, the number of shards into which com-
mands would be accumulated would be the least common
multiple of m and n. (This ensures that the assignment of
shard storage to SSDs and the assignment of shard leader-
ship to nodes are statically balanced.) Batching updates in-
dependently on each of these shards can result in less than
optimal latency amortization. Figure 4 shows that batching
across multiple data shards can achieve 1.6× higher band-
width than a traditional per-shard log design.
• High tail latency: Tail latency or even average latency of

operations could be high due to multiple reasons. First,
since the RSM abstraction requires that all replicas execute
all updates in the same order, if one of the replicas for a
shard is missing a command in its commit log, subsequent
operations on that shard will block until this replica catches
up. Second, since LSM operations vary in terms of their
execution costs (shown in Figure 5), a heavyweight opera-
tion can delay the execution of lightweight operations even
if processor cores are available to execute the operations.

Sub-dividing the shards into even smaller shards would
mitigate the load imbalance issue. However, it suffers from
three drawbacks. First, it doesn’t address the request head-of-
line blocking issue. Requests still have to commit and exe-
cute in sequence, as specified in the log order. Second, it fur-
ther reduces batching efficiency for storage devices. Third, it
doesn’t provide the benefit of fast node recovery, as a recov-
ering node cannot immediately participate in the protocol. As
a result, we instead adopt a shard-less design to overcome all
of these issues, as we describe next.

3 System Design
We now present the design of Stargate’s metadata storage sys-
tem, which provides the desired efficiency, availability, dura-
bility, and consistency properties. We use the same high-level
approach as the baseline: consistent hashing to distribute meta-
data across replica sets, log-structured merge trees to store
and access large, durable datasets, and a consensus protocol
to ensure consistency of operations on replicated data.

Our approach differs in one fundamental aspect: it uses
fine-grained replicated state machines (fRSMs), wherein each
replicated key is modeled as a separate RSM. This approach
provides the flexibility needed to effectively manage multiple
storage devices and CPU cores on a server, reduces load imbal-
ances, and enables flexible scheduling of key-value operations.
However, the use of fine-grained state machines raises both
performance and consistency issues, and we address them by
carefully co-designing the consensus protocol, the data store,
and the client stubs that interact with the storage layer.

3.1 Overview and Design Roadmap

Replicating every key-value pair as a separate RSM, though
conceptually straightforward, could impose significant over-
heads because RSMs are rather heavyweight. For example, a
typical RSM contains an operation log and consensus state
for each entry in the operation log. The operation log is used
to catch up replicas that are lagging behind and/or have miss-
ing entries; each operation in the log has to be propagated to
laggards to get their state up-to-date.
Lightweight RSMs. Fortunately, the RSM state can be vastly
streamlined for simple state machines, such as the key-value
objects we use in our system.

• For normal read/write and synchronizing operations such
as compare-and-swap, the next state of a key-value pair
is a function of its current state and any argument that is
provided along with the operator. For such operations, one
can eliminate the need for an operation log; it suffices to
maintain just the last mutating operation that has been per-
formed on the object and any in-progress operations being
performed on the object. We use an API that is simple and
yet sufficiently powerful to support the metadata operations
of a cluster storage system. (See Section 3.2.)

• The consensus state for operations on a key (e.g., promised
and accepted proposal numbers) is stored along with the
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key-value state in the LSM as opposed to requiring a sepa-
rate data structure for maintaining this information. (See
Section 3.3.1.)

• A consensus protocol typically stores accepted but not yet
committed values along with its committed state and com-
mits an accepted value when consensus has been reached.
Instead, our system speculatively executes the operations,
stores the resulting value in a node’s LSM, and relies on the
consensus protocol to update this to the consensus value
for the key in the case of conflicts. This further reduces the
RSM state associated with each key. It also eliminates the
need for explicit learn messages.1 (See Section 3.3.2.)

• Similar to the Vertical Paxos approach [18], leader election
is performed on a per key-range granularity using a separate
service (e.g., Zookeeper [13] in our case).

Enabled optimizations. We co-design the consensus proto-
col and the LSM layer implementing the key-value store to
realize per-key RSMs.2 This enables many optimizations.

• Consolidated LSM: All the key-values replicated on a given
node can be stored in a single LSM tree as opposed to
the canonical sharded implementation that would require
a separate LSM tree for each shard. The commit log of
the unified LSM tree can be striped across the different
storage devices, thus leading to more effective batching of
I/O requests to the commit log.

• Load balancing: Per-key RSMs enable flexible and late
binding of operation processing to CPU cores; a key-value
operation can be processed on any core (as long as there
is per-key in-memory synchronization to deal with concur-
rency) and durable updates can be performed on any SSD,
leading to more balanced utilization of cores and SSDs.

• Minimizing stalls: By requiring ordering of operations only
per-key, rather than per-shard, we can eliminate head-of-
line blocking. Message loss and high-latency LSM opera-
tions do not impact the performance of ongoing operations
on other keys, thus improving the tail latency of operations.

• Low-overhead replication: Each operation can be applied
to just a quorum of replicas (e.g., two nodes in a replica
set of three), thus increasing the overall throughput that the
system can support. With coarse-grained RSMs, this opti-
mization would result in a period of unavailability when-
ever a node fails, because new operations on a shard can
only be served after stale nodes catch up on all previous
operations on the shard. With fRSMs, lagging nodes can
be updated on a per-key basis and can be immediately used
as part of a quorum.

Challenges. The per-key RSM approach, however, comes

1It is worth noting that the optimization of piggybacking learn messages
with subsequent commands is difficult to realize in fine-grained RSMs as a
subsequent operation on the same key might not be immediate.

2Since we integrate the RSM consensus state into each key-value pair,
we can reuse LSM APIs as well as its minor/major compaction mechanisms.

with certain performance and consistency implications that
we outline below.

• Overhead of per-key consensus messages: A coarse-grained
RSM can elect a leader for a given shard and avoid the use
of prepare messages for mutating operations performed on
any key in the shard. In contrast, with per-key RSMs, a
node would have to transmit a per-key prepare message if
it had not performed the previous mutating operation on
that key. Fortunately, node downtimes are low in managed
environments such as ours, and a designated home node
coordinates most operations on a key. We quantify the
overhead associated with this using failure data collected
from real deployments.

• Reasoning about the completion status of old operations:
As discussed earlier, a coarse-grained consensus protocol
such as Viewstamped Replication can discard operations
initiated but not completed within a view. With fRSMs,
one could perform such a view change on a per-key ba-
sis, but this would imply additional overheads even for
non-mutating operations. We limit these overheads to only
when a key might have outstanding incomplete operations
initiated by a previous leader. (See Section 3.3.3.)

3.2 Operation API and Consistency Semantics

Operations supported: Our key-value store provides the fol-
lowing operations: Create key-value pair, Read value associ-
ated with a key, Compare-and-Swap (CAS) the value associ-
ated with a key, and Delete key. The CAS primitive is atomic:
provided a key k, current value v, and a new value v′, the key-
value storage system would atomically overwrite the current
value v with new value v′. If the current value of key k is not
v, then the atomic CAS operation fails. Note that Create and
Delete can also be expressed as CAS operations with a special
value to indicate null objects.

We note that the CAS operation has a consensus number
of infinity according to Herlihy’s impossibility and universal-
ity hierarchy [12]; it means that objects supporting CAS can
be used to solve the traditional consensus problem for an un-
bounded number of threads and that realizing CAS is as hard
as solving consensus. Further, Herlihy’s work shows that ob-
jects supporting CAS are more powerful than objects that sup-
port just reads and writes (e.g., shared registers [1]) or certain
read-modify-write operations like fetch-and-increment.

We do not support blind writes, i.e., operations that merely
update a key’s value without providing the current value.
Since all of our operations are CAS-like, we can provide at-
most-once execution semantics without requiring any explicit
per-client state as in RIFL [19]. Further, most of our updates
are read-modify-write updates, so it is straightforward to ex-
press them as CAS operations.
Consistency model: Apart from linearizability, we aim to
provide two consistency properties to simplify reasoning
about operation timeouts and failures.
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• Session ordering: Client operations on a given key are
performed in the order in which the client issues them. This
property lets a client reason about the execution status of
its outstanding operations.

• Bounded delays: Client operations are delivered to the
metadata service within a bounded delay. This property
lets other clients reason about the execution status of oper-
ations issued by a failed client.

Sections 3.3.2 and 3.3.3 describe how we implement lin-
earizable CAS and read operations using a leader-based pro-
tocol. We provide session ordering using two mechanisms:
(a) leaders process operations on a given key in the order in
which they were received from a client, and (b) the read pro-
cessing logic either commits or explicitly fails outstanding
operations initiated by previous leaders (see Section 3.3.3).
Section 3.4 describes how coarse-grained delay guarantees
from the transport layer can help clients reason about the stor-
age state of failed clients.

Our metadata service exposes single-key operation order-
ing semantics as opposed to supporting transactional seman-
tics involving multiple keys. To support multi-key operations,
one can implement a client-side transaction layer that includes
a two-phase commit protocol and opportunistic locking [14,
32]. This is similar to what is required of a coarse-grained
RSM system to support cross-shard multi-key transactions.

3.3 Operation Processing Logic

3.3.1 Consensus State

Associated with each key is a clock attribute that stores infor-
mation regarding logical timestamps and per-key state that is
used for providing consistent updates. The clock attribute is
stored along with a key-value pair in the various data struc-
tures (e.g., commit log, Memtable, and SSTables), and it com-
prises of the following fields.

• epoch number represents the generation for the key and is
updated every time the key is deleted and re-created.

• timestamp within an epoch is initialized when the key is
created and is advanced whenever the key’s value is up-
dated. The epoch number and the timestamp together rep-
resent a Paxos instance number (i.e., the sequence number
of a command performed on a key-value object).

• promised proposal number and accepted proposal number
associated with the key’s value maintained by a given node;
these represent consensus protocol state.

• chosen bit indicates whether the value stored along with
the key represents the consensus value for the given epoch
number and timestamp.

The clock attribute is a concise representation of the value
associated with the key, and it is used instead of the value
in quorum operations (e.g., quorum reads discussed in Sec-
tion 3.3.3). Since they are frequently accessed, the clock at-
tributes alone are maintained in an in-memory clock cache to

minimize SSTable lookups and optimize reads/updates.

3.3.2 CAS Processing

For implementing CAS operations, we use a variant of the tra-
ditional Multi-Paxos algorithm, wherein we co-design differ-
ent parts of the system and customize the consensus proto-
col for our key-value store. First, we integrate the processing
associated with the consensus algorithm and the key-value
store. As an example of a co-designed approach, accept mes-
sages will be rejected both when the promise is insufficient
and when there is a CAS error. Second, the nodes do not
maintain per-key or per-shard operation logs, but instead, skip
over missed operations and directly determine and apply the
accepted value with the highest associated proposal number
(with a possibly much higher timestamp). Third, the process-
ing logic speculatively updates the LSM tree and relies on
subsequent operations to fix speculation errors.

Client CAS updates are built using the clock obtained via
the key read previously. With each read, a client also receives
the current epoch (e) and timestamp (t) for the value. The
client CAS update for the key would then contain the new
value along with epoch e and timestamp t+1. This is a logical
CAS where the client specifies the new value for timestamp
t+1 after having read the value previously at timestamp t. The
request is routed to the leader of the replica group responsible
for the key. It then performs the following steps.

1. Retrieve key’s consensus state: The leader reads its local
state for key k and retrieves the key’s local clock. The clock
provides the following values: the proposal number for a
promise (pp) and the proposal number for the currently
accepted value (pa).

2. Prepare request: If pp is for a prepare issued by a differ-
ent node, then the leader generates a higher proposal num-
ber, sends prepare messages to other nodes, and repeats
this process until it obtains promises from a quorum of
nodes. The leader skips this step if pp and pa are the same
and refer to proposals made by the leader.
Prepare handler: Each of the replicas, including the
leader, acknowledges a prepare message with a promise
to not accept lower numbered proposals if it is the highest
prepare proposal number received thus far for the key. The
replicas durably store the prepare proposal number as part
of the key’s clock attribute (i.e., in the commit log as well
as the Memtable).

3. Accept request: The leader sends an accept message with
the client-specified timestamp, i.e., t+1, the current epoch,
and the proposal number associated with a successful pre-
pare.
Accept handler: At each of the replicas, including the
leader, the accept message is processed if the current times-
tamp associated with the key is still t and the proposal
number is greater than or equal to the local promised pro-
posal number. If so, the key’s value and the correspond-
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ing clock are recorded in the commit log and Memtable
at each node. An accept request is rejected at one of the
nodes if it has issued a promise to a higher proposal num-
ber or if the timestamp associated with the object is greater
than t. In both cases, the replica returns its current value
and the proposal number attached to it.

4. Accept response processing: The leader processes the
accept responses in one of the following ways.

• If a quorum of successful accept responses is received
at the leader, the leader considers the operation to be
completed and records a chosen bit on its Memtable
entry for the key-value pair. It then reports success back
to the client.

• If the accept requests are rejected because the promise is
not valid, then the leader performs an additional round
of prepare and accept messages.

• If the request is rejected because the (epoch, timestamp)
tuple at a replica is greater than or equal to the client-
supplied epoch and timestamp, then a CAS error is sent
to the client. Further, accept messages are initiated to
commit the newly learned value and timestamps at a
quorum of nodes.

The protocol described above is faithful to the traditional
consensus protocols, but it is customized for our key-value
application and the use of fine-grained RSMs. In our system,
a client needs to wait for a previous write to complete before
issuing a subsequent write. We discuss the equivalence with
coarse-grained RSM in Appendix A.4.

3.3.3 Read Processing

A read operation has to ensure the following properties upon
completion: (a) the value returned should be the most recent
chosen value for a given key, and (b) other previously accepted
values with higher <epoch, timestamp> than the returned
value are not chosen. The former requires the completion of
in-progress CAS operations that are currently visible to the
leader; this property is required for linearizability. The latter
ensures that any other CAS operations that are in-progress but
aren’t visible will not be committed in the future; this is akin
to a view change in the Viewstamped Replication protocol
where operations that are not deemed complete at the end of
a view are prevented from committing in a subsequent view.

To meet these requirements, read operations are processed
in one of three different modes: leader-only reads, quorum
reads, and mutating quorum reads. When the operation is
routed to the leader, the leader checks whether it is operating
in the leader-only mode, where all of its key-value pairs are
up-to-date as a consequence of obtaining the chosen values for
every key in the shard through a shard-level scan (described
in Section 5.1). If the check is successful, then the leader will
serve the request from its Memtable or one of the SSTables. If
the leader is not operating in the leader-only mode, then it has
to poll the replica set for a quorum and identify the most recent

accepted value for a key (i.e., perform a quorum read). If this
value is not available on a quorum of nodes, the leader has to
propagate the value to a quorum of nodes (i.e., perform a mu-
tating quorum read). Further, if there is an unreachable replica
that might have a more recent accepted value, then the mutat-
ing quorum read performs an additional quorum-wide update
to just the timestamp to prevent such a value from being cho-
sen. Note that the consensus state can help determine the pos-
sibility of an update languishing in a failed/partitioned node;
at least one node in a quorum set of nodes should have an out-
standing promise to the failed/partitioned node, and the read
protocol can detect this condition using a quorum operation.

We now provide additional details regarding quorum reads
and mutating quorum reads. A leader not operating in leader-
only mode satisfies a read request using the following steps.

1. Quorum read request: The leader sends the read request
to other nodes in the replica set. Each node responds with
the clock attribute associated with its local version of the
key-value pair.

2. Quorum read response: The leader then examines the re-
ceived clock attributes and checks whether any of them
have a <higher epoch, timestamp> compared to the leader’s
clock and whether a quorum of nodes is reporting the most
recent value. If the leader does not have the value associ-
ated with the highest epoch and timestamp, it obtains the
value from one of the nodes reporting the most recent value.
If a quorum of nodes reports not having this value, the
leader propagates this value to other nodes in the quorum.

3. Check for outstanding accepted values: The leader then
examines the received clock attributes and checks whether
any of them contain a promise that satisfies the following
two conditions: (1) the promise is greater than or equal to
the highest proposal number associated with an accepted
value, and (2) the promise is made to a node that did not
respond with a clock attribute.

4. Update timestamp to quench outstanding accepts: If
such a promise exists, then the read will perform an addi-
tional round of updates to a quorum. Let pp be the promise
associated with an unreachable node, and let v, e, and t
be the value, epoch, and timestamp associated with the
highest accepted proposal. The leader issues prepare com-
mands to the replica nodes to obtain a promise greater than
pp, and then sends accept commands to the replica nodes
to update their value, epoch, and timestamp fields to v, e,
and t + 1, respectively. The higher timestamp value pre-
vents older CAS operations from succeeding.

The different modes for satisfying a read operation have
progressively higher execution costs. In the common case, the
leader-only reads can satisfy a read operation using local in-
formation and without communicating with the other replicas.
The quorum reads are performed when the leader is not oper-
ating in leader-only mode immediately after a failover. In this
case, the leader has to communicate with the other replica
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nodes in order to process the read request. If the most recent
accepted value is not available on a quorum or if there is evi-
dence of an unreachable node with an outstanding promise,
then we resort to mutating quorum reads that not only incurs
additional communication rounds to the replicas but also pays
the overhead of writes to stable storage in order to record the
updated value and timestamp. Fortunately, a mutating quo-
rum read is needed only after failover and when there is an
unreachable node that has obtained a promise to update the
given key-value pair. Further, this is invoked only for the very
first operation on the key after the failover; subsequent reads
can be processed locally by the leader. This escalation of op-
erating modes means that we incur the additional overheads
associated with our use of fine-grained RSMs (e.g., per-key
prepare messages and per-key timestamp updates) only in a
limited number of cases.

3.4 Bounded Transport Processing

The logic outlined above allows reads to either commit or ex-
plicitly fail outstanding operations that have been received
and processed by any member of the replica group. We now
enhance our system to provide time bounds on the delay for
propagating a command from the client to a replica node. This
allows clients to also reason about the execution status of com-
mands recently initiated by some other client in the system
(e.g., the previous instance of a VM that failed unexpectedly).

CAS operations are tagged with the time at which they
are initiated by the Stargate code. The leader ensures that it
finishes processing the CAS operation within a bounded time
of T seconds. If the time bound expires and the leader had
failed to initiate any accept messages to process and propagate
the new value, then it simply drops the request and returns
a timeout message. As a consequence of this time bound, a
read operation that is issued T seconds after an update will
encounter one of the following cases: the prior update has
been committed; the prior update was accepted at a subset
of the nodes, in which case the read will commit it; or prior
update is not at any of the responsive replicas, in which case
the read will prevent the prior update from committing. The
read can thus determine the execution status of the prior
update, and repeated reads will return the same consistent
value in the absence of other concurrent updates.

This bounded-time guarantee assists in handling failover of
application code, migration of virtual disks across Stargate in-
stances, and other tasks. For example, the cluster management
software can delay the failover of applications until the time
bound has expired to ensure that they are not affected by spuri-
ous races. For the Stargate systems code, such as that of virtual
disk migration logic where stalls are not appropriate, clients
directly invoke mutating quorum read to abort any in-flight
operations from the old site until the time bound has expired.

The use of time bounds is similar in spirit to that of leases
in a distributed system, and the concerns associated with the
use of an implicit global clock being mitigated by the fol-

lowing two considerations. First, the clients of the key-value
store are the block storage management services that run on
the same set of nodes as the distributed key-value store and
thereby share the same set of local clocks on each node. Sec-
ond, in a local area enterprise cluster, time synchronization
protocols such as NTP/PTP can achieve sub-millisecond time
synchronization accuracy, whereas the time bounds that we
provide are in the order of seconds (which is consistent with
the disk timeout values in operating systems/file systems).

4 Evaluation and Deployment Measurements
Our evaluations comprise of four parts. First, we character-
ize the metadata service using representative traces from cus-
tomer clusters. Second, we show the performance benefits
of using fine-grained RSMs by comparing it with an imple-
mentation of a coarse-grained RSM (i.e., cRSM) approach
described in Section 2. We perform these evaluations in a
controlled testbed setting that runs just the metadata service
and not the rest of the cluster block storage system. Note that
the controlled environment has the same failure rate, request
read/write ratio, and key popularity distribution that we ob-
served in practice. Third, we present the performance of our
metadata service as part of complete system evaluations. We
configure a cluster with client VMs and workload generators,
measure the performance of our metadata service, and charac-
terize the performance benefits of optimizations. Finally, we
report performance numbers from real-world deployments.

4.1 Experiment Setup

Our evaluations are performed on typical enterprise on-
premises clusters. Specifically, our controlled testbed is a 4-
node cluster, where each node is a Supermicro 1U/2U server,
enclosing E5-2680 v3/E5-2620 v4 processors, 64GB/128GB
DDR4 memory, two Intel DC P3600 NVMe SSDs, and a
dual-port 10Gbps Intel X710 NIC. We perform the remaining
evaluations on similar hardware, but at a larger scale across
a large number of customer clusters. Appendix B.1 presents
details of the LSM configurations that we use in practice. The
replication factor for a key is three in all experiments.

4.2 Metadata Workload Characterization

We present metadata measurements from 980 customer clus-
ters (Figure 20 in Appendix B.2). Generally, each cluster con-
tains 3 to 30 nodes and uses 24.7TB block storage on aver-
age. The three metadata components (vDisk block, Extent-
GroupID, and ExtentId) have sizes that are 0.04%, 0.12%,
and 0.02% of the logical storage, respectively. Note that the
size of metadata will increase when deduplication and com-
pression are enabled due to more consolidated block storage.

Next, we characterize the metadata workload in terms of
read/write ratio, value size distribution, and key access popu-
larity by taking continuous snapshots from three custom clus-
ters, where each cluster has at most 16 nodes. We make the
following observations. First, unlike other previous key-value
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Figure 6: Read/write ratio for 8 frequently ac-
cessed metadata tables.
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Cluster1 Cluster2 Cluster3
vdisk block 0.99 0.99 0.99
extent id 0.80 0.80 0.85
extent group id 0.60 0.55 0.50
extent phy_state Uniform Uniform Uniform

Table 1: Key access popularity of four different
metadata tables for three customer clusters. The
first three types of metadata are Zipf; we show
their skewness factors.
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Figure 8: Latency v.s. throughput under the
skewed workload for multiple shards.

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100  120

L
a

te
n

c
y
 (

m
s
)

Throughput (KRPS)

fRSM
cRSM batch=1

cRSM batch=64
cRSM batch=128

Figure 9: Latency v.s. throughput under the uni-
form workload for multiple shards.
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Figure 10: Maximum throu. for the skewed
workload as we increase the number of cores.

store workload profiles studied under social networks/web set-
tings [21,24], our metadata service presents various read/write
ratios ranging from write-only loads for various system logs
to read/write intensive ones for various filesystem metadata
items (see Figure 6). Second, the read/write requests are dom-
inated by small values, say less than 512B (see Figure 7).
In fact, about 80% of reads and writes involve values that
are less than 200 bytes in size. Further, requests that involve
more than 1KB value sizes are about 1.0% of the reads/writes.
Finally, there exist various access patterns in our metadata
service. As shown in Table 1, some metadata shows highly
skewed key/value accesses, while others have low skewness
or even present uniform access patterns.

4.3 Benefits of Fine-grained RSMs

We now evaluate the performance benefits of fRSMs using
streamlined deployments that run just the metadata service
on physical nodes (as opposed to client VMs). No client
workloads are executing on service nodes. We use a workload
generator and configure it to issue a similar request pattern as
our most frequently accessed metadata that has 43% reads and
57% writes, value size of 512B, and a Zipf distribution with
skewness factor of 0.99. We also consider a uniform access
case (i.e., random access pattern) as an additional workload.
We inject faults into the leader using failure rate observed in
the wild (Section 4.5). We evaluate fRSM and cRSM in terms
of both latency and throughput.

Higher throughput. We set up a three-node replica group
with twelve data shards, running across two SSDs and twelve
CPU cores. In the case of cRSM, each node is a leader for four
shards, each shard allocated a separate core, and six shards
share each SSD. In the case of fRSM, there is a consolidated
commit log striped across the two SSDs, and each operation
is dynamically scheduled to a CPU core. We consider cRSM
configured to perform batched commit using different batch

sizes. fRSM achieves 5.6× and 2.3× higher throughputs over
cRSM (with batch size of 128) for skewed and random cases,
respectively (see Figures 8 and 9). This is because fRSM
(1) allows requests accessing different keys to be reordered
and committed as soon as they complete; (2) eliminates the
computation cost associated with scanning the RSM log to
identify and retry uncommitted entries; (3) avoids unnecessary
head-of-line blocking caused by other requests; (4) achieves
better load balance across SSDs and cores even in skewed
workloads. The first three benefits can be observed even in
the single shard case (Figures 11 and 12), while the next
experiment further examines the load balance benefits.

Better load balancing. To examine the load-balancing
benefits of fRSM , we again consider a three-node replication
group with twelve data shards but vary the number of CPU
cores used to process the workload. We consider the skewed
workload, and we configure cRSM to use a batch size of 64.
We then measured the maximum throughputs achieved and
the average/p99 latency of operations when we achieve the
maximum throughput (see Figures 10 and 13). fRSM provides
a 1.9×, 4.1×, 6.1×, 11.0× throughput improvement and 1.9×,
2.4×, 3.3×, 5.3× (1.3×, 2.5×, 3.3×, 4.9×) avg(p99) latency
reduction as we increase the number of cores from 1 core to
2, 4, 6, and 12 cores, respectively. The performance of cRSM,
on the other hand, does not improve with more than two
provisioned cores. Under load skews, fRSM allows balanced
and timely execution of operations on different key-based
RSMs, while cRSM has to commit requests in the RSM log
sequentially and is subject to skews and head-of-line blocking.

4.4 Performance of Commercial Offering

We now evaluate the fRSM approach when implemented in-
side a commercial product providing a cluster-wide storage
abstraction. This introduces many additional overheads as
the metadata service is executed inside a controller virtual
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Figure 11: Latency v.s. throughput under the
skewed workload for a single shard.
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Figure 12: Latency v.s. throughput under the
uniform workload for a single shard.
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Figure 16: Throughput for the skewed workload
varying the fraction of multi-phase operations.

machine, there is virtualized access to the network, and stor-
age/CPU resources are shared with the rest of the cluster man-
agement system as well as client VMs.

We use an internal three-node cluster and an in-house work-
load generator that mimics various types of client VM behav-
ior. Figure 14 reports the performance. The node is able to sup-
port peak throughputs of 121.4KRPS and 57.8KRPS for reads
and writes, respectively. Under a low to medium request load,
the average latency of reads and writes is 0.63ms and 1.83ms,
respectively. In the appendix, we provide additional measure-
ments of the internal cluster that quantify the benefits of using
a gradation of read execution modes and utilizing the appropri-
ate read variant for a given key. Overall, the throughput perfor-
mance of fRSM inside the commercial offering is in the same
ballpark as the stand-alone evaluation, but the access latency
is significantly higher due to various queueing delays and in-
terference with other storage operations that are concurrently
performed by the VMs and the cluster management software.

4.5 Measurements from Real-world Deployments

High availability. We collect failure data over a two-week
period (from 2018/09/12 to 2018/09/25) from about 2K cus-
tomer clusters. On average, there are 70 software detached
events (due to unanswered heartbeat messages) and 26 hard-
ware failures (e.g., disk failures) per day, respectively. Cru-
cially, our measurements show that a recovering node is able
to integrate itself into the service within 30 seconds irrespec-
tive of the number of key-value operations that might have
been performed when it was down. Appendix B.4 reports de-
tailed failure handling performance. The reason for this fast
recovery is that a recovering node only replays the operations
in its commit log before it can participate in the consensus
protocols. Each key accessed subsequently would allow the
recovering node to update just that particular key-value state
given the fine-grained nature of the RSMs in our system. The

node can also lazily update the remaining key-value state in
the background, and we observe that our system does so in
about 630secs on average. In other words, the fRSM approach
speeds up node integration significantly by more than 20x.

Multi-phase operations. The primary overhead associated
with fRSM is the need for one or more additional rounds of
protocol messages when a leader invokes an operation on a
key that was previously mutated through a different leader.
cRSM also incurs leadership change overheads, but they are
at a shard-level, whereas fRSM incurs the overheads on a per-
key basis. We quantify how often this happens in practice
by measuring the fraction of instances where a leader does
not have the chosen bit set and has to perform additional
protocol phases. Figure 15 shows that fRSM incurs additional
overheads for less than 1% of the key accesses in more than
90% of the cluster snapshots. We then performed an analysis
of how the fRSM throughput degrades as we vary the number
of accesses requiring multi-phase operations given the skewed
workload discussed earlier. Figure 16 shows that, even though
the throughput of fRSM degrades in our controlled testbed,
fRSM’s throughput is still higher than that of cRSM’s even
when 100% of the operations require multiple phases.

Cluster throughputs. We report the node/cluster through-
put of the metadata layer from real deployments. Figure 17
shows the cluster throughput, where (1) every point repre-
sents a cluster data point; (2) the left y-axis represents both
the throughput as well as the number of Paxos state machines
that are executing per second (since every operation corre-
sponds to a Paxos instance of a key-value pair); (3) the right
y-axis is the number of nodes in the cluster. It varies from 3
nodes to a maximum of 33 nodes in the cluster; (4) the red
line represents the throughput measurements per node. We
can observe that our metadata layer can scale from a few thou-
sand state machine invocations to about 393K state machine
invocations per second across the cluster. The cluster with the
maximum number of cluster-level operations had eight nodes,
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Figure 17: Cluster-level and node-level throughput for the metadata
layer in the custom cluster.

and the per-node throughput is ∼59K operations per second,
which is consistent with the stress tests performed on the in-
ternal cluster. Note that the peak system throughput for the
other clusters could be higher, as the observed throughput is
a function of the offered load.

5 Deployment-based Experience
From our experience developing the system and troubleshoot-
ing issues, we have not only improved the robustness of the
system but also have learned a number of non-obvious lessons.

5.1 Fault Tolerance

Stargate provides highly-available block storage, and we de-
scribe how the metadata layer handles various cluster failures.

Transient failure. This is a typical failure scenario where
the failed node recovers within a short period, e.g., a node
taken offline for upgrades. When the node is the leader of a
replica group, one of the other replicas will elect itself as the
leader. The new leader initially processes reads and writes
using quorum operations instead of transiting into leader-
only mode (since scan is an expensive operation). The system
keeps track of newly created SSTables on the leader and en-
sures these newly created SSTables are not compacted with
older ones. This guarantees that new updates are segregated
from older ones. When the failed node recovers, it elects it-
self as the leader of the replica group, provided it is the nat-
ural leader of the shard. We then transfer the newly created
SSTables to the recovered node to enable it to catch up on lost
updates and enter leader-only mode after it does so. If a sig-
nificant period of time has elapsed without the failed node re-
covering (e.g., 30 minutes in our current system), the current
leader attempts to transition to leader-only mode. For this, it
has to scan the entire keyspace, by performing batched quo-
rum reads or mutating quorum reads as necessary, to discover
the up-to-date state for all keys in its shard.

Correlated or group failure. Generally, this is an uncom-
mon event but will happen when (1) the rack UPS (uninter-
ruptible power supply) or rack networking switch goes down;
(2) the cluster undergoes planned maintenance. We apply a
rack-aware cluster manager, where Stargate creates different

location independent failure domains during the cluster cre-
ation and upgrade phases. Upon metadata replication, based
on the replication factor (or fault tolerance level), we place
replicas across different failure domains to minimize the prob-
ability that the entire metadata service is unavailable.

Optimization. It is worth noting that the choice of the LSM
tree as a node’s local data storage is beneficial in optimizing
the handling of failures. With appropriate modifications to the
LSM tree, we are able to keep the newly created data segre-
gated. It also helps optimize the transfer of state to new nodes
that are added to the replica set (to restore the replication fac-
tor in the case of persistent failures) by enabling the bulk trans-
fer of SSTable state to the new nodes. Further, our system has
a background process that periodically checks the integrity of
stored data and re-replicates if necessary. This accelerates the
recovery process. If a node goes down for a while, the sys-
tem starts a dynamic healing approach that proactively copies
metadata to avoid a two-node failure and unavailability.

5.2 Addition/Removal of Nodes

Recall that, in Stargate’s metadata store, keys are spread
across nodes using consistent hashing. Since we apply ev-
ery update for a key to only a quorum of the key’s replicas
to maximize system throughput, the addition of nodes to the
cluster must be handled carefully. For example, consider the
addition of node A (in between Z and B) to a four-node clus-
ter with nodes Z, B, C, and D. Say a key in the range (Z, A]
has previously been written to only B and D, i.e., two out of
the key’s three replicas B, C, and D. Now, a read for that key
could potentially return no value since two of the key’s three
new replicas (A, B, and C) have no record of it.

To prevent such issues, we introduce a new node by tem-
porarily increasing the replication factor for the keys assigned
to it, until the node is caught up. Having a new node catch
up by issuing Paxos reads for all of its keys is, however, terri-
bly slow; this process has taken as long as 18+ hours at one
of our customers! So, we also had to develop a protocol that
enables a new node to directly receive a copy of relevant por-
tions of other nodes’ SSTables. Since a new node starts serv-
ing new operations while receiving LSM state in the back-
ground, we disable caching until the new node is caught up,
so as to prevent inconsistency between in-memory and on-
disk state. This bulk copy method is also used during the node
removal process. Besides that, we place the removed node
into a forwarding state such that replication requests won’t
be accepted, but local requests will be forwarded to another
node. After affected token ranges are scanned, and a quorum
of the remaining nodes can respond to the request, the re-
moved node is excised from the DHT ring.

5.3 Deletion of Keys

Consensus protocols such as Paxos are silent on the issue of
deletion; it is assumed that Paxos state must be kept around
forever. Therefore, when a key is deleted, correctly removing
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that key’s Paxos state from all replicas proved to be tricky to
get right for several reasons. (We describe our delete protocol
in Appendix A.2.) Even after all replicas commit to their
LSMs, a tombstone record indicating a key’s deletion, we
found that the key’s old value could resurface for multiple
reasons. Example causes include faulty SSDs failing to write
an update to stable storage despite acknowledging having
done so, or misbehaving clients issuing mutating reads with
an epoch number lower than the key’s epoch value when it
was deleted, causing the old value to be re-propagated to
all replicas. To avoid such scenarios, apart from using high-
quality SSDs, we set a key’s tombstone record in the LSM to
be deleted only 24 hours after the third record was created.
Since we use the current time to pick epoch numbers, 24 hours
is sufficiently large that clock skew cannot prevent epoch
numbers from monotonically increasing.

6 Related Work
Our work is related to recent research efforts in consensus
protocols, consistent storage systems, metadata management,
relaxed consistency, and cluster storage.
Consensus protocols: To provide consistency in the pres-
ence of node faults, we use a consensus protocol that is an ex-
tension of protocols such as Multi-Paxos [16], Viewstamped
Replication [25], and Raft [26]. The crucial difference is
that we integrate request processing (which in our case is
read/CAS/delete operations of a key-value store) with the con-
sensus protocol logic. This approach allows us to realize fine-
grained replicated state machines that enable effective use of
storage and compute units in a setting where they are scarce
(since client VMs are co-located with the storage service).

Many replication protocols reduce coordination by identi-
fying operations that can be performed independently (e.g.,
Generalized Paxos [17], EPaxos [23]). We employ a similar
technique but use it to optimize the use of storage and com-
puting on a server node. Our work is related to foundational
algorithmic work on atomic distributed registers [1,9], but we
support synchronization operations that have an unbounded
consensus number (such as CAS).
Consistent storage systems: Our work is also related to
recent work on various types of consistent key-value stor-
age systems. Unlike Spanner [5], RIFL [19], FaRM [7], and
TAPIR [35], our key-value store does not directly support
transactions but rather limits itself to single key operations.
Instead, it provides the atomic CAS primitive, which is used
by the block storage management layer to make mutating up-
dates and limited types of transactional operations. Our key-
value store, however, provides bounded time operations and
stronger ordering constraints that are required by legacy appli-
cations in virtualized settings. Its node-local data structures
are based on those of BigTable [4] and HBase [11], and we
make some modifications to aid in fast failure recovery. Our
consistent storage system is also related to MegaStore [2],
which provides per-row transactional updates using Paxos.

Our approach integrates the Paxos algorithm with the key-
value store logic in order to both enhance performance as well
as provide stronger operation ordering guarantees.
Metadata management in P2P systems: Traditional DHT-
based P2P storage systems (like DHash [6], Pastry [28],
OceanStore [15], Antiquity [33], Ceph [34]) provide a man-
agement layer that maps physical blocks to node locations.
Such metadata is a read-only caching layer that only changes
when nodes join/leave. However, our metadata service main-
tains mappings between physical and virtual blocks, which
could frequently change under VM migration. Hence, our sys-
tem has a stronger consistency requirement.
Relaxed consistency: Researchers have proposed a couple
of relaxed consistency models to reduce request execution
latency, especially for geo-replicated key-value storage. For
example, Walter [30] supports parallel snapshot isolation
and conducts asynchronous replication. Within each site, it
uses multi-version concurrency control and can quickly com-
mit transactions that write objects at their preferred sites.
COPS [22] is a geo-replicated key-value store that applies
causal consistency across the wide area. RedBlue [20] defines
two types of requests: blue operations execute locally and
lazily replicate in eventually consistency manner; red oper-
ations serialize with respect to each other and require cross-
site coordination. The metadata layer of our enterprise cloud
storage has a linearizable requirement.

7 Conclusion
Enterprise clusters today rely on virtualized storage to sup-
port their applications. In this paper, we presented the design
and implementation of a consistent metadata index that is re-
quired to provide a virtual disk abstraction. Our approach is
based on using a distributed key-value store that is spread
across the cluster nodes and is kept consistent using consen-
sus algorithms. However, unlike other systems, our design
uses fine-grained RSMs with every key-value pair represented
by a separate RSM. Our design is motivated by the effective
use of storage and computing on clusters that is achieved by
flexible scheduling of unrelated operations. Our work tackles
a range of challenges in realizing fine-grained RSMs and pro-
vides useful ordering guarantees for clients to reason about
failures. We build and evaluate our system, compare it with
coarse-grained RSMs in controlled testbed settings, and pro-
vide measurements from live customer clusters.
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A More Details of fRSM

In this appendix, we present additional details regarding the
design of our system.

A.1 Read and CAS Algorithmic Description

Algorithm 1 READ procedure
1: procedure READ_LEADER(key)
2: if leader_only = 1 then . In leader-only read mode
3: < vallocal ,CLOCKlocal >← lsm_read(key)
4: if CLOCKlocal .chosen then
5: return send_client_reply(key,vallocal)
6: end if
7: end if
8: . Do a quorum read.
9: for N in Replicagroup do

10: send_read(key,N)
11: end for
12: end procedure
13:
14: procedure PROCESS_READ_REPLY_AT_LEADER(req, msg)
15: if msgtype = SUCCESS then
16: ++num_responses
17: else
18: ++num_errors
19: end if
20: if CLOCKmsg >CLOCKlocal then
21: . Replica has a newer value. Perform mutating quorum read.
22: write_result←

CAS_LEADER(keyreq,vallocal ,CLOCKlocal .epoch,CLOCKlocal .ts)
23: if write_result =CASsuccess then
24: return send_client_reply(keyreq,vallocal)
25: else
26: return send_client_reply(keyreq,READerror)
27: end if
28: else if CLOCKmsg =CLOCKlocal then
29: ++num_responses_with_same_clock
30: end if
31: if CLOCKmsg.Pp =CLOCKlocal .Pp then
32: . Local leader holds promise on the replica.
33: ++num_promise_to_local_leader
34: end if
35: if num_responses_with_same_clock ≥ QUORUM then
36: if num_promise_to_local_leader ≥ QUORUM then
37: return send_client_reply(keyreq,vallocal)
38: else if num_responses = Replicagroup.count then
39: return send_client_reply(keyreq,vallocal)
40: end if
41: end if
42: if num_responses+num_errors = Replicagroup.count then
43: . Local leader doesn’t hold promise on quorum nodes and some replicas

didn’t reply. Some of these replica nodes may have a value with higher
timestamp, do a mutating quorum read.

44: write_result =CAS_LEADER(keyreq,vallocal ,CLOCKlocal .epoch,CLOCKlocal .ts)
45: if write_result =CASsuccess and

write_resultnum_responses < Replicagroup.count then
46: tsnew←CLOCKlocal .ts+1
47: CLOCKnew← get_clock(CLOCKlocal .pp,CLOCKlocal .epoch, tsnew)
48: write_result←
49: CAS_LEADER(keyreq,vallocal ,CLOCKnew.epoch,CLOCKnew.ts)
50: end if
51: if write_result =CASsuccess then
52: return send_client_reply(keyreq,vallocal)
53: else
54: return send_client_reply(keyreq,READerror)
55: end if
56: end if
57: end procedure
58:
59: procedure PROCESS_READ_AT_REPLICA(req)
60: <CLOCKlocal >← lsm_read(keyreq)
61: send_read_reply(keyreq,CLOCKlocal)
62: end procedure

Algorithm 2 CAS procedure
1: procedure CAS_LEADER(key,valnew,epochnew, tsnew) . Client sent write.
2: < vallocal ,CLOCKlocal >← lsm_read(key)
3: if (CLOCKlocal .epoch > epochnew or

(CLOCKlocal .epoch = epochnew and CLOCKlocal .ts > tsnew)) then
4: return send_client_reply(key,CASerror)
5: end if
6: if CLOCKlocal .pp is not valid then . Issued by another node.
7: CLOCKnew← get_clock_with_higher_proposal(CLOCKlocal .pp)
8: for N in Replicagroup do . Replica group includes the leader itself.
9: send_prepare(key,CLOCKnew,N)

10: end for
11: else . This leader holds the Multi-Paxos promise for this key.
12: CLOCKnew← get_clock(CLOCKlocal .pp,epochnew, tsnew)
13: for N in Replicagroup do . Replica group includes the leader itself.
14: send_accept(key,valnew,CLOCKnew,N)
15: end for
16: end if
17: end procedure
18:
19: procedure PROCESS_MSG_LEADER(req, msg)
20: if msgtype is prepare_reply or accept_reply then
21: ++num_responses
22: if CLOCKmsg >CLOCKreq or valmsg is present then
23: . Replica has a higher clock or an accepted value for this clock.
24: update_highest_clock_seen(keyreq,valmsg,CLOCKmsg)
25: err← 1
26: end if
27: if num_responses≥ QUORM then
28: if err = 1 then
29: . We have to run Paxos for a replica replied value

or with a higher clock.
30: < valresp,CLOCKresp >← get_highest_clock_seen(keyreq)
31: CAS_LEADER(keyreq,valresp,CLOCKresp.epoch,CLOCKresp.ts)
32: return send_client_reply(keyreq,CLOCKreq,CASerror)
33: else
34: if msgtype is prepare_reply then
35: for N in Replicagroup do
36: send_accept(keyreq,valreq,CLOCKreq,N)
37: end for
38: else if msgtype is accept_reply then
39: . Chosen bit is added to the local leader’s memtable.
40: send_client_reply(keyreq,CLOCKmsg,CASsuccess)
41: end if
42: end if
43: end if
44: else if msgtype is prepare or accept then
45: . Same as the way follower works.
46: return PROCESS_MSG_FOLLOWER(req,msg)
47: end if
48: end procedure
49:
50: procedure PROCESS_MSG_FOLLOWER(req, msg)
51: . Regular Paxos protocol at the replica.
52: <CLOCKlocal ,vallocal >← lsm_read(keyreq)
53: if msgtype is prepare then
54: if CLOCKlocal >=CLOCKreq then
55: . Epoch and timestamp match, value for this clock exists.
56: send_prepare_reply(keyreq,CLOCKlocal ,vallocal)
57: else if CLOCKlocal .pp >CLOCKreq.pp then
58: . Previously accepted Promise greater than request Proposal.
59: send_prepare_reply(keyreq,CLOCKlocal)
60: else
61: . This proposal can be accepted.
62: lsm_write_clock(keyreq,CLOCKreq)
63: send_prepare_reply(keyreq,CLOCKreq)
64: end if
65: else if msgtype is accept then
66: if CLOCKreq ≥CLOCKlocal then
67: . Received clock’s epoch, timestamp, and promise are greater or

equal to the local clock’s corresponding values.
68: lsm_write_whole(keyreq,valreq,CLOCKreq)
69: send_accept_reply(keyreq,CLOCKreq)
70: else
71: send_accept_reply(keyreq,CLOCKlocal ,vallocal)
72: end if
73: end if
74: end procedure
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Algorithm 1 and 2 presents how read/CAS requests are han-
dled at the leader and followers. They follow our protocol de-
scription in Sections 3.3.3 and 3.3.2.

A.2 Delete Processing

The key-value store also supports a delete operation, which
is used by the block storage system to remove index map en-
tries that are no longer necessary (e.g., when a virtual disk
snapshot is deleted). A delete request from a client is similar
to a regular CAS update where the client provides the epoch e
and timestamp t +1. The leader processes a delete operation
by first getting a quorum of nodes to update the value associ-
ated with the key to a special DeleteForCell value for epoch e
and timestamp t +1. If the DeleteForCell value was not ac-
cepted by all replicas but only by a quorum, then a Deleted-
CellTombstoned message is sent to ensure replicas keep the
key-value pair until the next deletion attempt. As far as the
client is concerned, quorum nodes accepting a DeleteForCell
is considered as a successful CAS update.

Periodically, the leader attempts to complete a two-phase
deletion process to delete the value completely. When it has
gotten all replicas to accept the delete request, the first phase
is considered complete. It then sends a second message to in-
struct replica nodes to schedule the key for deletion and to
remove all state associated with it. This request is recorded
in Memtable/SSTable individually on every replica. The next
major compaction on a replica will remove the state. Until
then the deletion record persists at each replica with its asso-
ciated clock containing epoch e and timestamp t +1.

Once the key deletion is successful (quorum nodes have
accepted the deletion request), any new CAS updates with
epoch ≤ e are rejected as CAS errors. New client updates for
the key (i.e., key creation) must use a new (higher) epoch with
timestamp 0.

A.3 fRSM Operation Summary

Table 2 summarizes read/write operations under various cases
in terms of request latency, message count, and metadata stor-
age operation count.

A.4 The Relationship between cRSM and fRSM

Note that fRSM works exactly the same as cRSM but in
a fine-grained way. In terms of the consensus state (Fig-
ure 18 in the appendix), cRSM maintains a per-shard view
number, the latest commit ID, and a log of RSM instances
(where each instance has an accepted proposal number and
the command value). fRSM essentially maintains informa-
tion only for the most recent instance and directly encodes the
promised/accepted proposal number along with the key/value
pair. As a result, it doesn’t require the latest commit ID. In
terms of the way they handle the leader change event, cRSM
uses a full two-round consensus protocol to synchronize the
latest commit ID, preparing for all future commands. fRSM
also takes a full two-phase consensus protocol to synchro-
nize the consensus state for each key. In the example shown

the highest proposal number, corresponding to 
the highest leader log instance;
 
the number of the latest committed log instance;
 
log entries; each entry contains the accepted 
proposal number, and command value;

cRSM consensus state

view number:
 

latest commit ID: 
 

log[]: 

fRSM consensus state

instance number:
 

<key, val>: 

epoch/timestamp, corresponding to the highest 
leader instance;
 
key-value pairs; each pair contains the promised 
proposal number, accepted proposal number, 
and key/value data;

Figure 18: Consensus state comparison between cRSM and fRSM .

fRSM leader change

R key1
op1

W key1 R key2 W key2 R key2W key1 R key3W key3
op2 op3 op4 op5 op6 op7 op8

Upon change, each key i, start a two-round Paxos and prepare for all 
future requests that access key i;

Upon change, start a two-phase Paxos protocol and prepare for all 
future requests (RSM instances);

cRSM leader change

leader change

Figure 19: Leader change comparison between cRSM and fRSM .

in Figure 19 (in the appendix), where there are eight opera-
tions accessing three different keys, cRSM issues the leader
prepare message at op1, while fRSM performs this prepare at
op1, op3, and op7.

B More Real-world Evaluation
B.1 LSM Configuration

Table 3 shows key LSM parameters. They are configured
based on the physical storage media, cluster setup, and meta-
data characteristics. The table presents the default values.

B.2 Deployment Scale

Figure 20 presents the deployment scale in terms of node
number, storage size, and metadata size.

B.3 Internal Cluster Measurements

We consider again the internal cluster running the complete
storage and virtualization system along with client VMs in-
voking stress tests on the metadata and storage layer (as dis-
cussed earlier in ). We report the average/p99 latency distri-
bution of read/write requests (Figure 21), showing compara-
ble end-to-end performance for read and write operations. We
also evaluate the performance of leader-only reads. Leader-
only mode significantly reduces the number of protocol mes-
sages and storage accesses, enabling fast metadata access. Fig-
ures 22 and 23 show that leader-only mode results in benefits
across different value sizes. On average, across various sizes,
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Operations Latency (RTT) Message # Leader LSM RD. # Leader LSM WR. # Follower LSM RD. # Follower LSM WR. #
Cold CAS 2 4dn/2e 1 2 2 2
Warm CAS 1 2dn/2e 1 1 1 1
Leader-only Read 0 0 1 0 0 0
Quorum Read 1 2n 1 0 1 0
Mutating Quorum Read 3 2n+4dn/2e 2 2 3 2

Table 2: Message RTTs and LSM read/write counts with no cache for the leader and the follower under different settings. n is the number of replicas.
cold CAS refers to the case that the proposal of a key is issued by another node so that the leader has to invoke the two round Paxos. warm CAS means
that the leader is able to skip the 1st round of prepares.

Parameter Description Default value
max_heap_size Maximum heap size of the metadata store 2∼4GB
flush_largest_memtables Heap usage threshold when flushing the largest memtable 0.9
default_memtable_lifetime Life time in minutes for any memtable 30
min_flush_largest_memtable Minimum memtable size forced flush when heap usage is high 20MB
max_commit_log_size_on_disk Maximum disk usage by commit logs before triggering a cleanup task 1GB
commitlog_rotation_threshold Maximum size of an individual commit log file 64MB
number_of_compaction_threads Number of threads to perform minor/major compaction 2
compaction_throughput_limit Maximum disk throughput consumed by compaction on a disk 64MB

Table 3: LSM performance-sensitive parameters.
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Figure 20: Node #, storage size, and metadata size CDF across 980 custom clusters.
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Figure 21: Average/p99 read/write latency CDF
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 0

 50

 100

 150

 200

 250

 300

1KB 4KB 8KB 16KB 32KB 64KB

L
a

te
n

c
y
 (

m
s
)

Value size

w/o leader-only
w/ leader-only

Figure 22: Latency versus value size, compared
between with and without leader-only mode.

 0

 20

 40

 60

 80

 100

 120

 140

1KB 4KB 8KB 16KB 32KB 64KB

T
h

ro
u

g
h

p
u

t 
(K

R
P

S
)

Value size

w/o leader-only
w/ leader-only

Figure 23: Throughput versus value size, com-
pared between with and without leader-only
modes.

leader-only mode halves the latency and more than doubles
the throughput. This underscores the benefits of using a gra-
dation of read execution modes and utilizing the appropriate
read variant for a given key.

B.4 Failure and Recovery Measurements

We provide additional details on the failure and recovery mea-
surements from our customer clusters. Figure 24 shows the
number of software detached events and fatal hardware er-
rors across the measurement period across all of the 2K clus-
ters. Both of them are detected by the DHT health manager.
Under software failures, our system will quickly restart the
metadata service and rejoin the DHT ring, consuming 2.7s
on average. Upon fatal hardware errors, we reboot the server
box and then walk through some device checks (e.g., storage
media and network). Figure 27 presents our observed server

downtime distribution. After node failure, the system follows
a 3-phase node handling failure to recover to the leader-only
mode, i.e., regaining leadership (T1), performing local recov-
ery (T2), and performing a leader scan (T3). Based on our col-
lected traces, we observe that T1 consumes 1.0ms. During T2
phase, the node reads the commit log and executes missing
requests. Figures 25 and 26 present the CDF of local node
recovery (T2) and the number of recovered operation records
(from the committed log) for 4 clusters, respective. Note that
our cluster node is able to serve client requests starting from
T2 in a non-leader-only mode and enters the leader only mode
after the scan finishes (T3).

The duration of the T3 phase depends on scan performance.
To enable leader-only reads, the new leader must scan through
its owned range to learn the latest values. In some cases,
Paxos writes must be done, and this imposes additional la-
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Figure 28: Metadata service corruption report over years.

tency costs for the scanning process. The worst-case repair
time occurs when Paxos operations must be performed for
every key. Conversely, the best-case scan time occurs when
no consensus operations need to performed (i.e., the node has
all of the latest data). Figure 29 provides the time associated
with scans when the nodes are loaded with data comprising
of 32-byte keys and 8KB values. When repairs need to run
for every value, the total scan time is about 6× long. These
measurements show the quick integration of recovering nodes
into the metadata service.

B.5 Metadata Corruption Reports

Figure 28 shows the number of cases that have been reported
by our QA based that have caused data unavailability or cor-
rupt data being returned to the client based on the tests. We
have not culled for duplicate issues, where the single cause
manifested in multiple ways. The broad category of failures
has changed over the years. Initially, it was the interaction
with the local filesystems (fsyncs, o_directs), persistent me-
dia corruption, cluster misconfiguration. In recent years, it
has been due to the addition of new features like leader-only
reads, fast range migrations, balancing with no node down-
times. There have been a handful of protocol implementation
issues that were weeded out fairly quickly.

C Testing Framework
Our testing strategy and framework has evolved over the years.
Based on experience, we have found white box testing to be
one of the key ways to identify implementation issues in new
features and avoid regressions. We have instrumented code to
simulate various scenarios and probabilistic error conditions
like replica packet drops, timeouts, and erroneous key states.
Whenever a bug is discovered in the field or in black box
testing, we add a white box test to simulate the same condition
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Figure 29: Time to perform a scan in order to enable leader-only reads.

along with making the fix.
We also have multiple test clusters that do end-to-end black

box testing with error injections. Errors can be in the form of
service restarts, service down, corruption over the network,
timeouts, replays, and corruption of persistent store. As an
example, we use a test devised specifically for fRSM that per-
forms atomic increments on value(s) stored in key(s) n times
(where each of the atomic increment is a CAS update) and,
at the end, when all clients are done, check whether the final
value of each key is n times the number of clients. While these
clients are incrementing values using CAS, we randomly kill
replica/leader nodes, insert failures, randomly drop messages
between leader/replica nodes, add a delay in replying to mes-
sages, etc. Apart from incrementing values in the keys, we
also delete keys in the middle of the test to go through the
delete workflow and re-insert the key(s) with the value(s) seen
just before the deletes, so the clients can continue increment-
ing the values. We also add/remove replicas to the metadata
service while this test is underway to test add/remove node
scenarios and different read variants. These type of tests can
be performed within a developer environment and have aided
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in building a robust system.
It is non-trivial to pinpoint performance bottlenecks due to

the complexity of our system. We instrument our logic across
the metadata read/write execution path and report runtime
statistics at multiple places, such as the number of outstanding

requests at the Paxos leader, the hit rate of the key clock
attribute, read/write/scan latency at leader and follower of
one key-range, etc. This instrumentation has been helpful in
identifying various performance issues.
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Abstract

The shared log paradigm is at the heart of modern distributed

applications in the growing cloud computing industry. Of-

ten, application logs must be stored durably for analytics,

regulations, or failure recovery, and their smooth operation

depends closely on how the log is implemented. Scalog

is a new implementation of the shared log abstraction that

offers an unprecedented combination of features for continu-

ous smooth delivery of service: Scalog allows applications to

customize data placement, supports reconfiguration with no

loss in availability, and recovers quickly from failures. At the

same time, Scalog provides high throughput and total order.

The paper describes the design and implementation of Sca-

log and presents examples of applications running upon it. To

evaluate Scalog at scale, we use a combination of real exper-

iments and emulation. Using 4KB records, a 10 Gbps infras-

tructure, and SSDs, Scalog can totally order up to 52 million

records per second.

1 Introduction

A shared log1 offers a simple and powerful abstraction: a

sequence of ordered records that can be accessed and ap-

pended to by multiple clients. This combination of power

and simplicity makes them a popular building block for

many modern datacenter applications. All cloud providers

offer a shared log service (e.g., AlibabaMQ [2], Amazon

Kinesis [3], Google Pub/Sub [8], IBM MQ [10], Microsoft

Event Hubs [13], and Oracle Messaging Cloud Service [14]),

which is also available through multiple open source imple-

mentations (e.g, Apache Kafka [36], Corfu [21], and Fuzzy-

Log [41]).

Shared logs are used to (1) record and analyze web ac-

cesses for recommendations, ad placement, intrusion detec-

tion, performance debugging, etc. [11, 31, 36, 50]; (2) pre-

pare a transport between stages in a processing pipeline

that may be replayed for failure recovery [11, 50], and

more broadly; (3) address the trade-off between scalability

and consistency [51]. Consider, for instance, deterministic

databases [22, 34, 35, 47, 48]: retrieving transactions from a

1A shared log is also known as a message bus, but not all message buses

provide a durable message store.

single shared log allows these databases to shorten or elim-

inate distributed commit protocols, avoid distributed dead-

locks, and achieve, in principle, superior transactional scal-

ability [44, 47, 48].

An ideal implementation of the shared log abstraction

should be capable of growing elastically in response to the

needs of its client applications, without compromising avail-

ability; recover quickly from failures; adopt the data layout

that best matches the performance requirement of its clients;

and scale write throughput without giving up on total order.

Unfortunately, no single shared log today can offer this com-

bination of features. In particular, no shared log provides

both total order and seamless reconfiguration, i.e., the capa-

bility to reconfigure the service without compromising its

global availability.

The state-of-the-art Corfu [21] can adapt to applications’

needs by adding or removing storage servers, while main-

taining total order across records stored on different servers.

However, any change in the set of storage servers makes

Corfu unavailable until the new configuration has been com-

mitted at all storage servers and clients. The Corfu data

layout is defined by an inflexible round-robin policy, with

significant performance implications: for example, reads re-

quire playing back the log where relevant updates are in-

terspersed with unrelated records (a potential performance

bottleneck) and writes cannot be directed to the closest stor-

age server to reduce latency. vCorfu [51], an object store

based on Corfu, addresses the issue of slow reads by com-

plementing the Corfu shared log with materialized streams,

log-like data structures that store together updates that refer

to the same object. For this gain in performance, vCorfu pays

in robustness: whenever a log replica and a stream replica

fail concurrently—a more likely event as the system scales

up [25]—vCorfu is at risk of losing data. Finally, the tension

between scaling across multiple storage servers and guar-

anteeing total order ultimately limits Corfu’s write through-

put. The optimized Corfu implementation used in Tango [22]

achieves, to the best of our knowledge, the best throughput

among today’s totally ordered shared logs but, at about 570K

writes/sec, its performance falls short of the needs of appli-

cations like Taobao [16], Alibaba’s online market, which ran

millions of database writes/sec at its 2017 peak [1].
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Scalog, the new shared log that this paper introduces, aims

to address these limitations. Like Corfu, Scalog can scale

horizontally by adding shards and guarantees a single to-

tal order for all records, across all shards. However, recon-

figuring Scalog by adding or removing shards requires no

global coordination and does not affect its availability. Fur-

ther, Scalog’s API gives applications the flexibility to select

which records will be stored in which shard: this allows Sca-

log to replicate the functionality offered by vCorfu’s materi-

alized streams without trading off robustness. Indeed, Sca-

log operates under weaker failure assumptions (and hence

is inherently more robust) than prior totally-ordered shared

logs [21,22,51]: it assumes that faulty servers will crash [29],

rather than fail-stop [45], thus sidestepping the so-called

“split-brain syndrome” [26].2 Finally, though Scalog cannot

scale write throughput indefinitely, it can deliver throughput

almost two orders of magnitude higher than Corfu’s, with

comparable latency.

Scalog’s properties derive from a new way of decoupling

global ordering from data dissemination. Decoupling these

two steps is not a new idea. For example, in Corfu, the se-

quencer that globally orders records is not responsible for

their replication; once the order has been decided, replica-

tion is left to the clients, thus allowing data dissemination to

scale until ordering ultimately becomes the bottleneck.

The key to Scalog’s singular combination of features is

to turn on its head how decoupling has traditionally been

achieved. In Corfu (as well as Facebook’s LogDevice [12]),

order comes before persistence: records are first assigned

unique sequence numbers in the total order, and then repli-

cated; in Scalog, the opposite is true: records are first repli-

cated, and only then assigned a position in the total order.

As mentioned above, Corfu requires that all clients and

storage servers hold the same function to map sequence

numbers to specific shards, causing Corfu to be temporar-

ily unavailable when shards are added or removed. By or-

dering only records that have already been replicated, Sca-

log sidesteps the need to resolve the delicate case in which a

client, having reserved a slot in the total order for one of its

records, fails before making that record persistent. Without

this burden, Scalog can seamlessly reconfigure without any

loss of availability, and give applications the flexibility to in-

dependently specify which shards should store their records,

thus matching vCorfu’s data locality without the need of ded-

icated stream replicas.

Specifically, Scalog clients write records directly to stor-

age servers, where they are (trivially) FIFO ordered without

the mediation of a global sequencer. Records received by

a storage server are then immediately replicated across the

other storage servers in the same shard. To produce a total

2The essential difference is that crash failures cannot be accurately de-

tected, while in the fail-stop model, it is assumed that failures can be de-

tected accurately by some oracle. Violation of this assumption can lead to

inconsistencies.

order, Scalog periodically interleaves the FIFO ordered se-

quences of records stored at each server.

We recognize that not all applications require a global total

order, and many industrial applications have been built using

shared logs such as Kafka [36] that only provide a total order

per shard. However, our unique way of providing total order

comes at practically no cost to throughput even under recon-

figuration, while latency within a datacenter is no more than

a few milliseconds. Programmers thus only need to consider

performance when deciding how to shard their applications,

an otherwise difficult balancing game between achieving the

required throughput and correctness [18, 27, 28, 44]. Also, a

global total order supports reproducibility, simplifying find-

ing bugs in today’s complex distributed applications.

Our evaluation of a Scalog prototype implemented on a

CloudLab cluster [4] confirms that Scalog’s persistence-first

approach comes closer to an ideal implementation of the

shared log abstraction in three main respects:

• It provides seamless reconfiguration. Our prototype

sees no increase in latency or drop in throughput while

Scalog is being reconfigured.

• It offers applications the flexibility to select where the

records they produce should be stored. We use this ca-

pability to build vScalog, a Scalog-based object store

that matches the read latency of vCorfu (and achieves

twice its read throughput) while offering stronger fault-

tolerance guarantees.

• It offers (almost) guilt-free total ordering of log records

across multiple shards. While Scalog does not elim-

inate the trade-off between scalable write throughput

and total order, it pushes the pain point much further: its

maximum throughput is essentially limited by the max-

imum number of shards times the maximum through-

put of each shard. With 17 shards, each with two stor-

age servers, each processing 15K writes/sec, our pro-

totype achieves a total throughput of 255K totally or-

dered writes/sec. Through emulation, we demonstrate

that, at a latency of about 1.6 ms, Scalog can handle

about 3,500 shards, or about 52M writes/sec—two or-

ders of magnitude higher than the best reported value to

date at comparable latency [22].

2 Motivation and Design

We motivate Scalog and its design principles with an on-

line marketplace that enables sellers to list and advertise

their merchandise, and allows buyers to browse and purchase.

Page views and purchases are stored in a log that is used for

multiple purposes, including extracting statistics (such as the

number of unique visitors), training machine learning algo-

rithms that can recommend merchandise and sellers to buy-

ers, and simplifying fault tolerance by providing applications

with a shared “ground truth” about the system’s state.

This example highlights six key requirements for the un-

derlying shared log. First, the log requires auto-scaling, the
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append(r) Append record r, and return the global

sequence number.

trim(l) Delete records before global sequence

number l.

subscribe(l) Subscribe to records starting from

global sequence number l.

setShardPolicy(p) Set the policy for which records get

placed at which storage servers in

which shards.

appendToShard(r) Append record r, and return the global

sequence number and shard identifier.

readRecord(l, s) Request the record with sequence

number l from shard s.

Table 1: Scalog API

ability to dynamically increase or decrease available through-

put as needs change (e.g., during the holiday seasons) with-

out causing any downtime. Second, for reproducibility dur-

ing debugging and consistent failure recovery, the log should

be totally ordered. Third, the log must minimize latency,

for example, by allowing log clients to write to the nearest

replica. Fourth, the log must provide high append throughput

to support large volumes of store activity. Fifth, the log must

provide high sequential read throughput to support analytics,

which periodically read sub-sequences of the log. Finally, the

log must be fault tolerant, as the online services that depend

on it should be uninterrupted. Below, we discuss how Scalog

addresses these requirements.

2.1 Scalog API

Scalog provides the abstraction of a totally ordered shared

log. Table 1 presents a simplified API that omits support for

authentication and authorization, as well as the ability to sub-

scribe only to records that satisfy a specific predicate.

The first three methods are sufficient for most applications.

The append method adds a record to the log. When it returns,

the client is guaranteed that the record is committed, mean-

ing that it cannot be lost (it has been replicated onto multiple

disks) and that it has been assigned a global sequence num-

ber (its unique log position among committed records). The

trim method allows a prefix of the log to be garbage col-

lected. Finally, the subscribe method subscribes to com-

mitted log records starting from global sequence number l.

Scalog guarantees that (1) if append(r) returns a sequence

number, each subscriber will eventually deliver r; and (2) any

two subscribers deliver the same records in the same order.3

Note that these guarantees are sufficient to implement a repli-

cated state machine [46] using Scalog.

To achieve high throughput and support flexible alloca-

tion of resources, Scalog structures a log as a collection of

shards, each in turn containing a collection of records. Ap-

plications can exploit the existence of shards to optimize

3These guarantees hold only in the absence of trimming. Trimmed

records may never be delivered to some subscribers.

performance with the remaining three API methods. The

setShardPolicy method lets applications specify a func-

tion used to assign records to storage servers and shards.

The appendToShard method behaves as append, but in ad-

dition returns the identifier of the shard where the record is

stored. The readRecord method allows random access to

records by sequence number, assuming the shard identifier is

known (e.g., for having been returned by a prior invocation

of appendToShard). Under concurrent access, Scalog offers

fully linearizable semantics [32]—the strongest possible con-

sistency guarantee.

Besides this API, Scalog provides various management

interfaces that allow reconfiguring the log seamlessly in re-

sponse to failures and to the changing needs of the applica-

tions it serves. Specifically, Scalog can create new shards on-

the-fly (if load increases), as well as turn shards from live to

finalized. New records can only be appended to live shards;

once finalized, a shard is immutable.

Finalizing shards serves three purposes. First, Scalog opti-

mizes finalized shards for read throughput. To prevent read-

heavy analytics workloads from affecting the performance of

online services, an operator may create new shards, finalize

the old shards (effectively, creating a checkpoint), and then

run the analytics workload on the finalized shards. Second,

when a storage server in a shard fails, append throughput may

be affected; rather than recovering the failed server, Scalog

allows finalizing the entire shard and replacing it with a new

one (see §3). If one wishes to restore the level of durability,

additional replicas may be created after a shard is finalized.

Third, finalized shards may be garbage collected: this is how

resources are reclaimed after a log is trimmed.

2.2 “Order first” Considered Harmful

Current totally ordered log implementations [6, 12, 21, 22]

share a similar architecture: to append a new record, a client

first obtains the record’s position in the log, the log sequence

number, via some sequencer, and then proceeds to make the

record persistent. This design raises two challenges.

The first challenge is supporting flexible data placement

and seamless reconfiguration. The difficulty comes from hav-

ing to maintain the consistency of the log when failures

occur—a dilemma that arises whenever a storage system

makes decisions about an item’s metadata before making per-

sistent the item itself [20,30]. Under failure, a record may get

lost; this “hole” in the log needs to be filled before other tasks

can read beyond the missing entry. Solving this problem re-

quires a costly system-wide agreement on a mapping from

log sequence numbers to where records are stored: changes

to this mapping are exceedingly expensive, since, until a new

mapping is agreed upon, the system cannot operate. For ap-

plications using the log, this cost translates into two main

limitations. First, they have no practical way of dynamically

optimizing the placement of the records they generate, since

frequent changes to the mapping would be prohibitively ex-
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pensive; second, each time storage servers are added or re-

moved for any reason, they experience a system-wide outage

until the new mapping is committed and distributed [21, 22].

The second challenge is that the sequencer can quickly

become a bottleneck: designing a sequencer capable of

operating at high throughput requires significant engineer-

ing effort, frequently involving custom hardware, such as

programmable switches (e.g., NOPaxos [40]) or write-once

disks (e.g., Corfu [21]).

2.3 Scalog Design Overview

By adopting a persistence-first architecture, Scalog avoids

these challenges. It achieves no-downtime reconfiguration,

quick failure recovery, and high throughput, without using

custom hardware, via a new, simple, protocol for totally or-

dering persistent records across multiple shards.

In Scalog, each shard is a group of storage servers that

mutually replicate each other’s records. Scalable throughput

is achieved by creating many high-throughput shards, as in

Kafka [50]; however, unlike Kafka, which only provides total

order within individual shards, Scalog delivers a single total

order across all shards.

Persistence in Scalog is straightforward. A client sends a

record to a storage server of its choice, before knowing the

record’s global sequence number. Storage servers append in-

coming records, which may come from different clients, to a

log segment which they replicate by forwarding new records

through FIFO channels to all other storage servers within

their shard. Thus, each storage server maintains a primary

log segment as well as backup log segments for every other

storage server in its shard. Because of FIFO channels, every

backup log segment is a prefix of the primary log segment.

Scalog’s second key insight is leveraging the FIFO order-

ing of records at each storage server to leapfrog the through-

put limits of traditional sequencers.

Periodically, each storage server reports the lengths of the

log segments it stores to an ordering layer. The ordering

layer, also periodically, determines which records have been

fully replicated and informs the storage servers. Using the

globally ordered sequence of reports from the ordering layer,

a storage server can interleave its log segments into a global

order consistent with the original partial order. Afterward, the

storage server can inform clients that their records are both

durably replicated and totally ordered.

The ordering layer of Scalog interleaves not only records

but also other reconfiguration events. As a result, all storage

servers see the same update events in the same order. When a

storage server in a shard fails, Scalog’s ordering layer will no

longer receive reports from the storage server and naturally

exclude further records. Other shards are not affected. Thus,

clients connected to a shard containing a faulty storage server

can quickly reconnect and send requests to servers in other

shards. Concurrently, the affected shard is finalized.

Ordering Layer

Aggregators

Paxos

Leader

Paxos

Followers

Data Layer

Live Shards Finalized Shards

... ...

... ...
Storage Servers

Clients and

Client Libraries

Figure 1: Scalog’s architecture: arrows denote communica-

tion links; circles denote servers; each rectangle denotes one

shard. Servers in the same shard communicate with each

other. In this example, both shards and the Paxos instance

in the ordering layer are configured to tolerate one crash.

3 Architecture

Figure 1 presents an overview of Scalog’s architecture, high-

lighting its three components: a client library, used to is-

sue append, subscribe, and trim operations; a data layer,

consisting of a collection of shards, storing and replicating

records received from clients; and an ordering layer, respon-

sible for totally ordering records across shards.

Client Library. The library implements the Scalog API and

communicates with the data layer (see Table 1).

Data Layer. Scalog’s data layer distributes load along two

dimensions: each log consists of multiple shards, and each

shard consists of multiple storage servers. Each storage

server is in charge of a log segment. Clients send records

directly to a storage server within a shard. When a storage

server receives a record from a client, it stores the record in

its own log segment. For durability, each server replicates the

records in its log segment onto the other storage servers in

its shard. To tolerate f failures, a shard must contain at least

n = f +1 storage servers.

Ordering Layer. The ordering layer periodically summa-

rizes the fully replicated prefix of the primary log segment of

each storage server in a cut, which it then shares with all stor-

age servers. In a Scalog deployment with m shards, each com-

prising n storage servers, the cut has m ·n entries, each map-

ping a storage server identifier to the sequence number of the

latest durable record in its log segment. The storage servers

use these cuts to deterministically assign a unique global se-

quence number to each durable record in their log segments.

Besides enabling global ordering, the ordering layer is also

responsible for notifying storage servers of reconfigurations.

The ordering layer must address two concerns: fault tol-

erance and scalability under high ordering load. Scalog ad-

dresses the first concern by implementing the ordering layer

logic using Paxos [38]. The second concern is that the over-
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Figure 2: Scalog message flow for append operations

head of managing TCP connections and handling the order-

ing requests could overwhelm the ordering layer when there

are a large number of shards. This concern is addressed with

the help of the aggregators, illustrated in Figure 1. Scalog

spreads the load using a tree of aggregators that relay or-

dering information from the storage servers at the leaves up

to the replicated ordering service. Each leaf aggregator col-

lects information from a subset of storage servers (we as-

sume servers in the same shard report to the same leaf ag-

gregator) and determines the most recent durable record in

their log segment before passing the information up. Aggre-

gators use soft state and do not need to be replicated—if sus-

pected of failure, they can easily be replaced. The ordering

reports passed up the tree are self-sufficient, and need not be

delivered in FIFO order. The aggregator tree is maintained

by the replicated service in its root—no decentralized algo-

rithms are needed to eliminate loops and orphans.

4 Scalog’s Workflow

To further elucidate how Scalog works, we present a detailed

explanation of the execution paths for append, read, and trim

(garbage collection) operations.

4.1 Append Operations

When an application process first invokes its client library

to start appending data to the log, the client library chooses

a shard according to the current sharding policy set by

setShardPolicy(p). If no policy has been specified, Sca-

log applies its default selection policy, choosing a random

storage server in a random live shard as the write target.

Having established a destination shard s and storage server

d, the application process can add records to the log. When

append(r) or appendToShard(r) is invoked, the client li-

brary forwards record r to storage server d in an APPEND

message (Figure 2, Step 1) and awaits an acknowledgment.

As shown in Step 2 of Figure 2, each storage server repli-

cates in FIFO order the records it receives onto its peer

storage servers in s. In-shard replication resembles Primary-

Backup (PB) [19, 24]: each storage server acts as both

Primary for the records received directly from clients and

Backup for the records in the log segments of its peer storage

servers in the shard. Scalog differs from PB in how storage

servers learn which records in their log segment have become

durable. Instead of relying on direct acknowledgments from

its peers, each storage server periodically reports to the or-

dering layer a local cut—an integer vector summarizing the

records stored in this storage server’s log segments (Step 3

in Figure 2). Because log segment replication occurs in FIFO

order, each integer in the local cut is an accurate count of the

number of records stored in the corresponding log segment.

The ordering layer combines these local cuts to determine

the latest durable record in the log segment of each storage

server. Let vi be the local cut for server i in shard s; vi[i] repre-

sents the number of records in i’s log segment (i.e., those that

i, serving as Primary, received directly from its clients) while

vi[ j], j 6= i, is the number of records that server i is backing

up for its peer storage server j. The ordering layer can then

compute the number of durable records in i’s log segment as

the element-wise minimum of all v j[i] for all storage servers

j in s. For instance, assume f = 1 and suppose the order-

ing layer has received from the two storage servers r1 and

r2 in shard s the local cuts v1 = 〈3,3〉 and v2 = 〈2,4〉. Then,

〈2,3〉 expresses all durable records in shard s (see Shard 1 in

Figure 2). By repeating this process for all storage servers in

every shard, the ordering layer assembles a global cut, a map

that represents records stored in all log segment replicas and

therefore durable. To prevent the number of entries in global

cuts from growing indefinitely, we use a single integer to rep-

resent the total number of records in all finalized shards. The

ordering layer then forwards each global cut to all storage

servers (Step 4 in Figure 2).

The totally ordered sequence of cuts can be used to in-

duce a total ordering on individual records. Summing the

sequence numbers in the elements of a cut gives the total

number of records that are ordered up to and including that

cut. The difference between any two cuts determines which

records are covered by those two cuts. We use a determinis-

tic function that specifies how to order the records in between

two consecutive cuts. In our current implementation, we use

a simple lexicographic ordering: records in lower-numbered

shards go before records in higher-numbered shards, and

within a shard records from lower-numbered storage servers

go before records from higher-numbered storage servers.

Therefore, upon receipt of a global cut, a storage server can

determine which records in its primary log segment are now

globally ordered, and then acknowledge the corresponding

append requests by returning the record’s global sequence

number to the client (Step 5 in Figure 2). Should a storage

server fail, a client can ask any of its backup for the current

status of its records.

Note that the load on the ordering layer is independent of

the write throughput—it only depends on the number of stor-

age servers and the frequency of their reports.
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4.2 Read Operations

Applications can read from the log either by subscribing or

by requesting specific records. The subscribe operation

broadcasts the request to a random storage server in each

shard. Upon receiving a subscribe(l) request, the storage

server sends the client all records it already stores whose

global sequence number is at least l and then continues for-

warding future committed records.

Recall that an application process, by calling

appendToShard(r), obtains the shard identifier s that

stores record r, as well as its global sequence number l. If

at a later time the process needs to bring r back in memory,

it can do so by invoking readRecord(l,s). In response,

the client library contacts a random storage server in s to

read the record associated with global sequence number

l. The receiving storage server then computes lmax, the

largest global sequence number it has observed, by applying

the deterministic scheme of §4.1 to the latest cut received

from the ordering layer, and proceeds to compare l and

lmax. If l ≤ lmax, the storage server uses l to look for r in

its local log and, if it finds it, returns it; otherwise, if the

record has been trimmed (see §4.3), it returns an error. If

l > lmax, the storage server waits for new cuts from the

ordering layer and updates lmax until l ≤ lmax; only then

does it proceed, as in the previous case, returning to the

application process either r or an error message. Allowing

responses only from storage servers for which l ≤ lmax is

critical to guarantee linearizability for concurrent read and

append operations, as it prevents stale storage servers from

incorrectly returning error messages. The client library may,

however, timeout, waiting for a storage server to respond; if

so, the client library contacts another storage server in s (the

storage server holding r in its log segment is guaranteed to

eventually respond).

4.3 Trim Operations

Calling trim(l) garbage collects the log prior to the record

with global sequence number l. The client library broadcasts

the trim(l) operation to all storage servers in all shards;

upon receipt, they proceed to delete the appropriate prefix

of the log stored in their respective log segments.

4.4 Reconfiguration and Failure Handling

Reconfiguration can happen often in Scalog, not only to re-

cover from failures (which are more likely as scale increases),

but also to handle growing throughput or needed capacity.

For example, an application that needs to run a read-intensive

analytics job can finalize the shards storing the relevant data,

making them read-only. For these reasons, Scalog strives to

make adding and finalizing shards seamless.

4.4.1 Adding and Finalizing Shards

Adding a new shard is straightforward: as soon as the shard

and its servers register with the ordering layer, the new shard

can be advertised to clients. Other shards are unaffected, but

for the larger-sized cut, its storage servers will henceforth re-

ceive from the ordering layer.

We distinguish two types of shard finalization: scheduled

finalization and emergency finalization. Scheduled finaliza-

tions are initiated in anticipation of shard workload changes.

To transition clients off of shards facing impending finaliza-

tion, Scalog supports a management operation that causes the

ordering layer to stop accepting ordering reports from a shard

after a configurable number of committed cuts. This gives

clients a “grace period” so that they can smoothly transition

to another live shard. Emergency finalizations are needed

when a server in a shard fails (see Finalize & Add in §4.4.2);

these failed shards are finalized immediately.

4.4.2 Handling Storage Server Failures

Failing or straggling storage servers are detected either by

Paxos servers directly connected to them or by aggregators.

Problems are notified to the ordering layer, which in turn

initiates reconfiguration. Applications have three options to

configure how Scalog handles slow or failed storage servers.

Finalize & Add (Requires at least f + 1 storage servers per

shard): If a storage server is suspected of having failed or is

intolerably slow, its entire shard s is finalized. Clients of s

can redirect their writes to other shards; concurrently, a new

shard is added to restore the log’s overall throughput. Be-

cause the ordering layer totally orders finalization operations

and cuts, the latest cut before s is finalized reveals which

records s successfully received and ordered: these records

can be retrieved from any of the surviving storage servers in

the shard. Records received but not incorporated in s’s latest

cut must be retransmitted by the originating clients to differ-

ent shards. Corfu also responds to a storage server failure by

finalizing its shard and adding a new one. During this pro-

cess, however, all Corfu’s shards are unavailable; in contrast,

Scalog’s non-faulty shards are unaffected (see §6.2).

Applications that require data locality may run applica-

tion processes in storage servers (see §5.3). Finalize & Add

would force those processes, if an entire shard is finalized, to

migrate. Instead, Scalog supports two alternative options.

Remove & Replace (Requires at least f + 1 storage servers

per shard): As in vCorfu, Scalog can replace a failed storage

server with a new one, which can then copy records from its

shard’s surviving storage servers. During this process, the af-

fected shard is temporarily unavailable for writes (but contin-

ues to serve reads). This option suffers from a longer service

recovery time [25].

Mask (Requires at least 2 f + 1 storage servers per shard):

At the cost of extra resources, this option ensures that, if no

more than f of its storage servers fail, a shard will continue to

process both reads and writes. This option also masks strag-

gling storage servers. For long-term availability, new storage

servers can be added to replace faulty ones; they can copy

records from the shard’s surviving servers.
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Replicas Data Service

per Shard Locality Recovery Time

Finalize & Add f +1 No Short

Remove & Replace f +1 Yes Long

Mask 2 f +1 Yes Zero

Corfu f +1 No Short

vCorfu f +1 Yes Long

Table 2: Trade-offs of different approaches to handling stor-

age server failures

All options guarantee linearizable semantics under crash

failures, but they provide different trade-offs with respect to

resource usage, data locality, and service recovery time after

a failure. Table 2 summarizes these trade-offs and compares

these options with failure recovery in Corfu and vCorfu.

4.4.3 Handling Ordering Layer Failures

Failures in the ordering layer can affect replicas running Sca-

log’s ordering logic as well as aggregators. Replica failures

are handled by Paxos; aggregator failures are handled by

leveraging the statelessness of aggregators. A storage server

or an aggregator that suspects its neighboring aggregator of

having failed reports to the ordering layer, which responds

by creating a new aggregator to replace the suspected one.

A mistaken suspicion does not harm correctness, as both the

new and the wrongly suspected aggregator correctly report

local ordering information to their parent.

A distinguishing feature of Scalog is that Scalog suffers

no net throughput loss because of ordering layer failures. Be-

cause of Scalog’s approach to decoupling ordering from data

replication, storage servers continue accepting client append

requests and ordering records locally in their log segments,

independent of the status of the ordering layer. Any tem-

porary loss of throughput caused by an ordering layer fail-

ure is thus made up for as soon as the failure is recovered,

when these locally ordered records are seamlessly inserted

in the next cut issued by the repaired ordering layer. It does

cause a spike in throughput because the repair interleaves

all delayed records that are already replicated in one single

cut. This is in contrast to sequencer-based logs where, after

throughput halts because of a sequencer failure and reconfig-

uration [17, 21]), throughput goes back to normal instead of

compensating for the loss of availability.

5 Applications

Applications can configure Scalog and customize sharding

policies to satisfy their requirements. This section discusses

typical applications that benefit from Scalog and demon-

strates how to configure Scalog and set sharding policies.

5.1 The Online Marketplace

The online marketplace we used to motivate the Scalog

design logs user activities (sellers listing products, buyers

browsing and purchasing products, etc.) to Scalog for analyt-

ics and fault tolerance. To satisfy the requirements discussed

in §2, we configured Scalog to use Finalize & Add to handle

storage server failures and for a sharding policy we let each

application process write to the nearest storage server.

If an application process writes at a rate that may over-

whelm a single shard, it may select multiple shards to dis-

tribute the writes. Periodically, analytics jobs read Scalog,

which may negatively affect the write rate; therefore, before

performing analytics jobs, the online marketplace finalizes

shards and adds new shards: the online marketplace writes

to newly added shards, and analytics jobs read from finalized

shards. This isolation makes sure analytics reads do not neg-

atively affect online writes.

Using the API discussed in §2, the online marketplace

calls append to log user activities. Periodically, analytics

jobs use the subscribe API to extract data. When any of

the system components fail, the online marketplace calls

subscribe to replay the log and reproduce its state.

5.2 Scalog-Store

Modeled after Corfu-Store [21], Scalog-Store uses Scalog

as its underlying storage. Scalog-Store configures Scalog to

handle storage server failures using Finalize & Add, as it is

the same as how Corfu handles failures. Like the online mar-

ketplace’s sharding policy, the sharding policy is for an ap-

plication process to select the nearest storage server.

Scalog-Store supports the same operations as Corfu-Store:

atomic multi-get, multi-put, and test-and-multi-put

(conditional multi-put). Scalog-Store uses a mapping

server with an in-memory hash map that maps each key to a

pair (l,s) containing a global sequence number l and a shard

identifier s where the latest record containing the value of

that key is stored.

To implement multi-get, which takes a set of keys as in-

put, a client retrieves, in a single atomic request, the (l,s)
pairs for the keys from the mapping server. The client then

calls readRecord(l,s) for each pair to get each key’s value.

To implement multi-put, a client first executes

appendToShard(〈key,value〉) for each key to receive

corresponding (l,s) pairs. Next, the client creates a commit

record that contains the set of (key,(l,s)) records for each

key and uses appendToShard to add the commit record

to the log. (An optimization for single-key multi-put

operations is only to log a commit record containing the key

and value.) The client then forwards the commit record to

the mapping server, which updates its hash map accordingly

and responds. multi-put finishes on receipt of the response.

Should the mapping server crash, a new server can re-read

the log and rebuild a current hash map.

The implementation of test-and-multi-put is similar to

that of multi-put, but adds a test condition to the commit

record. Upon receiving the forwarded commit record, the

mapping server evaluates the test condition to decide whether

to commit the operation. If so, the mapping server processes
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the operation normally; otherwise, the mapping server pro-

cesses the operation as a no-op. Finally, the mapping server

returns the result to the client.

5.3 vScalog

Modeled after vCorfu [51], an object store based on Corfu,

vScalog is an object store that runs on Scalog. The key differ-

ence between vScalog and vCorfu is how they guarantee data

locality. vCorfu maintains a separate log, a so-called materi-

alized stream, for each object, in addition to a global shared

log. A client has to write an object update to the shared log

for total order and to the materialized stream for data local-

ity. vScalog, instead, leverages Scalog’s sharding policy to

map each object to one shard, effectively using each Scalog

shard as a materialized stream. As a result, the single shared

log guarantees both total order and data locality. vScalog can

configure Scalog to handle storage server failures using ei-

ther Remove & Replace or Mask; our implementation uses

Remove & Replace because it is how vCorfu handles failures.

Compared with vCorfu, vScalog offers two main advan-

tages. First, it is more robust: it can tolerate f failures in each

shard, while vCorfu cannot handle a log replica and a stream

replica failing simultaneously. Second, it offers higher read

throughput: it lets clients read from all the replicas in a shard,

while vCorfu’s clients only read from stream replicas. A dis-

advantage is that vScalog requires all transactions, including

those that will eventually abort, to be written to the log. The

fundamental reason goes back to Scalog’s persistence-first ar-

chitecture, as the predicate on a test-and-multi-put opera-

tion may depend on the position of the corresponding record

in the log, which Scalog decides after the record is replicated.

6 Evaluation

The goal of Scalog is to provide a scalable totally ordered

shared log with seamless reconfiguration. In our assessment

of Scalog, we ask the following questions:

• How do reconfigurations impact Scalog? (§6.1)

• How well does Scalog handle failures? (§6.2)

• How much write throughput can Scalog achieve and

what is the latency of its write operations? (§6.3)

• How well do Scalog read operations perform in differ-

ent settings? (§6.4)

• How do Scalog applications perform? (§6.5)

We have implemented a prototype of Scalog in golang [7],

using Google protocol buffers [9] for communication. To tol-

erate f failures, the ordering layer runs Paxos with 2 f + 1

replicas and each shard comprises f + 1 storage servers; un-

less otherwise specified, we set f = 1.

Some of our experiments use Corfu as a baseline for Sca-

log. To enable an “apples-to-apples” comparison, we imple-

mented a prototype of Corfu in golang: it uses one server

as a sequencer, f + 1 servers for each storage shard, and

Google protocol buffers for communication. Our Corfu im-

plementation achieves higher throughput and lower latency
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Figure 3: Throughput during reconfiguration

than Corfu’s open-source implementation [5]. To simplify

comparison with published Corfu benchmarks, we fix the

record size at 4KB.

We run our experiments on 40 c220g1 servers in Cloud-

lab’s Wisconsin datacenter. Each server has two Intel E5-

2630 v3 8-core CPUs at 2.40GHz, 128GB ECC memory, a

480GB SSD, and a 10Gbps intra-datacenter network connec-

tion. Since exploring the limits of Scalog’s write throughput

requires many more than the 40 servers available to us, we

resorted to simulation for results that report on larger config-

urations (specifically, those in Figure 5 in §6.3.2).

6.1 Reconfiguration

To evaluate how Scalog and Corfu perform when shards are

added and finalized, we run both with six shards, each shard

having two storage servers ( f = 1). We target 50K writes/sec,

roughly half of the maximum throughput in this setting. We

either add a shard or finalize a shard at t = 100ms.

Figure 3 shows that Scalog’s throughput is unaffected by

adding or finalizing shards. When shards are added, clients

can continue to use the original shards. Clients connected to

shards are notified prior to finalization (we set the value of

the configuration variable described in §4.4 to 10). During

reconfiguration, throughput in Corfu ceases for roughly 30

ms because all storage servers must be notified before the

new configuration can be used [21].

6.2 Failure Recovery

To evaluate how Scalog and Corfu perform under failure, we

again deploy them with six shards, each with two storage

servers, and use 50K writes/sec. To evaluate performance

under aggregator failure, we add two aggregators to Scalog,

each handling half of the shards. We measure throughput

under four failure scenarios in Scalog: Paxos leader failure,

Paxos follower failure, aggregator failure, and storage server

failure, and under two failure scenarios in Corfu: sequencer

failure and storage server failure. In each scenario, we in-

tentionally kill one server at time t = 2s and measure how

throughput is affected. Figure 4 reports the results for the six

failure scenarios:

Scalog’s Paxos leader and Corfu’s sequencer. Although

records are temporarily unable to commit, Scalog’s storage

servers can continue receiving new records, which are com-
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Figure 4: Throughput under different failure scenarios

mitted as soon as a new Paxos leader is elected. Hence, af-

ter a dip, throughput temporarily spikes to catch up, and to-

tal throughput is unaffected, although latency suffers until

a new leader is elected. On the other hand, Corfu’s clients

compete for log positions when the sequencer is unavail-

able [21]. Heavy contention among clients causes Corfu’s

throughput to drop to nearly zero until a replacement se-

quencer joins [17]. Thereupon, Corfu runs at peak through-

put until it catches up and stores all the delayed records; dur-

ing this time, Corfu experiences higher latency.

Scalog’s Paxos follower. No effect on throughput or latency.

Scalog’s aggregator. Again, although the affected storage

servers (in this case, half of all storage servers) are temporar-

ily unable to commit new records, they can continue to re-

ceive them. Thus, the effects on throughput and latency are

similar to those of a Paxos leader failure.

Scalog’s and Corfu’s storage servers. We compare Sca-

log’s Finalize & Add with Corfu because they have the same

trade-offs. In Scalog’s Finalize & Add, the faulty server’s

shard is finalized. Throughput decreases temporarily until

the failure is detected (relying, in our setting, on a one-second

timeout) and all clients connected to the finalized shard are

redirected to storage servers in other shards. Throughput is

restored after slightly more than a second. In Corfu, the faulty

storage server triggers a change in the mapping function;

while this takes place, Corfu is unavailable [21]. Again, once

the failure recovery completes, Corfu is saturated until all

buffered records are stored.

6.3 Write Performance

We measure Scalog’s write latency and throughput by run-

ning each client in a closed loop in which it sends a record

and then awaits an acknowledgment. Latency measures the

time difference between when a client sends the record and

when it receives the acknowledgment. Throughput measures

the number of write operations per second over all clients.

Corfu’s peak throughput depends on the number of shards

and the sequencer’s throughput. Scalog’s peak throughput

depends on the number of shards and the configuration of

the aggregators; in addition, it also depends on the length of

the interleaving interval. By increasing the interleaving inter-

val, Scalog can increase its throughput because a higher in-

terleaving interval allows Scalog’s ordering layer to manage

larger numbers of shards and storage servers at the expense

of higher latency. To compare fairly against Corfu, we run

our evaluation with a fixed interleaving interval, set at 0.1ms

to match Corfu’s write latency. As we will see in §6.3.2, even

with this short interval, Scalog already supports many more

storage servers than we have resources to deploy.

6.3.1 System Configuration

In both systems, as the number of shards increases, ordering

becomes a bottleneck. To properly configure each system to

measure its peak throughput, we run microbenchmarks to de-

termine, (1) the maximum throughput of a single shard (us-

ing f + 1 storage servers) and (2) the maximum number of

shards that their respective ordering layer can handle.

Throughput from one shard. A shard in Scalog peaks at

18.7K writes/sec; our implementation of Corfu, while outper-

forming previously reported figures for Corfu [21], reaches

13.9K writes/sec. The difference is due to how the two sys-

tems enforce total order at each storage server. In Scalog,

where storage servers sequence records in the order in which

they receive them, it is natural to write these records to disk

sequentially. In contrast, records in Corfu are ordered by the

sequencer, not by the storage servers. Records from different

clients may reach storage servers out of order. Corfu storage

servers first skip over missing records and later perform ran-

dom writes to fix the log once those records are received.

The number of shards each system can support depends on

the maximum load Scalog’s aggregators can sustain and the

maximum throughput of Corfu’s sequencer.

Scalog’s aggregators. We measure the number of shards and

child aggregators that an aggregator can handle by having

its neighboring servers (be they storage servers, the Paxos

leader, or other aggregators) send synthetic messages. We

find that each aggregator can handle either 24 storage servers

(i.e., 12 shards in our f = 1 setting) or 23 child aggregators,

while the ordering layer can handle up to either 12 shards or

22 aggregators. We use these numbers to estimate the max-

imum number of shards that Scalog can support for a given

number of aggregators.

Corfu’s sequencer. We find that the sequencer of our Corfu

implementation handles about 530K writes/sec, comparable

to the optimized Corfu implementation used in Tango [22].

We want the throughput of both systems to scale linearly in

the number of shards until ordering becomes the bottleneck.

To avoid overloading the storage servers, we then configure

each shard in Scalog and Corfu at 80% of their peak through-

put, respectively, at 15.0K writes/sec and 11.1K writes/sec.

To avoid overloading Scalog’s Paxos leader and aggregators,
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The vertical dotted line separates results obtained with real

servers from those obtained through emulation. For Scalog,

we emulate storage servers, but not aggregators. Scalog’s

maximum throughput in this configuration is limited by the

number of machines available to us.

we never assign to the ordering layer or to individual aggre-

gators more than half of maximum load they can sustain (i.e.,

either six shards or 11 aggregators); if the load exceeds what

the system’s current configuration can handle under this pol-

icy, we add a new layer of aggregators. Thus, we configure

these systems as follows:

Scalog. We add one shard for every 15.0K writes/sec of

throughput. With up to six shards, we do not use aggregators.

Between 7 and 66 shards, we use one layer of aggregation,

with one aggregator for every six shards. With more than 66

shards, we use multiple layers of aggregators, where the or-

dering layer handles at most 11 aggregators, each aggregator

handles at most 11 child aggregators, and each leaf aggrega-

tor handles at most six shards.

Corfu. We add one shard for every 11.1K writes/sec of

throughput, until the sequencer becomes a bottleneck.

6.3.2 Write Scalability

We now proceed to determine how much load Scalog and

Corfu can handle and, in particular, the throughput and la-

tency that they achieve. Unfortunately, we only have access

to 40 servers in CloudLab; in cases that require more servers,

we emulate storage servers and their load. When communi-

cating with the ordering layer, each (emulated) storage server

reports to be receiving records at the same throughput and

latency as a real storage server, though it is not receiving

records from clients. This setup allows one physical machine

to emulate hundreds of storage servers.

Let l1 be the time elapsed at the client between sub-

mitting a record and learning that it is committed, and let

l2 be the time elapsed between submitting a report to the

ordering layer and learning the corresponding cut. Both are

measured using real storage servers. For our emulation, we

use as latency the sum of (1) the time elapsed at the emu-

lated storage server between submitting a report to the order-

ing layer and learning the corresponding cut and (2) l1 − l2.

Figure 5, which presents throughput/latency measure-

ments as we increase the number of shards, shows that Sca-

log significantly outperforms Corfu’s throughput while expe-

riencing lower latency.
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Figure 6: Write latency vs. shard size

Corfu’s maximum throughput is limited by the sequencer

at 530K writes/sec. Emulating only storage servers, but not

aggregators, with our 40 machines, Scalog reaches 2.34M

writes/sec, but is still far from being saturated. To explore the

limits of the workload that can be handled by Scalog’s order-

ing layer, we deployed Paxos with multiple layers of aggre-

gators: we used physical servers for the Paxos replicas and

the uppermost layer of aggregators, and emulated additional

layers of aggregators as necessary against an emulated work-

load corresponding to a varying number of storage servers.

We found that, before Paxos becomes a bottleneck, Scalog

can handle up to 3,500 shards with three layers of aggrega-

tors, which translates to 52M writes/sec.4 This throughput

could be further increased by using a larger interleaving in-

terval, trading latency for throughput.

Scalog’s latency in Figure 5 grows slightly (by about 0.1

ms) whenever a new layer of aggregators is added, but re-

mains lower than Corfu’s. Based on our experiments with

one and two layers of aggregators, we estimate the latency

at 52M writes/sec to be around 1.6 ms (the client perceived

latency is 1.3 ms when there are no aggregators, plus three

layers of aggregators at about 0.1 ms per layer).

Corfu’s latency is negatively impacted by two factors: first,

Corfu replicates records across storage servers using client-

driven chain replication [49] that writes to each server in

sequence; second, since Corfu’s clients may (and, in suffi-

ciently long runs, likely will) write records to any storage

server, the overhead paid by servers in managing client con-

nections grows with the number of clients.

Finally, we investigate how write throughput and latency

are affected by f , the number of failures that a shard toler-

ates. We find that throughput in both Scalog and Corfu is not

significantly affected when varying f ; thus, we focus our dis-

cussion on latency. Figure 6 shows that, for a single shard,

client-perceived latency in Scalog is roughly constant, while

in Corfu, latency increases linearly with f . The reason is,

again, that Corfu replicates a record within a shard by writing

sequentially to each of its storage servers, while Scalog al-

lows a record to be replicated in parallel on multiple storage

servers. Thus, as the number of storage servers in the shard

increases to tolerate higher values of f , so does the latency

gap between Scalog and Corfu.

4We use emulation to measure the maximum number of shards the order-

ing layer can handle. We are unable to assess other scaling issues (e.g., the

network bottleneck), because we do not have access to a sufficiently large

testing infrastructure.
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6.4 Read Performance

Unlike writes, reads in Corfu and Scalog follow similar paths

with identical performance. We therefore only focus on Sca-

log’s read latency and throughput.

Using a single storage server s, we measure latency with

a single client and measure throughput as a function of the

number of clients. To evaluate the performance of sequential

reads, we have a client call subscribe(l), where l ≤ lmax, the

maximum global sequence number the storage server has ob-

served (see §4.2). We measure latency as the time between

the subscribe call and the receipt of the first record; for

throughput, we divide the number of records between [l, lmax]
in s by the time needed to receive them. To evaluate random

reads, we have a client call readRecord(l,s) in a closed

loop, where l is randomly generated such that l ≤ lmax and

record l is stored in shard s.

Normally, the client library connects to all shards for

subscribe(l) and chooses a random server in shard s for

readRecord(l,s) (§4.2); instead, for these measurements

we modified the client library so that it connects only to the

storage server in s that is the focus of our evaluation.

When the client reads data that is still stored in the mem-

ory of the storage server, the throughput for both subscribe

and readRecord is 280K records/sec (i.e., the limit of a stor-

age server’s network bandwidth) and the latency for both a

readRecord request and for receiving the first record after a

subscribe call is about 0.09 ms.

When the client reads data that is no longer in memory (as

is often the case with finalized shards), latency and through-

put are limited by the performance of storage server disks.

With our hardware, readRecord achieves 4.5K records/sec

throughput and 0.31 ms latency; as for subscribe, by read-

ing sequentially and returning 256KB log chunks, it achieves

57K records/sec throughput with 1.21 ms latency to receive

the first record; larger chunks improve throughput somewhat,

but at the cost of significantly higher latency.

When a client reads from many storage servers concur-

rently (whether from one or multiple shards), throughput is

limited by the client’s network bandwidth, which is on aver-

age 280K records/sec in our evaluation.

6.5 Impact on Applications

We focus on the applications discussed in §5. Of these, the

online marketplace uses Scalog to store user activities using

append and reads the log using subscribe, so its perfor-

mance is simply that of Scalog. The other two applications

are more involved and deserve a more careful investigation.

6.5.1 Scalog-Store

We have implemented prototypes in golang using protocol

buffers of both Scalog-Store and Corfu-Store based on our

Scalog and Corfu implementations.
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In this experiment, both Scalog-Store and Corfu-Store run

on 20 storage servers (10 shards). The keys are 64-bit inte-

gers, while values are 4088 bytes (creating 4KB records).

Figure 7 shows that Scalog-Store has higher multi-put

throughput than Corfu-Store, because each storage server in

Scalog has higher throughput (see §6.3.1). For both Scalog-

Store and Corfu-Store, the throughput of multi-put opera-

tions is limited by the throughput of the log given the limited

number of shards we have available. An exception is when

Scalog-Store has 10 shards and one key in multi-put, when

the bottleneck is the mapping server.

If we had many more shards but few keys in multi-put

operations, then the mapping server would be the bottleneck

for both Scalog-Store and Corfu-Store, and we would expect

the multi-put throughput to be the same. However, if we

increase the number of keys, we would expect Scalog-Store

to eventually have higher throughput than Corfu-Store be-

cause the bottleneck will eventually shift to the log. This is

because the throughput of the mapping server does not de-

teriorate much with the number of keys and the throughput

that the log has to provide equals the number of keys times

the throughput of the mapping server. For Corfu-Store, the

shift happens when there are eight keys. Because Scalog pro-

vides superior throughput to Corfu, Scalog-Store can provide

higher multi-put throughput when the number of keys is

larger than eight.

To summarize, Scalog-Store achieves higher per-shard

write throughput than Corfu-Store, because Scalog-Store

uses fewer shards to achieve the same total throughput. When

there are eight or more keys in each multi-put operation,

Corfu reaches its maximum throughput and becomes a bot-

tleneck while Scalog does not.

For both Scalog-Store and Corfu-Store, the throughput of

multi-get operations (Figure 8) is limited by random read

throughput of storage servers.

6.5.2 vScalog

Starting respectively from our Scalog and Corfu implemen-

tations, we prototyped vScalog and vCorfu in golang, using

protocol buffers. We implemented each object as a key-value

pair and ran each system as a key-value store.

We first measure the maximum write throughput of a sin-

gle materialized stream, since it limits the maximum up-

date rate of a single object. Our evaluation shows that

one materialized stream of vScalog and vCorfu achieves

18.6K writes/sec and 13.6K writes/sec, respectively, which
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are roughly the same as the respective single shard through-

puts of Scalog and Corfu shown in §6.3.1. The client per-

ceived latencies for vScalog and vCorfu are 1.2ms and 1.5ms,

respectively; vCorfu is slower because it writes to disks se-

quentially while vScalog writes to disks in parallel.

Next we measure the total throughput of vScalog and

vCorfu. Our experiments show that, using the same number

of shards, vScalog has roughly the same throughput as Sca-

log. Using the same number of stream replicas in vCorfu

as the number of shards in Corfu, and given enough log

replicas, vCorfu and Corfu also achieve approximately the

same throughput. However, the single shard throughput of

vCorfu’s underlying shared log reduces to 9.3K writes/sec

(due to the cost of writing a commit bit, matching the 40%

penalty reported in [51]).

7 Limitations

Scalog’s current prototype suffers from several limitations.

Some seem to be relatively easy to address: for example,

while Scalog allows applications to dynamically add and fi-

nalize shards, it does not provide automated policies to trig-

ger such actions. Other limitations are common to storage

systems that operate at large scale: as server failures become

frequent, the steps needed for recovery may complicate the

scheduling and allocation of resources. Others yet, however,

appear to be more fundamental to Scalog’s design. In par-

ticular, although Scalog offers unprecedented throughput at

latency comparable to, or better than, prior shared log im-

plementations, it is not well suited for applications that re-

quire ultra-low latency (such as high-speed trading), highly-

predictable latency and throughput, or low tail latencies. The

question of whether it is possible to drastically reduce latency

while maintaining Scalog’s throughput and ordering proper-

ties remains open. Finally, some issues are outside of Sca-

log’s current scope: in particular, Scalog’s design does not

address security concerns.

8 Related Work

The shared log abstraction is, implicitly or explicitly, at the

core of state machine replication protocols [46], and Scalog

draws inspiration from several of them.

In Vertical Paxos [39], configurations can change from slot

to slot, allowing for seamless reconfiguration similar to Sca-

log. Like Scalog, EPaxos [43] allows all replicas to accept

client requests. However, EPaxos only builds a partial or-

der consistent with specified dependencies among records;

in addition, maintaining and checking dependencies creates

a bottleneck. In networks that almost never reorder messages,

NOPaxos [40] achieves very high throughput and low latency

using a custom hardware switch to order records.

Mencius [42] and Derecho [23] partition log slots among

multiple leaders. Essentially, each process creates a locally

ordered log, which is then interleaved in round-robin or-

der. Similarly, Calvin [48] dispatches to multiple sequencers

transaction requests, which are compiled into batches. The

batches are then interleaved in round-robin order to build a

total order. Scalog generalizes this idea and allows for more

flexibility in how the logs are interleaved, which is not sensi-

tive to slow servers.

Kafka [36], a widely-used shared log system, uses shard-

ing to scale and provides total order within each shard, but

not across them. Pravega [15] provides a sharded log sim-

ilar to Kafka and focuses on a rich set of reconfiguration

operations that support scaling. FuzzyLog [41] builds a par-

tially ordered log by tracking Lamport’s happened-before re-

lation [37] between records stored in different shards. Dis-

tributedLog [6] also supports sharding and provides a to-

tally ordered log, but its single-writer-multiple-reader access

model is not conducive to high write throughput.

To provide both total order and high throughput, it is nec-

essary to separate ordering from data dissemination. Like

Scalog, Corfu [21] separates ordering from data dissemi-

nation and relies on sharding. A function, maintained in

ZooKeeper [33], maps sequence numbers to shards. A client

first obtains a sequence number for a record from the Corfu

sequencer, and forwards the record to the shard indicated by

the mapping function. Each shard comprises a collection of

replicas, each consisting of a flash unit (an SSD plus FPGA

to implement a write-once block device), kept consistent us-

ing a variant of chain replication [49].

LogDevice [12] is similar to Corfu, but replaces the map-

ping function with a non-deterministic record placement

strategy. By allowing clients to write to any shard, LogDe-

vice achieves flexible data placement. However, all records

still need to be ordered by a sequencer similar to Distributed-

Log’s single writer [6], limiting throughput.

9 Conclusion

Inspired by crash-resistant storage systems, Scalog departs

from previous implementations of the totally ordered shared

log abstraction by making records persistent before deter-

mining their positions in the log. This simple but essential

change of perspective lets Scalog scale out elastically and re-

cover from failures quickly; allows applications to customize

which storage servers should hold their records; and enables

a new ordering protocol that, by interleaving the local or-

ders built by each storage server as a side product of replicat-

ing records, achieves almost two order of magnitude higher

throughput than the state-of-art shared log implementation.
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Abstract
Low-power Wide-Area Networks (LP-WANs) are seen

as a leading candidate to network the Internet-of-Things
at city-scale. Yet, the battery life and performance of LP-
WAN devices varies greatly based on their operating fre-
quency. In multipath-rich urban environments, received sig-
nal power varies rapidly with a low-power transmitter’s fre-
quency, impacting its transmission time, data rate and battery
life. However, the low bandwidth of LP-WANs means that
there are hundreds of operating frequencies to choose from.
Among them, we show how choosing a select few of these
frequencies(≤3.55%) effectively triples the battery life when
compared to the rest for LP-WAN devices.

This paper presents Chime, a system enabling LP-WAN
base stations to identify an optimal frequency of operation
after the client sends one packet at one frequency. Chime
achieves this by analyzing the wireless channels of this packet
across many base stations to disentangle multipath and as-
certain an optimal frequency that maximizes client battery
life and minimizes interference. We implement Chime on
a campus-scale test-bed and achieve a median gain of 3.4
dB in SINR leading to a median increase in battery life of
230% (∼1.4-5.7 years), data rate by 3.3× and reduction in
interference of 2.8× over commodity LP-WANs.

1 Introduction

Recent years have seen the emergence of Low-Power Wide-
Area Networks (LP-WANs) as a promising technology to con-
nect the Internet of Things. LP-WAN technologies ( like Lo-
RaWAN [2], SIGFOX [61], 3GPP’s NB-IoT [35], LTE-M [5])
allow devices to send data at low data rate (few kbps) to base
stations several miles away powered by batteries with targeted
lifetimes of 5-10 years. However, recent studies [17, 19, 28]
show a contrasting reality in dense urban deployments where
LP-WAN clients deep inside buildings experience signifi-
cantly lower battery lives (∼1-2 yrs) owing to heavy signal
attenuation. They further show that over 97% of the energy

consumption in an LP-WAN client can be directly attributed
to its radio front-end.

While many parameters influence the battery-drain from
a client’s radio front-end, the main parameter that it can con-
trol is its operating frequency. With the opening up of the
TV whitespaces, narrowband LP-WAN clients have several
hundreds of operating frequencies to choose from [16]. While
there is rich work on spectrum sensing, particularly to avoid
interference, in Wi-Fi [24] and LTE [38], LP-WANs differ in
an important way: base stations span asymmetrically higher
bandwidth compared to clients. This means that base stations
can directly monitor multiple frequency bands and advise
clients on frequencies with minimal interference. Yet, base
stations are unaware of the precise signal power at which an
LP-WAN client’s signal will be received across frequencies.
Our extensive experiments (Sec. 3) over a wide-area cam-
pus testbed show a promising opportunity in this respect: We
show how, when set to a select few frequencies (≤ 3.55% of
all available frequencies), signals from an LP-WAN client
are received at much higher signal power (∼3-4 dB) at base
stations. This increases client data-rate (∼2-8 ×) and reduces
their transmission time, effectively tripling their battery life1

relative to the median frequency. Unfortunately, finding these
optimal frequencies is challenging because they correlate
poorly by interpolating measurements along space, time or
frequency of operation. Further, simply sifting through even
a few frequencies (e.g. as with Wi-Fi [11]) in the hope of
finding the optimal ones would itself drain the battery inordi-
nately.

This paper presents Chime, a solution that explores the
feasibility of offloading the LP-WAN client frequency con-
figuration problem to the more well-equipped LP-WAN base
stations. Chime considers static clients (e.g. sensors) in urban
environments whose multipath characteristics, while complex,
change relatively slowly over time. Chime uses the fact that
while a single base station cannot ascertain the complex mul-
tipath, multiple spatially-distributed LP-WAN base stations

1Battery Life estimates derived from prior energy models (see Sec.3)
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can collaboratively identify an optimal operating frequency
for a client based on a single association packet it transmits
when it wakes up, regardless of its initial operating frequency.
Such an association packet is a standard feature of many LP-
WAN protocols [51] posing minimal power overhead for the
LP-WAN client. Chime achieves this by building a novel sys-
tem that uses the wireless channel-state information of this
packet at one frequency received across multiple base stations
to disentangle the multipath and predict the long-term battery
drain for the different operating frequencies. Further, Chime
also predicts the extent of unwanted interference the client
produces at base stations across different frequencies. Thus,
Chime passively infers an optimal client operating frequency,
without prior calibration of the environment or known client
location.

Chime exploits the recent trend of massive and unplanned
deployment of LP-WAN base stations [32]. For instance, Lo-
RaWAN base stations are proposed to be deployed in Comcast
MachineQ set-top boxes [32, 36], meaning that many LP-
WAN base stations will likely be single-antenna and often de-
ployed indoors. Chime proposes a novel algorithm (see Sec. 5)
to synchronize these multiple single or multi-antenna LP-
WAN base stations to emulate a large city-scale distributed
antenna array. In particular, Chime builds on past work in the
cellular context (e.g. R2-F2 [50]) that separates signal paths
using multi-antenna arrays while dealing with new challenges
pertaining to distributed, irregular arrays of antennas and low-
power user devices. Chime first models the received signals
from a client across synchronized base stations to disentangle
the different paths that the signals may traverse as they re-
flect off different objects. These signals combine to reinforce
or cancel each other leading to varying signal power across
the operating frequencies of the client. Chime then estimates
how these separated signal components recombine at different
client frequencies to find the one maximizing battery-life and
throughput, while minimizing interference.

A key challenge in estimating the multipath in urban en-
vironments is receiving time-synchronized phase measure-
ments across multiple LP-WAN base stations to emulate a
distributed MIMO array. While recent work has successfully
demonstrated distributed MIMO for WiFi [22] and cellular
networks [40], LP-WAN packets last over 10× longer and
therefore require much more accurate and long-lasting phase
synchronization. Further, low-power devices experience large
hardware imperfections meaning that the phase of the wire-
less channel varies drastically even within one packet. Hence,
any phase measurements made over time across base stations
would simply appear unsynchronized and random. Chime
overcomes this challenge by never measuring the phase of
a low-power client in isolation, instead always measuring it
relative to a high-power master base station whose signal
propagation characteristics we know a priori. We design this
master base station’s signal so that it can be measured at ex-
actly the same time and frequency as the low-power client,

without significantly interfering with it. Sec. 5 describes this
novel algorithm that directly compensates for phase drifts
over time of the low-power client relative to a reference signal
due to hardware imperfections.

Next, Chime must use the synchronized phase measure-
ments of a client’s association packet to infer how the signal
propagates through environment. However, inferring all paths
of the signals using measurements from a few single-antenna
base stations [53] that are geographically separated is chal-
lenging. Chime exploits the fact that though wireless signals
in urban wide-area networks traverse diverse paths to base
stations at different locations, they often share a very small
number of common large reflectors (e.g. buildings, trees, big
vehicles, etc.). Our approach aims to discover these dominant
reflectors in the environment using the small number of wire-
less channel measurements and model the signal propagation
(Sec. 6), while accounting for variations in the size, shape and
orientation of these reflectors. Chime recombines signals in
these dominant paths across frequencies to accurately predict
an optimal frequency of operation for improved throughput
and lower interference ( Sec. 7).
Limitations and Scope: We emphasize that Chime: (1) Con-
siders static LP-WAN clients (e.g. sensors, metering devices);
(2) Models macroscopic environmental changes but neglects
fleeting reflectors (trade-offs discussed in Sec. 6.2) (3) As-
sumes LP-WAN clients send an association packet to base
station upon waking up. Yet, Chime remains broadly applica-
ble to most sensor networking deployments.

Evaluation and Results: We deploy Chime using LoRa as
the low power technology and Semtech SX1276 chips as the
client RF transceivers. Our base-stations are USRP N210s de-
ployed on six buildings in a 0.7 km× 0.5 km area surrounding
a university campus. Our results show that:

• Chime provides a net increase in battery-life of 1.4-5.7 years
(230%) achieving at an average 79% of the optimum.
• Chime can increase network throughput by 3.3× compared

to commodity LoRa.
• Chime can reduce interference from LP-WAN clients at base

stations by 2.1 dB, by predicting the weakest frequency.

Contributions: Our specific contributions include:

• A wide-area motivation study that demonstrates the inability
of spectral, temporal and spatial interpolation for identifying
an optimal operating frequency of an LP-WAN client.

• A novel solution for collaboratively identifying an optimal
operating frequency of an LP-WAN client at the base stations
using only one transmitted packet from the client.

• A system that demonstrates significant increase in battery
life and throughput by identifying an optimal frequency of
operation for LP-WAN radios while accounting for multipath,
interference and noise.

• A wide-area deployment across a university campus showing
1.4-5.7 years of increased battery-life for LP-WAN clients.
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2 Related Work

Related work can be broadly categorized as follows:
Low-Power Wide-Area Networks: Recent years have wit-
nessed much interest in LP-WANs on both cellular (LTE-
M [5] and NB-IoT [35]) and unlicensed spectrum (Semtech’s
LoRa [2,27,44] and SigFox [39,61]), with some proposals ex-
tending to the TV whitespaces [20]. Recent work on LP-WAN
has explored interference management [19, 23], developing
battery-free solutions [30,45] and system deployments on the
whitespaces [48] to name a few. Chime complements this past
work by considering rapid frequency configuration, a problem
crucial for tackling with rapidly changing channel quality in
urban spaces and improving battery-life.
Spectrum sensing: Cognitive radio and spectrum sensing
solutions are primarily aimed at identifying vacant frequency
bands to minimize interference with other users [56]. Many
of these solutions rely on long-term statistics of channel oc-
cupancy and signal power using temporal [9, 15, 29, 60] and
spatial correlation [12,14,46,59] to make predictions. More re-
cent work attempts to minimize feedback by relying on sparse
recovery techniques such as compressed sensing [34, 43, 55]
or eigen-value based methods [8, 57].

For LP-WANs, channel occupancy, interference and noise
can be directly inferred by the base stations because they span
much larger bandwidth [10] compared to clients. Further, past
work on spectrum sensing does not focus on predicting re-
ceived signal power at the base station from a client across
frequencies. This is precisely Chime’s goal based on measure-
ments at one frequency from a single client radio.
Optimal radio configuration: Perhaps the solutions most
closely related to this paper are systems in the Wi-Fi [41]
and cellular context [50]. CSpy [41] exploits the properties
of OFDM wide-band transmissions from Wi-Fi client on one
Wi-Fi frequency band to accurately model wireless channels
at other Wi-Fi frequency bands. R2-F2 [50] predicts both
channel magnitude and phase of LTE cellular signals based
on measurements in one frequency, exploiting the properties
of OFDM and large multi-antenna base stations.

In contrast the LP-WAN context brings three unique chal-
lenges to the problem of finding an optimal operating fre-
quency. First, there are too many frequencies to choose from
across whitespaces (∼800MHz of bandwidth). For example,
just running through all of them will consume about 6% of
the client’s battery life2. Second, these radio configurations
demonstrate extremely poor correlation across frequency, time
and space, ruling out statistical techniques to estimate the op-
timal frequency of operation (see large-scale study in Sec. 3).
Finally, the vast majority of LP-WAN base stations are single-
antenna [36] and often deployed indoors, ruling out past work
that exploits bulky and expensive multi-antenna array infras-
tructure [7, 50]. Indeed, while Chime builds on R2-F2 [50],

2Available Battery Energy: 2900mAh; 125kHz channels in 800MHz:
6400; Energy of a typical LoRa packet: 100 mAs ; Battery spent = 6.13%

analyzing multipath across distributed single-antenna base
stations for frequency configuration in the LP-WAN context
is its key contribution.

3 Motivation - Empirical Study

To motivate the battery-saving opportunities in finding an
optimal frequency configuration and the core-challenges in
finding it, we present our findings from a detailed empiri-
cal study. We focus on a simple question: “Can an optimal
frequency of operation of an LP-WAN client be found by
exploiting prior measurements made over time, frequency or
space?”. We deploy 20 LoRaWAN clients at multiple loca-
tions periodically sending packets across a month iterating
over 160 frequency configurations in an outdoor campus-scale
testbed (see Sec. 9 for a detailed description of our testbed).
Each client was static and placed in a weather-proof case
in indoor and outdoor locations with signal power measured
from a single base station. While we do not consider mobile
clients, we consider varying outdoor environments over time
to measure channel quality and estimated battery life for each
frequency.
Estimating battery life: Prior studies have shown that the RF
front-end is responsible for most of the battery consumption
of a LoRaWAN device [17]. We use these prior LoRaWAN
battery models [17] to estimate the energy consumed per
packet at different datarates. We then use operational charac-
teristics for the Semtech SX1276 transceiver [4] to map the
signal-to-interference plus noise ratio (SINR) to the appropri-
ate datarates. They show that improving signal strength from
a LoRaWAN client can reduce the transmission time, thus
increasing battery-life. The reason the battery life increases
so much with a few dB improvement in SINR is that, unlike
WiFi, every better data rate in LP-WANs halves the packet
transmission time [4]. Thus, across the SINR thresholds of
these data rates, your client battery life doubles, quadruples
and so on. Our results show high variation in the RSSI of a
LoRa client at base stations across time, frequency and space.
Correlation across time: Upon investigating the data across
clients to the base station, we discover that most frequencies
change in signal strength even across a few minutes (Fig. 2).
Our results (Fig. 3) show that using historical measurements
over different time spans on a set of frequencies to predict the
optimal one (via polynomial interpolation) achieves 38.27%
of the optimum at best. Our detailed study of urban multipath
in Sec. 10.2 shows that this stems from gradual aggregate
change in reflectors in the environment at these timescales.
Correlation across Frequency: Our results reveal that the
optimal frequency-of-operation is extremely difficult to stum-
ble upon with a random guess or even predict using a modest
amount of frequency hopping. As shown in Fig. 1, 50% of all
operating frequencies provide just 27.58% of optimum bat-
tery life while 90% of them still provide only 67.09% of the
optimum. Indeed, only 1.58% of the operating frequencies are
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Figure 1: Percentile of battery life: few frequen-
cies have good SINRs providing battery lives close
to the optimum

Figure 2: Channel Variance: Chan-
nel quality varies dynamically across
days and even minutes

Figure 3: Interpolation: percentile
of battery life of the optimum fre-
quency from interpolation

at 90% of the optimum while only 3.55% triple the median
battery life. Further, sampling several frequencies in hope of
finding the top 3.55% would itself incur battery-drain, zeroing
out the benefits. We observe that even adjacent transmission
frequencies perceive a difference of about 20 dB of signal
strength which, in outdoor environments, is enough to make
a LoRa device undetectable. We further evaluate whether
polynomial interpolation from sampling a limited number
of frequencies sufficiently improves battery life and observe
(Fig. 3) that it achieves at best 70.07% of the optimum.
Correlation across Space: We evaluate whether measure-
ments from neighboring clients can be leveraged to find an
optimal frequency of operation for a client. We consider var-
ious number of clients placed in a linear array spaced at 15
cm and predict an optimal frequency of the client in the mid-
dle via polynomial interpolation. As shown in Fig. 3, this
achieves at best 39.90% of the optimum battery life.

4 Overview of Chime

This section provides an overview of Chime’s approach and
challenges. Chime’s primary goal is to accurately measure an
optimal operating frequency for an LP-WAN client by making
it transmit only one packet on one frequency band. It primarily
aims to predict the received signal power of the client across
all frequencies at base stations. Since base stations span a
wide bandwidth, they can readily measure channel occupancy
and noise levels across frequencies, leaving received signal
power from a client as the primary unknown.

Chime’s system architecture is designed as follows: Upon
waking up and for signal association, each LP-WAN device
transmits a beacon packet on its arbitrarily chosen initial fre-
quency of operation (a standard feature of common LP-WAN
protocols). Chime then processes the received signals from
this packet across the base stations at the cloud via a wired
backhaul to infer an optimal frequency of operation. Note
that since the powered base stations and the cloud perform
all computation, this does not impact client battery life. The
nearest base station then reports the estimated frequency to
the client in its acknowledgment of the beacon.

Figure 4: Chime: Frequency configuration for LP-WANs

Assumptions: While Chime does not consider mobile clients,
we do consider dynamic outdoor environments. While Chime
does not model fleeting reflectors in environment, it models
long-term changes in multipath as it re-analyzes the current
multipath based on transmissions from the client beacon and
the master base station.

The rest of this paper describes three challenges in achiev-
ing the above design: (1) Synchronizing Distributed Base
Stations: Chime first develops a synchronization system that
allows multiple base stations to coordinate. In doing so, it
eliminates the time-varying and long-lasting phase errors due
to hardware impediments, such as frequency, timing and phase
offsets of low-cost and low-power wireless hardware (see
Sec. 5). (2) Disentangling Signal Paths: Next, Chime ana-
lyzes the root cause of why signal power from the client would
vary across frequencies in the first place – wireless multipath.
Specifically, signals from the client traverse multiple paths as
they reflect off buildings, trees and other objects before reach-
ing the base stations. Signals along these paths can reinforce
each other or cancel each other, depending on the frequency
of operation. At the cloud, Chime combines measurements
from the distributed array of base stations to decouple the
different paths the signal traversed from the client, even if the
geometry of these base stations is arbitrary and the environ-
ment is multipath-rich (see Sec. 6). (3) Estimating Optimal
Frequency: Chime then recombines the signal components at
all possible operating frequencies to determine their expected
signal power across base stations. Chime can then use this
information, along with the known interference and ambi-
ent noise at these frequencies perceived at base stations to
determine the best frequency-of-operation (see Sec. 7).
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5 Synchronizing Base Stations

In this section, we describe our approach to synchronize
transmissions from the LP-WAN client between spatially
distributed base stations. Recall that Chime relies on syn-
chronized phase measured across different base stations from
a single client device to extract signal multipath. However,
these phase measurements experience time-varying errors ow-
ing to the hardware imperfections of LP-WAN radios. Four
distinct hardware impediments contribute to these phase er-
rors: (1) Carrier Frequency offset (CFO): occurs due to subtle
differences between the carrier frequency that any two radios
operate on; (2) Sampling Frequency offset (SFO): occurs due
to small differences between the sampling rate of the two
radios; (3) Detection Delay: is produced because the packet
from the client is detected with different delays across base
stations; (4) Phase Lock Loop (PLL): produces an arbitrary
constant phase offset at each base station’s received signal,
every time it tunes to a frequency. Chime’s synchronization
algorithm seeks to process these wireless channels across
base stations to eliminate these phase errors.

Let the measured channel between the client and the base
station be denoted by h̃C→B1 whose phase is θ̃C→B1 . Mathe-
matically, we can write the phase of the measured wireless
channel θ̃C→B1 at time t as a function of the phase of the true
channel θC→B1 between them, as well as various phase errors.
Let us define the following hardware impediments: (1) Carrier
Frequency Offset (CFO): fC− fB1 as the difference in carrier
frequency between the client and base station. (2) Detection
Delay and Sampling Frequency Offset (SFO): tC− tB1 denote
the effective offset in time owing to detection delay at the
base station and sampling frequency offset. (3) Phase offset
from the PLL: φC−φB1 the phase error owing to the PLL of
the client and base station locking to different values each
time these radios start receiving at a center frequency. The
phase of the channel at time t is:

θ̃C→B1 = θC→B1 − (2π( fC− fB1)t

+2π fC(tC− tB1)+(φC−φB1)) (1)

The rest of this section describes our approach to eliminate
each of the above errors across base stations.

5.1 Eliminating Phase Errors

To eliminate phase errors in Eqn. 1, Chime leverages multiple
base stations. Specifically, we recall that a client’s transmis-
sion at time t can be recorded by multiple base stations, which
can measure the corresponding wireless channels. Chime
eliminates hardware impediments by exploiting the common
phase shifts they induce to these channels.

Mathematically, Chime estimates the wireless channel at a
second base station B2 from the same client at the same time

t. This wireless channel is written as:

θ̃C→B2 = θC→B2 − (2π( fC− fB2)t

+2π f (tC− tB2)+(φC−φB2)) (2)

By subtracting Eqn. 1 and Eqn. 2 above, we get:

θ̃C→B2 − θ̃C→B1 = θC→B2 −θC→B1

+2π( fB2− fB1)t +2π f (tB2 − tB1)+(φB2 −φB1) (3)

Note that the above difference in phases is independent
of hardware impediments owing to the client, i.e. its center
frequency fC, time-delay tC or initial phase φC. However, as
it is dependent on the impediments of the two base stations,
Chime still needs to estimate the phase errors due to hardware
differences between pairs of spatially distributed base stations.

To estimate these phase differences, Chime relies on a mas-
ter base station (BM , one of the base stations) at a known
location. The master sends a signal at the same time t and fre-
quency fC as the client (we address the challenges in achiev-
ing this without causing collisions in Sec. 5.2). We then mea-
sure the difference in phase at the two base stations of the
channel from the master base station:

θ̃BM→B2 − θ̃BM→B1 = θBM→B2 −θBM→B1

+2π( fB2− fB1)t +2π f (tB2 − tB1)+(φB2 −φB1) (4)

Notice that Eqn. 3 and Eqn. 4 have the same effect of hard-
ware impediments on their right-hand side. By subtracting
these two phase values, we obtain a quantity independent of
hardware offsets:

θ̃C→B2 − θ̃C→B1 − θ̃BM→B2 + θ̃BM→B1

= θC→B2 −θC→B1 −θBM→B2 +θBM→B1 (5)

The above quantity is independent of hardware offsets of
the client and base stations and therefore directly captures
the multiple signal paths along which the signal traverses.
Assuming the channel between master base station and other
base stations can be computed (described in Sec. 5.2) at the
same time and frequency as the client, the term θBM→B1 −
θBM→B2 can be compensated for. Chime therefore estimates
the following product of channels hconj

12 – a complex number
we call the offset-free channel whose phase value is exactly
θC→B2 − θC→B1 – a function purely of the client and base
stations (note: (.)∗ is the complex conjugate).

hconj
12 =

h̃C→B2(h̃C→B1)
∗h̃BM→B1hBM→B2

h̃BM→B2hBM→B1

(6)

Chime can then use this offset-free channel, which is free of
all time-varying phase offsets, to disentangle signal paths from
the client, without being impacted by hardware impediments
(Sec. 6). Note that while the phase of a single offset-free
channel is ambiguous due wrapping of phase over 2π, we
combine the information across multiple such channels to
estimate the multipath. This approach resembles that of many
phase-based localization systems [26, 49, 54].
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Figure 5: Wireless channels between client and base stations

5.2 Removing offsets between base stations

To obtain offset-free channels as in Eqn. 6 above, the base
stations need to measure channels from the master base sta-
tion at the same time and frequency as the client that is being
tracked . However, doing so would result in collision between
the master base station packet and client packet, causing nei-
ther of their packets to be decoded. As a result, one needs to
carefully design transmissions of master base station to avoid
collision with the client transmissions.

A naive approach would be to transmit the master’s signal
a short time interval prior to every client’s transmission. By
picking an extremely short interval between the reference
and client, one can neglect the additional phase drift that
may accumulate. While this approach is commonly used in
distributed MIMO in Wi-Fi [33] and cellular [42], it does not
apply to LP-WANs. This is because LP-WAN packets span
hundreds of milliseconds [2, 13, 21]. Such long packets cause
phase measurements to drift significantly within a packet
rendering a priori synchronization futile. Thus, Chime needs
a mechanism to estimate phase measurements at the same
exact time and frequency from both reference and client by
analyzing their packets transmitted concurrently.

Chime circumvents this challenge by designating one of
the base stations to transmit a concurrent signal on an adja-
cent frequency band relative to the client. This master base
station transmits its signal at the same time as the client, send-
ing a known sequence in parallel with its transmission. The
base stations can thus estimate the wireless channels of both
the master and client transmissions at the same time, albeit
across adjacent frequency bands. Chime then extrapolates the
wireless channels of both the master and client to estimate
its phase value at the guard band between them. While prior
works [42,58] have used beacon-based synchronization mech-
anisms, Chime uses piece-wise cubic spline extrapolation of
both the magnitude and phase of the wireless channels across
these bands for the master base station and client to estimate
the magnitude and phase at the guard band in-between. Given
that these estimates occur at the same time and frequency (i.e.
the guard band) across both the master and client, we can now
use them in Eqn. 6 to accurately synchronize base stations

and eliminate the effect of hardware imperfections.
When does the master base station transmit? To facilitate
the master base station to decode the preamble and transmit
simultaneously on an adjacent channel, Chime ensures that
the association packet’s preamble is sufficiently long to ac-
commodate this. An alternative option in the cellular context
(e.g. NB-IoT) is to allocate dedicated spectrum for the base
station alongside the client’s association packet.
Why does interpolation work? Interpolation across fre-
quency to estimate the channel seems to have inherent con-
tradiction with our motivation results in Section 3. However,
it is a well known fact that outdoor channels, have a coher-
ence bandwidth of about 250-500 KHz. Thus, while the chan-
nel demonstrates frequency-selective fading over large band-
widths, the narrowband channel over 125 KHz is relatively
flat [37]. Thus, interpolation of client and master base station
channel will give a reasonable estimate of their channel at
the guard band. Note that since the base stations are high
powered agents, they can indeed transmit constantly and will
have significantly larger transmit power than the clients. Thus,
with a dense enough deployment of base stations (expected
for LP-WANs [3, 6, 36]), the signal of the master base station
will be received at other base stations.

6 Separating Signal Paths

Given the wireless offset-free channels of the form hconj
jk from

a client to a base station pair ( j,k), we next seek to separate
the set of signal paths that signals traverse from the clients
to the n base stations. The key challenge in doing so is to
decouple the large number of signal paths using channel mea-
surements from a small number of base stations. Fortunately,
our results in Sec. 10 as well as extensive past literature [50]
in outdoor urban wireless networks demonstrate that wireless
channels tend to have small number of dominant paths. As a
result, Chime exploits this sparsity to identify the dominant
signal paths using only a small number of available base sta-
tions. While there have been solutions proposed for WiFi [41]
and cellular networks [50], these techniques either model
certain behavior of signals in indoor environment or require
heavy infrastructure such as an array of antennas unavailable
at the base station. Furthermore, LP-WAN base stations are ar-
ranged irregularly, making it challenging to employ traditional
antenna array algorithms.

6.1 Irregular Distributed Arrays

Chime separates multiple signal paths by actively modeling
wireless signal characteristics of a distributed array of base
stations with an irregular, but known geometry. To do so,
Chime uses a maximum-likelihood [18] approach to identify
the best propagation characteristics that fit the observed chan-
nels. In particular, given that only a small number of signal
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Figure 6: Virtual Sources: Reflected paths can be modeled
as virtual sources that are mirror images of the transmitter

paths dominate (Sec. 10.2), Chime iterates over a set of m
virtual source coordinates (xp,yp,zp) for p = 1, . . . ,m, which
denote candidate locations for the client as well as one virtual
source for each dominant path from a reflecting surface. As
shown in Fig. 6, these virtual sources are simply the mirror
image of the source about any reflecting surface. One can then
compute the distances from these virtual sources to each base
station (whose coordinates are known) to compute the total
path length experienced by each reflected signal component.
Chime then uses this information to compute the optimal
attenuations and phase-shifts for each signal path that fit the
observed channels and the given geometry of virtual sources.
It then identifies and outputs the set of virtual sources, atten-
uations and phase shifts that best-fit the observed channels.
Key to Chime’s algorithm is an approach that both carefully
chooses the number of paths m and efficiently searches over
the space of virtual source coordinates.
Problem Formulation: Mathematically, Chime’s algorithm
begins by iterating over a set of candidate locations for the
virtual sources corresponding to a client. For ease of exposi-
tion, we make two simplifying assumptions which we will
relax later in this section: (1) Dominant reflectors are large,
therefore shared by all base stations; (2) Dominant reflec-
tors are planar and infinite. We further only consider single-
bounce reflectors and assume multi-bounce reflected paths
can be broken down into equivalent single-bounce reflec-
tors. Let us assume for the moment that there are m such
sources with known coordinates: (xp,yp,zp) for p = 1, . . . ,m.
Let us denote Bq to be the coordinates of the n base sta-
tions. Consider a signal along path p traversing a distance
of dp j = ||(xp,yp,zp)−B j|| to base station j from its virtual
source (xp,yp,zp). Then the phase of the channel from this
source is of the form −2π

dp j
λ

and magnitude 1
dp j

, where λ is

the signal wavelength [47]. Let hcon j
jk denote the offset-free

channels (see Sec. 5) received by each pair of base stations
(i, j). Recall that hcon j

jk contains the product of channels to
two base stations hC→B j h

∗
C→Bk

so the phases of each pair of
signal paths subtract and their magnitudes multiply. Hence,
hcon j

jk is a weighted sum of complex numbers whose phase is

of the form −2π
dp j−dqk

λ
and magnitude is of the form 1

dp jdqk
,

whose weights are unknown.
At this point, we formulate the following minimization

problem that attempts to find the complex weights, αp,q, based
on how well they fit the observed channels:

min
{αp,q}

ε∣∣∣∣∣∣[hconj
jk

]
1×n2
− [αp,q]1×m2 Em2×n2

∣∣∣∣∣∣≤ ε

Em2×n2 =

[
1

dp jdqk
e−i2π

dp j−dqk
λ

]
p,q=1,...,m; j,k=1,...,n

where i =
√
−1. Given dp j’s and dqk’s, the above opti-

mization problem can be solved in closed-form using a least-
squares fit as (note: (.)pinv is pseudo-inverse.):

α
est =

[
hconj

jk

]
1×n2

Epinv
m2×n2 (7)

At this point, we can estimate the goodness-of-fit of
the assumed coordinates of the virtual sources correspond-
ing to the client {(xp,yp,zp)}p=1,...m based on how well
the estimated channels agree with the observed channels.
We define the goodness-of-fit of virtual source coordinates
{(xp,yp,zp)}p=1,...m as:

G({(xp,yp,zp)}p=1,...m) = 1/
∣∣∣∣∣∣[hconj

jk

]
−α

estE
∣∣∣∣∣∣

Thus, our problem of disentangling the multipath reduces to
finding the coordinates of virtual sources in a given geograph-
ical domain D , Copt = {(xopt

p ,yopt
p ,zopt

p )}p=1,...,m as:

Copt = arg max
{(xp,yp,zp)}p=1,...,m∈D}

G({(xp,yp,zp)}p=1,...,m)

Run-time Optimization: Running the above optimization
through an exhaustive grid search is prohibitive. Instead,
Chime solves it numerically using a stochastic gradient de-
scent algorithm [25] that begins optimization at a few of initial
points (e.g. a coarse grid) in parallel. We then perform a finer
numerical gradient-based search at these points and report
the coordinates for which we obtain the global maximum of
goodness-of-fit. Also, prior information about the topography
of the deployment space, known reflectors, and location of
the transmitter, while not necessary, can speed up the search
process. Upon optimization, Chime can fully characterize the
m dominant taps by the virtual source coordinates Copt and
corresponding phase shifts: αopt =

[
hconj

jk

]
Epinv.

6.2 Designing Optimization Parameters

Channels are Sparse and Changing: Key to our optimiza-
tion above is an accurate estimate of the number of dominant
signal paths m. Choosing a small number of signal paths
would lead to inefficiency and a poor overall goodness-of-fit
relative to the observed wireless channel. However, choosing
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a large number of signal paths leads to over-fitting, or requires
large number of base stations, and eventually, a poor estimate
of the optimal frequency to operate on. Fortunately, our re-
sults in Sec. 10.2 demonstrate that the number of dominant
signal paths in practical outdoor settings is small, a median
of 2, beyond which we tend to over-fit. Furthermore, given a
number of base stations, estimating a certain number of dom-
inant paths give the best results. We analyze this optimum
sparsity in Sec. 10.3 empirically and use the appropriate m
for performing the optimization. In Sec. 10.2 we show that
even though multipath is sparse, the dominant taps change
over the time-scale of minutes causing the optimal frequency
to change. Of course, most large reflectors (buildings) do not
move to cause this change. Hence, we surmise this is the
aggregate effect of one or more smaller static objects (e.g.
parked vehicles, objects close to the transmitter/receiver) that
move at these time scales.

Multiple, Non-Linear and Fleeting Reflectors: Note while
reflecting surfaces may be non-linear in the real world, in
our model, we only consider linear reflectors. We thus model
the multiple reflections off a non-linear reflector or multiple
reflectors as a composite linear reflector. Indeed, while this
assumption may sometimes lead to erroneous estimation of
reflectors [52] due to increased path length, we see that by
expanding the physical size of our search space for virtual
sources, the error in estimating multipath is minimal. We also
ran simulation based experiments which attempt to estimate
multiple reflections with a single reflector over a larger search
space (due to larger path distances). The results show that
error in finding the virtual source is negligible as long as the
peak is 7 dB above noise across the ISM band. Practically,
Chime only needs a source which exhibits similar distances
to the base stations as the different paths to the base stations.
We also ignore fleeting and small reflectors, which occur only
for one of the base stations, since they have minimal amor-
tized effect across the received signals of the base stations.
Our results in Sec.10.3 show that these assumptions work
reasonably well for urban environments.

Finite Reflectors: Our approach above assumes infinite pla-
nar reflectors which is not true in real world. To encode the
finiteness of the reflectors we can introduce a new parameter
βp which is a boolean vector of length n to each virtual source
p where βp j=1 denotes whether the signal from virtual source
p reaches base station j. This means that

Em2×n2 =

[
βp jβqk

dp jdqk
e−i2π

dp j−dqk
λ

]
p,q=1,...,m; j,k=1,...,n

would be sufficient to model finite reflectors. However,
simply looking for all possible β is inefficient. Instead we add
two new parameters Φk and ψk which represent the starting
angle and spanning angle of the planar reflector. We can
reduce the possible β by imposing practical and geographical
constraints. This means we only have to optimize for 2m extra
parameters instead of nm. We can estimate the β matrix by

Figure 7: Chime’s algorithm in a nutshell

using the source locations{xk,yk,zk} and the angles Φk,ψk
and applying the correct constraints. This means that the
number of variables does not increase significantly and can
be modeled with additional base stations.

Mobility: While our solution does not consider mobility of
client, we believe even with the knowledge of location of the
client device, we cannot use the reflectors computed during
previous run of Chime to assist the next run. This is because
LP-WAN devices transmit very rarely (about every 15 min-
utes or more), which according to our observations in Sec. 3
demonstrate change in multipath of even static clients. This
will lead to a complete change in the reflectors of the client
device. Thus, under Chime’s constraints, we will indeed need
to recompute every reflector again.

Extending to Multiple Frequencies To recover the domi-
nant signal paths using the algorithm above, one would need
to ensure that m < n, i.e. the number of dominant signal paths
is sparse and well below the number of base stations in the
vicinity of the LP-WAN client. We note that not all these base
stations need to be able to decode the client’s transmission at
the highest rate – they can simply compute wireless channels
from the preamble. However, in the instance that too few base
stations are available in the vicinity of the client, Chime can
improve its performance by measuring wireless channels at
more frequency bands, e.g. by requesting the client to hop
across a few bands. In effect, the additional measurements
across base stations makes sure our optimization in Eqn. 7 is
not under-determined.

7 Estimating Optimal Frequency

Having disentangled the multiple signal paths emerging from
the client, Chime can estimate an optimal frequency of op-
eration by recombining these signal paths across the various
available transmission frequencies. It can then identify the
operating frequency by choosing the transmission frequency
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with the highest signal power, while also accounting for other
factors such as noise and interference.

Computing Signal Power The first step to selecting the
best operating frequency is to determine the signal power
at each frequency band. In particular, given the offset-free
channels hconj

jk between a pair of base stations ( j,k) from
Sec. 5 and the multipath propagation characteristics ({αp,q}
and {(xp,yp,zp)}) from Sec. 6, we write the offset-free chan-
nel hconj

jk,@ f at any frequency f and wavelength λ f as:

hconj
jk,@ f = [αp,q]1×m2 E , where:

E =

[
1

dp jdqk
e
−i2π

dp j−dqk
λ f

]
p,q=1,...,m; j,k=1,...,n

Here, d denotes the distances between virtual sources and
base stations as defined in Sec. 6.

Notice that the magnitude of |hconj
jk,@ f |2 is simply the product

of the signal power from the client at base station i and base
station j. However, Chime needs to recover the individual
power of the wireless channels at each frequency to compare
them across frequencies. Extracting these individual powers
from hconj

jk,@ f is challenging, because its phase was carefully
constructed to remove any hardware impediments.

Chime addresses this challenge by performing its algorithm
in Sec. 6 on a second set of input wireless channels. We define
these wireless channels, hrat

jk as:

hrat
jk =

h̃C→Bk(t)h̃BM→B j(t)hBM→Bk

h̃C→B j(t)h̃BM→Bk(t)hBM→B j

Notice that the phase of hrat
jk is identical to that of hconj

jk ,
and is therefore also free from phase errors due to hardware
impediments of LP-WAN radios. Its magnitude however is
different – the ratio of the magnitude of the wireless chan-
nels to each base stations. One can therefore apply Chime’s
algorithm (Sec. 6) with hrat

jk instead of hconj
jk as input and obtain

as output the corresponding wireless channel at frequency f :
hrat

jk,@ f . It is then easy to see that the power of the signal from
the client to base stations j and k on frequency f is:

|hC→B j ,@ f |2 = hconj
jk,@ f /hrat

jk,@ f (8)

|hC→Bk,@ f |2 = (hconj
jk,@ f )

∗hrat
jk,@ f (9)

Selecting Optimal Radio Configuration Beyond signal
power at the target frequency that Chime computes, data rate is
also influenced by ambient noise, interference and attenuation
introduced by the transmit/receive chains across frequencies.
Fortunately, LP-WAN base stations can easily measure all
these quantities as they span a wide band of frequencies [31].
Chime therefore uses these measurements to compute the
effective SINR of the client across frequencies to choose the
one best optimizing its battery life.

8 Extensions of Chime

While Chime is designed to compute an optimal frequency
for an LP-WAN client to conserve battery-life, its approach
can be used to complement related problems in LP-WAN:
Coherent Combining: In addition to magnitude, recall that
Chime also provides the relative phase of wireless channels
between base stations. This is useful in computing the ex-
pected wireless channels when the base stations collaborate
to coherently combine the received signal across base stations
in order to decode them (e.g. Charm [17] performs coherent
combining in the LP-WAN context to decode weak trans-
missions from clients). By knowing both the magnitude and
relative phase of wireless channels at each base station across
frequencies, Chime can identify the frequency-band for which
the expected power of the coherently combined signal will
be maximum. Hence, Chime improves the performance of
coherent combining in LP-WANs (Sec. 10.5).
Finding Nulls: Just as Chime can find the radio configu-
ration where a client’s signal power to any base station is
maximum, it can also find frequency where signal power is
minimum. This is valuable in nulling interference from an
unwanted client at a base station by requesting it to transmit
at a frequency where interference is lower with one or more
base stations. Sec. 10.6 presents results evaluating Chime’s
performance in finding nulls from a client to base station.

9 Implementation and Evaluation

We implement Chime on Ettus USRP N210s as base sta-
tions and reference transmitter for removing phase offsets
(see Sec. 5).These base stations measure phase based on
our customized code in UHD to measure phase for Chirp
Spread Spectrum modulated data at line rate. We use Semtech
SX1276 chips as LoRaWAN client transmitters. Each picks a
single frequency from the ones supported by the transmitter
and transmits a small “chirp" for the base stations to hear. The
master base station (USRP N210) is designed to transmit on
an adjacent band all the time for convenience of implementa-
tion(see Sec. 5.2). We set the client spreading factor to 10 bits
per symbol and the bandwidth to 125KHz (standard mode of
operation). Each base station has a reliable link to the cloud
via a wired backend. Chime’s code is implemented in MAT-
LAB/C++ using an in-house UHD-compatible LoRaWAN
demodulator and processes the received wireless channels
across base stations at the cloud. We only consider infinite
length reflectors to evaluate our system. Note that we perform
coherent combining across base stations only for Sec. 10.5
where we combine Charm with Chime.
Wide-Area Deployment: Unless specified otherwise, we
evaluate Chime over four months across CMU campus and
surrounding neighborhoods spanning an area of 0.5km ×
0.7km in Pittsburgh leading to complex multipath scenarios
as shown in Fig. 8. Our deployment consists of 11 LP-WAN
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Figure 8: Chime Deployment: Red
circles denote base station locations

Figure 9: Phase Stability: Phase of
offset-free channel hconj

jk in multipath-
rich scenarios is stable across SINRs

Figure 10: Multipath Sparsity: His-
togram of # dominant paths shows sparsity
of multipath in urban environment

base stations serving different areas, all placed in different
buildings – 5 indoors and 6 outdoors. The campus has a va-
riety of tall buildings, trees, other large occlusions and hilly
terrain. Our frequencies of operation include the 915 MHz
ISM band and some bands in 500 MHz TV white spaces (FCC
experimental hardware license). We deploy up to 30 static
LoRaWAN clients at various locations (changing every few
days) to collect thousands of wireless channel traces across
distances relative to the base stations. While each client is not
mobile, we do consider a dynamic environment. Each client
transmits at a rate of 5-15 packets per hour. Further, clients
chose an arbitrary frequency of operation for their initial as-
sociation packet. Note that our experiments in Sec. 10.2 are
in a 0.36 km2 downtown area of Pittsburgh to study multipath
(described further in Sec. 10.2).
Ground Truth & Baseline: We obtain ground truth by mak-
ing clients hop on all frequencies to find an optimal one.
However, only the wireless channel corresponding to a single
packet on one frequency band is provided to Chime, unless
stated otherwise. We compare Chime against three baseline
systems: (1) Standard LoRaWAN which chooses initial fre-
quency arbitrarily; (2) Interpolation across frequency (as de-
scribed in Sec. 3), when data across multiple frequencies is
available; (3) Charm, a system that performs coherent com-
bining across base stations [17].
Runtime: Our current implementation takes ∼ 31 sec to ex-
plore the search space of reflectors on a desktop with Core-i7
8700K and Nvidia GTX 1060 GPU with 64 GB RAM where
E matrices are prefetched in memory for search space of vir-
tual sources. This could be significantly optimized with prior
knowledge of the reflectors (topography) or parallelization on
a GPU cluster – a task for future work.

10 Experimental Results

10.1 Stability of Phase
Setup: An LP-WAN transmitter is moved across 25 locations
in our wide-area testbed and multiple traces are collected
from base stations spread across 4 months for static clients.

We remove the phase offsets and plot the mean and standard
deviation of the instability (standard deviation) in the phase
of the offset-free channel (Sec. 5) across pairs of base stations
for various SINRs.
Results: Fig. 9 shows the phase measurements of the offset-
free channel are stable across pairs of base stations with a
mean standard deviation of less than 5×10−3 even at SINRs
as low as -21 dB. This validates the stability in measurement
of the phase of offset-free channels at low SINRs.

10.2 Multipath in Urban Environments

We next study the multipath in the downtown of a large city
in the U.S. to validate the sparsity assumption in Sec. 6.1.
Setup: We have a base station transmit wide band chirps of
20 MHz moved over a path length of 5 km in a urban down-
town environment. Another base station is used to receive
these signals. We then collect data from over 600 different
GPS-tagged locations over 0.36 km2. We correlate with trans-
mitted chirp to estimate the number of taps in the signal. We
also keep a transmitter-receiver pair 600 m away in a NLOS
suburban environment to evaluate the change in sparsity of
multipath and the associated channels over time.3

Results: Fig. 10 shows that almost 77% of locations have
less than 3 dominant taps in the wireless channel affecting
the signal, showing the channel is predominantly sparse as
we assume. We also note that at least one of these dominant
taps change over time scales of a few minutes, even for static
clients. We surmise this is due to some smaller static reflectors
in the environment moving gradually over time in aggregate
leading to a small number of gradually moving taps. Fig. 11
shows how long the paths between the client and the base
station typically are stable. We define persistence of a path
as the time until which atleast 80% of the energy received
remains within the original path components. We see that with
90% likelihood the sparse multipath changes within 10 mins.
If we ignore the most dominant path, we see that secondary
reflectors change even faster.

3Our data and code are available at [1].
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Figure 11: Path Persistence:
Sparse multipath is unstable across
minutes

Figure 12: SINR Goodness-of-
Fit: CDF of predicted vs. actual
SINR across base stations

Figure 13: (Left) Gain in SINR(dB) by using Chime vs.
median frequency of operation; (Right) Battery life of
Chime vs. temporal interpolation technique

10.3 Chime’s Gains across Base Stations

We demonstrate the gains achieved by using Chime for iden-
tifying an optimal frequency of operation.

Setup: We collect 20 measurements of 100 packets each,
spread across 3 months from 5 locations across campus at
six base stations at a given frequency fi. Using these pack-
ets, we compute the offset-free channel for each of the base
station pairs. We then apply Chime’s algorithm to compute
an optimal frequency-of-operation. We compute the gain (in
dB) as the improvement of SINR at the computed operation
frequency vs. the median SINR across all possible frequen-
cies. Finally, we measure the improvement in the battery
life of LP-WAN transmitters due to lower transmission time
by using Chime as the percentage of maximum battery life
achievable by choosing the optimum frequency of operation.
The results are averaged over choice of initial frequency.

Sparsity: As we increase the number of base stations,
more and more complex multipath patterns emerge. This
is to be expected, given that more base stations are influ-
enced by a larger number of reflectors. This means that 2
multipath sources are not enough to correctly estimate the
complex multipath patterns and hence more multipath sources
are required to assess the optimum frequency of operation.

# Base Optimal
stations Sparsity

4 2 sources
5 3 sources
6 4 sources

This can usually be rectified by
adding more variables (estimating
more sources) which can result in
a better fit for the equations. The
table shows the median optimum
sparsity vs. # base stations:

SINR Prediction: Next, we measure how accurately
Chime predicts the accurate SINR of the optimal frequency
of operation, across the 915 MHz ISM band. Specifically, we
compute the CDF of the difference in SINR between the pre-
dicted and actual SINR at the optimal frequency of operation.
Fig. 12 plots the results across number of base stations with
only 2.7 dB of difference (median) with 6 base stations and 4
multipath(MP) sources considered. To put this in perspective,
the SINR at an arbitrary frequency would differ from the op-
timal by as much as 6.1 dB (median). Our results once again

validate Chime’s sparsity assumptions and our modeling ap-
proach. It shows that the gap between the association packet
and transmission (∼10-15 ms) is too short for environmental
dynamism to change the channels for static clients.

SINR Gain: Next we analyze the gain in SINR achieved by
Chime with increasing number of base stations. Our baseline
for the gain is the median frequency-of-operation which emu-
lates choosing an operation frequency at random. As shown
in Fig. 13, we achieve a gain of about 2.4 dB with 4 base
stations which increases as we increase the number of base
stations (with optimum sparsity). With 6 base stations, we
achieve a mean increase in the SINR of about 3.4 dB.

Battery Life Gain: Finally, we compare the battery life4

achieved by Chime with that of choosing frequency of oper-
ation based on temporal interpolation. As shown in Fig. 13,
we see a stark improvement of 107% in the battery life using
Chime which provides a mean of 79% of the optimum over
the baseline approaches. This result shows that Chime can
provide high gains for dense urban deployments.

These gains in signal power allow transmitters to send at
faster rates and reducing the transmission time of the LP-
WAN clients. We use methodology explained in Sec. 3 to
estimate the expected battery life of the client when streaming
sensed data at the optimal data rate to the base station. As
shown in Fig. 14, we see a 230% increase in the battery life
of the LP-WAN transmitters over the median frequency of
operation which is significant for rarely transmitting devices
whose lifetime increases from 2.5 years to 8.2 years.

10.4 Chime’s Gains across Frequency
We study the gain in SINR and improvement in data rate that
can be obtained by sampling more frequencies to further help
the base stations to find an optimal frequency using Sec. 6.2.

Setup: We collect phases from 6 receiver base stations at
frequencies ranging from 902-928 MHz with an interval of
500 kHz. The frequencies chosen in each case for training
are randomized to ensure correctness and the gains obtained
in each case are averaged across 5 client locations across

4Battery Life estimates derived from prior energy models (see Sec.3)
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Figure 14: Gain in battery life
across # messages per hour:
Battery life increases 1.4-5.7
years for LP-WAN clients

Figure 15: Gain in SINR and
improvement in datarate vs.
interpolation for # of frequen-
cies used for training

Figure 16: Chime +
Charm: Improvement in
Gain(dB) when Charm is
assisted by Chime

Figure 17: Nulling of
unwanted interference
leads to improved data
rate for legitimate client
with Chime

multiple weeks. We compute the improvement in data rates
achieved due to higher signal strength. As we are sampling
multiple frequencies, our baseline will be the spectral interpo-
lation using these frequencies (as described in Sec. 3).

Results: We observe a steady increase in gain with increas-
ing number of frequencies used for training which improves
battery-life. The improvement is significantly more than that
of the baseline. An important side-benefit of Chime is the
improvement in data rate which also progressively increases.
As the SINR of the received signal improves, it enables clients
to transmit at faster data rates. While LP-WAN clients are
infrequent and low-rate transmitters, this improves overall
spectrum utilization in congested large-scale deployments.

10.5 Chime with Coherent Combining
In this experiment, we measure Chime’s performance in im-
proving Charm’s [17] capability of coherent combining.

Setup: We perform the same experiment as Sec. 10.3. How-
ever, to compute the frequency-of-operation, we optimize for
the sum of the SINR at the base stations instead of an indi-
vidual base station. Then, we coherently combine the signals
at that frequency as shown in [17]. The base line is näive
Charm [17] which chooses a frequency randomly.

Results: Fig. 16 shows a median SINR increase of 4.5 dB
with six base stations which can significantly improve the
battery life of LP-WAN clients in urban environments. As ex-
pected, the improvement is much better than that by choosing
a random frequency of operation by about 2.5-3 dB.

10.6 Can Chime Null Interference?
This section predicts nulls, i.e. a bad frequency of transmis-
sion for an interfering client to a given base station to provide
improvement in signal strength of legitimate client.

Setup: We perform the same experiment as Sec. 10.3. We
measure the reduction in interference by using Chime to cor-

rectly estimate the frequency with the worst channel estimate.
We compute the reduction in Interference to Noise Ratio
(INR) for a legitimate client in another channel. We measure
the resulting gains in data-rate for the legitimate transmitter
due to reduction in interference by the interferer.

Results: Fig. 17 shows that we can achieve up to 2.8× gain
in the data rates of the legitimate transmitter by allocating
the interferer a null frequency. We further show that as we in-
crease the number of base stations, the accuracy of estimating
nulls increases which shows that we can get better and better
gains for the legitimate transmitter.

11 Conclusion and Future Work

This paper presents Chime, a system that allows an LP-WAN
client to choose its optimal frequency simply by sending a
single packet on one frequency band. Chime achieves this
by analyzing the paths signals traverse from the client to dis-
tributed and coordinated base stations. Chime was evaluated
in a campus-scale testbed, leading to a median battery life
increase of 1.4-5.7 years over commodity LP-WANs.

While Chime’s emphasis is on optimal frequency, we be-
lieve it provides the building blocks for a comprehensive
interference management and distributed MIMO system built
for LP-WANs. Designing such an end-to-end system to pro-
vide enormous battery savings to low-power clients, while
respecting their hardware limitations remains an important
problem for future work.
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Abstract
We propose Accel-Brake Control (ABC), a simple and deploy-
able explicit congestion control protocol for network paths
with time-varying wireless links. ABC routers mark each
packet with an “accelerate” or “brake”, which causes senders
to slightly increase or decrease their congestion windows.
Routers use this feedback to quickly guide senders towards
a desired target rate. ABC requires no changes to header
formats or user devices, but achieves better performance
than XCP. ABC is also incrementally deployable; it operates
correctly when the bottleneck is a non-ABC router, and can
coexist with non-ABC traffic sharing the same bottleneck
link. We evaluate ABC using a Wi-Fi implementation and
trace-driven emulation of cellular links. ABC achieves
30-40% higher throughput than Cubic+Codel for similar
delays, and 2.2× lower delays than BBR on a Wi-Fi path. On
cellular network paths, ABC achieves 50% higher throughput
than Cubic+Codel.

1 Introduction
This paper proposes a new explicit congestion control pro-
tocol for network paths with wireless links. Congestion
control on such paths is challenging because of the rapid
time variations of the link capacity. Explicit control proto-
cols like XCP [29] and RCP [43] can in theory provide
superior performance on such paths compared to end-to-
end [10,13,14,16,23,24,46,50] or active queue management
(AQM) [36,37] approaches (§2). Unlike these approaches, ex-
plicit control protocols enable the wireless router to directly
specify a target rate for the sender, signaling both rate de-
creases and rate increases based on the real-time link capacity.

However, current explicit control protocols have two limita-
tions, one conceptual and the other practical. First, existing ex-
plicit protocols were designed for fixed-capacity links; we find
that their control algorithms are sub-optimal on time-varying
wireless links. Second, they require major changes to packet
headers, routers, and endpoints to deploy on the Internet.

Our contribution is a simple and deployable protocol,
called Accel-Brake Control (ABC), that overcomes these
limitations, building on concepts from a prior position
paper [22]. In ABC (§3), a wireless router marks each packet
with one bit of feedback corresponding to either accelerate or
brake based on a measured estimate of the current link rate.
Upon receiving this feedback via an ACK from the receiver,
the sender increases its window by one on an accelerate
(sends two packets in response to the ACK), and decreases

∗Work done largely while a visiting student at MIT CSAIL.
†Work done largely while a PhD student at MIT CSAIL.

it by one on a brake (does not send any packet). This simple
mechanism allows the router to signal a large dynamic range
of window size changes within one RTT: from throttling the
window to 0, to doubling the window.

Central to ABC’s performance is a novel control algorithm
that helps routers provide very accurate feedback on
time-varying links. Existing explicit schemes like XCP
and RCP calculate their feedback by comparing the current
enqueue rate of packets to the link capacity. An ABC router,
however, compares the dequeue rate of packets from its
queue to the link capacity to mark accelerates or brakes. This
change is rooted in the observation that, for an ACK-clocked
protocol like ABC, the current dequeue rate of packets at the
router provides an accurate prediction of the future incoming
rate of packets, one RTT in advance. In particular, if the
senders maintain the same window sizes in the next RTT,
they will send one packet for each ACK, and the incoming
rate in one RTT will be equal to the current dequeue rate.
Therefore, rather than looking at the current enqueue rate,
the router should signal changes based on the anticipated
enqueue rate in one RTT to better match the link capacity.
The impact of this subtle change is particularly significant
on wireless links, since the enqueue and dequeue rates can
differ significantly when the link capacity varies.

ABC also overcomes the deployability challenges of
prior explicit schemes, since it can be implemented on top
of the existing explicit congestion notification (ECN) [41]
infrastructure. We present techniques that enable ABC to
co-exist with non-ABC routers, and to share bandwidth fairly
with legacy flows traversing a bottleneck ABC router (§4).

We have implemented ABC on a commodity Wi-Fi router
running OpenWrt [18]. Our implementation (§5.1) reveals an
important challenge for implementing explicit protocols on
wireless links: how to determine the link rate for a user at a
given time? The task is complicated by the intricacies of the
Wi-Fi MAC’s batch scheduling and block acknowledgements.
We develop a method to estimate the Wi-Fi link rate and
demonstrate its accuracy experimentally. For cellular links,
the 3GPP standard [1] shows how to estimate the link rate;
our evaluation uses emulation with cellular packet traces.

We have experimented with ABC in several wireless
network settings. Our results are:
1. In Wi-Fi, compared to Cubic+Codel, Vegas, and Copa,

ABC achieves 30-40% higher throughput with similar
delays. Cubic, PCC Vivace-latency and BBR incur
70%–6× higher 95th percentile packet delay with similar
throughput.

2. The results in emulation over 8 cellular traces are
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Scheme Norm. Utilization Norm. Delay (95%)

ABC 1 (78%) 1 (242ms)
XCP 0.97 2.04

Cubic+Codel 0.67 0.84
Copa 0.66 0.85
Cubic 1.18 4.78

PCC-Vivace 1.12 4.93
BBR 0.96 2.83

Sprout 0.55 1.08
Verus 0.72 2.01

summarized below. Despite relying on single-bit feedback,
ABC achieves 2× lower 95th percentile packet delay
compared to XCP.

3. ABC bottlenecks can coexist with both ABC and non-
ABC bottlenecks. ABC flows achieve high utilization and
low queuing delays if the bottleneck router is ABC, while
switching to Cubic when the bottleneck is a non-ABC
router.

4. ABC competes fairly with both ABC and non-ABC flows.
In scenarios with both ABC and non-ABC flows, the
difference in average throughput of ABC and non-ABC
flows is under 5%.

2 Motivation
Link rates in wireless networks can vary rapidly with time;
for example, within one second, a wireless link’s rate can
both double and halve [46].1 These variations make it difficult
for transport protocols to achieve both high throughput and
low delay. Here, we motivate the need for explicit congestion
control protocols that provide feedback to senders on both
rate increases and decreases based on direct knowledge of
the wireless link rate. We discuss why these protocols can
track wireless link rates more accurately than end-to-end
and AQM-based schemes. Finally, we discuss deployment
challenges for explicit control protocols, and our design goals
for a deployable explicit protocol for wireless links.

Limitations of end-to-end congestion control: Traditional
end-to-end congestion control schemes like Cubic [23] and
NewReno [24] rely on packet drops to infer congestion and ad-
just their rates. Such schemes tend to fill up the buffer, causing
large queuing delays, especially in cellular networks that use
deep buffers to avoid packet loss [46]. Fig. 1a shows perfor-
mance of Cubic on an LTE link, emulated using a LTE trace
with Mahimahi [35]. The network round-trip time is 100 ms
and the buffer size is set to 250 packets. Cubic causes signifi-
cant queuing delay, particularly when the link capacity drops.

Recent proposals such as BBR [14], PCC-Vivace [16] and
Copa [10] use RTT and send/receive rate measurements to es-
timate the available link rate more accurately. Although these
schemes are an improvement over loss-based schemes, their
performance is far from optimal on highly-variable links. Our
experiments show that they either cause excessive queuing or

1We define the link rate for a user as the rate that user can achieve if it
keeps the bottleneck router backlogged (see §5).

underutilize the link capacity (e.g., see Fig. 7). Sprout [46] and
Verus [50] are two other recent end-to-end protocols designed
specifically for cellular networks. They also have difficulty
tracking the link rate accurately; depending on parameter
settings, they can be too aggressive (causing large queues)
or too conservative (hurting utilization). For example, Fig. 1b
shows how Verus performs on the same LTE trace as above.

The fundamental challenge for any end-to-end scheme is
that to estimate the link capacity, it must utilize the link fully
and build up a queue. When the queue is empty, signals such
as the RTT and send/receive rate do not provide information
about the available capacity. Therefore, in such periods, all
end-to-end schemes must resort to some form of “blind” rate
increase. But for networks with a large dynamic range of
rates, it is very difficult to tune this rate increase correctly: if it
is slow, throughput suffers, but making it too fast causes over-
shoots and large queuing delays.2 For schemes that attempt to
limit queue buildup, periods in which queues go empty (and
a blind rate increase is necessary) are common; they occur,
for example, following a sharp increase in link capacity.
AQM schemes do not signal increases: AQM schemes like
RED [19], PIE [37] and CoDel [2] can be used to signal
congestion (via ECN or drops) before the buffer fills up at the
bottleneck link, reducing delays. However, AQM schemes
do not signal rate increases. When capacity increases, the
sender must again resort to a blind rate increase. Fig. 1c
shows how CoDel performs when the sender is using Cubic.
Cubic+CoDel reduces delays by 1 to 2 orders of magnitude
compared to Cubic alone but leaves the link underutilized
when capacity increases.

Thus, we conclude that, both end-to-end and AQM-based
schemes will find it difficult to track time-varying wireless
link rates accurately. Explicit control schemes, such as
XCP [29] and RCP [43] provide a compelling alternative. The
router provides multiple bits of feedback per packet to senders
based on direct knowledge of the wireless link capacity. By
telling senders precisely how to increase or decrease their
rates, explicit schemes can quickly adapt to time-varying
links, in principle, within an RTT of link capacity changes.
Deployment challenges for explicit congestion control:
Schemes like XCP and RCP require major changes to packet
headers, routers, and endpoints. Although the changes are
technically feasible, in practice, they create significant
deployment challenges. For instance, these protocols require
new packet fields to carry multi-bit feedback information. IP
or TCP options could in principle be used for these fields. But
many wide-area routers drop packets with IP options [20], and
using TCP options creates problems due to middleboxes [25]
and IPSec encryption [30]. Another important challenge
is co-existence with legacy routers and legacy transport

2BBR attempts to mitigate this problem by periodically increasing its rate
in short pulses, but our experiments show that BBR frequently overshoots
the link capacity with variable-bandwidth links, causing excessive queuing
(see Appendix A).
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(d) ABC
Figure 1: Performance on a emulated cellular trace — The dashed blue in the top graph represents link capacity, the solid orange line
represents the achieved throughput. Cubic has high utilization but has very high delays (up to 1500 milliseconds). Verus has large rate variations
and incurs high delays. Cubic+CoDel reduces queuing delays significantly, but leaves the link underutilized when capacity increases. ABC
achieves close to 100% utilization while maintaining low queuing delays (similar to that of Cubic+CoDel).

protocols. To be deployable, an explicit protocol must handle
scenarios where the bottleneck is at a legacy router, or when it
shares the link with standard end-to-end protocols like Cubic.

Design goals: In designing ABC, we targeted the following
properties:
1. Control algorithm for fast-varying wireless links: Prior ex-

plicit control algorithms like XCP and RCP were designed
for fixed-capacity links. We design ABC’s control algo-
rithm specifically to handle the rapid bandwidth variations
and packet transmission behavior of wireless links (e.g.,
frame batching at the MAC layer).

2. No modifications to packet headers: ABC repurposes the
existing ECN [41] bits to signal both increases and de-
creases to the sender’s congestion window. By spreading
feedback over a sequence of 1-bit signals per packet, ABC
routers precisely control sender congestion windows over
a large dynamic range.

3. Coexistence with legacy bottleneck routers: ABC is robust
to scenarios where the bottleneck link is not the wireless
link but a non-ABC link elsewhere on the path. Whenever
a non-ABC router becomes the bottleneck, ABC senders
ignore window increase feedback from the wireless link,
and ensure that they send no faster than their fair share of
the bottleneck link.

4. Coexistence with legacy transport protocols: ABC routers
ensure that ABC and non-ABC flows share a wireless bot-
tleneck link fairly. To this end, ABC routers separate ABC
and non-ABC flows into two queues, and use a simple
algorithm to schedule packets from these queues. ABC
makes no assumptions about the congestion control algo-
rithm of non-ABC flows, is robust to the presence of short
or application-limited flows, and requires a small amount
of state at the router.

Fig. 1d shows ABC on the same emulated LTE link. Using
only one bit of feedback per packet, the ABC flow is able
to track the variations in bottleneck link closely, achieving
both high throughput and low queuing delay.

3 Design
ABC is a window-based protocol: the sender limits the
number of packets in flight to the current congestion window.
Window-based protocols react faster to the sudden onset of

congestion than rate-based schemes [11]. On a wireless link,
when the capacity drops and the sender stops receiving ACKs,
ABC will stop sending packets immediately, avoiding further
queue buildup. In contrast, a rate-based protocol would take
time to reduce its rate and may queue up a large number of
packets at the bottleneck link in the meantime.

ABC senders adjust their window size based on explicit
feedback from ABC routers. An ABC router uses its current
estimate of the link rate and the queuing delay to compute
a target rate. The router then sets one bit of feedback in each
packet to guide the senders towards the target rate. Each bit
is echoed to a sender by a receiver in an ACK, and it signals
either a one-packet increase (“accelerate”) or a one-packet
decrease (“brake”) to the sender’s congestion window.

3.1 The ABC Protocol
We now present ABC’s design starting with the case where
all routers are ABC-capable and all flows use ABC. We later
discuss how to extend the design to handle non-ABC routers
and scenarios with competing non-ABC flows.

3.1.1 ABC Sender
On receiving an “accelerate” ACK, an ABC sender increases
its congestion window by 1 packet. This increase results
in two packets being sent, one in response to the ACK and
one due to the window increase. On receiving a “brake,” the
sender reduces its congestion window by 1 packet, preventing
the sender from transmitting a new packet in response to
the received ACK. As we discuss in §4.3, the sender also
performs an additive increase of 1 packet per RTT to achieve
fairness. For ease of exposition, let us ignore this additive
increase for now.

Though each bit of feedback translates to only a small
change in the congestion window, when aggregated over
an RTT, the feedback can express a large dynamic range of
window size adjustments. For example, suppose a sender’s
window size is w, and the router marks accelerates on a
fraction f of packets in that window. Over the next RTT,
the sender will receive w· f accelerates and w−w· f brakes.
Then, the sender’s window size one RTT later will be
w+w f−(w−w f )=2w f packets. Thus, in one RTT, an ABC
router can vary the sender’s window size between zero ( f =
0) and double its current value ( f =1). The set of achievable
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(b) Enqueue
Figure 2: Feedback — Calculating f (t) based on enqueue rate
increases 95th percentile queuing delay by 2×.

window changes for the next RTT depends on the number
of packets in the current window w; the larger w, the higher
the granularity of control.

In practice, ABC senders increase or decrease their conges-
tion window by the number of newly acknowledged bytes cov-
ered by each ACK. Byte-based congestion window modifica-
tion is a standard technique in many TCP implementations [8],
and it makes ABC robust to variable packet sizes and delayed,
lost, and partial ACKs. For simplicity, we describe the design
with packet-based window modifications in this paper.

3.1.2 ABC Router
Calculating the target rate: ABC routers compute the target
rate tr(t) using the following rule:

tr(t)=ηµ(t)− µ(t)
δ

(x(t)−dt)
+, (1)

where µ(t) is the link capacity, x(t) is the observed queuing
delay, dt is a pre-configured delay threshold, η is a constant
less than 1, δ is a positive constant (in units of time), and y+

is max(y,0). This rule has the following interpretation. When
queuing delay is low (x(t)<dt), ABC sets the target rate to
ηµ(t), for a value of η slightly less than 1 (e.g., η = 0.95).
By setting the target rate a little lower than the link capacity,
ABC aims to trade a small amount of bandwidth for large
reductions in delay, similar to prior work [7,27,32]. However,
queues can still develop due to rapidly changing link capacity
and the 1 RTT of delay it takes for senders to achieve the
target rate. ABC uses the second term in Equation (1) to
drain queues. Whenever x(t)>dt , this term reduces the target
rate by an amount that causes the queuing delay to decrease
to dt in at most δ seconds.

The threshold dt ensures that the target rate does not react
to small increases in queuing delay. This is important because
wireless links often schedule packets in batches. Queuing
delay caused by batch packet scheduling does not imply con-
gestion, even though it occurs persistently. To prevent target
rate reductions due to this delay, dt must be configured to be
greater than the average inter-scheduling time at the router.

ABC’s target rate calculation requires an estimate of the
underlying link capacity, µ(t). In §5, we discuss how to
estimate the link capacity in cellular and WiFi networks, and
we present an implementation for WiFi.

Packet marking: To achieve a target rate, tr(t), the router
computes the fraction of packets, f (t), that should be marked
as accelerate. Assume that the current dequeue rate — the

rate at which the router transmits packets — is cr(t). If the
accelerate fraction is f (t), for each packet that is ACKed, the
sender transmits 2 f (t) packets on average. Therefore, after
1 RTT, the enqueue rate — the rate at which packets arrive
to the router — will be 2cr(t) f (t). To achieve the target rate,
f (t) must be chosen such that 2cr(t) f (t) is equal to tr(t).
Thus, f (t) is given by:

f (t)=min
{1

2
· tr(t)
cr(t)

,1
}
. (2)

An important consequence of the above calculation is that
f (t) is computed based on the dequeue rate. Most explicit
protocols compare the enqueue rate to the link capacity to
determine the feedback (e.g., see XCP [29]).

ABC uses the dequeue rate instead to exploit the ACK-
clocking property of its window-based protocol. Specifically,
Equation (2) accounts for the fact that when the link capacity
changes (and hence the dequeue rate changes), the rate at the
senders changes automatically within 1 RTT because of ACK
clocking. Fig. 2 demonstrates that computing f (t) based on
the dequeue rate at the router enables ABC to track the link
capacity much more accurately than using the enqueue rate.

ABC recomputes f (t) on every dequeued packet, using
measurements of cr(t) and µ(t) over a sliding time window of
length T . Updating the feedback on every packet allows ABC
to react to link capacity changes more quickly than schemes
that use periodic feedback updates (e.g., XCP and RCP).

Packet marking can be done deterministically or probabilis-
tically. To limit burstiness, ABC uses the deterministic method
in Algorithm 1. The variable token implements a token
bucket that is incremented by f (t) on each outgoing packet
(up to a maximum value tokenLimit), and decremented
when a packet is marked accelerate. To mark a packet acceler-
ate, token must exceed 1. This simple method ensures that no
more than a fraction f (t) of the packets are marked accelerate.

token = 0;
for each outgoing packet do

calculate f (t) using Equation (2);
token = min(token + f (t), tokenLimit);
if packet marked with accelerate then

if token > 1 then
token = token− 1;
mark accelerate;

else
mark brake;

Algorithm 1: Packet marking at an ABC router.

Multiple bottlenecks: An ABC flow may encounter multiple
ABC routers on its path. An example of such a scenario
is when two smartphone users communicate over an
ABC-compliant cellular network. Traffic sent from one
user to the other will traverse a cellular uplink and cellular
downlink, both of which could be the bottleneck. To support
such situations, an ABC sender should send traffic at the
smallest of the router-computed target rates along their path.
To achieve this goal, each packet is initially marked accelerate
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by the sender. ABC routers may change a packet marked
accelerate to a brake, but not vice versa (see Algorithm 1).
This rule guarantees that an ABC router can unilaterally
reduce the fraction of packets marked accelerate to ensure
that its target rate is not exceeded, but it cannot increase this
fraction. Hence the fraction of packets marked accelerate will
equal the minimum f (t) along the path.

3.1.3 Fairness
Multiple ABC flows sharing the same bottleneck link
should be able to compete fairly with one another. However,
the basic window update rule described in §3.1.1 is a
multiplicative-increase/multiplicative-decrease (MIMD)
strategy,3 which does not provide fairness among contending
flows (see Fig. 3a for an illustration). To achieve fairness,
we add an additive-increase (AI) component to the basic
window update rule. Specifically, ABC senders adjust their
congestion window on each ACK as follows:

w←
{

w+1+1/w if accelerate
w−1+1/w if brake (3)

This rule increases the congestion window by 1 packet
each RTT, in addition to reacting to received accelerate and
brake ACKs. This additive increase, coupled with ABC’s
MIMD response, makes ABC a multiplicative-and-additive-
increase/multiplicative-decrease (MAIMD) scheme. Chiu and
Jain [15] proved that MAIMD schemes converge to fairness
(see also [5]). Fig. 3b shows how with an AI component,
competing ABC flows achieve fairness.

To give intuition, we provide a simple informal argument
for why including additive increase gives ABC fairness. Con-
sider N ABC flows sharing a link, and suppose that in steady
state, the router marks a fraction f of the packets accelerate,
and the window size of flow i is wi. To be in steady state,
each flow must send 1 packet on average for each ACK that it
receives. Now consider flow i. It will send 2 f +1/wi packets
on average for each ACK: 2 f for the two packets it sends
on an accelerate (with probability f ), and 1/wi for the extra
packet it sends every wi ACKs. Therefore, to be in steady
state, we must have: 2 f +1/wi=1 =⇒ wi=1/(1−2 f ). This
shows that the steady-state window size for all flows must be
the same, since they all observe the same fraction f of accel-
erates. Hence, with equal RTTs, the flows will have the same
throughput, and otherwise their throughput will be inversely
proportional to their RTT. Note that the RTT unfairness in
ABC is similar to that of schemes like Cubic, for which the
throughput of a flow is inversely proportional to its RTT. In
§7.5, we show experiments where flows have different RTTs.

3.1.4 Stability Analysis
ABC’s stability depends on the values of η and δ. η deter-
mines the target link utilization, while δ controls how long

3All the competing ABC senders will observe the same accelerate fraction,
f , on average. Therefore, each flow will update its congestion window, w, in
a multiplicative manner, to 2 f w, in the next RTT.
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Figure 3: Fairness among competing ABC flows — 5 flows with
the same RTT start and depart one-by-one on a 24 Mbit/s link. The
additive-increase (AI) component leads to fairness.

it will take for a queue to drain. In Appendix C, we prove the
following result for a fluid model of the ABC control loop.

Theorem 1. Consider a single ABC link, traversed by N ABC
flows. Let τ be the maximum round-trip propagation delay of
the flows. ABC is globally asymptotically stable if

δ>
2
3
·τ. (4)

Specifically, if µ(t)= µ for t > t0 (i.e., the link capacity stops
changing after some time t0), the enqueue/dequeue rate and
the queuing delay at the ABC router will converge to certain
values r∗ and x∗ that depend on the system parameters and
the number of flows. In all cases: ηµ<r∗≤µ.

This stability criterion is simple and intuitive. It states that
δ should not be much smaller than the RTT (i.e, the feedback
delay). If δ is very small, ABC reacts too forcefully to queue
build up, causing under-utilization and oscillations.4 Increas-
ing δ well beyond 2/3τ improves the stability margins of the
feedback loop, but hurts responsiveness. In our experiments,
we used δ=133 ms for a propagation RTT of 100 ms.

4 Coexistence
An ABC flow should be robust to presence of non-ABC
bottlenecks on its path and share resources fairly with
non-ABC flows sharing the ABC router.

4.1 Deployment with non-ABC Routers
An ABC flow can encounter both ABC and non-ABC routers
on its path. For example, a Wi-Fi user’s traffic may traverse
both a Wi-Fi router (running ABC) and an ISP router (not run-
ning ABC); either router could be the bottleneck at any given
time. ABC flows must therefore be able to detect and react
to traditional congestion signals—both drops and ECN—and
they must determine when to ignore accelerate feedback from
ABC routers because the bottleneck is at a non-ABC router.

We augment the ABC sender to maintain two congestion
windows, one for tracking the available rate on ABC
routers (wabc), and one for tracking the rate on non-ABC
bottlenecks (wnonabc). wabc obeys accelerates/brakes
using Equation (3), while wnonabc follows a rule such as

4Interestingly, if the sources do not perform additive increase or if the
additive increase is sufficiently “gentle,” ABC is stable for any value of δ. See
the proof in Appendix C for details.
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Figure 4: Coexistence with non-ABC bottlenecks — When the
wired link is the bottleneck, ABC becomes limited by wcubic and
behaves like a Cubic flow. When the wireless link is the bottleneck,
ABC uses wabc to achieve low delays and high utilization.

Cubic [23] and responds to drop and ECN signals.5 An
ABC sender must send packets to match the lower of the
two windows. Our implementation mimics Cubic for the
non-ABC method, but other methods could also be emulated.

With this approach, the window that is not the bottleneck
could become large. For example, when a non-ABC router
is the bottleneck, the ABC router will continually send
accelerate signals, causing wabc to grow. If the ABC router
later becomes the bottleneck, it will temporarily incur large
queues. To prevent this problem, ABC senders cap both wabc
and wnonabc to 2× the number of in-flight packets.

Fig. 4 shows the throughput and queuing delay for an ABC
flow traversing a path with an ABC-capable wireless link and
a wired link with a droptail queue. For illustration, we vary the
rate of the wireless link in a series of steps every 5 seconds.
Over the experiment, the bottleneck switches between the
wired and wireless links several times. ABC is able to adapt
its behavior quickly and accurately. Depending on which link
is the bottleneck, either wnonabc (i.e., wcubic) or wabc be-
comes smaller and controls the rate of the flow. When the
wireless link is the bottleneck, ABC maintains low queuing
delay, whereas the queuing delay exhibits standard Cubic be-
havior when the wired link is the bottleneck. wcubic does not
limit ABC’s ability to increase its rate when the wireless link
is the bottleneck. At these times (e.g., around the 70 s mark),
as soon on wabc increases, the number of in-flight packets and
the cap on wcubic increases, and wcubic rises immediately.

4.2 Multiplexing with ECN Bits
IP packets have two ECN-related bits: ECT and CE. These
two bits are traditionally interpreted as follows:

5We discuss how ABC senders distinguish between accelerate/brake and
ECN marks in §4.2.

ECT CE Interpretation
0 0 Non-ECN-Capable Transport
0 1 ECN-Capable Transport ECT(1)
1 0 ECN-Capable Transport ECT(0)
1 1 ECN set

Routers interpret both 01 and 10 to indicate that a flow is
ECN-capable, and routers change those bits to 11 to mark
a packet with ECN. Upon receiving an ECN mark (11), the
receiver sets the ECN Echo (ECE) flag to signal congestion to
the sender. ABC reinterprets the ECT and CE bits as follows:

ECT CE Interpretation
0 0 Non-ECN-Capable Transport
0 1 Accelerate
1 0 Brake
1 1 ECN set

ABC send all packets with accelerate (01) set, and ABC
routers signal brakes by flipping the bits to 10. Both 01 and
10 indicate an ECN-capable transport to ECN-capable legacy
routers, which will continue to use (11) to signal congestion.

With this design, receivers must be able to echo both
standard ECN signals and accelerates/brakes for ABC.
Traditional ECN feedback is signaled using the ECE flag.
For ABC feedback, we repurpose the NS (nonce sum) bit,
which was originally proposed to ensure ECN feedback
integrity [17] but has been reclassified as historic [31] due
to lack of deployment. Thus, it appears possible to deploy
ABC with only simple modifications to TCP receivers.
Deployment in proxied networks: Cellular networks com-
monly split TCP connections and deploy proxies at the
edge [42, 45]. Here, it is unlikely that any non-ABC router
will be the bottleneck and interfere with the accel-brake mark-
ings from the ABC router. In this case, deploying ABC may
not require any modifications to today’s TCP ECN receiver.
ABC senders (running on the proxy) can use either 10 or 01 to
signal an accelerate, and routers can use 11 to indicate a brake.
The TCP receiver can echo this feedback using the ECE flag.

4.3 Non-ABC flows at an ABC Router
ABC flows are potentially at a disadvantage when they
share an ABC bottleneck link with non-ABC flows.6 If the
non-ABC flows fill up queues and increase queuing delay, the
ABC router will reduce ABC’s target rate. To ensure fairness
in such scenarios, ABC routers isolate ABC and non-ABC
packets in separate queues.

We assume that ABC routers can determine whether
a packet belongs to an ABC flow. In some deployment
scenarios, this is relatively straightforward. For example, in
a cellular network deployment with TCP proxies at the edge
of the network [42, 45], the operator can deploy ABC at the
proxy, and configure the base station to assume that all traffic
from the proxy’s IP address uses ABC. Other deployment

6ABC and non-ABC flows may also share a non-ABC link, but in such
cases, ABC flows will behave like Cubic and compete fairly with other traffic.
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scenarios may require ABC senders to set a predefined value
in a packet field like the IPv6 flow label or the IPv4 IPID.

The ABC router assigns weights to the ABC and non-ABC
queues, respectively, and it schedules packets from the
queues in proportion to their weights. In addition, ABC’s
target rate calculation considers only ABC’s share of the link
capacity (which is governed by the weights). The challenge
is to set the weights to ensure that the average throughput
of long-running ABC and non-ABC flows is the same, no
matter how many flows there are.

Prior explicit control schemes address this problem using
the TCP loss-rate equation (XCP) or by estimating the
number of flows with Zombie Lists (RCP). Relying on the
TCP equation requires a sufficient loss rate and does not
handle flows like BBR. RCP’s approach does not handle short
flows. When one queue has a large number of short flows (and
hence a low average throughput), RCP increases the weight
of that queue. However, the short flows cannot send faster,
so the extra bandwidth is taken by long-running flows in the
same queue, which get more throughput than long-running
flows in the other queue (see §7.5 for experimental results).

To overcome these drawbacks, a ABC router measures the
average rate of the K largest flows in each queue using the
Space Saving Algorithm [34], which requires O(K) space. It
considers any remaining flow in either queue to be short, and
it calculates the total rate of the short flows in each queue by
subtracting the rate of the largest K flows from the queue’s
aggregate throughput. ABC uses these rate measurements to
estimate the rate demands of the flows. Using these demands,
ABC periodically computes the max-min fair rate allocation
for the flows, and it sets the weight of each of the two
queues to be equal to the total max-min rate allocation of its
component flows. This algorithm ensures that long-running
flows in the two queues achieve the same average rate, while
accounting for demand-limited short flows.

To estimate the demand of the flows, the ABC router
assumes that the demand for the top K flows in each queue
is X% higher than the current throughput of the flow, and
the aggregate demand for the short flows is the same as
their throughput. If a top-K flow is unable to increase its
sending rate by X%, its queue’s weight will be larger than
needed, but any unfairness in weight assignment is bounded
by X%. Small values of X limit unfairness but can slow down
convergence to fairness; our experiments use X =10%.

5 Estimating Link Rate
We describe how ABC routers can estimate the link capacity
for computing the target rate (§3.1.2). We present a technique
for Wi-Fi that leverages the inner workings of the Wi-Fi
MAC layer, and we discuss options for cellular networks.

5.1 Wi-Fi
We describe how an 802.11n access point (AP) can estimate
the average link rate. For simplicity, we first describe our

solution when there is a single user (client) connected to the
AP. Next, we describe the multi-user case.

We define link rate as the potential throughput of the user
(i.e., the MAC address of the Wi-Fi client) if it was backlogged
at the AP, i.e., if the user never ran out of packets at the AP.
In case the router queue goes empty at the AP, the achieved
throughput will be less than the link rate.

Challenges: A strawman would be to estimate the link rate
using the physical layer bit rate selected for each transmission,
which would depend on the modulation and channel code
used for the transmission. Unfortunately, this method will
overestimate the link rate as the packet transmission times
are governed not only by the bitrate, but also by delays for
additional tasks (e.g., channel contention and retransmis-
sions [12]). An alternative approach would be to use the
fraction of time that the router queue was backlogged as a
proxy for link utilization. However, the Wi-Fi MAC’s packet
batching confounds this approach. Wi-Fi routers transmit
packets (frames) in batches; a new batch is transmitted
only after receiving an ACK for the last batch. The AP may
accumulate packets while waiting for a link-layer ACK; this
queue buildup does not necessarily imply that the link is fully
utilized. Thus, accurately measuring the link rate requires a de-
tailed consideration of Wi-Fi’s packet transmission protocols.

Understanding batching: In 802.11n, data frames, also
known as MAC Protocol Data Units (MPDUs), are transmit-
ted in batches called A-MPDUs (Aggregated MPDUs). The
maximum number of frames that can be included in a single
batch, M, is negotiated by the receiver and the router. When
the user is not backlogged, the router might not have enough
data to send a full-sized batch of M frames, but will instead
use a smaller batch of size b<M. Upon receiving a batch, the
receiver responds with a single Block ACK. Thus, at a time
t, given a batch size of b frames, a frame size of S bits,7 and
an ACK inter-arrival time (i.e., the time between receptions
of consecutive block ACKs) of TIA(b,t), the current dequeue
rate, cr(t), may be estimated as

cr(t)=
b·S

TIA(b,t)
. (5)

When the user is backlogged and b=M, then cr(t) above
will be equal to the link capacity. However, if the user is not
backlogged and b < M, how can the AP estimate the link
capacity? Our approach calculates T̂IA(M,t), the estimated
ACK inter-arrival time if the user was backlogged and had
sent M frames in the last batch.

We estimate the link capacity, µ̂(t), as

µ̂(t)=
M ·S

T̂IA(M,t)
. (6)

To accurately estimate T̂IA(M,t), we turn to the relationship
between the batch size and ACK inter-arrival time. We can

7For simplicity, we assume that all frames are of the same size, though
our formulas can be generalized easily for varying frame sizes.
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Figure 5: Inter-ACK time v. batch (A-MPDU) size — Inter-ACK
times for a given batch size exhibits variation. The solid black line
represents the average Inter-ACK time. The slope of the line is S/R,
where S is the frame size in bits and R is the link rate in bits per second.

decompose the ACK interval time into the batch transmission
time and “overhead” time, the latter including physically
receiving an ACK, contending for the shared channel, and
transmitting the physical layer preamble [21]. Each of these
overhead components is independent of the batch size. We
denote the overhead time by h(t). If R is the bitrate used for
transmission, the router’s ACK inter-arrival time is

TIA(b,t) =
b·S
R

+h(t). (7)

Fig. 5 illustrates this relationship empirically. There are
two key properties to note. First, for a given batch size, the
ACK inter-arrival times vary due to overhead tasks. Second,
because the overhead time and batch size are independent,
connecting the average values of ACK inter-arrival times
across all considered batch sizes will produce a line with slope
S/R. Using this property along with Equation (7), we can
estimate the ACK inter-arrival time for a backlogged user as

T̂IA(M,t) =
M ·S

R
+h(t)

= TIA(b,t)+
(M−b)·S

R
· (8)

We can then use T̂IA(M, t) to estimate the link capacity
with Equation (6). This computation is performed for each
batch transmission when the batch ACK arrives, and passed
through a weighted moving average filter over a sliding
window of time T to estimate the smoothed time-varying
link rate. T must be greater than the inter-ACK time (up to
20 ms in Fig. 5); we use T = 40 ms. Because ABC cannot
exceed a rate-doubling per RTT, we cap the predicted link
rate to double the current rate (dashed slanted line in Fig. 5).

To evaluate the accuracy of our link rate estimates, we
transmit data to a single client through our modified ABC
router (§7.1) at multiple different rates over three Wi-Fi
links (with different modulation and coding schemes). Fig. 6
summarizes the accuracy of the ABC router’s link rate
estimates. With this method, the ABC Wi-Fi router is able
to predict link rates within 5% of the true link capacities.
Extension to multiple users. In multi-user scenarios, each
receiver will negotiate its own maximum batch size (M) with
the router, and different users can have different transmission

Figure 6: Wi-Fi Link Rate Prediction — ABC router link rate
predictions for a user that was not backlogged and sent traffic at
multiple different rates over three different Wi-Fi links. Horizontal
lines represent the true link capacity, solid lines summarize the ABC
router’s link capacity prediction (each point is an average over 30
seconds of predictions), and the dashed slanted line represents the
prediction rate caps. ABC’s link rate predictions are within 5% of
the ground truth across most sending rates (given the prediction cap).

rates. We now present two variants of our technique for (1)
when the router uses per-user queues to schedule packets of
different users, and (2) when the users share a single FIFO
(first-in first-out) queue at the router.
Per-user queues. In this case each user calculates a separate
link rate estimate. Recall that the link rate for a given user
is defined as the potential throughput of the user if it was
backlogged at the router. To determine the link rate for a
user x, we repeat the single-user method for the packets and
queue of user x alone, treating transmissions from other users
as overhead time. Specifically, user x uses Equations (8)
and (6) to compute its link rate (µ̂x(t)) based on its own values
of the bit rate (Rx) and maximum batch size (Mx). It also
computes its current dequeue rate (crx(t)) using Equation (5)
to calculate the accel-brake feedback. The inter-ACK time
(TIAx(b,t)), is defined as the time between the reception of
consecutive block-ACKs for user x. Thus, the overhead time
(hx(t)) includes the time when other users at the same AP
are scheduled to send packets. Fairness among different users
is ensured via scheduling users out of separate queues.
Single queue. In this case the router calculates a single
aggregate link rate estimate. The inter-ACK time here is the
time between two consecutive block-ACKs, regardless of the
user to which the block-ACKs belong to. The router tries to
match the aggregate rate of the senders to the aggregate link
rate, and uses the aggregate current dequeue rate to calculate
accel-brake feedback.

5.2 Cellular Networks
Cellular networks schedule users from separate queues to
ensure inter-user fairness. Each user will observe a different
link rate and queuing delay. As a result, every user requires a
separate target rate calculation at the ABC router. The 3GPP
cellular standard [1] describes how scheduling information at
the cellular base station can be used to calculate per-user link
rates. This method is able to estimate capacity even if a given
user is not backlogged at the base station, a key property for
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the target rate estimation in Equation (1).

6 Discussion
We discuss practical issues pertaining to ABC’s deployment.
Delayed Acks: To support delayed ACKs, ABC uses byte
counting at the sender; the sender increases/decreases its
window by the new bytes ACKed. At the receiver, ABC uses
the state machine from DCTCP [6] for generating ACKs
and echoing accel/brake marks. The receiver maintains the
state of the last packet (accel or brake). Whenever the state
changes, the receiver sends an ACK with the new state. If
the receiver is in the same state after receiving m packets
(the number of ACKs to coalesce), then it sends a delayed
ACK with the current state. Our TCP implementation and
the experiments in §7 use delayed ACKs with m=2.
Lost ACKs: ABC’s window adjustment is robust to ACK
losses. Consider a situation where the sender receives a
fraction p< 1 of the ACKs. If the accelerate fraction at the
router is f , the current window of the sender is wabc, then in
the next RTT, the change in congestion window of the sender
is f pwabc− (1− f )pwabc = (2 f −1)pwabc. As a result, lost
ACKs only slow down the changes in the congestion window,
but whether it increases or decreases doesn’t depend on p.
ABC routers don’t change prior ECN marks: ABC routers
don’t mark accel-brake on incoming packets that contain ECN
marks set by an upstream non-ABC router. Since packets with
ECN set can’t convey accel-brake marks, they can slow down
changes in wabc (similar to lost ACKs). In case the fraction of
packets with ECN set is small, then, the slow down in changes
to wabc will be small. If the fraction is large, then the non-ABC
router is the likely bottleneck, and the sender will not use wabc.
ECN routers clobbering ABC marks: An ECN router can
overwrite accel-brake marks. The ABC sender will still track
the non-ABC window, wnonabc, but such marks can slow
down adjustment to the ABC window, wabc.
ABC on fixed-rate links: ABC can also be deployed on
fixed-rate links. On such links, its performance is similar to
prior explicit schemes like XCP.

7 Evaluation
We evaluate ABC by considering the following properties:
1. Performance: We measure ABC’s ability to achieve

low delay and high throughput and compare ABC to
end-to-end schemes, AQM schemes, and explicit control
schemes (§7.3).

2. Multiple Bottlenecks: We test ABC in scenarios with
multiple ABC bottlenecks and mixtures of ABC and
non-ABC bottlenecks (§7.4).

3. Fairness: We evaluate ABC’s fairness while competing
against other ABC and non-ABC flows (§7.5).

4. Additional Considerations: We evaluate how ABC
performs with application-limited flows and different
network delays. We also demonstrate ABC’s impact on
a real application’s performance (§7.6).

7.1 Prototype ABC Implementation

ABC transport: We implemented ABC endpoints in Linux
as kernel modules using the pluggable TCP API.

ABC router: We implemented ABC as a Linux queuing dis-
cipline (qdisc) kernel module using OpenWrt, an open source
operating system for embedded networked devices [18]. We
used a NETGEAR WNDR 3800 router configured to 802.11n.
We note that our implementation is portable as OpenWrt is
supported on many other commodity Wi-Fi routers.

ABC’s WiFi link rate estimation exploits the inner
workings of the MAC 802.11n protocol, and thus requires
fine-grained values at this layer. In particular, the ABC qdisc
must know A-MPDU sizes, Block ACK receive times, and
packet transmission bitrates. These values are not natively ex-
posed to Linux router qdiscs, and instead are only available at
the network driver. To bridge this gap, we modified the router
to log the relevant MAC layer data in the cross-layer socket
buffer data structure (skb) that it already maintains per packet.

7.2 Experimental Setup
We evaluated ABC in both Wi-Fi and cellular network settings.
For Wi-Fi, experiments we used a live Wi-Fi network and the
ABC router described in §7.1. For cellular settings, we use
Mahimahi [35] to emulate multiple cellular networks (Veri-
zon LTE, AT&T, and TMobile). Mahimahi’s emulation uses
packet delivery traces (separate for uplink and downlink) that
were captured directly on those networks, and thus include
outages (highlighting ABC’s ability to handle ACK losses).

We compare ABC to end-to-end protocols designed for
cellular networks (Sprout [46] and Verus [50]), loss-based
end-to-end protocols both with and without AQM (Cubic [23],
Cubic+Codel [36], and Cubic+PIE [37]), recently-proposed
end-to-end protocols (BBR [14], Copa [10], PCC Vivace-
Latency (referred as PCC)) [16]), and TCP Vegas [13]), and
explicit control protocols (XCP [29], RCP [43] and VCP [47]).
We used TCP kernel modules for ABC, BBR, Cubic, PCC, and
Vegas; for these schemes, we generated traffic using iperf [44].
For the end-to-end schemes that are not implemented as TCP
kernel modules (i.e., Copa, Sprout, Verus), we used the UDP
implementations provided by the authors. Lastly, for the
explicit control protocols (i.e., XCP, RCP, and VCP), we used
our own implementations as qdiscs with Mahimahi to ensure
compatibility with our emulation setup. We used Mahimahi’s
support of Codel and Pie to evaluate AQM.

Our emulated cellular network experiments used a mini-
mum RTT of 100 ms and a buffer size of 250 MTU-sized pack-
ets. Additionally, ABC’s target rate calculation (Equation (1))
used η = 0.98 and δ = 133 ms. Our Wi-Fi implementation
uses the link rate estimator from §5, while our emulated cel-
lular network setup assumes the realistic scenario that ABC’s
router has knowledge of the underlying link capacity [1].
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Figure 7: ABC vs. previous schemes on three Verizon cellular network traces — In each case, ABC outperforms all other schemes and
sits well outside the Pareto frontier of previous schemes (denoted by the dashed lines).

7.3 Performance
Cellular: Fig. 7a and 7b show the utilization and 95th per-
centile per packet delay that a single backlogged flow achieves
using each aforementioned scheme on two Verizon LTE cel-
lular link traces. ABC exhibits a better (i.e., higher) through-
put/delay tradeoff than all prior schemes. In particular, ABC
sits well outside the Pareto frontier of the existing schemes,
which represents the prior schemes that achieve higher
throughput or lower delay than any other prior schemes.

Further analysis of Fig. 7a and 7b reveals that Cubic+Codel,
Cubic+PIE, Copa, and Sprout are all able to achieve low
delays that are comparable to ABC. However, these schemes
heavily underutilize the link. The reason is that, though
these schemes are able to infer and react to queue buildups
in a way that reduces delays, they lack a way of quickly
inferring increases in link capacity (a common occurrence
on time-varying wireless links), leading to underutilization.
In contrast, schemes like BBR, Cubic, and PCC are able to
rapidly saturate the network (achieving high utilization), but
these schemes also quickly fill buffers and thus suffer from
high queuing delays. Unlike these prior schemes, ABC is able
to quickly react to both increases and decreases in available
link capacity, enabling high throughput and low delays.

We observed similar trends across a larger set of 8 different
cellular network traces (Fig. 8). ABC achieves 50% higher
throughput than Cubic+Codel and Copa, while only incurring
17% higher 95th percentile packet delays. PCC and Cubic
achieve slightly higher link utilization values than ABC
(12%, and 18%, respectively), but incur significantly higher
per-packet delays than ABC (394%, and 382%, respectively).
Finally, compared to BBR, Verus, and Sprout, ABC achieves
higher link utilization (4%, 39%, and 79%, respectively).
BBR and Verus incur higher delays (183% and 100%,
respectively) than ABC. Appendix E shows mean packet
delay over the same conditions, and shows the same trends.

Comparison with Explicit Protocols: Fig. 7 and 8 also show
that ABC outperforms the explicit control protocol, XCP, de-
spite not using multi-bit per-packet feedback as XCP does. For
XCP we used α=0.55 and β=0.4, the highest permissible
stable values that achieve the fastest possible link rate conver-
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(b) 95th percentile per-packet delay

Figure 8: 95th percentile per-packet delay across 8 cellular link
traces — On average, ABC achieves similar delays and 50% higher
utilization than Copa and Cubic+Codel. PCC and Cubic achieve
slightly higher throughput than ABC, but incur 380% higher 95th

percentile delay than ABC.

gence. XCP achieves similar average throughput to ABC, but
with 105% higher 95th percentile delays. This performance
discrepancy can be attributed to the fact that ABC’s control
rule is better suited for the link rate variations in wireless net-
works. In particular, unlike ABC which updates its feedback
on every packet, XCP computes aggregate feedback values (φ)
only once per RTT and may thus take an entire RTT to inform
a sender to reduce its window. To overcome this, we also con-
sidered an improved version of XCP that recomputes aggre-
gate feedback on each packet based on the rate and delay mea-
surements from the past RTT; we refer to this version as XCPw
(short for XCP wireless). As shown in Fig. 7 and Fig. 8, XCPw
reduces delay compared to XCP, but still incurs 40% higher
95th percentile delays (averaged across traces) than ABC.
We also compared with two other explicit schemes, RCP and
VCP, and found that ABC consistently outperformed both,
achieving 20% more utilization on average. (Appendix F).
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Figure 9: Throughout and mean delay on Wi-Fi — For the
multi-user scenario, we report the sum of achieved throughputs and
the average of observed 95th percentile delay across both users. We
consider three versions of ABC (denoted ABC _*) for different delay
thresholds. All versions of ABC outperform all prior schemes and
sit outside the pareto frontier.

Wi-Fi: We performed similar evaluations on a live Wi-Fi
link, considering both single and multi-user scenarios. We
connect senders to a WiFi router via Ethernet. Each sender
transmits data through the WiFi router to one receiver. All
receivers’ packets share the same FIFO queue at the router.
In this experiment, we excluded Verus and Sprout as they are
designed specifically for cellular networks. To mimic com-
mon Wi-Fi usage scenarios where endpoints can move and
create variations in signal-to-noise ratios (and thus bitrates),
we varied the Wi-Fi router’s bitrate selections by varying
the MCS index using the Linux iw utility; we alternated the
MCS index between values of 1 and 7 every 2 seconds. In
Appendix 16, we also list results for an experiment where we
model MCS index variations as Brownian motion—results
show the same trends as described below. This experiment
was performed in a crowded computer lab with contention
from other Wi-Fi networks. We report average performance
values across three, 45 second runs. We considered three
different ABC delay threshold (dt) values of 20 ms, 60 ms,
and 100 ms; note that increasing ABC’s delay threshold will
increase both observed throughput and RTT values.

Fig. 9 shows the throughput and 95th percentile per-packet
delay for each protocol. For the multi-user scenario, we
report the sum of achieved throughputs and the average
95th percentile delay across all users. In both the single and
multi-user scenarios, ABC achieves a better throughput/delay
tradeoff than all prior schemes, and falls well outside
the Pareto frontier for those schemes. In the single user
scenario, the ABC configuration with dt =100 ms achieves

0

5

10

Th
ro

ug
hp

ut
(M

bp
s)

ABC
Cross tfk

Ideal
Wireless

Wired

0 10 20 30 40 50 60 70 80
Time (s)

50
100
150

Qu
eu

in
g

De
la

y 
(m

s)

Figure 10: Coexistence with non-ABC bottlenecks — ABC
tracks the ideal rate closely (fair share) and reduces queuing delays
in the absence of cross traffic (white region).

up to 29% higher throughput than Cubic+Codel, Copa
and Vegas. Though PCC-Vivace, Cubic and BBR achieve
slightly higher throughput (4%) than this ABC configuration,
their delay values are considerably higher (67%-6×). The
multi-user scenario showed similar results. For instance,
ABC achieves 38%, 41% and 31% higher average throughput
than Cubic+Codel, Copa and Vegas, respectively.

7.4 Coexistence with Various Bottlenecks
Coexistence with ABC bottlenecks: Fig. 7c compares ABC
and prior protocols on a network path with two cellular
links. In this scenario, ABC tracks the bottleneck link rate
and achieves a better throughput/delay tradeoff than prior
schemes, and again sits well outside the Pareto frontier.

Coexistence with non-ABC bottlenecks: Fig. 10 illustrates
throughput and queuing delay values for an ABC flow travers-
ing a network path with both an emulated wireless link and
an emulated 12 Mbits/s fixed rate (wired) link. The wireless
link runs ABC, while the wired link operates a droptail buffer.
ABC shares the wired link with on-off cubic cross traffic. In
the absence of cross traffic (white region), the wireless link is
always the bottleneck. However, with cross traffic (yellow and
grey regions), due to contention, the wired link can become
the bottleneck. In this case, ABC’s fair share on the wired link
is half of the link’s capacity (i.e., 6 Mbit/s). If the wireless
link rate is lower than the fair share on the wired link (yellow
region), the wireless link remains the bottleneck; otherwise,
the wired link becomes the bottleneck (grey region).

The black dashed line in the top graph represents the ideal
fair throughput for the ABC flow throughout the experiment.
As shown, in all regions, ABC is able to track the ideal rate
closely, even as the bottleneck shifts. In the absence of cross
traffic, ABC achieves low delays while maintaining high link
utilization. With cross traffic, ABC appropriately tracks the
wireless link rate (yellow region) or achieves its fair share of
the wired link (grey region) like Cubic. In the former cross
traffic scenario, increased queuing delays are due to conges-
tion caused by the Cubic flow on the wired link. Further, devi-
ations from the ideal rate in the latter cross traffic scenario can
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Figure 11: Coexistence among ABC flows — ABC achieves
similar aggregate utilization and delay irrespective of the number
of connections. ABC outperforms all previous schemes.

be attributed to the fact that the ABC flow is running as Cubic,
which in itself takes time to converge to the fair share [23].

7.5 Fairness among ABC and non-ABC flows
Coexistence among ABC flows: We simultaneously run
multiple ABC flows on a fixed 24 Mbits/s link. We varied
the number of competing flows from 2 to 32 (each run was
60 s). In each case, the Jain Fairness Index [28] was within
5% from the ideal fairness value of 1, highlighting ABC’s
ability to ensure fairness.

Fig. 11 shows the aggregate utilization and delay for con-
current flows (all flows running the same scheme) competing
on a Verizon cellular link. We varied the number of com-
peting flows from 1 to 16. ABC achieves similar aggregate
utilization and delay across all scenarios, and, outperforms
all other schemes. For all the schemes, the utilization and
delay increase when the number of flows increases. For ABC,
this increase can be attributed to the additional packets that
result from additive increase (1 packet per RTT per flow).
For other schemes, this increase is because multiple flows
in aggregate ramp-up their rates faster than a single flow.
RTT Unfairness: We simultaneously ran 2 ABC flows on a
24 Mbits wired bottleneck. We varied the RTT of flow 1 from
20ms to 120ms. RTT of flow 2 was fixed to 20ms. Fig. 12
shows the ratio of the average throughput of these 2 flows
(average throughput of flow 2 / flow 1, across 5 runs) against
the ratio of their RTTs (RTT of flow 1 / flow 2). Increasing
the RTT ratio increases the throughput ratio almost linearly
and the throughput is inversely proportional to the RTT. Thus,
the unfairness is similar to existing protocols like Cubic.

Next, we simultaneously ran 6 ABC flows. The RTT of
the flows vary from 20ms to 120ms. Table 1 shows the RTT
and the average throughput across 5 runs. Flows with higher
RTTs have lower throughput. However, note that the flow
with the highest RTT (120ms) still achieves ∼35 % of the
throughput as flow with the lowest RTT (20ms).
Coexistence with non-ABC flows: We consider a scenario
where 3 ABC and 3 non-ABC (in this case, Cubic) long-lived
flows share the same 96 Mbits/s bottleneck link. In addition,
we create varying numbers of non-ABC short flows (each
of size 10 KB) with Poisson flow arrival times to offer a fixed
average load. We vary the offered load values, and report

0 2 4 6
RTT Ratio

0
1
2
3
4
5
6

Th
ro

ug
hp

ut
 R

at
io

Figure 12: RTT unfairness

RTT (ms) Tput (Mbps)

20 6.62
40 4.94
60 4.27
80 3.0

100 2.75
120 2.40

Table 1: RTT unfairness
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Figure 13: Coexistence with non-ABC flows — Across all
scenarios, the standard deviation for ABC flows is small and the
flows are fair to each other. Compared to RCP’s Zombie List strategy,
ABC’s max-min allocation provides better fairness between ABC
and non-ABC flows. With ABC’s strategy, the difference in average
throughput of ABC and Cubic flows is under 5%.

results across 10 runs (40 seconds each). We compare ABC’s
strategy to coexist with non-ABC flows to RPC’s Zombie
list approach (§4.3).

Fig. 13 shows the mean and standard deviation of
throughput for long-lived ABC and Cubic flows. As shown in
Fig. 13a, ABC’s coexistence strategy allows ABC and Cubic
flows to fairly share the bottleneck link across all offered
load values. Specifically, the difference in average throughput
between the ABC and Cubic flows is under 5%. In contrast,
Fig. 13b shows that RCP’s coexistence strategy gives higher
priority to Cubic flows. This discrepancy increases as the
offered load increases, with Cubic flows achieving 17-165%
higher throughput than ABC flows. The reason, as discussed
in §4.3, is that long-lived Cubic flows receive higher through-
put than the average throughput that RCP estimates for Cubic
flows. This leads to unfairness because RCP attempts to
match average throughput for each scheme.Fig. 13 also shows
that the standard deviation of ABC flows is small (under
10%) across all scenarios. This implies that in each run of the
experiment, the throughput for each of the three concurrent
ABC flows is close to each other, implying fairness across
ABC flows. Importantly, the standard deviation values for
ABC are smaller than those for Cubic. Thus, ABC flows
converge to fairness faster than Cubic flows do.

7.6 Additional Results
ABC’s sensitivity to network latency: Thus far, our emula-
tion experiments have considered fixed minimum RTT values
of 100 ms. To evaluate the impact that propagation delay on
ABC’s performance, we repeated the experiment from Fig. 8
on the RTT values of 20 ms, 50 ms, 100 ms, and 200 ms.
Across all RTTs, ABC outperforms all prior schemes, again
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achieving a more desirable throughput/latency trade off (see
Appendix G).
Application-limited flows: We created a single long-lived
ABC flow that shared a cellular link with 200 application-
limited ABC flows that send traffic at an aggregate of 1
Mbit/s. Despite the fact that the application-limited flows do
not have traffic to properly respond to ABC’s feedback, the
ABC flows (in aggregate) still achieve low queuing delays
and high link utilization. See Appendix G for details.
Perfect future capacity knowledge: We considered a variant
of ABC, PK-ABC, which knows an entire emulated link trace
in advance. This experiment reflects the possibility of resource
allocation predictions at cellular base stations. Rather than us-
ing an estimate of the current link rate to compute a target rate
(as ABC does), PK-ABC uses the expected link rate 1 RTT
in the future. On the same setup as Fig. 7b, PK-ABC reduces
95th percentile per-packet-delays from 97 ms to 28 ms, com-
pared to ABC, while achieving similar utilization (∼90%).
ABC’s improvement on real applications: We evaluated
ABC’s improvement for real user-facing applications on
a multiplayer interactive game, Slither.io [3]. We loaded
Slither.io using a Google Chrome browser which ran inside
an emulated cellular link with a background backlogged flow.
We considered three schemes for the backlogged flow: Cubic,
Cubic+Codel, and ABC. Cubic fully utilizes the link, but adds
excessive queuing delays hindering gameplay. Cubic+Codel
reduces queuing delays (improving user experience in the
game), but underutilizes the link. Only ABC is able to achieve
both high link utilization for the backlogged flow and low
queuing delays for the game. A video demo of this experiment
can be viewed at https://youtu.be/Dauq-tfJmyU.
Impact of η: This parameter presents a trade-off between
throughput and delay. Increasing η increases the throughput
but at the cost of additional delay (see Appendix B).

8 Related Work
Several prior works have proposed using LTE infrastructure to
infer the underlying link capacity [26, 33, 48]. CQIC [33] and
piStream [48] use physical layer information at the receiver
to estimate link capacity. However, these approaches have sev-
eral limitations that lead to inaccurate estimates. CQIC’s esti-
mation approach considers historical resource usage (not the
available physical resources) [48], while piStream’s technique
relies on second-level video segment downloads and thus does
not account for the short timescale variations in link rate re-
quired for per-packet congestion control. These inaccuracies
stem from the opacity of the base station’s resource alloca-
tion process at the receiver. ABC circumvents these issues by
accurately estimating link capacity directly at the base station.

In VCP [47], router classifies congestion as low, medium,
or high, and signals the sender to either perform a mul-
tiplicative increase, additive increase, or multiplicative
decrease in response. Unlike an ABC sender, which reacts
to ACKs individually, VCP senders act once per RTT.

This coarse-grained update limits VCP’s effectiveness on
time-varying wireless paths. For instance, it can take 12
RTTs to double the window. VCP is also incompatible with
ECN, making it difficult to deploy.

In BMCC [39, 40], a router uses ADPM [9] to send link
load information to the receiver on ECN bits, relying on
TCP options to relay the feedback from the receiver to the
sender. MTG proposed modifying cellular base stations
to communicate the link rate explicitly using a new TCP
option [26]. Both approaches do not work with IPSec
encryption [30], and such packet modifications trigger the
risk of packets being dropped silently by middleboxes [25].
Moreover, unlike ABC, MTG does not ensure fairness among
multiple flows for a user, while BMCC has the same problem
with non-BMCC flows [38, 39].

XCP-b [4] is a variant of XCP designed for wireless links
with unknown capacity. XCP-b routers use the queue size to
determine the feedback. When the queue is backlogged, the
XCP-b router calculates spare capacity using the change in
queue size and uses the same control rule as XCP. When the
queue goes to zero, XCP-b cannot estimate spare capacity, and
resorts to a blind fixed additive increase. Such blind increase
can cause both under-utilization and increased delays (§2.)

Although several prior schemes (XCP, RCP, VCP, BMCC,
XCP-b) attempt to match the current enqueue rate to the
capacity, none match the future enqueue rate to the capacity,
and so do not perform as well as ABC on time-varying links.

9 Conclusion
This paper presented a simple new explicit congestion control
protocol for time-varying wireless links called ABC. ABC
routers use a single bit to mark each packet with “accelerate”
or “brake”, which causes senders to slightly increase or
decrease their congestion windows. Routers use this succinct
feedback to quickly guide senders towards a desired target
rate. ABC outperforms the best existing explicit flow control
scheme, XCP, but unlike XCP, ABC does not require mod-
ifications to packet formats or user devices, making it simpler
to deploy. ABC is also incrementally deployable: ABC can
operate correctly with multiple ABC and non-ABC bottle-
necks, and can fairly coexist with ABC and non-ABC traffic
sharing the same bottleneck link. We evaluated ABC using
a WiFi router implementation and trace-driven emulation
of cellular links. ABC achieves 30-40% higher throughput
than Cubic+Codel for similar delays, and 2.2× lower delays
than BBR on a Wi-Fi path. On cellular network paths, ABC
achieves 50% higher throughput than Cubic+Codel.
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(b) ABC
Figure 14: Comparison with BBR — BBR overshoots the link
capacity, causing excessive queuing. Same setup as Fig. 1.
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Figure 15: Impact of η — Performance of ABC with various values
of η (target utilization). η presents a trade-off between throughput
and delay. Same setup as Fig. 1.

A BBR overestimates the sending rate
Fig. 14 shows the throughput and queuing delay of BBR on a
Verizon cellular trace. BBR periodically increases its rate in
short pulses, and frequently overshoots the link capacity with
variable-bandwidth links, causing excessive queuing.

B Impact of η

Fig. 15 shows the performance of ABC with various values
of η on a Verizon cellular trace. Increasing η increases the
link utilization, but, also increases the delay. Thus, η presents
a trade-off between throughput and delay.

C Stability Analysis
This section establishes the stability bounds for ABC’s
control algorithm (Theorem 1).
Model: Consider a single ABC link, traversed by N ABC
flows. Let µ(t) be the link capacity at time t. As µ(t) can be
time-varying, we define stability as follows. Suppose that
at some time t0, µ(t) stops changing, i.e., for t > t0 µ(t)= µ
for some constant µ. We aim to derive conditions on ABC’s
parameters which guarantee that the aggregate rate of the
senders and the queue size at the routers will converge to
certain fixed-point values (to be determined) as t→∞.

Let τ be the common round-trip propagation delay on the
path for all users. For additive increase (§4.3), assume that
each sender increases its congestion window by 1 every l
seconds. Let f (t) be the fraction of packets marked accelerate,
and, cr(t) be the dequeue rate at the ABC router at time t. Let
τr be time it takes accel-brake marks leaving the ABC router
to reach the sender. Assuming that there are no queues other
than at the ABC router, τr will be the sum of the propagation
delay between ABC router and the receiver and the propa-
gation delay between receiver and the senders. The aggregate
incoming rate of ACKs across all the senders at time t, R(t),

will be equal to the dequeue rate at the router at time t−τr:

R(t) = cr(t−τr). (9)

In response to an accelerate, a sender will send 2 packets,
and, for a brake, a sender won’t send anything. In addition
to responding to accel-brakes, each sender will also send an
additional packet every l seconds (because of AI). Therefore,
the aggregate sending rate for all senders at time t, S(t), will be

S(t) = R(t)·2· f (t−τr)+
N
l

= 2cr(t−τr) f (t−τr)+
N
l
. (10)

Substituting f (t−τr) from Equation (2), we get

S(t) = tr(t−τr)+
N
l
. (11)

Let τ f be the propagation delay between a sender and the
ABC router, and eq(t) be the enqueue rate at the router at
time t. Then eq(t) is given by

eq(t) = S(t−τ f )

= tr(t−(τr+τ f ))+
N
l

= tr(t−τ)+
N
l
. (12)

Here, τ=τr+τ f is the round-trip propagation delay.
Let q(t) be the queue size, and, x(t) be the queuing delay

at time t:

x(t) =
q(t)

µ
.

Ignoring the boundary conditions for simplicity (q(t) must
be ≥ 0), the queue length has the following dynamics:

q̇(t) = eq(t)−µ

= tr(t−τ)+
N
l
−µ

=

(
(η−1)·µ+N

l

)
− µ

δ
(x(t−τ)−dt)

+,

where in the last step we have used Equation (1). Therefore
the dynamics of x(t) can be described by:

ẋ(t) =
(
(η−1)+

N
µ·l

)
− 1

δ
(x(t−τ)−dt)

+

= A− 1
δ
(x(t−τ)−dt)

+, (13)

where A =
(
(η−1)+ N

µ·l

)
, and, A is a constant given a

fixed number of flows N. The delay-differential equation in
Equation (13) captures the behavior of the entire system. We
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use it to analyze the behavior of the queuing delay, x(t), which
in turn informs the dynamics of the target rate, tr(t), and
enqueue rate, eq(t), using Equations (1) and (12) respectively.
Stability: For stability, we consider two possible scenarios
1) A<0, and 2) A≥0. We argue the stability in each case.
Case 1: A< 0. In this case, the stability analysis is straight-
forward. The fixed point for queuing delay, x∗, is 0. From
Equation (13), we get

ẋ(t) = A− 1
δ
(x(t−τ)−dt)

+ ≤ A <0. (14)

The above equation implies that the queue delay will decrease
at least as fast as A. Thus, the queue will go empty in a
bounded amount of time. Once the queue is empty, it will
remain empty forever, and the enqueue rate will converge to
a fixed value. Using Equation (12), the enqueue rate can will
converge to

eq(t) = tr(t−τ)+
N
l

= ηµ+
N
l
− µ

δ
(x(t−τ)−dt)

+

= ηµ+
N
l

= (1+A)µ. (15)

Note that ηµ<(1+A)µ<µ. Since both the enqueue rate and
the queuing delay converge to fixed values, the system is
stable for any value of δ.

Case 2: A>0: The fixed point for the queuing delay in this
case is x∗ = A ·δ+dt . Let

∼
x(t) = x(t)− x∗ be the deviation

of the queuing delay from its fixed point. Substituting in
Equation (13), we get

∼̇
x(t) = A− 1

δ
(
∼
x(t−τ)+A·δ)+

=−max(−A,
1
δ

∼
x(t−τ))

=−g(
∼
x(t−τ)), (16)

where g(u)=max(−A, 1
δ
u) and A>0.

In [49] (Corollary 3.1), Yorke established that delay-
differential equations of this type are globally asymptotically
stable (i.e.,

∼
x(t) → 0 as t → ∞ irrespective of the initial

condition), if the following conditions are met:

1. H1: g is continuous.

2. H2: There exists some α, s.t. α ·u2 > ug(u)> 0 for all
u 6=0.

3. H3: α·τ< 3
2 .

The function g(·) trivially satisfies H1. H2 holds for any
α∈( 1

δ
,∞). Therefore, there exists an α∈( 1

δ
,∞) that satisfies
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Figure 16: Throughput and 95th percentile delay for a single
user in WiFi — We model changes in MCS index as bownian motion,
with values changing every 2 seconds. We limit the MCS index
values to be between 3 and 7. ABC outperforms all other schemes.

both H2 and H3 if

1
δ
·τ< 3

2
=⇒ δ>

2
3
·τ. (17)

This proves that ABC’s control rule is asymptotically stable if
Equation (17) holds. Having established that x(t) converges
to x∗ = A ·δ+dt , we can again use Equation (12) to derive
the fixed point for the enqueue rate:

eq(t)=ηµ+
N
l
− µ

δ
(x(t−τ)−dt)

+→µ, (18)

as t→∞.
Note while, we proved stability assuming that the feedback

delay τ is a constant and the same value for all the senders, the
proof works even if the senders have different time-varying
feedback delays (see Corollary 3.2 in [49]). The modified
stability criterion in this case is δ > 2

3 · τ
∗, where τ∗ is the

maximum feedback delay across all senders.

D Wi-Fi Evaluation
In this experiment we use the setup from Fig. 9a. To emulate
movement of the receiver, we model changes in MCS index
as brownian motion, with values changing every 2 seconds.
Fig. 16 shows throughput and 95th percentile per packet delay
for a number of schemes. Again, ABC outperforms all other
schemes achieving better throughput and latency trade off.

E Low Delays and High Throughput
Fig. 17 shows the mean per packet delay achieved by various
schemes in the experiment from Fig. 8. We observe the trend
in mean delay is similar to that of 95th percentile delay (
Fig. 8b). ABC achieves delays comparable to Cubic+Codel,
Cubic+PIE and Copa. BBR, PCC Vivace-latency and Cubic
incur 70-240% higher mean delay than ABC.

F ABC vs Explicit Control Schemes
In this section we compare ABC’s performance with explicit
congestion control schemes. We consider XCP, VCP, RCP
and our modified implementation of XCP (XCPw). For XCP
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Figure 18: ABC vs explicit flow control — ABC achieves similar
utilization and 95th percentile per-packet delay as XCP and XCPw
across all traces. Compared to RCP and VCP, ABC achieves 20%
more utilization.

and XCPw, we used constant values of α=0.55 and β=0.4,
which the authors note are the highest permissible stable
values that achieve the fastest possible link rate convergence.
For RCP and VCP, we used the author-specified parameter
values of α = 0.5 and β = 0.25, and α = 1, β = 0.875
and κ = 0.25, respectively. Fig. 18 shows utilizations and
mean per packet delays achieved by each of these schemes
over eight different cellular link traces. As shown, ABC is
able to achieve similar throughput as the best performing

explicit flow control scheme, XCPw, without using multibit
per-packet feedback. We note that XCPw’s 95th percentile
per-packet delays are 40% higher than ABC’s. ABC is
also able to outperform RCP and VCP. Specifically, ABC
achieves 20% higher utilization than RCP. This improvement
stems from the fact that RCP is a rate based protocol (not
a window based protocol)—by signaling rates, RCP is
slower to react to link rate fluctuations (Figure 19 illustrates
this behavior). ABC also achieves 20% higher throughput
than VCP, while incurring slightly higher delays. VCP also
signals multiplicative-increase/multiplicative-decrease to the
sender. But unlike ABC, the multiplicative increase/decrease
constants are fixed. This coarse grained feedback limits
VCP’s performance on time varying links.

Fig. 19 shows performance of ABC, RCP and XCPw on a
simple time varying link. The capacity alternated between 12
Mbit/sec and 24 Mbit/sec every 500 milliseconds. ABC and
XCPw adapt quickly and accurately to the variations in bottle-
neck rate, achieving close to 100% utilization. RCP is a rate
base protocol and is inherently slower in reacting to conges-
tion. When the link capacity drops, RCP takes time to drain
queues and over reduces its rates, leading to under-utilization.

G Other experiments
Application limited flows

We created a single long-lived ABC flow that shared a
cellular link with 200 application-limited ABC flows that
send traffic at an aggregate of 1 Mbit/s. Fig. 20 shows that,
despite the fact that the application-limited flows do not have
traffic to properly respond to ABC’s feedback, the ABC flows
(in aggregate) are still able to achieve low queuing delays
and high link utilization.
ABC’s sensitivity to network latency:

Thus far, our emulation experiments have considered fixed
minimum RTT values of 100 ms. To evaluate the impact that
propagation delay has on ABC’s performance, we used a
modified version of the experimental setup from Fig. 8. In
particular, we consider RTT values of 20 ms, 50 ms, 100 ms,
and 200 ms. Fig. 21 shows that, across all propagation delays,
ABC is still able to outperform all prior schemes, again achiev-
ing a more desirable throughput/latency trade off. ABC’s
benefits persist even though schemes like Cubic+Codel and
Cubic+PIE actually improve with decreasing propagation
delays. Performance with these schemes improves because
bandwidth delay products decrease, making Cubic’s additive
increase more aggressive (improving link utilization).
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Figure 19: Time series for explicit schemes — We vary the link capacity every 500ms between two rates 12 Mbit/sec and 24 Mbit/sec.The
dashed blue in the top graph represents bottleneck link capacity. ABC and XCPw adapt quickly and accurately to the variations in bottleneck
rate, achieving close to 100% utilization. RCP is a rate base protocol and is inherently slower in reacting to congestion. When the link capacity
drops, RCP takes time to drain queues and over reduces its rates, leading to under-utilization.

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

24 26 28 30 32 34 36
Time (s)

0
20
40
60
80

100

Qu
eu

ing
De

lay
 (m

s)

Figure 20: ABC’s robustness to flow size — With a single
backlogged ABC flow and multiple concurrent application-limited
ABC flows, all flows achieve high utilization and low delays.
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Figure 21: Impact of propagation delay on performance — On a
Verizon cellular network trace with different propagation delays, ABC
achieves a better throughput/delay tradeoff than all other schemes.
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Abstract

Air-water communication is fundamental for e�cient under-
water operations, such as environmental monitoring, survey-
ing, or coordinating of heterogeneous aerial and underwa-
ter systems. Existing wireless techniques mostly focus on
a single physical medium and fall short in achieving high-
bandwidth bidirectional communication across the air-water
interface. We propose a bidirectional, direct air-water wire-
less communication link based on laser light, capable of (1)
adapting to water dynamics with ultrasonic sensing and (2)
steering within a full 3D hemisphere using only a MEMS mir-
ror and passive optical elements. In real-world experiments,
our system achieves static throughputs up to 5.04 Mbps,
zero-BER transmission ranges up to 6.1 m in strong ambient
light conditions, and connection time improvements between
47.1% and 29.5% during wave dynamics.
1 Introduction
The underwater world is still largely unexplored, yet survey-
ing and monitoring submerged sites is fundamental for many
applications including archaeology [18], biology [40], and
disaster response [42]. It is generally recognized that using
multiple heterogeneous cyberphysical assets – e.g., �ying
vehicles for a bird’s eye view and underwater sensors and
vehicles for informed data collection – will advance such
e�orts [19, 28, 59]. One of the challenges for underwater au-
tonomous deployments is limited communication between
assets underwater and in the air. This hinders the situational
awareness and coordination of underwater vehicles, data-
processing, and human supervision [47]. One conventional
strategy is to periodically let the underwater vehicle surface
to share data [54], which is ine�cient due to time not being
spent on the task. Another strategy is to deploy an infrastruc-
ture (e.g., network of buoys) at the water surface, connected
to both the underwater assets (via acoustic transducers, com-
pletely in the water) and the ground station (via tethering or
WiFi [30]). This deployment con�guration increases the cost
and logistical overhead, limiting the overall scalability [39].

We seek solutions that support direct wireless communi-

Laser Diode

MEMS Mirror

Fisheye Lens

Ultrasonic 
Sensor 
Array

Optical Filter

Photodiode

Air

Water

θ1

θ2
TX

RX

RX
TX

Figure 1: Our envisioned application scenario of air-water communi-
cation allowing aerial drones and underwater robots to communicate
directly and bidirectionally.

cation between air and underwater nodes without the need
of surface relays. Existing wireless communication technolo-
gies, however, mainly focus on a single physical medium and
thus do not e�ectively cross the physical air-water bound-
ary, impairing communication performance. As examples,
acoustic communication is the mainstream for underwater
scenarios but does not cross the air-water boundary since
acoustic waves are mostly re�ected by the air-water inter-
face [49]; on the other hand, wireless technologies using
radio frequencies (RF) are widely deployed in the air but not
underwater since radio signals su�er from severe attenuation
in the water (3.5–5 dB/m) and result in short communication
ranges [45,70]. A recent work [67] designs a direct water-air
communication link by combining an acoustic link in the wa-
ter and RF sensing in the air. Nevertheless, this method only
enables a unidirectional link (from water to air), supports
only centimeter-level distances above the water, and achieves
severely low data rates (400 bps) that are insu�cient for most
underwater monitoring applications [26].

In this paper, we study the use of laser light to build a
high-bandwidth, bidirectional air-water communication link
(Fig. 1). Light is the most suitable medium because the ma-
jority (90%) of its energy penetrates the air-water interface
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with only less than 10% energy re�ected back.1 Compared to
acoustics, light communication supports much shorter com-
munication latency with faster propagation speeds. Com-
pared to RF, it endures much lower attenuation in the water.
In particular, light in the blue/green range (420 nm – 550 nm)
attenuates less than 0.5 dB/m in water [5,45]. We speci�cally
consider blue/green laser light because of its superior com-
munication properties: (1) nanosecond-level switching speed,
(2) narrow (5–10 nm) spectral power distribution,2 allowing
optical energy to be concentrated to the wavelength range
associated with the smallest attenuation in the water/air,
and (3) low beam divergence maximizing the energy e�-
ciency and enhancing communication distance. Gbps-level
data rates have already been demonstrated using laser light
for air-water communication, albeit assuming calm water
and with bulky benchtop equipment that are not portable to
drones or robots [21, 71].

The key contribution of our work is addressing numer-
ous practical challenges currently unsolved (even with the
assumption that the locations of the nodes – one underwa-
ter and one in air – are �xed and known) and providing
a system framework, AmphiLight, for a robust laser-based
air-water communication link. First, we judiciously design
the basic communication link to overcome issues of existing
laser hardware and improve its portability for communica-
tion. Second, to handle strong ambient light interference, we
exploit the narrow spectral power distribution of laser light
by placing a narrow optical �lter in front of an ultra-sensitive
receiver (silicon photomultiplier) to �lter out ambient light
and maintain su�cient signal-to-noise ratios (including at
meter-level distances with low-power laser diodes). Third, to
adapt to environmental dynamics, we propose a new opti-
cal system to enable precise, full-hemisphere laser steering
using low-cost, portable hardware. It couples a �ne-grained
MEMS mirror with a miniature �sheye lens to achieve ±90°
steering range in two dimensions. Finally, we address water
dynamics by augmenting the link with ultrasonic sensing
and a forecasting method. The ultrasonic sensor array at
the transmitter samples the depth of a small number of loca-
tions at the air-water interface. These depth values are used
to reconstruct a continuous water surface and compute the
optimal incident point for the transmitter to steer the laser
beam to reach the receiver.

We implement a proof-of-concept AmphiLight prototype
using o�-the-shelf hardware. Our prototype consists of the
following elements: (1) a self-contained, waterproof laser
transmitter utilizing a microcontroller, FPGA, MEMS mirror,
and passive optical components; (2) an array of low-cost,
ultrasonic depth sensors for reconstructing the water’s sur-
face; (3) a waterproof laser receiver capable of detecting the
nanosecond laser pulses. We conduct experiments in various

1If the incident angle is less than 50°.
2By contrast, the spectral power of light emitted from an LED can span

up to 100 nm [2, 68].

settings to examine both link performance and robustness.
We summarize our key �ndings as below:

• AmphiLight achieves bidirectional, 5.04 Mbps throughputs
with BERs less than 10−3 up to 6.5 m in the air and 2.5 m
underwater;

• AmphiLight adapts to wave dynamics (10 – 12 cm wave
amplitude and 1-Hz wave frequency) with a 47.1% through-
put improvement over no laser steering;

• AmphiLight is robust against environmental factors in-
cluding strong sunlight and air/water turbulence at meter
ranges;

• The ultrasonic sensing achieves an accuracy of 1.5 cm in
the air and 0.5–1.0 cm in the water.

2 System Challenges
Despite the potential of green-blue laser light for direct air-
water communication, we face numerous systems challenges
in achieving high link speed and link reliability.
Laser Hardware Limitations. Although laser diodes
(LDs) are small and relatively inexpensive – making them
strong contenders for mobile applications – integrating them
into portable platforms for high-speed communication is
challenging due to heating and power issues. Our experi-
ments with o�-the-shelf LDs show that their temperature
rises over time when constantly on.3 The temperature rise
causes the central emission wavelength to shift by a few
nanometers [7], which is undesirable as shown later in §3.1.
Better heat dissipation requires dedicated temperature con-
trollers and active heatsinks, which are bulky (9 lbs), expen-
sive (≥$1000), and power hungry (up to 60 W) [8].

Additionally, commercial LDs are limited in terms of their
optical output powers and wavelength availability. Specif-
ically, blue and green TO-Can LDs are typically limited to
450 nm and 520 nm with optical powers between 30 mW
and 140 mW and high power options between 900 mW and
3 W [9]. To maintain stable output power, LDs are typically
powered with bench-top power supplies with current and
voltage limits or mobile drivers that do not support fast mod-
ulation bandwidths (e.g., only up to 2 MHz [16]). The power
consumption of low-power LDs ranges from a few milliwatts
to multiple watts, making mobile-friendly micro-controllers
incapable of consistent, safe, and e�cient LD operation.
Ambient Light Interference. Given the sparse availabil-
ity of blue/green LDs, low-power options are the only choice
for mobile applications. Thus, strong ambient light, espe-
cially in outdoor scenarios, imposes a nontrivial challenge of
maintaining high data rates with reasonable signal-to-noise
ratios (SNR) at meter-level distances. Even worse, outdoor
sunlight can easily saturate sensitive photodiodes (PDs) at
the receiver, making it unresponsive to encoded light changes

3When powering a PLT3520 LD with a Thorlabs S1PLM38 passive
heatsink using 6 V and 150 mA, the LD casing temperature increased from
81 °F to over 145 °F, measured by a Lasergrip 774 infrared thermometer.
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Figure 2: Water dynamics degrade the link reliability due to light
refraction at the air-water interface. (a) Precipitation and tide can raise
the water level, which permanently translates the refracted light and
disrupts the aligned link. (b) Periodic waves can swing the refracted
light, resulting in recurrent misalignment with the receiver.

from the transmitter. To illustrate this point, we measured
the SNR of an o�-the-shelf PD (OPT101) under varying am-
bient light intensities. Speci�cally, we collocate a LX1330B
light meter with OPT101 and place a 140 mW LD and Osram
5500T03 LED 20 cm away, where the LED light emulates
ambient light interference. Next, we vary the intensity of
the LED and measure the resulting SNR at the PD. As the
LED illuminance approaches values associated with outdoor
ambient light (e.g., ≥10,000 lx in indirect sunlight), the SNR
quickly drops below 3 dB (speci�cally, 3.2 dB at 5700 lx and
0.6 dB at 8070 lx). Furthermore, PDs capable of detecting
low-level light need to have su�ciently high gain, making
them susceptible to saturation under intense ambient light
(the OPT101 became saturated when the LED intensity ap-
proached 14,500 lx).
Laser Beam Steering. Supporting arbitrary underwa-
ter/aerial robot locations demands precise steering of the
narrow laser beam in a wide range. Existing laser steering
mechanisms, however, face a fundamental tradeo� between
steering range and granularity. Traditionally, FSO beam steer-
ing [37, 44, 58, 60, 64, 75] uses mechanical gimbals for 360°
coarse-grained steering and then additional mechanisms for
secondary, �ne-grained adjustments [36, 46, 57]. Although
mechanical gimbals can support a large angular steering
range, they are bulky, imprecise, and not intended for use in
mobile settings. On the other hand, the mechanisms used for
�ne-grained steering (e.g., microelectromechanical-systems
(MEMS) mirrors [29, 41, 50, 51, 77], acousto-optic de�ectors
(AODs) [60, 69], tunable lenses [22, 52, 82, 82]) only achieve
millirad/single degree steering ranges [46], constraining the
receiver location to a narrow cone around the transmitter.
Environmental Dynamics. In real world environments,
such as lakes or oceans, the water’s surface is dynamic, ren-
dering a laser link unsustainable due to refraction at the
air-water interface. The impact of water dynamics is twofold:
(1) A change in water level caused by precipitation or a tide
can disrupt the optical link permanently. For example, a rise
in the water level will move the incident point on the surface

to a new position if the incident angle is not 0°. Consequently,
the refracted light will be translated and miss the underwater
receiver (Fig. 2(a)). Based on geometry, the horizontal dis-
placement of the light beam is ∆h(tanα− tanβ), where ∆h is
the level change, α is the incident angle, and β is the angle of
refraction. A level change of 1 m4 with a 30° incident angle
results in 17 cm displacement of the beam, far beyond the
diameter of common light sensors (a few mm); (2) Periodic
surface waves caused by wind or moving objects can swing
the refracted light around the receiver. The oscillation causes
the optical link to deviate from the receiver (Fig. 2(b)). Our
experiment shows that waves with ∼10 cm peak-to-peak
amplitudes make the link unavailable for ∼70% of the time.
3 Basic Laser Link Design
We present the basic laser communication link design able
to (1) achieve su�cient data rates (i.e., Mbps for underwater
drone communication and sensing) with o�-the-shelf laser
diodes and (2) support a hemispherical steering range to
connect the transmitter and receiver at arbitrary locations.
3.1 Transmitter & Receiver
Transmitter. To support Mbps throughputs and low en-
ergy consumption – important tradeo� design for underwa-
ter drones – we adopt the DarkLight concept in [65]. Specif-
ically, DarkLight applies overlapping pulse position modu-
lation (OPPM), where data is encoded into the position of
the rising edge of a light pulse within a symbol. We extend
DarkLight to LDs, leveraging LD’s fast switching speeds to
increase the data rate while still maintaining a low duty cy-
cle. This leads to a signi�cant improvement in throughput
from Kbps with LEDs to Mbps with LDs, as shown later in
§6. Reducing the duty cycle removes the need for a dedicated
temperature controller as the laser will remain o� the ma-
jority of the time. Furthermore, a low duty cycle reduces the
power consumption issues typically associated with laser
communication, allowing us to power the LD with a micro-
controller without sacri�cing the data rate.

Even though OPPM is the most suitable choice for sus-
tained communication5 given the current laser hardware
limitations, the AmphiLight framework is general and can be
combined with other modulation schemes. As advances in
LD hardware will better address heating6 and power issues
in the future, other modulations schemes such as OOK or
OFDM can be easily integrated into AmphiLight to further
boost link data rates. However, with higher-power modula-
tion schemes, the e�ects of turbulence, especially over long
distances, might degrade the overall link quality. Regard-

4For reference, the tidal range (height di�erence between high tide and
low tide) can reach 16 m [11].

5If the communication between drones is intermittent, higher-power
modulation schemes should not raise the temperature to dangerous levels,
even with only passive cooling.

6In the case of an underwater drone, the surrounding water could be
leveraged to passively cool the hardware without requiring additional power
or expensive components.
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Figure 3: The relative intensity spectrum of the sun compared to a
low-power LD. Utilizing a narrow bandpass �lter from 518 nm to
522 nm, the SNR can be increased from -12.86 dB to 4.36 dB.

less, fully leveraging the GHz switching speeds of LDs, an
OOK implementation could achieve throughputs in the Gbps
range with only a few mJ/bit.
Receiver. We address the key challenge of the receiver
design – to extract signals from low-power LDs amid strong
ambient light interference while maintaining meter-level
distances – via two design elements. First, we add a narrow
optical bandpass �lter ($30 – $200) that allows only the nar-
row wavelength range of the laser light (con�ned only to a
few nm [53]) to pass, and �lter out the majority of the ambi-
ent light energy and signi�cantly boost the signal-to-noise
ratios (SNRs). As an example, Fig. 3 plots the spectral power
distribution of outdoor sunlight (measured on a sunny noon
in August, 2019), as well as that of a low-power LD [13], mea-
sured by a Thorlabs CCS100 spectrometer. We observe that
the weak laser light is buried in the strong sunlight. Nev-
ertheless, adding an o�-the-shelf bandpass �lter [12] with
a ±2 nm bandwidth, we drastically improve the SNR. Ad-
ditionally, spectral �ltering also addresses the problem of
sensor saturation under strong ambient light.

Second, we utilize an ultra-sensitive silicon photomulti-
plier (SiPM) light sensor, i.e., an array of avalanche photodi-
odes (APDs), with high gains, large active areas, and large an-
gular responses [14].7 Given the SiPM’s signi�cantly higher
gain compared to traditional light sensors, we are able to
maintain a su�ciently high SNR even with low-powered
LDs at meter-level distances. We further increase the SNR
by using an RF ampli�er with a DC-bias cuto�, allowing us
to amplify only the low-power laser light.
3.2 Full-Hemisphere Beam Steering
We adapt the �ne-grained steering mechanism from FSO
by expanding its limited steering range with a judiciously-
designed optical circuit. Speci�cally, we combine a small-
angle MEMS mirror with a miniature �sheye lens [24] to
enlarge the small-angle steering to ±90° in two dimensions.

As shown in Figure 4(a), a �sheye lens is a combination
of wide-angle lenses typically used to create hemispherical
images for photographs. Fisheye lenses concentrate light
rays coming from a full hemisphere to a small image plane at
the focal length, limited by the form factor of digital camera
image sensors. We exploit this optical feature to expand the

7We measured the SiPM’s SNR to be between 13.03 dB and 13.95 dB
between −70° and 80°.
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Figure 4: (a) Light enters the �sheye lens and is projected onto a small
image plane, compressing the wide incoming light directions into a
smaller range. (b) We consider the inverse of the propagation path to
enlarge a narrow steering range to full hemisphere.
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Figure 5: Our proposed optical circuit design, using a small-angle
MEMS mirror and �sheye lens. Not only can we achieve a full ±90°
range in two dimensions, but the received power only deviates by 28%
at extreme angles.

narrow steering range of MEMS mirror. Speci�cally, given
the path symmetry of light propagation, we consider the
inverse direction of the light path by sending a light ray
through the image plane. This leads to an outgoing light ray
steered to a larger irradiance angle (Fig. 4(b)), thus expanding
the small input steering range to an entire hemisphere.

Fig. 5 shows the optical circuit for laser beam steering.
An achromatic triplet lens [83] is added to keep a constant
focal point on the �sheye lens (i.e., correcting for spherical
aberrations) [15]. It also concentrates the outgoing light ray
from the MEMS mirror to the image plane of �sheye lens to
match the desired inverse propagation path.
4 Addressing Water Surface Dynamics
Armed with the basic link design, we now set out to address
challenges from dynamics at the air-water interface, aiming
to improve link robustness in practical settings. To mitigate
the misalignment caused by water dynamics, a straw-man
approach is to expand/di�use the laser beam to keep the
receiver within the light coverage during water dynamics.
This approach, however, greatly lowers the energy e�ciency
of communication and demands high-power LDs to support
meter-level distances. Another approach is to blindly steer
the laser beam and scan all directions to search for the direc-
tion that reaches the receiver. The resulting overhead to scan
the whole steering range (up to hundreds of ms with existing
MEMS mirrors), however, reduces the link throughput. It also
requires a feedback channel from the receiver, which may
be equally unavailable due to misalignment.

Instead, we consider a more proactive approach where the
system continuously senses the condition (both the water
level and the shape of the wavy surface) of the air-water in-
terface, computes the optimal direction to reach the receiver,
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Figure 6: Addressing water dynamics by continuously sensing the
water with an array of ultrasonic sensors, interpolating the surface,
computing the optimal path to the receiver, and steering the laser.

and then steers the laser beam correspondingly to sustain
the link’s connection (Fig. 6).
4.1 Sensing Waves
To sense the water surface condition, we start by examining
the e�cacy of existing techniques. Vision-based methods
with depth cameras have been widely used to reconstruct
the 3D shape of objects. These methods, however, are unable
to sense the shape of water surfaces because light mostly
penetrates the air-water interface and re�ects almost no light
for the depth camera to reconstruct the surface. Our exper-
iments with an Intel RealSense D435i depth camera shows
that depth information is only correct when a piece of paper
is placed on the water surface. Alternatively, one can con-
sider RF-based methods, i.e., mmWave radar which has been
shown to sense the distance from air to water at µm-level
accuracy [67]. Given the severe attenuation of RF signals
in the water, however, RF-based methods cannot be applied
to underwater transmitters for sensing the water surface.
Additionally, reconstructing the water surface requires an
array of mmWave radars that can cost thousands of dollars.

The above exploration leads us to consider the acoustic
medium. Speci�cally, we consider ultrasonic distance sen-
sors to avoid interference from ambient noises. Ultrasonic
distance sensors work in both air and water, and thus can
be used by both aerial and underwater transmitters to sense
the air-water interface and adapt the outgoing laser beam
direction. Additionally, the accuracy of ultrasonic distance
sensors are on the mm-level and are a�ordable (e.g., $1 each).
Depth Sampling via Ultrasonic Sensing. To sense the
shape of the water surface, a single ultrasonic sensor is in-
su�cient. Instead, we employ an array of M sensors that
are uniformly distributed on the transmitter plane. Because
all sensors operate at the same acoustic frequency and are
close to each other, simultaneous measurements cause in-
terference. Therefore, we instruct the sensors to sample the
distance sequentially. The sequential measurements result
in a sensing latency that grows linearly with the number
of sensors and proportionally to the distance between the
transducers and water surface. In our implementation with
16 sensors, generating each snapshot of the surface is ap-
proximately 50 ms (20 Hz frame rate) which can impair the

e�cacy of beam steering for faster waves.8

To lower the latency of the sensor array, we propose to
forecast the height samples of the water surface. Instead of
waiting for the readings from all sensors to be ready, we can
forecast the distances based on historical data. It is possible
to forecast the height of the water because water surface
waves are periodic. Speci�cally, we output distances from
all sensor positions once a new reading is available from a
sensor (e.g., at time tcur). If the readings from other sensors
are not ready at that time, we will use the forecasted distances.
Because the water wave is periodic, we can use the Fourier
transform for forecasting, i.e., estimate the frequency and
phase of the waves despite the variable latency. Speci�cally,
we bu�er a window of the most recent N readings for each
sensor xk (k ∈ [0,N−1]),9 compute the Discrete-time Fourier
Transform (DFT) in the window, estimate the period of the
major frequency component T , and forecast the reading xN
by linear interpolation at time txN −T . If the timestamp of xN
is ahead of tcur, we will linearly interpolate between xN−1 and
xN . Our measurements show that the forecast distances using
historical readings align well with the measured distances.
Forecasting reduces the sensing latency of each frame (i.e.,
time period between adjacent frames) to 1/16 of the non-
forecast method, approximately 3 ms. Since the movement
of the water waves between frames is the source of sensing
errors, the forecasting error is 1/16 of the non-forecast error.
This forecasting method assumes a single major frequency
in the water waves. For more complicated waves, in the
future we can investigate advanced forecasting methods,
such as ARIMA and RNN (which require training and higher
computational cost).
Reconstructing Wave Surface. To reconstruct a contin-
uous wave surface for every frame, we need to interpolate
between the discrete distance samples output by the array.
We adopt a bicubic surface model [33] to �t the outputs:

h(x,y) =
3

∑
i=0

3

∑
i=0

ai jxiy j ,

where (x,y) is the coordinate on the horizontal plane relative
to the center of the sensor array, h(x,y) is the height of wave
at (x,y), and ai j’s are the parameters of the surface. Bicu-
bic surface is widely used in 2D interpolation. We choose
this model for its shape �exibility and computational sim-
plicity. We �t the model using linear regression, which is
computationally inexpensive and suitable for real-time re-
construction. The linear system is hhh = XXXβββ+β0, where hhh is
a vector of the measurement distances by each sensor, and
XXX is a matrix that is constructed by the coordinates of the

8Typical frequency of water surface waves is 0.1 Hz–3 Hz [61].
9N = 256 in our implementation. Longer windows can produce �ner-

grained frequency resolution in the frequency domain and better forecast
accuracy, yet entail longer bu�ers and higher computational cost.
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sensors. Put formally, XXX is calculated as:

XXX =
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M · · · y3
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 ,

where each row is for a sensor. The coe�cients βββ and
β0 are the parameters of the surface, i.e., βββ = {ai j|i, j ∈
{0,1,2,3}}−{a00}.10 The model, therefore, contains 16 pa-
rameters11 in total. With M ultrasonic sensors and thus M
measurements, we employ regularized linear regression to
prevent over�tting and the loss function is

f (βββ,β0) =
M

∑
i=1

(
hi−β0−

15

∑
j=1

β jXXX i j

)
+λ

15

∑
j=1

β
2
j ,

where λ is a hyper-parameter that controls the penalty on
the parameters. In our implementation, λ = 5×10−5.
4.2 Computing the Incident Point
Once the shape of the surface wave is estimated, we next
seek an incident point on the surface such that the refracted
light can reach the receiver. The incident light and refracted
light must be subject to Snell’s law. However, this equation
is intractable because of the trigonometric functions, i.e, we
have to solve the incident point position numerically. First,
we model the problem as an optimization problem (Fig. 7). For
every possible point on the surface, we are able to determine
the direction of the refracted light (~r) according to Snell’s
law and the direction from the incident point to the receiver
(~t). If the discrepancy between the two directions (θ) is zero,
the previous equation is exactly solved. Therefore, we are
looking for the incident point that minimizes the discrepancy
θ, i.e., maximize cosθ:

Maximize cosθ =
~r ·~t
|~r||~t|

(1a)

subj. to: ~r = p~m+~n (1b)

p =
p|~m|
|~n|

=
sinβ

sin(α−β)
(1c)

~n =
(

∂h
∂x

,
∂h
∂y

,−1
)

(1d)

Here~n is the surface normal unit vector, ~m is the direction
vector of the incident light, nwater is the refractive index of
water, and sinα

sinβ
= nwater. To calculate~r, we �rst determine

the direction of the surface normal (~n) according to 1d. Sup-
pose the direction vector of the incident light is ~m, which

10β0 is another name for a00.
11Although we estimate the model parameters without any prior knowl-

edge, we could utilize the physics of dispersion [4] to model the constraints
between the di�erent parameters (e.g., between wavelength and wave speed).
This could improve the accuracy of the model, but is beyond the scope of
this paper.
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Figure 7: Geometric model of �nding the optimal path to reach the
receiver. We model �nding the incident point on the surface such that
the laser can reach the receiver as an optimization problem. This �gure
shows a single solution in the solution space, where the optimization
happens over all possible solutions. Weminimize the angle discrepancy
(θ) between the refracted light (~r) and the target path that reaches the
receiver (~t) subject to Snell’s law which governs the relation between
the angles of incidence (α) and refraction (β).

is also a unit vector. According to Snell’s law, the incident
light, the refracted light, and the surface normal are coplanar.
The refracted light’s direction can thus be written in the
form of 1b, where p is calculated according to law of sines
and Snell’s law (1c). Assuming the transmitter is in the air
and the receiver is underwater, nwater is the refractive index
of water (we can take the reciprocal if the transmitter and
receiver exchange positions). Notice that all the quantities
are functions of (x,y).

Algorithm 1: Find outgoing beam direction
Input: ppp0: initial incident point, rrr: receiver position, bbb: surface

shape parameters // TX: (0,0,0)
Output: (γx,γy): outgoing beam angle along x-axis and y-axis
α← 0.01 // learning rate
pppn← ppp0 // next point to test
ε← 0.005 // accuracy tolerance
N← 100 // max iteration
for i← 1 to N do

ppp← pppn
/* compute gradient and error */
∇,e← gradient(ppp,rrr,bbb)
if e < ε then

break
pppn = ppp+α∇

end
z = h(ppp) // z coordinate on surface
γx = arctan(pppx/abs(z))
γy = arctan(pppy/abs(z))
return (γx,γy)

We solve the optimization problem by gradient ascent
(Algo. 1). We compute the gradient (∇cosθ) following the
chain rule. For each frame, we set the initial incident point
as the incident point of the previous frame. The spatial and
temporal continuity of the water wave and the observation
of the optimization result show that the new incident point
should be close to the previous one because the change of
the surface shape is small between adjacent frames. All the
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computation, including the forecasting, surface reconstruc-
tion, and path �nding, can be completed within 1 ms. Note
that wave sensing, path �nding, and beam steering occur in
parallel with the data transmission, incurring no overhead
on the optical link. Notably, our algorithm has the potential
to fail if some of the characteristics are beyond the sensing
capabilities of the ultrasonic array: wavelength is smaller
than the separation between the ultrasonic sensors; wave
frequency is higher than the sensing frequency. We discuss
improvements to the sensing and reconstruction in §7.
5 Prototype Implementation
Our prototype includes a transmitter, which encompasses
the optical circuit, electronic circuit, modulation scheme, and
ultrasonic sensor array, and a receiver that includes optical
�ltering and receiver hardware.
Transmitter. Our transmitter utilizes a small, mobile opti-
cal circuit relying on a single MEMS mirror and passive op-
tical components to achieve a hemispherical steering range.
The complete package is shown in Fig. 8(b). We mount a
140 mW TO-Can PLT3520D LD ($89) within a Thorlabs
S1LM38 passive heatsink and focus the light to a 2° half-
angle beam with an A110TM-A aspheric lens ($90). We use
a 3.6 mm MEMS mirror mounted on an A7B1.1 actuator
in a TINY20.4 package from MirrorcleTech ($798), provid-
ing roughly ±6.6° mechanical de�ection on the x/y axes
and 0.003° angular resolution.12 The mirror is �xed to a
MirrorcleTech mount and screwed into a Thorlab B5C1 op-
tics mount. The cage cube platform is rotated 45° relative
to the mounted LD. We mount a Thorlabs TRH254-040-A
triplet lens ($78, ≈ 1% loss) and Sunnex DSL419B-NIR-F2.0
miniature �sheye lens ($99, ≈ 10.5% loss) within a Thorlabs
SM1L20 lens tube. We decreased the distance between opti-
mal components to maximize the �nal output power. Since
the MEMS mirror’s center point changes with gravity, we
mount the lens tube on a Thorlabs CCM1-P01 45° mirror
cube, allowing us to evaluate the parallel and perpendicular
hemispheres without changing the mirror’s alignment.

Fig. 8(a) shows the designed electronic circuit to transmit
data. An Arduino Due ($32) processes the payload and split
it into M-bit chunks. We implement an FPGA pulse timer on
a Basys3 ($149) with a clock speed of 100 MHz. We establish
a serial connection between the Arduino and the FPGA and
transmit the required OPPM parameters (e.g., symbol length,
slot width, pulse width) and processed payload to the FPGA.
The FPGA parses the data and outputs the pulses on a single
GPIO pin. To supply enough power to the LD, we utilize a
TI LMG1020EVM-006 laser diode driver ($154) which also
shortens the input pulse width up to 45%. To communicate
between the FPGA and driver, we shift the logic levels with
a Digilent 410-320 PMOD logic level shifter ($14). Finally, to

12Our MEMS mirror has a mechanical range ±6.6090° on the x-axis and
±6.5586° on the y-axis. Furthermore, the mirror’s ADC has a resolution of
12 bits, making the angular resolution 0.003° on the x and y axes.

Basys3 FPGA LD Driver

Voltage ConvertersArduino Due

(a) Electronic Circuit
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Fisheye Lens

Triplet Lens

MEMS MirrorFocusing Lens
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Figure 8: (a) Electronic circuit, 20 cm× 10 cm× 7.5 cm and weighing
0.7 lbs, used to transmit nanosecond laser pulses. (b) Optical circuit to
achieve full-hemisphere beam steering. The optical circuit is 11 cm ×
11 cm × 5 cm and weighs 1.8 lbs.

maintain mobility, we power all the components with the
Arduino preprocessor and three voltage step-up converters.

To achieve a su�cient throughput in our prototype, we
encode �ve bits per symbol and decrease the slot width to its
minimum value (i.e., one clock cycle of 10 ns). To ensure the
LD reaches its peak power within one pulse, we set the pulse
width to 150 ns resulting in a duty cycle of 13.70%. Since
SiPM’s experience exponential decay, we add a 300 ns guard
interval, TG, at the end of each symbol for the sensor to reset.
A 2 µs �xed delay occurs after the last symbol, giving the
receiver time to di�erentiate between adjacent packets. Our
modulation parameters enable a maximum throughput of
5.04 Mbps. Note that faster FPGAs exist (e.g., up to 600 Mhz
clock speeds [17]) which would support shorter slot widths
and consequently faster throughputs (up to 30.22 Mbps with
a slot width of 1.7 ns).

Finally, as shown in Fig. 9, we implement our ultrasonic
sensing array using 4×4 HC-SR04 sensors [6] ($4 each), each
sensor 6 cm apart from adjacent nodes.13 The 16 sensors mea-
sure the distance from the transmitter plane to the water
surface sequentially. Currently, the sensing latency of ev-
ery data frame is approximately 3 ms with forecasting at a
distance of 20 cm above the water. Notably, as the distance
increases, the measurement will become less accurate since
the ultrasonic beam will cover a larger area and the sensing
latency will be higher due to the increased propagation delay.
In our implementation, we set the exit condition of our gra-
dient ascent algorithm (Algo. 1) using an error tolerance of
0.005 radians. We implement the wave shape �tting and opti-
cal path determination using C++. We leverage the MLpack
library for the regularized linear regression and FFTW for
the forecasting. Finally, our ultrasonic sensor array can be
replicated for underwater transmitter by employing cheap
waterproof ultrasonic sensors [10] and we discuss various
ways to reduce the sensing latency increase the wave sensing
accuracy in §7.
Receiver. Given the e�ects of ambient light on the receiver
SNR, we implement wavelength �ltering tuned to the emis-
sion wavelength of our LD. Although bandpass �lters are the

13This distance was determined given the 15° FoV of each sensor.
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(a) Top of array (b) Bottom of array

Figure 9: Top and bottom views of our ultrasonic array. The array is
26 cm × 36 cm × 5 cm and weighs 1 lbs.

optimal choice given their narrow pass regions (e.g., 5 nm–
10 nm), they require incident light to be nearly perpendicular
to the �lter for it to pass [1]. Since we aim to support arbi-
trary positions and orientations of the receiver, we instead
complement our SiPM sensor’s large angular response with
a large-FOV colored glass �lter – a Thorlabs FGV9 �lter ($40)
that passes light between 485nm and 565nm. In stronger am-
bient light conditions, a bandpass �lter can be implemented
with a concentrating lens (e.g., �sheye lens) in front of it
(essentially using the same optical setup as the transmitter).

Finally, to detect the laser pulses, we use a KETEK PM3315-
WB-B0 SiPM ($72, active area of 5 mm × 5 mm and 3 dB
acceptance angle of 180°) connected to a KETEK PEPCB-
EVAL bias board ($65). The SiPM is biased with 5.0 V and
5 mA, shortening the decay time of the sensor to around 60 ns.
The signal from the bias board is fed to a MiniCircuits ZX60-
P103LN+ RF ampli�er ($70) powered with 5 V and 100 mA.
We then utilize a Keysight MSOS254A 2.5 Ghz, 20 GSa/s
oscilloscope to record the pulses received by the SiPM and
demodulate the signals with MATLAB. We discuss our initial
results at bringing real time demodulation to our transmitter
via an analog circuit in §7.
6 Evaluation
We extensively evaluate the link performance and reliability
of our air-water laser link in various settings.
6.1 Overall Performance
We �rst examine link throughput, bit error rates (BER), and
communication distance. In these experiments, the transmit-
ter and receiver are manually aligned. The angle of irradi-
ance from the transmitter and the incident angle into the
receiver are all zero unless otherwise speci�ed. Experiments
are mostly conducted in two settings: 1) a swimming pool
(22.8 m × 10 m × 1.8 m); and 2) a water tank with clear
fresh water (1.6 m × 1.75 m × 0.63 m). The ambient light
intensity was between 380 lx and 450 lx throughout the ex-
periments and the power consumption for each component
can be found in Tab. 1.

Table 1: Power consumption of various components.
Component Voltage (V) Current (mA) Power (mW)
TX (5.04 Mbps) 7.7 300 2300
Sensing Array 9.3 67 623
SiPM Bias 5.0 5 25

(a) Setup (b) TX (c) RX
Figure 10: Experimental setup in a swimming pool.

Evaluation Methodology. To capture nanosecond laser
pulses, we use a Keysight MSOS254A oscilloscope to record
the data, which is then transferred to a laptop for demodula-
tion. This methodology, however, is limited by oscilloscope’s
bu�er size. Speci�cally, the timing resolution of the oscillo-
scope is inversely proportional to the capture window size,
meaning longer capture windows have inaccurate timing res-
olutions (i.e., laser pulses are missed or misaligned, causing
demodulation errors and higher BERs).

To overcome this issue, we transition from our stationary
oscilloscope receiver to an Arduino Due receiver. Speci�cally,
we �rst obtain a mapping between the SNR and through-
put/BER using the oscilloscope receiver to decode data in
real time. Then when switching to the Arduino receiver,
we instruct the transmitter to send a continuous wave for
the Arduino to measure the SNR and map it to the corre-
sponding throughput/BER. We have validated the accuracy
of this methodology in experiments with a water tank in a
lab setting, where we observe negligible di�erences between
the estimated and actual throughput/BER with these two re-
ceivers. This methodology greatly facilitates our experiments
during dynamic waves. Our ongoing work is to fabricate an
analog circuit for detecting nanosecond light pulses without
the need of an oscilloscope or expensive GHz-level ADC (§7).
CalmWater. We start by examining the link performance
link under calm water. As shown in Fig. 10, we �rst place
the receiver in a waterproof container with an SMA cable
protruding from the bottom of the enclosure and connected
to our oscilloscope on land. Second, we place the receiver
underwater in a swimming pool and vary the distance to the
surface from 0.5 m to 1.1 m. Third, we �x the transmitter to a
tripod and place it on the bank of the pool, varying the height
from 1 m to 2 m. Finally, we ensure the angle of irradiance
out of the transmitter and incident angle into the receiver is
below 10° at all times.

As shown in Fig. 11(a) and 11(b), we measure the aver-
age throughputs and BERs for each distance con�guration.
Throughout our experiments, the mean throughput was con-
stantly above 5.03 Mbps and the BER below 0.01. Notably, the
limited depth of the swimming pool and low ceiling height
reduced the measurable range considerably. To further eval-
uate the potential of our link, we measure the range of the
link separately in the air and in the water. To measure the
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Figure 11: Link performance under calm water. (a) and (b) plot the throughput and BER under various combinations of air and water distances
(limited by the swimming pool setting). (c) plots the performance in pure air and water.

range in the water, we place two mirrors at the long ends
of a 50 cm �sh tank and bounce the laser between them to
increase the propagation path. As depicted in Fig. 11(c), we
are able to achieve a zero-BER range in the air up to 6.5 m
and a zero-BER range in the water up to 2.5 m. Consequently,
we expect the air portion of our joint results to approach 6 m
before the link degrades. Given the power loss associated
with the light hitting the mirrors, however, we expect the
underwater range to extend beyond our measured 2.5 m.

Next, to validate link bidirectionality, we place TX in a
waterproof enclosure (weighs 4.8 lbs and measures 11.5 cm
× 36 cm × 11.5 cm). To �t TX in the waterproof tube, we
perform the following modi�cations: (1) remove the MEMS
mirror and �x the laser directly to the triplet lens/�sheye lens
tube; (2) replace the 140 mW PLT3520D LD with an 80 mW
PLT5520B LD to mount within an adjustable focus enclosure;
(3) power TX with a 9-V battery and decrease the LD driver
supply to 6.5 V. We then �x the underwater distance to 17 cm
and vary the air distance from 32 cm to 71 cm. We record the
receiver’s SNR and throughput in each direction. As shown
in Tab. 2, the throughputs remained stable with a comparable
decrease at 71 cm14 corresponding to a mean BER of 0.00016
(RX underwater) and 0.00028 (TX underwater). Furthermore,
the SNRs at each distance con�guration varied, at most, by
2.6% indicating a symmetric link. The small discrepancy is
most likely due to small o�sets in beam alignment.
Table 2: The di�erence in throughput and SNR for two directions.
Air dist. (m) Throughput % di�erence SNR % di�erence
0.32 0.000% 2.6421%
0.54 0.000% 1.0572%
0.71 0.01191% 2.4117%

Dynamic Water. We now move on to examining link per-
formance under water dynamics. We augment the TX with
the ultrasonic sensor array and conduct the experiments
in the water tank setting (Fig. 12) because of the ease of
mounting the sensor array. We place the sensor array and
TX 33 cm above the water surface in the middle of the tank
to better simulate real-world conditions, e.g., the middle of a
lake. To generate waves, we stir the water by hand for ten
seconds, creating roughly uniform waves with amplitudes
between 10 – 12 cm and wave frequency of approximately

14This range is smaller than our measured zero-BER range given the
optical circuit modi�cations (i.e., lower power LD) and decreased transmitter
power supply.
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Figure 12: Experiment setup and results with dynamic water surface.

1 Hz. We then wait �ve seconds before recording the SNR on
our Arduino for an additional ten seconds. To determine the
connection percentage, we look at the percentage of time
SNR is above 13.18 dB, the required threshold to maintain
5.04 Mbps throughput with 8×10−5 BER. To compute the
throughput, we multiply the measured connection time by
the corresponding mapped throughput.

We compare our method to two baselines: (1) No steer-
ing, where the direction of the light is �xed without any
response to the waves, resulting in a frequent loss of link
connection during wave dynamics; (2) Wave sensing w/o fore-
casting, which is a variant of our proposed sensing method
in §4 without the forecasting, i.e., the system collects data
from all ultrasonic sensors before estimating the wave sur-
face and steering the laser beam. We test each method in ten
trials. Fig. 12 compares the throughput under various meth-
ods, where error bars covering standard deviations are also
included. We make the following observations: First, meth-
ods with wave sensing improves link throughput, achieving
29.5% and 47.1% increases compared to no steering. The
improvement is due to the higher percentage of link con-
nection with wave sensing. Without steering, the link is dis-
connected 48.13% of the time because of the periodic wave
surface changes, whereas active sensing and laser steering
improves the connection percentage to 82.80%. Second, be-
tween the sensing methods with and without forecasting,
forecasting achieves an additional gain because of its reduc-
tion in sensing delay, resulting in faster adaptation of the
beam direction to wave movement. Third, compared to prior
work [67] which only supports throughputs up to 400 bps,
our system maintains a throughput of 4.2 Mbps with OPPM
during wave dynamics – a 10,500 times improvement.

6.2 Link Reliability
Types of Water Waves. While our prior experiments
with dynamic water show the high potential of our sens-
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Figure 13: In�uence of water wave parameters on the reliability of
the laser link.

ing method, the results are under a single type of wave. It is
practically di�cult to precisely generate waves with known
parameters and compare methods under exactly the same
water waves. To gain a deeper understanding on the impact
of di�erent wave characteristics and compare methods more
fairly, we build a simulator to generate synthetic waves and
emulate the performance using various methods. Speci�-
cally, we simulate the water surface with a sinusoidal wave
h(x,y, t) = Asin(ωx+ ϕt)15, which is widely used in com-
puter graphics to synthesize water waves [32,56]. To exclude
the in�uence of modulation, we use the percentage of the
throughput relative to the static link to represent the link
reliability. In our simulation, TX and ultrasonic sensor ar-
ray are placed 20 cm above the water surface. Because the
half-angle of our laser beam is 2°, we consider the data to
be decodable if the angle deviation between the RX and the
laser beam center is less than 2°. We simulate the process
for a whole period of the wave because the wave is periodic.
By default, the wave’s wavelength is 40 cm, peak-to-peak
amplitude is 10 cm, and frequency is 1 Hz.

Fig. 13 compares our method to that without steering as
we vary the wave characteristics including wave amplitude,
wavelength, and frequency. We observe that our method sig-
ni�cantly improves link reliability in most scenarios. We also
gain two additional insights: (1) The performance of wave
sensing degrades with increasing amplitude. This is due to
the regularization in the surface interpolation, which gives a
higher penalty for more curly waves. The performance also
degrades with decreasing wavelength, which is constrained
by the Nyquist sampling theorem. The distance between the
acoustic sensor dictates the smallest wavelength that our
method can reconstruct with high �delity. A straightforward
solution to address both degradations is to increase the den-
sity of the acoustic sensors at the expense of raising costs
and complexity of sensor placement. A more sophisticated
solution is to employ compressive sensing with incoherent
sampling. We will discuss this more in §7. (2) The perfor-
mance degrades gradually when the frequency increases
in the normal range (0.1–3 Hz [61]). Even with the fastest
waves (3 Hz), our method can sustain more than 75% of the
throughput. If higher reliability is desirable, we can further
lower the sensing latency by using frequency-division mul-
tiplexing among the acoustic sensors, which will increase

152A is peak-to-peak amplitude. 2π/ω is wavelength. 2π/ϕ is frequency.

0.0

2.0

4.0

6.0

 0  2  4  6  8  10  12  14T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Indoors (7 LX)
Outdoors (73,900 LX)

0 BER

0.0

0.1

0.2

0.3

 0  2  4  6  8  10  12  14

B
E

R

Distance (m)

Figure 14: Comparing link performance under two extreme light
conditions: low light indoors and strong sunlight outdoors.

the hardware complexity of the sensors. Compared to [67],
which could support a sustained link up to 16 cm waves and
no communication past 22 cm, our system maintains a ≥
80% reliability up to 14 cm and 50% reliability up to 20 cm.
Sunlight. Given that our ultimate application scenario is
outdoors, we evaluate the impact of strong sunlight on our
link. Focusing on the air portion of the link, we vary the
distance between the TX and RX in both indoor and outdoor
scenarios and compare the resulting throughputs/BERs. We
compare two extremes: a low-light condition indoors with il-
luminance between 5 and 7 lx and the strong-light condition
(73.900 lx) outdoors, typical for direct sunlight at noon [3].
As shown in Fig. 14, the link performance under strong sun-
light is similar to indoors within an 8 m link distance. It
achieves zero-BER at 6.1 m distance outdoors, compared
to zero-BER at 6.5 m indoors with low ambient light. The
link distance under low light is slightly larger because of
its higher SNR. This demonstrates that our RX design is ro-
bust to strong sunlight, bene�ting from the narrow emission
bandwidth of laser light and spectral �ltering.
Air Turbulence. Air turbulence is known to a�ect light
propagation due to the change in pressure/temperature [34,
73]. We next investigate its impact on the laser link and ultra-
sonic sensing. Given that pressure/temperature di�erentials
are di�cult to generate without dedicated equipment, we
generate air current with a typical tabletop fan. Speci�cally,
we place a laser and target 13 m apart. Next, we align the
laser so it is in the middle of the target. We then place a fan on
one side of the laser and turn it to its highest setting. Within
one minute, we observed no changes in beam’s alignment.
The reason is that the distances supported by the system are
immune to their e�ects, since air turbulence only degrades
the signal quality at distances greater than 1 km [81].

Furthermore, we investigate the accuracy of our ultrasonic
sensing with the inclusion of wind. We place a fan close to
the acoustic path of the ultrasonic sensor that is continuously
measuring the distance to the water surface. Results show
that the measurement accuracy is not a�ected by the air �ow
or the acoustic noise caused by the wind. This is because the
velocity of sound (340 m/s) is higher than wind (a few m/s)
and the acoustic frequency of ultrasonic sensors is beyond
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that of wind in the audible range.
Water Turbulence. We also investigate whether water tur-
bulence has an impact on the laser beam’s propagation. We
place a laser on one end of a 50-cm �sh tank and a crosshair
target on the other, aligning the two when the water is still.
We then stir the water turbulently and observe the beam’s
propagation through the water. As long as the beam does
not strike any object or the water’s surface, we observed that
the path remains throughout the turbulent �ow. This result
is expected given the short range tested. Similar to air tur-
bulence, water turbulence is caused by changes in pressure
and temperature [72, 78]. In other words, turbulent changes
in temperature/pressure cause the refractive indices of ed-
dies to change and bend light as it travels along its path.
Water turbulence, however, can be much higher than in the
atmosphere given the higher density levels underwater [35].
6.3 Ultrasonic Sensing
Our �nal set of experiments examines the accuracy of the
ultrasonic sensing component.
Sensing in the Air. First, we evaluate the e�cacy of ul-
trasonic sensing with a benchmark experiment. Because ac-
curate reconstruction of liquid surfaces remains an open
question in computer vision [20, 38, 56, 76] and also in ocean
engineering where numerical models used for predicting
ocean waves are at kilometer scale [23,48,66], we are unable
to obtain the ground truth of an actual water surface. There-
fore, we emulate the shape of waves by curving a piece of
glossy poster paper by a peak-to-peak amplitude of 10 cm
and wavelength of 24 cm. The sensor array is placed 20 cm
above the emulated wave. We move the sensor array above
di�erent sections (e.g., crest and trough) of the wave to show
the �exibility of the bicubic surface model. We manually
measure the wave height at multiple positions as ground
truth. Results show our sensing method and surface model
successfully sense the height of the wave and reconstruct
the wave shape with a median error of 1.5 cm.
Sensing in theWater. We validate the e�cacy of underwa-
ter ultrasonic sensing with another benchmark experiment.
We place a BlueRobotics Echosounder on a BlueRobotics
BlueROV 2 underwater robot and record the acoustic dis-
tance over time. We sent 16 pings/second, �xed the gain
to -4.4, and decreased the speed of sound from 1450 m/s to
1400 m/s to compensate for the chlorine water in the pool.
Additionally, we use a tape measure to measure the distance
from the sensor to the surface. After varying the distance
between 56 cm and 89 cm, we observed an accuracy of 0.5 cm
to 1 cm depending on the depth (the resolution decreased
with larger ranges), which is similar to that in the air. Thus,
we expect an array of sensors should perform similarly.
7 Discussion
Mobility. Currently, when our receiver changes its loca-
tion (e.g., moves from the air to under water), the transmitter
is unable to track and steer. However, since our transmitter

is capable of steering to any arbitrary location within full
hemisphere, we expect it can solve the mobility problem as-
sociated with air-to-water communication. The small beam
divergence associated with laser light can enable the trans-
mitter’s laser beam to be reused for passive sensing. In that
scenario, accurate retrore�ectors can be collocated with each
receiver and allow the transmitter to sense whether it has hit
its target. The transmitter can then switch to transmission
mode for a �xed duration and then resume sensing once
complete. We can also combine the acoustic sensors and the
retrore�ected laser light to locate the receiver underwater to
provide the coordinates of the receiver as input to determine
the path while the receiver is moving.
Analog Receiver. Another ongoing work is to enable real-
time demodulation with an analog circuit and microcon-
troller. Our analog circuit is a cascade of four stages: (1) am-
pli�er, (2) envelope detector, (3) comparator and (4) demod-
ulator. After ampli�cation, the signal’s long-term average
amplitude is extracted with the envelope detector. When-
ever the signal exceeds half of its long-term average ampli-
tude, the comparator trips, and an OPPM pulse is registered.
The threshold and original unbiased signal are then fed to
a nanosecond-level comparator to determine whether the
received voltage is an OPPM pulse. To determine the timing
between pulses, we feed the output of the comparator to a
time-to-digital converter (e.g., TI TDC7201-ZAX-EVM). After
synchronizing the clocks of the transmitter and the receiver,
we can use an o�-the-shelf microcontroller (e.g., Arduino) to
start the timer before each symbol. The comparator output
is then wired to stop the time-to-digital converter, which
stores timing information until encountering the next stop
signal. To ensure that no pulses are lost, the microcontroller
reads the previous timing information before sending the
next start signal.
Improving Wave Sensing. Since the sensing accuracy
a�ects the accuracy of the wave reconstruction, it also con-
tributes to the accuracy of the laser beam steering. There-
fore, if we can further improve the sensing accuracy and
latency, then we can reduce the ultrasonic beam angle, utilize
a lower power transceiver, and still maintain the reliability
and throughput of the link. First, we can greatly increase
the frame rate of the waving sensing by frequency division
multiplexing. The current acoustic sensor array relies on
sequential distance measurements to prevent interference.
Assigning near sensors to di�erent acoustic frequencies, how-
ever, can eliminate the interference at the cost of more ex-
pensive sensors with broader modulation bandwidth [43].
Second, given the form factor of ultrasonic sensors (∼1 cm),
we are unable to achieve a spatial resolution as high as that
of cameras because of the limited number of depth samples.
To overcome this limit, we can employ compressed sensing
to reconstruct wave shape with �ner granularity by inco-
herent sampling conditioning on the sparsity of the spatial
frequency of water waves. The challenge of applying com-
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pressed sensing is its high computational cost [27] due to
the real-time requirement of laser beam steering. Third, we
can exploit the characteristics of the water waves in the time
domain to improve the accuracy. For example, we can lever-
age Guassian process to model the similarity of frequencies
at near positions of the wave.
Real-World Evaluation. We recorded various preliminary
ocean dynamics to validate our AmphiLight methodology
and simulation results. Speci�cally, we built a waterproof
buoy to measure the frequency and peak-to-peak amplitude
of waves in Barbados over a two-day period. From our re-
sults, we observed waves with an average frequency between
1 Hz and 1.5 Hz and peak-to-peak amplitudes between 5 cm
and 8 cm. Furthermore, we measured the throughput of our
system under the same wave conditions, and observed an av-
erage throughput of 3.1 Mbps corresponding to a connection
time of only 61%. Comparing these measurements to our sim-
ulation results in Fig. 13, our AmphiLight system is capable
of compensating for waves with these characteristics.

In terms of link range, the maximum distance achievable
in a real-world environment depends on the laser and ul-
trasonic sensors. As for the laser, the limiting factor is the
optical output power (i.e., the higher power the laser, the
farther it will travel before attenuating). In our implementa-
tion, there was some optical output power loss in the optical
circuit. Speci�cally, our �sheye lens had an optical loss of
≈10.5% and extensive scattering right after exiting the lens.
Additionally, the sensing range of the ultrasonic transceivers
was another limiting factor. In our current prototype, low-
cost transceivers emit low-power waves with large beam
divergences, limiting the link range to a few meters. To ac-
commodate real-world scenarios, where the waves are dy-
namic and unpredictable, the laser power and sensing power
should be increased and beam divergence decreased (e.g. < 1
degree) to maintain a su�cient range.

8 Related Work
Air-Water Communication. Air-water communication
is a topic far less explored. An early work [55] in 1992 re-
ported a laser link between an aircraft and a submerged
submarine, though minimal details about the system design
and implementation were disclosed. In the concept �gure,
the aircraft broadcasts a laser beam with large �eld of view,
which potentially imposes a high energy budget. A later
work [21] demonstrated a static laser link achieving 5.3 Gbps
data rate over a 5-m air channel and a 21-m water channel,
using benchtop equipment (e.g., benchtop power supplies,
arbitrary wave-form generator). It validated the potential of
laser light for air-water communication, though assumed a
static environment without addressing practical challenges
such as scattering and waves. [71] further considered the
impact of water height on laser communication to build an
adaptive water-air-water link. Assuming a calm water sur-
face, their proposed system does not address issues arising

from capillary waves common in real applications. [80] fo-
cused on advancing modulation scheme design to mitigate
the impact of atmospheric turbulence. Although a water
channel was also included as part of the propagation path in
the evaluation, no water-related dynamics were addressed
in their design. Unlike above works exploring narrow-beam
laser light with strict alignment requirements, [63] studied a
di�use optical link with di�erent modulation schemes (e.g.,
OFDM, QAM) and the impact of waves on the resulting data
rates. In comparison, our work considers a narrow and colli-
mated laser beam to save energy while presenting systems so-
lutions to address water wave movement. A recent work [67]
combined acoustics and RF to realize the direct link from
water to air. Our work di�ers in that (1) we explore a dif-
ferent medium, (2) our methodology supports bidirectional
communication, and (3) we achieve much higher data rates.
WirelessOptical Communication. Wireless optical com-
munication has been well studied in airborne and underwater
scenarios individually [45, 62, 79, 81]. The highest reported
data rates are 40 Gbps for an airborne link (tested between
two buildings∼1 km apart using a laser with an undisclosed
optical power [31]) and 12.4 Gbps for an underwater link
(evaluated in a water tank up to ∼10 m [74] using a 26 mW
laser). In water, the attenuation of light (0.39 dB/m) falls
between acoustic (0.1–4 dB/km) and RF (3.5–5 dB/m), result-
ing in a typical communication range of tens of meters [45].
Speci�cally for robotics applications, [25] demonstrated the
use of an LED-based optical link for remote control of their
robot. Inspired by these prior works, we establish an optical
link across the air-water boundary. We focus on using o�-the-
shelf hardware to build a portable transmitter and receiver
suitable for mobile underwater and aerial robots. Further-
more, we address practical systems challenges speci�cally
related to wave dynamics to enhance link robustness.
9 Conclusion
We presented AmphiLight, a new system framework that
enables a bidirectional air-water communication link using
laser light. The implemented prototype uses an o�-the-shelf
MEMS mirror, �sheye lens, LD, and SiPM. Together, with the
ultrasonic sensing design, the system performs robustly in
real-world experiments. Final results showed throughputs
up to 5.04 Mbps at 6.5 m in the air and 2.5 m underwater,
making AmphiLight a promising technology to be deployed
on �ying and underwater drones.
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Abstract

Modern cloud systems have a vast number of components
that continuously undergo updates. Deploying these frequent
updates quickly without breaking the system is challenging.
In this paper, we present Gandalf, an end-to-end analytics
service for safe deployment in a large-scale system infras-
tructure. Gandalf enables rapid and robust impact assessment
of software rollouts to catch bad rollouts before they cause
widespread outages. Gandalf monitors and analyzes various
fault signals. It will correlate each signal against all the ongo-
ing rollouts using a spatial and temporal correlation algorithm.
The core decision logic of Gandalf includes an ensemble
ranking algorithm that determines which rollout may have
caused the fault signals, and a binary classifier that assesses
the impact of the fault signals. The analysis result will decide
whether a rollout is safe to proceed or should be stopped.

By using a lambda architecture, Gandalf provides both real-
time and long-term deployment monitoring with automated
decisions and notifications. Gandalf has been running in pro-
duction in Microsoft Azure for more than 18 months, serving
both data-plane and control-plane components. It achieves
92.4% precision and 100% recall (no high-impact service out-
ages in Azure Compute were caused by bad rollouts) for data-
plane rollouts. For control-plane rollouts, Gandalf achieves
94.9% precision and 99.8% recall.

1 Introduction

In a cloud-scale system infrastructure like Microsoft Azure,
various teams need to frequently make software changes in
code and configurations to deploy new features, fix existing
bugs, tune performance, etc. With the sheer scale and com-
plexity of such infrastructure, even a small defect in updating
one component may lead to widespread failures with signif-
icant customer impact such as unavailability of the virtual
machine service. Indeed, many catastrophic service outages
are caused by some small changes [2, 3, 4, 5, 19].

Each software change, therefore, must be rigorously re-

viewed and extensively tested. Nevertheless, some bugs could
remain uncaught due to the discrepancies between testing and
production environment in cluster size, hardware SKU (stock
keeping unit), OS/library versions, unpredictable workloads,
complex component interactions, etc.

Thus, even when a software change passes testing, instead
of updating all nodes at once, it is common practice to apply
the change to production gradually following a safe deploy-
ment policy in the order of stage, canary, pilot, light region,
heavier region, half region pairs, other half of region pairs.
Figures 1 and 2 respectively show the scope and duration
for rollouts in Azure infrastructure. More than 70% of the
rollouts target multiple clusters, and more than 20% of the
rollouts last for 1,000+ minutes.

Such characteristics imply that the very process of rolling
out changes in production during the deployment phase
presents an opportunity to catch bad changes in a realistic
setting. If faults caused by a deployment can be caught at
an early stage, it allows the release manager to stop the bad
deployment and roll back the change in time to prevent it from
causing broader impact such as a whole-region or worldwide
unavailability.

Yet, accurately assessing the impact of a deployment in a
cloud system is challenging. Solutions like component-level
watchdogs [31] that check for a handful of component-level
fault signatures are effective for capturing obvious, immedi-
ate issues. They alone, however, are insufficient in catching
production issues that are minor locally but severe globally
across clusters and/or regions. They may also miss latent is-
sues such as memory leaks that happen hours after a rollout.
Additionally, a component-level watchdog may fail to catch
issues that arise only when interacting with other components,
e.g., cross-components API contract violations.

Besides false negative, false alarm poses another challenge.
Figure 3 plots the number of deployments in Azure during
a recent three-month window. We can see that hundreds of
rollout tasks are happening every day. In addition, transient
faults such as service API timeouts and temporary network
issues are common in production. All of these events can eas-
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Figure 1: CDF of the scope (number of
target clusters) of a rollout.
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Figure 2: CDF of the rollout duration (in
minutes).
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Figure 3: Number of rollout tasks per day.
The red dotted line is a trend line.

ily mislead a local deployment health monitor to incorrectly
attribute a failure to an innocent rollout. These false alarms
would cause the innocent rollout to be stopped and prevent
timely changes from being applied. Even worse, develop-
ers also waste significant time and resources in investigating
such false alarms. Consequently, they would not trust future
decisions from the monitoring system.

In this paper, we present Gandalf, an end-to-end analyt-
ics service that addresses the aforementioned challenges to
ensure safe deployment in cloud infrastructure. Instead of ana-
lyzing each rollout separately based on individual component
logs, Gandalf takes a top-down approach to assess the impact
of rollouts holistically. Gandalf continuously monitors a rich
set of signals from the infrastructure telemetry data including
service-level logs, performance counters, and process-level
events. When a system anomaly is detected, Gandalf analyzes
if it is caused by a rollout. If a bad rollout is identified, Gandalf
makes a “no-go” decision to stop it. Gandalf also provides
detailed supporting evidence and an interactive front-end for
engineers to understand the issue and the root cause easily.

The core decision logic of Gandalf is a novel model com-
posed of anomaly detection, correlation analysis and impact
assessment. The model first detects anomaly from raw teleme-
try data. It then identifies if a rollout is highly correlated to
the detected failures through both temporal and spatial corre-
lation and an ensemble ranking algorithm. Finally, the model
uses a Gaussian discriminant classifier to decide if the impact
caused by the suspicious rollout is significant enough to stop
the deployment.

We design Gandalf system with a lambda architecture [6],
combining a real-time decision engine with a batch deci-
sion engine. The real-time engine monitors a one-hour time-
window before and after the deployment to detect immediate
issues; the batch engine analyzes system behavior in a longer
time-window (30 days) to detect more complex, latent issues.
When Gandalf identifies a bad rollout, it automatically notifies
the deployment engine to stop the rollout and fires a ticket
with supporting evidence to the owning team.

Gandalf has been running in production for more than 18
months to ensure the safe deployment of Microsoft Azure
infrastructure components (e.g., host agents for Compute and
Network, host OS). In an 8-month usage window, for data-
plane rollouts, Gandalf captured 155 critical failures at the
early stage and achieved a precision of 92.4% with 100%
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Figure 4: Different rollouts in Azure and impact of a bad rollout.

recall (meaning that no high-impact incidents, i.e., Sev0-2
outages, were caused by bad rollouts); for control plane, Gan-
dalf achieved 94.9% precision and 99.8% recall, with only
two missed issues and two false alarms while monitoring
1200+ region-level deployments. Gandalf has made a signif-
icant contribution to getting Azure availability closer to its
99.999% objective by limiting the blast radius of customer
VM downtime caused by unsafe rollouts.

Gandalf has also improved the deployment experience for
release managers: (1) from looking at scattered evidence to
using Gandalf as a single source of truth; (2) from being
skeptical about Gandalf decisions to enforcing them; (3) from
ad-hoc diagnosis to interactive troubleshooting.

2 Background and Problem Statement

2.1 Deployment in IaaS Cloud
In IaaS cloud, the software stack on the physical nodes and
virtual machines (VM) consists of many layers of components.
Each component may frequently undergo changes on its inde-
pendent rollout schedule to add features and fix bugs. These
rollouts need to be executed with high velocity and minimum
customer impact. For example, in early 2018, Azure quickly
deployed a fix to mitigate the Meltdown [30] and Spectre [26]
CPU vulnerabilities through a host OS update to keep Azure
customers secure. The updates were deployed to millions of
nodes that host customer VMs.

As shown in Figure 4, two main kinds of rollouts happen
in Azure. The data-plane rollouts deploy changes for com-
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ponents running within the hosting environment of customer
VMs. For Azure, those components include the host OS, the
guest OS, and various software plugins, called agents, inside
the host and guest OS. In contrast, control-plane rollouts de-
ploy changes to tenant-level services. These services are com-
posed of distributed running instances to manage the system
infrastructure and provide interfaces for their functionalities.
These control-plane components include the Azure Resource
Manager (ARM) [1], which allows customers to query, cre-
ate, update, and delete VMs with REST APIs and the CR-
P/NRP/DiskRP (Compute/Network/Disk Resource Provider),
which handle customer requests and provision corresponding
resources (e.g., virtual disks for VMs). These services are typ-
ically structured as loosely-coupled microservices in Azure
that communicate with each other via APIs. While loose cou-
pling allows each service to be deployed independently, their
deployments also have intricate impacts on each other. Thus,
a simple change in one service, while causing no failure in
that service, might break the contract with another service and
affect a large number of customer API calls if the defective
change gets deployed to production.

2.2 Deployment Monitoring System

Requirements To ensure high availability of the VMs and
services, rollouts are carefully monitored. Traditionally, safe
deployment is a manual process that relies on email commu-
nications, multi-party approval, ad-hoc build test validation,
and experience-based decisions, which is unsustainable at the
scale of Azure. An automated deployment monitoring system
is needed to globally oversee rollout progress and automati-
cally stop bad rollout before it causes widespread impact. A
deployment monitoring system should detect various anoma-
lies in the large volume of infrastructure telemetry data. In
addition, the monitoring system should accurately analyze
if the observed failure is caused by a bad deployment or by
another issue (e.g., random hardware faults). For the former
case, the system should attribute the failure to the responsi-
ble deployment among all the ongoing deployments, stop the
rollout immediately, and provide supporting evidence for de-
velopers to speed up further investigation. For the latter case,
the system should not incorrectly blame and stop an innocent
deployment.

Target Based on our experience, four kinds of failures hap-
pen in production environment: (1) hardware issues that hap-
pen randomly, e.g., due to firmware bugs, temperature; (2)
chronic software “hiccups”, e.g., due to race conditions; (3)
hardware-induced outages, e.g., power outage, broken net-
work cable; (4) software outage due to bad code or settings
in a recent build. Ambient software/hardware issues can be
surfaced through separate anomaly detection solutions. In this
work, we focus on deployment-related outages, i.e., category
(4). Among the four layers of safe-deployment mechanisms

Quality-control in testing env.

Safe deployment process policy

Component-level watchdog

Global intelligent deployment 

monitoring service: Gandalf

Figure 5: Azure’s four-layer mechanisms to ensure safe deployment.

in Azure as shown in Figure 5, Gandalf serves as the last
safeguard, focus on catching system-level failures, including
non-obvious and latent issues, caused by bad deployments.

3 Gandalf System Design

The importance of catching failures during rollouts and the
complexity of rollouts in Azure infrastructure motivate the
design and implementation of Gandalf. Gandalf is an end-
to-end, continuous monitoring system for safe deployment.
It automates the assessment of rollout impact, the approval
or stopping of a rollout, the notification to the owning teams,
and the collection of detailed evidence for investigation.

3.1 Design Challenges
In designing Gandalf, we need to address several challenges.

Supporting changes in system and signals. In Azure infras-
tructure, hundreds of thousands of update events with a large
number of fault signals happen every day across the software
stack in millions of physical nodes, VMs, and tenants. Gan-
dalf needs to ingest a comprehensive set of data sources and
efficiently process them in order to provide timely responses
to developers. Furthermore, since Azure extensively employs
agile development and micro-service designs, new compo-
nents emerge and existing components evolve with changing
failure patterns and telemetry signals [37]. Gandalf needs to
support easy onboarding of new components and telemetry
signals while maintaining a robust core decision logic.

Dealing with ambient noise. Ambient faults happen fre-
quently due to diverse reasons such as hardware faults [20],
network timeouts, and gray failures [24]. Many of them are
unrelated to deployments and can be successfully tolerated.
Gandalf needs to deal with such noise. Figure 6 shows an
ambient noise example: container faults happened before and
after a host OS update on 200+ clusters in Azure; but they
were not caused by the host OS deployment—instead, they
were caused by firmware defects that prevent the container
from starting. User behaviors also affect failure patterns. For
example, a customer might invoke a large number of CreateVM
calls during weekdays. This could lead to an increase of API
failures on weekdays and a decrease on weekends. Only mon-
itoring the increase of faults after a deployment could then
result in a wrong conclusion.
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Figure 6: Ambient faults in deployment.

− 60 − 40 − 20 0 20 40 60

Deployment age (minutes)

0

20

40

60

80

#
 o

f 
im

p
a
c
te

d
 n

o
d
e
s

Deployment starts

Figure 7: Spike of faults after deployment.
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Figure 8: Latent faults after deployment.
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Figure 9: CDF of component count rolled out per cluster in a day.

Balancing speed and coverage. Developers want to get im-
mediate feedback on bad rollouts. Figure 7 shows a typical
spike of node faults that happened minutes after a bad rollout.
Gandalf needs to quickly alert and stop the bad deployment
upon detecting such failures. But a quick decision may be
unsound if the failure patterns are subtle. Figure 8 shows an
example of a latent issue detected more than 32 hours after the
deployment. From the figure, we can see that there is no obvi-
ous spike after the deployment of the component. The faults
are observed slowly in a long period. Those latent failures
are usually only triggered by specific user workloads, e.g.,
accessing a specific directory or turning on a system service.
Therefore, Gandalf needs to detect cross-cluster, latent issues
even when a rollout has been ongoing for a while. Covering
such latent issues takes longer time by nature.

Identifying the culprit. An n-to-n mapping relationship ex-
ists between components and failures: one component may
cause multiple types of failure, while a single type of failure
may be caused by issues in multiple components. Figuring
out which failure is likely caused by which component is not
easy due to the complexity of component behaviors. Figure 3
shows that more than 300 deployments take place in Azure
every day and the number is increasing. Figure 9 further plots
the number of deployment on a cluster per day, showing that
about 45% of the clusters have multiple deployments per day.

3.2 System Overview

Figure 10 shows the overview of Gandalf. Gandalf takes a
top-down approach in deployment monitoring by consuming
telemetry data across clusters for holistic analyses. Gandalf
processes three types of data: (1) performance data such as
CPU performance counters and memory usage in the node;
(2) failure signals such as agent faults, container faults, OS
crashes, node reboots and API call exceptions; (3) update

events that describe the component deployment information.
In order to balance speed and coverage for safe deployment,

the analysis engine of Gandalf is structured in a lambda ar-
chitecture [6] with a speed layer and a batch layer. The speed
layer focuses detects simple, immediate issues and provides
quick feedback to developers. The batch layer detects latent,
more complex failures and provides more detailed evidence
for developers to investigate the issue.

The analysis results from the streaming processed data and
batch processed data are consolidated into the serving layer.
The serving layer is built as a highly-reliable and scalable
web service. The web service stores the analytics results in
batch and streaming tables and provides interfaces for various
reporting applications to consume the results. The applica-
tions include a monitoring front-end for developers to view
the rollout status in real-time, a diagnosis UI for investigating
problematic rollout, and REST APIs to directly query the
result data. Based on the decisions, Gandalf will notify the
corresponding component team and create an incident ticket
accordingly. Besides notifications, Gandalf publishes the bi-
nary decisions for different components into a key/value store
to communicate with the deployment engine. The deployment
engine subscribes to the signals in the key/value store and
stops the rollout if a “no-go” decision is made.

3.3 Data Sources
As a deployment monitoring system, Gandalf continuously
ingests deployment events in the Azure infrastructure. These
events describe the software build version along with the
deployment timestamp and location information. To focus
on the system-level impact of rollouts, Gandalf consumes
comprehensive signals from various data sources such as ser-
vice logs, Windows OS events, performance counters, and
machine/process/service-level exceptions. Typically each sig-
nal is ingested from a separate table in the telemetry data
collected in Azure infrastructure. For certain signals, Gan-
dalf performs pre-processing to parse the raw data (e.g., log
messages) and extract a failure signature (e.g., an error code).
These pre-processed signals are aggregated based on their
timestamps, node IDs and service types during the analysis.

When onboarding a new component to Gandalf, the com-
ponent team needs to provide information about where Gan-
dalf can get the deployment events and the telemetry signals
relevant to the component. To ease the correlation analysis
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Figure 10: Overview of Gandalf system.

Attribute Description

Timestamp When the deployment event completes
Location Node, cluster, region, etc.
Pivot Group Hardware SKU, environment, etc.
BuildVersion Build version identifier
AdditionalInfo Additional information of the event

Table 1: Gandalf deployment event input data schema.

Attribute Description

Timestamp When the fault occurs
Location Node, cluster, region, etc.
Pivot Group Hardware SKU, environment, etc.
Signature Fault signature
AdditionalInfo Additional diagnosis information

Table 2: Gandalf fault signal input data schema.

between telemetry signals and deployment events, Gandalf
requires the information to be structured in a unified data
schema as shown in Table 1 and Table 2.

3.4 Stream and Batch Processing
To balance speed and coverage, Gandalf is designed in a
lambda architecture [6] with both streaming and batch anal-
ysis engines. The speed layer consumes data from a fast
pipeline, Microsoft Kusto [7], which is a column-oriented
cloud storage supporting analytics with a few minutes of data
source delay and up to seconds of query delay. Kusto has a
custom query language based on the data-flow model, with
native support for streaming operators. Although Kusto has
short delays, it cannot efficiently handle a large volume of
data using complex algorithms. Therefore, the analysis engine
in the speed layer only considers fault signals that happen 1
hour before and after each deployment in each node, and runs
lightweight analysis algorithms to provide a rapid response.
In Azure, most catastrophic issues happen within 1 hour af-
ter the rollout. Latent faults occurring after 1 hour will be
captured by the batch layer later.

The Gandalf batch layer consumes data from Cosmos,
which is a Hadoop like file system that supports SQL-like

query language with up to hours of data source delay. De-
spite the relatively long delay, Cosmos is an ideal platform
for processing an extremely large volume of data using com-
plex models (e.g., it supports external C++ plugins) to detect
complex failure and latent issues. This allows the batch layer
to analyze faults in a larger time window (30-day period) with
advanced algorithms. The lambda architecture allows us to
provide both fast decision making and higher coverage over
time. A no-go decision can be triggered anytime within the
window if the impact scope is large enough.

Both stream and batch analysis in Gandalf are performed in
an incremental fashion. Every 5 minutes, the stream process-
ing fetches the latest data streams from Kusto and passes it to
the analysis engine in the speed layer. The batch processing
runs as an hourly Cosmos job to process the data since the
last processing time. The partial results from analyzing each
5 mins mini-batch or hourly batch are aggregated with other
partial results in the analysis window to update the overall
result. The incremental analysis improves the efficiency as
well as the fault tolerance of Gandalf—if the analysis job is
restarted, it can resume from the last checkpoint.

3.5 Result Orchestration and Actions
The serving layer of Gandalf is implemented as a highly-
reliable and scalable web service using the Azure service
fabric framework [8]. After each run of Gandalf’s anomaly
detection and correlation algorithms (which we will describe
in Section 4), the results from the speed and batch layers are
stored in two separate reporting tables through the web ser-
vice. These results contain the deployment impact assessment,
the recommended decisions (“go” or “no-go”), the anomaly
patterns, the correlation information, etc.

In general, the telemetry data Gandalf analyzes is both
streamed into Kusto and dumped into Cosmos hourly/daily.
Given that the data ingested by the speed and batch layer is
essentially the same, the reporting results in the two tables
are mostly consistent. For example, if the speed layer quickly
detects a bad deployment, the batch layer will likely catch it as
well, albeit slower. The scenarios when they are inconsistent
is mainly when the batch layer reaches a “no-go” decision
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while the speed layer decides a go. This is by design since the
batch layer makes more informed decisions and covers latent
issues that the speed layer cannot detect.

Various DevOps applications pull the results from the re-
porting tables. This way, the Gandalf system is well integrated
into the DevOps workflow. Among the applications, the most
important one is the notification service. When the notifica-
tion service notices a new no-go decision, it sends an email
about the decision to the owning team and creates an incident
ticket with details. It also notifies the deployment engine via
a key-value store to approve or stop the rollout.

3.6 Monitoring and Diagnosis Front-End
Gandalf provides a web front end to enable real-time rollout
monitoring and issue diagnosis support for release managers
and developers. The feature teams can proactively watch the
rollout KPIs (e.g., rollout progress, NodeFaults, Container
Faults, OS Crashes, Allocation Failures and etc.) in real-time
while waiting for the decision from the Gandalf notification
service. After the decision of a rollout is made and sent to the
corresponding team, Gandalf provides information to help de-
velopers investigate the issue and make a quick fix as needed.
For example, Gandalf provides pivot information of the iden-
tified issues (i.e., the issue happens only in instances that have
specific attributes like SKU).

The Gandalf front-end provides the following views: (i)
a binary decision page that summarizes all rollout decisions
for different components and build versions in different en-
vironments; (ii) a rollout profile page that displays the batch
processed decisions and associated diagnosis information;
(iii) an issue profile page for a bad rollout with diagnosis
information such as the impacted nodes and clusters or the
trend in different environments; (iv) a real-time tracking page
that shows the rollout progress, related failures, etc.

4 Gandalf Algorithm Design

Existing Algorithms. In designing the algorithms for Gan-
dalf, we considered existing options from supervised learning,
anomaly detection and correlation analysis but found major
limitations for each of them. Supervised learning is difficult
to apply because system behaviors and customer workloads
as well as failure patterns and failure-update correlation keep
changing. In addition, learning from historical change be-
haviors does not necessarily help predict the future mapping
between failure patterns and new updates. Existing anomaly
detection algorithms alone are also insufficient. This is be-
cause many rollouts may happen simultaneously in the in-
frastructure but anomaly detection itself does not tell which
deployment is responsible for the anomalies. For correlation
analysis, most state-of-the-art methods focus on temporal
correlation based on Pearson correlation [34], which cannot
capture the complex causal relationship in our scenario.
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Time
Decaying
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Figure 11: Gandalf correlation model.

Overview. The Gandalf model consists of three main steps:
(1) anomaly detection detects system-level failures from raw
telemetry data; (2) correlation analysis identifies the compo-
nents responsible for the detected failures among multiple
rollouts; (3) the decision step evaluates the impacted scope
and decides whether the rollout should be stopped or not. The
correlation step in (2) is further divided into four parts, namely,
ensemble voting, temporal correlation, spatial correlation and
exponential time decay. Figure 11 shows the overall analysis
process in the Gandalf. In the following Section, we describe
each step of the algorithm in detail.

4.1 Anomaly Detection
The raw telemetry data that Gandalf analyzes, such as OS
events, log messages, and API call statuses, may be impre-
cise. Therefore, Gandalf first derives concise fault signatures
from raw data to distinguish different faults. A raw fault
event log usually contains both error codes and error mes-
sages. One error code could map to multiple faults if it is too
generic. For example, a POST API call that requests compute
resources could return HTTP ERROR 500 for different reasons
like AllocationFailure or NetworkExecutionError. Directly
analyzing the error codes would mix different faults, diluting
the signal and leading to wrong conclusions. The error mes-
sages, on the other hand, are usually non-structured plain text
with many unnecessary details. Gandalf processes the raw er-
ror messages and applies text clustering [10] to generate fault
signatures. We first replace the unique identifiers such as VM
ID, subscription ID with dummy identifiers using an empirical
log parser similar to prior work [18, 22]. Then we run a simpli-
fied incremental hierarchical clustering model [36] to group
up all processed text into a set of error patterns, e.g., “Null
References” grouped together with NullReferenceException.

After obtaining the fault signatures, Gandalf detects anoma-
lies based on the occurrences of each fault signature. Ambient
faults, such as hardware and network glitches or gray fail-
ures [24], are common in a large-scale cloud system. Simple
threshold-based anomaly detection is ineffective because the
system and the customer behaviors change over time. With
thousands of signatures, it is also unrealistic to manually set
thresholds for each. Gandalf instead estimates the baseline
from past data using Holt-Winters forecasting [14] to detect
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anomalies. The training period is set to the past 30 days and
the step interval is set to one hour. When the observed value
deviates from the expected value by more than 4σ, the point
will be marked as an anomaly.

For some components, the occurrences of different fault sig-
natures vary significantly. For example, the volume of client
errors could be much higher than platform errors. To bet-
ter compare the impact of different fault signatures, Gandalf
calculates z-score [28], zi =

xi−µ
σ

, for each anomaly against
historical data in its correlation process.

4.2 Correlation Analysis
A detected failure may not be caused by a bad rollout but
other factors such as random firmware issues. In addition,
at any point, many concurrent rollout tasks can take place
in a large system. Therefore, once anomalies are detected,
Gandalf needs to correlate the observed failures with deploy-
ment events, and evaluate the impact of the failure on the fly.
Note that this identified component might be the triggering
component but not necessarily always the root cause.

4.2.1 Ensemble Voting

Since many components are deployed concurrently, we use a
vote-veto mechanism to establish the relationship between the
faults and the rollout components. For a fault e that happens at
timestamp t f and a rollout component c deployed at td on the
same node, each fault e votes for all the components deployed
before it (i.e., td< t f ) within a window size wb and vetoes all
the components deployed after it (i.e, td> t f ) within a window
size wa. Since the deployments are rolled out continuously
on different nodes at different time, as shown in Figure 12,
we aligned the votes V (e,c) and vetoes VO(e,c) for deployed
component c across all nodes based on the fault age as defined
as age(e,c)=t f − td . Pi are the votes aggregated on WDi as

Pi = ∑
k

V (e,c|WDi), (1)

where age(e,c)<WDi. By default, 4 different hour windows
are used as WD1=1, WD2=24, WD3=72, WD4 is the dura-
tion between the deployment and the latest data point; k is
the number of nodes with the pairs. Similarly, B is the veto
aggregated in a single 72 hour window as

B = ∑
k

VO(e,c|WD−1), (2)

where age(e,c)<WD−1 and WD−1=72.

4.2.2 Temporal and Spatial Correlation

After ensembling the votes of faults to the components, we
calculate the temporal correlation score as

ST (e,c) = ∑
i∈[1,4]

wi log(
(Pi−B+1)

B+1
), (3)
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Figure 12: Faults alignment by fault age during ensemble voting.
The circle represents a fault. The vertical bar is when a component
gets deployed in a node. The arrow blames a fault to a deployment,
where the arrow size represents correlation strength.

where Pi > B. wi is the weight of the time window WDi
in Section 4.2.1. This kernel function tries to filter out the
ambient faults.

As we do not have ground-truth samples to train the val-
ues of wi in the above equation, we set them empirically. A
naïve way would be to assign them the same value. This
does not work well in practice because a component deployed
closer to a fault usually has a higher correlation, implying
the constraint w1 > w2 > w3 > w4. We learned over time that
setting exponential weights (EW) for w1 to w4 works well.
The intuition behind exponential weights (EW) is that faults
happening right after the deployment are much more likely
to have causal relationship than the faults happening a long
time after the deployment.

We then evaluate the spatial correlation through

SS(e,c|t1, t2) = N f /Nd f , (4)

where N f is the number of nodes with fault e during the de-
ployment period t1 to t2 for component c, and Nd f represents
the total number of nodes with fault e, regardless of whether
c was deployed during the same period. If SS(e,c|t1, t2)< β,
where β is the confidence level, we will ignore the blaming of
the pair. The confidence level can be set as 99% or 90% for
different sensitivity. We then identify the blamed component
c j by associating the faults to the component with the largest
temporal correlation:

blame(e) = argmax
c j

ST (e,c j) (5)

4.2.3 Time Decaying

The blaming score is calculated based on the fault age as
shown in Equation 3. If the same fault signature appears again,
the fault may still blame the old rollout if the fault age between
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the old rollout and the fault signature is smaller. We need to
focus on new rollouts and gradually dampen the impact of the
old rollout because newly observed faults are less likely to be
triggered by the old rollout. In order to achieve this, we apply
an exponential time decay factors on the blaming score:

blame(e) = blame(e)∗ ( e−t − e−ws

e−1− e−ws
)∗b+a (6)

4.3 Decision process
Finally, we make a go/no-go decision for the component c j
by evaluating the impacting scopes of the deployment such
as the number of impacted clusters, the number of impacted
nodes, number of customers are impacted, etc. Instead of set-
ting static thresholds for each feature, the decision criteria
are trained dynamically with a Gaussian discriminant classi-
fier [9]. The training data is generated from historical deploy-
ment cases with feedback from components teams. Note that
the impacting scope feature set used in this step is typically
organizational policy oriented so it is stable and independent
from software changes or bug fixes. Thus it is feasible to
obtain good labels for this learning approach comparing to
the input features used in correlation analysis.

4.4 Incorporating Domain Knowledge
Gandalf by default treats the input fault signals equally but
also allows developers to specify the importance of certain
faults with customizable weights. The weights are relative
values ranging from 0 to 100, representing the least to the
most importance. The default weight for a fault signal is 1.

Weights are usually adjusted by developers reactively, e.g.,
after investigating a reported issue. For example, developers
for certain service may find out the TimeoutException tend to
be noisy so they reduce its weight to 0.01 for that service; for
the Disk Resource Provider, developers may set the weight
of NullReferenceException to 10 so that Gandalf becomes
more sensitive to this failure signature because it is a strong
indicator of a code bug. If the weight is set to 0, this failure
signature is whitelisted. For example, since developers know
that during the rollout of NodeOSBaseImage, node reboots
are expected, the weight for NodeReboot can be set to 0 to
exclude it from the correlation analysis. In general, developers
rarely set a fault weight to 0 to avoid missing true issues
unless the signal keeps causing false alarms or to encode
special rule like the previous example. Since Gandalf exposes
the weight settings to developers through a database table,
developers sometimes use scripts to adjust weights in a batch,
e.g., lowering weights for all AllocationFailure* signatures.

5 Evaluation

Gandalf is a production service in Azure. In this Section, we
evaluate its business impact, provide three case studies, and
analyze the effectiveness of the core algorithms (Section 4).

Figure 13: User activities of Gandalf real-time monitoring UI.

5.1 Business Impact
Adoption. The Gandalf service has been running in produc-
tion and monitoring the Azure infra rollout safety for more
than 18 months. It has been widely adopted for the deploy-
ments of data-plane components and control-plane services
(Section 2.1) across the entire fleet. Specifically, Gandalf
currently monitors 19 component rollouts in the data plane
including Host OS updates, Agent Package updates, GuestOS
updates, etc., as well as 4 control-plane component updates in-
cluding Compute Resource Provider, Disk Resource Provider,
Azure Front End, and Fabric Controller. Figure 13 shows the
usage of Gandalf front-end by release managers and develop-
ers. Usually, hundreds of page-visits occur every day. When
a large rollout happens, the daily number of page visits can
reach several thousand.

Scale. The Gandalf system processes on average 270K plat-
form events daily, 770K events on peak days, and logs about
600 million API calls per day in the control plane, including
more than 2,000 fault types. The total data volume analyzed
is more than 20TB per day.

Deployment Speed. Gandalf has significantly improved the
release velocity. For each deployment, Gandalf can make
decisions in about 5 minutes end-to-end on the speed layer,
and in about 3 hours on the batch layer. Gandalf cuts the
deployment time for the entire production fleet by more than
half (Figure 14). As a result, billions of customer API requests
will benefit from new features much earlier.

Gandalf streamlines the traditionally cumbersome deploy-
ment workflow. Prior to Gandalf, the component-level watch-
dogs were sometimes noisy or missed important failures.
Thus, extensive email communications were needed among
the release manager, feature owners and dependent component
teams to clear suspicious failure alerts and obtain approval.
As a 24/7 monitoring system, Gandalf removes the majority
of these costs. Meanwhile, Gandalf provides rich supporting
evidence for each alert to facilitate further investigation.

As Azure grows with ever more data to analyze, Gandalf
can benefit from additional innovations that improve the per-
formance of analytics systems [29, 35, 38]. For example, if we
can cut the delay of our streaming layer from 5 minutes to 10s,
it will greatly improve the deployment speed. On the other
hand, even with ultra-low data processing latency, Gandalf
still needs to wait to accumulate enough evidence for high-
confidence decisions. If the rollout quality can be predicted
beforehand, the system will have higher business impact. We
leave this as our future work.
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in each environment.
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Figure 16: Accuracy of tickets issued by
Gandalf in each environment.

5.2 Accurately Preventing Bad Rollouts

Azure enforces a safe deployment policy for all rollouts. Be-
fore a component update can be pushed to production, it must
pass tests in several environments in the order of Stage, Ca-
nary and Pilot. Figure 15 shows the percentage of issues we
detected in different environments for rollouts in the data
plane. We can see that almost all (99.2%) suspicious rollouts
are blocked before reaching production. The rest (0.8%) is
blocked in the early stage of production. This means Gandalf
effectively limits the blast radius of most bad rollouts.

Once Gandalf stops a rollout, it will send an alert ticket to
the corresponding team. Figure 16 shows the accuracy of the
alerting in different environments. We can see that most of
the false alerting are issued in Stage and Canary environment,
which is well aligned to the Gandalf design goal. The false
positive rate in Stage and Canary is higher compared to other
environments because there are higher levels of noisy failure
signals in these environments. Latent issues may mislead the
Gandalf service. For example, a faulty agent update acciden-
tally deletes an important folder but does not cause immediate
faults. Later, a GuestOS update by customer touched that
folder and triggered faults, causing Gandalf to mis-blame the
GuestOS deployment.

Overall, in an 8-month usage window from Jan. 2018
to Nov. 2018, Gandalf captured 155 critical failures at the
early stage of the data-plane rollouts and achieved a precision
of 92.4% with 100% recall (no high-impact incidents were
caused by bad rollouts). The detected failures are diverse,
including agent faults, OS crashes, node faults, unhealthy con-
tainers and VM reboots, which would have caused widespread
availability outages. For the control plane, Gandalf has made
decisions for 1200+ region-level deployments. The precision
is 94.9% and recall is 99.8%. Gandalf filed 39 incidents and
only 2 of them are false alarms. Meanwhile, Gandalf automat-
ically approved all other region-level deployments and only
missed 2 true issues. One false negative occurred because of
incomplete logs. The other was due to the faulty component
throwing generic timeout exceptions instead of specific errors,
which misled Gandalf.

The most common issues Gandalf caught are compatibil-
ity issues and contract breaking issues. Compatibility issues
arise when updates are tested in an environment with latest
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Figure 17: Latent faults caused by network agent deployment.

hardware or software stack but the deployed nodes may have
different hardware SKUs or OS or library versions. Contract
breaking issues occur when the component does not obey its
API specifications and break dependent components.

5.3 Case Studies

We share three representative cases of bad rollouts that Gan-
dalf successfully prevented.

Case I: Cross-component Impact. Release managers tend
to ignore faults from other components, which may miss cross-
component reliability issues. Gandalf makes informed deci-
sion based on anomaly detection and correlation analysis, and
is sensitive to such issues. In one case of deploying a Compute
Resource Provider (CRP) service update, Fabric Controller
(FC) lease failures occurred. When Gandalf first made a no-
go decision for the deployment in Canary regions, CRP team
claimed these failures were irrelevant to CRP rollout based on
their past experience. Therefore, the release manager directly
requested to bypass the no-go decision and unblock the roll-
out. Later on, Gandalf issued another no-go decision in Pilot
regions for the same reason, indicating a strong correlation be-
tween this failure and CRP rollout. With such evidence, CRP
team did a deeper investigation and confirmed it was indeed
a regression in CRP. When the customers in Pilot regions
reported relevant issues, a hotfix had already been deployed.
Because of Gandalf, the regression was caught before it could
enter production.

Case II: Impact in Specific Region. After a rollout passes
the Pilot regions, release managers typically assume the soft-
ware updates are in high quality. But Gandalf keeps monitor-
ing throughout the deployment process. Issues that arise at
this stage are usually not caused by code bugs of the deployed
component but rather the incompatible settings in a specific
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Figure 20: Effectiveness of Window Size.

region. Gandalf is effective in detecting these region-specific
issues. For example, during one DiskRP service deployment,
Gandalf made a no-go decision in SouthFrance, a late-stage
production region. The alert turned out to be caused by a
compatibility bug introduced by another component, which is
only exposed after the latest DiskRP being deployed in this
specific region. With the timely alerting and mitigation, only
3 subscriptions were impacted.

Case III: Latent Impact. Gandalf detects not only immedi-
ate issues that happened right after the deployment but also
latent issues that happen several hours or even days after de-
ployments. Gandalf detects the latent issues in the early stage
and prevents it from affecting customers in production envi-
ronment. Figure 17 shows a deployment case of a Network
Agent in Canary. OS crashed during 24 hours to 72 hours
after the deployment and Gandalf issued a Sev2 alert (i.e.,
large customers impacts). The root cause was a conflict be-
tween old firmware version and new driver version. When the
network agent rollout upgraded the NIC firmware and drivers,
the firmware upgrade script missed one of the hardware revi-
sions. Gandalf accurately attributed the faults to the Network
Agent deployment even though the failures occurred 24 hours
after the deployment, while many other concurrent updates
was ongoing in these clusters.

5.4 Effectiveness of Correlation Algorithms
In this Section, we evaluate the effectiveness of the Gandalf
correlation algorithms. The results are from real rollouts in
Azure between Jan. 2018 to Nov. 2018.

Parameter Settings. wi in Equation 3 is respectively set to 8,
4, 2, 1, so that the weights are exponentially decreased along
the time windows. The spatial correlation threshold β is set
to be 0.8 to tolerate noise in the telemetry data. The ws in
Equation 6 is set to 90 as the longest monitoring period of a
rollout is 90 days. b is set to 1 and a is set to 0.2 so that the
decay factor is scaled between [0.2,1].

Exponential Weights. Figure 18 shows that without the ex-
ponential weights (EW) used in temporal correlation for dif-
ferent time windows, the precision decreases but the recall
remains the same. The reason is that given a spike of faults,
without EW, the blame score is high for a bunch of compo-
nents in addition to the real one, which leads to low precision

but the same recall. EW treats component with different fault
ages differently, which increase the precision.

Spatial Correlation. Figure 18 shows that by incorporating
spatial correlation, Gandalf correlation precision is increased
by 77%. The reason is that multiple components are often
rolled out in similar time frame in a large system. The tempo-
ral correlation results can be very noisy. By incorporating the
spatial correlation, the noisy results can be greatly reduced. As
the algorithm can accurately identify the problematic compo-
nents and prevent it from causing high impacts to customers,
the recall also increases.

Time Decaying. Figure 18 shows that without the time decay-
ing algorithm, the precision decreases by 58.8% and the recall
decreases by 12.7%. The reason is that after a fault (e.g., con-
nection timeout) is detected in a bad rollout, the bug causing
the fault will be fixed. Later, the same timeout fault might still
occur due to other bugs in another component being deployed.
If we do not have the time decaying algorithm, the fault may
be still blamed on the old component while missing the faulty
new component.

Veto. Gandalf uses a veto mechanism to reduce ambient noise.
Figure 18 shows that without the vetos, the precision de-
creases by 8.7% and the recall rate is the same. The reason
is that if the failure signature appears before the rollout, the
failure is more likely not related to the rollout. If we only look
at the failure after the deployment, we are more likely to stop
rollout based on the ambient signals.

Accumulative Effects of Algorithms. Figure 19 shows the
accumulative effect of different algorithms. Comparing Fig-
ure 19 with Figure 18, we can find that the spatial algorithm
and the time decaying algorithm contribute most to precision.
Although the individual algorithm such as veto, exponential
weights is important as shown in Figure 18, without the spa-
tial correlation algorithm and the time decaying algorithm,
their effects alone on precision are relatively small.

5.4.1 Impact of Window Size

Figure 20 shows the effect of window size settings. We can
see that the choices of window size do not significantly affect
precision. This is because the main purpose of different win-
dows is to differentiate the importance of the time between
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Figure 21: Impact of weight settings for control plane.

updates and anomalies. As long as the window size can pro-
vide different weights to the time interval between faults and
update events, the precision should be similar as the spatial
and temporal correlation algorithms are the major contribu-
tor to noise reduction. However, from the figure we can see
that if WD1 and WD2 windows are too large, the precision
decreases. The window size has no effects on the recall due
to the same reason as that of the EW effectiveness.

5.4.2 Effectiveness of Weight Adjustments

Figure 21 shows how weight adjustments impact Gandalf
decisions on the control-plane rollouts from 01/01/2019 to
03/06/2019. In this experiment, we compare Gandalf deci-
sions using customized weights with 1) decisions without
weight adjustment for all new faults (NoNewWs); 2) deci-
sions without weight adjustments for all important faults
(NoLargeWs), i.e., all large weights changed back to 1; 3)
decisions without weight adjustment for all noisy faults (NoS-
mallWs), i.e., all small weights changed back to 1. We can see
that NoNewWs decreases the precision slightly (1.8%) and
decreases the recall significantly (73.2%). NoLargeWs and
NoSmallWs have a similar effect on precision and recall. The
experiments show that customizing weights can significantly
improve recall while maintaining high precision.

From Sep. 2018 to Mar. 2019, 47% of the fault signatures
are assigned with non-default weights, with 5 to 10 weights
customized for a typical component/team. During this period,
only the weights of 18 signatures in total are adjusted 4 times
by developers. Thus, the tuning efforts overall are small.

6 Discussion

Gandalf has been running in Azure production environment
for more than 18 months. In this section, we share perspectives
from our users (Azure engineers and release managers) and
lessons we learned along the way.

6.1 Transforming Deployment Experience

“We can call it a very good day for Gandalf!”

“This is a good case for Gandalf and a lesson or two for us”

“Gandalf has helped our rollout to the better. Thanks!”

– Comments from our users
The impact of Gandalf goes beyond accurately preventing

bad rollouts. We are thrilled to witness how Gandalf has
transformed the engineers and release managers’ experience
in deploying software changes:

From looking for scattered evidence to using a single
source of truth. Before Gandalf was created, component-
level watchdogs are used for safe deployment. These watch-
dogs only have isolated views about individual components.
It is therefore difficult to rely on them for safe deployment.
Consequently, release managers still need manual efforts to
check the deployment behavior from additional data sources
and communicate across related teams for ensuring deploy-
ment safety. The additional communication cost and decision
overhead caused the deployment period to be long. Gandalf
ingests comprehensive data sources in the data plane and
control plane, and runs system-level analysis with anomaly
detection and correlation models. Therefore, Gandalf can pro-
vide a single source of truth with various dimensions.

From skeptic to advocate. When some teams adopt Gandalf,
the experienced engineers may be initially skeptical about
Gandalf’s data-driven approach and its decisions. As Gandalf
detects complex failures that even experts can miss, the engi-
neers start to trust Gandalf decisions and enforce the team to
carefully investigate each “no-go” alert by Gandalf. For many
teams, the deployment policy has become that the rollout will
not continue to the next region unless Gandalf gives a green
light decision.

From ad-hoc diagnosis to interactive troubleshooting.
Before Gandalf, when an alert was sent to a component
team, the engineers needed to write various queries for
multiple data sources or access some sample nodes to
grep the fault traces for diagnosis. Gandalf provides an
interactive diagnosis portal to directly show the fault details.
In particular, Gandalf aggregates the VM-level, node-level
and cluster-level faults and buckets these faults based on
their fault types. For example, faults “Failed function:

RuntimeVmBaseContainer::ValideXBlockBaseDisk:

0x81700035, XDiskLeaseIdMismatchWithBlobOperation:

0xc1425034” will be bucketed into ContainerFault-Creation-
DiskLeaseIdMismatch. Developers can drill down each fault
bucket interactively to inspect the detailed fault source
such as error messages and logs. The portal also shows
the historical baselines to illustrate the difference so that
the developers can better understand the impact scope and
severity. Moreover, the portal shows the pivot analysis results,
e.g., SKU Gen2.3, that highlight potential causes.

6.2 Lessons Learned

We also learned several lessons while we built Gandalf. First,
while F-score is a widely used metric to balance the precision
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and recall of a decision model, in reality, different components
may favor precision and recall differently. For teams with lim-
ited engineering capacity, they often prefer a system that only
sends true alerts so that engineers can focus on investigating
true issues. For teams that manage mission-critical services,
100% recall is a strict requirement. Missing any true issues
causes much more damage than false alarms. A monitoring
system should be tailored for different needs. For example, to
fix the Meltdown and Spectre CPU vulnerability, the updates
needed to be deployed to millions of nodes quickly. Since
the rollout would impact millions of customers, Gandalf was
optimized for extremely high recall and feature teams used
the interactive portal to proactively monitor the rollout. False
alarms were less critical in this scenario as engineer resources
were enough to investigate all Gandalf reported issues.

Second, transparency and supporting evidence are crucial to
build trust. It is difficult to trust machine decisions, especially
on critical tasks. In cloud deployments, the release manager
holds the same opinion because a simple false decision could
be extremely harmful. That is why a black-box service that is
not explainable is hard to be adopted for deployment moni-
toring even if the decisions are highly accurate. To gain trust,
we design the Gandalf model to match the human decision
process and make every step transparent. Gandalf surfaces
rich supporting evidence, including the ranked list of faults,
where the faults occurred, comparison of the time-series sig-
nal data before and after deployment, statistical summaries
of the impact scope (e.g., how many nodes and customers are
affected). Such evidence helps explain to release managers
why Gandalf makes each decision.

Third, analytics models should be adaptive. Many standard
anomaly detection and time series algorithms are ineffective
in a large-scale production system if applied without domain
knowledge. It is almost impossible or at least extremely costly
to learn such domain knowledge purely from the data. This is
especially true when the system is constantly evolving, e.g., an
increasing number of new fault signals will emerge. We work
closely with engineers to continuously incorporate their input
into Gandalf decision model (because domain knowledge may
not be fully discovered in one shot!).

7 Related Work

Time-series based anomaly detection models [13] provide
high-quality alerts in DevOps. Instead of checking raw logs,
DevOps can focus on the anomalous failure events while
new build is rolling out [39]. Hangal and Lam first intro-
duce DIDUCE [21], a practical tool that detects complex
program errors and identifies root causes. Wang et al. [40]
propose entropy-based anomaly testing, which uses arbitrary
metrics distributions instead of fixed thresholds, for online
systems anomaly detection. Fu et al. [17] propose classifica-
tion algorithms to identify performance issue beacons. Laptev
et al. [27] design a generic time-series anomaly detection

framework, EGADS for Yahoo. Cohenet al. [16] use Tree-
Augmented Naive Bayes models (TAN) to correlate SLO with
system states as signatures. Panorama [23] detects gray fail-
ures through instrumenting observability hooks in the source
code of observer components. However, without correlating
anomalies with operational events, these work cannot identify
which rollout is responsible or whether the detected anomalies
are unrelated to deployments.

A number of tools have been built to analyze the correla-
tion between KPI signals and system state changes. Bahl et
al. [11, 12, 15] propose an inference graph that captures the
dependencies between all components of the IT infrastructure
by combining together these individual views of dependency
and tries to locate the root cause. Azure is growing so fast that
it is hard to build such dependency graph accurately at low
cost. Several other methods are proposed for correlating sys-
tems signals and events [25, 32, 33, 41, 42]. But they mainly
focus on extracting correlations in temporal dimension. Pure
temporal correlation is insufficient for accurately identifying
bad rollouts in our scenario.

8 Conclusion

In cloud infrastructures that undergo frequent changes, en-
suring bad rollouts are accurately caught at the early stage is
crucial to prevent catastrophic service outage and customer
impact. In this paper, we present Gandalf, an end-to-end an-
alytics service for safe deployment of cloud infrastructure.
Gandalf assesses system-level impact of deployments by de-
signing anomaly detection, correlation analysis and failure
impact analysis algorithms in its decision model. It uses a
lambda architecture to provide both real-time and batch de-
ployment monitoring, with automated deployment decisions,
a notification service and a diagnosis front-end. Gandalf has
been running in Azure production for more than 18 months.
Gandalf blocked 99.2% of the bad rollouts before they enter
production. For data-plane rollouts, Gandalf achieved 92.4%
precision with 100% recall. For control-plane rollouts, Gan-
dalf achieved 94.9% precision and 99.8% recall.
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Abstract

Network management is becoming increasingly automated,

and automation depends on detailed, explicit representations

of data about the state of a network and about an operator’s

intent for its networks. In particular, we must explicitly repre-

sent the desired and actual topology of a network. Almost all

other network-management data either derives from its topol-

ogy, constrains how to use a topology, or associates resources

(e.g., addresses) with specific places in a topology.

MALT, a Multi-Abstraction-Layer Topology representa-

tion, supports virtually all network management phases:

design, deployment, configuration, operation, measurement,

and analysis. MALT provides interoperability across our

network-management software, and its support for abstrac-

tion allows us to explicitly tie low-level network elements to

high-level design intent. MALT supports a declarative style,

simplifying what-if analysis and testbed support.

We also describe the software base that supports effi-

cient use of MALT, as well as numerous, sometimes painful

lessons we have learned about curating the taxonomy for a

comprehensive, and evolving, representation for topology.

1 Introduction

As our networks get bigger and more complex, we must au-

tomate all phases of network management. Automation de-

pends on precise and accurate representations of the desired

and actual network. While network management requires

many categories of data, the most central is a representa-

tion of desired or actual network topology. Almost all other

network-management data either derives from topology, or

provides policy for how we want to create and use the topol-

ogy, or associates resources (such as IP addresses or hard-

ware inventory) with specific places in a topology.

At Google, we have learned the value of driving our

network management processes, from capacity planning

through network design, deployment, configuration, opera-

tion, and measurement, using a common standard represen-

tation of topology – a “model.” Such a representation needs

to address multiple problems, including:

• Some management processes, e.g., capacity planning,

need to operate on abstractions, such as the amount of

future capacity between two cities (before we know

how that capacity is implemented). Other processes, e.g.,

configuration for routers, or fault localization, must op-

erate on low-level details (fibers, switches, interfaces,

SDN controllers, racks, connectors, etc.). Still other pro-

cesses, e.g., risk analysis, must reason about dependen-

cies between abstract and physical concepts. Therefore,

we must represent multiple levels of abstraction, and

the relationships between them.

• In our experience, it is impossible for an unchanging

schema to successfully represent a constantly-changing

network, especially with frequent technical innovations.

Therefore, the representation must support extensibility

and evolution as first-class features.

• We must support constant change to our network, with

many concurrent changes happening at once. We must

also support “what-if” analyses of options for future

topologies. While humans often prefer an imperative

style (“add this”, “move that”, “change that”), we have

found that using versioned sequences of declarative

models removes a lot of complexity created by imper-

ative operations. For example, with a declarative model

we can validate the consistency of an entire network be-

fore committing a change.

• Different parts of our network follow different design

and operational styles, managed by different teams. By

sharding our models on carefully-chosen boundaries,

we enable these teams to use their preferred styles with-

out excessive interference. Sharding also improves con-

currency. At the same time, these shards do overlap, and

we prefer, when possible, to use tools that work across

our entire network, so a uniform representation en-

sures interoperability.

This paper describes MALT (for Multi-Abstraction-Layer

Topology), the representation we have developed for network
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topology, the software and processes we have built around

it, and the lessons we have learned. MALT’s primary goal is

to provide a single representation suitable for almost all use-

cases related to network topology. Our path from “we need

a uniform topology representation; how hard could that be?”

to our current ecosystem has exposed that creating a coherent

set of design decisions, and getting this to work at scale, was

much harder than we expected1.

The main contributions of this paper vs. prior work are to

explain the value of a multi-abstraction-layer representation

that supports the full lifecycle of a network, and to expose

some pitfalls that await designers of similar representations.

2 Uses for MALT

We model our global WAN [10], cloud-scale datacenter [20],

and office-campus networks using MALT, including both

Software-Defined Network (SDN) and traditional network

designs. Over 100 teams in Google and hundreds of engi-

neers and operators use MALT regularly; we now require

most systems working with network topology to use MALT.

Our uses have expanded over the past five years, and con-

tinue to expand to new phases of network lifecycles, and to

new network types. A common theme across these uses is

that they enable automation of diverse and interacting man-

agement processes, through a uniform representation of the

intent for, and structure of, our current and future network.

Broadly, our primary uses for MALT have been in three

areas: operating our user-facing WAN; WAN capacity plan-

ning and design; and datacenter fabric design and operation.

Operational management of user-facing WAN: We use

MALT when configuring network elements, managing the

control plane of an in-service network, and monitoring the

network for failures and other behaviors. We represent the

network’s “as-built” state in a MALT model in which all

entities related to device management, including routers, in-

terfaces, links, Points of Presence (POPs), etc, are visible

to management workflows, which only operate by updat-

ing this model, and never by directly updating devices. An

API supports specific, well-defined update operations on this

model; all updates are validated before being used to gener-

ate the corresponding device configurations. Operations in-

clude adding devices or links, or changing device (entity) at-

tributes to control monitoring and alerting.

WAN capacity planning and design: We must explore

many options for evolving network capacity to meet pre-

dicted demands. MALT’s support for multiple layers of ab-

straction, including layer-1 elements (e.g., fiber cables and

transponders) and layer-3 elements (routers, line cards, etc.),

allows simulation of each option against specific failure mod-

els, so that we can jointly optimize failure resilience and net-

1While many enterprise networks are smaller than Google’s, we believe

that MALT’s approach would also be beneficial at much smaller scales.

work cost.

Consider an example where our demand forecast suggests

adding capacity between two POPs. We construct candidate

MALT models for each possible option for long-haul fiber

spans, optical line system elements, and available router ports

in those POPs. Then we compare options for incremental

cost, lead times for hardware or fibers, and availability. We

commit to one option, which becomes the planned MALT

model, used to generate a detailed design and bill of materi-

als which is consumed by deployment teams.

Topology design for datacenter fabrics: Web-scale dat-

acenter fabrics are far too large for us to directly manage

each individual device. Our fabrics are structured as abstract

blocks of switches [20]. We use MALT to describe the fab-

ric in terms of these abstract blocks, their sizes, and policies

governing how they should be interconnected. This abstrac-

tion makes it possible to reason about the topology. Once the

complete high-level design is determined, the abstract topol-

ogy is transformed mechanically into a fully concretized fab-

ric model, also represented in MALT, from which device con-

figurations and other management artifacts can be generated.

We maintain both the abstract and concrete representations

in MALT, to enable correlation between a given device and

the abstract entity that generated it.

While we have many uses for MALT, our network manage-

ment processes often use data that is not about topology, and

for which we use other abstract or concrete representations;

§ 8 discusses what we exclude from MALT.

2.1 Motivations for MALT

The use cases above illustrate three motivations for MALT:

• Support for the full lifecycle of a network: As de-

scribed above, we use MALT models for capacity plan-

ning, reliability analysis, high-level and detailed design,

deployment planning and auditing, and as one kind of in-

put to the generation of device and SDN-controller con-

figuration. MALT also supports our monitoring, band-

width management, and some debugging operations. We

regularly find new uses, often without having to make

major schema changes.

• Uniformity: Prior to adopting MALT, we had many sys-

tems that maintained representations of network topol-

ogy for their own uses. These systems often have to

exchange topology data. Without a single, uniform rep-

resentation, this leads not only to O(N2) translations,

but also the potential for data loss or ambiguity, both

of which make real automation nearly impossible. Uni-

formity also allows hundreds of software engineers to

write interoperable systems without massive coordina-

tion overheads (which also tend to grow as N2).

• Multiple levels of abstraction: Many design, operation,

repair, and analysis processes require a clear understand-

ing of the relationships between high-level design intent
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and low-level realizations. For example, when we ana-

lyze a WAN plan to understand whether it will meet its

availability SLO [1], we need to know the physical loca-

tions of the underlying fibers – e.g., whether two fibers

run across the same bridge or under the same cornfield.

MALT allows us to explicitly represent these abstrac-

tion relationships (see §3.3), which allows software to

operate on data, rather than relying on inference.

2.2 Support for the entire network lifecycle

We present some illustrations of how we could use MALT

models for various points in the lifecycle of our networks.

Consider a WAN with 10gbps capacity between London

and Paris, which want to increase to 20gbps. Such increments

often take months, so we start by creating a model 1© (see

Fig. 1) of our WAN for (say) 6 months from now, with this

capacity set to 20gbps. We then look for available subma-

rine and terrestrial cable capacity that collectively provides

an additional 10gbps between the two cities. There might be

several possible cable paths, so we can create “what-if” 2©
models for each option, and then analyze each option with

respect to costs, lead-times, and historical failure probabili-

ties, before committing to a “plan of record” (POR) model

3© for the WAN connectivity.

Figure 1: Multiple MALT models for WAN planning

Then we must choose endpoint equipment (routers, opti-

cal line systems, etc.) and either ensure we have enough free

ports on existing equipment, or order new systems; again,

we often explore multiple options (different vendors, differ-

ent router configurations, etc.) before choosing a final POR

model 4© that covers both WAN links and terminating equip-

ment. (This also includes ensuring that routers can physically

fit into available racks, and that we have enough power and

cooling.)

Figure 2: Multiple MALT models for a capacity expansion

Now consider a datacenter capacity expansion (see Fig. 2).

Because we expand live networks [23], we must split up the

physical changes into multiple steps, to maintain capacity

headroom – e.g., an 8-step procedure should reduce capac-

ity by at most 12.5% per step. For each step, we generate an

intermediate model 5©, which we subject to an an automated

“drain-impact analysis” just before executing the step. This

analysis uses two additional models: the current link utiliza-

tions 6© to estimate near-term future demands, and a model

representing failed links 7© to account for their impact on

available capacity.2

Once a step is ready, we trigger the human operations to

carry it out. Humans are fallible, and so is hardware, so be-

fore “un-draining” the new links, we audit the work, via both

automated and manual checks. In some cases, we might de-

cide that an error (e.g., using the wrong patch-panel port) is

harmless, but to avoid further confusion, we update a model

8© of the “as-built” network, so that future changes will not

conflict with reality.

After the new hardware is deployed, we must update router

configurations. Rather than having humans do that, we auto-

generate all such “config” from MALT models and other

meta-information [12]. We also use these models to auto-

generate configurations for our SDN control plane.

While many of the processes in Figs. 1 and 2 operate on

the entire graph of a WAN or datacenter network, others use a

query API (§ 6). For example, the wire-list generator (Fig. 2)

can query to extract just a set of switch ports and their loca-

tions, while ignoring most of a model.

Automation: We asserted a goal of ubiquitous automation.

In fact, we have not yet automated every step shown in Fig. 1,

2In practice, we merge 6© and 7© into a single input, also critical to our

Bandwidth Enforcer system for online WAN-bandwidth allocation [13].
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but most of Fig. 2 now uses MALT-based automation. Full

automation requires disciplined, hard work; MALT’s goal is

to enable that work, not to make it happen by magic.

2.3 Antecedents to MALT

Our efforts to model network topology started with various

independently-developed, non-interoperable representations

– not through a conscious decision, but because each of mul-

tiple teams realized they needed topology modeling. E.g., we

had one way to represent datacenter and B4 WAN [10] net-

work designs (Fig. 2, 5©), and an entirely different representa-

tion, to support bandwidth allocation [13], for link status and

utilization (Fig. 2, 6©+ 7©); the necessary format conversion

was hard to maintain. Other teams maintained database-style

records for each WAN router, but resorted to spreadsheets

or diagrams to represent WAN topology, without machine-

readable abstractions tying capacity intent (Fig. 1, 1©) to spe-

cific links (Fig. 1, 4©).

The lack of abstraction and interoperability between these

formats created significant complexity for our operations and

software. While MALT has not entirely eliminated that com-

plexity, it gives us a clear path.

3 The MALT representation

We chose to use an “entity-relationship model” representa-

tion for MALT. (In § 5.3 we explain why we chose not

to expose a relational database). In an entity-relationship

model, entities represent “things,” which have have “kinds”

(types), names, and attributes, Entities are connected via re-

lationships, which (in MALT) have kinds, but neither names

nor attributes. MALT uses a somewhat simplified form of the

classic entity-relationship model [4].

Our current schema has O(250) entity-kinds, including

(among many other things) data-plane elements, such as

packet switches, switch ports, links between ports, etc.;

control-plane elements, such as SDN controller applica-

tions, switch-stack “control points” (local control planes),

machines for SDN controllers, etc. “Sheet-metal-plane” el-

ements, such as racks, chassis, and line-cards. Designing, cu-

rating, and evolving this taxonomy has been challenging; we

discuss our experiences in § 9.

We have a set of about 20 relationship-kinds, including

“contains” (e.g., a line card contains a packet-switch chip),

“controls” (e.g., an SDN controller application controls a

switch’s local control plane), and “originates” (e.g., a link

originates at one port, and terminates at another).

By convention, we name entity-kinds such as

EK_PACKET_SWITCH and EK_RACK, and relationship-kinds

such as RK_CONTAINS and RK_ORIGINATES.

For each entity-kind, we define a set of attributes. Some

entity-kinds have lots of attributes, some have only a few.

Typical attributes include:

• the “state” of an entity: is it planned? deployed? con-

figured? operational? faulty? under repair? etc. (We de-

fined a uniform “state machine,” although adopting this

standard ubiquitously has been challenging.)

• the index of an entity within its parent (e.g., “this is

linecard #3 within the containing chassis”).

• IP addresses and VLAN IDs assigned to interfaces – use-

ful when generating device configuration.

• the maximum capacity (bits per second) for elements

such as ports and links – useful for capacity-planning

and traffic engineering.

but attributes can be rather arcane, such as one meaning “dur-

ing the transition from IPv4 to IPv6, this network requires

hosts, rather than switches, to perform 6to4 decapsulation.”

A complete MALT “model” consists of a set of entities

and a set of relationships between those entities. A model

also includes some metadata, such as the provenance of the

model (what software created it, when, and from what inputs)

and its profile(s) (§3.5).

Fig. 3 shows a trivial example of a MALT entity-

relationship (E-R) graph, depicting a connection between

two routers. Each router contains one L3 interface and an L2

“port” for that interface. The interfaces are connected by a

pair of unidirectional L3 “logical packet links” that each tra-

verses, in this case, a single L2 “physical packet link.” (Link

entities in MALT are always unidirectional, which means

that they usually come in pairs.)

Figure 3: Trivial MALT entity-relationship graph

Note that the E-R graph is not isomorphic to the network

graph – links in the network are represented as nodes (enti-

ties) in MALT’s E-R graph.

Appendix A provides a more detailed example, showing

how we model a datacenter network.

3.1 Entity-IDs

MALT entities have entity-IDs composed of an entity-

kind and an entity-name. E.g., in Fig. 3, one router

has an entity-ID of EK_DEVICE/X and one link’s ID is

EK_PHYSICAL_PACKET_LINK/X:1-Y:1. Entity-IDs must be

globally unique, with respect to an implicit namespace that
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(by default) covers all of Google, and within a single “snap-

shot” view of our modeling data (we will clarify this concept

in § 4).

While we typically use human-sensible names for entities,

this is not necessary for automated systems (although it sim-

plifies debugging!). We have learned (from rather bitter expe-

rience) to ruthlessly ban any code that parses an entity-name

to extract any meaning; instead, the attributes defined for an

entity-kind should encode anything that could be extracted

from a name. (§11.4 discusses why using names in entity-

IDs might not have been the best decision.)

3.2 Allowed relationships

The complete MALT schema consists of a set of entity-kinds

(with attributes), a set of relationship-kinds, and a set of al-

lowed relationships. For example, we allow a packet-switch

to contain a port, but not vice-versa. These rules constrain

producers, but this is good, because it means that model-

consuming code need not handle arbitrary relationships.

Relationships can be directed or bidirectional, and 1:1,

1:many, many:1, or (rarely) many:many. We currently allow

about 700 relationships between pairs of entity-kinds; this is

a small subset of the millions that could be constructed, but

we only allow those that support sensible abstractions (a sim-

ple form of static validation).

3.3 Multiple levels of abstraction

While MALT’s primitive entity-kinds, including those listed

above but also others, are sufficient to describe a wide vari-

ety of networks, one of the motivations for MALT was that

it should allow us to represent multiple levels of abstraction

and the relationships between them. Some use cases, for ex-

ample, involve refining highly-abstracted designs into more

concrete ones, but we also may need to reverse an abstraction,

and ask (for example) “what abstract thing does this concrete

thing belong to?”.

We typically create abstraction via hierarchical groupings,

such as entity-kinds for:

• logical switches: sets of primitive switches, intercon-

nected (e.g., as a “superblock” in a Jupiter [20] network)

so that they provide the illusion of one larger switch with

more ports than any single switch.

• trunk links: parallel sets of links that provide more

bandwidth than a single physical link.

• control domains: sets of elements controlled by one

replica-group of SDN controllers.

• Geographic elements: a hierarchy of, e.g., cities, build-

ings, and spaces within buildings.

• Dependencies: sets of entities that could fail together

(due to SPOFs, or to sharing a power source) or that

must be kept diverse, to avoid accidental SPOFs.

For a WAN, the layering can be quite deep, starting with

highly-abstracted city-to-city links, through several levels of

trunking to individual L2 links, and through four or five lev-

els of optical-transport-network hierarchy [22, fig. 12].

We also have relationship-kinds that help with abstraction:

• RK_CONTAINS for hierarchical containment.

• RK_AGGREGATES to indicate, for example, which single-

ton links are aggregated into a trunk link, or which

packet switches are aggregated into a logical switch.

• RK_TRAVERSES: e.g., an end-to-end MAC (L2) link is

constructed from the ordered traversal of a series of L1

links connected by splices and patch panels.

Figure 4: Layered abstrac-

tions in WAN planning

Fig. 4 shows how we

can use multiple layers in

WAN planning. The top layer

shows two WAN tunnels (as

in B4 [10]) between POPs B

and C, including one via A;

the middle layer shows how

these tunnels map onto L3

router adjacencies; the bot-

tom layer shows how the L1

fiber path for the B −C L3

adjacency runs through POP

A. This means that the A−B

fiber path has become a sin-

gle point of failure (SPOF) Because MALT includes all of

these abstractions (abstract flows, IP adjacencies, fiber paths)

in the same model, with explicit relationships between them,

we can easily map this SPOF back to the tunnels it affects.

3.4 Machine- and human-readable formats

Since MALT is designed to support automation, we normally

represent models in a binary format compatible with RPC

interfaces. However, developers occasionally need to view

(and less often, edit) models or individual components, so

we can convert between binary and a textual format. We also

have a “shorthand” format for concise text-based representa-

tion; this is especially useful for creating test cases.

3.5 Profiles

While we have just one “global” MALT schema, which pro-

vides uniformity across all of our networks, we have found it

useful to introduce profiles, which restrict how the schema is

used. We use profiles for purposes including:

• To specialize the schema for certain network types. For

example, the profile for a data-center network might as-

sert that the uplinks from aggregation switches are al-

ways connected to the downlinks from spine switches,

while the profile for an office-campus network might as-

sert that there is always a firewall between the public

Internet and the campus network.

• To support evolution, via profile versioning. As we dis-

cuss in §10, we are continually evolving both the global
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schema and our profiles, which sometimes means chang-

ing the way we represent a concept; we need to en-

sure that model-producers and model-consumers agree

on which representation is in use.

• To decouple the release cycles of complex graphs of

software systems, so that model producers can move for-

ward without forcing all model consumers to migrate at

the same time.

A profile is, in effect, a contract between a producer and a

consumer. We defined a machine-readable profile specifica-

tion, which allows us to mechanically check that a model ac-

tually meets one more or profiles (as asserted, by the pro-

ducer, in the model’s metadata).

A profile is identified by its name (e.g., “Jupiter”), a major

version number, and a minor version number. If we make an

incompatible change, such as inserting a new structural layer

that turns a one-hop relationship path into a two-hop path, we

need to increment the major version.

If two profile-IDs differ only in their minor-version num-

bers, this implies backward-compatibility: a model with

the higher minor-version can be read safely by a con-

sumer already tested against the lower version. The converse

does not apply; models with an out-of-date minor version

might be missing information that recent consumers expect.

(§10 discusses how hard it has been to define “backwards-

compatible” in the face of certain coding practices.)

Machine-checkable profiles can express constraints nar-

rower than the entire schema; for example, we can require

that certain relationships are present (or not present), or that

certain attributes have values within a constrained range.

However, our current profile-specification language is not ex-

pressive enough to represent certain global policies, such as

“no IP address may be assigned to two different interfaces”

— we validate that using other means.

4 Division into multiple shards

One might imagine a single model for Google’s entire collec-

tion of networks, but we actually divide this data into thou-

sands of MALT model “shards,” for many reasons:

• Separation of ownership: Many teams contribute to

the design and operation of our networks; things are

much simpler when we shard models, so that each shard

has a single owner. Such sharding clarifies responsi-

bility, and can avoid the need for complex consistency-

maintenance protocols.

• Distinct profiles: Different parts of our overall network

conform to different profiles (§3.5); sharding allows us

to cleanly associate a profile with the data that it covers.

• Profile evolution: We cannot change all software instan-

taneously when introducing a new profile version; in-

stead, we support old versions for a phase-out period.

This means that we must represent the same informa-

tion using multiple profiles, stored as per-version shards.

(§10 covers evolution in detail.)

• Performance: A single model of our entire network

would be too large to fit in the memory of a single server.

Also, while many applications extract small sub-models

from storage via query RPCs, some do need to retrieve

larger subsets; using a “Get” RPC to retrieve one or a

few shards is a lot more efficient. (However, if we use

too many shards, that leads to per-shard overhead; we

try to strike a good balance.)

• Protection and fault domains: All software has bugs,

and we must defend against security breaches; sharding

allows us to limit the damage from a faulty program, and

it allows us to set ACLs that restrict users to the shards

they actually need. (For example, someone operating on

a edge router in Paris does not need access to a datacen-

ter switch in Rome.)

• Lifecycle stages: We use several sets of shards to rep-

resent distinct points in the lifecycle of a network: e.g.,

planning, deployment, and operation.

• Alternative universes: We need to represent not just

a single timeline, but alternative future designs for our

networks – e.g., to analyze multiple options for purchas-

ing WAN connectivity or multiple orderings for capac-

ity augments. We especially need to create isolated uni-

verses for testing software and operational procedures.

Model sharding requires some support from the query

mechanism; §6.2 describes our “multi-shard query” (MSQ)

API. It also sometimes requires the same entity to appear in

multiple shards (so that no shard has dangling relationships);

to avoid violating our uniqueness rule for entity-IDs, we add

“linkage” metadata to these repeated entities. Linkage allows

us to unambiguously resolve these repeated entities.

Note that, as discussed in §5, each update to a shard creates

a new “instance” or version. This is another dimension in

which we have many shards.

Given our heavy use of sharding and instances, we need a

way to specify a version-consistent snapshot that spans mul-

tiple shards; §5.2 describes the “model set” abstraction that

supports this.

5 MALT storage

While one might consider treating MALT as a database

schema, we instead choose to think of a set of MALT enti-

ties and relationships (i.e., a shard) as a named value. One

can think of a MALT shard as a file; in fact, we can store a

shard as a file, either in binary or in a human-readable format.

We prefer to store shards in a purpose-built repository,

MALTshop, that provides several important features:

• It is logically centralized, with a single UNIX-like

namespace for shards, so we know where to look for

any shard (past, present, or future). MALTshop main-

tains statistics and logs, making it easy to discover who

is using the shards and what features are in use.
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• It has a distributed, highly-available implementation.

• It provides a basic Get/Put/Patch API, but most model-

reading code employs its Query API (see §6).

• Shards are versioned; each update (via a whole-shard

Put or diff-based Patch API) creates a new, immutable

instance, which is permanently bound to a sequence

number (but can be mutably bound to a named label).

Small updates are efficiently implemented via copy-on-

write, so the cost of creating and maintaining many ver-

sions of a large shard can be relatively low.

• The repository supports ACLs on shards, which pro-

vides the basis for security mechanisms. We have not

found a need to bear the burden of ACLs on individual

entities; those could be layered above MALTshop in an

application-specific service, if necessary.

5.1 MALTshop implementation details

MALTshop stores its state in Spanner, a reliable, consistent,

distributed SQL database [6], which handles many of the

harder problems. The SQL schema has tables for shards, in-

stances, entities, and relationships; an entity’s attributes are

stored as a SQL blob. Updates to the MALT schema do not

require changes to the SQL schema.

While our initial SQL schema supported a simple imple-

mentation of MALTshop, as usage increased we realized that

the schema did not always support good performance, and

read-modify-write operations made it tricky to avoid corrup-

tion when a server failed. We are now migrating to a new

SQL schema that should improve performance and data in-

tegrity; the details are too complex to describe in this paper.

Because the SQL schema is entirely hidden from all applica-

tions, this migration is transparent to all users.

MALTshop uses several kinds of cache, including a client-

side cache library that currently supports only “Get” oper-

ations, but ultimately should reduce many RPC round-trips,

and a server-side cache that greatly reduces the cost of com-

puting diffs between two recent instances of a shard (an op-

eration some of our applications use heavily).

MALTshop, due to Spanner’s scalability, itself scales well.

We currently store thousands of shards, each with many ver-

sions; the largest shards have millions of entities and millions

of relationships. Occasionally MALTshop serves thousands

of queries per second, but usually the load is lower.

5.2 Model sets

Because we shard our models extensively, and each shard

may have many instances (versions), operations that span

multiple shards need a way to specify a consistent snapshot,

which we support with a “model set" abstraction. When a

model-generator creates a set of shard instances, it also ob-

tains a new “model set ID" (MSID), and uses a metadata ser-

vice to register a binding between the MSID, some attributes,

and its constituent shard instances. We therefore usually pass

an MSID between systems, rather than lists of instance IDs.

The metadata service allows applications to find the latest

MSID, or to look up an MSID based on various attributes.

5.3 Discussion: dataflow rather than database

Given our ability to efficiently store (and thus share) im-

mutable versions of MALT shards, it is convenient to think of

a single shard instance as a value – a snapshot of a database,

rather than a mutable instance of a database. While these val-

ues can be quite large, and in many cases an application is

only interested in a small subset of a shard, this approach

allows us to construct many network management pipelines

as dataflow graphs, where streams of MALT shard instances

flow between stateless functional operators.

We use these dataflow graphs primarily for planning, de-

sign, and analysis applications – systems that operate the ex-

isting network do use MALT imperatively (see §11.2). Also,

once the planning process must trigger actions with expen-

sive effects (e.g., ordering or installing hardware), we must

use imperative operations – isolated to separate shards.

Why not just represent a network topology as a relational

database, as is done in many other systems (for example,

COOLAID [5])? Some of our previous systems were indeed

implemented as RDBMSs, with SQL queries. In our experi-

ence, an RDBMS worked nicely for simple use cases, but:

• an RDBMS by itself does not provide clear patterns

for new types of abstractions or their graph-type rela-

tionships (aggregation, hierarchy, etc.). When we used

an RDBMS, we effectively imposed an implicit entity-

relationship schema; why not just make that explicit?

• a first-class abstraction of individual shards makes it

much simpler to express per-shard profiles, versioning,

labels, access controls, and retention policies. It also

make it easier to reason about how these shards flow

from one system to another – for what-if analysis and

isolated software testing, or to parallelize datacenter-

expansion projects (as in Fig. 2).

• layering our MALT schema over an SQL schema makes

it simpler to do “soft deprecation” of entities, relation-

ships, and attributes, without having to impose those

changes on older shard instances or their users.

• layering MALT over SQL makes it easy for us to change

the SQL schema, for better performance, without requir-

ing any client changes.

• we can also provide the MALTshop API (albeit with lim-

ited performance) on top of a simple file system, which

is useful for disaster-recovery scenarios when Spanner

might be down or unreachable.

None of these are impossible in SQL (manifestly, since

MALTshop expresses all of these with an underlying SQL

schema), but by hiding the SQL schema from clients via

MALT’s abstractions, we make our clients far less brittle.

Overall, we have found the dataflow approach far easier to

reason about, and in some cases, more efficient. In a few
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real-time applications (e.g., SDN controllers), we do express

a network’s topology in a private, purpose-built, in-memory

database (with update-in-place).

Other graph-processing systems likewise have avoided

RDBMSs, for reasons such as articulated by Hunger et al. [9]

and for Pregel [16].

6 Querying MALT models

While our model-producing software tends to generate an en-

tire shard in one operation, our model-consuming software

generally does not operate on all entities in a shard, but rather

only on small subsets. In this respect, our software differs

from traditional graph-processing algorithms [16]. (There

are exceptions: systems for drain-impact analysis, or WAN

cost optimization, do look at entire networks.)

Model consumers extract subsets that meet some predi-

cate via a query language, which walks an entity-relationship

graph to extract a chosen subset model. Typical queries

might be of the form “find all of the top-of-rack switches

in datacenter X”, “find the switches managed by SDN con-

troller Y”, “find all the cable strands that share connector C”,

or “given port P1 on switch S1, find the corresponding port

P2 on switch S2 such that P1 is connected to P2.”

Designing a query language for MALT has been surpris-

ingly hard; we are on our second language (and we also toyed

with the idea of using a Datalog-style language). Our first

query language was sufficient, but it was often hard for users

to understand how to express a correct and efficient query.

Our second language is easier to use, because it operates on

paths through the E-R graph, rather than sets of entities; paths

are the more natural abstraction.

Sometimes it is difficult or impossible to use a single query

to return exactly the right subset; this leads to a pattern

where the application issues a remote query to retrieve a

larger-than-desired sub-model, and then applies a local (in-

memory) query to further refine the results. In some cases,

it is simpler, or even necessary, to post-process the query re-

sults using a traditional programming language.

Figure 5: Query layering

Sometimes people ask

“if that’s so hard, why not

just use SQL?” MALTshop

effectively compiles MALT

queries to SQL queries, so

on the one hand: sure! but

on the other hand, these SQL

queries are substantially

more complex, and also

deeply depend on the under-

lying SQL schema, which

we do not want to expose

to applications (because we

have already had to revise it several times.) We also want to

use the same language for both MALTshop and efficiently

querying in-memory shards, as shown in Fig. 5; SQL would

not support that.

In our current language, a query is expressed as a sequence

of commands. Each command operates on a “frontier” of ac-

tive “nodes,” which (approximately) are references to enti-

ties. Query commands can move the nodes around the input

model3 along relationship edges. As each active node moves

around the input model, the query execution engine keeps

track of the path it took.

The output is one or more result models, optionally anno-

tated with labels, which includes all active nodes at the end

of the query, plus the full path they took (relationships and

stepped-over entities) to get to their final position. Some com-

mands remove (“prune”) active nodes; these also generally

remove, from the result, earlier entities that the node previ-

ously visited, if not also visited by another path.

Queries always start with a find command, which looks

at all entities in the input model, subject to constraints such

as an entity-kind and/or some attribute values; e.g.:

find EK_PACKET_SWITCH/tor17

to start the query at a packet switch named “tor17”, or

find EK_VLAN { id: 13 }

to start the query at all VLANs with a VLAN-ID of 13.

Queries often involve following relationships, e.g.:

find EK_PACKET_SWITCH/tor17

until RK_CONTAINS EK_PORT

to return all of the ports contained in that switch.

The language includes many other commands; we lack

space to describe the full language.

Query implementation: Queries traverse relationships

in a model, marking paths to keep or prune. For complex

queries, this may require many iterations through the model.

Queries can be executed locally in-memory, or remotely

by MALTshop. For locally-indexed models, these itera-

tions are inexpensive. However, MALTshop has to translate

queries into repeated calls to its SQL database. To make this

efficient, the query engine requests SQL data in batches.

6.1 “Canned queries”

Queries that are simple to state in English may turn into long

sequences of commands. These have proved challenging to

write, for many of our users. They can also be fragile with

respect to profile changes; when complex, profile-dependent

queries are scattered across code owned by many developers,

profile change inevitably leads to bugs. Therefore, we have

a library of “canned queries.” When a profile owner creates

a new profile version, that engineer is also responsible for

creating (and testing!) a new version of any canned query af-

fected by that change. This gives the responsibility for man-

aging complex queries to the experts on the underlying rep-

resentations.

3That is, change the binding between an active node and an entity.
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We define canned queries as needed. For example, one

canned query might return all of the L2 links between a given

pair of switches; another might return the rack where a given

line card is located (useful when trying to repair that card).

6.2 Multi-shard queries

As described in §4, we split the representation of our entire

network into many sets of shards. However, some applica-

tions would like to form queries that span shard boundaries.

Also, we want the freedom to revise our sharding plan (we

have done this several times), and we do not want model-

consuming code to depend on that plan. Therefore, most ap-

plications that query MALTshop actually use a multi-shard

query (MSQ) API, which allows a query to specify a set

of shard pathnames (using wildcards), rather than a single

shard; MALTshop then executes the query against a view

composed of those shards.

MSQ is efficient, because MaltShop’s underlying SQL

schema has an index that identifies entities appearing in mul-

tiple shards, and limits the queries to only those shards. Per-

forming MSQ in-memory is not feasible, due to the size and

time it takes to load and index all the shards.

The introduction of MSQ significantly simplified many

applications. For example, prior to MSQ, code looking for

“peer ports” at the boundaries between datacenter and WAN

networks had to issue separate queries in multiple shards, us-

ing the output of the first query to compose the second one.

Also, the code had to know which specific shards to query.

Code using MSQ does this in one query, and knows much

less about shard boundaries.

7 Software infrastructure

In addition to MALTshop (§5) we have developed a library

to provide common functions for MALT developers, and ad-

ditional software to help us use and manage MALT models.

7.1 Model-generation systems

We do not want humans to create detailed models via di-

rect editing; this would be tedious and unreliable. Instead,

humans generate highly-abstracted representations (typically

via GUIs or text editing) that become input to model-

generation software that produces concrete models. We

sometimes do this in multiple steps, where the MALT output

from one step becomes the input to future steps. At each step,

the models become more detailed, based on late-bound de-

sign decisions and/or more-specialized profile-specific code.

We have been migrating to a “declarative dataflow” ap-

proach to model generation (as in Figs. 1 and 2), away from

early systems that used imperative inputs (“add this switch”)

and that packaged all model-generation steps into one exe-

cution. Imperative, non-modular systems (not surprisingly)

turned out to be hard to maintain, evolve, and test.

At each step in such a dataflow graph, we can apply our au-

tomatic profile-checker (§3.5) to detect some software bugs

or incomplete inputs.

7.2 Model-visualization systems

While MALT is designed to support automation, humans of-

ten need to look at models. We have visualization systems to

support two distinct use cases:

• Network visualization: Network operators, capacity

planners, and customers want to visualize their network

topologies, without knowing how these are represented

in MALT. Our network visualizer GUI displays network

nodes and the links between them, with statistics and

other attributes, and lets a user zoom between abstrac-

tion levels. MALT’s inherent support for multiple levels

of abstraction made this tool easier to write.4

• Model visualization: Developers of MALT software

and models want to visualize the structure of their mod-

els, rather than of the network. Our MALTviewer allows

them to navigate through entity-relationship graphs,

with integral support for the MALT query language.

We considered developing a GUI-based tool to create and

edit MALT models, but so far, creating models by expansion

of concise, high-level intent (as in §7.1) has sufficed.

8 What does not belong in MALT?

While MALT is central to our network management sys-

tems, we do not believe it should be extended beyond ex-

pressing topology. People have sought to add other kinds of

network-management data (sometimes just to exploit MALT-

shop rather than investing in another storage system), but

these typically do not fit well into an entity-relationship

schema. Other categories deserve more-appropriate represen-

tations, including:

• Generated configuration for devices and SDN con-

trollers; our config generators read MALT models, but

their output data belongs in OpenConfig YANG mod-

els [18]. We built a “ConfigStore” service more suited

to this use case than MALTshop is, because access pat-

terns (especially queries) to “config” are quite different.

• Policies for how to use the network topology, such as

BGP policies. We believe these are most accessible to

the operators who manage these policies when they

are expressed using a configuration representation, such

as OpenConfig or a vendor-specific one. We allowed

some early users of MALT to embed BGP policies in

the schema, but that proved to be awkward and com-

plex. (Alternatively, Propane [2] is a domain-specific

language for expressing BGP policy.)

4A similar tool allows us to visualize the network overlaid onto a geo-

graphic map; this is especially useful for planning WAN and campus links

that must avoid single points of failure. However, this tool still gets its data

from a predecessor to MALT.
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• Abstracted forwarding tables (AFTs) that represent

the observed FIBs in our network; these are useful for

applications such as Traffic Engineering and our Band-

width Enforcer system [13], and for techniques such as

Header Space Analysis [11]. AFTs are similar to Open-

Flow [17] rules, and might be suitable for representing

ACLs, although today we use a DSL for ACLs.

• Allocated resources, such as IP addresses, Autonomous

System Numbers (ASNs), and ports on switches and

patch panels. Since we must not allocate any one of

these resources to multiple “owners,” these are best rep-

resented in a database that supports modify-in-place op-

erations, exactly what we would rather not do for declar-

ative topology models.

• Inventory, including support for SOX compliance and

other finance-related applications. Often these records

exist before we have a topology to place them in.

• Monitoring data from SNMP and similar systems.

MALT is not efficient at representing time-series data,

and Google already has robust, massively-scalable sys-

tems for monitoring and alerting, so while we do distill

some data from monitoring pipelines to correlate it with

topology, as in Fig. 1, we do not use MALT as the pri-

mary representation for this data.

We tie these representations together using foreign keys, in-

cluding MALT entity-IDs (e.g., an AFT is tied to a particular

MALT “control point”).

It can be tricky to define a bright line between “topology”

(appropriate to represent in MALT) and non-topology data.

Partly this is driven by a need to store some information

in two places, for efficiency and availability – for example,

we allocate blocks of IP addresses from an IP-address DB,

and then record these blocks in MALT models as attributes

of subnetwork entities. However, when we debate “does this

data belong in MALT?” the usual reason for the complexity

of the debate is that we had not quite got our taxonomy right;

relatively few cases have been truly hard calls.

9 Schema design principles and processes

The MALT schema must allow us to represent a broad va-

riety of network designs completely and consistently; code

with special cases for different structures is likely to be unre-

liable and hard to maintain. Schema design turned out to be

harder than we expected; we have learned several principles

that were not obvious to us at the start. We could not create

good abstractions a priori for a complex, evolving set of net-

works, but had to test and refine our abstractions against our

experience with many real-life use cases5.

One meta-lesson was that we needed to establish a for-

mal MALT Review Board (MRB), composed of experienced

5And as we learned these lessons and have evolved our schema, we have

also learned just how hard evolution itself can be; see §10.

schema designers, who could take a company-wide and long-

term view of proposed changes. Prior to establishing the

MRB, the schema accreted many ad hoc, inconsistent, or du-

plicative features. Using a multi-person board, rather than a

single owner, to review schema changes also allows us to par-

allelize the work, and to maintain consistency as employees

come and go. We also have a written “style guide,” both as

advice to engineers proposing schema changes, and to guide

new MRB members. However, our weekly MRB meeting

constantly finds new issues to debate at length.

9.1 Orthogonality

We value uniformity: we want our tools to process models for

many different kinds (and generations) of networks, without

lots of special cases. Sometimes this is straightforward; the

MRB often prevents proposals attempting to create a new

entity-kind (EK) for an existing concept, or a narrower-than-

necessary proposal for a new concept.

We also value simplicity; initially we thought this meant

that we should be conservative in creating EKs. However, we

learned that overloading one entity-kind with concepts that

are not similar enough leads to the use of subtypes (expressed

as attributes), which creates complexity in model-consuming

code and in the formulation of queries.

We developed two tests to define “similar enough?”:

• Do the various use cases share the same relationship

structure, or would one expect different relationships

based on the subtype? If the latter, we prefer to use a

distinct (“orthogonal”) EK for each use case, rather than

having a kitchen sink of relationships for an EK.

• Do the use cases mostly share the same entity attributes,

or are there several mostly-disjoint subsets of the at-

tributes, based on subtype? If the latter, we prefer mul-

tiple EKs. (Subtyping violates the “prefer composition

over inheritance” principle.)

These are not rigid rules. Sometimes we must guess about

future use cases, or just make an arbitrary decision.

An example of why we need these rules: we initially de-

fined EK_PORT to refer to singleton ports, trunk ports, VLAN

ports, and patch-panel ports. This “simple” structure leads

to models where a VLAN EK_PORT can contain a trunk

EK_PORT which can contain multiple singleton EK_PORTs

– and queries on ports have a lot of complexity to distin-

guish which subtype they care about. We ended up with over

60 possible relationships involving EK_PORT, and about the

same number of attributes, most of which are never used to-

gether (which makes it hard to check whether a model pro-

ducer has properly populated the attributes and relationships

required for specific use cases).6

Entity attributes often use enumerated types. We learned

to value multiple, orthogonal attributes over the superficially-

6We have only partially fixed this mess, because lots of existing code

uses EK_PORT, but without explicitly indicating for which use case.
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simpler goal of “fewer attributes.” For example, initially

“Vendor ID” was an implicit proxy for “switch stack oper-

ating system.” We had to break that out as a separate “OS”

attribute, rather than creating enum values representing the

cross-product of vendor-ID and several other features.

9.2 Separation of aspects

We initially modeled a router as a single EK_DEVICE en-

tity. Since routers have lots of substructures, we used lots

of attributes to define their various aspects. However, we

now model these distinct aspects as explicit entities, sepa-

rating data-plane aspects, control-plane aspects, and physical

(“sheet-metal-plane”) aspects. So, for example, we model a

simple packet switch with this relationship structure:

EK_CHASSIS RK_CONTAINS EK_PACKET_SWITCH

EK_CHASSIS RK_CONTAINS EK_CONTROL_POINT

EK_CONTROL_POINT RK_CONTROLS EK_PACKET_SWITCH

This allows model consumers (and their queries) to focus

on specific subgraphs: for example, systems that analyze

network performance or utilization focus on the data plane

subgraph (EK_PACKET_SWITCH, EK_INTERFACE, EK_*_LINK,

etc.), while systems involved in hardware installation focus

on the physical subgraph (EK_RACK, EK_CHASSIS, etc.) Ulti-

mately, this allows most systems to work correctly no matter

how we re-organize control-plane, data-plane, and physical-

plane structures. (Especially in space-limited testbeds, we of-

ten need to use non-standard packaging, which required lot of

special cases in software before we separated these aspects.)

Somewhat similarly, we also use separate entity-kinds to

represent the abstract intent and the concrete realization of

a complex structure, such as a Clos network. In our model-

generation pipeline, we use the “intent” entities in the in-

puts to a step that generates the concrete entities; the out-

put includes the inputs, tied to the concrete entities via

RK_REALIZED_BY relationships, so that the intent is visible

to consumers of the concrete models.

10 Profile evolution

We must continually change our MALT schema, both to han-

dle new kinds of network designs, and to rethink how we

have represented things in the past (taxonomy is hard; we

have made a lot of mistakes). Additions are fairly easy, but

other changes create a lot of pain for software maintainers,

and the risk of misinterpretation.

While we expected the schema evolution, the challenges

that created were much larger than we initially expected. Be-

cause many systems interact via models, and models persist

(often for years), we have had to create processes and soft-

ware tools to ensure compatibility. Also, networking con-

cepts can evolve faster within one company than in the public

Internet – and faster than our ability to rapidly upgrade our

software base, or educate software engineers.

We developed several mechanisms to cope with evolution:

• Stability rules, to avoid schema changes that create un-

necessary churn (but these can lead to accretion of the

equivalent of “dead code” in the schema).

• Profiles and profile versions, as discussed in §3.5. Be-

fore we had profiles, evolution was especially painful,

because there was no explicit way for a consumer to

know which of several possible interpretations to place

on a model.

Because profiles are versioned, our model-generators

can simultaneously produce shards for the same net-

work design in several versions; this allows us to update

producers and consumers independently.

• Feature flags, which specify explicitly which individual

features are enabled (or disabled) in models produced

for a given profile version, so that consumer code can

condition its behavior on the presence or absence of spe-

cific features, rather than complex logic based on ver-

sion numbers. For example, a feature-flag might indicate

that a given profile version supports IPv6 address pre-

fixes; these might have been previously allowed in the

MALT schema, but not generated in the models until a

given profile version.

• Profile-version deprecation policies, which allow us to

(gently) force consumers to migrate off of old versions,

so the producers do not have to support them forever.

• Canned queries, described in §6.1, which insulate the

less-complex model consumers from profile-specific de-

tails. (Not all consumers can fully rely on canned

queries for insulation, and model producers might have

to be migrated for each profile.)

As mentioned in §3.5, if two profiles differ only in their

minor-version number, code for the lower version should be

able to consume models of the higher version. Unfortunately,

it has been tricky to define rules for “backwards compati-

bility,” especially in the face of some fragile coding prac-

tices. For example, code often does a switch statement on

an enumeration attribute. Not all code properly handles a

newly-defined enum value; some code crashes, and other

code blithely treats the new value as equivalent to an older

value, leading to silent failures. We have thus gradually be-

come more cautious about allowing profile changes without

incrementing the major version, but such increments often

lead to tedious “requalification” of software.

These mechanisms also make it easier to change our shard

boundaries: canned queries hide the boundaries from most

users; for others, we use a profile-version change to signal a

sharding change.

Overall, these techniques are helpful, but not sufficient, to

avoid the pain of profile evolution; we continually look for

new approaches.

Other systems have had to grapple with evolution, with

varying success. For example, the QUIC protocol designers

made version-negotiation a fundamental aspect of the pro-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    413



tocol design, and then relied on it to rapidly iterate through

many versions [14].

11 Lessons and challenges

After using and evolving MALT for several years, we have

come to appreciate both the benefits of this approach, and

some of its challenges.

11.1 Benefits and challenges of adoption

Prior to MALT, we had many non-interoperable topology rep-

resentations, including multiple formal ones, many spread-

sheets, drawings, and sometimes just folklore. Convergence

on a single, well-curated, machine-focused representation

has yielded benefits including far simpler interoperability be-

tween systems, dramatic reduction in some code complexity

(and complete elimination of a few code bases), and a moti-

vation to invest in improved data quality.

However, converting from older representations, espe-

cially the few that were already the basis for islands

of automation, has been painful. (Parts of our network-

management world that had no prior formal representation

have often been easier to migrate to MALT, because they

have little existing code to worry about.)

Things that make representation conversion difficult in-

clude differences in model structure (e.g., tabular vs. entity-

relationship); differences in the handling of defaults; differ-

ences in rules for constructing names; and (quite frequently)

incomplete or inaccurate documentation on the semantics of

the old representation. We also discovered that, since older

representations tended to be weakly validated (at best), and

existing consumer code was tolerant of missing or inaccurate

data, we kept running into data we could not understand (or

wrongly thought we did).

We learned, as MALT supported an increase in data-driven

automation, that a good representation cannot save us from

dirty data. If the data is missing or wrong, automation fails

in depressing ways.

We observed an interesting pattern: operators typically

start by focusing on operating the “built” system, and see no

need for formal representation of the entire lifecycle (as in

Figs. 1 and 2). Then, as the network gets larger and more

complex, they gradually realize they must be involved in

planning and design phases, so that the network is actually

operable and well-documented. This pattern reinforces the

value of a uniform, multi-abstraction-layer representation.

Similarly, network test engineers initially believe they can

manage their small, idiosyncratic testbeds informally. But

they learn that end-to-end network deployment and manage-

ment processes in a testbed needs to work exactly as they

do in production (or else you have not actually tested every-

thing), which motivates formal modeling even for testbeds.

A side benefit is that they waste less time doing manual work

for which automated, MALT-based tooling exists. (However,

testbeds are often weird, which adds complexity to model-

generation tools.)

11.2 Designing via a declarative approach

Our prior network-design systems were mostly imperative,

with complex APIs of the form “add these links” or “remove

this switch.” Humans naturally think imperatively, but these

APIs became an impediment to modular composition, due to

their complexity. They also made it difficult to create isolated

universes for what-if analysis and testing.

MALT supports (but does not require) a declarative design

process, in which each stage process tells the next stage what

it wants, not how to get it. APIs become simpler; all concep-

tual complexity is now explicit in the models. To create a

testbed or what-if model, we can simply create a copy of an

existing model, modify it, and then run the normal pipeline.

Our network-design world is not fully declarative: since

humans still create the top-level design intent, our UIs sup-

port some imperative operations. In cases where operators

want to make minor, rapid changes, we primarily use MALT

imperatively.

11.3 The dangers of string parsing

We are trying to stamp out string-parsing, because parsers

(and regular expressions) embody assumptions about how

strings encode information. When we later must change a

format (e.g., to allow longer fields), we have found it hard

to search code for all of the relevant parsers (coders have

many creative ways to parse strings), so we discover many

of these only when something breaks at run-time. Instead,

we have learned to discourage string-encoded data, and to

provide explicit attributes and/or relationship. (E.g., if an en-

tity is named “router.paris.33” then it needs a relationship to

the entity for “paris” and an index_in_parent attribute.)

11.4 Human-readable names vs. UUIDs

§3.1 describes how MALT entity-IDs are (entity-kind, entity-

name) tuples. This eased the initial adoption of MALT, be-

cause our existing code and operator procedures all used

human-sensible names. In hindsight, we should have used

opaque universally unique identifiers (UUIDs) as primary

keys, and kept the display name as an attribute. With name-

based entity-IDs, renaming becomes hard, because we have

to track down all references to an entity-name, including

those in external systems.

Name-based IDs can be especially tricky when creating

designs for abstract components, which need IDs, before we

know their ultimate names, which are often late-bound. We

currently ameliorate that problem by a “placeholder" mecha-

nism that lets us rebind references to entities, but names held

in non-MALT systems still lead to problems. UUIDs intro-

duce their own challenges, which we lack space to describe.
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12 Related work

Many large enterprises face similar network-management

challenges, so prior papers have described systems related

to MALT, but almost none have focused specifically on the

challenges of a multi-layer abstraction and how to evolve it.

Propane/AT [3] does describe ways to model abstract groups

of switches and their adjacencies, but not how to include finer

levels of detail. Most other work uses the term “topology”

only to refer to IP or routing-session adjacencies.

COOLAID [5] used a declarative-language approach

based on Datalog. COOLAID focused on reasoning about

configuration management of an existing network, rather

than topology design or abstract intent. (Their emphasis on

reasoning is complementary to MALT.)

Facebook’s Robotron [21] followed a “configuration-as-

code” paradigm, rather than a declarative representation; this

appears to limit its use to a single administrative domain,

and to complicate its use for what-if analyses. Robotron does

not handle multi-step or concurrent design changes [21, §8].

Robotron supports “high-level design intent”; it is unclear if

this extends to abstractions for capacity planning.

Alibaba’s NetCraft [15] manages “the life cycle of net-

work configuration, including the generation, update, transi-

tion and diagnosis of [configuration],” using a multi-layer

graph, but apparently not abstractions that support network

planning or design. One layer represents a BGP mesh (con-

trasted to Propane [2] which represents BGP policy).

Google’s Zero-Touch Networking (ZTN) [12] provides an

automation framework which utilizes both MALT and Open-

Config [18] as interoperable data representations.

MALT’s design was inspired by UML [19] and the

DMTF “Common Information Model” standard, which uses

an object-relationship representation of “managed elements.”

UML focuses mostly on modeling systems, not on network

topologies. DTMF includes a layer-3 interface profile [7], but

also seems to have little coverage of network topology per se.

(OpenConfig might well subsume this aspect of DTMF.)

SmartFrog [8] was a framework for automated manage-

ment of configuration for multi-component software systems.

While it differs from MALT in numerous ways, SmartFrog’s

templates are similar to MALT’s entity-kinds, and SmartFrog

also addressed lifecycle issues.

13 Conclusions and future work

Our experience has shown that, while it was challenging

to design both MALT’s representation and an ecosystem

that supports its widespread use, we have gained great value

from a declarative, multi-layered approach to representing

network topology. MALT supports the full lifecycle of our

networks, allowing us to make knowledge explicit in our

models, rather than hidden in code.

Others wishing to learn from our experience might want

to consider these challenges that surprised us:

• Shared schemas need curation: a representation

whose goal is to create interoperability between dis-

parate teams and processes cannot be evolved by unco-

ordinated accretion; curation by a centralized team (the

MRB § 9) has a hard but necessary job.

• Support for evolution: we added explicit support for

schema evolution, and explicit profiles, later than we

should have (§ 10).

• Simplicity 6= fewer concepts: Our initial attempts to

limit the number of concepts (entity-kinds) led to com-

plexity via overloading; in retrospect, orthogonality via

many simple concepts brings simplicity (§ 9.1).

• Query language: Our three-layered approach (canned

queries at the top, a powerful query language in the mid-

dle, and a well-hidden SQL layer at the bottom) seems

to create the right balance between expressive power vs.

ease of use, but we struggled to find that balance (§ 6).

• Migration: Migrating users from previous representa-

tions created considerable pain, some of which could

have been avoided if we had learned our other lessons

much sooner.

We also had some positive surprises:

• Support for lots of models: all of our previous systems

maintained just one model or database. MALTshop’s

ability to give near-arbitrary names to models, and to use

immutable versions, enabled many use cases we had not

initially considered, and enabled sharding (§ 5).

• Extension to other domains: Because our software

base (§7) is largely agnostic to the MALT schema itself,

it could support multiple domains with distinct schemas.

We plan to explore modeling network-like domains,

such as liquid cooling and power distribution.

Future work: We believe MALT can be extended to cover

several other kinds of networks; this remains future work.

These include cloud networks, and especially “hybrid” net-

works that include both cloud and “on-premises” enterprise

networks. (MALTshop would need to support multiple, iso-

lated namespaces for shards and for entities.) MALT could

also be extended to explicitly model Software-as-a-Service

connectivity.

MALT might support wireless networks, with some re-

design. The features that make wireless networks “interest-

ing,” such as mobile nodes, hidden terminals, and dynamic

channel fading, will challenge some implicit assumptions we

made for MALT.
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A Example of MALT modeling

We use the Jupiter datacenter fabric design [20] to illustrate

MALT modeling with a fine-grained, although incomplete

and very simplified, example. In general, we use one shard

(§ 4) for each such fabric.

Figure 6: Overall structure of Jupiter (after [20])

Figs. 6–8 provide a summary of Jupiter’s components: a

fabric is made up of aggregation blocks connected to each

other via a set of spine blocks. An aggregation block is a set

of middle blocks, each of which is a Clos fabric made up of

many switch chips. (Each spine block is also one Clos fab-

ric.) Aggregation blocks connect to ToR switches. (A spe-

cial kind of aggregation block, a border router, has the same

Figure 7: Jupiter aggregation block (after [20])

Figure 8: Jupiter middle block (after [20])

structure but connects to WAN links rather than to ToR up-

links.)

As described in [20] and shown in Fig. 8, we package four

switch chips on one “Centauri” chassis. A ToR is one such

chassis; a middle block is four chassis; we package multiple

chassis into each rack.

Thus, a Jupiter has several hierarchies: a “data plane” hi-

erarchy of packet switch chips and larger switch-like abstrac-

tions; a “sheet metal plane” hierarchy of racks, chassis, and

chips; and a “control plane” hierarchy.

We can model the top-level data-plane hierarchy for a

small Jupiter called “ju1” as (using our shorthand syntax):

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a1

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a2

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a3

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a4

EK_JUPITER/ju1 RK_CONTAINS EK_SPINE_BLOCK/ju1.s1

...

EK_JUPITER/ju1 RK_CONTAINS EK_SPINE_BLOCK/ju1.s4

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS EK_TOR/ju1.a1.t1

...

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS EK_TOR/ju1.a1.t32

An aggregation block abstractly contains multiple middle

blocks:

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS

EK_MIDDLE_BLOCK/ju1.a1.m1

...

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS

EK_MIDDLE_BLOCK/ju1.a1.m8

A middle block is a “logical switch” abstractly containing

multiple switch chips:

EK_MIDDLE_BLOCK/ju1.a1.m1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c1

...

EK_MIDDLE_BLOCK/ju1.a1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c16

Chips within middle blocks are connected, so we also have

to indicate the 8 ports on each switch chip:
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EK_PACKET_SWITCH/ju1.a1.m1.c16 RK_CONTAINS

EK_PORT/ju1.a1.m1.c16.p1

...

EK_PACKET_SWITCH/ju1.a1.m1.c16 RK_CONTAINS

EK_PORT/ju1.a1.m1.c16.p16

and then the 64 bidirectional L3 links between the ports in

the upper and lower layers of the block – just one of which

would become (note that links in MALT are unidirectional):

EK_PORT/ju1.a1.m1.c1.p9 RK_ORIGINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1f

EK_PORT/ju1.a1.m1.c9.p1 RK_TERMINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1f

EK_PORT/ju1.a1.m1.c9.p1 RK_ORIGINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1r

EK_PORT/ju1.a1.m1.c1.p9 RK_TERMINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1r

Fig. 3 shows how L3 links traverse L2 links, which in turn

might traverse multiple fibers, patch panels, etc. (not shown).

We similarly need to represent the internal connections in

each spine block (just as in a middle block) and the connec-

tions between middle-block ports and spine-block ports, and

those between middle-block ports and ToR ports. (Note that

middle blocks in an aggregation block are not directly con-

nected to each other.)

There are clearly a lot of links in a Jupiter network. There-

fore, we use automated tools to design the cables that bundle

these links. Those tools need to know the spatial locations

of the ports to which these links connect; therefore, MALT

also allows us to represent the physical containment hierar-

chy: each rack contains 16 chassis, which each contains 4

packet switches, which each contains 16 ports.

EK_RACK/ju1.a1.m1 RK_CONTAINS EK_CHASSIS/ju1.a1.m1.chass1

...

EK_RACK/ju1.a1.m1 RK_CONTAINS EK_CHASSIS/ju1.a1.m1.chass16

EK_CHASSIS/ju1.a1.m1.chass1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c1

...

EK_CHASSIS/ju1.a1.m1.chass1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c4

EK_PACKET_SWITCH/ju1.a1.m1.c16 RK_CONTAINS

EK_PORT/ju1.a1.m1.c16.p1

... (as above)

Jupiter is a software-defined network, so we also repre-

sent the network control plane and its connectivity – infor-

mation required to automatically generate configuration for

packet switches and for controllers. We start by abstracting

the switch-local CPU as a “control point” for the switch –

what SDN controllers will communicate with:

EK_CHASSIS/ju1.a1.m1.chass1 RK_CONTAINS

EK_CONTROL_POINT/ju1.a1.m1.chass1

EK_CONTROL_POINT/ju1.a1.m1.chass1 RK_CONTAINS

EK_INTERFACE/ju1.a1.m1.chass1.if1

EK_INTERFACE/ju1.a1.m1.chass1.if1 RK_TRAVERSES

EK_PORT/ju1.a1.m1.chass1.port1

EK_PORT/ju1.a1.m1.chass1.port1 RK_ORIGINATES

EK_LOGICAL_PACKET_LINK/...

Note that MALT allows us to give two different entities the

same name, as long as they have different entity-kinds – here,

the control point has the same name as its containing chassis.

Since a Centauri chassis has one CPU for 4 switch chips,

we model this as:

EK_CONTROL_POINT/ju1.a1.m1.chass1 RK_CONTROLS

EK_PACKET_SWITCH/ju1.a1.m1.c1

...

EK_CONTROL_POINT/ju1.a1.m1.chass1 RK_CONTROLS

EK_PACKET_SWITCH/ju1.a1.m1.c4

We can then represent the relationships between a set

of SDN switches and their controllers via indirection: all

switches with the same set of controller replicas are grouped

into a “control domain” (we generally have one control do-

main per aggregation block, to provide fault tolerance):

EK_CONTROL_DOMAIN/ju1.dom1 RK_CONTAINS

EK_CONTROL_POINT/ju1.a1.m1.chass1

...

EK_CONTROL_DOMAIN/ju1.dom16 RK_CONTAINS

EK_CONTROL_POINT/ju1.a16.m8.chass1

This indirection allows us to represent a pool of controller

replicas responsible for all switches in a control domain:

EK_CONTROLLER/ju1.controller1.1 RK_CONTROLS

EK_CONTROL_DOMAIN/ju1.dom1

...

EK_CONTROLLER/ju1.controller1.4 RK_CONTROLS

EK_CONTROL_DOMAIN/ju1.dom1

We can also represent – omitted here due to lack of space

– that controllers run on a pool of dedicated server machines,

how these machines are arranged in racks, are connected to

the network, etc.

Attributes: So far, this appendix has only described en-

tities and relationships. Each entity has a set of attributes;

space only permits us to show a few (simplified) examples.

A specific port might include these attributes:

port_attr: <

device_port_name: "port-1/24"

openflow: <

of_port_number: 24

>

port_role: PR_SINGLETON

port_attributes: <

physical_capacity_bps: 40000000000

>

>

while a specific L3 interface might include these:

interface_attr: <

address: <

ipv4: <

address: "10.1.2.3"

prefixlen: 32

>

ipv6: <

address: "1111:2222:3333:4444::"

prefixlen: 64

>

>

>
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Abstract
Serverless containers and functions are widely used for de-

ploying and managing software in the cloud. Their popularity
is due to reduced cost of operations, improved utilization of
hardware, and faster scaling than traditional deployment meth-
ods. The economics and scale of serverless applications de-
mand that workloads from multiple customers run on the same
hardware with minimal overhead, while preserving strong se-
curity and performance isolation. The traditional view is that
there is a choice between virtualization with strong security
and high overhead, and container technologies with weaker se-
curity and minimal overhead. This tradeoff is unacceptable to
public infrastructure providers, who need both strong security
and minimal overhead. To meet this need, we developed Fire-
cracker, a new open source Virtual Machine Monitor (VMM)
specialized for serverless workloads, but generally useful for
containers, functions and other compute workloads within a
reasonable set of constraints. We have deployed Firecracker in
two publically-available serverless compute services at Ama-
zon Web Services (Lambda and Fargate), where it supports
millions of production workloads, and trillions of requests
per month. We describe how specializing for serverless in-
formed the design of Firecracker, and what we learned from
seamlessly migrating Lambda customers to Firecracker.

1 Introduction

Serverless computing is an increasingly popular model for
deploying and managing software and services, both in public
cloud environments, e.g., [4, 16, 50, 51], as well as in on-
premises environments, e.g., [11, 41]. The serverless model
is attractive for several reasons, including reduced work in
operating servers and managing capacity, automatic scaling,
pay-for-use pricing, and integrations with sources of events
and streaming data. Containers, most commonly embodied
by Docker, have become popular for similar reasons, includ-
ing reduced operational overhead, and improved manageabil-
ity. Containers and Serverless offer a distinct economic ad-

vantage over traditional server provisioning processes: mul-
titenancy allows servers to be shared across a large num-
ber of workloads, and the ability to provision new func-
tions and containers in milliseconds allows capacity to be
switched between workloads quickly as demand changes.
Serverless is also attracting the attention of the research com-
munity [21,26,27,44,47], including work on scaling out video
encoding [13], linear algebra [20, 53] and parallel compila-
tion [12].

Multitenancy, despite its economic opportunities, presents
significant challenges in isolating workloads from one another.
Workloads must be isolated both for security (so one workload
cannot access, or infer, data belonging to another workload),
and for operational concerns (so the noisy neighbor effect
of one workload cannot cause other workloads to run more
slowly). Cloud instance providers (such as AWS EC2) face
similar challenges, and have solved them using hypervisor-
based virtualization (such as with QEMU/KVM [7, 29] or
Xen [5]), or by avoiding multi-tenancy and offering bare-
metal instances. Serverless and container models allow many
more workloads to be run on a single machine than traditional
instance models, which amplifies the economic advantages of
multi-tenancy, but also multiplies any overhead required for
isolation.

Typical container deployments on Linux, such as those
using Docker and LXC, address this density challenge by
relying on isolation mechanisms built into the Linux kernel.
These mechanisms include control groups (cgroups), which
provide process grouping, resource throttling and accounting;
namespaces, which separate Linux kernel resources such as
process IDs (PIDs) into namespaces; and seccomp-bpf, which
controls access to syscalls. Together, these tools provide a
powerful toolkit for isolating containers, but their reliance on
a single operating system kernel means that there is a fun-
damental tradeoff between security and code compatibility.
Container implementors can choose to improve security by
limiting syscalls, at the cost of breaking code which requires
the restricted calls. This introduces difficult tradeoffs: im-
plementors of serverless and container services can choose
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between hypervisor-based virtualization (and the potentially
unacceptable overhead related to it), and Linux containers
(and the related compatibility vs. security tradeoffs). We built
Firecracker because we didn’t want to choose.

Other projects, such as Kata Containers [14], Intel’s Clear
Containers, and NEC’s LightVM [38] have started from a
similar place, recognizing the need for improved isolation,
and choosing hypervisor-based virtualization as the way to
achieve that. QEMU/KVM has been the base for the majority
of these projects (such as Kata Containers), but others (such
as LightVM) have been based on slimming down Xen. While
QEMU has been a successful base for these projects, it is a
large project (> 1.4 million LOC as of QEMU 4.2), and has
focused on flexibility and feature completeness rather than
overhead, security, or fast startup.

With Firecracker, we chose to keep KVM, but entirely re-
place QEMU to build a new Virtual Machine Monitor (VMM),
device model, and API for managing and configuring Mi-
croVMs. Firecracker, along with KVM, provides a new foun-
dation for implementing isolation between containers and
functions. With the provided minimal Linux guest kernel con-
figuration, it offers memory overhead of less than 5MB per
container, boots to application code in less than 125ms, and
allows creation of up to 150 MicroVMs per second per host.
We released Firecracker as open source software in December
20181, under the Apache 2 license. Firecracker has been used
in production in Lambda since 2018, where it powers millions
of workloads and trillions of requests per month.

Section 2 explores the choice of an isolation solution for
Lambda and Fargate, comparing containers, language VM
isolation, and virtualization. Section 3 presents the design of
Firecracker. Section 4 places it in context in Lambda, explain-
ing how it is integrated, and the role it plays in the perfor-
mance and economics of that service. Section 5 compares
Firecracker to alternative technologies on performance, den-
sity and overhead.

1.1 Specialization
Firecracker was built specifically for serverless and container
applications. While it is broadly useful, and we are excited to
see Firecracker be adopted in other areas, the performance,
density, and isolation goals of Firecracker were set by its in-
tended use for serverless and containers. Developing a VMM
for a clear set of goals, and where we could make assumptions
about the properties and requirements of guests, was signifi-
cantly easier than developing one suitable for all uses. These
simplifying assumptions are reflected in Firecracker’s design
and implementation. This paper describes Firecracker in con-
text, as used in AWS Lambda, to illustrate why we made the
decisions we did, and where we diverged from existing VMM
designs. The specifics of how Firecracker is used in Lambda
are covered in Section 4.1.

1https://firecracker-microvm.github.io/

Firecracker is probably most notable for what it does not of-
fer, especially compared to QEMU. It does not offer a BIOS,
cannot boot arbitrary kernels, does not emulate legacy de-
vices nor PCI, and does not support VM migration. Fire-
cracker could not boot Microsoft Windows without significant
changes to Firecracker. Firecracker’s process-per-VM model
also means that it doesn’t offer VM orchestration, packaging,
management or other features — it replaces QEMU, rather
than Docker or Kubernetes, in the container stack. Simplic-
ity and minimalism were explicit goals in our development
process. Higher-level features like orchestration and metadata
management are provided by existing open source solutions
like Kubernetes, Docker and containerd, or by our propri-
etary implementations inside AWS services. Lower-level fea-
tures, such as additional devices (USB, PCI, sound, video,
etc), BIOS, and CPU instruction emulation are simply not im-
plemented because they are not needed by typical serverless
container and function workloads.

2 Choosing an Isolation Solution

When we first built AWS Lambda, we chose to use Linux
containers to isolate functions, and virtualization to isolate
between customer accounts. In other words, multiple func-
tions for the same customer would run inside a single VM,
but workloads for different customers always run in different
VMs. We were unsatisfied with this approach for several rea-
sons, including the necessity of trading off between security
and compatibility that containers represent, and the difficulties
of efficiently packing workloads onto fixed-size VMs. When
choosing a replacement, we were looking for something that
provided strong security against a broad range of attacks (in-
cluding microarchitectural side-channel attacks), the ability
to run at high densities with little overhead or waste, and com-
patibility with a broad range of unmodified software (Lambda
functions are allowed to contain arbitrary Linux binaries, and
a significant portion do). In response to these challenges, we
evaluated various options for re-designing Lambda’s isolation
model, identifying the properties of our ideal solution:

Isolation: It must be safe for multiple functions to run on the
same hardware, protected against privilege escalation,
information disclosure, covert channels, and other risks.

Overhead and Density: It must be possible to run thou-
sands of functions on a single machine, with minimal
waste.

Performance: Functions must perform similarly to running
natively. Performance must also be consistent, and iso-
lated from the behavior of neighbors on the same hard-
ware.

Compatibility: Lambda allows functions to contain arbi-
trary Linux binaries and libraries. These must be sup-
ported without code changes or recompilation.
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Fast Switching: It must be possible to start new functions
and clean up old functions quickly.

Soft Allocation: It must be possible to over commit CPU,
memory and other resources, with each function consum-
ing only the resources it needs, not the resources it is
entitled to.

Some of these qualities can be converted into quantitative
goals, while others (like isolation) remain stubbornly qualita-
tive. Modern commodity servers contain up to 1TB of RAM,
while Lambda functions use as little as 128MB, requiring
up to 8000 functions on a server to fill the RAM (or more
due to soft allocation). We think of overhead as a percentage,
based on the size of the function, and initially targeted 10% on
RAM and CPU. For a 1024MB function, this means 102MB
of memory overhead. Performance is somewhat complex, as
it is measured against the function’s entitlement. In Lambda,
CPU, network, and storage throughput is allocated to func-
tions proportionally to their configured memory limit. Within
these limits, functions should perform similarly to bare metal
on raw CPU, IO throughput, IO latency and other metrics.

2.1 Evaluating the Isolation Options
Broadly, the options for isolating workloads on Linux can be
broken into three categories: containers, in which all work-
loads share a kernel and some combination of kernel mecha-
nisms are used to isolate them; virtualization, in which work-
loads run in their own VMs under a hypervisor; and language
VM isolation, in which the language VM is responsible for ei-
ther isolating workloads from each other or from the operating
system. 2

Figure 1 compares the security approaches between Linux
containers and virtualization. In Linux containers, untrusted
code calls the host kernel directly, possibly with the kernel
surface area restricted (such as with seccomp-bpf). It also
interacts directly with other services provided by the host
kernel, like filesystems and the page cache. In virtualization,
untrusted code is generally allowed full access to a guest
kernel, allowing all kernel features to be used, but explicitly
treating the guest kernel as untrusted. Hardware virtualization
and the VMM limit the guest kernel’s access to the privileged
domain and host kernel.

2.1.1 Linux Containers

Containers on Linux combine multiple Linux kernel features
to offer operational and security isolation. These features in-
clude: cgroups, providing CPU, memory and other resource

2It’s somewhat confusing that in common usage containers is both used to
describe the mechanism for packaging code, and the typical implementation
of that mechanism. Containers (the abstraction) can be provided without
depending on containers (the implementation). In this paper, we use the term
Linux containers to describe the implementation, while being aware that
other operating systems provide similar functionality.

Untrusted Code

Host Kernel

sandbox

(a) Linux container model

Untrusted Code

sandbox

VMM

Host KernelKVM

Guest Kernel

(b) KVM virtualization model

Figure 1: The security model of Linux containers (a) depends
directly on the kernel’s sandboxing capabilities, while KVM-
style virtualization (b) relies on security of the VMM, possibly
augmented sandboxing

limits; namespaces, providing namespacing for kernel re-
sources like user IDs (uids), process IDs (pids) and network
interfaces; seccomp-bpf, providing the ability to limit which
syscalls a process can use, and which arguments can be passed
to these syscalls; and chroot, proving an isolated filesystem.
Different Linux container implementations use these tools in
different combinations, but seccomp-bpf provides the most
important security isolation boundary. The fact that contain-
ers rely on syscall limitations for their security represents a
tradeoff between security and compatibility. A trivial Linux
application requires 15 unique syscalls. Tsai et al [57] found
that a typical Ubuntu Linux 15.04 installation requires 224
syscalls and 52 unique ioctl calls to run without problems,
along with the /proc and /sys interfaces of the kernel. Never-
theless, meaningful reduction of the kernel surface is possible,
especially as it is reasonable to believe that the Linux kernel
has more bugs in syscalls which are less heavily used [32].

One approach to this challenge is to provide some of the
operating system functionality in userspace, requiring a sig-
nificantly smaller amount of kernel functionality to provide
the programmer with the appearance of a fully featured envi-
ronment. Graphene [56], Drawbridge [45], Bascule [6] and
Google’s gvisor [15] take this approach. In environments run-
ning untrusted code, container isolation is not only concerned
with preventing privilege escalation, but also in preventing
information disclosure side channels (such as [19]), and pre-
venting communication between functions over covert chan-
nels. The richness of interfaces like /proc have showed this to
be challenging (CVE-2018-17972 and CVE-2017-18344 are
recent examples).

2.1.2 Language-Specific Isolation

A second widely-used method for isolating workloads is lever-
aging features of the language virtual machine, such as the
Java Virtual Machine (JVM) or V8. Some language VMs
(such as V8’s isolates and the JVM’s security managers) aim
to run multiple workloads within a single process, an approach
which introduces significant tradeoffs between functionality

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    421



(and compatibility) and resistance to side channel attacks such
as Spectre [30, 39]. Other approaches, such as Chromium site
isolation [46], Alto [31] and SAND [1] use a process per
trust domain, and instead aim to prevent the code from escap-
ing from the process or accessing information from beyond
the process boundary. Language-specific isolation techniques
were not suitable for Lambda or Fargate, given our need to
support arbitrary binaries.

2.1.3 Virtualization

Modern virtualization uses hardware features (such as Intel
VT-x) to provide each sandbox an isolated environment with
its own virtual hardware, page tables, and operating system
kernel. Two key, and related, challenges of virtualization are
density and overhead. The VMM and kernel associated with
each guest consumes some amount of CPU and memory be-
fore it does useful work, limiting density. Another challenge
is startup time, with typical VM startup times in the range of
seconds. These challenges are particularly important in the
Lambda environment, where functions are small (so relative
overhead is larger), and workloads are constantly changing.
One way to address startup time is to boot something smaller
than a full OS kernel, such as a unikernel. Unikernels are al-
ready being investigated for use with containers, for example
in LightVM [38] and Solo5 [59]. Our requirement for running
unmodified code targeting Linux meant that we could not
apply this approach.

The third challenge in virtualization is the implementation
itself: hypervisors and virtual machine monitors (VMMs),
and therefore the required trusted computing base (TCB), can
be large and complex, with a significant attack surface. This
complexity comes from the fact that VMMs still need to ei-
ther provide some OS functionality themselves (type 1) or
depend on the host operating system (type 2) for function-
ality. In the type 2 model, The VMM depends on the host
kernel to provide IO, scheduling, and other low-level function-
ality, potentially exposing the host kernel and side-channels
through shared data structures. Williams et al [60] found that
virtualization does lead to fewer host kernel functions being
called than direct implementation (although more than their
libOS-based approach). However, Li et al [32] demonstrate
the effectiveness of a ’popular paths’ metric, showing that
only 3% of kernel bugs are found in frequently-used code
paths (which, in our experience, overlap highly with the code
paths used by the VMM).

To illustrate this complexity, the popular combination of
Linux Kernel Virtual Machine [29] (KVM) and QEMU
clearly illustrates the complexity. QEMU contains > 1.4
million lines of code, and can require up to 270 unique
syscalls [57] (more than any other package on Ubuntu Linux
15.04). The KVM code in Linux adds another 120,000 lines.
The NEMU [24] project aims to cut down QEMU by remov-
ing unused features, but appears to be inactive.

Efforts have been made (such as with Muen [9] and
Nova [55]) to significantly reduce the size of the Hypervisor
and VMM, but none of these minimized solutions offer the
platform independence, operational characteristics, or matu-
rity that we needed at AWS.

Firecracker’s approach to these problems is to use KVM
(for reasons we discuss in section 3), but replace the VMM
with a minimal implementation written in a safe language.
Minimizing the feature set of the VMM helps reduce surface
area, and controls the size of the TCB. Firecracker contains
approximately 50k lines of Rust code (96% fewer lines than
QEMU), including multiple levels of automated tests, and
auto-generated bindings. Intel Cloud Hypervisor [25] takes
a similar approach, (and indeed shares much code with Fire-
cracker), while NEMU [24] aims to address these problems
by cutting down QEMU.

Despite these challenges, virtualization provides many com-
pelling benefits. From an isolation perspective, the most com-
pelling benefit is that it moves the security-critical interface
from the OS boundary to a boundary supported in hardware
and comparatively simpler software. It removes the need to
trade off between kernel features and security: the guest ker-
nel can supply its full feature set with no change to the threat
model. VMMs are much smaller than general-purpose OS ker-
nels, exposing a small number of well-understood abstractions
without compromising on software compatibility or requiring
software to be modified.

3 The Firecracker VMM

Firecracker is a Virtual Machine Monitor (VMM), which uses
the Linux Kernel’s KVM virtualization infrastructure to pro-
vide minimal virtual machines (MicroVMs), supporting mod-
ern Linux hosts, and Linux and OSv guests. Firecracker pro-
vides a REST based configuration API; device emulation for
disk, networking and serial console; and configurable rate lim-
iting for network and disk throughput and request rate. One
Firecracker process runs per MicroVM, providing a simple
model for security isolation.

Our other philosophy in implementing Firecracker was
to rely on components built into Linux rather than re-im-
plementing our own, where the Linux components offer the
right features, performance, and design. For example we pass
block IO through to the Linux kernel, depend on Linux’s pro-
cess scheduler and memory manager for handling contention
between VMs in CPU and memory, and we use TUN/TAP
virtual network interfaces. We chose this path for two reasons.
One was implementation cost: high-quality operating system
components, such as schedulers, can take decades to get right,
especially when they need to deal with multi-tenant work-
loads on multi-processor machines. The implementations in
Linux, while not beyond criticism [36], are well-proven in
high-scale deployments.

The other reason was operational knowledge: within AWS,
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our operators are highly experienced at operating, automating,
optimizing Linux systems (for example, Brendan Gregg’s
books on Linux performance [18] are popular among Amazon
teams). Using KVM in Linux, along with the standard Linux
programming model, allows our operators to use most of the
tools they already know when operating and troubleshooting
Firecracker hosts and guests. For example, running ps on a
Firecracker host will include all the MicroVMs on the host in
the process list, and tools like top, vmstat and even kill work
as operators expect. While we do not routinely provide access
to in-production Firecracker hosts to operators, the ability to
use the standard Linux toolset has proven invaluable during
the development and testing of our services. In pursuit of this
philosophy, Firecracker does sacrifice portability between
host operating systems, and inherits a larger trusted compute
base.

In implementing Firecracker, we started with Google’s
Chrome OS Virtual Machine Monitor crosvm, re-using some
of its components. Consistent with the Firecracker philoso-
phy, the main focus of our adoption of crosvm was removing
code: Firecracker has fewer than half as many lines of code as
crosvm. We removed device drivers including USB and GPU,
and support for the 9p filesystem protocol. Firecracker and
crosvm have now diverged substantially. Since diverging from
crosvm and deleting the unneeded drivers, Firecracker has
added over 20k lines of new code, and changed 30k lines. The
rust-vmm project3 maintains a common set of open-source
Rust crates (packages) to be shared by Firecracker and crosvm
and used as a base by future VMM implementers.

3.1 Device Model

Reflecting its specialization for container and function work-
loads, Firecracker provides a limited number of emulated
devices: network and block devices, serial ports, and partial
i8042 (PS/2 keyboard controller) support. For comparison,
QEMU is significantly more flexible and more complex, with
support for more than 40 emulated devices, including USB,
video and audio devices. The serial and i8042 emulation im-
plementations are straightforward: the i8042 driver is less than
50 lines of Rust, and the serial driver around 250. The network
and block implementations are more complex, reflecting both
higher performance requirements and more inherent complex-
ity. We use virtio [40, 48] for network and block devices, an
open API for exposing emulated devices from hypervisors.
virtio is simple, scalable, and offers sufficiently good over-
head and performance for our needs. The entire virtio block
implementation in Firecracker (including MMIO and data
structures) is around 1400 lines of Rust.

We chose to support block devices for storage, rather than
filesystem passthrough, as a security consideration. Filesys-
tems are large and complex code bases, and providing only

3https://github.com/rust-vmm/community

block IO to the guest protects a substantial part of the host
kernel surface area.

3.2 API
The Firecracker process provides a REST API over a Unix
socket, which is used to configure, manage and start and stop
MicroVMs. Providing an API allows us to more carefully
control the life cycle of MicroVMs. For example, we can
start the Firecracker process and pre-configure the MicroVM
and only start the MicroVM when needed, reducing startup
latency. We chose REST because clients are available for
nearly any language ecosystem, it is a familiar model for
our targeted developers, and because OpenAPI allows us to
provide a machine- and human-readable specification of the
API. By contrast, the typical Unix approach of command-
line arguments do not allow messages to be passed to the
process after it is created, and no popular machine-readable
standard exists for specifying structured command-line argu-
ments. Firecracker users can interact with the API using an
HTTP client in their language of choice, or from the command
line using tools like curl.

REST APIs exist for specifying the guest kernel and boot
arguments, network configuration, block device configuration,
guest machine configuration and cpuid, logging, metrics, rate
limiters, and the metadata service. Common defaults are pro-
vided for most configurations, so in the simplest use only the
guest kernel and one (root) block device need to be configured
before the VM is started.

To shut down the MicroVM, it is sufficient to kill the Fire-
cracker process, or issue a reboot inside the guest. As with the
rest of Firecracker, the REST API is intentionally kept simple
and minimal, especially when compared to similar APIs like
Xen’s Xenstore.

3.3 Rate Limiters, Performance and Machine
Configuration

The machine configuration API allows hosts to configure
the amount of memory and number of cores exposed to a
MicroVM, and set up the cpuid bits that the MicroVM sees.
While Firecracker offers no emulation of missing CPU func-
tionality, controlling cpuid allows hosts to hide some of their
capabilities from MicroVMs, such as to make a heterogeneous
compute fleet appear homogeneous.

Firecracker’s block device and network devices offer built-
in rate limiters, also configured via the API. These rate lim-
iters allow limits to be set on operations per second (IOPS
for disk, packets per second for network) and on bandwidth
for each device attached to each MicroVM. For the network,
separate limits can be set on receive and transmit traffic. Lim-
iters are implemented using a simple in-memory token bucket,
optionally allowing short-term bursts above the base rate, and
a one-time burst to accelerate booting. Having rate limiters
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be configurable via the API allows us to vary limits based
on configured resources (like the memory configured for a
Lambda function), or dynamically based on demand. Rate
limiters play two roles in our systems: ensuring that our stor-
age devices and networks have sufficient bandwidth available
for control plane operations, and preventing a small number of
busy MicroVMs on a server from affecting the performance
of other MicroVMs.

While Firecracker’s rate limiters and machine configuration
provide the flexibility that we need, they are significantly
less flexible and powerful than Linux cgroups which offer
additional features including CPU credit scheduling, core
affinity, scheduler control, traffic prioritization, performance
events and accounting. This is consistent with our philosophy.
We implemented performance limits in Firecracker where
there was a compelling reason: enforcing rate limits in device
emulation allows us to strongly control the amount of VMM
and host kernel CPU time that a guest can consume, and we
do not trust the guest to implement its own limits. Where we
did not have a compelling reason to add the functionality to
Firecracker, we use the capabilities of the host OS.

3.4 Security
Architectural and micro-architectural side-channel attacks
have existed for decades. Recently, the publication of Melt-
down [34], Spectre [30], Zombieload [49], and related at-
tacks (e.g. [2, 37, 54, 58]) has generated a flurry of interest
in this area, and prompted the development of new mitiga-
tion techniques in operating systems, processors, firmware
and microcode. Canella et al [10] and ARM [33] provide
good summaries of the current state of research. With exist-
ing CPU capabilities, no single layer can mitigate all these
attacks, so mitigations need to be built into multiple layers
of the system. For Firecracker, we provide clear guidance
on current side-channel mitigation best-practices for deploy-
ments of Firecracker in production4. Mitigations include dis-
abling Symmetric MultiThreading (SMT, aka HyperThread-
ing), checking that the host Linux kernel has mitigations en-
abled (including Kernel Page-Table Isolation, Indirect Branch
Prediction Barriers, Indirect Branch Restricted Speculation
and cache flush mitigations against L1 Terminal Fault), en-
abling kernel options like Speculative Store Bypass mitiga-
tions, disabling swap and samepage merging, avoiding sharing
files (to mitigate timing attacks like Flush+Reload [61] and
Prime+Probe [42]), and even hardware recommendations to
mitigate RowHammer [28, 43]. While we believe that all of
these practices are necessary in a public cloud environment,
and enable them in our Lambda and Fargate deployments of
Firecracker, we also recognize that tradeoffs exist between
performance and security, and that Firecracker consumers in
less-demanding environments may choose not to implement

4https://github.com/firecracker-microvm/firecracker/
blob/master/docs/prod-host-setup.md

some of these mitigations. As with all security mitigations,
this is not an end-point, but an ongoing process of understand-
ing and responding to new threats as they surface.

Other side-channel attacks, such as power and temperature,
are not addressed by Firecracker, and instead must be handled
elsewhere in the system architecture. We have paid careful
attention to mitigating these attacks in our own services, but
anybody who adopts Firecracker must understand them and
have plans to mitigate them.

3.4.1 Jailer

Firecracker’s jailer implements an additional level of protec-
tion against unwanted VMM behavior (such as a hypotheti-
cal bug that allows the guest to inject code into the VMM).
The jailer implements a wrapper around Firecracker which
places it into a restrictive sandbox before it boots the guest,
including running it in a chroot, isolating it in pid and net-
work namespaces, dropping privileges, and setting a restric-
tive seccomp-bpf profile. The sandbox’s chroot contains only
the Firecracker binary, /dev/net/tun, cgroups control files, and
any resources the particular MicroVM needs access to (such
as its storage image). The seccomp-bpf profile whitelists 24
syscalls, each with additional argument filtering, and 30 ioctls
(of which 22 are required by KVM ioctl-based API).

4 Firecracker In Production

4.1 Inside AWS Lambda
Lambda [51] is a compute service which runs functions in re-
sponse to events. Lambda offers a number of built-in language
runtimes (including Python, Java, NodeJS, and C#) which al-
lows functions to be provided as snippets of code implement-
ing a language-specific runtime interface. A "Hello, World!"
Lambda function can be implemented in as few as three lines
of Python or Javascript. It also supports an HTTP/REST run-
time API, allowing programs which implement this API to
be developed in any language, and provided either as bina-
ries or a bundle alongside their language implementation.
Lambda functions run within a sandbox, which provides a
minimal Linux userland and some common libraries and utili-
ties. When Lambda functions are created, they are configured
with a memory limit, and a maximum runtime to handle each
individual event5. Events include those explicitly created by
calling the Lambda Invoke API, from HTTP requests via
AWS’s Application Load Balancer and API Gateway, and
from integrations with other AWS services including storage
(S3), queue (SQS), streaming data (Kinesis) and database
(DynamoDB) services.

Typical use-cases for AWS Lambda include backends for
IoT, mobile and web applications; request-response and event-

5As of early 2019, Lambda limits memory to less than 3GB and runtime
to 15 minutes, but we expect these limits to increase considerably over time.

424    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md


WorkersWorkers

Frontend

Worker
Manager

Placement

Workers

Function 
Metadata

Figure 2: High-level architecture of AWS Lambda event path,
showing control path (light lines) and data path (heavy lines)

sourced microservices; real-time streaming data processing;
on-demand file processing; and infrastructure automation.
AWS markets Lambda as serverless compute, emphasizing
that Lambda functions minimize operational and capacity
planning work, and entirely eliminate per-server operations
for most use-cases. Most typical deployments of Lambda
functions use them with other services in the AWS suite: S3,
SQS, DynamoDB and Elasticache are common companions.
Lambda is a large-scale multi-tenant service, serving trillions
of events per month for hundreds of thousands of customers.

4.1.1 High-Level Architecture

Figure 2 presents a simplified view of the architecture of
Lambda. Invoke traffic arrives at the frontend via the Invoke
REST API, where requests are authenticated and checked
for authorization, and function metadata is loaded. The fron-
tend is a scale-out shared-nothing fleet, with any frontend
able to handle traffic for any function. The execution of the
customer code happens on the Lambda worker fleet, but to
improve cache locality, enable connection re-use and amor-
tize the costs of moving and loading customer code, events
for a single function are sticky-routed to as few workers as
possible. This sticky routing is the job of the Worker Man-
ager, a custom high-volume (millions of requests per second)
low-latency (<10ms 99.9th percentile latency) stateful router.
The Worker Manager replicates sticky routing information
for a single function (or small group of functions) between
a small number of hosts across diverse physical infrastruc-
ture, to ensure high availability. Once the Worker Manager
has identified which worker to run the code on, it advises the
invoke service which sends the payload directly to the worker
to reduce round-trips. The Worker Manager and workers also
implement a concurrency control protocol which resolves
the race conditions created by large numbers of independent
invoke services operating against a shared pool of workers.

Each Lambda worker offers a number of slots, with each
slot providing a pre-loaded execution environment for a func-
tion. Slots are only ever used for a single function, and a
single concurrent invocation of that function, but are used

Listing 1 Lambda function illustrating slot re-use. The re-
turned number will count up over many invokes.

var i = 0;
exports.handler = async (event , context) => {

return i++;
};

Customer Code

Firecracker

λ Shim

Linux Kernel

virtio

Micro
Manager

MicroVM “slot”Monitoring, 
Logging, etc.

Figure 3: Architecture of the Lambda worker

for many serial invocations of the function. The MicroVM
and the process the function is running in are both re-used, as
illustrated by Listing 1 which will return a series of increasing
numbers when invoked with a stream of serial events.

Where a slot is available for a function, the Worker Man-
ager can simply perform its lightweight concurrency control
protocol, and tell the frontend that the slot is available for
use. Where no slot is available, either because none exists
or because traffic to a function has increased to require addi-
tional slots, the Worker Manager calls the Placement service
to request that a new slot is created for the function. The
Placement service in turn optimizes the placement of slots
for a single function across the worker fleet, ensuring that the
utilization of resources including CPU, memory, network, and
storage is even across the fleet and the potential for correlated
resource allocation on each individual worker is minimized.
Once this optimization is complete — a task which typically
takes less than 20ms — the Placement service contacts a
worker to request that it creates a slot for a function. The
Placement service uses a time-based lease [17] protocol to
lease the resulting slot to the Worker Manager, allowing it to
make autonomous decisions for a fixed period of time.

The Placement service remains responsible for slots, in-
cluding limiting their lifetime (in response to the life cycle of
the worker hosts), terminating slots which have become idle
or redundant, managing software updates, and other similar
activities. Using a lease protocol allows the system to both
maintain efficient sticky routing (and hence locality) and have
clear ownership of resources. As part of its optimization re-
sponsibilities, the placement service also consumes load and
health data for each slot in each worker.

4.1.2 Firecracker In The Lambda Worker

Figure 3 shows the architecture of the Lambda worker, where
Firecracker provides the critical security boundary required to
run a large number of different workloads on a single server.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    425



Each worker runs hundreds or thousands of MicroVMs (each
providing a single slot), with the number depending on the
configured size of each MicroVM, and how much memory,
CPU and other resources each VM consumes. Each MicroVM
contains a single sandbox for a single customer function,
along with a minimized Linux kernel and userland, and a
shim control process. The MicroVM is a primary security
boundary, with all components assuming that code running
inside the MicroVM is untrusted. One Firecracker process
is launched per MicroVM, which is responsible for creating
and managing the MicroVM, providing device emulation and
handling VM exits.

The shim process in each MicroVM communicates through
the MicroVM boundary via a TCP/IP socket with the Micro-
Manager, a per-worker process which is responsible for man-
aging the Firecracker processes. MicroManager provides slot
management and locking APIs to placement, and an event
invoke API to the Frontend. Once the Frontend has been
allocated a slot by the WorkerManager, it calls the MicroMan-
ager with the details of the slot and request payload, which
the MicroManager passes on to the Lambda shim running
inside the MicroVM for that slot. On completion, the Mi-
croManager receives the response payload (or error details
in case of a failure), and passes these onto the Frontend for
response to the customer. Communicating into and out of the
MicroVM over TCP/IP costs some efficiency, but is consistent
with the design principles behind Firecracker: it keeps the
MicroManager process loosely coupled from the MicroVM,
and re-uses a capability of the MicroVM (networking) rather
than introducing a new device. The MicroManager’s protocol
with the Lambda shim is important for security, because it is
the boundary between the multi-tenant Lambda control plane,
and the single-tenant (and single-function) MicroVM. Also,
on each worker is a set of processes that provides monitoring,
logging, and other services for the worker. Logs and metrics
are provided for consumption by both humans and automated
alarming and monitoring systems, and metrics are also pro-
vided back to Placement to inform its view of the load on the
worker.

The MicroManager also keeps a small pool of pre-booted
MicroVMs, ready to be used when Placement requests a new
slot. While the 125ms boot times offered by Firecracker are
fast, they are not fast enough for the scale-up path of Lambda,
which is sometimes blocking user requests. Fast booting is a
first-order design requirement for Firecracker, both because
boot time is a proxy for resources consumed during boot, and
because fast boots allow Lambda to keep these spare pools
small. The required mean pool size can be calculated with
Little’s law [35]: the pool size is the product of creation rate
and creation latency. Alternatively, at 125ms creation time,
one pooled MicroVM is required for every 8 creations per
second.

Idle Busy

Dead

Init

Figure 4: State transitions for a single slots on a Lambda
worker

4.2 The Role of Multi-Tenancy

Soft-allocation (the ability for the platform to allocate re-
sources on-demand, rather than at startup) and multi-tenancy
(the ability for the platform to run large numbers of unre-
lated workloads) are critical to the economics of Lambda.
Each slot can exist in one of three states: initializing, busy,
and idle, and during their lifetimes slots move from initializ-
ing to idle, and then move between idle and busy as invokes
flow to the slot (see Figure 4). Slots use different amounts
of resources in each state. When they are idle they consume
memory, keeping the function state available. When they are
initializing and busy, they use memory but also resources like
CPU time, caches, network and memory bandwidth and any
other resources in the system. Memory makes up roughly
40% of the capital cost of typical modern server designs, so
idle slots should cost 40% of the cost of busy slots. Achieving
this requires that resources (like CPU) are both soft-allocated
and oversubscribed, so can be sold to other slots while one is
idle.

Oversubscription is fundamentally a statistical bet: the plat-
form must ensure that resources are kept as busy as possible,
but some are available to any slot which receives work. We
set some compliance goal X (e.g., 99.99%), so that functions
are able to get all the resources they need with no contention
X% of the time. Efficiency is then directly proportional to the
ratio between the X th percentile of resource use, and mean
resource use. Intuitively, the mean represents revenue, and the
X th percentile represents cost. Multi-tenancy is a powerful
tool for reducing this ratio, which naturally drops approxi-
mately with

√
N when running N uncorrelated workloads on

a worker. Keeping these workloads uncorrelated requires that
they are unrelated: multiple workloads from the same appli-
cation, and to an extent from the same customer or industry,
behave as a single workload for these purposes.

4.3 Experiences Deploying and Operating
Firecracker

Starting in 2018, we migrated Lambda customers from our
first isolation solution (based on containers per function, and
AWS EC2 instances per customer) to Firecracker running
on AWS EC2 bare metal instances, with no interruption to
availability, latency or other metrics. Each Lambda slot exists
for at most 12 hours before it is recycled. Simply changing
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the recycling logic to switch between Firecracker and legacy
implementations allowed workloads to be migrated with no
change in behavior.

We took advantage of users of Lambda inside AWS by
migrating their workloads first, and carefully monitoring their
metrics. Having access to these internal customer’s metrics
and code reduced the risk of early stages of deployment, be-
cause we didn’t need to rely on external customers to inform
us of subtle issues. This migration was mostly uneventful, but
we did find some minor issues. For example, our Firecracker
fleet has Symmetric MultiThreading (SMT, aka Hyperthread-
ing) disabled [52] while our legacy fleet had it enabled6. Mi-
grating to Firecracker changed the timings of some code, and
exposed minor bugs in our own SDK, and in Apache Com-
mons HttpClient [22, 23]. Once we moved all internal AWS
workloads, we started to migrate external customers. This
migration has been uneventful, despite moving arbitrary code
provided by hundreds of thousands of AWS customers.

Throughout the migration, we made sure that the metrics
and logs for the Firecracker and legacy stacks could be mon-
itored independently. The team working on the migration
carefully compared the metrics between the two stacks, and
investigated each case where they were diverged significantly.
We keep detailed per-workload metrics, including latency and
error-rate, allowing us to use statistical techniques to proac-
tively identify anomalous behavior. Architecturally, we chose
to use a common production environment for both stacks as
far as possible, isolating the differences between the stacks
behind a common API. This allowed the migration team to
work independently, shifting the target of the API traffic with
no action from teams owning other parts of the architecture.

Our deployment mechanism was also designed to allow
fast, safe, and (in some cases) automatic rollback, moving
customers back to the legacy stack at the first sign of trouble.
Rollback is a key operational safety practice at AWS, allowing
us to mitigate customer issues quickly, and then investigate.
One case where we used this mechanism was when some
customers reported seeing DNS-related performance issues:
we rolled them back, and then root-caused the issue to a mis-
configuration causing DNS lookups not to be cached inside
the MicroVM.

One area of focus for our deployment was building mecha-
nisms to patch software, including Firecracker and the guest
and host kernels, quickly and safely and then audit that patches
have reached the whole fleet. We use an immutable infrastruc-
ture approach, where we patch by completely re-imaging the
host, implemented by terminating and re-launching our AWS
EC2 instances with an updated machine image (AMI). We
chose this approach based on a decade of experience operat-
ing AWS services, and learning that it is extremely difficult to
keep software sets consistent on large-scale mutable fleets (for
example, package managers like rpm are non-deterministic,

6We disable SMT on the Firecracker fleet as a sidechannel mitigation. On
the legacy fleet the same threats are mitigated by pinning VMs to cores.

producing different results on across a fleet). It also illustrates
the value of building higher-level services like Lambda on
lower-level services like AWS EC2: we didn’t need to build
any host management or provisioning infrastructure.

5 Evaluation

In Section 2, we described six criteria for choosing a mecha-
nism for isolation in AWS Lambda: Isolation, Overhead, Per-
formance, Compatibility, Fast Switching and Soft Allocation.
In this section we evaluate Firecracker against these criteria
as well as other solutions in this space. We use Firecracker
v0.20.0 as the base line and use QEMU v4.2.0 (statically
compiled with a minimal set of options) for comparison. We
also include data for the recently released Intel Cloud Hyper-
visor [25], a VMM written in Rust sharing significant code
with Firecracker, while targeting a different application space.

Our evaluation is performed on an EC2 m5d.metal instance,
with two Intel Xeon Platinum 8175M processors (for a total
of 48 cores with hyper-threading disabled), 384GB of RAM,
and four 840GB local NVMe disks. The base OS was Ubuntu
18.04.2 with kernel 4.15.0-1044-aws. The configuration and
scripts used for all our experiments, and the resulting data, is
publicly available7.

5.1 Boot Times
Boot times of MicroVMs are important for serverless work-
loads like Lambda. While Lambda uses a small local pool
of MicroVMs to hide boot latency from customers, the costs
of switching between workloads (and therefore the cost of
creating new MicroVMs) is very important to our economics.
In this section we compare the boot times of different VMMs.
The boot time is measured as the time between when VMM
process is forked and the guest kernel forks its init process.
For this experiment we use a minimal init implementation,
which just writes to a pre-configured IO port. We modified all
VMMs to call exit() when the write to this IO port triggers
a VM exit.

All VMMs directly load a Linux 4.14.94 kernel via the
command line (i.e. the kernel is directly loaded by the VMM
and not some bootloader). The kernel is configured with the
settings we recommend for MicroVMs (minimal set of kernel
driver and no kernel modules), and we use a file backed min-
imal root filesystem containing the init process. The VMs
are configured with a single vCPU and 256MB of memory.

Figure 5 shows the cumulative distribution of (wall-clock)
kernel boot times for 500 samples executed serially, so only
one boot was taking place on the system at a time. Firecracker
results are presented in two ways: end-to-end, including fork-
ing the Firecracker process and configuration through the API;
and pre-configured where Firecracker has already been set up

7https://github.com/firecracker-microvm/nsdi2020-data
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Figure 5: Cumulative distribution of wall-clock times for start-
ing MicroVMs in serial, for pre-configured Firecracker (FC-
pre), end-to-end Firecracker, Cloud Hypervisor, and QEMU.
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Figure 6: Cumulative distribution of wall-clock times for
starting 50 MicroVMs in parallel, for pre-configured Fire-
cracker (FC-pre), end-to-end Firecracker, Cloud Hypervi-
sor,and QEMU.

through the API and time represent the wall clock time from
the final API call to start the VM until the init process gets
executed.

Pre-configured Firecracker and the Cloud Hypervisor per-
form significantly better than QEMU, both on average and
with a tighter distribution, booting twice as fast as QEMU. The
end-to-end Firecracker boot times are somewhat in-between,
which is expected since we currently perform several API
calls to configure the Firecracker VM. Cloud Hypervisor
boots marginally faster than pre-configured Firecracker. We
suspect subtle differences in the VM emulation to be the
reason.

We then booted 1000 MicroVMs with 50 VMs launch-
ing concurrently. While any highly-concurrent test will give
results that vary between runs, the results in Figure 6 are
representative: Firecracker and QEMU perform similarly for
end-to-end comparisons, roughly maintaining the 50ms gap
already seen with the serial boot times above. Like with serial
boot times, pre-configured Firecracker and Cloud Hypervisor
show significantly better results, with pre-configured Fire-
cracker out-performing Cloud Hypervisor both in average
boot times as well as a tighter distribution with a 99th per-
centile of 146ms vs 158ms. We also repeated the experiment

with starting 100 MicroVMs concurrently and see a similar
trend, albeit with a slightly wider distribution with the 99th
percentile for pre-configure Firecracker going up to 153ms.

Based on these results, we are investigating a number of
optimizations to Firecracker. We could move the Firecracker
configuration into a single combined API call would close the
gap between the pre-configured and end-to-end boot times.
We also investigate to move some of the VM initialization into
the VM configuration phase, e.g., allocating the VM memory
and loading the kernel image during the configuration API
call. This should improve considerably the pre-configured
boot times.

The choice of VMM is, of course, only one factor impacting
boot times. For example, both Firecracker and Cloud Hyper-
visor are capable of booting uncompressed Linux kernels
while QEMU only boots compressed kernel images. Cloud
Hypervisor is also capable of booting compressed kernel. De-
compressing the kernel during boot adds around 40ms. The
kernel configuration also matters. In the same test setup, the
kernel which ships with Ubuntu 18.04 takes an additional
900ms to start! Part of this goes to timeouts when probing
for legacy devices not emulated by Firecracker, and part to
loading unneeded drivers. In our kernel configuration, we ex-
clude almost all drivers, except the virtio and serial drivers
that Firecracker supports,build all functionality into the ker-
nel (avoiding modules), and disable any kernel features that
typical container and serverless deployments will not need.
The compressed kernel built with this configuration is 4.0MB
with no modules, compared to the Ubuntu 18.04 kernel at
6.7MB with 44MB of modules. We also recommend a kernel
command line for Firecracker which, among other things, dis-
ables the standard logging to the serial console (saving up to
70ms of boot time). Note, we use similar optimizations for
the other VMMs in iur tests.

For the tests above, all MicroVMs were configured without
networking. Adding a statically configured network interface
adds around 20ms to the boot times for Firecracker and Cloud
Hypervisor and around 35ms for QEMU. Finally, QEMU
requires a BIOS to boot. For our test we use qboot [8], a
minimal BIOS, which reduces boot times by around 20ms
compared to the default BIOS. Overall the boot times compare
favourable to those reported in the literature, for example [38]
reported boot times for an unmodified Linux kernel of 180ms.

5.2 Memory overhead

For Lambda, memory overhead is a key metric, because our
goal is to sell all the memory we buy. Lower memory overhead
also allows for a higher density of MicroVMs. We measure
the memory overhead for the different VMMs as the differ-
ence between memory used by the VMM process and the
configured MicroVM size. To measure the size of the VMM
process we parse the output of the pmap command and add
up all non-shared memory segments reported. This way our
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Figure 7: Memory overhead for different VMMs depending
on the configured VM size.

calculation excludes the size of the VMM binary itself.
Figure 7 shows that all three VMMs have a constant mem-

ory overhead irrespective of the configured VM size (with the
exception of QEMU, where for a 128MB sized VM, the over-
head is slightly higher). Firecracker has the smallest overhead
(around 3MB) of all VMM sizes measured. Cloud Hyper-
visors overhead is around 13MB per VM. QEMU has the
highest overhead of around 131MB per MicroVM. In particu-
lar for smaller MicroVMs, QEMU’s overhead is significant.

We also measured the memory available inside the Mi-
croVM using the free command. The difference in memory
available between the different VMMs is consistent with the
data presented above.

5.3 IO performance
In this section, we look at the IO performance of the different
VMMs both for disks and networking. For all tests we use
VMs configured with 2 vCPUs and 512MB of memory. For
block IO performance tests we use fio [3], and rate limiting
was disabled in Firecracker. fio is configured to perform
random IO directly against the block device, using direct IO
through libaio, and all tests were backed by the local NVMe
SSDs on the m5d.metal server. Figure 8 shows the perfor-
mance of random read and write IO of small (4kB) and large
(128kB) blocks (queue depth 32). The results reflect two lim-
itations in Firecracker’s (and Cloud Hypervisor’s) current
block IO implementation: it does not implement flush-to-disk
so high write performance comes at the cost of durability
(particularly visible in 128kB write results), and it is currently
limited to handling IOs serially (clearly visible in the read
results). The hardware is capable of over 340,000 read IOPS
(1GB/s at 4kB), but the Firecracker (and Cloud Hypervisor)
guest is limited to around 13,000 IOPS (52MB/s at 4kB).
We expect to fix both of these limitations in time. QEMU
clearly has a more optimized IO path and performs flushing
on write. For 128k reads and writes it almost matches the
performance of the physical disk, but for 4k operations the
higher transaction rate highlights its overheads.

Figure 9 shows 99th percentile latency for block IO with
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Figure 8: IO throughput on EC2 m5d.metal and running inside
various VMs.
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Figure 9: 99th percentile IO latency on EC2 m5d.metal and
running inside various VMMs.

a queue depth of 1. Here Firecracker fares fairly well for
small blocks: 4kB reads are only 49µs slower than native
reads. Large blocks have significantly more overhead, with
Firecracker more than doubling the IO latency. Writes show
divergence in the implementation between Firecracker and
Cloud Hypervisor with the latter having significantly lower
write latency. The write latency of Firecracker and Cloud
Hypervisor have also be considered with care since neither
supports flush on write.

Tests with multiple MicroVMs showed no significant con-
tention: running multiple tests each with a dedicated disk,
both Firecracker and QEMU saw no degradation relative to a
single MicroVM.

Network performance tests were run with iperf3, measur-
ing bandwidth to and from the local host over a tap interface
with 1500 byte MTU. We measured both the performance of
a single stream as well as 10 concurrent streams. The results
are summarised in Table 1. The host (via the tap interface)
can achieve around 44Gb/s for a single stream and 46Gb/s
for 10 concurrent streams. Firecracker only achives around
15Gb/s for all scenarios while Cloud Hypervisor achieves
slight higher performance, likely due to a slight more op-
timised virtio implementation. The QEMU throughput is
roughly the same as for Could Hypervisor. While Firecracker
has a little lower throughput than the other VMMs we have
not seen this to be a limitation in our production environment.
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As with block IO, performance scaled well, with up to 16
concurrent MicroVMs able to achieve the same bandwidth.

VMM 1 RX 1 TX 10 RX 10 TX

loopback 44.14 44.14 46.92 46.92
FC 15.61 14.15 15.13 14.87
Cloud HV 23.12 20.96 22.53 N/A
Qemu 23.76 20.43 19.30 30.43

Table 1: iperf3 throughput in Gb/s for receiving (RX) in the
VM and transmitting (TX) from the VM for a single and ten
concurrent TCP streams.

We expect that there are significant improvements still pos-
sible to increase latency and throughput for both disk IO and
networking. Some improvements, such as exposing parallel
disk IOs to the underlying storage devices, are likely to offer
significantly improved performance. Nevertheless, the virtio-
based approach we have taken with Firecracker will not yield
the near-bare-metal performance offered by PCI pass-through
(used in our standard EC2 instances); hardware is not yet up
to the task of supporting thousands of ephemeral VMs.

5.4 Does Firecracker Achieve Its Goals?

Using the six criteria from Section 2, we found that while
there is scope for improving Firecracker (as there is scope
for improving all software), it does meet our goals. We have
been running Lambda workloads in production on Firecracker
since 2018.

Isolation: The use of virtualization, along with side-channel
hardening, implementation in Rust, extensive testing and
validation makes us confident to run multiple workloads
from multiple tenants on the same hardware with Fire-
cracker.

Overhead and Density: Firecracker is able to run thousands
of MicroVMs on the same hardware, with overhead as
low a 3% on memory and negligible overhead on CPU.

Performance Block IO and network performance have some
scope for improvement, but are adequate for the needs
of Lambda and Fargate.

Compatibility: Firecracker MicroVMs run an unmodified
(although minimal) Linux kernel and userland. We have
not found software that does not run in a MicroVM, other
than software with specific hardware requirements.

Fast Switching: Firecracker MicroVMs boot with a produc-
tion kernel configuration and userland in as little as
150ms, and multiple MicroVMs can be started at the
same time without contention.

Soft Allocation: We have tested memory and CPU oversub-
scription ratios of over 20x, and run in production with
ratios as high as 10x, with no issues.

In response to this success, we have deployed Firecracker
in production in AWS Lambda, where it is being used suc-
cessfully to process trillions of events per month for millions
of different workloads.

6 Conclusion

In building Firecracker, we set out to create a VMM optimized
for serverless and container workloads. We have successfully
deployed Firecracker to production in Lambda and Fargate,
where it has met our goals on performance, density and se-
curity. In addition to the short-term success, Firecracker will
be the basis for future investments and improvements in the
virtualization space, including exploring new areas for virtu-
alization technology. We are excited to see Firecracker being
picked up by the container community, and believe that there
is a great opportunity to move from Linux containers to vir-
tualization as the standard for container isolation across the
industry.

The future is bright for MicroVMs, both in and out of the
cloud. Challenges remain in further optimizing performance
and density, building schedulers than can take advantage of
the unique capabilities of MicroVM-based isolation, and in
exploring alternative operating systems and programming
models for serverless computing. We expect that there is
much fruitful research to do at the VMM and hypervisor lev-
els. Directions we are interested in include: increasing density
(especially memory deduplication) without sacrificing isola-
tion against architectural and microarchitectural side-channel
attacks; compute hardware optimized for high-density multi-
tenancy; high-density host bypass for networking, storage and
accelerator hardware; reducing the size of the virtualization
trusted compute base; and dramatically reducing startup and
workload switching costs. The hardware, user expectations,
and threat landscape around running multitenant container
and function workloads are changing fast. Perhaps faster than
at any other point in the last decade. We are excited to con-
tinue to work with the research and open source communities
to meet these challenges.
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Abstract
Large services experience extremely frequent changes to code
and configuration. In many cases, these changes are corre-
lated across files. For example, an engineer introduces a new
feature following which they also change a configuration file
to enable the feature only on a small number of experimen-
tal machines. This example captures only one of numerous
types of correlations that emerge organically in large services.
Unfortunately, in almost all such cases, no documentation
or specification guides engineers on how to make correlated
changes and they often miss making them. Such misses can
be vastly disruptive to the service.

We have designed and deployed Rex, a tool that, using a
combination of machine learning and program analysis, learns
change-rules that capture such correlations. When an engineer
changes only a subset of files in a change-rule, Rex suggests
additional changes to the engineer based on the change-rule.
Rex has been deployed for 14 months on 360 repositories
within Microsoft that hold code and configuration for ser-
vices such as Office 365 and Azure. Rex has so far positively
affected 4926 changes without which, at the very least, code-
quality would have degraded and, in some cases, the service
would have been severely disrupted.

1 Introduction

Large-scale services run on a foundation of very large code-
bases and configuration repositories. To run uninterrupted, a
service not only depends on correct code, but also on correct
network and security configuration, and suitable deployment
specification. This causes various dependencies both within
and across components/sources of the service which emerge
organically. When an engineer changes a certain region of
code or configuration, these dependencies require them to
make changes to other code or configuration regions. For
instance, when an engineer adds a new feature to a service,
they may need to add a function to test the feature. Also, they
may need to configure the service to deploy the new feature

only to a small set of machines to test it further. Similarly,
when an engineer renames a service API, they must also
change firewall rule specifications so that the rules apply to
the now renamed API rather than to the old one.

Such correlations can occur between code files across com-
ponents, between code and configuration files, or between
configuration files. Unfortunately, unlike pure code, which
goes through compilation, reviewing and systematic testing
to weed out bugs, these correlations are often not specified,
checked for, and are left undocumented. Consequently engi-
neers, with no documentation or specification to go by, often
miss making necessary changes to code or configuration files.
This can delay deployment, increase security risks and, in
some cases, even disrupt the service completely. Disruptions
due to such correlations are surprisingly frequent [12]. For
instance, an engineer recently caused a disruption at Sales-
force because they did not perform all necessary dependent
configuration changes related to a change they initiated [22].

To address this problem, we present Rex, a tool that learns
these correlations using a combination of machine learning
and program analysis. Using association rule mining on many
months of file changes, Rex determines sets of files that often
change together. Rex also uses differential syntax analysis
to learn change-rules: each change-rule captures a set of
correlated changes across files. When an engineer makes a
file change, Rex analyzes the change and uses the change-
rules to suggest additional changes if required.

While the idea of using association rule mining to deter-
mine correlations in code and configuration has been pro-
posed before [6, 35, 37], previous work has not concentrated
on generalizing the algorithm. To the best of our knowledge,
Rex is the first tool that combines association rule mining
with syntactic analysis to determine change-rules. Moreover,
Rex takes the crucial step of making correlated change anal-
ysis generalize well to multiple file-types and services, and
deploying it at a large-scale. We do this through three key
observations made by studying the characteristics of services:

1. Correlations occur in a multitude of unpredictable ways.
Consequently, Rex’s algorithm should not rely on any hard-
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coded domain knowledge, neither should it depend on any
manual configuration or tuning.

2. Configuration management practice varies widely across
services and projects. Every service has distinct configura-
tion management and maintenance strategies as a result of
which machine learning models have to be service or project-
specific, with no extrapolation from one to the other. To make
matters even more challenging, even a single service or project
can change characteristics significantly over time. Hence,
Rex’s models have to be periodically retrained so that its
suggestions can be accurate.

3. Care has to be taken while applying association rule
mining on large code and configuration files. Services depend
upon a large amount of code and configuration. Applying rule
mining which is exponential in the size of the input at the
level of individual code and configuration constructs is simply
not feasible. We realized this early in the design process and
therefore apply rule-mining at the file-level.

Rex is deployed on 360 Microsoft repositories which hold
code and configuration for services such as Exchange Online,
OneDrive, Azure, Dynamics CRM and Skype. We are cur-
rently scaling out Rex at a fast pace, on-boarding almost one
repository per day. Till date, Rex has suggested 4926 changes
to engineers that, if not made, may have adversely affected
our services in many ways.

In this paper, we make the following contributions:

• We demonstrate different types of correlations that exist
across code and configuration of large services.

• We describe a novel two-step algorithm to perform cor-
related change analysis involving file-level association
rule mining followed by differential syntactic analysis
of the changes made to the files.

• We have implemented and deployed Rex and provide an
evaluation based on our deployments.

• We have performed an extensive user study to understand
how useful Rex is in practice.

Section 2 describes different types of correlations Rex has
found across many services. Section 3 provides an overview
of Rex’s approach, limitations, and challenges. Section 4 ex-
plains the algorithms Rex uses to suggest changes. Section 5
and Section 6 provide specifics on its implementation and
deployment. Finally, Sections 7 and 8 describe a thorough
evaluation and user study respectively.

2 Reasons for Correlated Change

Correlations occur due to various reasons. In this section, we
describe several categories of correlations we found through
our deployments. Table 1 shows a sample of correlated
changes that engineers missed making and Rex flagged at

commit-time. We note that though these examples are specific
to our deployments, the problem of correlated configuration is
generic and extends to other organizations as well [14,22,27].
We now describe these categories of correlations with the help
of the examples in Table 1.

2.1 Flighting

When an engineer adds a new feature, they use canary-testing
or “flighting” to deploy it in stages. They first deploy it to
a small subset of machines to ensure that the feature works
as planned and does not cause disruptions. Once they ensure
this, they deploy the feature more widely. Hence, when the
engineer adds code to implement a new feature, they also
need to add configuration to files that define the set of ma-
chines that will test this feature. Services implement flighting
in many different ways. Example 3 shows an instance where
the engineer who develops the new feature decides which set
of machines to run the feature on. Example 7, for a different
service, shows an instance of a change where the engineer
who develops the new feature does not directly turn on the fea-
ture: they provide a “code switch” which other engineers can
use to turn on flighting. These two examples again illustrate
why Rex needs to learn such varied change-rules from data
and why rule-based engines would not work across services.

2.2 Replicating Code and Configuration

While clearly not recommended, we find that engineers some-
times replicate files and file contents across different logical
boundaries of the service. They do this since, without repli-
cation, there will be a larger number of dependencies across
files and components. This in turn will lead to less modular
code-bases which may take longer to test, debug, and deploy.
Example 2 shows an instance where a configuration file is
replicated across different alerting frameworks. An engineer
changed one, without knowing that a replica existed within
the other alerting framework. Rex flagged this file and the
engineer immediately changed the other file as well.

2.3 Complex Configuration

Configuring services is a complex task and, as a result, several
correlations show up between configuration files. Example 4
shows an instance where an engineer renamed a microservice,
but forgot to change the name of the service in the file that
contained its firewall rules. This could have caused a security
issue. Example 8 shows another instance where hardware
configuration files are correlated, and missing this change
could have caused a service disruption.
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No. File 1 File 2 Reason If File 2 unchanged
1 Source code

(JS)
Test file (JS) An engineer added new functionality to source-code and needed to add a unit-

test to test this functionality to another file.
Without the test, a bug in File
1 may go unnoticed.

2 Component
definitions
(C#)

Component
definitions
(C#)

An engineer changed a parameter in the definition of a set of components in
File 1. An alerting framework uses File 1 to determine which components to
probe and alert on. File 2, very similar to File 1, is used by a different alerting
framework for the same reason. Hence, the engineer had to make the same
changes to File 2 as well.

The second alerting framework
would malfunction, leading to
incorrectly suppressed alerts.

3 Feature set
definitions
(INI)

Flight defini-
tion (INI)

An engineer added a new feature to a service. She enabled the feature in de-
ployment by updating a settings file. Additionally, she had to specify how to
“flight” the change, i.e., which subset of machines to run the new feature on. File
2 contains these flight configurations for every feature.

The feature will not deploy un-
til the engineer changes File 2.

4 Microservice
Registry
(XML)

Firewall rule
definitions
(XML)

An engineer changed a microservice’s name in the microservice registry. File
2 holds a mapping from a set of microservices to the firewall rules that apply
to them, so the engineer needed to change the microservice’s name in File 2 as
well.

The required firewall rules
would not have applied to the
renamed microservice, causing
a security threat.

5 Shell script
(PS1)

File storing
security vul-
nerabilities
(XML)

File 2 keeps a record of potential security vulnerabilities such as cleartext
passwords and code susceptible to injection attacks. It stores a record with both
the offending file name, and the line number where the vulnerability exists. A
security scanner uses File 2 to ignore the vulnerabilities it specifies, to avoid
flagging the same vulnerabilities repeatedly. Hence, when an engineer adds or
removes lines from File 1, they need to appropriately change the line number of
the vulnerable code in File 2 as well.

The security scanner would ig-
nore a completely different,
potentially vulnerable, line of
code. This could cause a secu-
rity threat.

6 Shell script
(PS1)

Shell script
(PS1)

File 1 defines a function, File 2 calls it. The engineer made a change to the
function name and parameters in File 1, so they had to change how File 2 calls
the function. If this code were compiled rather than interpreted, the compiler
would have caught the error.

The scripts determine how the
service is deployed, and hence
this error would have caused de-
ployment to fail.

7 Style sheet
file (SCSS)

Flight defini-
tions file (C#)

An engineer made a web-design change in File 1, and wanted to flight it on
a small set of machines. File 2 contains definitions of “code switches” that
engineers can use to turn on the new design change.

Without an appropriate code
switch, engineers cannot turn
on the design change, and
hence, this would have caused
unnecessary deployment de-
lays of the new look.

8 Config file
maintaining
SKU infor-
mation of
machines in
a Data center
(XML)

File main-
taining rack
definitions
for the
data center
(XML)

Operators update File 1 when a new set of machines with a new SKU is intro-
duced to the data center. If the new machines are deployed, also need to update
File 2 which specifies which machines sit in each rack.

Several other functions use
these configuration files. Incor-
rect data center configuration
can cause faulty functioning of
the service and hence disrup-
tion.

Table 1: This table describes some real examples of correlated changes that engineers missed and Rex flagged in our deployments.
The Reason column captures why the two files are correlated. The last column describes what may have happened, had Rex not
flagged the issue and notified the engineer.

2.4 Testing

Example 1 shows that, when an engineer adds a new feature
to code, they should consider adding a new test for that feature
in a separate file that contains only tests. While this is fairly
common across multiple code-bases and services, each code-
base has its own organization structure for separating test code
from the main production code. Rex automatically detects
such structures without any manual input.

2.5 Scripting

Often, administrators use scripts to test and deploy services.
These scripts can have complex inter-dependencies which,
unlike compiled code, can go unchecked at commit-time. For
instance, in Example 6, an engineer changed function defini-
tion in one script and hence they had to change the way the

function was called in another script. Rex caught this issue,
while existing IDEs and compilers could not.

2.6 Miscellaneous

Apart from the categories we have mentioned so far, Rex also
flags somewhat rare cases of correlation which can have high
impact. In Example 5, File 2 maintains a list of line-numbers
of vulnerable code across different files in the code-base. The
idea is to maintain a record of all vulnerabilities that have
already been found and vetted by engineers. Thus, when an
engineer adds n lines of code to File 1, they also changed
the line number of the vulnerable code in File 1. Hence they
need to increment the line number in File 2 by n. While such
categories of correlations are rare, we notice multiple such
rare cases. This further confirms the value of using a learning-
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based approach.
Note that, for simplicity, the table shows examples that

involved only two files. In reality, change-rules can contain
more than two files. Moreover, the correlations for similar
tasks are very different for different services. Example 3 and
Example 7 in Section 2.1 talks about two different ways of
flighting a feature. Even within a service, the correlations are
dynamic and keep changing with time. We believe no existing
syntactic or semantic analysis techniques or heuristic based
model could have effectively and efficiently captured such
diverse and complex correlations.

3 Problem Overview

In this section, we define the problem that Rex solves, the
approach to it, and describe some limitations of the approach.
Finally, we lay out the challenges we faced as we designed
and deployed Rex.

3.1 Approach

Rex applies association rule mining on months of commit
logs to find correlated changes. Association rule mining is
fundamentally an exponential algorithm. Finding correlations
between individual configuration parameters and code con-
structs such as variables and functions will be prohibitively
expensive simply because of the sheer large numbers of such
constructs [28, 33, 35]. Hence to scale well, we decided to
mine change-rules at the file-level. While the approach is
coarse-grained and does not capture correlations perfectly, it
makes the solution practical to deploy at a large scale.

Rex learns change-rules in two steps: change-rule discov-
ery and change-rule refinement. In the discovery step, it uses
association rule mining to find sets of files that change to-
gether “frequently”. A set of parameters determine how fre-
quently the files need to change for Rex to learn the change-
rule. Section 4.2 provides more detail on this algorithm and
Section 4.5 shows how we tune its parameters to maintain
effectiveness through changing characteristics of the service.

After change-rule discovery, Rex runs the second step,
namely, change-rule refinement. The idea is to make each
change-rule, which is coarse-grained and at the file-level,
more precise. Rex analyzes the change in every file of the
change-rule to determine what types of changes are corre-
lated. Section 4.3 describes this procedure further. Finally,
Rex makes suggestions to engineers based on the learnt rules.

3.2 Design Goals

Rex’s design is driven by two factors. First, it needs to be
generic: its techniques need to work well across file-types,
service-types, and programming languages. Second, it needs
to be effective: it should find subtle misconfigurations and

bugs which existing tools cannot catch. To achieve these
goals, our solution has the following characteristics:
No Manual Inputs: The main goal of Rex is to help engi-
neers find misconfigurations and bugs early, while minimally
intruding upon on their already busy schedule. We therefore
design it to work with existing systems and logs, and do not
require any additional logging or inputs from the engineers.
We believe this is one of the main reasons that Rex is being
adopted widely across our organization over multiple services.
Correlation, not causation: Rex flags correlations, and does
not detect causality because the cause of a specific set of
correlated changes may not be captured by any logs. For
instance, consider Example 2 in Table 1: changing one file
of component definitions does not cause the change in the
other. An engineer was extending the alerting infrastructure
to a larger number of components, and this caused the need
to change both files.

3.3 Scope
As with any machine learning-based approach, Rex is a best-
effort service. Sometimes it may miss suggesting required
changes (false-negatives) and conversely, it also suggests
changes when none are needed (false-positives). As we de-
scribe in Section 4, we tune Rex so that it catches as many
misconfigurations as possible even though this may come
at the cost of a higher number of false-positives. Take for
instance Example 5. We need to change File 2 only if the
line-number of a vulnerable code-snippet in File 1 changes.
It is fundamentally difficult for a generic technique to learn
the specific semantics of this particular correlation. Rather,
Rex suggests that the engineer change File 2 whenever they
change File 1, even if the line-numbers in File 1 do not change.
Such a suggestion will be a false-positive.

3.4 Challenges
Determining the right set of correlations has several chal-
lenges associated with it.
Imperfect Ground-truth: The largest challenge we faced as
we designed Rex was imperfect ground-truth. The reasons
for this are many. First, correlations are often subtle and do
not necessarily cause compile errors, deployment failures, or
immediate service downtime. Consider the issue in Table 1,
Example 1, where the engineer needs to add a test for a newly
added feature. This is not strictly necessary but definitely
recommended. However engineers are often hard-pressed to
commit and deploy fast and therefore may not add the test.
Hence the commit logs that Rex uses may not always see the
two files with the added feature and test changed together.
As a consequence, Rex may not learn the change-rule that
includes these two files.
Performance: Rex currently runs on 360 repositories, and its
adoption is increasing rapidly. Hence we need to ensure there
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Figure 1: Rex system design.

are no manual steps involved. Additionally, we need to ensure
that the rule mining algorithm does not become prohibitively
expensive.

4 System Design

In this section, we provide an overview of the different com-
ponents of Rex. We then describe each component in detail.

4.1 Design Overview

Figure 1 shows an overview of the Rex design. The Rex rule-
learning engine periodically learns change-rules that capture
which files change together and how. It uses several months
of commit logs to do this. For each commit, the commit log
contains information about which files changed, and how they
changed. Rex’s rule-learning engine runs two processes to
learn rules: change-rule discovery (Section 4.2) and change-
rule refinement (Section 4.3).

The Rex suggestion engine interfaces between the client
that uses Rex and the rule-learning engine. When an engineer
changes a file, the Rex client notifies the suggestion engine
of the change. The suggestion engine looks up applicable
change-rules to determine if the engineer may have missed
changing a correlated file. If so, the suggestion engine sug-
gests the additional file change back to the client. Our current
implementation of the Rex client is built for various source
control systems such as Git [29]. It adds suggestions as pull-
request comments, whenever required, after every commit in
a pull-request. More details on this are in Section 5.

When the Rex client provides the suggestion back to the
engineer, they either accept the suggestion by editing the sug-
gested file or not. Rex uses this behavior as feedback to the
rule-learning engine. Using this implicit feedback, Rex au-
tomatically tunes parameters used to learn the change-rules.
Section 4.5 provides more details on the tuning module and
why this is essential to scale Rex across hundreds of reposito-
ries. Very few engineers provide explicit feedback by replying
or resolving the comment and we do not use this because such
feedback is very limited and is inherently biased towards neg-
ative examples.

Figure 2: Some example rules from the change-rule discovery
step. Note that rules are not limited to only file pairs. Example
c) shows an example where two files are learned on the LHS.

4.2 Change-rule Discovery

In this section, we describe the first-step towards learning
rules, which is change-rule discovery. We use six months
of commit data for rule-mining. First, Rex prunes the com-
mit logs to exclude commits that are aggregates of smaller
commits caused by merging branches (squashed changes), or
porting a set of commits across branches. Since these commits
put together a set of smaller commits that may not have any
relation with each other, they do not capture true correlations
between files. Moreover, such large commits make mining
rules prohibitively expensive. Figure 2 shows some examples
of rules that Rex has learned.

Rex runs the rule mining algorithm considering each com-
mit as a transaction. First, it discovers frequent item-sets using
the FP-Growth algorithm [13]. A frequent item-set is a set
of files that change together very often. Mathematically, we
define a frequent item-set as F = { f1, . . . , fn} where files f1
through fn have changed together at least smin times. smin is
the minimum support defined for the model. The support of
the frequent item-set, sF, is defined as the number of times
files f1 through fn change together. Hence, sF ≥ smin.

Next, the algorithm generates change-rules from frequent
item-sets. From the frequent item-set F, Rex learns the rule
X =⇒ Y such that X⊂ F,Y⊂ F,X∩Y = φ,X∪Y = F.

The confidence of the rule is the number of times all the
files in F change together (support of file-set F) divided by
the number of times all the files in X change together (support
of file-set X). The rule’s confidence is therefore sX∪Y/sX.
Hence, the more often files in sets X and Y change together,
the higher the confidence of the rule. Rex learns a rule only if
it has confidence above a minimum confidence cmin.

4.3 Change-rule Refinement

In this Section, we describe the change-rule refinement pro-
cess. Currently our implementation supports configuration
files, but it can be extended to support code files as well. In
our description, we concentrate on xml files though the same
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Figure 3: Steps of change-rule refinement for a rule network_dc1.xml =⇒ network_dc2.xml. Three separate commits are
made to a single configuration file. Each one adds an XML attribute Network, but with different values. From each of these
three, Rex learns difference trees that codify the additions. All these difference trees are input to the anti-unification algorithm
which outputs a generalization for this type of addition.

techniques apply to other file-types such as json.

Consider the following examples which have arisen in our
deployments:

Ex 1. Network configuration: An engineer adds new
commands to a file NetConfig_dc1.xml that configure
racks in data center 1. These changes need to be ap-
plied to all data centers, and hence, the engineer has to
change similar configuration files for other data centers as
well, say NetConfig_dc2.xml. Rex should therefore sug-
gest these changes if the engineer does not make them.
However, in many cases, the engineer makes changes to
NetConfig_dc1.xml that apply only to data center 1 and
not to data center 2. For instance, they may add a new subnet
only to data center 1. In this case, Rex should not suggest
changing NetConfig_dc2.xml. Change-rule discovery alone
cannot differentiate these two scenarios.

Ex 2. Role-based access control: Several of our services
implement role-based access control. Engineers often define
a new role in a file RoleDefn.xml. When they do so, they
should also change RoleMembership.xml, which specifies
the users or groups that are associated with the new role.
However, if the engineer is only modifying an already exist-
ing role definition in RoleDefn.xml, they need not change
RoleMembership.xml.

These examples show that, in some cases, for a rule X =⇒
Y, Y changes only if X changes in a specific way. While for
code, compilers often catch such correlations and dependen-
cies, configuration files lack an equivalent safety net.

Change-rule refinement has two parts. First, given a config-
uration file xC, it learns all generalizations of additions, dele-
tions and modifications made to xC, where a generalization is
in the form of a regular expression. Next, for any change-rule
X =⇒ Y already learned by change-rule discovery where
xC ∈ X, it refines the rule further. We now describe these two
steps in detail.

4.3.1 Learning generalizations

Figure 3 shows an example of this. Rex creates a set of all
commits C that modify xC. For every commit in C, Rex com-
putes a syntactic difference between the old and new version
of xC. To do this, Rex constructs parse trees for both versions,
and then uses a novel differencing algorithm to compute the
difference between the two parse trees, which we call a differ-
ence tree. For example, in Figure 3, three changes were added
to xC in three different commits. Each change added an XML
node named network, but with varying attribute values. In
each case, Rex’s differencing algorithm outputs a difference
tree capturing the difference. The shaded vertices are XML
nodes, while the unshaded vertices are XML attributes.

Next, from the difference trees, Rex learns generaliza-
tions of the changes that happen to the configuration file.
To extract these generalizations, Rex uses the process of anti-
unification [15, 23]. The anti-unification algorithm learns reg-
ular expressions that are the most specific generalizations of
the difference trees. In each of the three changes shown in Fig-
ure 3, the xml attribute RackTypes has different values. The
xml attribute CommandConfig too has different text values.
Taking the three difference trees as input, the anti-unification
algorithm outputs the generalized difference tree, and thereby
the most specific generalization of the three changes.

While Figure 3 describes one example generalization,
a file xC may have many more such generalizations. Rex
learns all such generalizations of additions, deletions and
modifications to the configuration file xC. Say this set is
G(xC) = {g1,g2, . . . ,gn}.

4.3.2 Refining Rules

Next, given a rule learned during change-rule discovery
X =⇒ Y, where xC ∈ X, Rex learns more fine-grained rules
of the form {X,(xC,gi)} =⇒ Y,gi ∈ G(xC). This rule says
that when all files in X change, Rex will suggest changing Y
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only if the change to file xC matches generalization gi.
This is done in the following way. Say the number of times

a change in file xC matches gi and all files in Y change is
n. Conversely, say the number of times a change in file xC
matches gi and files in Y do not change is ñ. If n/(n+ ñ)> t,
where t is a threshold we call the refinement threshold, Rex
refines the rule by adding the tuple (xC,gi) to the left-hand
side of the rule. This means that Rex now makes the sugges-
tion only if the change to xC matches the regular expression
gi. Thus, change-rule refinement cuts down on false-positive
suggestions. In all our deployments, we set t to 0.75.

Though our implementation of the differencing algorithm is
specific to configuration files, we can also extend this to code
files. The code differencing algorithm could learn syntactic
features such as “function added", “if-condition changed", etc.
We could refine rules for code using these features. Based on
a careful empirical study we conducted while going through
true-positives and false-positives that change-rule discovery
generated, we observed that a lot of issues with code files
are already addressed by compilers. So, we do not see many
false-positives for code files when the engineer has commited
changes, because in most cases, engineers commit changes
after compiling the code. This will become more clear in the
next section 4.4 where we describe how these rules are used.
Rex uses these rules to make recommendations for missing
files after an engineer has committed a change. Such a tool for
code files would be helpful for developers if the suggestions
are made at IDE (Integrated Development Environment) level.
We leave this for future-work.

4.4 Suggestion Engine

In this Section, we describe how the Rex suggestion engine
uses the rules learned by change-rule discovery and change-
rule refinement.

When an engineer commits a code or configuration change,
the Rex client calls the suggestion engine which determines
the set of rules that match the commit. If there is a match,
the suggestion engine checks if any of the files in Y are un-
changed by the commit. If it does find such a file, the sug-
gestion engine recommends that the files be changed. If the
engineer does indeed change the suggested files, the sugges-
tion is considered a true-positive. Else, the suggestion is a
false-positive. These numbers are used both for parameter
tuning (Section 4.5) and evaluation for Rex (Section 7).

4.5 Parameter Tuning

As we deployed Rex on more projects and services, we no-
ticed that the frequency and the nature of changes varied
widely, not just across projects and services, but also within
the same project at different times. Hence, once a day, Rex
uses the feedback from the suggestion engine to tune models.

Figure 4: Screenshot of a Rex pull-request comment. Sensitive
text has been masked.

Association rule mining has two main tunable parameters,
the minimum support smin and the minimum confidence cmin.
Rex tunes only smin and sets cmin to a constant, relatively
low value of 0.5. This is because while we want change-rule
discovery to learn a relatively large set of rules, perhaps some
with low confidence, we use change-rule refinement to make
the rules more precise.

We train various models by varying the value of smin. We do
not set smin to values less than 4, since that leads to too many
rules and slows down rule-mining. We then evaluate each
model on one month’s data and pick the best one using the
described approach. We apply the model after every commit1.
We measure the number of false-positives and true-positives.
In addition, we also compute false-negatives for a model. This
is the number of true-positives that the model with smin set to
4 found, but the current model did not. Hence, we compute
every model’s false-negatives relative to the model with the
lowest value of smin, which learns the largest number of rules.

From these numbers, we can compute precision, recall and
F1-score for each model. Finally, we pick the model with the
highest F1-score and deploy it.

5 Implementation

Rex is implemented using C# on top of the .NET framework
and deployed using a combination of services provided by
Microsoft Azure [19]. Rex is currently deployed on 360 repos-
itories across multiple Microsoft services. There are three
main components of Rex:
Data Ingestion and Loading: Using Azure DevOps [18]
and Github [11] APIs, batch jobs execute at predefined inter-
vals to ingest information about pull requests, commits, files,
diffs, etc. for each repository where Rex is enabled. All data
is stored using SQL databases. Currently, there is a one-to-
one mapping between a repository and a database. The SQL
database schema is normalized and allows for efficient query-
ing of commit and file data. Newly onboarded repositories
are back filled with 6 months of data.

1Our evaluations are GIT-specific, so we apply Rex after every commit
to a pull-request. This approach extends to other version control systems as
well.
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Learning: For each repository, every day a new model is
learned. Currently, Rex uses the FP-growth algorithm [13] to
learn association rules from the six months of commit history
in a repository. Rex also analyzes xml files more deeply us-
ing XmlDiffAndPatch [10] in order to perform change-rule
refinement using the anti-unification algorithm [15, 23]. The
learned model and metadata about the model is saved in the
respective database for the repository; thus, resulting in a
repository-local model.
Decorator: The pull-request decorator performs the function-
ality of the suggestion engine. It subscribes to events in each
repository using APIs. For each pull-request that is created
or updated, the decorator mines details on the fly, performs
inferencing of the pull-request using the latest model stored
in the repository database and creates systematic comments
in the pull-request for all valid and new Rex suggestions.

6 Deployment

Deploying Rex is easy: an administrator of a repository only
needs to provide a URL of their repositories. Repo admins
need not provide any inputs to Rex, they need not configure
it, and hence the effort to on-board a repository is minimal.
We started deploying Rex with one repository in October
2018. Since then, its adoption has steadily grown. Rex is now
deployed on 360 repositories for services such as Exchange
Online, OneDrive, Azure, Dynamics CRM, and Skype.

No. Metrics Min Max
1 Total No. of Files 26 99235
2 % of Config Files in Repository 16% 100%
3 Avg.No. of Pull-Requests Per-day 1 279
4 No. of Engineers 3 2885

Table 2: Characteristics of repositories on which Rex runs.

Deployments are on very different types of repositories.
Table 2 summarizes the characteristics of the 360 repositories
that Rex is deployed on. The characteristics vary widely: we
host one of the largest git repositories in the world, while
we also host small, relatively inactive repositories. Row 2
captures that our repositories have varying amount of code
and configuration. Some repositories hold only configuration
information, while others hold mostly code.

6.1 Lessons
In this section, we will outline some lessons and insights we
have gathered from these varied deployments. We believe
these insights hold in general for tools such as MUVI [16],
DeepBugs [20], EnCore [35] and Getafix [24] which use
machine learning to flag bugs and misconfigurations.
1. We should distinguish between model precision vs deploy-
ment precision. No ML-based tool is perfect, and hence the

best way to evaluate it is by observing its precision, which is
the ratio of the number of true-positives to the total number of
suggestions made. In our implementation, a Rex suggestion
is a true-positive if, after it is made on a pull-request, the engi-
neer adds the suggested change within the same pull-request.

For bug and misconfiguration-detection tools, one needs to
compute two types of precision: model precision and deploy-
ment precision. Model precision is the ratio of true-positives
to total suggestions that the model makes on test data as op-
posed to a real deployment. Rex uses the last six months of
commit logs as test data. The deployment precision is the
ratio of the true positives actually observed in deployment to
the total number of suggestions shown to engineers.

Invariably, deployment precision is significantly lower than
the model precision. This is because Rex provides suggestions
only when the engineer makes a Git pull-request. This is after
the engineer has had an opportunity to weed out bugs and mis-
configuration through subsequent commits made after some
unit-testing and reviewing. For instance, say Rex predicts cor-
relations in 100 cases, of which 90 are correct (true-positives)
and 10 are incorrect (false-positives). The model precision is
thus quite high, i.e. 90%. In actual deployment though, say
engineers remember to make the right changes in 88 of the
90 cases Rex discovered. Hence rex shows suggestions only
in the 2 remaining cases. On the other hand, Rex does make
the same 10 false-positive suggestions. Thus the deployment
precision for Rex is 2/(10+ 2) = 16.7%. The deployment
precision may seem low, but it is important to note that the
suggestions made by Rex are for less obvious correlations
which the engineer is unaware of.
2. Flagging high-impact misses offsets the effect of low de-
ployment precision. In the example shown above, the 2 useful
suggestions made by Rex in deployment could actually avert
severe service disruption. By interviewing several engineers
we found that Rex is indeed flagging such issues, and as a
result, the engineers consider the low deployment precision ac-
ceptable. Therefore when we deploy Rex afresh for a project,
we ensure that engineers understand this trade-off and yet
appreciate the utility. Also, for this reason, we tune Rex not
just for high precision but also for high recall relative to the
baseline model, as described in Section 4.5.
Engineers want suggestion interpretability: Engineers like
to know why Rex makes a particular suggestion. Therefore,
along with every suggestion, we also provide an explanation
which shows the past commits from which Rex learned the
rule. If an engineer would like to understand the reason for a
Rex suggestion, they can view this explanation.

7 Evaluation

Rex has been in deployment for about a year now and has so
far found 4926 true-positive suggestions across 360 reposito-
ries, many of which have helped avoid severe service outages.
In this section, we evaluate Rex. The questions we ask are:
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1. How does change-rule discovery perform?

2. What value does change-rule refinement add over
change-rule discovery?

3. How useful is the parameter-tuning process?

4. What is the performance overhead of Rex?

7.1 Rex Precision
In this section, we evaluate both model precision and de-
ployment precision as we explained in Section 6.1. We first
evaluate change-rule discovery.

Table 3 shows the model and deployment precision for change-
rule discovery for 7 repositories across 4 services: OneDrive,
Azure, Exchange Online and Dynamics CRM. The model
was trained on 6 months of commit data and tested on 6 sub-
sequent months of test data. We find that the model precision
varies between 66.09% and 82.11%. The deployment preci-
sion varies between 6.84% and 16.74%. Notice that a higher
model precision does not necessarily imply a higher deploy-
ment precision. Consider Azure1 and OneDrive1. Though
they both have relatively high model precisions, OneDrive1
has a high deployment precision (16.74%) whereas Azure1’s
deployment precision is only 6.84%. We believe this variabil-
ity is due to various reasons specific to the repository, such
as the complexity of the repository, the nature of the configu-
ration and the learned rules, etc. Our user study in Section 8
explains this to some extent. We now compare precision for
change-rule discovery with and without change-rule refine-
ment (CRR). We use the same train-test split used to evaluate
change-rule discovery. We run this experiment only for con-
figuration files written in xml, config, csproj, proj, resx
and wxs formats since our differencing algorithm supports
them. We do not consider code files. Hence, the deployment
precision numbers vary slightly from the results in Table 3.

Table 4 shows the performance of Rex, with and without
change-rule refinement, for 6 repositories. In each case, while
model precision does improve, the deployment precision im-
proves significantly. For Exchange3, which had a very low
deployment precision of 5.03%, the deployment precision
with change-rule refinement increased to 18.00%, an increase
of about 250%.

7.2 Parameter Tuning
In this section, we justify the importance of tuning the mini-
mum support smin for change-rule discovery both across repos-
itories and also within a single repository.
Tuning across repositories:

The repositories that Rex is deployed on are extremely
varied and dynamic, with the number of pull-requests varying

Figure 5: Tuned smin vs repository size

between 1 to 279 per-day. Figure 5 plots, for every repository,
the tuned value of minimum support smin against the size
of the repository at a given point of time. The size of the
repository is the number of files in the repository. While there
is a clear correlation of 0.56 between repository size and smin,
the repository size by itself does not clearly tell us what the
value of smin should be. For instance, for size 700, depending
on the repository, smin varies from 4 to 23. This implies that
we need to tune smin for each individual repository.
Tuning within a repository: Even within a repository, char-
acteristics change over time. Figures 6a- 6d show the variation
of smin with time for four repositories. This variation can be
due to multiple reasons. First, decreased commit rates require
Rex to lower smin so that a healthy suggestion rate is main-
tained, even though precision may drop. Second, engineers
may add new files to the repository in which case the smin
may need to be lowered to learn rules specific to these files.

To understand this fluctuation better, Figures 6e- 6h plot
precision, recall and F1-score for one run of the parameter-
tuning algorithm for four repositories. Note that the recall
here refers to the recall based on the number of true-positive
suggestions made by the baseline model with smin = 4. The
graph shows values of precision, recall and F1-score normal-
ized by the respective values for the baseline model (smin = 4).
As expected, for all four repositories, as support increases, the
model learns fewer rules, and there is a drop in recall. Surpris-
ingly though, as smin increases, precision increases predictably
only for Repository 4, and to some extent for Repository 2.
Repositories 1 and 3 see some local increases in precision,
but overall, it follows a downward-trend.

On analysis of these repositories, we found that majority of
true-positives in this case were generated by the rules having
low smin. On increasing smin, we do not retain these rules
and thus the number of true-positives drop significantly. Even
though there is drop in false-positives with the increase in smin,
the drop in true-positives is significant to bring the precision
value down. This unpredictability in behavior motivates the
need to perform regular tuning of Rex models.
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Repository
Model Metrics Deployment Metrics

Total True Positives False Positives Precision Total True Positives False Positives Precision
Exchange1 1869 1342 527 71.80% 519 50 469 9.63%
Exchange2 5216 3659 1557 70.15% 1318 146 1172 11.08%
Exchange3 3634 2635 999 72.51% 932 66 866 7.08%

Azure1 1062 872 190 82.11% 190 13 177 6.84%
OneDrive1 840 672 168 80.00% 221 37 184 16.74%
OneDrive2 367 277 90 75.48% 108 20 88 18.52%

DynamicsCRM1 1666 1101 565 66.09% 490 59 431 12.04%

Table 3: Model and Deployment Precision for Change-Rule Discovery

Repository
Model Metrics Deployment Metrics

Precision Precision Improvement Precision Precision Improvement
(Without CRR) (With CRR) (Without CRR) (With CRR)

Exchange1 71.80% 85.76% 19.44% 10.86% 20.51% 88.93%
Exchange2 70.15% 83.94% 19.66% 10.23% 18.18% 77.69%
Exchange3 73.37% 75.00% 3.43% 5.04% 18.00% 250.42%

Azure1 82.11% 91.25% 11.14% 8.00% 15.38% 90.00%
OneDrive2 75.48% 78.36% 3.69% 37.50% 100% 166.67%

DynamicsCRM1 66.09% 89.64% 35.64% 40.00% 58.33% 45.83%

Table 4: Improvement in Model and Deployment precision with Change-rule refinement(CRR) over Change-rule discovery

7.3 Performance

The suggestion engine is relatively quick, taking approxi-
mately 2 seconds to evaluate a pull-request and make a sug-
gestion. In this section, we explore the time it takes to perform
the tuning operation across all repositories. This is the most
expensive step in the Rex pipeline since it involves multiple
runs of the association rule mining algorithm.

Figure 7 shows the tuning time against the size of the
repository. Note that both axes are on a logarithmic scale.
The largest repository with about 100000 files also takes 370
seconds to tune the model. The two red points in the graph
are outliers. They take significantly longer to tune than the
other repositories of similar size as the average number of
files in each commit is more than other repositories and so
each round of association rule mining takes longer.

8 User Study

To understand the relevance of Rex, we performed an exten-
sive user study by sending emails to 328 engineers working
across 5 of the repositories on which Rex is deployed. The
user study was conducted in three phases:

Phase 1: When we manually examined Rex’s suggestions
in deployment, we noticed that often, users did not accept
some suggestions even though they seemed useful. We there-
fore asked 30 engineers from 3 teams to subjectively comment
on the utility of Rex’s suggestions. From their responses, we
categorized the suggestions into three categories:

1. Accepted: Some suggestions clearly point out file-changes
that are absolutely required and if not acted upon, will lead to
bugs/build failures/service disruption. Example 6 in Table 1
shows an example . If the engineer alters a function signature
in a script, then they also have to change the way they call
the function from another script. Else, service deployment
will fail. Engineers usually act on such suggestions. These
are what constitute Rex true-positives.

2. Relevant but not accepted: These are suggestions that engi-
neers find useful but do not act upon. For instance, some rules
capture the association of test files with core functional code
(Example 1 in Table 1). When an engineer makes changes to
code by adding a new feature, Rex often recommends editing
the test file. While the suggestion makes the engineer con-
sider it, they may not do so, either because the test will delay
deployment, or because they decide to add it later. Another
example is Example 5 where Rex will make the suggestion,
but is unable to infer that the suggestion is valid only if the
line-number of the offending code changes. It is up to the engi-
neer to decide if they have indeed changed the line-number of
the offending code, and if not, they will not act on the sugges-
tion. However it is still useful since it brought the engineer’s
attention to the issue.

3. Irrelevant:These suggestions are not relevant to the en-
gineers and thus are not acted upon. For instance, when an
engineer is working on a new project, they modify the project
configuration file very often, mostly adding new references.
Rex therefore learns a lot of spurious change-rules that asso-
ciate code files with the configuration file. With time, the engi-
neer stops adding reference files, and hence, most suggestions
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Figure 6: For four repositories, the top row shows how smin varies with time. For each repository, the bottom row shows the
precision, recall and F1-score as a function of smin. The black square on the F1-score plot shows the maximum F1-score.

Figure 7: Tuning time vs repository size

based on this change-rule are irrelevant. Since Rex retunes its
model regularly, it does eventually drop this change-rule.

Phase 2: Rex true-positives or suggestions that were ac-
cepted can be easily estimated by tracking files that got
changed in the later iterations of the pull-request. False-
positives, on the other hand may either be relevant or irrele-
vant. To understand what fraction of false-positives may still
be relevant, we sent emails to 263 engineers who had not ac-
cepted Rex’s suggestions. We asked them to categorize Rex’s
suggestion they saw into one of four categories:

1. The recommendation was relevant but you could not act
upon it for some reason.

2. The recommendation was relevant in general but not in
this case. Yet, it helped to think through the suggestion.

3. The recommendation was relevant in general but not in
this case. You’d rather not have seen the suggestion.

4. The recommendation was not relevant at all.

We received a total of 156 responses. 99 engineers selected
the first or second option, i.e., they found the suggestions rele-
vant, i.e. in 99 out of 156 cases, even though Rex’s suggestion
was a false-positive, it was still useful to the engineer.

Phase 3 : We also used feedback from users to understand
the impact of Rex suggestions that were accepted. What if
Rex had not made those suggestions and the engineer did
not make the correlated changes? To understand this, we sent
emails to 65 engineers who had accepted Rex suggestions
(true-positives). We provided them with the following options:

1. The recommendation was relevant and had the file not
been edited, it could have (broken the build)/(led to ser-
vice disruption)/(introduced a bug). [High Impact]

2. The recommendation was good to have but the impact
of not editing the suggested file would be low. [Low
Impact/Good to have]

We received a total of 16 responses. 7 engineers chose
option 1. We quote some of their comments here:

“In fact without the suggested change, the code would not
have worked."

“If the file is not edited, the build would have failed."
“The suggestion was valid and saved later service disrup-

tions and time"
9 engineers found the suggestion having low impact but

without that change, code quality would have been impacted
negatively. Some of the responses from engineers include :
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“It was good to have edited the additional files for consis-
tency, but it would not have caused any live site impact"

“Even though the build/tests would have been successful,
it was a good-to-have suggestion. Adding these files helped
unit test the code changes."

From this user study, we infer that Rex is making many
more relevant suggestions than the hit rate suggests. Rex
is also catching a good number of high-impact suggestions
which, if not accepted, would have caused breaks in the build
pipeline of the service or even service disruption.

9 Related Work

Rex takes inspiration from two categories of previous work:
configuration management in large systems, and code de-
pendency analysis in empirical software engineering. In this
section, we describe related-work in these areas.

9.1 Configuration Management
Previous work has explored automated bug and misconfig-
uration detection using both black-box [16, 24, 30, 31] and
white-box techniques [34, 35]. It has also shown how detect-
ing misconfigurations early can help bring down the cost of
service disruptions significantly [34].

EnCore [34] uses pre-defined or user-specified templates
to detect misconfigurations, which allows it to detect more
fine-grained correlations between individual configuration
parameters. Through interviews with practitioners, we found
that requiring manual inputs posed a severe impediment to
adoption. Hence we designed Rex to not require any manual
inputs, and to automatically learn templates (generalizations)
using change-rule refinement. As a consequence, Rex may
not detect rules at as fine a granularity as EnCore.

An orthogonal body of work [14, 25, 28] targets the prob-
lem by proposing tool-suites that make it easier for engineers
to manage and validate configuration across large services.
Facebook’s holistic configuration [28] also illustrates the ef-
fort required to detect misconfigurations, by using automated
canary testing for changed configurations, and using user-
defined invariants to drive configuration changes. However,
none of these specifically target the problem of correlated
configurations explicitly.

9.2 Code Suggestions
Previous work has explored the idea of providing sugges-
tions to engineers to change certain parts of code based on
the changes they have already made. Some efforts rely on
detecting structural dependencies in code based on program
analysis to suggest related components [16, 21, 36]. Others
determine couplings between classes in managed code using
several semantic and logical techniques [6]. This body of
work studies how code dependencies and couplings influence

a software engineer’s view of related changes. However, they
are mostly analyses and learnings, and in most cases, have not
been extended to design and deployment of a generic tool that
detects such couplings and suggests changes to engineers.

Most related in this space to Rex is work that infers trans-
actions using association rule mining on code version histo-
ries [37]. The authors have developed a tool that uses asso-
ciation rule mining to suggest related code changes within
an IDE. However, they do not follow it up with inductive
generalization/anti-unification which was necessary to reduce
the false-recommendations. To speed up the mining process,
the consequent of a rule is constrained to have single entity.
Hence the rules detected by the tool will be a subset of the
rules Rex learns. They mine rules on the fly, each rule tak-
ing a few seconds which does not scale well for large-scale
deployments. Rex is a more generic technique and has been
deployed widely across different services.

MUVI [16] uses frequent itemset mining to find correlated
variable accesses in code. If the programmer does not access
all correlated variables together, or does not guard them with
the same lock, MUVI flags a potential bug. Getafix [23] uses
code change analysis to guide testing and to find bugs re-
lated to certain properties, such as a missing null-check. Both
MUVI and Getafix are designed to discover very specific
kinds of bugs, such as multiple access correlations in the case
of MUVI and null dereferencing in the case of Getafix. The
goal of Rex is to be generic and applicable to a wide range
of scenarios across multiple service deployments. We believe
that such tools could work very well alongside Rex.

10 Conclusion

This paper presents Rex, a widely deployed and scalable ser-
vice that performs correlated change analysis using change-
rule discovery and change-rule refinement to identify devel-
opment gaps in code changes being proposed by engineers.
Many lessons have been learned during the development and
deployment of Rex, which have been outlined and presented
in this paper. Most significantly, engineers are always looking
for more tools and services to help their process, and Rex fits
into their workflow naturally and effectively. Rex has had sig-
nificant impact in avoiding bad deployments, service outages,
build breaks, and buggy commits.
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Abstract
We present operational experience running Snowflake, a cloud-
based data warehousing system with SQL support similar to
state-of-the-art databases. Snowflake design is motivated by
three goals: (1) compute and storage elasticity; (2) support for
multi-tenancy; and, (3) high performance. Over the last few
years, Snowflake has grown to serve thousands of customers
executing millions of queries on petabytes of data every day.

This paper presents Snowflake design and implementation,
along with a discussion on how recent changes in cloud in-
frastructure (emerging hardware, fine-grained billing, etc.)
have altered the many assumptions that guided the design and
optimization of Snowflake system. Using data collected from
various components of our system during execution of 70
million queries over a 14 day period, our study both deepens
the understanding of existing problems and highlights new
research challenges along a multitude of dimensions includ-
ing design of storage systems and high-performance query
execution engines.

1 Introduction
Shared-nothing architectures have been the foundation of
traditional query execution engines and data warehousing
systems. In such architectures, persistent data (e.g., customer
data stored as tables) is partitioned across a set of compute
nodes, each of which is responsible only for its local data.
Such shared-nothing architectures have enabled query execu-
tion engines that scale well, provide cross-job isolation and
good data locality resulting in high performance for a variety
of workloads. However, these benefits come at the cost of
several major disadvantages:

• Hardware-workload mismatch: Shared-nothing archi-
tectures make it hard to strike a perfect balance between
CPU, memory, storage and bandwidth resources provided
by compute nodes, and those required by workloads. For
instance, a node configuration that is ideal for bandwidth-
intensive compute-light bulk loading may be a poor fit for
compute-extensive bandwidth-light complex queries. Many

customers, however, want to run a mix of queries without
setting up a separate cluster for each query type. Thus, to
meet performance goals, resources usually have to be over-
provisioned; this results in resource underutilization on an
average and in higher operational costs.

• Lack of Elasticity: Even if one could match the hardware
resources at compute nodes with workload demands, static
parallelism and data partitioning inherent to (inelastic)
shared-nothing architectures constrain adaptation to data
skew and time-varying workloads. For instance, queries
run by our customers have extremely skewed intermedi-
ate data sizes that vary over five orders of magnitude (§4),
and have CPU requirements that change by as much as
an order of magnitude within the same hour (§7). More-
over, shared-nothing architectures do not admit efficient
elasticity; the usual approach of adding/removing nodes to
elastically scale resources requires large amounts of data to
be reshuffled. This not only increases network bandwidth
requirements but also results in significant performance
degradation since the set of nodes participating in data
reshuffling are also responsible for query processing.

Traditional data warehousing systems were designed to oper-
ate on recurring queries on data with predictable volume and
rate, e.g., data coming from within the organization: trans-
actional systems, enterprise resource planning application,
customer relationship management applications, etc. The sit-
uation has changed significantly. Today, an increasingly large
fraction of data comes from less controllable, external sources
(e.g., application logs, social media, web applications, mobile
systems, etc.) resulting in ad-hoc, time-varying, and unpre-
dictable query workloads. For such workloads, shared-nothing
architectures beget high cost, inflexibility, poor performance
and inefficiency, which hurts production applications and clus-
ter deployments.

To overcome these limitations, we designed Snowflake —
an elastic, transactional query execution engine with SQL sup-
port comparable to state-of-the-art databases. The key insight
in Snowflake design is that the aforementioned limitations
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of shared-nothing architectures are rooted in tight coupling
of compute and storage, and the solution is to decouple the
two! Snowflake thus disaggregates compute from persistent
storage; customer data is stored in a persistent data store (e.g.,
Amazon S3 [5], Azure Blob Storage [8], etc.) that provides
high availability and on-demand elasticity. Compute elasticity
is achieved using a pool of pre-warmed nodes, that can be
assigned to customers on an on-demand basis.

Snowflake system design uses two key ideas (§2). First, it
uses a custom-designed storage system for management and
exchange of ephemeral/intermediate data that is exchanged
between compute nodes during query execution (e.g., tables
exchanged during joins). Such an ephemeral storage system
was necessary because existing persistent data stores [5, 8]
have two main limitations: (1) they fall short of providing the
necessary latency and throughput performance to avoid com-
pute tasks being blocks on exchange of intermediate data; and
(2) they provide stronger availability and durability semantics
than what is needed for intermediate data. Second, Snowflake
uses its ephemeral storage system not only for intermediate
data, but also as a write-through “cache” for persistent data.
Combined with a custom-designed query scheduling mecha-
nism for disaggregated storage, Snowflake is able to reduce
the additional network load caused by compute-storage disag-
gregation as well as alleviate the performance overheads of
reduced data locality.

Snowflake system has now been active for several years
and today, serves thousands of customers executing millions
of queries over petabytes of data, on a daily basis. This paper
describes Snowflake system design, with a particular focus on
ephemeral storage system design, query scheduling, elasticity
and efficiently supporting multi-tenancy. We also use statistics
collected during execution of ∼70 million queries over a
period of 14 contiguous days in February 2018 to present a
detailed study of network, compute and storage characteristics
in Snowflake. Our key findings are:

• Customers submit a wide variety of query types; for exam-
ple, read-only queries, write-only queries and read-write
queries, each of which contribute to ∼28%, ∼13% and
∼59%, respectively, of all customer queries.

• Intermediate data sizes can vary over multiple orders of
magnitude across queries, with some queries exchanging
hundreds of gigabytes or even terabytes of intermediate
data. The amount of intermediate data generated by a query
has little or no correlation with the amount of persistent
data read by the query or the execution time of the query.

• Even with a small amount of local storage capacity, skewed
access distributions and temporal access patterns common
in data warehouses enable reasonably high average cache
hit rates (60-80% depending on the type of query) for per-
sistent data accesses.

• Several of our customers exploit our support for elasticity
(for ∼20% of the clusters). For cases where customers do

request elastic scaling of resources, the number of compute
nodes in their cluster can change by as much as two orders
of magnitude during the lifetime of the cluster.

• While the peak resource utilization can be high, the average
resource utilization is usually low. We observe average
CPU, Memory, Network Tx and Network Rx utilizations
of ∼51%, ∼19%, ∼11%, ∼32%, respectively.

Our study both corroborates exciting ongoing research direc-
tions in the community, as well as highlights several interest-
ing venues for future research:

• Decoupling of compute and ephemeral storage:
Snowflake decouples compute from persistent storage
to achieve elasticity. However, currently, compute and
ephemeral storage are still tightly coupled. As we show
in §4, the ratio of compute capacity and ephemeral stor-
age capacity in our production clusters can vary by several
orders of magnitude, leading to either under utilization of
CPU or thrashing of ephemeral storage, for ad-hoc query
processing workloads. To that end, recent academic work
on decoupling compute from ephemeral storage [22, 27]
is of extreme interest. However, more work is needed in
ephemeral storage system design, especially in terms of
providing fine-grained elasticity, multi-tenancy, and cross-
query isolation (§4, §7).

• Deep storage hierarchy: Snowflake ephemeral storage
system, similar to recent work on compute-storage disag-
gregation [14, 15], uses caching of frequently read persis-
tent data to both reduce the network traffic and to improve
data locality. However, existing mechanisms for improving
caching and data locality were designed for two-tier storage
systems (memory as the main tier and HDD/SSD as the
second tier). As we discuss in §4, the storage hierarchy in
our production clusters is getting increasingly deeper, and
new mechanisms are needed that can efficiently exploit the
emerging deep storage hierarchy.

• Pricing at sub-second timescales: Snowflake achieves
compute elasticity at fine-grained timescales by serving
customers using a pool of pre-warmed nodes. This was
cost-efficient with cloud pricing at hourly granularity. How-
ever, most cloud providers have recently transitioned to
sub-second pricing [6], leading to new technical challenges
in efficiently achieving resource elasticity and resource
sharing across multiple tenants. Resolving these challenges
may require design decisions and tradeoffs that may be
different from those in Snowflake’s current design (§7).

This paper focuses on Snowflake system architecture along
with compute, storage and network characteristics observed
in our production clusters. Accordingly, we focus on details
that are necessary to make the paper self-contained (§2). For
details on Snowflake query planning, optimization, concur-
rency control mechanisms, etc., please refer to [12]. To aid
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future research and studies, we are releasing an anonymized
version of the dataset used in this paper; this dataset compris-
ing statistics collected per-query for∼70 million queries. The
dataset is available publicly along with documentation and
scripts to reproduce all results in this paper at
https://github.com/resource-disaggregation/snowset.

Our study has an important caveat. It focuses on a specific
system (Snowflake), a specific workload (SQL queries), and
a specific cloud infrastructure (S3). While our system is
large-scale, has thousands of customers executing millions of
queries, and runs on top of one of the most prominent infras-
tructures, it is nevertheless limited. We leave it to future work
an evaluation of whether our study and observations general-
ize to other systems, workloads and infrastructures. However,
we are hopeful that just like prior workload studies on network
traffic characteristics [9] and cloud workloads [28] (each of
which also focused on a specific system implementation run-
ning a specific workload on a specific infrastructure) fueled
and aided research in the past, our study and publicly released
data will be useful for the community.

2 Design Overview
We provide an overview of Snowflake design. Snowflake
treats persistent and intermediate data differently; we describe
these in §2.1, followed by a high-level overview of Snowflake
architecture (§2.2) and query execution process (§2.3).

2.1 Persistent and Intermediate data
Like most query execution engines and data warehousing
systems, Snowflake has three forms of application state:

• Persistent data is customer data stored as tables in the
database. Each table may be read by many queries, over
time or even concurrently. These tables are thus long-lived
and require strong durability and availability guarantees.

• Intermediate data is generated by query operators (e.g.,
joins) and is usually consumed by nodes participating in
executing that query. Intermediate data is thus short-lived.
Moreover, to avoid nodes being blocked on intermediate
data access, low-latency high-throughput access to inter-
mediate data is preferred over strong durability guarantees.
Indeed, in case of failures happening during the (short)
lifetime of intermediate data, one can simply rerun the part
of the query that produced it.

• Metadata such as object catalogs, mapping from database
tables to corresponding files in persistent storage, statistics,
transaction logs, locks, etc.

This paper primarily focuses on persistent and intermediate
data, as the volume of metadata is typically relatively small
and does not introduce interesting systems challenges.

Persistent Storage

Distributed Ephemeral Storage

OSOSOS OS OS

RuntimeRuntimeRuntime Run time Runtime

Snowflake Cloud Services

oo ooo ooo o oo o oo o

Figure 1: Snowflake (Virtual) Warehouse Architecture (§2.2).

2.2 End-to-end System Architecture
Figure 1 shows the high-level architecture for Snowflake.
It has four main components — a centralized service for
orchestrating end-to-end query execution, a compute layer,
a distributed ephemeral storage system and a persistent data
store. We describe each of these below1.

Centralized Control via Cloud Services. All Snowflake cus-
tomers interact with and submit queries to a centralized layer
called Cloud Services (CS) [12]. This layer is responsible
for access control, query optimization and planning, schedul-
ing, transaction management, concurrency control, etc. CS is
designed and implemented as a multi-tenant and long-lived
service with sufficient replication for high availability and
scalability. Thus, failure of individual service nodes does not
cause loss of state or availability, though some of the queries
may fail and be re-executed transparently.

Elastic Compute via Virtual Warehouse abstraction. Cus-
tomers are given access to computational resources in
Snowflake through the abstraction of a Virtual Warehouse
(VW). Each VW is essentially a set of AWS EC2 instances
on top which customer queries execute in a distributed fash-
ion. Customers pay for compute-time based on the VW size.
Each VW can be elastically scaled on an on-demand basis
upon customer request. To support elasticity at fine-grained
timescales (e.g., tens of seconds), Snowflake maintains a pool
of pre-warmed EC2 instances; upon receiving a request, we
simply add/remove EC2 instances to/from that VW (in case
of addition, we are able to support most requests directly
from our pool of pre-warmed instances thus avoiding instance
startup time). Each VW may run multiple concurrent queries.
In fact, many of our customers run multiple VWs (e.g., one
for data ingestion, and one for executing OLAP queries).

Elastic Local Ephemeral Storage. Intermediate data has
different performance requirements compared to persistent
data (§2.1). Unfortunately, existing persistent data stores do
not meet these requirements (e.g., S3 does not provide the
desired low-latency and high-throughput properties needed

1This paper describes design and implementation of Snowflake using
Amazon Web Services as an example infrastructure; however, Snowflake
runs on Microsoft Azure and Google Cloud Platform as well.
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Figure 2: Persistent data read/write, and submission time characteristics of queries in our dataset. (left) Scatter plot with each point
representing a query based on the total number of persistent data bytes read and written by the query. The density of points is concentrated along
three regions: (1) read-only queries along x-axis; (2)write-only queries along y-axis; and, (3) read-write queries along the middle region. (right)
for each query class, the number of queries submitted at different times of day over the 14 day period, binned on an hourly basis. Read-only
queries have significantly higher variation in load compared to the other query classes, with spikes during daytime hours on weekdays.

for intermediate data to ensure minimal blocking of compute
nodes); hence, we built a distributed ephemeral storage system
custom-designed to meet the requirements of intermediate
data in our system. The system is co-located with compute
nodes in VWs, and is explicitly designed to automatically
scale as nodes are added or removed. We provide more de-
tails in §4 and §6, but note here that as nodes are added and
removed, our ephemeral storage system does not require data
repartitioning or reshuffling (thus alleviating one of the core
limitations of shared-nothing architectures). Each VW runs
its own independent distributed ephemeral storage system
which is used only by queries running on that particular VW.

Elastic Remote Persistent Storage. Snowflake stores all its
persistent data in a remote, disaggregated, persistent data store.
We store persistent data in S3 despite the relatively modest
latency and throughput performance because of S3’s elasticity,
high availability and durability properties. S3 supports storing
immutable files — files can only be overwritten in full and do
not even allow append operations. However, S3 supports read
requests for parts of a file. To store tables in S3, Snowflake
partitions them horizontally into large, immutable files that
are equivalent to blocks in traditional database systems [12].
Within each file, the values of each individual attribute or
column are grouped together and compressed, as in PAX [2].
Each file has a header that stores offset of each column within
the file, enabling us to use the partial read functionality of S3
to only read columns that are needed for query execution.

All VWs belonging to the same customer have access to
the same shared tables via remote persistent store, and hence
do not need to physically copy data from one VW to another.

2.3 End-to-end query execution

Query execution begins with customers submitting their query
text to CS for execution on a specific customer VW. At this
stage, CS performs query parsing, query planning and opti-
mization, producing a set of tasks that need to be executed. It

then schedules these tasks on compute nodes of the VW; each
task may perform read/write operations on both ephemeral
storage system and remote persistent data store. We describe
the scheduling and query execution mechanisms in Snowflake
in §5. CS continually tracks the progress of each query, col-
lects performance counters, and upon detecting a node failure,
reschedules the query on compute nodes within the VW. Once
the query is executed, the corresponding result is returned
back to the CS and eventually to the customer.

3 Dataset

Snowflake collects statistics at each layer of the system —
CS collects and stores information for each individual VW
(size over time, instance types, failure statistics, etc.), perfor-
mance counters for individual queries, time spent in different
phases of query execution, etc. Each node collects statistics
for ephemeral and persistent store accesses, resource (CPU,
memory and bandwidth) utilization characteristics, compres-
sion properties, etc. To aid future research and studies, we
are publicly releasing a dataset containing most of these
statistics for ∼70 million queries over a period of 14 days,
aggregated per-query. The dataset is publicly available at
https://github.com/resource-disaggregation/snowset.
For privacy reasons, the dataset does not contain information
on query plans, table schemas and per-file access frequencies.
To ensure reproducibility, this paper uses only those statistics
that are contained in publicly released dataset.

Query Classification. We classify queries in the dataset
based on number of persistent data bytes read and written
(Figure 2 (left)). Figure 2 (right) shows number of queries
submitted at different times of day for each query class.

• Read-only queries: Queries along the x-axis are the ones
that do not write any persistent data; however, the amount
of data read by these queries can vary over nine orders of
magnitude. These queries contribute to ∼28% of all cus-
tomer queries, and represent ad-hoc and interactive OLAP

452    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/resource-disaggregation/snowset


 0

 0.2

 0.4

 0.6

 0.8

 1

100 102 104 106 108 1010 1012 1014

Fr
a
ct

io
n

 o
f 

Q
u

e
ri

e
s

Intermediate Data Exchanged (Bytes)

Read-Only
Write-Only
Read-Write

Figure 3: Intermediate data characteristics. (left) Intermediate data sizes vary over multiple orders of magnitude across queries; a non-trivial
fraction of queries in each query class exchange zero intermediate data, while some read-only and read-write queries exchange 10−100TB of
intermediate data. (center) Scatter plot with each point representing a query based on its total CPU time and amount of intermediate data
exchanged by the corresponding query; queries with the same total CPU time exchange vastly different amounts of intermediate data. (right)
Scatter plot with each point representing a query based on its total persistent data read and amount of intermediate data exchanged by the
corresponding query; queries that read the same amount of persistent data exchange vastly different amounts of intermediate data.

workloads [10] typical in data warehouses, where the result
is usually small in size and is directly returned to the client.
The right figure demonstrates an interesting trend for read-
only queries — the number of such queries submitted by
customers spike during daytime hours on weekdays.

• Write-only queries: Queries along the y-axis are the ones
that do not read any persistent data; however, the amount
of data written by these queries can vary over eight orders
of magnitude. These queries contribute to ∼13% of all
customer queries, and essentially represent data ingestion
queries that bring data into the system. Unlike read-only
queries, we observe that the rate of submission for write-
only queries is fairly consistent across time.

• Read-Write (RW) queries: The region in the middle of
the plot contains∼59% of customer queries, and represents
queries that both read and write persistent data. Here we
see a wide spectrum of queries. Many queries have read-
write ratio close to 1, in terms of number of bytes, that
represent Extract Transform Load (ETL) pipelines [29, 31,
32] typical in data warehouses. For other queries, the read-
write ratio can vary over multiple orders of magnitude.

The above classification is based on number of persistent data
bytes read and written by the queries, a measure that is not an
artifact of Snowflake’s architecture; rather, it is a property of
the queries themselves. Indeed, even if these queries were to
run on, say, any other data analytics framework (e.g., Hadoop)
or even a single node database (e.g., MySQL), the persistent
read/write characteristics would remain the same. We do not
classify queries based on semantics as the focus of this paper
is on systems characteristics, and our dataset does not contain
detailed information about individual query plans. We will
use the above query classification throughout the paper.

4 Ephemeral Storage System
Snowflake uses a custom-designed distributed storage sys-
tem for management and exchange of intermediate data, due

to two limitations in existing persistent data stores [5, 8].
First, they fall short of providing the necessary latency and
throughput performance to avoid compute tasks being blocks
on intermediate data exchange. Second, they provide much
stronger availability and durability semantics than what is
needed for intermediate data. Our ephemeral storage system
allows us to overcome both these limitations. Tasks executing
query operations (e.g., joins) on a given compute node write
intermediate data locally; and, tasks consuming the interme-
diate data read it either locally or remotely over the network
(depending on the node where the task is scheduled, §5).

4.1 Storage Architecture, and Provisioning

We made two important design decisions in our ephemeral
storage system. First, rather than designing a pure in-memory
storage system, we decided to use both memory and local
SSDs — tasks write as much intermediate data as possible to
their local memory; when memory is full, intermediate data
is spilled to local SSDs. Our rationale is that while purely
in-memory systems can achieve superior performance when
entire data fits in memory, they are too restrictive to handle
the variety of our target workloads. Figure 3 (left) shows that
there are queries that exchange hundreds of gigabytes or even
terabytes of intermediate data; for such queries, it is hard to
fit all intermediate data in main memory.

The second design decision was to allow intermediate data
to spill into remote persistent data store in case the local
SSD capacity is exhausted. Spilling intermediate data to S3,
instead of other compute nodes, is preferable for a number of
reasons — it does not require keeping track of intermediate
data location, it alleviates the need for explicitly handling
out-of-memory or out-of-disk errors for large queries, and
overall, allows to keep our ephemeral storage system thin and
highly performant.

Future Directions. For performance-critical queries, we want
intermediate data to entirely fit in memory, or at least in SSDs,
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;
Figure 4: Persistent data I/O traffic distribution between ephemeral storage system and remote persistent data store. Each vertical bar
corresponds to a query, the four colors correspond to read/write from ephemeral/remote systems, and the y-axis represents the fraction of total
persistent data that was served by the corresponding storage system. Queries are sorted, within each class, in decreasing order of number of
persistent data bytes read/written. Discussion in §4.2.

and not spill to S3. This requires accurate resource provi-
sioning. However, provisioning CPU, memory and storage
resources while achieving high utilization turns out to be chal-
lenging due to two reasons. The first reason is limited number
of available node instances (each providing a fixed amount of
CPU, memory and storage resources), and significantly more
diverse resource demands across queries. For instance, Fig-
ure 3 (center) shows that, across queries, the ratio of compute
requirements and intermediate data sizes can vary by as much
as six orders of magnitude. The available node instances sim-
ply do not provide enough options to accurately match node
hardware resources with such diverse query demands.

Second, even if we could match node hardware resources
with query demands, accurately provisioning memory and
storage resources requires a priori knowledge of intermediate
data size generated by the query. However, our experience
is that predicting the volume of intermediate data generated
by a query is hard, or even impossible, for most queries. As
shown in Figure 3, intermediate data sizes not only vary over
multiple orders of magnitude across queries, but also have
little or no correlation with amount of persistent data read or
the expected execution time of the query.

To resolve the first challenge, we could decouple compute
from ephemeral storage. This would allow us to match avail-
able node resources with query resource demands by inde-
pendently provisioning individual resources. However, the
challenge of unpredictable intermediate data sizes is harder
to resolve. For such queries, simultaneously achieving high
performance and high resource utilization would require both
decoupling of compute and ephemeral storage, as well as
efficient techniques for fine-grained elasticity of ephemeral
storage system. We discuss the latter in more detail in §6.

4.2 Persistent Data Caching

One of the key observations we made during early phases
of ephemeral storage system design is that intermediate data
is short-lived. Thus, while storing intermediate data requires
large memory and storage capacity at peak, the demand is

low on an average. This allows statistical multiplexing of our
ephemeral storage system capacity between intermediate data
and frequently accessed persistent data. This improves per-
formance since (1) queries in data warehouse systems exhibit
highly skewed access patterns over persistent data [10]; and
(2) ephemeral storage system performance is significantly
better than that of (existing) remote persistent data stores.

Snowflake enables statistical multiplexing of ephemeral
storage system capacity between intermediate data and persis-
tent data by “opportunistically” caching frequently accessed
persistent data files, where opportunistically refers to the
fact that intermediate data storage is always prioritized over
caching persistent data files. However, a persistent data file
cannot be cached on any node — Snowflake assigns input file
sets for the customer to nodes using consistent hashing over
persistent data file names. A file can only be cached at the
node to which it consistently hashes to; each node uses a sim-
ple LRU policy to decide caching and eviction of persistent
data files. Given the performance gap between our ephemeral
storage system and remote persistent data store, such oppor-
tunistic caching of persistent data files improves the execution
time for many queries in Snowflake. Furthermore, since stor-
age of intermediate data is always prioritized over caching of
persistent data files, such an opportunistic performance im-
provement in query execution time can be achieved without
impacting performance for intermediate data access.

Maintaining the right system semantics during opportunis-
tic caching of persistent data files requires a careful design.
First, to ensure data consistency, the “view” of persistent files
in ephemeral storage system must be consistent with those
in remote persistent data store. We achieve this by forcing
the ephemeral storage system to act as a write-through cache
for persistent data files. Second, consistent hashing of persis-
tent data files on nodes in a naïve way requires reshuffling of
cached data when VWs are elastically scaled. We implement
a lazy consistent hashing optimization in our ephemeral stor-
age system that avoids such data reshuffling altogether; we
describe this when we discuss Snowflake elasticity in §6.
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Figure 5: Cache hit rate distribution of Read-only (left) and Read-Write queries (right). We plot the CDFs for both, the queries (indepen-
dent of their persistent data read sizes) and for bytes (queries weighed by the amount of persistent data read). For example, for Read-only
queries, 80% of the queries have hit rate greater than 75%, but these queries account for only a little more than 60% of the total number of
persistent bytes read by all Read-only queries.

Persistent data being opportunistically cached in the
ephemeral storage system means that some subset of per-
sistent data access requests could be served by the ephemeral
storage system (depending on whether or not there is a cache
hit). Figure 4 shows the persistent data I/O traffic distribution,
in terms of fraction of bytes, between the ephemeral storage
system and remote persistent data store. The write-through
nature of our ephemeral storage system results in amount of
data written to ephemeral storage being roughly of the same
magnitude as the amount of data written to remote persistent
data store (they are not always equal because of prioritizing
storage of intermediate data over caching of persistent data).

Even though our ephemeral storage capacity is significantly
lower than that of a customer’s persistent data (around 0.1%
on an average), skewed file access distributions and temporal
file access patterns common in data warehouses [7] enable
reasonably high cache hit rates (avg. hit rate is close to 80%
for read-only queries and around 60% for read-write queries).
Figure 5 shows the hit rate distributions across queries. The
median hit rates are even higher.

Future Directions. Figure 4 and Figure 5 suggest that more
work is needed on caching. In addition to locality of reference
in access patterns, cache hit rate also depends on effective
cache size available to the query relative to the amount of
persistent data accessed by the query. The effective cache size,
in turn, depends on both the VW size and the volume of in-
termediate data generated by concurrently executing queries.
Our preliminary analysis has not led to any conclusive obser-
vations on the impact of the above two factors on the observed
cache hit rates, and a more fine-grained analysis is needed to
understand factors that impact cache hit rates.

We highlight two additional technical problems. First, since
end-to-end query performance depends on both, cache hit rate
for persistent data files and I/O throughput for intermediate
data, it is important to optimize how the ephemeral storage
system splits capacity between the two. Although we currently
use the simple policy of always prioritizing intermediate data,
it may not be the optimal policy with respect to end-to-end
performance objectives (e.g., average query completion time

across all queries from the same customer). For example, it
may be better to prioritize caching a persistent data file that
is going to be accessed by many queries over intermediate
data that is accessed by only one. It would be interesting
to explore extensions to known caching mechanisms that
optimize for end-to-end query performance objectives [7] to
take intermediate data into account.

Second, existing caching mechanisms were designed for
two-tier storage systems (memory as the main tier and
HDD/SSD as the second tier). In Snowflake, we already
have three tiers of hierarchy with compute-local memory,
ephemeral storage system and remote persistent data store;
as emerging non-volatile memory devices are deployed in
the cloud and as recent designs on remote ephemeral storage
systems mature [22], the storage hierarchy in the cloud will
get increasingly deeper. Snowflake uses traditional two-tier
mechanisms — each node implements a local LRU policy
for evictions from local memory to local SSD, and an inde-
pendent LRU policy for evictions from local SSD to remote
persistent data store. However, to efficiently exploit the deep-
ening storage hierarchy, we need new caching mechanisms
that can efficiently coordinate caching across multiple tiers.

We believe many of the above technical challenges are not
specific to Snowflake, and would apply more broadly to any
distributed application built on top of disaggregated storage.

5 Query (Task) Scheduling

We now describe the query execution process in Snowflake.
Customers submit their queries to the Cloud Services (CS)
for execution on a specific VW. CS performs query parsing,
query planning and optimization, and creates a set of tasks to
be scheduled on compute nodes of the VW.

Locality-aware task scheduling. To fully exploit the
ephemeral storage system, Snowflake colocates each task with
persistent data files that it operates on using a locality-aware
scheduling mechanism (recall, these files may be cached in
ephemeral storage system). Specifically, recall that Snowflake
assigns persistent data files to compute nodes using consistent
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Figure 6: Persistent data read / write and intermediate data exchange characteristics of queries sorted by the number of nodes used.
Each plot uses the same axis for bytes (left axis) and nodes used (right axis). Persistent Read and write bytes vary by three orders of magnitude
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hashing over table file names. Thus, for a fixed VW size, each
persistent data file is cached on a specific node. Snowflake
schedules the task that operates on a persistent data file to the
node on which its file consistently hashes to.

As a result of this scheduling scheme, query parallelism is
tightly coupled with consistent hashing of files on nodes — a
query is scheduled for cache locality and may be distributed
across all the nodes in the VW. For instance, consider a cus-
tomer that has 1million files worth of persistent data, and is
running a VW with 10 nodes. Consider two queries, where
the first query operates on 100 files, and the second query
operates on 100,000 files; then, with high likelihood, both
queries will run on all the 10 nodes because of files being
consistently hashed on to all the 10 nodes.

Figure 6 illustrates this— the number of persistent bytes
read and written vary over orders of magnitude, almost inde-
pendent of the number of nodes in the VW. As expected, the
intermediate data exchanged over the network increases with
the number of nodes used.

Work stealing. It is known that consistent hashing can lead
to imbalanced partitions [19]. In order to avoid overloading
of nodes and improve load balance, Snowflake uses work
stealing, a simple optimization that allows a node to steal a
task from another node if the expected completion time of
the task (sum of execution time and waiting time) is lower at
the new node. When such work stealing occurs, the persistent
data files needed to execute the task are read from remote
persistent data store rather than the node at which the task
was originally scheduled on. This avoids increasing load on
an already overloaded node where the task was originally
scheduled (note that work stealing happens only when a node
is overloaded).

Future Directions. Schedulers can place tasks onto nodes
using two extreme options: one is to colocate tasks with their
cached persistent data, as in our current implementation. As
discussed in the example above, this may end up scheduling
all queries on all nodes in the VW; while such a scheduling

policy minimizes network traffic for reading persistent data,
it may lead to increased network traffic for intermediate data
exchange. The other extreme is to place all tasks on a single
node. This would obviate the need of network transfers for
intermediate data exchange but would increase network traffic
for persistent data reads. Neither of these extremes may be the
right choice for all queries. It would be interesting to codesign
query schedulers that would pick just the right set of nodes
to obtain a sweet spot between the two extremes, and then
schedule individual tasks onto these nodes.

6 Resource Elasticity

In this section, we discuss how BlowFish design achieves
one of its core goals: resource elasticity, that is, scaling of
compute and storage resources on an on-demand basis.

Disaggregating compute from persistent storage enables
Snowflake to independently scale compute and persistent stor-
age resources. Storage elasticity is offloaded to persistent data
stores [5]; compute elasticity, on the other hand, is achieved
using a pre-warmed pool of nodes that can be added/removed
to/from customer VWs on an on-demand basis. By keeping
a pre-warmed pool of nodes, Snowflake is able to provide
compute elasticity at the granularity of tens of seconds.

6.1 Lazy Consistent Hashing
One of the challenges that Snowflake had to resolve in order to
achieve elasticity efficiently is related to data management in
ephemeral storage system. Recall that our ephemeral storage
system opportunistically caches persistent data files; each
file can be cached only on the node to which it consistently
hashes to within the VW. The problem is similar to shared-
nothing architectures: any fixed partitioning mechanism (in
our case, consistent hashing) requires large amounts of data to
be reshuffled upon scaling of nodes; moreover, since the very
same set of nodes are also responsible for query processing,
the system observes a significant performance impact during
the scaling process.
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Figure 7: Snowflake uses lazy consistent hashing to avoid data
reshuffling during elastic scaling of VWs. (Top) VW in steady
state with all task inputs cached. (Bottom) VW immediately after
adding one node. See discussion in §6.1.

Snowflake resolves this challenge using a lazy consistent
hashing mechanism, that completely avoids any reshuffling
of data upon elastic scaling of nodes by exploiting the fact
that a copy of cached data is stored at remote persistent data
store. Specifically, Snowflake relies on the caching mecha-
nism to eventually “converge” to the right state. For instance,
consider the example in Figure 7 that shows a VW with 6
tasks T1,T2, . . . ,T6, with task Ti operating on a single file Fi.
Suppose at time t0, we have 5 nodes in the VW and that node
N1 stores files F1 and F6, and nodes N2−N5 store file F2−F5,
respectively. Suppose at time t > t0, a node N6 is added to the
warehouse. Then, rather than immediately reshuffling the files
(which would result in F6 being moved from node N1 to N6),
Snowflake will wait until task T6 is executed again. When the
next time T6 is scheduled (e.g., due to work stealing or the
same query being executed again), Snowflake will schedule
it on N6 since consistent hashing will now place file F6 on
that node. At this time, file F6 will be read by N6 from remote
persistent store and cached locally. File F6 on node N1 will
no longer be accessed and will eventually be evicted from the
cache. Such lazy caching allows Snowflake to achieve locality
without reshuffling data and without interfering with ongoing
queries on nodes already in the VW.

6.2 Elasticity Characteristics
Our customer warehouses exhibit several interesting elasticity
characteristics. Figure 8 shows that many of our customers
already exploit our support for elasticity (for ∼20% of the
VW). For such cases where customers do request VW resizing,
the number of nodes in their VW can change by as much
as two orders of magnitude during the lifetime of the VW!
Figure 9 (top) shows two cases where customers leverage
elasticity rather aggressively (even at hourly granularity).
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Figure 8: VW elasticity usage. 82% of all VW never exploit elastic-
ity; however, some of the customers elastically scale their VW size
by as much as two orders of magnitude!

Future Directions. Figure 8 also shows that our customers do
not exploit our support for elasticity for more than 80% of the
VW. Even for customers that do request VW resizing, there
are opportunities for further optimizations — Figure 9 shows
that query inter-arrival times in these VW are much finer-
grained than the granularity of VW scaling requested by our
customers. We believe the main reason for these characteris-
tics is that customers lack the visibility (and the right demand
estimation) into the system to accurately request scaling their
VW to meet the demand. VW1 in Figure 9, for instance, is one
of the heavily utilized VW from a large customer; the char-
acteristics for this VW demonstrate how elastic scaling can
mismatch the demand (approximated by query inter-arrival
time). Since the time the dataset in the paper was recorded, a
lot of work has been done to improve support for auto-scaling
VW at the granularity of inter-query arrival times. However,
much more work needs to be done.

First, we would like to achieve elasticity at intra-query
granularity. Specifically, resource consumption can vary sig-
nificantly even within the lifetime of individual queries. This
is particularly prevalent in long running queries with many
internal stages. Hence, in addition to auto-scaling VW at the
granularity of query inter-arrivals, we would ideally like to
support some level of task-level elasticity even during the
execution of a query.

Second, we would like to explore serverless-like platforms.
Serverless infrastructures such as AWS Lambda, Azure Func-
tions and Google Cloud Functions which provide auto-scaling,
high elasticity and fine-grained billing, are seeing increasing
adoption across many application types. However, the key
barrier for Snowflake to transition to existing serverless infras-
tructures is their lack of support for isolation, both in terms of
security and performance [34]. Snowflake serves several cus-
tomers who store and query sensitive and confidential data,
and thus require strong isolation guarantees. One possibil-
ity for Snowflake is to build its own custom serverless-like
compute platform. We believe this is an intriguing direction
to explore, but will require resolving several challenges in
efficient remote ephemeral storage access (§4.1), and in multi-
tenant resource sharing (which we will discuss in §7).
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Figure 9: Comparison of VW resizing (elastic scaling) and query inter-arrival times, binned per minute, for two heavily utilized VW1
(left) and VW2 (right). Customers request VW resizing at much coarser grained timescales than query inter-arrival times for both VW. Note
the difference in x-axis: 7 days and 4 days for VW1 and VW2, respectively.

7 Multi-tenancy

Snowflake currently supports multi-tenancy through the VW
abstraction. Each VW operates on an isolated set of nodes,
with its own ephemeral storage system. This allows Snowflake
to provide performance isolation to its customers. In this
section, we present a few system-wide characteristics for our
VWs and use these to motivate an alternate sharing based
architecture for Snowflake.

The VW architecture in Snowflake leads to the traditional
performance isolation versus utilization tradeoff. Figure 10
(top four) show that our VWs achieve fairly good, but not
ideal, average CPU utilization; however, other resources are
usually underutilized on an average. Figure 11 provides some
reasons for the low average resource utilization in Figure 10
(top four): the figure shows the variability of resource usage
across VW; specifically, we observe that for up to 30% of
VW, standard deviation of CPU usage over time is as large as
the mean itself. This results in underutilization as customers
tend to provision VWs to meet peak demand. In terms of
peak utilization, several of our VWs experience periods of
heavy utilization, but such high-utilization periods are not
necessarily synchronized across VWs. An example of this is
shown in Figure 10 (bottom two), where we see that over
a period of two hours, there are several points when one
VW’s utilization is high while the other VW’s utilization
is simultaneously low.

While we were aware of this performance isolation ver-
sus utilization tradeoff when we designed Snowflake, recent
trends are pushing us to revisit this design choice. Specifically,
maintaining a pool of pre-warmed instances was cost-efficient
when infrastructure providers used to charge at an hourly gran-
ularity; however, recent move to per-second pricing [6] by
all major cloud infrastructure providers has raised interest-
ing challenges. From our (provider’s) perspective, we would
like to exploit this finer-grained pricing model to cut down
operational costs. However doing so is not straightforward, as
this trend has also led to an increase in customer-demand for

finer-grained pricing. As a result, maintaining a pre-warmed
pool of nodes for elasticity is no longer cost-effective: pre-
viously in the hourly billing model, as long as at least one
customer VW used a particular node during a one hour du-
ration, we could charge that customer for the entire duration.
However, with per-second billing, we cannot charge unused
cycles on pre-warmed nodes to any particular customer. This
cost-inefficiency makes a strong case for moving to a sharing
based model, where compute and ephemeral storage resources
are shared across customers: in such a model we can pro-
vide elasticity by statistically multiplexing customer demands
across a shared set of resources, avoiding the need to maintain
a large pool of pre-warmed nodes. In the next subsection, we
highlight several technical challenges that need to be resolved
to realize such a shared architecture.

7.1 Resource Sharing
The variability in resource usage over time across VW, as
shown in Figure 11, indicates that several of our customer
workloads are bursty in nature. Hence, moving to a shared ar-
chitecture would enable Snowflake to achieve better resource
utilization via fine-grained statistical multiplexing. Snowflake
today exposes VW sizes to customers in abstract “T-shirt”
sizes (small, large, XL etc.), each representing different re-
source capacities. Customers are not aware of how these VWs
are implemented (no. of nodes used, instance types, etc.). Ide-
ally we would like to maintain the same abstract VW interface
to customers and change the underlying implementation to
use shared resources instead of isolated nodes.

The challenge, however, is to achieve isolation properties
close to our current architecture. The key metric of interest
from customers’ point of view is query performance, that is,
end-to-end query completion times. While a purely shared
architecture is likely to provide good average-case perfor-
mance, maintaining good performance at tail is challenging.
The two key resources that need to be isolated in VWs are
compute and ephemeral storage. There has been a lot of work
[18, 35, 36] on compute isolation in the data center context,
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Figure 10: System-wide CPU, Memory, and Network TX/RX utilization over time, averaged across all VWs. (top four). Average CPU,
Memory, Network TX and Network RX utilizations are roughly 51%, 19%, 11%, 32%, respectively, indicating that there is significant room
for improvement. (bottom two) zoomed-in CPU and Memory utilization for two highly active VW over a 2 hour duration. At several points,
we see that one of the warehouses experiences high utilization while the other sees low utilization.

that Snowflake could leverage. Moreover, the centralized task
scheduler and uniform execution runtime in Snowflake make
the problem easier than that of isolating compute in general
purpose clusters. Here, we instead focus on the problem of
isolating memory and storage, which has only recently started
to receive attention in the research community [25].

The goal here is to design a shared ephemeral storage sys-
tem (using both memory and SSDs) that supports fine-grained
elasticity without sacrificing isolation properties across ten-
ants. With respect to sharing and isolation of ephemeral stor-
age, we outline two key challenges. First, since our ephemeral
storage system multiplexes both cached persistent data and in-
termediate data, both of these entities need to be jointly shared
while ensuring cross-tenant isolation. While Snowflake could
leverage techniques from existing literature [11, 26] for shar-
ing cache, we need a mechanism that is additionally aware of
the co-existence of intermediate data. Unfortunately, predict-
ing the effective lifetime of cache entries is difficult. Evicting
idle cache entries from tenants and providing them to other
tenants while ensuring hard isolation is not possible, as we
cannot predict when a tenant will next access the cache entry.
Some past works [11, 33] have used techniques like idle-
memory taxation to deal with this issue. We believe there is
more work to be done, both in defining more reasonable iso-
lation guarantees and designing lifetime-aware cache sharing
mechanisms that can provide such guarantees.

The second challenge is that of achieving elasticity without
cross-tenant interference: scaling up the shared ephemeral
storage system capacity in order to meet the demands of a par-
ticular customer should not impact other tenants sharing the
system. For example, if we were to naïvely use Snowflake’s
current ephemeral storage system, isolation properties will
be trivially violated. Since all cache entries in Snowflake
are consistently hashed onto the same global address space,
scaling up the ephemeral storage system capacity would end
up triggering the lazy consistent hashing mechanism for all
tenants. This may result in multiple tenants seeing increased
cache misses, resulting in degraded performance. Resolving
this challenge would require the ephemeral storage system to
provide private address spaces to each individual tenant, and
upon scaling of resources, to reorganize data only for those
tenants that have been allocated additional resources.

Memory Disaggregation. Average memory utilization in
our VWs is low (Figure 10); this is particularly concern-
ing since DRAM is expensive. Although sharing resource
sharing would improve CPU and memory utilization, it is
unlikely to lead to optimal utilization across both dimensions.
Further, variability characteristics of CPU and memory are
significantly different (Figure 11), indicating the need for in-
dependent scaling of these resources. Memory disaggregation
[1, 14, 15] provides a fundamental solution to this problem.
However, as discussed in §4.2, accurately provisioning re-
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Figure 11: Coefficient of Variation (CV) of CPU and memory us-
age over time, across customer VWs. We see significant variability
with respect to both resources.

sources is hard; since over-provisioning memory is expensive,
we need efficient mechanisms to share disaggregated memory
across multiple tenants while providing isolation guarantees.

8 Related Work
In this section we discuss related work and other systems
similar to Snowflake. Our previous work [12] discusses SQL-
related aspects of Snowflake and presents related literature
on those aspects. This paper focuses on the disaggregation,
ephemeral storage, caching, task scheduling, elasticity and
multi-tenancy aspects of Snowflake; in the related work dis-
cussion below, we primarily focus on these aspects.

SQL-as-a-Service systems. There are several other systems
that offer SQL functionality as a service in the cloud. These in-
clude Amazon Redshift [16], Aurora [4], Athena [3], Google
BigQuery [30] and Microsoft Azure Synapse Analytics [24].
While there are papers that describe the design and opera-
tional experience of some of these systems, we are not aware
of any prior work that undertakes a data-driven analysis of
workload and system characteristics similar to ours.

Redshift [16] stores primary replicas of persistent data
within compute VM clusters (S3 is only used for backup);
thus, it may not be able to achieve the benefits that Snowflake
achieves by decoupling compute from persistent storage.
Aurora [4] and BigQuery [30] (based on the architecture
of Dremel [23]) decouple compute and persistent storage
similar to Snowflake. Aurora, however, relies on a custom-
designed persistent storage service that is capable of offload-
ing database log processing, instead of a traditional blob store.
We are not aware of any published work that describes how
BigQuery handles elasticity and multi-tenancy.

Decoupling compute and ephemeral storage systems. Pre-
vious work [20] makes the case for flash storage disaggrega-
tion by studying a key-value store workload from Facebook.
Our observations corroborate this argument and further extend

it in the context of data warehousing workloads. Pocket [22]
and Locus [27] are ephemeral storage systems designed for
serverless analytics applications. If we were to disaggregate
compute and ephemeral storage in Snowflake, such systems
would be good candidates. However, these systems do not
provide fine-grained resource elasticity during the lifetime
of a query. Thus, they either have to assume a priori knowl-
edge of intermediate data sizes (for provisioning resources at
the time of submitting queries), or suffer from performance
degradation if such knowledge is not available in advance.
As discussed in §4.1, predicting intermediate data sizes is
extremely hard. It would be nice to extend these systems
to provide fine-grained elasticity and cross-query isolation.
Technologies for high performance access to remote flash stor-
age [13, 17, 21] would also be integral to efficiently realize
decoupling of compute and ephemeral storage system.

Multi-tenant resource sharing. ESX server [33] pioneered
techniques for multi-tenant memory sharing in the virtual ma-
chine context, including ballooning and idle-memory taxation.
Memshare [11] considers multi-tenant sharing of cache capac-
ity in DRAM caches in the single machine context, sharing
un-reserved capacity among applications in a way that maxi-
mizes hit rate. FairRide [26] similarly considers multi-tenant
cache sharing in the distributed setting while taking into ac-
count sharing of data between tenants. Mechanisms for shar-
ing and isolation of cache resources similar to the ones used
in these works would be important in enabling Snowflake to
adopt a resource shared architecture. As discussed previously,
it would be interesting to extend these mechanisms to make
them aware of the different characteristics and requirements
of intermediate and persistent data.

9 Conclusion
We have presented operational experience running Snowflake,
a data warehousing system with state-of-the-art SQL support.
The key design and implementation aspects that we have cov-
ered in the paper relate to how Snowflake achieves compute
and storage elasticity, as well as high-performance in a multi-
tenancy setting. As Snowflake has grown to serve thousands
of customers executing millions of queries on petabytes of
data every day, we consider ourselves at least partially success-
ful. However, using data collected from various components
of our system during execution of ∼70 million queries over
a 14 day period, our study highlights some of the shortcom-
ings of our current design and implementation and highlights
new research challenges that may be of interest to the broader
systems and networking communities.
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Abstract

Starting in 2013, we set out to build a new database to act as
the configuration store for a high-performance cloud block
storage system (Amazon EBS).This database needs to be not
only highly available, durable, and scalable but also strongly
consistent. We quickly realized that the constraints on avail-
ability imposed by the CAP theorem, and the realities of
operating distributed systems, meant that we didn’t want one
database. We wanted millions. Physalia is a transactional key-
value store, optimized for use in large-scale cloud control
planes, which takes advantage of knowledge of transaction
patterns and infrastructure design to offer both high availabil-
ity and strong consistency to millions of clients. Physalia uses
its knowledge of datacenter topology to place data where it is
most likely to be available. Instead of being highly available
for all keys to all clients, Physalia focuses on being extremely
available for only the keys it knows each client needs, from
the perspective of that client.

This paper describes Physalia in context of Amazon EBS,
and some other uses within Amazon Web Services. We be-
lieve that the same patterns, and approach to design, are widely
applicable to distributed systems problems like control planes,
configuration management, and service discovery.

1 Introduction

Traditional architectures for highly-available systems assume
that infrastructure failures are statistically independent, and
that it is extremely unlikely for a large number of servers to
fail at the same time. Most modern system designs are aware
of broad failure domains (data centers or availability zones),
but still assume two modes of failure: a complete failure of a
datacenter, or a random uncorrelated failure of a server, disk
or other infrastructure. These assumptions are reasonable for
most kinds of systems. Schroder and Gibson found [51] that
(in traditional datacenter environments), while the probability
of a second disk failure in a week was up to 9x higher when
a first failure had already occurred, this correlation drops off

to less than 1.5x as systems age. While a 9x higher failure
rate within the following week indicates some correlation, it
is still very rare for two disks to fail at the same time. This
is just as well, because systems like RAID [43] and primary-
backup failover perform well when failures are independent,
but poorly when failures occur in bursts.

When we started building AWS in 2006, we measured the
availability of systems as a simple percentage of the time
that the system is available (such as 99.95%), and set Service
Level Agreements (SLAs) and internal goals around this per-
centage. In 2008, we introduced AWS EC2 Availability Zones:
named units of capacity with clear expectations and SLAs
around correlated failure, corresponding to the datacenters
that customers were already familiar with. Over the decade
since, our thinking on failure and availability has continued
to evolve, and we paid increasing attention to blast radius and
correlation of failure. Not only do we work to make outages
rare and short, we work to reduce the number of resources
and customers that they affect [55], an approach we call blast
radius reduction. This philosophy is reflected in everything
from the size of our datacenters [30], to the design of our
services, to operational practices.

Amazon Elastic Block Storage (EBS) is a block storage
service for use with AWS EC2, allowing customers to create
block devices on demand and attach them to their AWS EC2
instances. volumes are designed for an annual failure rate
(AFR) of between 0.1% and 0.2%, where failure refers to a
complete or partial loss of the volume. This is significantly
lower than the AFR of typical disk drives [44]. EBS achieves
this higher durability through replication, implementing a
chain replication scheme (similar to the one described by van
Renesse, et al [54]). Figure 1 shows an abstracted, simplified,
architecture of EBS in context of AWS EC2. In normal opera-
tion (of this simplified model), replicated data flows through
the chain from client, to primary, to replica, with no need for
coordination. When failures occur, such as the failure of the
primary server, this scheme requires the services of a config-
uration master, which ensures that updates to the order and
membership of the replication group occur atomically, are
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Figure 1: Simplified model of one EBS volume connected to
an AWS EC2 instance. For the volume to be available for IO,
either both the master and replica, or either storage server and
Physalia, must be available to the instance.

well ordered, and follow the rules needed to ensure durability.
The requirements on this configuration master are unusual.

In normal operation it handles little traffic, as replication
continues to operate with no need to contact the configu-
ration master. However, when large-scale failures (such as
power failures or network partitions) happen, a large num-
ber of servers can go offline at once, requiring the master
to do a burst of work. This work is latency critical, because
volume IO is blocked until it is complete. It requires strong
consistency, because any eventual consistency would make
the replication protocol incorrect. It is also most critical at the
most challenging time: during large-scale failures.

Physalia is a specialized database designed to play this role
in EBS, and other similar systems at Amazon Web Services.
Physalia offers both consistency and high availability, even in
the presence of network partitions, as well as minimized blast
radius of failures. It aims to fail gracefully and partially, and
strongly avoid large-scale failures.

1.1 History

On 21 April 2011, an incorrectly executed network configura-
tion change triggered a condition which caused 13% of the
EBS volumes in a single Availability Zone (AZ) to become
unavailable. At that time, replication configuration was stored
in the EBS control plane, sharing a database with API traffic.
From the public postmortem [46]:

When data for a volume needs to be re-mirrored,
a negotiation must take place between the AWS
EC2 instance, the EBS nodes with the volume data,
and the EBS control plane (which acts as an au-
thority in this process) so that only one copy of the

data is designated as the primary replica and recog-
nized by the AWS EC2 instance as the place where
all accesses should be sent. This provides strong
consistency of EBS volumes. As more EBS nodes
continued to fail because of the race condition de-
scribed above, the volume of such negotiations with
the EBS control plane increased. Because data was
not being successfully re-mirrored, the number of
these calls increased as the system retried and new
requests came in. The load caused a brown out of
the EBS control plane and again affected EBS APIs
across the Region.

This failure vector was the inspiration behind Physalia’s
design goal of limiting the blast radius of failures, including
overload, software bugs, and infrastructure failures.

1.2 Consistency, Availability and Partition
Tolerance

As proven by Gilbert and Lynch [22], it is not possible for
a distributed system to offer both strong consistency (in the
sense of linearizability [31]), and be available to all clients
in the presence of network partitions. Unfortunately, all real-
world distributed systems must operate in the presence of
network partitions [6], so systems must choose between
strong consistency and availability. Strong consistency is non-
negotiable in Physalia, because it’s required to ensure the cor-
rectness of the EBS replication protocol. However, because
chain replication requires a configuration change during net-
work partitions, it is especially important for Physalia to be
available during partitions.

Physalia then has the goal of optimizing for availability
during network partitions, while remaining strongly consis-
tent. Our core observation is that we do not require all keys
to be available to all clients. In fact, each key needs to be
available at only three points in the network: the AWS EC2
instance that is the client of the volume, the primary copy, and
the replica copy. Through careful placement, based on our
system’s knowledge of network and power topology, we can
significantly increase the probability that Physalia is avail-
able to the clients that matter for the keys that matter to those
clients.

This is Physalia’s key contribution, and our motivation for
building a new system from the ground up: infrastructure
aware placement and careful system design can significantly
reduce the effect of network partitions, infrastructure fail-
ures, and even software bugs. In the same spirit as Paxos
Made Live [12], this paper describes the details, choices and
tradeoffs that are required to put a consensus system into
production. Our concerns, notably blast radius reduction and
infrastructure awareness, are significantly different from that
paper.
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Figure 2: Overview of the relationship between the colony,
cell and node.

2 The Design of Physalia

Physalia’s goals of blast radius reduction and partition tol-
erance required careful attention in the design of the data
model, replication mechanism, cluster management and even
operational and deployment procedures. In addition to these
top-level design goals, we wanted Physalia to be easy and
cheap to operate, contributing negligibly to the cost of our
dataplane. We wanted its data model to be flexible enough
to meet future uses in similar problem spaces, and to be easy
to use correctly. This goal was inspired by the concept of
misuse resistance from cryptography (GCM-SIV [27], for
example), which aims to make primitives that are safer under
misuse. Finally, we wanted Physalia to be highly scalable,
able to support an entire EBS availability zone in a single
installation.

2.1 Nodes, Cells and the Colony

The Portuguese man o’ war (Physalia physalis) is not one
animal, but a siphonophore: a colonial organism made up
of many specialized animals called zooids. These zooids are
highly adapted to living in the colony, and cannot live out-
side it. Nevertheless, each zooid is a stand-alone organism,
including everything that is required for life. Physalia’s high-
level organization is similar: each Physalia installation is a
colony, made up of many cells. The cells live in the same
environment: a mesh of nodes, with each node running on a
single server. Each cell manages the data of a single partition
key, and is implemented using a distributed state machine,
distributed across seven nodes. Cells do not coordinate with
other cells, but each node can participate in many cells. The
colony, in turn, can consist of any number of cells (provided
there are sufficient nodes to distribute those cells over). Fig-
ure 2 captures the relationship between colony, cell and node.
Figure 3 shows the cell: a mesh of nodes holding a single
Paxos-based distributed state machine, with one of the nodes
playing the role of distinguished proposer.

The division of a colony into a large number of cells is our
main tool for reducing radius in Physalia. Each node is only
used by a small subset of cells, and each cell is only used by
a small subset of clients.

D

NN

N N

Distinguished
Proposer

Cell

Node

Figure 3: A cell is a group of nodes, one of which assumes
the role of distinguished proposer.

Each Physalia colony includes a number of control plane
components. The control plane plays a critical role in main-
taining system properties. When a new cell is created, the
control plane uses its knowledge of the power and network
topology of the datacenter (discovered from AWS’s datacen-
ter automation systems) to choose a set of nodes for the cell.
The choice of nodes balances two competing priorities. Nodes
should be placed close to the clients (where close is measured
in logical distance through the network and power topology)
to ensure that failures far away from their clients do not cause
the cell to fail. They must also be placed with sufficient diver-
sity to ensure that small-scale failures do not cause the cell
to fail. Section 3 explores the details of placement’s role in
availability.

The cell creation and repair workflows respond to requests
to create new cells (by placing them on under-full nodes),
handling cells that contain failed nodes (by replacing these
nodes), and moving cells closer to their clients as clients move
(by incrementally replacing nodes with closer ones).

We could have avoided implementing a seperate control-
plane and repair workflow for Physalia, by following the ex-
ample of elastic replication [2] or Scatter [23]. We evaluated
these approaches, but decided that the additional complex-
ity, and additional communication and dependencies between
shards, were at odds with our focus on blast radius. We chose
to keep our cells completely independent, and implement the
control plane as a seperate system.

2.2 Physalia’s Flavor of Paxos
The design of each cell is a straightforward consensus-based
distributed state machine. Cells use Paxos [35] to create an
ordered log of updates, with batching and pipelining [48]
to improve throughput. Batch sizes and pipeline depths are
kept small, to keep per-item work well bounded and ensure
short time-to-recovery in the event of node or network fail-
ure. Physalia uses a custom implementation of Paxos written
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Figure 4: The size of cells is a trade-off between tolerance to
large correlated failures and tolerance to random failures.

in Java, which keeps all required state both in memory and
persisted to disk. In typical cloud systems, durability is made
easier by the fact that systems can be spread across multiple
datacenters, and correlated outages across datacenters are rare.
Physalia’s locality requirement meant that we could not use
this approach, so extra care in implementation and testing
were required to ensure that Paxos is implemented safely,
even across dirty reboots.

In the EBS installation of Physalia, the cell performs Paxos
over seven nodes. Seven was chosen to balance several con-
cerns:

• Durability improves exponentially with larger cell size
[29]. Seven replicas means that each piece of data is
durable to at least four disks, offering durability around
5000x higher than the 2-replication used for the volume
data.

• Cell size has little impact on mean latency, but larger
cells tend to have lower high percentiles because they
better reject the effects of slow nodes, such as those
experiencing GC pauses [17].

• The effect of cell size on availability depends on the type
of failures expected. As illustrated in Figure 4, smaller
cells offer lower availability in the face of small numbers
of uncorrelated node failures, but better availability when
the proportion of node failure exceeds 50%. While such
high failure rates are rare, they do happen in practice,
and a key design concern for Physalia.

Partition
Key

Partition
Key

Key Value: int

Key Value: str

Key Value: bool

Key Value

Key Value

Figure 5: The Physalia schema.

• Larger cells consume more resources, both because
Paxos requires O(cellsize) communication, but also be-
cause a larger cell needs to keep more copies of the data.
The relatively small transaction rate, and very small data,
stored by the EBS use of Physalia made this a minor
concern.

The control plane tries to ensure that each node contains a
different mix of cells, which reduces the probability of cor-
related failure due to load or poison pill transitions. In other
words, if a poisonous transition crashes the node software
on each node in the cell, only that cell should be lost. In the
EBS deployment of Physalia, we deploy it to large numbers
of nodes well-distributed across the datacenter. This gives the
Physalia control plane more placement options, allowing it to
optimize for widely-spread placement.

In our Paxos implementation, proposals are accepted opti-
mistically. All transactions given to the proposer are proposed,
and at the time they are to be applied (i.e. all transactions with
lower log positions have already been applied), they are com-
mitted or ignored depending on whether the write conditions
pass. The advantage of this optimistic approach is that the
system always makes progress if clients follow the typical op-
timistic concurrency control (OCC) pattern. The disadvantage
is that the system may do significant additional work during
contention, passing many proposals that are never committed.

2.3 Data Model and API
The core of the Physalia data model is a partition key. Each
EBS volume is assigned a unique partition key at creation
time, and all operations for that volume occur within that
partition key. Within each partition key, Physalia offers a
transactional store with a typed key-value schema, supporting
strict serializable reads, writes and conditional writes over
any combination of keys. It also supports simple in-place op-
erations like atomic increments of integer variables. Figure
5 shows the schema: one layer of partition keys, any number
(within operational limitations) of string keys within a parti-
tion, and one value per key. The API can address only one
partition key at a time, and offers strict serializable batch and
conditional operations within the partition.

The goal of the Physalia API design was to balance two
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competing concerns. The API needed to be expressive enough
for clients to take advantage of the (per-cell) transactional
nature of the underlying store, including expressing condi-
tional updates, and atomic batch reads and writes. Increasing
API expressiveness, on the other hand, increases the prob-
ability that the system will be able to accept a transition
that cannot be applied (a poison pill). The Physalia API is
inspired by the Amazon DynamoDB API, which supports
atomic batched and single reads and writes, conditional up-
dates, paged scans, and some simple in-place operations like
atomic increments. We extended the API by adding a com-
pound read-and-conditional-write operation.

Phsyalia’s data fields are strong but dynamically typed.
Supported field types include byte arrays (typically used to
store UTF-8 string data), arbitrary precision integers, and
booleans. Strings are not supported directly, but may be of-
fered as a convenience in the client. Floating-point data types
and limited-precision integers are not supported due to diffi-
culties in ensuring that nodes will produce identical results
when using different software versions and hardware (see
[24] and chapter 11 of [1]). As in any distributed state ma-
chine, it’s important that each node in a cell gets identical
results when applying a transition. We chose not to offer a
richer API (like SQL) for a similar reason: our experience is
that it takes considerable effort to ensure that complex updates
are applied the same way by all nodes, across all software
versions.

Physalia provides two consistency modes to clients. In the
consistent mode, read and write transactions are both lineariz-
able and serializable, due to being serialized through the state
machine log. Most Physalia clients use this consistent mode.
The eventually consistent mode supports only reads (all writes
are consistent), and offers a consistent prefix [7] to all readers
and monotonic reads [53] within a single client session. Even-
tually consistent reads are provided to be used for monitoring
and reporting (where the extra cost of linearizing reads worth
it), and the discovery cache (which is eventually consistent
anyway).

The API also offers first-class leases [25] (lightweight time-
bounded locks). The lease implementation is designed to
tolerate arbitrary clock skew and short pauses, but will give
incorrect results if long-term clock rates are too different. In
our implementation, this means that the fastest node clock
is advancing at more than three times the rate of the slowest
clock. Despite lease safety being highly likely, leases are only
used where they are not critical for data safety or integrity.

In the Physalia API, all keys used to read and write data, as
well as conditions for conditional writes, are provided in the
input transaction. This allows the proposer to efficiently detect
which changes can be safely batched in a single transaction
without changing their semantics. When a batch transaction
is rejected, for example due to a conditional put failure, the
proposer can remove the offending change from the batch and
re-submit, or submit those changes without batching.

i-2 i-1 i i+1 i+2 i+3

Reconfiguration 
accepted here

Takes effect
here

……

Figure 6: Changes in membership are placed into the log, but
only take effect some time later (pictured here is α = 2)

2.4 Reconfiguration, Teaching and Learning

As with our core consensus implementation, Physalia does not
innovate on reconfiguration. The approach taken of storing
per-cell configuration in the distributed state machine and
passing a transition with the existing jury to update it follows
the pattern established by Lampson [37]. A significant factor
in the complexity of reconfiguration is the interaction with
pipelining: configuration changes accepted at log position i
must not take effect logically until position i+α, where α is
the maximum allowed pipeline length (illustrated in Figure 6).
Physalia keeps α small (typically 3), and so simply waits for
natural traffic to cause reconfiguration to take effect (rather
than stuffing no-ops into the log). This is a very sharp edge in
Paxos, which doesn’t exist in either Raft [42] or Viewstamped
Replication [41].

Physalia is unusual in that reconfiguration happens fre-
quently. The colony-level control plane actively moves
Physalia cells to be close to their clients. It does this by replac-
ing far-away nodes with close nodes using reconfiguration.
The small data sizes in Physalia make cell reconfiguration
an insignificant portion of overall datacenter traffic. Figure 7
illustrates this process of movement by iterative reconfigura-
tion. The system prefers safety over speed, moving a single
node at a time (and waiting for that node to catch up) to mini-
mize the impact on durability. The small size of the data in
each cell allows reconfiguration to complete quickly, typically
allowing movement to complete within a minute.

When nodes join or re-join a cell they are brought up to
speed by teaching, a process we implement outside the core
consensus protocol. We support three modes of teaching. In
the bulk mode, most suitable for new nodes, the teacher (any
existing node in the cell) transfers a bulk snapshot of its state
machine to the learner. In the log-based mode, most suitable
for nodes re-joining after a partition or pause, the teacher
ships a segment of its log to the learner. We have found
that this mode is triggered rather frequently in production,
due to nodes temporarily falling behind during Java garbage
collection pauses. Log-based learning is chosen when the size
of the missing log segment is significantly smaller than the
size of the entire dataset.

Finally, packet loss and node failures may leave persistent
holes in a node’s view of the log. If nodes are not able to find

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    467



Client

Cell

Client

Cell

Client

Cell

a)

b)

c)

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

N

N

N

Figure 7: When Physalia detects that a cell’s client has moved
(a), it replaces nodes in the cell with ones closer to the client
(b), until the cell is entirely nearby the client (c).

another to teach them the decided value in that log position (or
no value has been decided), they use a whack-a-mole learn-
ing mode. In whack-a-mole mode, a learner actively tries to
propose a no-op transition into the vacant log position. This
can have two outcomes: either the acceptors report no other
proposals for that log position and the no-op transition is ac-
cepted, or another proposal is found and the learner proposes
that value. This process is always safe in Paxos, but can affect
liveness, so learners apply substantial jitter to whack-a-mole
learning.

2.5 The Discovery Cache
Clients find cells using a distributed discovery cache. The
discovery cache is a distributed eventually-consistent cache
which allow clients to discover which nodes contain a given
cell (and hence a given partition key). Each cell periodically
pushes updates to the cache identifying which partition key
they hold and their node members. Incorrect information in
the cache affects the liveness, but never the correctness, of
the system. We use three approaches to reduce the impact
of the discovery cache on availability: client-side caching,
forwarding pointers, and replication. First, it is always safe for
a client to cache past discovery cache results, allowing them to
refresh lazily and continue to use old values for an unbounded
period on failure. Second, Physalia nodes keep long-term (but
not indefinite) forwarding pointers when cells move from
node to node. Forwarding pointers include pointers to all
the nodes in a cell, making it highly likely that a client will
succeed in pointer chasing to the current owner provided that
it can get to at least one of the past owners. Finally, because
the discovery cache is small, we can economically keep many

copies of it, increasing the probability that at least one will be
available.

2.6 System Model and Byzantine Faults
In designing Physalia, we assumed a system model where
messages can be arbitrarily lost, replayed, re-ordered, and
modified after transmission. Message authentication is im-
plemented using a cryptographic HMAC on each message,
guarding against corruption occurring in lower layers. Mes-
sages which fail authentication are simply discarded. Key
distribution, used both for authentication and prevention of
unintentional Sybil-style attacks [20] is handled by our envi-
ronment (and therefore out of the scope of Physalia), optimis-
ing for frequent and low-risk key rotation.

This model extends the “benign faults” assumptions of
Paxos [11] slightly, but stops short of Byzantine fault toler-
ance1. While Byztantine consensus protocols are well under-
stood, they add significant complexity to both software and
system interactions, as well as testing surface area. Our ap-
proach was to keep the software and protocols simpler, and
mitigate issues such as network and storage corruption with
cryptographic integrity and authentication checks at these
layers.

3 Availability in Consensus Systems

State-machine replication using consensus is popular ap-
proach for building systems that tolerate faults in single
machines, and uncorrelated failures of a small number of
machines. In theory, systems built using this pattern can
achieve extremely high availability. In practice, however,
achieving high availability is challenging. Studies across three
decades (including Gray in 1990 [26], Schroeder and Gibson
in 2005 [50] and Yuan et al in 2014 [57]) have found that
software, operations, and scale drive downtime in systems
designed to tolerate hardware faults. Few studies consider a
factor that is especially important to cloud customers: large-
scale correlated failures which affect many cloud resources at
the same time.

3.1 Physalia vs the Monolith
It is well known that it is not possible to offer both all-clients
availability and consistency in distributed databases due to
the presence of network partitions. It is, however, possible
to offer both consistency and availability to clients on the
majority side of a network partition. While long-lived network
partitions are rare in modern datacenter networks, they do
occur, both due to the network itself and other factors (see
Bailis and Kingsbury [6] and Alquraan et al [5] for surveys of

1This approach is typical of production consensus-based systems, includ-
ing popular open-source projects like Zookeeper and etcd
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causes of network partitions). Short-lived partitions are more
frequent. To be as available as possible to its clients, Physalia
needs to be on the same side of any network partition as them.
For latency and throughput reasons, EBS tries to keep the
storage replicas of a volume close to the AWS EC2 instances
the volumes are attached to, both in physical distance and
network distance. This means that client, data master and data
replica are nearby each other on the network, and Physalia
needs to be nearby too. Reducing the number of network
devices between the Physalia database and its clients reduces
the possibility of a network partition forming between them
for the simple reason that fewer devices means that there’s
less to go wrong.

Physalia also optimizes for blast radius. We are not only
concerned with the availability of the whole system, but want
to avoid failures of the whole system entirely. When failures
happen, due to any cause, they should affect as small a subset
of clients as possible. Limiting the number of cells depending
on a single node, and clients on a single cell, significantly
reduce the effect that one failure can have on the overall
system.

This raises the obvious question: does Physalia do better
than a monolithic system with the same level of redundancy?
A monolithic system has the advantage of less complexity.
No need for the discovery cache, most of the control plane,
cell creation, placement, etc. Our experience has shown that
simplicity improves availability, so this simplification would
be a boon. On the other hand, the monolithic approach loses
out on partition tolerance. It needs to make a trade-off between
being localized to a small part of the network (and so risking
being partitioned away from clients), or being spread over the
network (and so risking suffering an internal partition making
some part of it unavailable). The monolith also increases
blast radius: a single bad software deployment could cause a
complete failure (this is similar to the node count trade-off of
Figure 4, with one node).

3.2 Placement For Availability

The EBS control plane (of which the Physalia control plane
is a part) continuously optimizes the availability of the EBS
volume P(Av) to the client AWS EC2 instance, and the EBS
storage servers that store the volume. This is most interesting
to do when the client instance is available. If the volume
is unavailable at the same time as the client instance, we
know that the instance will not be trying to access it. In other
words, in terms of the availability of the volume (Av), and
the instance (Ai), the control plane optimizes the conditional
probability P(Av|Ai). The ideal solution to this problem is to
entirely co-locate the volume and instance, but EBS offers
the ability to detach a volume from a failed instance, and
re-attach it to another instance. To make this useful, volumes
must continue to be durable even if the instance suffers a
failure. Placement must therefore balance the concerns of

having the volume close enough for correlated availability,
but far enough away for sufficiently independent durability to
meet EBS’s durability promise.

As an example, consider an idealized datacenter with three
levels of network (servers, racks and rows) and three power
domains (A, B and C). The client instance is on one rack,
the primary copy on another, and replica copy on a third,
all within the same row. Physalia’s placement will then en-
sure that all nodes for the cell are within the row (there’s no
point being available if the row is down), but spread across
at least three racks to ensure that the loss of one rack doesn’t
impact availability. It will also ensure that the nodes are in
three different power domains, with no majority in any single
domain.

This simple scheme faces two challenges. One is that real-
world datacenter topology is significantly more complex, es-
pecially where datacenters contain multiple generations of
design and layout. Another is that EBS volumes move by
replication, and their clients move by customers detaching
their volumes from one instance and attaching them to an-
other. The Physalia control plane continuously responds to
these changes in state, moving nodes to ensure that placement
constraints continue to be met.

3.3 Non-Infrastructure Availability Concerns

Another significant challenge with building high-availability
distributed state machines is correlated work. In a typical
distributed state machine design, each node is processing the
same updates and the same messages in the same order. This
leads the software on the machines to be in the same state.
In our experience, this is a common cause of outages in real-
world systems: redundancy does not add availability if failures
are highly correlated. Having all copies of the software in the
same state tends to trigger the same bugs in each copy at
the same time, causing multiple nodes to fail, either partially
or completely, at the same time. Another issue is that the
correlated loads cause memory, hard drives, and other storage
on each host to fill up at the same rate. Again, this causes
correlated outages when each host has the same amount of
storage. Poison pill transactions may also cause outages; these
are transactions that are accepted by the cell but cannot be
applied to the state machine once consensus is reached.

Software deployments and configuration changes also con-
tribute to downtime. Good software development practices,
including code review and automated and manual testing, can
reduce the risk of software changes but not entirely eliminate
it. Incremental deployment, where code is rolled out slowly
across the fleet and rolled back at the first sign of trouble, is
a required operational practice for highly available systems.
The fault-tolerant nature of distributed state machines makes
this approach less effective: because the system is designed
to tolerate failure in less than half of hosts, failure may not be
evident until new code is deployed to half of all hosts. Prac-
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tices like positive validation, where the deployment system
checks that new nodes are taking traffic, reduce but do not
eliminate this risk.

Poison pills are a particularly interesting case of software
failure. A poison pill is a transaction which passes validation
and is accepted into the log, but cannot be applied without
causing an error. Pipelining requires that transactions are val-
idated before the state they will execute on is fully known,
meaning that even simple operations like numerical division
could be impossible to apply. In our experience, poison pills
are typically caused by under-specification in the transaction
logic ("what does dividing by zero do?", "what does it mean
to decrement an unsigned zero?"), and are fixed by fully spec-
ifying these behaviors (a change which comes with it’s own
backward-compatibility challenges).

All of these factors limit the availability of any single dis-
tributed state machine, as observed by its clients. To achieve
maximum availability, we need many such systems spread
throughout the datacenter. This was the guiding principle of
Physalia: instead of one database, build millions.

3.4 Operational Practices
Our experience of running large distributed systems is that
operations, including code and configuration deployments,
routine system operations such as security patching, and scal-
ing for increased load, are dominant contributors to system
downtime, despite ongoing investments in reducing opera-
tional defect rates. This conclusion isn’t particular to the envi-
ronment at AWS. For example, Jim Gray found in 1990 that
the majority of failures of Tandem computers were driven by
software and operations [26]. Operational practices at AWS
already separate operational tasks by region and availability
zone, ensuring that operations are not performed across many
of these units at the same time.

Physalia goes a step further than this practice, by introduc-
ing the notion of colors. Each cell is assigned a color, and
each cell is constructed only of nodes of the same color. The
control plane ensures that colors are evenly spread around the
datacenter, and color choice minimally constrains how close
a cell can be to its clients. Physalia’s very large node and cell
counts make this possible. When software deployments and
other operations are performed, they proceed color-by-color.
Monitoring and metrics are set up to look for anomalies in
single colors. Colors also provide a layer of isolation against
load-related and poison pill failures. Nodes of different colors
don’t communicate with each other, making it significantly
less likely that a poison pill or overload could spread across
colors.

3.5 Load in Sometimes-Coordinating Systems
Load is another leading cause of correlated failures. Funda-
mentally, a consensus-based system needs to include more

than half of all nodes in each consensus decision, which means
that overload can take out more than half of all nodes. Colors
play a role in reducing the blast radius from load spikes from
a few clients, but the load on Physalia is inherently spiky.

During normal operation, load consists of a low rate of calls
caused by the background rate of EBS storage server failures,
and creation of new cells for new volumes. During large-scale
failures, however, load can increase considerably. This is an
inherent risk of sometimes-coordinating systems like EBS:
recovery load is not constant, and highest during bad network
or power conditions. See Section 5.2.1 for a brief exploration
of the magnitude of these spikes.

Per-cell Physalia throughput, as is typical of Paxos-style
systems, scales well up to a point, with significant wins com-
ing from increased batch efficiency. Beyond this point, how-
ever, contention and the costs of co-ordination cause good-
put to drop with increased load (as predicted by Gunther’s
model [28]). To avoid getting into this reduced-goodput mode,
cells reject load once their pipelines are full. While this isn’t
a perfect predictor of load, it works well because it decreases
attempted throughput with increased latency (and is therefore
stable in the control theory sense), and gets close to peak sys-
tem throughput. Clients are expected to exponentially back
off, apply jitter, and eventually retry their rejected transactions.
As the number of clients in the Physalia system is bounded,
this places an absolute upper limit on load, at the cost of
latency during overload.

4 Testing

The challenge of testing a system like Physalia is as large
as the challenge of designing and building it. Testing needs
to cover not only the happy case, but also a wide variety of
error cases. Our experience mirrors the findings of Yuan, et
al [57] that error handling is where many bugs hide out, and
Alquraan et al [5] that network partitions are rare events that
easily hide bugs. As Kingsbury’s Jepsen [33] testing work
has found, many consensus implementations also have bugs
in the happy path. Good testing needs to look everywhere.
To get the coverage required, we needed to make the bar to
building a new test case extremely low.

4.1 The SimWorld
To solve this problem, we picked an approach that is in wide
use at Amazon Web Services, which we would like to see
broadly adopted: build a test harness which abstracts network-
ing, performance, and other systems concepts (we call it a
simworld). The goal of this approach is to allow developers
to write distributed systems tests, including tests that simulate
packet loss, server failures, corruption, and other failure cases,
as unit tests in the same language as the system itself. In this
case, these unit tests run inside the developer’s IDE (or with
junit at build time), with no need for test clusters or other
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infrastructure. A typical test which tests correctness under
packet loss can be implemented in less than 10 lines of Java
code, and executes in less than 100ms. The Physalia team have
written hundreds of such tests, far exceeding the coverage that
would be practical in any cluster-based or container-based
approach.

The key to building a simworld is to build code against
abstract physical layers (such as networks, clocks, and disks).
In Java we simply wrap these thin layers in interfaces. In
production, the code runs against implementations that use
real TCP/IP, DNS and other infrastructure. In the simworld,
the implementations are based on in-memory implementa-
tions that can be trivially created and torn down. In turn, these
in-memory implementations include rich fault-injection APIs,
which allow test implementors to specify simple statements
like:

net.partitionOff(PARTITION_NAME , p5.
getLocalAddress());

...
net.healPartition(PARTITION_NAME);

Our implementation allows control down to the packet
level, allowing testers to delay, duplicate or drop packets based
on matching criteria. Similar capabilities are available to test
disk IO. Perhaps the most important testing capability in a
distributed database is time, where the framework allows each
actor to have it’s own view of time arbitrarily controlled by
the test. Simworld tests can even add Byzantine conditions
like data corruption, and operational properties like high la-
tency. We highly recommend this testing approach, and have
continued to use it for new systems we build.

4.2 Additional Testing Approaches
In addition to unit testing, we adopted a number of other
testing approaches. One of those approaches was a suite
of automatically-generated tests which run the Paxos imple-
mentation through every combination of packet loss and re-
ordering that a node can experience. This testing approach
was inspired by the TLC model checker [56], and helped us
build confidence that our implementation matched the formal
specification.

We also used the open source Jepsen tool [33] to test the
system, and make sure that the API responses are linearizable
under network failure cases. This testing, which happens at
the infrastructure level, was a good complement to our lower-
level tests as it could exercise some under-load cases that are
hard to run in the simworld.

Finally, we performed a number of game days against de-
ployments of Physalia. A game day is a failure simulation that
happens in a real production or production-like deployment
of a system, an approach that has been popular at Amazon for
20 years. Game days test not only the correctness of code, but
also the adequacy of monitoring and logging, effectiveness
of operational approaches, and the team’s understanding of

how to debug and fix the system. Our game day approach is
similar to the chaos engineering approach pioneered by Net-
flix [32], but typically focuses on larger-scale failures rather
than component failures.

4.3 The Role of Formal Methods

TLA+ [36] is a specification language that’s well suited to
building formal models of concurrent and distributed systems.
We use TLA+ extensively at Amazon [39], and it proved
exceptionally useful in the development of Physalia. Our
team used TLA+ in three ways: writing specifications of our
protocols to check that we understand them deeply, model
checking specifications against correctness and liveness prop-
erties using the TLC model checker, and writing extensively
commented TLA+ code to serve as the documentation of
our distributed protocols. While all three of these uses added
value, TLA+’s role as a sort of automatically tested (via TLC),
and extremely precise, format for protocol documentation was
perhaps the most useful. Our code reviews, simworld tests,
and design meetings frequently referred back to the TLA+
models of our protocols to resolve ambiguities in Java code or
written communication. We highly recommend TLA+ (and
its Pluscal dialect) for this use.

One example of a property we checked using TLA+ is the
safety of having stale information in the discovery cache. For
correctness, it is required that a client acting on stale informa-
tion couldn’t cause a split brain by allowing a group of old
nodes to form a quorum. We started with the informal argu-
ment that the reconfiguration protocol makes f > N

2 of the
pre-reconfiguration nodes aware of a configuration change,
and therefore aware if they have been deposed from the jury.
In other words, at most

⌊N
2

⌋
nodes may have been deposed

from the jury without being aware of the change, and because
they do not form a quorum they cannot pass split brain pro-
posals. This argument becomes successively more complex
as multiple reconfigurations are passed, especially during a
single window of α. Multiple reconfigurations also introduce
an ABA problem when cells move off, and then back onto, a
node. TLA+ and TLC allowed us to build confidence in the
safety of our protocols in this complex case and cases like it.

5 Evaluation

Evaluating the performance of a system like Physalia is chal-
lenging. Performance, including throughput and latency, are
important, but the most important performance metrics are
how the system performs during extremely rare large-scale
outages. We evaluate the performance of Physalia in produc-
tion, and evaluate the design through simulations. We also use
simulations to explore some particularly challenging whole-
system aspects of Physalia.
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Figure 8: Mean availability of the configuration store from
the perspective of the EBS primary, bucketed by month, for a
production colony. The vertical line shows the deployment of
Physalia in this datacenter, replacing a legacy system.

Figure 9: Number of hours per month where EBS masters
experienced an error rate > 0.05% in a production colony.
The vertical line shows the deployment of Physalia.

5.1 Production Experience
Physalia is deployed in production in AWS, running in over
60 availability zones. Figure 8 shows the effect that it’s de-
ployment has had on one measure of volume availability:
how often the primary copy of the volume is able to con-
tact the configuration store on the first try. The deployment
of Physalia shows a clear (p = 7.7x10−5) improvement in
availability. Availability failures in the previous system were
caused both by infrastructure failures and by transient over-
load (see Section 3.5).

Figure 9 shows the same data in a different way, looking
at compliance against an internal error rate goal, significantly
stricter than the external SLA for EBS. In this case, the inter-
nal goal is 0.05%, and we count the number of hours where
this goal is exceeded.

In production deployments within AWS, Physalia deploy-
ments at availability-zone scale routinely serve thousands of
requests per second. Latency varies between read and write
optimizations. Linearizable reads can sometimes be handled
by the distinguished proposer. Writes, on the other hand, need

Figure 10: Physalia read and write latencies for one large-
scale cluster. p50 is the 50th percentile, and p99 is the 99th.

to complete a Paxos round before they are committed, and
therefore require substantially more communication. Figure
10 presents a multi-day view of read and write latency per-
centiles, calculated on a one-minute bucket. In this typical
installation, reads take less than 10ms at the 99th percentile,
and writes typically take less than 50ms.

In a distributed state machine, not only must operations be
applied deterministically across all replicas, but they must be
applied the same way by all production versions. Our opera-
tional and testing practices handle this edge case by testing
between adjacent versions. Early in our production rollout,
a bug in our deployment tools lead to a rollback to an old
version of the code base on a small number of nodes. These
nodes applied transactions differently, simply not applying
a conditional they didn’t understand, leading to state to di-
verge on the cells where they were members. While we fixed
this issue quickly with little customer impact, we took three
important lessons away from it. First, Postel’s famous robust-
ness principle (be conservative in what you do, be liberal
in what you accept from others) [45] does not apply to dis-
tributed state machines: they should not accept transactions
they only partially understand and allow the consensus pro-
tocol to treat them as temporarily failed. Second, our testing
processes needed to cover more than adjacent versions, and
include strong mechanisms for testing rollback cases (both ex-
pected and unexpected). The third lesson is perhaps the most
important: control planes should exploit their central position
in a systems architecture to offer additional safety. When the
rollback issue occurred, affected cells were corrupted in a
way that caused the control plane to see them as empty, and
available for deletion. The control plane dutifully took action,
deleting the cells. Based on this experience, we modified the
control plane to add rate limiting logic (don’t move faster
than the expected rate of change), and a big red button (al-
lowing operators to safely and temporarily stop the control
plane from taking action). Control planes provide much of the
power of the cloud, but their privileged position also means
that they have to act safely, responsibly, and carefully to avoid
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introducing additional failures.

5.2 Design Validation via Simulation

The statistical behavior of a system as complex as Physalia
can be difficult, if not intractable, to analyze in closed form.
From early in the feasibility stages to production deployment,
we used simulation to understand the dynamic behavior of
the system, explore alternative system designs, and calculate
baselines for our testing. In this section, we present some sim-
ulation results, and conclude by comparing the performance
of the system to those results.

The availability offered by a Physalia deployment is highly
sensitive to the failure modes of the underlying infrastructure,
and the statistical properties of each of those failure modes.
These results use a simplified (and outdated) model of a dat-
acenter network: servers are organized into racks, each with
a top-of-rack switch (tor), which in turn connects to one or
more aggregation routers (aggs), which connect to one or
more core routers (cores). Typical real-world networks con-
tain some redundancy. For example, a tor is likely to connect
to more than one agg. In these results we’ve left out redun-
dancy for simplicity’s sake, but the results are qualitatively
similar (although the failure statistics are very different), once
redundancy is considered.

One significant area that we explored with simulation is
placement. Globally optimizing the placement of Physalia
volumes is not feasible for two reasons, one is that it’s a
non-convex optimization problem across huge numbers of
variables, the other is that it needs to be done online because
volumes and cells come and go at a high rate in our produc-
tion environment. Figure 11 shows the results of using one
very rough placement heuristic: a sort of bubble sort which
swaps nodes between two cells at random if doing so would
improve locality. In this simulation, we considered 20 candi-
dates per cell. Even with this simplistic and cheap approach
to placement, Physalia is able to offer significantly (up to 4x)
reduced probability of losing availability.

5.2.1 Simulations of System Load

As discussed in Section 3.5, load on Physalia can vary dra-
matically with different network conditions. Simulation of
failures in different network topologies allows us to quantify
the maximum expected load. Figure 12 shows the results of
simulating agg failures (in the same model used above) on
offered load to Physalia. A volume needs to call Physalia if
the client AWS EC2 instance can get to either the master or
replica EBS server, but the master and replica can’t get to
each other.

At small failure rates, expected load increases linearly with
the count of failed devices, up to maximum of 29%. Beyond
this, load drops off, as volumes become likely to be com-
pletely disconnected from the client. Multiplying this graph

(a)

(b)

Figure 11: Simulated availability of volumes using Physalia,
versus a baseline of a single-point database, under network
partitions caused by device failures at the agg layer. (a) shows
raw results for cell sizes 5 and 9, and (b) shows the ratio
between Physalia and baseline availability.

Figure 12: Load on Physalia vs. agg failure rate for a simu-
lated 3-tier datacenter network.

(or, ideally one simulated on actual datacenter topology) with
the expected values of device failures yields a graph of the
expectation of the magnitude of maximum load on Physalia
(or, indeed, any configuration master in an EBS-like repli-
cated system). These results closely match what we have
observed of the real-world behavior of the EBS deployment
of Physalia.
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6 Related Work

Physalia draws ideas from both distributed co-ordination sys-
tems and distributed databases. Distributed co-ordination sys-
tems, like Zookeeper [19], Chubby [9], Boxwood [38] and
etcd [14], have the goal of providing a highly-available and
strongly-consistent set of basic operations that make imple-
menting larger distributed systems easier. Physalia’s design
approach is similar to some of these systems, being based on
the state machine replication pattern popularized by the work
of Schneider [49], Oki [40] and Lampson [37]. Physalia’s key
differences from these systems are its fine-grained consensus
(millions of distributed state machines, rather than a single
one), and infrastructure awareness. This makes Physalia more
scalable and more resistant to network partitions, but also
significantly more complex.

The problem of providing highly-available distributed stor-
age in fallible datacenter networks faces similar challenges
to global and large-scale systems like OceanStore [34] and
Farsite [3], with emphasis on moving data close to its ex-
pected to improve availability and latency. While the design
of Physalia predates the publication of Spanner [15] and Cos-
mosDB, Physalia takes some similar design approaches with
similar motivation.

Horizontal partitioning of databases is a long-established
idea for both scaling and availability. Systems like Dynamo
[18] and its derivatives dynamically move partitions, and rely
on client behavior or stateless proxies for data discovery. Dy-
namic discovery of high-cardinality data, as addressed by
Physalia’s discovery cache and forwarding pointers, has been
well explored by systems like Pastry [47] and Chord [52].
Optimizing data placement for throughput and latency is also
a well-established technique (such as in Tao [8], and Dabek et
al [16]), but these systems are not primarily concerned with
availability during partitions, and do not consider blast radius.

Physalia’s approach to infrastructure-aware placement re-
flects some techniques from software-defined networking
(SDN) [21]. Another similarity with SDN (and earlier sys-
tems, like RCP [10]) is the emphasis on separating control and
data planes, and allowing the data plane to consist of simple
packet-forwarding elements. This reflects similar decisions to
separate Physalia from the data plane of EBS, and the data-
and control planes of Physalia itself.

Infrastructure awareness, an important part of Physalia’s
contribution, seems to be an under-explored area in the sys-
tems literature. Some systems (like SAUCR [4], and the
model proposed by Chen et al [13]) are designed to change
operating modes when infrastructure failures occur or request
patterns change, but we are not aware of other database ex-
plicitly designed to include data placement based on network
topology (beyond simple locality concerns).

7 Conclusion

Physalia is a classic consensus-based database which takes a
novel approach to availability: it is aware of the topology and
datacenter power and networking, as well as the location of
the clients that are most likely to need each row, and uses data
placement to reduce the probability of network partitions. This
approach was validated using simulation, and the gains have
been borne out by our experience running it in production at
high scale across over 60 datacenter-scale deployments. Its
design is also optimized to reduce blast radius, reducing the
impact of any single node, software, or infrastructure failure.

While few applications have the same constraints that we
faced, many emerging cloud patterns require strongly consis-
tent access to local data. Having a highly-available strongly-
consistent database as a basic primitive allows these systems
to be simpler, more efficient, and offer better availability.
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Abstract
Despite the well-known existence of load-balanced forward-
ing paths in the Internet, current active topology Internet-wide
mapping efforts are multipath agnostic – largely because of
the probing volume and time required for existing multipath
discovery techniques. This paper introduces D-Miner, a sys-
tem that marries previous work on high-speed probing with
multipath discovery to make Internet-wide topology mapping,
inclusive of load-balanced paths, feasible. We deploy D-Miner
and collect multiple IPv4 interface-level topology snapshots,
where we find >64% more edges, and significantly more com-
plex topologies relative to existing systems. We further scru-
tinize topological changes between snapshots and attribute
forwarding differences not to routing or policy changes, but
to load balancer “remapping” events. We precisely catego-
rize remapping events and find that they are a much more
frequent contributor of path changes than previously recog-
nized. By making D-Miner and our collected Internet-wide
topologies publicly available, we hope to help facilitate better
understanding of the Internet’s true structure and resilience.

1 Introduction

An important component of today’s Internet is multipath rout-
ing [18, 29, 45], where traffic to a destination network is load-
balanced to support higher capacities and provide redundancy.
Prior work developed active measurement techniques to dis-
cover multipath routing [17], while showing that multipath
topologies can be quite complex [45]. However, high probing
loads and runtime have been impediments to their widespread
uptake. As a result, today’s IP and router topology snapshots,
e.g., [21,41], incompletely represent the true, multipath, com-
plex forwarding topology. Indeed, our measurements discover
>2.7M more edges (64%) in the topology as compared to cur-
rent state-of-the-art, and significantly more complex topolo-
gies than previously reported, including >5k edges in a single
provider’s topology corresponding to a single /24 destination
prefix that they advertise.

The Internet measurement community has long aimed to
capture a complete topology of the Internet, especially as it
has become clear that partial topologies can lead to faulty
conclusions about the network’s properties [15, 24, 46]. Ob-
taining not just accurate, but complete topologies is crucial
to understanding the network’s resilience to outages and at-
tacks [35, 43], as well as aiding in the conception of appli-
cations ranging from content distribution to network secu-
rity [48]. Further, these topologies play a vital supporting role
in other measurement inferences, for instance determining
AS relationships, mapping inter-domain congestion [32], and
geolocation [31] to name a few.

We developed D-Miner to gather Internet-wide multipath
topology maps. D-Miner is a system that marries two recent
advancements in active topology discovery: i) high-speed ran-
domized probing techniques [19] and ii) multipath detection
algorithms [17]. At its core, D-Miner rapidly sends probes
in a randomly permuted order to avoid overloading any sin-
gle path, and iteratively completes its view of the network.
Whereas prior multipath discovery approaches perform a state-
ful breadth-first search path exploration to attain confidence in
the degree of load balancing along the path, D-Miner decou-
ples probing from statistical inference thereby enabling probe
randomization and high-rate probing, while amortizing total
probing cost. D-Miner maintains a set of “unresolved” nodes
– nodes for which the degree of load balancing is uncertain
– and proceeds in rounds until the topology is, statistically,
complete (§3). Having implemented D-Miner, we evaluate its
performance and overhead (§4). Together, these techniques
enable, for the first time, scalable multipath topology discov-
ery and Internet-wide mapping.

Using complete Internet-wide snapshots collected using D-
Miner, we scrutinize dynamics and topological changes. We
find that many “routing changes” are instead due to “load bal-
ancer remapping” events – where the load balancer changes its
current mapping between flow identifiers and paths. We pre-
cisely categorize these events and measure their prevalence,
finding that they are a much larger and frequent contributor
of path changes than previously recognized (§5).
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Finally, we deployed D-Miner and collected multiple topol-
ogy snapshots over a one-week period in August, 2019. From
these snapshots, we characterize the prevalence, size, extent,
and location of load-balancing on the modern Internet (§6).
Our contributions thus include:

1. Development and evaluation of D-Miner, a novel scal-
able active multipath topology discovery system.

2. Deployment of D-Miner to gather the first Internet-wide
IP-level topology snapshots inclusive of load balancing.

3. Detailed characterization of Internet dynamics, including
a taxonomy of load balancer remapping events and their
extent and prevalence.

4. Public release of D-Miner’s code and survey results [4].

2 Background and related work

We first review different types of load balancing commonly
found in the Internet. Then, we provide an overview of the
Multipath Detection Algorithm (MDA) [44], the current state-
of-the-art technique for actively discovering load balancing,
and Yarrp, a method for high-speed topology discovery. We
finish this section by describing other related work.

2.1 Load balancing
Load balancing is used to increase aggregate network capacity
and provide redundancy and resilience to failures. Two types
of load balancing are configurable on routers [3, 6, 12]: deter-
ministic and non-deterministic. When a packet arrives on a
router configured with deterministic load balancing (i.e., per-
flow load balancing), and multiple equal-cost routing paths
are available to the packet’s destination, the router chooses a
path by computing a hash over the packet’s header fields [23].
This set of fields used to compute the hash is called the flow
identifier, and typically includes either the source and destina-
tion addresses (per-destination) or the source and destination
addresses and ports (per-flow). Two packets belonging to the
same flow are thus sent over the same path, and this helps
the performance of transport protocols that react to delayed
or out-of-order packets, as well as enabling middleboxes to
have visibility into all the packets of a flow. Herein, we use
the terms “flow identifier” and “flow” interchangeably.

Non-deterministic is also known as per-packet load balanc-
ing. In this configuration, when a packet arrives at a router
with multiple equal-cost paths to the destination, the router
selects among the paths in a round robin fashion.

Our Internet scale survey in §6 confirms two previous re-
sults of Augustin et al. [18] and Vermeulen et al. [45]: (1) load
balancing is prevalent in the network, as 64.7% of our traces
from a source to any /24 prefix contained at least one load
balancing router (branching point); and (2) non-deterministic
load balancing is rare, with only 1.9% of the branching points
identified as implementing this behavior.

2.2 MDA
The Traceroute tool [30] sends probe packets to find forward-
ing paths. It exploits the IPv4 time-to-live (TTL) header field
to induce routers along a forwarding path to send ICMP error
messages, thereby revealing the router’s interface addresses.
The original Traceroute design did not foresee the later emer-
gence of load-balanced paths in the Internet, and it gives
incomplete and incorrect results in the face of load balanc-
ing [16]. Paris Traceroute [16] was developed specifically to
accurately reveal a path through a per-flow load-balanced net-
work. Paris Traceroute ensures that all probe packets, across
different TTLs, have consistent flow identifiers, thereby en-
suring that all measurement packets take the same path in a
load-balanced network. However, in its basic implementation,
Paris Traceroute reveals only a single path to the destination.

The Multipath Detection Algorithm (MDA) stochastically
varies Paris Traceroute’s flow identifiers in an attempt to
enumerate all paths to a destination. For a given vertex with k
known outgoing load-balanced edges, the number of probes
with randomly selected flow IDs needed to verify that it has
no more than k edges is denoted nk, and is termed a “stopping
point” [44]. For example, when 1, 10, or 100 outgoing edges
have already been identified, n1 = 6, n10 = 57, or n100 = 757
probes are, respectively, required in order to ensure a no more
than 0.05 probability to fail to enumerate all outgoing edges.

Unfortunately, the stateful nature of the MDA and its re-
liance on establishing confidence in the behavior of each po-
tential branching point along the path in a sequential manner
are hinderences to its use for Internet-wide topology studies.

Note, the MDA technique has previously been vali-
dated [18, 44]. From this perspective, if D-Miner achieves
the same level of statistical guarantees that the MDA pro-
vides, it validates D-Miner as well. §4 shows that D-Miner
fulfills this condition.

2.3 Yarrp
Yarrp [19, 20] introduced the notion of high-speed topology
probing via stateless operation, and random permutation of
targets and TTLs. Whereas previous route tracing techniques,
e.g., [34], iteratively probe TTLs toward each destination,
Yarrp randomizes its probing and decouples probing from
topology reconstruction. This randomization avoids overload-
ing particular paths or routers, thereby permitting higher prob-
ing rates. Further, Yarrp encodes all of the necessary state, e.g.,
originating TTL and time, into probes such that the quoted
replies permit state to be reconstituted. In this fashion, Yarrp
demonstrated the ability to perform Internet-wide route trac-
ing at more than 100k pps.

2.4 Other related work
For more than two decades now, Internet mapping has been
an active area of research. It allows researchers to better un-
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Figure 1: D-Miner high-level conceptual overview

derstand the structure of the Internet [22, 28] and to design
better protocols [46]. Today, one can either obtain an Internet
snapshot of the whole Internet without load-balanced paths,
or a reduced snapshot of the Internet with load-balanced paths.
Mapping systems such as CAIDA’s Ark [24] perform contin-
uous surveys from hundreds of vantage points by launching
Paris Traceroute measurements to one random address in
every globally advertised /24 prefix. A complete set of mea-
surements towards all of the /24 prefixes is called a cycle.
Because the address in the /24 is randomly chosen, aggregat-
ing results from multiple cycles reveal some load balancing.
However, Ark is not explicitly designed to reveal load balanc-
ing, does not send enough probes to find all load balancing
(particularly when chained), and does not provide any con-
fidence bounds on discovery. Yarrp [19], described in §2.3,
performs Internet scale surveys at high speed, but is also not
capable of revealing the load-balanced paths. D-Miner en-
ables researchers, for the first time, to obtain snapshots the
entire Internet inclusive of all load-balanced paths.

This new and more complete view of the topology allows D-
Miner to expand the results on load balancing characterization
at Internet scale. Augustin et al. made the first study of load-
balanced paths a decade ago, finding topologies having up
to 16 such paths [18]. More recently, Vermeulen et al. have
shown that per-flow load-balanced paths have become more
complex, by finding topologies with up to 92 interfaces at the
same TTL [45]. In both of those studies, the set of destination
prefixes was a subset of the entire Internet, with, respectively,
∼120k and ∼350k targets. In contrast our survey contains
traces to ∼14.4M /24 destination prefixes.

D-Miner allows us to provide new insights into Internet
dynamics induced by load balancing. In §5.2, we show that a
“routing change” is more nuanced that previously understood,
and that such changes can be due in part to the remapping be-
havior of production load balancers. Paxson’s canonical work
on Internet dynamics [39] studied persistence and prevalence
of routes. Given a source/destination pair, persistence charac-
terizes the number of different routes observed across time
between this pair. The prevalence of a route defines if, within
the set of routes that have been observed, one is more dom-
inant than another. The main result was that Internet routes
were globally stable across time. Note that this work was
performed two decades ago and did not take load balancing

into account. Almost a decade ago, Cunha et al. reappraised
Paxon’s work in light of load balancing [26], and found that
Paxson’s results still held. They also stated that load balanc-
ing remapping is infrequent. We show that it is a widespread
phenomenon in today’s Internet.

More recently Cunha et al. developed DTrack [27], a sys-
tem that maintains an inferred topology and attempts to detect
and predict path changes, although such prediction is difficult.
Our work helps provide insight into potential root causes of
this prediction difficulty.

3 Algorithm

D-Miner is designed to capture Internet topology snapshots
inclusive of all load-balanced paths. At its heart, D-Miner
uses Yarrp’s randomized and stateless probing to achieve high
probing rates. To this, it adds probe set generation logic that
keeps track, on a per-node basis, of whether all outbound load-
balanced edges have been discovered with high probability.
The logic guides Yarrp through multiple rounds until the full
discovery criterion has been satisfied for almost all nodes.

See Figure 1 for a high-level schematic of D-Miner. Yarrp
and the probe set generation logic are deployed at a single
vantage point from which Yarrp probes a set of target prefixes
in the IPv4 Internet. D-Miner proceeds in rounds, maintaining
sets of “resolved” and “unresolved” vertices. Resolved ver-
tices correspond to nodes where all outgoing load balanced
links have been discovered with high probability toward the
set of target prefixes. Conversely, unresolved vertices require
further probing to ascertain whether any load balanced edges
emergent from a node have not yet been discovered.

D-Miner’s main steps are: (1) Yarrp requests the set of
probes for round r; (2) the probe set generation logic returns
the <flow ID,TTL> pairs that correspond to the current set
of unresolved vertices; (3) these pairs are randomized and
probes are sent at high speed using the Yarrp technique; (4)
as replies return, they are processed by Yarrp; and (5) they are
used to update the set of known nodes and each node’s state
as either an unresolved or a resolved vertex. Rounds continue
until 99% of the target prefixes have been resolved.

Whereas Yarrp is totally stateless, D-Miner requires state
to be retained from round to round. A key challenge is to
manage that state in a manner that does not diminish Yarrp’s
performance. Our solution is discussed in §3.2.

3.1 Bootstrapping D-Miner

Since D-Miner is guided by the set of unresolved vertices,
it requires a boostrapping round to seed the set. This round
is a slightly modified version of a classic Yarrp snapshot of
the IPv4 Internet. Whereas Yarrp sends one probe packet per
TTL to each /24 prefix, with the exception of the private and
reserved IPv4 prefixes defined by RFC 6890 [25], D-Miner
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sends n1 = 6 probes per /24, each with a different flow identi-
fier. This number comes from the MDA stopping condition
for 0.05 failure probability, described in §2.2, that there is just
a single node at a given TTL when probing towards a given
destination. The six flow identifiers correspond to the six first
destinations in the /24. The /24 granularity corresponds to the
commonly accepted longest BGP prefix [42].

In the classic MDA, the n1 packets all have a common
destination, however D-Miner varies the flow identifier by
varying the destination within the target prefix. This allows it
to find per-destination-prefix load balanced paths in addition
to the per-flow load balanced paths that classic MDA finds.

As stated in §2.3, Yarrp uses a pseudo random permutation
of 32 bits to determine the parameters for each successive
probe: the first 24 bits determine the /24 destination prefix
and the first 5 bits of the remaining byte determine the TTL.
This leaves 3 bits, which is sufficient for D-Miner to select
n1 = 6 different addresses within the destination prefix.

3.2 Maintaining State

Yarrp encodes the originating TTL, timestamp, and checksum
in the probe header fields. These values are visible in the
quotations that arrive in the probe replies, allowing Yarrp
to reconstruct the probe that generated a particular ICMP
without maintaining any internal state. While each individual
Yarrp probing round is stateless, D-Miner must maintain state
from round to round in to keep track of which vertices have
been resolved and which ones remain unresolved. To this
end, D-Miner extracts the following data from each reply:
the original probe’s source and destination IP addresses, port
numbers, and original TTL; and the reply’s source IP address
and ICMP type and code.

So that D-Miner could obtain rapid results for complex
queries on tables of billions of rows, we sought a database
system that is optimized for online analytical processing, set-
tling on ClickHouse [2]. The data from each reply is inserted
and ordered by: source IP address, /24 destination prefix,
destination IP address, TTL, source port number, and desti-
nation port number. ClickHouse is highly parallelized and
its groupArray features make the algorithm calculations de-
scribed in §3.3 and the analyses of §4, §5, and §6 tractable.

3.3 Subsequent probing round computation

Once the replies have been inserted into the database, we
query it to generate the next round of probes. Our goal, con-
ceptually, is to calculate the set of additional probes with new
flow identifiers required to meet the remaining statistical guar-
antees for each /24 prefix, given the current knowledge of
the topology. Mathematically, the next round probes is the
minimal expected set of probes needed to reach the statistical
guarantees for each branching point, grouped by /24 prefix.

3.3.1 Reducing MDA statefulness

This section describes our algorithm to generate a new batch
of probes given a topology and the set of probes already sent.

Let us fix a source and a /24 destination prefix. We present
an example in Figure 2 to help provide intuition. This topol-
ogy illustrates a possible result after each of three hypothetical
rounds of probing. Each link is annotated with the number of
probes that expired at the ingress interface of the subsequent
node. At round 1, D-Miner sent n1 = 6 probe packets per
TTL, each with varying destinations in the destination prefix
to vary the flow identifier. The value of n1 is determined by
the desired failure probability to find all the successors of a
branching point. In this work we set n1 = 6, corresponding to
a failure probability of 0.05, which is the default value used
by the MDA implementation in previous work [18, 27].

Recall, after sending 6 probes and only discovering a sin-
gle successor, we have a probability of 0.95 that there is
indeed only a single successor (n1 = 6), while we must send
11 probes to achieve the same probability that there are only
two successors (n2 = 11). To understand how we compute the
next batch of probes, we introduce the following notation:

Let us fix the TTL to h.
Let Rh be the set of nodes discovered at TTL h that have

not been resolved yet.
Let Dh be the probability distribution of nodes responding

for TTL h after the current probing round. For example, in
Figure 2 after the first round of six probes per TTL, D2 ={

v2 =
4
6 ,v3 =

2
6

}
.

Let kv be the number of successors for node v.
Let th be the number of probes already sent at TTL h.
Let nk be the stopping point described in §2.2.

Proposition 1. Given h, Rh and Dh, the minimal expected
number of probes needed to reach MDA statistical guarantees
for all the elements of Rh is:

max
v∈Rh

(
nkv

Dh(v)
− th

)
At TTL h

max
v∈Rh

(
nkv

Dh(v)
− th+1

)
At TTL h+1

Proof. Let v ∈ Rh. The MDA hypothesis, which is that v
might have a (kv +1)th successor tells us that we need to send
nkv probe packets with TTL h that first reach v, and then send
nkv with the same flow identifiers to TTL h+ 1. Let Xv be
the random variable representing the number of probes that
reach node v given Dh. Our objective is to find the minimum
number of probes N such that:

∀v,E[Xv] = Dh(v)N >= nkv (1)

For this condition to hold, we must set N at minimum to:

N = max
v∈Rh

nkv

Dh(v)
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Figure 2: Example topology resolved by three rounds of D-Miner probing. Link annotations represent number of probes expiring
at ingress interface of subsequent node.

We have:

∀v,E[Xv] = Dh(v)max
v′∈Rh

nkv′

Dh(v′)
>= Dh(v)

nkv

Dh(v)
= nkv (2)

We just subtract the number t of probes that we have already
sent to TTL h, and this concludes the proof.

Every TTL h generates a number of additional probes for
TTL h and TTL h+ 1. For each TTL h, we therefore have
two possible values: the one generated by additional probes
for TTL h−1 and the one generated by additional probes for
TTL h. So that the condition given in Eq. 1 holds for every
node of the topology, we choose the maximum between these
two values (rounding fractional values to integers).

Let us perform the numerical application on the topology
of Figure 2. After round 1, we have discovered the topology
on the left side of the figure. At TTL1, Node v1 has two
successors, D1(v1) = 1. 6 probes have been sent to TTL 1
and 6 probes have been sent to TTL 2. Proposition 1 brings
n2− 6 = 5 additional probes for TTL 1 and 2. At TTL 2,
Node v2 has one successor, and D2(v2) =

2
3 . Node v3 has

one successor, and D2(v3) =
1
3 . 6 probes have been sent to

TTL 2 and 6 probes have been sent to TTL 3. Proposition 1
brings 3n1− 6 = 12 additional probes for TTL 2 and 3. At
TTL 3, notice that v4 and v5 are similar to v2 and v3, so that
Proposition 1 brings 3n1−6 = 12 additional probes for TTL
3 and TTL 4. For each TTL, we take the maximum number
of probes between TTL and TTL-1. At the end, we have to
send for the second round: 5 probes at TTL 1, 12 at TTL 2,
12 at TTL 3 and 12 at TTL 4.

The figure in the center shows the state of the topology
after round 2. At TTL 1, we see that v1 has been resolved
because it has two successors and 11 = n2 flows pass through
it. At TTL 2, v2 has also been resolved because it has one
successor and 8 ≥ n1 flows have been sent through it. v3 is
not solved, because now it has two successors so it needs
n2 = 11 flows that pass through it. We have D2(v3) =

10
18 and

18 probes have been sent to TTL 2 and 3. Proposition 1 brings
18
10 n2−18 = d1.8e= 2 additional probes for TTL 2 and 3. At
TTL 3, we see that v4 and v5 have been resolved, but v7 has
not. We have D3(v7) =

4
18 and 18 probes have been sent to

TTL 3 and 4. Proposition 1 brings 4
18 n1−18 = 9 additional

probes for TTL 3 and 4. For each TTL, we take take the
maximum number of probes between TTL and TTL-1. At the
end, we have to send for the third round: 0 probe at TTL 1, 2
at TTL 2, 9 at TTL 3 and 9 at TTL 4.

The figure on the right shows the state of the topology after
round 3. We see that now v3 and v7 have been resolved, so
that we consider the entire topology as resolved.

3.3.2 Varying the flow identifier

For each destination prefix and TTL where additional probes
are needed, we select new flow identifiers by incrementing
the last destination in the prefix used in the previous round. In
the example of Figure 2, suppose that our prefix is X.Y.Z.0/24.
After round 1, the first 6 IPs of the prefix have already been
used as probe destinations, so we would send 5 more probes
at TTL 1 from X.Y.Z.7 to X.Y.Z.11, 12 more probes at TTL 2
from X.Y.Z.7 to X.Y.Z.18, etc. If there are no more destina-
tions available in the prefix, we change the destination port to
vary the flow identifier.

3.4 Randomizing the probes
Randomizing the probes is done per-flow. For each prefix
which needs additional probes sent, we group the additional
probes by flow. In the example of Figure 2, after round 1, we
send X.Y.Z.7 at TTL 1, TTL 2, and TTL 3, and TTL 4. All
of these are packed together so that we ensure that probes
with the same flow identifier are sent in a very short time win-
dow. This avoids the inference of false links due to potential
routing changes during the probing time. Nevertheless, it is
possible that X.Y.Z.8 probes are sent at a separate time from
X.Y.Z.7. In this way we retain one of the benefits of Yarrp’s
randomization, to minimize potential ICMP rate limiting.

3.5 Per-Packet load balancing
As described in §3.1, the first round of probes allows us to dis-
cover if there is one or more load-balancers on the path from
the vantage point to the destination prefix. However, sending
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only one packet per flow identifier does not reveal the nature
of the load balancing, i.e., deterministic (per-destination or
per-flow) or non deterministic (per packet). For per-packet
load balancers, the links between interfaces of a traceroute can
not be reliably inferred. Because we want to be able to flag
per packet load balancers, D-Miner sends two back-to-back
probes per flow instead of one until it reaches a defined thresh-
old probability that the branching point is not a per packet
load balancer. If we get two different responses for flows with
the same flow identifier, the branching point is flagged as a
per packet load balancer and the edges discovered after it are
ignored in the results. Mathematically, an upper bound of the
probability to miss that a load balancer is actually a per packet
load balancer is the probability that all the pairs of probes
with the same flow identifiers passing through it get the same
reply IP. Suppose there is a branching point with k branches.
Then the probability that all these pairs of probes get the same
response is then 1

kp where p is the number of pairs of probes
sent going through this branching point. We set the threshold
probability in D-Miner to 0.95, as previously done in [18].

4 Evaluation

Over one third of the edges in the Internet’s topology are not
being revealed by current state-of-the-art methods, as §4.4
describes. D-Miner, run from from six PlanetLab Europe van-
tage points, discovered more than 7.1 million edges during a
week of August 2019, a time during which Ark, probing from
its 112 VPs, found ∼4.4 million edges and Yarrp, probing
from the same PLE VPs as D-Miner, found ∼2.5 million.
Although this additional coverage comes at the cost of 2-4
times as many probes compared to these existing approaches
(§4.4.1), we show that this volume is required due to forward-
ing path dynamics.

In addition to evaluating node and edge discovery, we eval-
uate D-Miner’s algorithmic and system properties. D-Miner’s
round-iterative design engenders 14% higher overhead than
would be incurred sending traditional source-to-destination
style MDA Paris Traceroutes from the same vantage point, as
§4.2 shows. This is the cost associated with D-Miner adopting
a stateless and randomized (Yarrp-based) design, in exchange
for the advantages conferred by this design in terms of probing
speed. §4.3 evaluates D-Miner’s running time. First, however,
§4.1 describes the datasets we collected, and shows that 10
rounds suffice to reach statistical guarantees for 99% of the
/24 destination prefixes.

4.1 Dataset
Our evaluation dataset includes three D-Miner snapshots, each
consisting of 10 rounds. These snapshots were collected over
a one-week period, from 6-13 August 2019, using a single
vantage point at our university, which enjoys a 1 GB link to
the Internet. Each snapshot was collected using a probing
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Figure 3: CDF of /24 IPv4 prefixes meeting their statistical
guarantees, over three 10-round snapshots (dates in parens)

Table 1: Probing Overhead of D-Miner versus MDA.

Overhead Factor Snapshot 1
(Aug 6-8)

Snapshot 2
(Aug 8-11)

Snapshot 3
(Aug 11-13)

Loss (I) 481,359,024 448,428,279 569,173,354

Reached destination (II) 166,941,456 165,227,106 163,821,372

Last round (III) 54,023,123 46,324,355 50,012,378

Total Overhead [pkts] 702,323,603 659,979,740 783,007,104

D-Miner Sent [pkts] 6,976,307,081 6,569,819,008 6,598,837,985

MDA Sent [pkts] 6,273,983,478 5,909,839,268 5,815,830,881

D-Miner Overhead [%] 12 12 14

rate of 100,000 pps; this rate was capped out of respect for
network and service provider policy concerns; D-Miner is
capable of probing much faster (>800,000 pps observed).

In addition, for the topology discovery section, we have
deployed D-Miner on six PlanetLab Europe (PLE) [7] nodes
located in Europe and run it at a lower rate, 10,000 pps, during
the same week. We used UDP probes as these have been
shown to discover more links than other protocols [36]. A web
page hosted at the IP address of our vantage point described
the experiment and provided instructions for opting out; we
did not receive any such requests during our measurements.

Figure 3 illustrates how 10 rounds of probing suffices to
achieve statistical guarantees toward more than 99% of the
IPv4 /24 destination prefixes. The mean portion of resolved
prefixes over the three 10-round snapshots is 99.6%.

4.2 Probing overhead

Intuitively, we might expect D-Miner to have lower overhead
in order to achieve scale. However, the stateless high-rate
probing required comes at the cost of additional total probing.
The probing overhead generated by D-Miner compared to
sequentially running the traditional MDA to all of the /24
prefixes depends on three factors: (I) potential loss induced
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Figure 4: Time spent in each step of D-Miner for each round,
averaged across three snapshots.

by a high probing rate; (II) the TTL at which the MDA would
have stopped because of reaching the destination; and (III)
sending more probes in the last round than required to reach
the statistical guarantees. Table 1 quantifies each of these
overhead factors across our three snapshots, where we find a
maximum overhead of 14%.

Note that we conservatively compute the loss due to high
probing rates. If for a given (destination prefix, TTL) pair, if
at least one of the probes receives one response, we count all
the probes sent with the same (destination prefix, TTL) pair
as losses if they do not produce a response. Conversely, if no
responses at all are received for this (destination prefix, TTL)
pair, i.e., this hop is “anonymous”1, we do not count these
probes as lost.

To compute the TTL at which the MDA would have
stopped, we find the minimum TTL for which all probes’
reply IPs equal their destination IP. If we never receive a reply
from the destination, we assume that MDA would act like a
default linux traceroute, i.e sending probes until it reaches the
maximum TTL (30).

And finally, to compute the last round overhead, we sim-
ulate for each of the destination prefixes a run of the MDA
with the same flow identifiers and compute the actual probe at
which it stops due to having reached the statistical guarantees.

4.3 Run time
The server used for the computation was the same as the one
we used for probing, provisioned with 16 cores and 187 GB
of RAM. Figure 4 shows the stacked error bars of the time
spent across each round in each routine. The sum over the
rounds indicates that a snapshot of 10 rounds takes an average
of 3,713 minutes (about 2 days and 14 hours) to complete.

We distinguish two phases in our system: Until round 4,
the probing routine consumes a significant portion of the
total round time, however, in rounds 5–10, almost all the time
is spent in the fetch_round routine. Note the relationship

1Represented as a * in traditional traceroute output [9]
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between time (Figure 4) and the fraction of resolved prefixes
(Figure 3). While the amount of probing time required in
rounds 6-10 is relatively inexpensive as compared to the ear-
lier rounds, we see that the algorithm is primarily optimizing
at this point, with >90% of the prefixes resolved by the fifth
round. Conversely, only ∼50% of the prefixes are resolved
after the third round, demonstrating that the runtime cost of
probing in the early rounds is required.

Notice the evolution of the time spent in the fetch_round
routine: The time needed to compute the next round probes
increases with the size of the table of our database in rounds 1–
4. Then, from round 5 on, the reduction in time spent probing
indicates that far fewer probes are sent, and consequently the
table does not grow as much as during the earlier rounds.
Still, the time of fetch_round remains constant; one must
recompute the state of each branching point at each round to
compute the next one.

4.4 Topology discovery
Finally, we consider the topology discovery results them-
selves. Note we ignore responsive target addresses (since
we are only interested in the routed topology) as well as any
edges connecting the destination nodes.
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Table 2: Topology discovery

Nodes Edges

Snapshot 1
(Aug 6-8)

Snapshot 2
(Aug 8-11)

Snapshot 3
(Aug 11-13) Agg. Snapshot 1

(Aug 6-8)
Snapshot 2
(Aug 8-11)

Snapshot 3
(Aug 11-13) Agg.

D-Miner 1,057,832 1,017,389 1,024,178 1,373,149 2,906,204 2,997,581 3,059,770 4,600,689

Yarrp 545,536 492,694 516,363 632,405 977,201 898,607 916,196 1,279,171

Multi-VP Ark 1,432,604 1,635,779 1,343,009 1,923,038 3,044,747 3,472,120 2,994,190 4,365,515

Multi-VP Yarrp 802,891 2,483,816

Multi-VP D-Miner 1,613,301 7,143,490

Figure 5 shows the cumulative discovery, with error bars,
of each round across the three D-Miner snapshots. We find
that both nodes and edges have similar behavior with two dis-
covery phases, with an initial high discovery-per-round phase
until round 3 (nodes) and 4 (edges) followed by a refinement
phase from round 4 (nodes) and 5 (edges) to round 10. Note
also that the number of nodes and edges varies little across
the three snapshots, however, this does not mean that they
discover the same set of nodes and edges as we will discuss.

It is challenging to make direct comparisons previous topol-
ogy data sets – not only is the network dynamic, but the results
are also significantly influenced by differing vantage point(s).
Instead, we seek to make a reasonable comparison of D-Miner
with existing Yarrp and Ark systems.

To compare with Yarrp, we extract from our D-Miner snap-
shots results given by selecting only one destination per /24
prefix in the first round. To compare against Ark, we obtain all
topology traces from all 112 vantage points corresponding to
the date range of our snapshots (this includes 19 “cycles” that
were performed during the week). We aggregate the topology
found from all cycles during the D-Miner snapshot collection
to compare findings from the same time period.

Table 2 gives the comparative topology results. The “Agg.”
column shows the aggregated results over the three snapshots.
The two last lines of Table 2 show the aggregated topology
discovery results across the six PLE nodes for Yarrp and
D-Miner over the same week covered by the three snapshots.

The multiple vantage point results in this table are signifi-
cant. With 6 vantage points, D-Miner discovers >7M edges
and approximately 1.6M nodes. To verify that this difference
is primarily due to load balancing, we look at how standard
Yarrp performs when used from these 6 vantage points. We
see that D-Miner discovers two times more nodes and almost
three times more edges than Yarrp.

Interestingly, we see that D-Miner from a single vantage
point still benefits from snapshot aggregation. This means
that there are non-negligible variations in the discovery of the
three snapshots. Figure 6 shows the minimum per-prefix dif-
ference of number of nodes and edges discovered between the
three snapshots over the 14,461,947 prefixes that we probed.

As an example, for a prefix, if snapshot 1 discovers 20 nodes
and 40 edges, snapshot 2 discovers 20 nodes and 34 edges,
and snapshot 3 discovers 20 nodes and 36 edges, the mini-
mum difference for nodes is 0 and 4 for edges. We observe
two results: Less than 20% of the prefixes discover the same
number of nodes and edges for the three snapshots, and 88.3%
of the prefixes have a variation of less than 10 edges.

We believe that these variations are related to load bal-
ancing remapping (see §5.2). Indeed, the difference is not
attributable to high probing rate induced loss, as Table 1 has
shown than fewer than 10% of the probes were lost due to
rate across the three snapshots.

Please note that we do not claim a comprehensive com-
parison with Ark discovery. The two systems have intrinsic
differences that would not allow us to state conclusively why
D-Miner or Ark would discover more than the other system.
For example: (1) Ark uses ICMP probes, which has been
demonstrated by Luckie et al. in [36] to discover fewer links
than UDP. (2) The two systems’ vantage points are not located
at the same points in the network. Therefore, Ark could miss
load balanced paths that are in a region of the Internet that is
not accessible from its vantage points.

4.4.1 Probes sent

In total, we compute that Ark sent 5,935,460,660 probes.
From Table 1 we compute that D-Miner from one vantage
point sent 20,144,964,074 probes. And finally, we compute
that the multiple vantage points version of D-Miner has sent
13,192,962,692 probes in total across the 6 PLE nodes.

These numbers give an idea of the overhead necessary to
discover the load balanced paths. We show in the next section
that reducing this number is hard because of the dynamics.

4.5 Validation on ground truth

To complement the formal and experimental analysis of our
system, we solicited ground truth from operators. Of 380
interfaces with multipath edges discovered within Internet
Initiative Japan (IIJ), they validated that 51 interfaces belong-
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ing to NTT were on PPPoE routers performing ECMP to
IIJ. We further learned that the remaining 329 interfaces are
performing ECMP inside IIJ’s network.

In addition to direct correspondence with IIJ, we developed
a website [14] where operators can validate links discovered
by D-Miner. We received responses from three operators, for
a total of 20 links. 18 validated correctly while two were
declared as false. We re-conducted paris traceroute measure-
ments to the destinations corresponding to the two false posi-
tive links. These links were found between the penultimate
and the last IP seen in the traces. The last IP, which was not
the destination IP, was repeating on all the subsequent TTLs
until 30. Our interpretation is that this error was due to a
routing loop or misconfiguration.

5 Forwarding path dynamics

With D-Miner, we reveal aspects of Internet dynamics that
were under estimated [26] by the research community. 28.6%
of D-Miner’s probes saw their reply’s IP address change, de-
spite the flow identifier remaining constant over our three
August 2019 snapshots. This would seem at first glance to
be a startlingly high figure, implying more extensive routing
changes than one might expect throughout the Internet [26,38].
But we provide evidence that, rather than routing changes, an-
other phenomenon that we term load balancer remapping was
responsible for at least 52% of these changes. These observa-
tions imply that future work should be cautious in attributing
an observed traceroute change to a routing change.

5.1 Taxonomy of probe changes
A probe is uniquely identified by its (flow ID,TTL) pair. We
say that there is a probe change if a probe elicits a reply from
a different IP address in snapshot i+ 1 than in snapshot i.
There may be as many probe changes as there are probes. We
distinguish between meaningful and trivial changes.

To begin with, we do not count an absence of response as
a meaningful change. That is, if a probe elicits a response in
snapshot i and there is no reply to the probe in snapshot i+1,
this difference may be attributable to loss or rate-limiting and
is not indicative of a change. Similarly, we ignore absence in
one round followed by a response in the next.

We are particularly interested in examining each probe
change from the perspective of its predecessor node. Consider
a probe (X ,h) with flow ID X , sent with TTL h, revealing
a vertex v1; and a probe (X ,h+ 1) revealing a vertex v2. If,
in the next snapshot, (X ,h) reveals v1 again but (X ,h+ 1)
reveals v3, it is reasonable to infer that a mechanism at the
router with interface v1 is responsible for this probe change.
Perhaps there has been a routing change, and the routing table
at that router has been updated. Or, and this is the possibility
that we focus on here: perhaps there has been no routing
change, but instead that router is a load balancing router and

the probe change results from a new load balancing decision
for packets with flow ID X .

Previous research has identified per-packet load balanc-
ing [18] where a router simply disregards the flow ID X in its
load balancing decision, for instance directing some packets
to v2, some to v3, and some, perhaps, to other neighboring
vertices, in a round-robin or (pseudo-)random fashion. As
§3.5 describes, D-Miner tests for per-packet load balancing,
and we exclude any reply variation due to that mechanism
from our accounting of meaningful probe changes.

A possibility that previous literature has not explored is
that a probe change could result from a per-flow or a per-
destination load balancer making a load balancing change
rather than a routing change. As an example, consider probe
packets with flow IDs X and Y that both have the same desti-
nation IP address d. In snapshots i and i+1, probes (X ,h) and
(Y,h) both elicit replies from v1, whereas in snapshot i, probe
(X ,h+ 1) elicits a reply from v2 and probe (Y,h+ 1) from
v3, and in snapshot i+1, the replies are reversed. From one
snapshot to the next, there has been no routing change for d at
v1: packets with that destination address continue to be load
balanced across v2 and v3. But suppose the test for per-packet
load balancing at v1 has failed. We are left to consider that the
probe change results from an update to the hashing decision
that assigns flow IDs to next hop IP addresses. This is what
we term load balancer remapping.

5.2 Load balancer remapping

Production systems are more nuanced in their behavior rel-
ative to the overview of load balancing in §2.1. For deter-
ministic load balancing, in addition to header fields used to
compute the hash function, a seed is generally added to avoid
a phenomenon called load balancing polarization [1, 11, 13],
which occurs when load balancers are chained and apply the
same hashing algorithm, potentially causing load imbalance.

We experimented with Cisco routers running IOS 12 in a
lab environment and confirmed that this seed is configurable.
If the Cisco router reboots and has no saved seed, it generates
a new random seed. For Juniper and Huawei, documentation
tells us that they also use a seed [11, 13].

Thus, at least for Cisco, Juniper, and Huawei routers, a
flow that took a certain load balanced path before a reboot
can take a very different path after the reboot. Moreover, re-
moving or adding an interface on a load-balancing router(s)
toward a destination can cause the path assignment to be
recalculated [8, 10]. The particulars of the load balancing im-
plementations in production can cause the reply IP address of
a probe to change, even when no routing change has occurred,
and the flow identifier is constant.

We attempt to identify in our dataset probe changes that
correspond specifically to load balancer remapping. Our con-
servative rule of thumb is to say that if we observe a mean-
ingful change for probe (X ,h+ 1), but at least one of the
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Figure 7: Examples of three different types of changes for
probe 2 across two snapshots i (left) and i+1 (right). In all
cases, Ei∩Ei+1 6= /0 =⇒ we infer these as remapping events.

edges of the predecessor vertex is the same between snap-
shots, then remapping is taking place. If no edges are the
same, it could still be the result of load balancer remapping
instead of a routing change, but without evidence to allow us
to infer this. Thus, our observations will underestimate the
ubiquity of remapping.

We define Ei(p) to be the set of out edges in snapshot i
from the predecessor vertex of a meaningful change for probe
p = (X ,h) (again, where a probe is a flow ID X and TTL h
tuple). For each candidate meaningful-probe-change, we infer
that the change is due to remapping if Ei(p)∩Ei+1(p) 6= /0.

Several classes of meaninful changes can be more more
precisely characterized into subcategories. Either Ei(p) and
Ei+1(p) can be: (1) equals, meaning that the changes might
be due to a router reboot (Ei = Ei+1); (2) one set is included
in the other, corresponding to potential addition/removal of
some load balanced paths (Ei ⊂ Ei+1 or Ei+1 ⊂ Ei); or (3) the
sets have elements in common, but no inclusion relation can
be established ((Ei ( Ei+1)∧ (Ei+1 ( Ei)), e.g., when load
balanced paths are both added and removed.

Figure 7 illustrates these three cases by depicting of remap-
ping from one snapshot, i (left), to the next, i+1 (right). Con-

Table 3: Changes per (flow ID, TTL) probe on three snapshots.

Changes 0 1 2

Count 2,184,277,681 652,241,148 223,614,385

Total 3,060,133,214

Table 4: Relation between the sets of edges where there have
been probe changes.

Ei∩Ei+1 = /0 Ei∩Ei+1 6= /0

Ei = Ei+1 Ei ( Ei+1 Ei ) Ei+1 Other

478,380,414
52,241,971 89,118,791 79,239,945 301,327,548

521,928,255

Total: 1,000,308,669

sider probe 2 in Fig 7a which is a meaningful change since it
elicits v3 in the first snapshot and v2 in the second. The edges
from the predecessor of these changes are the same between
snapshots, i.e., Ei(2) = Ei+1(2) = (v1,v2),(v1,v3). Note that
the reciprocal change is observed by the flow 1 probe in i+1,
for a total of two inferred remapping events.

In the example of Figure 7b, probe 2 is again a meaningful
change, but in this instance elicits a new vertex v3 in the
second snapshot. In this case, the predecessor edges in the
first snapshot are a subset of the second, i.e., Ei(2) = (v1,v2)
and Ei+1(2) = (v1,v2),(v1,v3). Finally, Figure 7c shows an
example of no inclusion relation where there is both a new
and deleted edge due to remapping.

5.3 Remapping observed

We now quantify probe changes and remapping observed
across our three snapshots of §4.1. Because identifying remap-
ping requires observing probing changes between two con-
secutive snapshots, we restrict our analysis to the set of
probes with replies from two consecutive snapshots. Of
the 6,019,578,262 unique flow IDs that elicited replies in
our database (11,689,101,599 replies in total), we find that
3,060,133,214 of them are present in two consecutive snap-
shots, representing a bit more than half of the flow IDs.

To understand why nearly half of the probe replies do not
appear in two consecutive snapshots, we find that for 87%
(2,576,532,888) of them the probe ID has in fact been sent
only in one snapshot. This is due to the adaptive nature of
the D-Miner algorithm resulting in variations of discovery
between snapshots presented in §4.4. If, for example, the
number of edges discovered for a prefix differs across the
three snapshots, the statistical guarantees tell us the number
of probes that must be sent will also differ. This results in
some probe IDs being sent in only one snapshot. The result is
that we are likely underestimating the number of meaningful
probe changes. For the remaining 13.0%, the probe was sent
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in two consecutive snapshots, but did not elicit two replies.
This is likely due to normal packet losses in the network and
possibly ICMP rate limiting [40].

We start by looking at the number of probe changes. Ta-
ble 3 shows the distribution of the number of probe changes
per probe. We see that 28.6% of the probes have at least
one probe change. This number seems unusual if we were
to consider it all as routing changes.Table 4 explains the
previous 28.6% fraction by providing the distribution of
1,000,308,669 changes according to the remapping classifica-
tion. The “Other” column refers to changes with no inclusion
relationship but element(s) in common. Notice that the sum
of these classifications is slightly smaller than total number
of probe changes. The missing probe changes correspond
to cases where there was no predecessor for the node corre-
sponding to the IP reply elicited by the probe. This would
happen in Figure 7 if v1 was anonymous (a ‘*’) for example.

We see that 52.2% of the probe changes correspond to
remapping, which temper the impact of the 28.6% probe
changes on routing changes. Finally, for each of the probe
changes corresponding to remapping, we performed IP to AS
translation on the corresponding IP reply, using August 4,
2019 BGP data from route views [5]. We found that remap-
ping events were spread over 39,455 ASes, showing that this
phenomenon is widespread. We conclude this section by not-
ing that all of the changes between snapshots, either due to
D-Miner varying the set of probes from one snapshot to an-
other; real dynamics such as routing changes; or remapping
due to reboots and/or adding/removing load balanced paths,
make any efficiency optimization based on historical discov-
ery hard. It also further corroborates Cunha et al.’s finding
that it is difficult to predict path changes [27].

6 An updated Internet load balancing survey

Its been eight years since the last published survey of load bal-
ancing in the Internet [18]. Whereas this previous study was
limited to MDA traceroutes to ∼120k targets, in this section
we undertake the task of leveraging D-Miner to perform an
exhaustive survey of Internet load balancing on 14,461,947
/24 destination prefixes.

Some things have certainly changed. We now see far larger
load balanced topologies, for instance, with thousands of
edges, instead of tens. This section updates our understand-
ing of load balancing in the Internet, with some of the more
notable results being: 17.9% of load balancing takes place
between autonomous systems (i.e., inter-AS load balancing);
just one autonomous system accounts for the topologies that
contain more than 2000 edges; 64.7% of our traces towards
all of the /24 prefixes contain at least one branching point
(but this might be vantage point dependent); and 1.9% of
branching points are per-packet load balancers.
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Figure 8: Intra- and inter-AS/organization load balancing.

6.1 Dataset

From the first snapshot of §4.1 (Aug 6-8, 2019), we extract
all of the unique “diamonds” found on the load balanced
paths. We adopt the same definition of a diamond as given
by Augustin et al. [18]: a diamond is “a subgraph delimited
by a divergence point followed, two or more hops later, by a
convergence point, with the requirement that all flows from
source to destination flow through both points.” We say that
two diamonds are equal if they share the same divergence
and convergence points. When the divergence point or the
convergence point is a * (i.e., this TTL is “anonymous”),
we say that two diamonds are equal if they have identical
node sets. In sending probes towards all IPv4 /24 destination
prefixes, we extracted 4,029,866 unique diamonds.

6.2 Intra- and inter-AS load balancing

Augustin et al. found just one instance of inter-AS load bal-
ancing in their 2011 survey [18], whereas we now find it to be
a more prevalent practice. We use Oregon Route Views BGP
data [5] from 4 August 2019 to map IP addresses of the router
interfaces comprising diamonds we discover in the Internet
to autonomous systems (ASes). We further map AS numbers
to organization names using CAIDA’s AS Rank [33].

IP address to AS mapping is an outstanding research prob-
lem, and correct attribution is known to be difficult [37]. For
instance, the IP address of a customer or peer border router is
frequently allocated from her provider or peer’s address space.
We therefore adopt the same methodology of Augustin et
al. [18] of not including the diamond’s divergence or conver-
gence point when determining the diamond’s AS composition.
Thus, our estimates of inter-AS load balancing are intended
to be conservative.

The CDFs of Figure 8 show that, while most load balancing
still takes place within a single autonomous system (AS) or
organization, a significant portion takes place across two or
more of them: 18.7% for ASes and 17.9% for organizations.
In one case, we found a single diamond with addresses from
12 ASes (explaining why the CDF continues to 12).
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Figure 9: Joint distribution between the number of customers of ASes and size of the diamonds in these ASes.

Figure 10: Extract of D-Miner trace to an Amazon /24 prefix.

6.3 ASes that host load balancers

We next investigate the relationship between the size of an AS
(measured as number of customers) and the prevalence of load
balancing in that AS. We use AS Rank from CAIDA [33]
to perform the AS to customers mapping. When there is
more than one AS in the diamond, each AS in the diamond
is counted one time. Figure 9 shows no clear correlation
between the number of customers in an AS and the amount of
load balancing we infer, suggesting that load balancing is not
limited to large networks, but is a widespread phenomenon.

However, there are some extreme cases involving
large networks. We find 74 diamonds of more than 500
nodes each in the network of a French mobile network
operator (SFR). Other ASes contain diamonds with
>103 diamond edges, as seen in Figure 9b. There are
8,407 diamonds with more than 2,000 edges, of which
8,400 belong to Amazon – likely entry points to their
datacenters. The DNS PTR records for the diamond’s IP
addresses are variations of the address and location, e.g.,
ec2-54-178-57-0.ap-northeast-1.compute.amazonaws.com.
These names are characteristic of Amazon’s cloud infrastruc-
ture. An example of such of a trace is shown in Figure 10.
This figure shows the last TTLs of D-Miner tracing from a
single VP to a single /24 prefix belonging to Amazon. The
topology itself strongly resembles current data center design
practices that use Clos architectures [47]; we requested
validation from Amazon, however, they were unable to
provide any corroborating information due to their internal
privacy polices. This example, one of thousands in our data,

shows just how complex load balanced topologies can be
– complexity that would otherwise be missed without the
comprehensive multipath mapping D-Miner provides.

7 Conclusion and future work

In this work we present D-Miner, the first Internet-scale sys-
tem that captures a multipath view of the topology. By com-
bining and adapting state-of-the-art multipath detection and
high speed randomized topology discovery techniques, D-
Miner permits discovery of the Internet’s multipath topology
in 2.5 days when probing at 100kpps. This high speed allows
us to characterize and quantify dynamic behaviors of the In-
ternet induced by load balancing. Finally, D-Miner enables
for the first time an Internet Scale survey of load balancing
that shows its widespread prevalence, both in the core and at
the edge. We release the D-Miner source code and make our
datasets publicly available.

Our hope is that D-Miner and our data will facilitate better
understanding of the Internet’s true structure, properties, and
resilience. Future work includes running D-Miner with other
transport protocols to compare load balancing usage between
them at Internet scale, as well as adapting D-Miner to IPv6.

Our empirical data suggests that there are a set of load bal-
anced architectures common to different provider types, for
instance those deployed in data centers versus mobile opera-
tors versus transit providers. We believe there is significant
opportunity to develop a taxonomy of these common archi-
tectures and classify results accordingly, as well as to identify
previously unidentified load balanced architectures that are
deployed in the wild. Comprehensive mapping of some of
these topologies may require probing both from outside and
within the provider’s network; we leave an exploration of e.g.,
internal data center probing to future work.

Finally, in order to provide regular surveys to the commu-
nity, we wish to deploy D-Miner on more vantage points at
high probing speed, create periodic snapshots and perform
alias resolution on the resulting discovered topologies.
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Abstract
We describe the results of a randomized controlled trial of
video-streaming algorithms for bitrate selection and network
prediction. Over the last year, we have streamed 38.6 years
of video to 63,508 users across the Internet. Sessions are
randomized in blinded fashion among algorithms.

We found that in this real-world setting, it is difficult for so-
phisticated or machine-learned control schemes to outperform
a “simple” scheme (buffer-based control), notwithstanding
good performance in network emulators or simulators. We
performed a statistical analysis and found that the heavy-tailed
nature of network and user behavior, as well as the challenges
of emulating diverse Internet paths during training, present
obstacles for learned algorithms in this setting.

We then developed an ABR algorithm that robustly outper-
formed other schemes, by leveraging data from its deployment
and limiting the scope of machine learning only to making
predictions that can be checked soon after. The system uses
supervised learning in situ, with data from the real deployment
environment, to train a probabilistic predictor of upcoming
chunk transmission times. This module then informs a classi-
cal control policy (model predictive control).

To support further investigation, we are publishing an
archive of data and results each week, and will open our ongo-
ing study to the community. We welcome other researchers to
use this platform to develop and validate new algorithms for
bitrate selection, network prediction, and congestion control.

1 Introduction

Video streaming is the predominant Internet application, mak-
ing up almost three quarters of all traffic [41]. One key al-
gorithmic question in video streaming is adaptive bitrate
selection, or ABR, which decides the compression level se-
lected for each “chunk,” or segment, of the video. ABR al-
gorithms optimize the user’s quality of experience (QoE):
more-compressed chunks reduce quality, but larger chunks
may stall playback if the client cannot download them in time.

In the academic literature, many recent ABR algorithms use
statistical and machine-learning methods [4, 25, 38–40, 46],
which allow algorithms to consider many input signals and
try to perform well for a wide variety of clients. An ABR
decision can depend on recent throughput, client-side buffer
occupancy, delay, the experience of clients on similar ISPs or
types of connectivity, etc. Machine learning can find patterns
in seas of data and is a natural fit for this problem domain.

However, it is a perennial lesson that the performance of
learned algorithms depends on the data or environments used
to train them. ML approaches to video streaming and other
wide-area networking challenges are often hampered in their
access to good and representative training data. The Inter-
net is complex and diverse, individual nodes only observe a
noisy sliver of the system dynamics, and behavior is often
heavy-tailed and changes with time. Even with representative
throughput traces, accurately simulating or emulating the di-
versity of Internet paths requires more than replaying such
traces and is beyond current capabilities [15, 16, 31, 45].

As a result, the performance of algorithms in emulated envi-
ronments may not generalize to the Internet [7]. For example,
CS2P’s gains were more modest over real networks than in
simulation [40]. Measurements of Pensieve [25] saw narrower
benefits on similar paths [11] and a large-scale streaming
service [24]. Other learned algorithms, such as the Remy
congestion-control schemes, have also seen inconsistent re-
sults on real networks, despite good results in simulation [45].

This paper seeks to answer: what does it take to create a
learned ABR algorithm that robustly performs well over the
wild Internet? We report the design and findings of Puffer1,
an ongoing research study that operates a video-streaming
website open to the public. Over the past year, Puffer has
streamed 38.6 years of video to 63,508 distinct users, while
recording client telemetry for analysis (current load is about
60 stream-days of data per day). Puffer randomly assigns each
session to one of a set of ABR algorithms; users are blinded
to the assignment. We find:

1https://puffer.stanford.edu
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In our real-world setting, sophisticated algorithms based
on control theory [46] or reinforcement learning [25]
did not outperform simple buffer-based control [18]. We
found that more-sophisticated algorithms do not necessarily
beat a simpler, older algorithm. The newer algorithms were
developed and evaluated using throughput traces that may not
have captured enough of the Internet’s heavy tails and other
dynamics when replayed in simulation or emulation. Training
them on more-representative traces doesn’t necessarily re-
verse this: we retrained one algorithm using throughput traces
drawn from Puffer (instead of its original set of traces) and
evaluated it also on Puffer, but the results were similar (§5.3).

Statistical margins of error in quantifying algorithm per-
formance are considerable. Prior work on ABR algorithms
has claimed benefits of 10–15% [46], 3.2–14% [40], or 12–
25% [25], based on throughput traces or real-world experi-
ments lasting hours or days. However, we found that the em-
pirical variability and heavy tails of throughput evolution and
rebuffering create statistical margins of uncertainty that make
it challenging to detect real effects of this magnitude. Even
with a year of experience per scheme, a 20% improvement in
rebuffering ratio would be statistically indistinguishable, i.e.,
below the threshold of detection with 95% confidence. These
uncertainties affect the design space of machine-learning ap-
proaches that can practically be deployed [13, 26].

It is possible to robustly outperform existing schemes by
combining classical control with an ML predictor trained
in situ on real data. We describe Fugu, a data-driven ABR
algorithm that combines several techniques. Fugu is based
on MPC (model predictive control) [46], a classical control
policy, but replaces its throughput predictor with a deep neural
network trained using supervised learning on data recorded in
situ (in place), meaning from Fugu’s actual deployment envi-
ronment, Puffer. The predictor has some uncommon features:
it predicts transmission time given a chunk’s file size (vs. esti-
mating throughput), it outputs a probability distribution (vs. a
point estimate), and it considers low-level congestion-control
statistics among its input signals. Ablation studies (§4.2) find
each of these features to be necessary to Fugu’s performance.

In a controlled experiment during most of 2019, Fugu
outperformed existing techniques—including the simple
algorithm—in stall ratio (with one exception), video qual-
ity, and the variability of video quality (Figure 1). The im-
provements were significant both statistically and, perhaps,
practically: users who were randomly assigned to Fugu (in
blinded fashion) chose to continue streaming for 5–9% longer,
on average, than users assigned to the other ABR algorithms.2

Our results suggest that, as in other domains, good and
representative training is the key challenge for robust perfor-
mance of learned networking algorithms, a somewhat differ-
ent point of view from the generalizability arguments in prior

2This effect was driven solely by users streaming more than 3 hours of
video; we do not fully understand it.

Results of primary experiment (Jan. 26–Aug. 7 & Aug. 30–Oct. 16, 2019)

Algorithm Time stalled Mean SSIM SSIM variation Mean duration
(lower is better) (higher is better) (lower is better) (time on site)

Fugu 0.13% 16.64 dB 0.74 dB 33.6 min
MPC-HM [46] 0.22% 16.61 dB 0.79 dB 30.8 min
BBA [18] 0.19% 16.56 dB 1.11 dB 32.1 min
Pensieve [25] 0.17% 16.26 dB 1.05 dB 31.6 min
RobustMPC-HM 0.12% 16.01 dB 0.98 dB 31.0 min

Figure 1: In an eight-month randomized controlled trial with
blinded assignment, the Fugu scheme outperformed other
ABR algorithms. The primary analysis includes 637,189
streams played by 54,612 client IP addresses (13.1 client-
years in total). Uncertainties are shown in Figures 9 and 11.

work [25, 37, 44]. One way to achieve representative training
is to learn in place (in situ) on the actual deployment envi-
ronment, assuming the scheme can be feasibly trained this
way and the deployment is widely enough used to exercise a
broad range of scenarios.3 The approach we describe here is
only a step in this direction, but we believe Puffer’s results
suggest that learned systems will benefit by addressing the
challenge of “how will we get enough representative scenar-
ios for training—what is enough, and how do we keep them
representative over time?” as a first-class consideration.

We intend to operate Puffer as an “open research” project
as long as feasible. We invite the research community to train
and test new algorithms on randomized subsets of its traf-
fic, gaining feedback on real-world performance with quanti-
fied uncertainty. Along with this paper, we are publishing an
archive of data and results back to the beginning of 2019 on
the Puffer website, with new data and results posted weekly.

In the next few sections, we discuss the background and
related work on this problem (§2), the design of our blinded
randomized experiment (§3) and the Fugu algorithm (§4),
with experimental results in Section 5, and a discussion of
results and limitations in Section 6. In the appendices, we
provide a standardized diagram of the experimental flow for
the primary analysis and describe the data we are releasing.

2 Background and related work

The basic problem of adaptive video streaming has been the
subject of much academic work; for a good overview, we refer
the reader to Yin et al. [46]. We briefly outline the problem
here. A service wishes to serve a pre-recorded or live video
stream to a broad array of clients over the Internet. Each
client’s connection has a different and unpredictable time-
varying performance. Because there are many clients, it is not
feasible for the service to adjust the encoder configuration in
real time to accommodate any one client.

3Even collecting traces from a deployment environment and replaying
them in a simulator or emulator to train a control policy—as is typically
necessary in reinforcement learning—is not what we mean by “in situ.”
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Instead, the service encodes the video into a handful of
alternative compressed versions. Each represents the original
video but at a different quality, target bitrate, or resolution.
Client sessions choose from this limited menu. The service
encodes the different versions in a way that allows clients
to switch midstream as necessary: it divides the video into
chunks, typically 2–6 seconds each, and encodes each version
of each chunk independently, so it can be decoded without
access to any other chunks. This gives clients the opportunity
to switch between different versions at each chunk boundary.
The different alternatives are generally referred to as different
“bitrates,” although streaming services today generally use
“variable bitrate” (VBR) encoding [32], where within each
alternative stream, the chunks vary in compressed size [47].

Choosing which chunks to fetch. Algorithms that select
which alternative version of each chunk to fetch and play,
given uncertain future throughput, are known as adaptive
bitrate (ABR) schemes. These schemes fetch chunks, accu-
mulating them in a playback buffer, while playing the video at
the same time. The playhead advances and drains the buffer at
a steady rate, 1 s/s, but chunks arrive at irregular intervals dic-
tated by the varying network throughput and the compressed
size of each chunk. If the buffer underflows, playback must
stall while the client “rebuffers”: fetching more chunks before
resuming playback. The goal of an ABR algorithm is typically
framed as choosing the optimal sequence of chunks to fetch
or replace [38], given recent experience and guesses about
the future, to minimize startup time and presence of stalls,
maximize the quality of chunks played back, and minimize
variation in quality over time (especially abrupt changes in
quality). The importance tradeoff for these factors is captured
in a QoE metric; several studies have calibrated QoE metrics
against human behavior or opinion [6, 12, 21].

Adaptive bitrate selection. Researchers have produced a lit-
erature of ABR schemes, including “rate-based” approaches
that focus on matching the video bitrate to the network
throughput [20, 23, 27], “buffer-based” algorithms that steer
the duration of the playback buffer [18, 38, 39], and control-
theoretic schemes that try to maximize expected QoE over
a receding horizon, given the upcoming chunk sizes and a
prediction of the future throughput.

Model Predictive Control (MPC), FastMPC, and Robust-
MPC [46] fall into the last category. They comprise two mod-
ules: a throughput predictor that informs a predictive model
of what will happen to the buffer occupancy and QoE in the
near future, depending on which chunks it fetches, with what
quality and sizes. MPC uses the model to plan a sequence
of chunks over a limited horizon (e.g., the next 5–8 chunks)
to maximize the expected QoE. We implemented MPC and
RobustMPC for Puffer, using the same predictor as the paper:
the harmonic mean of the last five throughput samples.

CS2P [40] and Oboe-tuned RobustMPC [4] are related to
MPC; they constitute better throughput predictors that inform
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Figure 2: Puffer has not observed CS2P’s discrete throughput
states. (Epochs are 6 seconds in both plots.)

the same control strategy (MPC). These throughput predictors
were trained on real datasets that recorded the evolution of
throughput over time within a session. CS2P clusters users by
similarity and models their evolving throughput as a Marko-
vian process with a small number of discrete states; Oboe uses
a similar model to detect when the network path has changed
state. In our dataset, we have not observed CS2P and Oboe’s
observation of discrete throughput states (Figure 2).

Fugu fits in this same category of algorithms. It also uses
MPC as the control strategy, informed by a network predic-
tor trained on real data. This component, which we call the
Transmission Time Predictor (TTP), incorporates a number
of uncommon features, none of which can claim novelty on
its own. The TTP explicitly predicts the transmission time
of a chunk with given size and isn’t a “throughput” predictor
per se. A throughput predictor models the transmission time
of a chunk as scaling linearly with size, but it is well known
that observed throughput varies with file size [7, 32, 47], in
part because of the effects of congestion control and because
chunks of different sizes experience different time intervals
of the path’s varying capacity. To our knowledge, Fugu is the
first to use this fact operationally as part of a control policy.

Fugu’s predictor is also probabilistic: it outputs not a single
predicted transmission time, but a probability distribution on
possible outcomes. The use of uncertainty in model predictive
control has a long history [36], but to our knowledge Fugu
is the first to use stochastic MPC in this context. Finally,
Fugu’s predictor is a neural network, which lets it consider
an array of diverse signals that relate to transmission time,
including raw congestion-control statistics from the sender-
side TCP implementation [17, 42]. We found that several of
these signals (RTT, CWND, etc.) benefit ABR decisions (§5).

Pensieve [25] is an ABR scheme also based on a deep neu-
ral network. Unlike Fugu, Pensieve uses the neural network
not simply to make predictions but to make decisions about
which chunks to send. This affects the type of learning used
to train the algorithm. While CS2P and Fugu’s TTP can be
trained with supervised learning (to predict chunk transmis-
sion times recorded from past data), it takes more than data to
train a scheme that makes decisions; one needs training envi-
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Figure 3: Variations in picture quality and chunk size within
each stream suggest a benefit from choosing chunks based on
SSIM and size, rather than average bitrate (legend).

ronments that respond to a series of decisions and judge their
consequences. This is known as reinforcement learning (RL).
Generally speaking, RL techniques expect a set of training en-
vironments that can exercise a control policy through a range
of situations and actions [3], and need to be able to observe
a detectable difference in performance by slightly varying a
control action. Systems that are challenging to simulate or
that have too much noise present difficulties [13, 26].

3 Puffer: an ongoing live study of ABR

To understand the challenges of video streaming and mea-
sure the behavior of ABR schemes, we built Puffer, a free,
publicly accessible website that live-streams six over-the-air
commercial television channels. Puffer operates as a random-
ized controlled trial; sessions are randomly assigned to one
of a set of ABR or congestion-control schemes. The study
participants include any member of the public who wishes to
participate. Users are blinded to algorithm assignment, and
we record client telemetry on video quality and playback. A
Stanford Institutional Review Board determined that Puffer
does not constitute human subjects research.

Our reasoning for streaming live television was to collect
data from enough participants and network paths to draw
robust conclusions about the performance of algorithms for
ABR control and network prediction. Live television is an
evergreen source of popular content that had not been broadly
available for free on the Internet. Our study benefits, in part,
from a law that allows nonprofit organizations to retransmit
over-the-air television signals without charge [1]. Here, we
describe details of the system, experiment, and analysis.

3.1 Back-end: decoding, encoding, SSIM
Puffer receives six television channels using a VHF/UHF
antenna and an ATSC demodulator, which outputs MPEG-
2 transport streams in UDP. We wrote software to decode
a stream to chunks of raw decoded video and audio, main-
taining synchronization (by inserting black fields or silence)
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Figure 4: On Puffer, schemes that maximize average SSIM
(MPC-HM, RobustMPC-HM, and Fugu) delivered higher
quality video per byte sent, vs. those that maximize bitrate
directly (Pensieve) or the SSIM of each chunk (BBA).

in the event of lost transport-stream packets on either sub-
stream. Video chunks are 2.002 seconds long, reflecting the
1/1001 factor for NTSC frame rates. Audio chunks are 4.8
seconds long. Video is de-interlaced with ffmpeg to produce
a “canonical” 1080p60 or 720p60 source for compression.

Puffer encodes each video chunk in ten different H.264
versions, using libx264 in veryfast mode. The encodings
range from 240p60 video with constant rate factor (CRF) of
26 (about 200 kbps) to 1080p60 video with CRF of 20 (about
5,500 kbps). Audio chunks are encoded in the Opus format.

Puffer then uses ffmpeg to calculate each encoded chunk’s
SSIM [43], a measure of video quality, relative to the canoni-
cal source. This information is used by the objective function
of BBA, MPC, RobustMPC, and Fugu, and for our evalua-
tion. In practice, the relationship between bitrate and quality
varies chunk-by-chunk (Figure 3), and users cannot perceive
compressed chunk sizes directly—only what is shown on the
screen. ABR schemes that maximize bitrate do not necessarily
see a commensurate benefit in picture quality (Figure 4).

Encoding six channels in ten versions each (60 streams
total) with libx264 consumes about 48 cores of an Intel x86-
64 2.7 GHz CPU in steady state. Calculating the SSIM of
each encoded chunk consumes an additional 18 cores.

3.2 Serving chunks to the browser

To make it feasible to deploy and test arbitrary ABR schemes,
Puffer uses a “dumb” player (using the HTML5 <video> tag
and the JavaScript Media Source Extensions) on the client
side, and places the ABR scheme at the server. We have a 48-
core server with 10 Gbps Ethernet in a datacenter at Stanford.
The browser opens a WebSocket (TLS/TCP) connection to
a daemon on the server. Each daemon is configured with a
different TCP congestion control (for the primary analysis,
we used BBR [9]) and ABR scheme. Some schemes are more
efficiently implemented than others; on average the CPU load
from serving client traffic (including TLS, TCP, and ABR)
is about 5% of an Intel x86-64 2.7 GHz core per stream.
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Algorithm Control Predictor Optimization goal How trained

BBA classical (linear control) n/a +SSIM s.t. bitrate < limit n/a
MPC-HM classical (MPC) classical (HM) +SSIM, –stalls, –∆SSIM n/a
RobustMPC-HM classical (robust MPC) classical (HM) +SSIM, –stalls, –∆SSIM n/a
Pensieve learned (DNN) n/a +bitrate, –stalls, –∆bitrate reinforcement learning in simulation
Fugu classical (MPC) learned (DNN) +SSIM, –stalls, –∆SSIM supervised learning in situ

Figure 5: Distinguishing features of algorithms used in the primary experiment. HM = harmonic mean of last five throughput
samples. MPC = model predictive control. DNN = deep neural network.

Sessions are randomly assigned to serving daemons. Users
can switch channels without breaking their TCP connection
and may have many “streams” within each session.

Puffer is not a client-side DASH [28] (Dynamic Adaptive
Streaming over HTTP) system. Like DASH, though, Puffer is
an ABR system streaming chunked video over a TCP connec-
tion, and runs the same ABR algorithms that DASH systems
can run. We don’t expect this architecture to replace client-
side ABR (which can be served by CDN edge nodes), but we
expect its conclusions to translate to ABR schemes broadly.
The Puffer website works in the Chrome, Firefox, Edge, and
Opera browsers, including on Android phones, but does not
play in the Safari browser or on iOS (which lack support for
the Media Source Extensions or Opus audio).

3.3 Hosting arbitrary ABR schemes
We implemented buffer-based control (BBA), MPC, Ro-
bustMPC, and Fugu in back-end daemons that serve video
chunks over the WebSocket. We use SSIM in the objective
functions for each of these schemes. For BBA, we use the
formula in the original paper [18] to decide the maximum
chunk size, and subject to this constraint, the chunk with the
highest SSIM is selected to stream. We also choose reservoir
values consistent with our 15-second maximum buffer.

Deploying Pensieve for live streaming. We use the released
Pensieve code (written in Python with TensorFlow) directly.
When a client is assigned to Pensieve, Puffer spawns a Python
subprocess running Pensieve’s multi-video model.

We contacted the Pensieve authors to request advice on
deploying the algorithm in a live, multi-video, real-world set-
ting. The authors recommended that we use a longer-running
training and that we tune the entropy parameter when training
the multi-video neural network. We wrote an automated tool
to train 6 different models with various entropy reduction
schemes. We tested these manually over a few real networks,
then selected the model with the best performance. We mod-
ified the Pensieve code (and confirmed with the authors) so
that it does not expect the video to end before a user’s session
completes. We were not able to modify Pensieve to optimize
SSIM; it considers the average bitrate of each Puffer stream.
We adjusted the video chunk length to 2.002 seconds and the
buffer threshold to 15 seconds to reflect our parameters. For

training data, we used the authors’ provided script to generate
1000 simulated videos as training videos, and a combination
of the FCC and Norway traces linked to in the Pensieve code-
base as training traces.

3.4 The Puffer experiment
To recruit participants, we purchased Google and Reddit ads
for keywords such as “live tv” and “tv streaming” and paid
people on Amazon Mechanical Turk to use Puffer. We were
also featured in press articles. Popular programs (e.g. the 2019
and 2020 Super Bowls, the Oscars, World Cup, and “Bachelor
in Paradise”) brought large spikes (> 20×) over baseline load.
Our current average load is about 60 concurrent streams.

Between Jan. 26, 2019 and Feb. 2, 2020, we have streamed
38.6 years of video to 63,508 registered study participants
using 111,231 unique IP addresses. About eight months of
that period was spent on the “primary experiment,” a ran-
domized trial comparing Fugu with other algorithms: MPC,
RobustMPC, Pensieve, and BBA (a summary of features is
in Figure 5). This period saw a total of 314,577 streaming
sessions, and 1,904,316 individual streams. An experimental-
flow diagram in the standardized CONSORT format [35] is
in the appendix (Figure A1).

We record client telemetry as time-series data, detailing the
size and SSIM of every video chunk, the time to deliver each
chunk to the client, the buffer size and rebuffering events at
the client, the TCP statistics on the server, and the identity of
the ABR and congestion-control schemes. A full description
of the data is in Appendix B.

Metrics and statistical uncertainty. We group the time se-
ries by user stream to calculate a set of summary figures: the
total time between the first and last recorded events of the
stream, the startup time, the total watch time between the first
and last successfully played portion of the stream, the total
time the video is stalled for rebuffering, the average SSIM,
and the chunk-by-chunk variation in SSIM. The ratio between
“total time stalled” and “total watch time” is known as the re-
buffering ratio or stall ratio, and is widely used to summarize
the performance of streaming video systems [22].

We observe considerable heavy-tailed behavior in most of
these statistics. Watch times are skewed (Figure 11), and while
the risk of rebuffering is important to any ABR algorithm,
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actual rebuffering is a rare phenomenon. Of the 637,189 eli-
gible streams considered for the primary analysis across all
five ABR schemes, only 24,328 (4%) of those streams had
any stalls, mirroring commercial services [22].

These skewed distributions create more room for the play
of chance to corrupt the bottom-line statistics summarizing a
scheme’s performance—even two identical schemes will see
considerable variation in average performance until a substan-
tial amount of data is assembled. In this study, we worked to
quantify the statistical uncertainty that can be attributed to the
play of chance in assigning sessions to ABR algorithms. We
calculate confidence intervals on rebuffering ratio with the
bootstrap method [14], simulating streams drawn empirically
from each scheme’s observed distribution of rebuffering ratio
as a function of stream duration. We calculate confidence
intervals on average SSIM using the formula for weighted
standard error, weighting each stream by its duration.

These practices result in substantial confidence intervals:
with at least 2.5 years of data for each scheme, the width of the
95% confidence interval on a scheme’s stall ratio is between
±13% and ±21% of the mean value. This is comparable to
the magnitude of the total benefit reported by some academic
work that used much shorter real-world experiments. Even
a recent study of a Pensieve-like scheme on Facebook [24],
encompassing 30 million streams, did not detect a change in
rebuffering ratio outside the level of statistical noise.

We conclude that considerations of uncertainty in real-
world learning and experimentation, especially given uncon-
trolled data from the Internet with real users, deserve further
study. Strategies to import real-world data into repeatable
emulators [45] or reduce their variance [26] will likely be
helpful in producing robust learned networking algorithms.

4 Fugu: design and implementation

Fugu is a control algorithm for bitrate selection, designed to
be feasibly trained in place (in situ) on a real deployment envi-
ronment. It consists of a classical controller (model predictive
control, the same as in MPC-HM), informed by a nonlinear
predictor that can be trained with supervised learning.

Figure 6 shows Fugu’s high-level design. Fugu runs on the
server, making it easy to update its model and aggregate per-
formance data across clients over time. Clients send necessary
telemetry, such as buffer levels, to the server.
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Figure 6: Overview of Fugu

The controller, described in Section 4.4, makes decisions
by following a classical control algorithm to optimize an
objective QoE function (§4.1) based on predictions for how
long each chunk would take to transmit. These predictions are
provided by the Transmission Time Predictor (TTP) (§4.2),
a neural network that estimates a probability distribution for
the transmission time of a proposed chunk with given size.

4.1 Objective function
For each video chunk Ki, Fugu has a selection of versions of
this chunk to choose from, Ks

i , each with a different size s.
As with prior approaches, Fugu quantifies the QoE of each
chunk as a linear combination of video quality, video quality
variation, and stall time [46]. Unlike some prior approaches,
which use the average compressed bitrate of each encoding
setting as a proxy for image quality, Fugu optimizes a percep-
tual measure of picture quality—in our case, SSIM. This has
been shown to correlate with human opinions of QoE [12].
We emphasize that we use the exact same objective function
in our version of MPC and RobustMPC as well.

Let Q(K) be the video quality of a chunk K, T (K) be the un-
certain transmission time of K, and Bi be the current playback
buffer size. Following [46], Fugu defines the QoE obtained
by sending Ks

i (given the previously sent chunk Ki−1) as

QoE(Ks
i ,Ki−1) = Q(Ks

i )−λ|Q(Ks
i )−Q(Ki−1)|

−µ ·max{T (Ks
i )−Bi,0},

(1)

where max{T (Ks
i )− Bi,0} describes the stall time experi-

enced by sending Ks
i , and λ and µ are configuration constants

for how much to weight video quality variation and rebuffer-
ing. Fugu plans a trajectory of sizes s of the future H chunks
to maximize their expected total QoE.

4.2 Transmission Time Predictor (TTP)
Once Fugu decides which chunk from Ks

i to send, two por-
tions of the QoE become known: the video quality and video
quality variation. The remaining uncertainty is the stall time.
The server knows the current playback buffer size, so what it
needs to know is the transmission time: how long will it take
for the client to receive the chunk? Given an oracle that re-
ports the transmission time of any chunk, the MPC controller
can compute the optimal plan to maximize QoE.

Fugu uses a trained neural-network transmission-time pre-
dictor to approximate the oracle. For each chunk in the fixed
H-step horizon, we train a separate predictor. E.g., if opti-
mizing for the total QoE of the next five chunks, five neural
networks are trained. This lets us parallelize training.

Each TTP network for the future step h ∈ {0, . . . ,H−1}
takes as input a vector of:

1. sizes of past t chunks Ki−t , . . . ,Ki−1,

2. actual transmission times of past t chunks: Ti−t , . . . ,Ti−1,
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3. internal TCP statistics (Linux tcp_info structure),

4. size s of a proposed chunk Ks
i+h.

The TCP statistics include the current congestion window
size, the number of unacknowledged packets in flight, the
smoothed RTT estimate, the minimum RTT, and the TCP
estimated throughput (tcpi_delivery_rate).

Prior approaches have used Harmonic Mean (HM) [46]
or a Hidden Markov Model (HMM) [40] to predict a single
throughput for the entire lookahead horizon irrespective of the
size of chunk to send. In contrast, the TTP acknowledges the
fact that observed throughput varies with chunk size [7,32,47]
by taking the size of proposed chunk Ks

i+h as an explicit input.
In addition, it outputs a discretized probability distribution of
predicted transmission time T̂ (Ks

i+h).

4.3 Training the TTP
We sample from the real usage data collected by any scheme
running on Puffer and feed individual user streams to the
TTP as training input. For the TTP network in the future
step h, each user stream contains a chunk-by-chunk series
of (a) the input 4-vector with the last element to be size of
the actually sent chunk Ki+h, and, (b) the actual transmission
time Ti+h of chunk Ki+h as desired output; the sequence is
shuffled to remove correlation. It is worth noting that unlike
prior work [25, 40] that learned from throughput traces, TTP
is trained directly on real chunk-by-chunk data.

We train the TTP with standard supervised learning: the
training minimizes the cross-entropy loss between the output
probability distribution and the discretized actual transmission
time using stochastic gradient descent.

We retrain the TTP every day, using training data collected
over the prior 14 days, to avoid the effects of dataset shift and
catastrophic forgetting [33,34]. Within the 14-day window, we
weight more recent days more heavily. The weights from the
previous day’s model are loaded to warm-start the retraining.

4.4 Model-based controller
Our MPC controller (used for MPC-HM, RobustMPC-HM,
and Fugu) is a stochastic optimal controller that maximizes
the expected cumulative QoE in Equation 1 with replanning. It
queries TTP for predictions of transmission time and outputs a
plan Ks

i ,K
s
i+1, . . . ,K

s
i+H−1 by value iteration [8]. After sending

Ks
i , the controller observes and updates the input vector passed

into TTP, and replans again for the next chunk.
Given the current playback buffer level Bi and the last sent

chunk Ki−1, let v∗i (Bi,Ki−1) denote the maximum expected
sum of QoE that can be achieved in the H-step lookahead
horizon. We have value iteration as follows:

v∗i (Bi,Ki−1) = max
Ks

i

{
∑
ti

Pr[T̂ (Ks
i ) = ti]·

(QoE(Ks
i ,Ki−1)+ v∗i+1(Bi+1,Ks

i ))
}
,

where Pr[T̂ (Ks
i ) = ti] is the probability predicted by TTP for

the transmission time of Ks
i to be ti, and Bi+1 can be derived

by system dynamics [46] given an enumerated (discretized) ti.
The controller computes the optimal trajectory by solving the
above value iteration with dynamic programming (DP). To
make the DP computational feasible, it also discretizes Bi into
bins and uses forward recursion with memoization to only
compute for relevant states.

4.5 Implementation

TTP takes as input the past t = 8 chunks, and outputs a
probability distribution over 21 bins of transmission time:
[0,0.25), [0.25,0.75), [0.75,1.25), . . . , [9.75,∞), with 0.5 sec-
onds as the bin size except for the first and the last bins. TTP
is a fully connected neural network, with two hidden layers
with 64 neurons each. We tested different TTPs with vari-
ous numbers of hidden layers and neurons, and found similar
training losses across a range of conditions for each. We im-
plemented TTP and the training in PyTorch, but we load the
trained model in C++ when running on the production server
for performance. A forward pass of TTP’s neural network in
C++ imposes minimal overhead per chunk (less than 0.3 ms
on average on a recent x86-64 core). The MPC controller
optimizes over H = 5 future steps (about 10 seconds). We set
λ = 1 and µ = 100 to balance the conflicting goals in QoE.
Each retraining takes about 6 hours on a 48-core server.

4.6 Ablation study of TTP features

We performed an ablation study to assess the impact of the
TTP’s features (Figure 7). The prediction accuracy is mea-
sured using mean squared error (MSE) between the predicted
transmission time and the actual (absolute, unbinned) value.
For the TTP that outputs a probability distribution, we com-
pute the expected transmission time by weighting the median
value of each bin with the corresponding probability. Here
are the more notable results:

Use of low-level congestion-control statistics. The TTP’s
nature as a DNN lets it consider a variety of noisy inputs,
including low-level congestion-control statistics. We feed the
kernel’s tcp_info structure to the TTP, and find that several
of these fields contribute positively to the TTP’s accuracy,
especially the RTT, CWND, and number of packets in flight
(Figure 7). Although client-side ABR systems cannot typi-
cally access this structure directory because the statistics live
on the sender, these results should motivate the communica-
tion of richer data to ABR algorithms wherever they live.

Transmission-time prediction. The TTP explicitly consid-
ers the size of a proposed chunk, rather than predicting
throughput and then modeling transmission time as scaling
linearly with chunk size [7, 32, 47]. We compared the TTP
with an equivalent throughput predictor that is agnostic to the
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Figure 7: Ablation study of Fugu’s Transmission Time Pre-
dictor (TTP). Removing any of the TTP’s inputs reduced its
ability to predict the transmission time of a video chunk. A
non-probabilistic TTP (“Point Estimate”) and one that pre-
dicts throughput without regard to chunk size (“Throughput
Predictor”) both performed markedly worse. TCP statistics
(RTT, CWND, packets in flight) also proved helpful.

chunk’s size (keeping everything else unchanged). The TTP’s
predictions were much more accurate (Figure 7).

Prediction with uncertainty. The TTP outputs a probability
distribution of transmission times. This allows for better deci-
sion making compared with a single point estimate without
uncertainty. We evaluated the expected accuracy of a prob-
abilistic TTP vs. a point-estimate version that outputs the
median value of the most-probable bin, and found an im-
provement in prediction accuracy with the former (Figure 7).
To measure the end-to-end benefits of a probabilistic TTP,
we deployed both versions on Puffer in August 2019 and col-
lected 39 stream-days of data. It performed much worse than
normal Fugu: the rebuffering ratio was 5× worse, without
significant improvement in SSIM (data not shown).

Use of neural network. We found a significant benefit from
using a deep neural network in this application, compared with
a linear-regression model that was trained the same way. The
latter model performed much worse on prediction accuracy
(Figure 7). We also deployed it on Puffer and collected 448
stream-days of data in Aug.–Oct. 2019; its rebuffering ratio
was 2.5× worse (data not shown).

Daily retraining. To evaluate our practice of retraining the
TTP each day, we conducted a randomized comparison of
several “out-of-date” versions of the TTP on Puffer between
Aug. 7 and Aug. 30, 2019, and between Oct. 16, 2019 and
Jan. 2, 2020. We compared vintages of the TTP that had been
trained in February, March, April, and May 2019, alongside
the TTP that is retrained each day. (We emphasize that the
older TTP vintages were also learned in situ on two weeks of
data from the actual deployment environment—they are sim-
ply earlier versions of the same predictor.) Somewhat to our
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Figure 8: Fugu, which is retrained every day, did not outper-
form older versions of itself that were trained up to 11 months
earlier. Our practice of daily retraining appears to be overkill.

surprise and disappointment, we were not able to document
a benefit from daily retraining (Figure 8). This may reflect
a lack of dynamism in the Puffer userbase, or the fact that
once “enough” data is available to put the predictor through
its paces, more-recent data is not necessarily beneficial, or
some other reason. We suspect the older predictors might
become stale at some point in the future, but for the moment,
our practice of daily retraining appears to be overkill.

5 Experimental results

We now present findings from our experiments with the Puffer
study, including the evaluation of Fugu. Our main results
are shown in Figure 9. In summary, we conducted a parallel-
group, blinded-assignment, randomized controlled trial of five
ABR schemes between Jan. 26 and Aug. 7, and between
Aug. 30 and Oct. 16, 2019. The data include 13.1 stream-years
of data split across five algorithms, counting all streams that
played at least 4 seconds of video. A standardized diagram of
the experimental flow is available in the appendix (Figure A1).

We found that simple “buffer-based” control (BBA) per-
forms surprisingly well, despite its status as a frequently out-
performed research baseline. The only scheme to consistently
outperform BBA in both stalls and quality was Fugu, but only
when all features of the TTP were used. If we remove the prob-
abilistic “fuzzy” nature of Fugu’s predictions, or the “depth”
of the neural network, or the prediction of transmission time
as a function of chunk size (and not simply throughput), Fugu
forfeits its advantage (§4.6). Fugu also outperformed other
schemes in terms of SSIM variability (Figure 1). On a cold
start to a new session, prior work [19, 40] suggested a need
for session clustering to determine the quality of the first
chunk. TTP provides an alternative approach: low-level TCP
statistics are available as soon as the (HTTP/WebSocket, TLS,
TCP) connection is established and allow Fugu to begin safely
at a higher quality (Figure 10).

We conclude that robustly beating “simple” algorithms
with machine learning may be surprisingly difficult, notwith-
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Figure 9: Main results. In a blinded randomized controlled trial that included 13.1 years of video streamed to 54,612 client IP
addresses over an eight-month period, Fugu reduced the fraction of time spent stalled (except with respect to RobustMPC-HM),
increased SSIM, and reduced SSIM variation within each stream (tabular data in Figure 1). “Slow” network paths have average
throughput less than 6 Mbit/s; following prior work [25, 46], these paths are more likely to require nontrivial bitrate-adaptation
logic. Such streams accounted for 14% of overall viewing time and 83% of stalls. Error bars show 95% confidence intervals.
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Figure 10: On a cold start, Fugu’s ability to bootstrap ABR
decisions from TCP statistics (e.g., RTT) boosts initial quality.

standing promising results in contained environments such as
simulators and emulators. The gains that learned algorithms
have in optimization or smarter decision making may come at
a tradeoff in brittleness or sensitivity to heavy-tailed behavior.

5.1 Fugu users streamed for longer
We observed significant differences in the session durations
of users across algorithms (Figure 11). Users whose sessions
were assigned to Fugu chose to remain on the Puffer video
player about 5–9% longer, on average, than those assigned to
other schemes. Users were blinded to the assignment, and we
believe the experiment was carefully executed not to “leak”
details of the underlying scheme (MPC and Fugu even share
most of their codebase). The average difference was driven
solely by the upper 4% tail of viewership duration (sessions
lasting more than 3 hours)—viewers assigned to Fugu are
much more likely to keep streaming beyond this point, even
as the distributions are nearly identical until then.

Time-on-site is a figure of merit in the video-streaming
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Figure 11: Users randomly assigned to Fugu chose to remain
on the Puffer video player about 5%–9% longer, on average,
than those assigned to other schemes. Users were blinded to
the assignment. Legend shows 95% confidence intervals on
the average time-on-site in minutes.

industry and might be increased by delivering better-quality
video with fewer stalls, but we simply do not know enough
about what is driving this phenomenon.

5.2 The benefits of learning in situ
Each of the ABR algorithms we deployed has been evaluated
in emulation in prior work [25, 46]. Notably, the results in
those works are qualitatively different from some of the real
world results we have seen here—for example, buffer-based
control matching or outperforming MPC-HM and Pensieve.

To investigate this further, we constructed an emulation
environment similar to that used in [25]. This involved run-
ning the Puffer media server locally, and launching headless
Chrome clients inside mahimahi [30] shells to connect to
the server. Each mahimahi shell imposed a 40 ms end-to-end
delay on traffic originating inside it and limited the downlink
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Figure 12: Left: performance in emulation, run in mahimahi [30] using the FCC traces [10], following the method of Pen-
sieve [25]. Middle: During Jan. 26–Apr. 2, 2019, we randomized sessions to a set of algorithms including “emulation-trained
Fugu.” For Fugu, training in emulation did not generalize to the deployment environment. In addition, emulation results (left) are
not indicative of real-world performance. Right: comparison of throughput distribution of FCC traces and of real Puffer sessions.

capacity over time to match the capacity recorded in a set
of FCC broadband network traces [10]. As in the Pensieve
evaluation, uplink speeds in all shells were capped at 12 Mbps.
Within this test setup, we automated 12 clients to repeatedly
connect to the media server, which would play a 10 minute
clip recorded on NBC over each network trace in the dataset.
Each client was assigned to a different ABR algorithm, and
played the 10 minute video repeatedly over more than 15
hours of FCC traces. Results are shown in Figure 12.

We trained a version of Fugu in this emulation environ-
ment to evaluate its performance. Compared with the in situ
Fugu—or with every other ABR scheme—the real-world per-
formance of emulation-trained Fugu was horrible (Figure 12,
middle panel). Looking at the other ABR schemes, almost
each of them lies somewhere along the SSIM/stall frontier
in emulation (left side of figure), with Pensieve rebuffering
the least and MPC delivering the highest quality video. In the
real experiment (middle of figure), we see a more muddled
picture, with a different qualitative arrangement of schemes.

5.3 Remarks on Pensieve and RL for ABR
The original Pensieve paper [25] demonstrated that Pensieve
outperformed MPC-HM, RobustMPC-HM, and BBA in both
emulation-based tests and in video streaming tests on low
and high-speed real-world networks. Our results differ; we
believe the mismatch may have occurred for several reasons.

First, we have found that simulation-based training and
testing do not capture the vagaries of the real-world paths
seen in the Puffer study. Unlike real-world randomized trials,
trace-based emulators and simulators allow experimenters to
limit statistical uncertainty by running different algorithms
on the same conditions, eliminating the effect of the play of
chance in giving different algorithms a different distribution
of watch times, network behaviors, etc. However, it is difficult
to characterize the systematic uncertainty that comes from
selecting a set of traces that may omit the variability or heavy-
tailed nature of a real deployment experience (both network

behaviors as well as user behaviors, such as watch duration).

Reinforcement learning (RL) schemes such as Pensieve
may be at a particular disadvantage from this phenomenon.
Unlike supervised learning schemes that can learn from train-
ing “data,” RL typically requires a training environment to
respond to a sequence of control decisions and decide on
the appropriate consequences and reward. That environment
could be real life instead of a simulator, but the level of sta-
tistical noise we observe would make this type of learning
extremely slow or require an extremely broad deployment of
algorithms in training. RL relies on being able to slightly vary
a control action and detect a change in the resulting reward.
By our calculations, the variability of inputs is such that it
takes about 2 stream-years of data to reliably distinguish two
ABR schemes whose innate “true” performance differs by
15%. To make RL practical, future work may need to explore
techniques to reduce this variability [26] or construct more
faithful simulators and emulators that model tail behaviors
and capture additional dynamics of the real Internet that are
not represented in throughput traces (e.g. varying RTT, cross
traffic, interaction between throughput and chunk size [7]).

Second, most of the evaluation of Pensieve in the original
paper focused on training and evaluating Pensieve using a
single test video. As a result, the state space that model had
to explore was inherently more limited. Evaluation of the
Pensieve “multi-video model”—which we have to use for our
experimental setting—was more limited. Our results are more
consistent with a recent large-scale study of a Pensieve-multi-
video-like scheme on 30 million streams at Facebook [24].

Third, the right side of Figure 12 shows that the distribution
of throughputs in the FCC traces differs markedly from those
on Puffer. This dataset shift could have harmed the perfor-
mance of Pensieve, which was trained on the FCC traces. In
response to reviewer feedback, we trained a version of Pen-
sieve on throughput traces randomly sampled from real Puffer
video sessions. This is essentially as close to a “learned in
situ” version of Pensieve as we think we can achieve, but is
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Figure 13: During Jan. 2–Feb. 2, 2020, we evaluated a version of Pensieve that was trained on a collection of network traces
drawn randomly from actual Puffer sessions. This improved its performance compared with the original Pensieve, but the overall
results were broadly similar.

not quite the same (§5.3). We compared “Pensieve on Puffer
traces” with the original Pensieve, BBA, and Fugu between
Jan. 2 and Feb. 2, 2020 (Figure 13). The results were broadly
similar; the new Pensieve achieved better performance, but
was still significantly worse than BBA and Fugu. The results
deserve further study; they suggest that the representativeness
of training data is not the end of the story when it comes to the
real-world performance of RL schemes trained in simulation.

Finally, Pensieve optimizes a QoE metric centered around
bitrate as a proxy for video quality. We did not alter this
and leave the discussion to Section 6. Figure 4 shows that
Pensieve was the #2 scheme in terms of bitrate (below BBA)
in the primary analysis. We emphasize that our findings do
not indicate that Pensieve cannot be a useful ABR algorithm,
especially in a scenario where similar, pre-recorded video is
played over a familiar set of known networks.

6 Limitations

The design of the Puffer experiment and the Fugu system are
subject to important limitations that may affect their perfor-
mance and generalizability.

6.1 Limitations of the experiments
Our randomized controlled trial represents a rigorous, but
necessarily “black box,” study of ABR algorithms for video
streaming. We don’t know the true distribution of network
paths and throughput-generating processes; we don’t know
the participants or why the distribution in watch times differs
by assigned algorithm; we don’t know how to emulate these
behaviors accurately in a controlled environment.

We have supplemented this black-box work with ablation
analyses to relate the real-world performance of Fugu to the
l2 accuracy of its predictor, and have studied various ablated
versions of Fugu in deployment. However, ultimately part
of the reason for this paper is that we cannot replicate the

experimental findings outside the real world—a real world
whose behavior is noisy and takes lots of time to measure
precisely. That may be an unsatisfying conclusion, and we
doubt it will be the final word on this topic. Perhaps it will
become possible to model enough of the vagaries of the real
Internet “in silico” to enable the development of robust control
strategies without extensive real-world experiments.

It is also unknown to what degree Puffer’s results—which
are about a single server in a university datacenter, sending to
clients across our entire country over the wide-area Internet—
generalize to a different server at a different institution, much
less the more typical paths between a user on an access net-
work and their nearest CDN edge node. We don’t know for
sure if the pre-trained Fugu model would work in a different
location, or whether training a new Fugu based on data from
that location would yield comparable results. Our results show
that learning in situ works, but we don’t know how specific
the situs needs to be. And while we expect that Fugu could be
implemented in the context of client-side ABR (especially if
the server is willing to share its tcp_info statistics with the
client), we haven’t demonstrated this.

Although we believe that past research papers may have
underestimated the uncertainties in real-world measurements
with realistic Internet paths and users, we also may be guilty
of underestimating our own uncertainties or emphasizing un-
certainties that are only relevant to small or medium-sized
academic studies, such as ours, and irrelevant to the industry.
The current load on Puffer is about 60 concurrent streams on
average, meaning we collect about 60 stream-days of data per
day. Our primary analysis covers about 2.6 stream-years of
data per scheme collected over an eight-month period, and was
sufficient to measure its performance metrics to within about
±15% (95% CI). By contrast, we understand YouTube has
an average load of more than 60 million concurrent streams
at any given time. We imagine the considerations of conduct-
ing data-driven experiments at this level may be completely
different—perhaps less about statistical uncertainty, and more
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about systematic uncertainties and the difficulties of running
experiments and accumulating so much data.

Some of Fugu’s performance (and that of MPC, Ro-
bustMPC, and BBA) relative to Pensieve may be due to the
fact that these four schemes received more information as
they ran—namely, the SSIM of each possible version of each
future chunk—than did Pensieve. It is possible that an “SSIM-
aware” Pensieve might perform better. The load of calculating
SSIM for each encoded chunk is not insignificant—about an
extra 40% on top of encoding the video.

6.2 Limitations of Fugu

There is a sense that data-driven algorithms that more “heav-
ily” squeeze out performance gains may also put themselves
at risk to brittleness when a deployment environment drifts
from one where the algorithm was trained. In that sense, it is
hard to say whether Fugu’s performance might decay catas-
trophically some day. We tried and failed to demonstrate a
quantitative benefit from daily retraining over “out-of-date”
vintages, but at the same time, we cannot be sure that some
surprising detail tomorrow—e.g., a new user from an unfa-
miliar network—won’t send Fugu into a tailspin before it can
be retrained. A year of data on a growing userbase suggests,
but doesn’t guarantee, robustness to a changing environment.

Fugu does not consider several issues that other research
has concerned itself with—e.g., being able to “replace”
already-downloaded chunks in the buffer with higher quality
versions [38], or optimizing the joint QoE of multiple clients
who share a congestion bottleneck [29].

Fugu is not tied as tightly to the TCP or congestion control
as it might be—for example, Fugu could wait to send a chunk
until the TCP sender tells it that there is a sufficient congestion
window for most of the chunk (or the whole chunk) to be sent
immediately. Otherwise, it might choose to wait and make
a better-informed decision later. Fugu does not schedule the
transmission of chunks—it will always send the next chunk
as long as the client has room in its playback buffer.

7 Conclusion

Machine-learned systems in computer networking sometimes
describe themselves as achieving near-“optimal” performance,
based on results in a contained or modeled version of the
problem [25, 37, 39]. Such approaches are not limited to the
academic community: in early 2020, a major video-streaming
company announced a $5,000 prize for the best low-delay
ABR scheme, in which candidates will be evaluated in a net-
work simulator that follows a trace of varying throughput [2].

In this paper, we suggest that these efforts can benefit from
considering a broader notion of performance and optimality.
Good, or even near-optimal, performance in a simulator or
emulator does not necessarily predict good performance over

the wild Internet, with its variability and heavy-tailed distri-
butions. It remains a challenging problem to gather the ap-
propriate training data (or in the case of RL systems, training
environments) to properly learn and validate such systems.

In this paper, we asked: what does it take to create a learned
ABR algorithm that robustly performs well over the wild Inter-
net? In effect, our best answer is to cheat: train the algorithm
in situ on data from the real deployment environment, and use
an algorithm whose structure is sophisticated enough (a neural
network) and yet also simple enough (a predictor amenable to
supervised learning on data, informing a classical controller)
to benefit from that kind of training.

Over the last year, we have streamed 38.6 years of video
to 63,508 users across the Internet. Sessions are randomized
in blinded fashion among algorithms, and client telemetry
is recorded for analysis. The Fugu algorithm robustly out-
performed other schemes, both simple and sophisticated, on
objective measures (SSIM, stall time, SSIM variability) and
increased the duration that users chose to continue streaming.

We have found the Puffer approach a powerful tool for net-
working research—it is fulfilling to be able to “measure, then
build” [5] to iterate rapidly on new ideas and gain feedback.
Accordingly, we are opening Puffer as an “open research” plat-
form. Along with this paper, we are publishing our full archive
of data and results on the Puffer website. The system posts
new data each week, along with a summary of results from
the ongoing experiments, with confidence intervals similar to
those in this paper. (The format is described in Appendix B.)
We redacted some fields from the public archive to protect
participants’ privacy (e.g., IP address) but are willing to work
with researchers on access to these fields in an aggregated
fashion. Puffer and Fugu are also open-source software, as
are the analysis tools used to prepare the results in this paper.

We plan to operate Puffer as long as feasible and invite
researchers to train and validate new algorithms for ABR
control, network and throughput prediction, and congestion
control on its traffic. We are eager to collaborate with and
learn from the community’s ideas on how to design and deploy
robust learned systems for the Internet.
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B Description of open data

The open data we are releasing comprise different
“measurements”—each measurement contains a different set
of time-series data collected on Puffer servers. Below we high-
light the format of interesting fields in three measurements
that are essential for analysis: video_sent, video_acked,
and client_buffer.
video_sent collects a data point every time a Puffer server

sends a video chunk to a client. Each data point contains:
• time: timestamp when the chunk is sent
• session_id: unique ID for the video session
• expt_id: unique ID to identify the experimental group;
expt_id can be used as a key to retrieve the experimen-
tal setting (e.g., ABR, congestion control) when sending
the chunk, in another file we are providing.
• channel: TV channel name
• video_ts: unique presentation timestamp of the chunk
• format: encoding settings of the chunk, including reso-

lution and constant rate factor (CRF)
• size: size of the chunk
• ssim_index: SSIM of the chunk
• cwnd: congestion window size (tcpi_snd_cwnd)
• in_flight: number of unacknowledged packets in

flight (tcpi_unacked - tcpi_sacked - tcpi_lost +
tcpi_retrans)
• min_rtt: minimum RTT (tcpi_min_rtt)
• rtt: smoothed RTT estimate (tcpi_rtt)
• delivery_rate: estimate of TCP throughput

(tcpi_delivery_rate)

video_acked collects a data point every time a Puffer
server receives a video chunk acknowledgement from a client.
Each data point can be matched to a data point in video_sent
using video_ts (if the chunk is ever acknowledged) and used
to calculate the transmission time of the chunk—difference
between the timestamps in the two data points. Specifically,
each data point in video_acked contains:

• time: timestamp when the chunk is acknowledged
• session_id
• expt_id
• channel
• video_ts

client_buffer collects client-side information reported
to Puffer servers on a regular interval and when certain events
occur. Each data point contains:

• time: timestamp when the client message is received
• session_id
• expt_id
• channel
• event: event type, e.g., was this triggered by a regular

report every quarter second, or because the client stalled
or began playing.
• buffer: playback buffer size
• cum_rebuf: cumulative rebuffer time in the current

stream

Between Jan. 26, 2019 and Feb. 2, 2020, we collected
675,839,652 data points in video_sent, 677,956,279 data
points in video_acked, and 4,622,575,336 data points in
client_buffer.
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Abstract
Performance variability has been acknowledged as a problem
for over a decade by cloud practitioners and performance en-
gineers. Yet, our survey of top systems conferences reveals
that the research community regularly disregards variability
when running experiments in the cloud. Focusing on net-
works, we assess the impact of variability on cloud-based big-
data workloads by gathering traces from mainstream commer-
cial clouds and private research clouds. Our dataset consists
of millions of datapoints gathered while transferring over 9
petabytes on cloud providers’ networks. We characterize the
network variability present in our data and show that, even
though commercial cloud providers implement mechanisms
for quality-of-service enforcement, variability still occurs, and
is even exacerbated by such mechanisms and service provider
policies. We show how big-data workloads suffer from sig-
nificant slowdowns and lack predictability and replicability,
even when state-of-the-art experimentation techniques are
used. We provide guidelines to reduce the volatility of big
data performance, making experiments more repeatable.

1 Introduction

Performance variability [13, 47] in the cloud is well-known,
and has been studied since the early days [7, 35, 55] of cloud
computing. Cloud performance variability impacts not only
operational concerns, such as cost and predictability [14, 42],
but also reproducible experiment design [3, 10, 31, 47].

Big data is now highly embedded in the cloud: for example,
Hadoop [64] and Spark [65] processing engines have been
deployed for many years on on-demand resources. One key
issue when running big data workloads in the cloud is that,
due to the multi-tenant nature of clouds, applications see per-
formance effects from other tenants, and are thus susceptible
to performance variability, including on the network. Even
though recent evidence [50] suggests that there are limited po-
tential gains from speeding up the network, it is still the case
that variable network performance can slow down big data

systems and introduce volatility that makes it more difficult
to draw reliable scientific conclusions.

Although cloud performance variability has been thor-
oughly studied, the resulting work has mostly been in the
context of optimizing tail latency [22], with the aim of pro-
viding more consistent application-level performance [15,
25, 29, 57]. This is subtly—but importantly—different from
understanding the ways that fine-grained, resource-level vari-
ability affects the performance evaluation of these systems.
Application-level effects are especially elusive for complex
applications, such as big data, which are not bottlenecked on
a specific resource for their entire runtime. As a result, it is
difficult for experimenters to understand how to design ex-
periments that lead to reliable conclusions about application
performance under variable network conditions.

Modern cloud data centers increasingly rely on software-
defined networking to offer flows between VMs with reliable
and predictable performance [48]. While modern cloud net-
works generally promise isolation and predictability [7, 30],
in this paper we uncover that they rarely achieve stable perfor-
mance. Even the mechanisms and policies employed by cloud
providers for offering quality of service (QoS) and fairness
can result in non-trivial interactions with the user applications,
which leads to performance variability.

Although scientists are generally aware of the relationship
between repeated experiments and increased confidence in
results, the specific strength of these effects, their underlying
causes, and methods for improving experiment designs have
not been carefully studied in the context of performance exper-
iments run in clouds. Variability has a significant impact on
sound experiment design and result reporting [31]. In the pres-
ence of variability, large numbers of experiment repetitions
must be performed to achieve tight confidence intervals [47].
Although practitioners and performance engineers acknowl-
edge this phenomenon [7, 35, 55], in practice these effects are
frequently disregarded in performance studies.

Building on our vision [34], and recognizing the trend of
the academic community’s increasing use of the cloud for
computing resources [53], we challenge the current state-of-
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Figure 1: State-of-practice in big data articles with cloud
experiments: (a) Aspects reported about experiments. Bars
represent aspects that are not mutually exclusive, thus the
total can exceed 100%. (b) Number of experiment repetitions
performed for the properly specified articles.

practice in cloud-based systems experimentation and advo-
cate for sound experiment design and result reporting. We
show that, due to performance variability, flawed cloud-based
experimentation could lead to inaccurate or even wrong con-
clusions. We show, in-depth, the performance implications
of network variability when running big data workloads. The
interplay between underlying resources and applications is
complex, and leads to non-trivial performance behavior.

To characterize such interactions, we run state-of-the-art,
real-world applications using Apache Spark [4]. We run
big-data workloads either directly on real-world mainstream
clouds, or by emulating the network behavior of such clouds.
Our results show that variability highly impacts not only per-
formance, but also credible and reproducible experimentation.

Addressing cloud users, performance engineers, and system
designers, we examine the implications of network variability
on big data, and present our main findings and contributions:
1. Lack of sound experimentation: Many articles in the lit-
erature that present cloud-based experiments are either under-
specified (i.e., do not report statistical measures), or run in-
conclusive numbers of experiment repetitions (Section 2).
2. Variability in modern cloud networks: We conduct and
analyze measurements of public and private cloud providers,
characterize the level of variability, and identify specific
sources (Section 3).
3. Network variability impact on application perfor-
mance reproducibility: Low-level network variability can
have significant effects on application performance, and can
violate assumptions commonly used in performance modeling
(such as that experiment runs are independent and identically
distributed) (Section 4).
4. Strategies for running reproducible experiments:
Given our measurement and experience with application-level
benchmarks, we make recommendations for improving the
reliability and reproducibility of experiments (Section 5).

2 Is Cloud Variability Disregarded?

We perform a literature survey to uncover whether and how
researchers and practitioners take cloud performance variabil-
ity into account when running experiments. Our findings are

Table 1: Parameters for the performance variability literature
survey. We manually select only the articles with empirical
evaluations performed using clouds.
Venues Keywords Years

NSDI, OSDI
SOSP, SC

big data, streaming, Hadoop,
MapReduce, Spark, data storage
graph processing, data analytics

2008 - 2018

Table 2: Survey process. Initial filtering done automatically by
keywords, then manually for cloud-based experiments. The
resulting subset is significant and highly-cited.

Articles
Total

Filtered
Automatically
by Keywords

Filtered
Manually
for Cloud
Experiments

Citations for
selected
44 articles

1,867 138
44 (15 NSDI, 7 OSDI,
7 SOSP, 15 SC) 11,203

depicted in Figure 1 and summarized as follows:
Finding 2.1 Cloud performance variability is largely disre-
garded when researchers evaluate and prototype distributed
systems, or compare established systems.
F2.2 Most cloud performance studies are under-specified.
Most studies: (i) do not specify which performance measures
are reported (i.e., mean, median); (ii) do not report minimal
statistical variation data (i.e., standard deviation, quartiles);
(iii) do not report the number of repetitions of an experiment.
F2.3 Most cloud performance evaluations are poorly de-
signed: a large majority of such studies only perform small
numbers of experiment repetitions (i.e., 3-10 trials), and do
not assess variability or confidence.

Over the last decade, big data platforms and applications
have been co-evolving with the cloud. This allowed re-
searchers and practitioners to develop, deploy, and evaluate
their applications and systems on various virtualized infras-
tructures. There is much evidence that clouds suffer from
performance variability [7, 13, 35, 47]. It is therefore intuitive
to ask if practitioners and system designers take variability
into account when designing experiments or building sys-
tems. To answer these questions, we performed a systematic
literature survey covering prominent conferences in the field:
NSDI [44], OSDI [5], SOSP [1], and SC [2].

Survey Methodology: Table 1 shows the parameters of
our survey, and Table 2 presents our survey process in-depth:
(1) we started with all articles published in the aforementioned
venues; (2) selected automatically a subset, based on string
matching our query on keywords, title, and abstract; (3) we
manually selected the articles in which the experiments were
performed on a public cloud. The 44 selected articles are
highly influential, having been cited 11,203 times so far1.

The criteria we looked for when analyzing such articles

1according to Google Scholar on May 20, 2019
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Figure 2: Bandwidth distributions for eight real-world clouds.
Box-and-whiskers plots show the 1st, 25th, 50th, 75th, and
99th percentiles. (Distributions derived from the study [7]
conducted by Ballani et al.)

are the following: (i) reporting average or median metrics
over a number of experiments; (ii) reporting variability (such
as standard deviation or percentiles) or confidence (such as
confidence intervals); (iii) reporting the number of times an
experiment was repeated. These are all critical criteria for
determining whether a study’s conclusions may be irrepro-
ducible, or worse, not fully supported by the evidence (i.e.,
flawed). To check the reliability of our manual filtering, it
was performed by two separate reviewers, and we applied
Cohen’s Kappa coefficient [16] for each category presented
in Figure 1a: reporting average or median, statistics, and poor
specification. Our Kappa scores for each category, were 0.95,
0.81, and 0.85, respectively. Values larger than 0.8 are inter-
preted as near-perfect agreement between the reviewers [61].

Survey Results: The systems community centered around
cloud computing and big data disregards performance vari-
ability when performing empirical evaluations in the cloud.
Figure 1 shows the results of our survey. Out of the two re-
viewer’s scores, we plot the lower scores, i.e., ones that are
more favorable to the articles. We found that over 60% of
the surveyed articles are under-specified (i.e., the authors do
not mention how many times they repeated the experiments
or even whether they are reporting average, median, etc.);
a subset of the articles report averages or medians, but out
of those, only 37% report variance or confidence (i.e., error-
bars, percentiles). We further found that most articles that do
report repetitions perform only 3, 5 or 10 repetitions of the
experiments. The reason for such practices might be that ex-
perimenters are more used to evaluating software in controlled
environments—what is true in controlled environments often
does not hold in clouds.

Moreover, 76% of the properly specified studies use no
more than 15 repetitions. Coupled with the effects of cloud
variability, such experiment design practices could lead to
wrong or ambiguous conclusions, as we show next.

2.1 How credible are experiments with few
repetitions?

Experiments with few repetitions run the risk of reporting in-
accurate results; the higher the variability, the greater the risk
that a low-repetition experiment’s results are unreliable. We

(a) Medians for HiBench-KMeans

(b) 90th percentile for TPC-DS Q68

Figure 3: Medians and 90th percentiles for K-Means (a) and
TPC-DS Q68 (b). Estimates are shown along with their 95%
confidence intervals (CIs) for performance measurements un-
der the A-H distributions. � depicts estimates 50-runs. Judged
by the 50-run CIs we consider gold standard, accurate esti-
mates (inside those CIs) are X; inaccurate estimates (outside
those CIs) are × for 3- and 10-run sets.

use application-level benchmarks to show how the bandwidth
distributions found by Ballani et al. [7] for eight real-world
clouds—shown in Figure 2—do affect findings in practice.

We emulate the behavior of the eight clouds presented in
Figure 2, which were contemporary with most articles found
in our survey. In a private Spark [4] cluster of 16 machines, we
limit the bandwidth achieved by machines according to distri-
butions A−H. We uniformly sample bandwidth values from
these distributions every x ∈ {5,50} seconds. We used 50
experiment repetitions as our “gold standard” to demonstrate
the intuition that running more experiments yields more accu-
rate results, and compared them to the 3- and 10-repetitions
commonly found in our literature survey. (In Section 4 we
propose better methods for experiment design.)

Emulation Results: We found that experiments with few
repetitions often produced medians that are outside of the 95%
confidence intervals (CIs) for larger experiment sequences.
The 95% CIs for medians represent ranges in which we would
find true medians with 95% probability, if we were able to run
infinite repetitions. Thus, when the low-repetition medians lie
outside of the high-repetition CIs, there is a 95% probability
that the former are inaccurate. This can be seen in Figure 3,
which plots estimates of 95% nonparametric (asymmetric)
CIs [11] for experiments using bandwidth distributions A−H
from Figure 2. For each bandwidth distribution, we show the
medians and CIs for 3-, 5-, and 50-repetition experiments.2

The median for the “gold standard” experiment is marked
with a diamond; medians for lower-repetition experiments are
shown with an “X” if outside the gold-standard 95% CI, or a
check-mark if within it.

2Three repetitions are insufficient to calculate CIs; we plot medians
because this is representative of what is often found in the literature.
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The top of Figure 3 (part (a)) shows our estimates of medi-
ans for the K-Means application from HiBench [32]. Of the
eight cloud bandwidth distributions, the 3-run median falls
outside of the gold-standard CI for six of them (75%), and the
10-run median for three (38%). The bottom half of Figure 3
(part (b)) shows the same type of analysis, but this time, for
tail performance [22] instead of the median. To obtain these
results, we used TPC-DS [49] Query-68 measurements and
the method from Le Boudec [11] to calculate nonparametric
estimates for the 90th percentile performance, as well as their
confidence bounds. As can be seen in this figure, it is even
more difficult to get robust tail performance estimates.

Emulation Methodology: The quartiles in Ballani’s study
(Figure 2) give us only a rough idea about the probability den-
sities and there is uncertainty about fluctuations, as there is
no data about sample-to-sample variability. Considering that
the referenced studies reveal no autocovariance information,
we are left with using the available information to sample
bandwidth uniformly. Regarding the sampling rate, we found
the following: (1) As shown in Section 3 two out of the three
clouds we measured exhibits significant sample-to-sample
variability on the order of tens of seconds; (2) The cases F-G
from Ballani’s study support fine sampling rates: variabil-
ity at sub-second scales [63] and at the 20s intervals [24] is
significant. Therefore, we sample at relatively fine-grained
intervals: 5s for Figure 3(a), and 50s for Figure 3(b). Fur-
thermore, sampling at these two different rates shows that
benchmark volatility is not dependent on the sampling rate,
but rather on the distribution itself.

3 How Variable Are Cloud Networks?

We now gather and analyze network variability data for three
different clouds: two large-scale commercial clouds, and a
smaller-scale private research cloud. Our main findings can
be summarized as follows:
F3.1 Commercial clouds implement various mechanisms and
policies for network performance QoS enforcement, and these
policies are opaque to users and vary over time. We found (i)
token-bucket approaches, where bandwidth is cut by an order
of magnitude after several minutes of transfer; (ii) a per-core
bandwidth QoS, prioritizing heavy flows; (iii) instance types
that, when created repeatedly, are given different bandwidth
policies unpredictably.
F3.2 Private clouds can exhibit more variability than public
commercial clouds. Such systems are orders of magnitude
smaller than public clouds (in both resources and clients),
meaning that when competing traffic does occur, there is less
statistical multiplexing to “smooth out” variation.
F3.3 Base latency levels can vary by a factor of almost 10x
between clouds, and implementation choices in the cloud’s
virtual network layer can cause latency variations over two or-
ders of magnitude depending on the details of the application.

Table 3: Experiment summary for determining performance
variability in modern cloud networks. Experiments marked
with a star (*) are presented in depth in this article. Due to
space limitations, we release the other data in our reposi-
tory [59]. All Amazon EC2 instance types are typical offer-
ings of a big data processing company [20].

Cloud Instance
Type

QoS
(Gbps)

Exp.
Duration

Exhibits
Variability

Cost
($)

*Amazon c5.XL ≤ 10 3 weeks Yes 171
Amazon m5.XL ≤ 10 3 weeks Yes 193
Amazon c5.9XL 10 1 day Yes 73
Amazon m4.16XL 20 1 day Yes 153
Google 1 core 2 3 weeks Yes 34
Google 2 core 4 3 weeks Yes 67
Google 4 core 8 3 weeks Yes 135
*Google 8 core 16 3 weeks Yes 269
HPCCloud 2 core N/A 1 week Yes N/A
HPCCloud 4 core N/A 1 week Yes N/A
*HPCCloud 8 core N/A 1 week Yes N/A

3.1 Bandwidth
We run our bandwidth measurements in two prominent com-
mercial clouds, Amazon EC2 (us-east region) and Google
Cloud (us-east region), and one private research cloud, HPC-
Cloud3. Table 3 summarizes our experiments. In the interest
of space, in this paper we focus on three experiments; all
data we collected is available in our repository [59]. We col-
lected the data between October 2018 and February 2019. In
total, we have over 21 weeks of nearly-continuous data trans-
fers, which amount for over 1 million datapoints and over 9
petabytes of transferred data.

The Amazon instances we chose are typical instance
types that a cloud-based big data company offers to its cus-
tomers [20], and these instances have AWS’s “enhanced net-
working capabilities” [6]. On Google Cloud (GCE), we chose
the instance types that were as close as possible (though not
identical) to the Amazon EC2 offerings. HPCCloud offered a
more limited set of instance types. We limit our study to this
set of cloud resources and their network offerings, as big data
frameworks are not equipped to make use of more advanced
networking features (i.e., InfiniBand), as they are generally de-
signed for commodity hardware. Moreover, vanilla Spark de-
ployments, using typical data formats such as Parquet or Avro,
are not able to routinely exploit links faster than 10 Gbps, un-
less significant optimization is performed [58]. Therefore, the
results we present in this article are highly likely to occur in
real-world scenarios.

In the studied clouds, for each pair of VMs of similar in-
stance types, we measured bandwidth continuously for one
week. Since big data workloads have different network access
patterns, we tested multiple scenarios:
• full-speed - continuously transferring data, and sum-

marizing performability metrics (bandwidth, retransmis-

3https://userinfo.surfsara.nl/systems/hpc-cloud
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Figure 4: Variable network bandwidth performance in the
HPCCloud (left); the statistical performance distribution, plot-
ted as an IQR box; the whiskers represent 1st and 99th per-
centiles (right). Duration: a week of continuous experimenta-
tion; each point is average over 10 seconds.
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Figure 5: Variable network bandwidth performance in the
Google Cloud (left), and the statistical performance distribu-
tion, plotted as an IQR box, where the whiskers are 1st and
99th percentiles (right). The duration is a week of continuous
experimentation, each point is an average over 10 seconds.

sions, CPU load etc.) every 10 seconds;
• 10-30 - transfer data 10 seconds, wait 30 seconds;
• 5-30 - transfer data 5 seconds, wait 30 seconds.

The first transmission regime models highly network inten-
sive applications, such as long-running batch processing or
streaming. The last two modes mimic short-lived analytics
queries, such as TPC-H, or TPC-DS.

HPCCloud. Small-scale (i.e., up to 100 physical machines
and several hundred users) private (research) clouds often
do not use mechanisms to enforce network QoS. We mea-
sured the network performance variability between pairs of
VMs, each having 8 cores. Figure 4 plots the results. We
show our measurements only for "full-speed" (i.e., contin-
uous communication) because our other experiments show
similar behavior. We observe that the network bandwidth
shows high variability, ranging from 7.7 Gbps to 10.4 Gbps.

Google Cloud. GCE states that it enforces network band-
width QoS by guaranteeing a “per-core” amount of bandwidth.
Our measurements, plotted in Figure 5, fall close to the QoS
reported by the provider, but access pattern affects variability
to a greater degree than in other clouds. Longer streams (full-
speed) exhibit low variability and better overall performance,
while 5-30 has a long tail. This could be due to the design of
the Google Cloud network, where idle flows use dedicated
gateways for routing through the virtual network [18]. We ob-
serve that network bandwidth varies significantly, depending
on access patterns, between 13 Gbps and 15.8 Gbps.

Amazon EC2. We discover the opposite behavior in EC2:
heavier streams achieve less performance and more variabil-
ity compared to lighter (shorter) streams, as shown in Fig-
ure 6. Considering the large performance differences between
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Figure 6: Variable network bandwidth performance in Ama-
zon EC2, plotted as an empirical cumulative distribution (left),
barplot of the coefficient of variation (right). The duration is
a week of continuous experimentation, each data point repre-
senting an average over 10 seconds.
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Figure 7: Example of observed Amazon EC2 latency for a
10-second TCP sample on c5.xlarge. Left: RTT latency for
TCP packets. Right: achieved iperf bandwidth. Top: regular
Amazon EC2 behavior. Bottom: latency behavior when a drop
in bandwidth occurs.

these experiments, we plot our measurements as a CDF and a
barplot of coefficient of variation to improve visibility. There
are approximately 3x and 7x slowdowns between 10-30 and 5-
30 and full-speed, respectively. The achieved bandwidth varies
between 1 Gbps and 10 Gbps. We investigate the causes of
this behavior in Section 3.3.

How rapidly does bandwidth vary? Our analysis shows
the level of measurement-to-measurement variability is signif-
icant: bandwidth in HPCCloud (full-speed) and Google Cloud
(5-30) varies between consecutive 10-second measurements
up to 33% and 114%, respectively. While a small sample may
exhibit only modest fluctuations, the long-tailed distributions
we observed here strongly suggest using the analysis tech-
niques we discuss in Section 4.1. Amazon EC2’s variability
is more particular and policy-dependent (Section 3.3).

3.2 Latency
Commercial clouds implement their virtual networks using
very different mechanisms and policies. We can see this in
more detail by looking at the round-trip lantencies seen in
Google Cloud and Amazon EC2. We measure the application-
observed TCP RTT, as this is what impacts the high-level
networking stacks of big data frameworks. For our experi-
ments, we run 10-second streams of iperf tests, capturing all
packet headers with tcpdump. We perform an offline analysis
of the packet dumps using wireshark, which compares the
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Figure 8: Example of observed Google Cloud latency for a 10-
second TCP sample on a 4-core instance. Left: RTT latency
for TCP packets. Right: achieved iperf bandwidth.
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Figure 9: TCP retransmission analysis, summarized for all
experiments presented before, in all clouds. Left: retransmis-
sions as IQR boxplots, with the whiskers representing 1st
and 99th percentiles; Right: violin plot for retransmissions
in Google Cloud; thickness of the plot is proportional to the
probability density of the data.

time between when a TCP segment is sent to the (virtual)
network device and when it is acknowledged. Our data was
collected between August and September 2019. In total, it
contains over 50 million RTT datapoints.

The behavior we observe is inherently different: Google
Cloud exhibits latency in the order of milliseconds, with an
upper limit of 10ms. Amazon EC2 generally exhibits faster
sub-millisecond latency under typical conditions, but when
the traffic shaping mechanism (detailed in Section 3.3) takes
effect, the latency increases by two orders of magnitude, sug-
gesting large queues in the virtual device driver. Figure 7
shows representative patterns of latency in the Amazon EC2
cloud, while Figure 8 is representative of Google Cloud. Both
figures plot latency as RTT packet data obtained from a 10-
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Figure 10: The total amount of data transferred between the
pairs of virtual machines involved in the three types of exper-
iments performed. The total time is a week, while each point
on the horizontal axis represents 10 seconds.

second TCP stream obtained running an iperf benchmark.
The behavior observed in the top half of Figure 7 lasts for

approximately ten minutes of full-speed transfer on c5.xlarge
instances. After this time, the VMs’ bandwidth gets throttled
down to about 1 Gbps (bottom half of Figure 7), which also
significantly increases latency. On Google Cloud, there is no
throttling effect, but the bandwidth and latency vary more
from sample to sample.

3.3 Identifying Mechanisms and Policies
The behavior exhibited by the two commercial providers is
notably different. We uncover mechanisms and policies for
enforcing client QoS by performing extra analysis, depicted
in Figures 9 and 10. The former plots the number of retrans-
missions per experiment (part (a)) and a zoomed-in view of
Google Cloud (part (b)). Amazon EC2 and HPCCloud have a
negligible number of retransmissions, yet retransmission are
common in Google Cloud: roughly 2% per experiment.

Figure 10 plots the total amount of traffic for Amazon EC2
and Google Cloud over the entire duration of our experiments.
It is clear that in Google Cloud’s case the amount of traffic
generated by full-speed is orders of magnitude larger than for
the intermittent access patterns. In Amazon EC2’s case, the
total amount of data sent for all three kinds of experiments
is roughly equal. By corroborating this finding the more fine-
grained experiments we performed presented in Figure 7, and
other empirical studies [51, 62], we find that Amazon EC2
uses a token-bucket algorithm to allocate bandwidth to users.

Token-Bucket Analysis. The token-bucket algorithm op-
eration can be explained as follows. When a VM is provided
to the user, its associated bucket holds a certain amount of
tokens (i.e., a budget). This budget is allowed to be spent at
a high rate (i.e., 10 Gbps). When the budget is depleted (e.g.,
after about 10 minutes of continuous transfer on a c5.xlarge
instance, the QoS is limited to a low rate (e.g., 1 Gbps). The
bucket is also subject to a replenishing rate that we empiri-
cally found to be approximately 1 Gbit token per second, i.e.,
every second users receive the amount of tokens needed to
send 1 Gbit of data at the high (10 Gbps) rate. Once the token
bucket empties, transmission at the capped rate is sufficient to
keep it from filling back up. The user must rest the network,
and re-filling the bucket completely takes several minutes.

We analyze the behavior of multiple types of VMs from the
c5.* family, and find that their token-bucket parameters differ.
More expensive machines benefit from larger initial budgets,
as well as higher bandwidths when their budget depletes. Fig-
ure 11 plots the token-bucket parameter analysis for four VMs
of the c5.* family. For each VM type, we ran an iperf test con-
tinuously until the achieved bandwidth dropped significantly
and stabilized at a lower value. For each instance type, we ran
15 tests. Figure 11 shows the time taken to empty the token
bucket, the high (non-empty bucket) bandwidth value, and the
low (empty bucket) bandwidth value. As the size (i.e., number
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Figure 11: The token-bucket parameters identified for several
instances of Amazon EC2 c5.* family. The elapsed time to
empty the token bucket is depicted with boxplots associated
with left vertical axis. The high and low bandwidths of the
token bucket are depicted with bar plots with whiskers and
are associated with the right vertical axis.

Figure 12: Measured latency and bandwidth for Amazon EC2
(c5.xlarge) and GCE (4-core VM with advertised 8Gbps)
instances as functions of the write() size.

of cores, amount of memory etc,) of the VM increases, we
notice that the bucket size and the low bandwidth increase
proportionally. However, as the magnitude of the boxplots
suggests, as well as the error bars we plotted for the high
bandwidth, these parameters are not always consistent for
multiple incarnations of the same instance type.

Virtual NIC Implementations. We found that differences
in EC2 and GCE’s implementations of virtual NICs can lead
to significantly different observed behavior. EC2’s virtual
NICs advertise an MTU of 9000 bytes, a standard “jumbo
frame” size. GCE’s only advertise an MTU of 1500 bytes
(standard Ethernet frame size), but instead enable TCP Seg-
mentation Offloading (TSO), in which the NIC accepts larger
“packets” from the device driver, but then breaks them down
into smaller Ethernet frames before transmission (we do not
know whether this occurs at the virtual or physical NIC in
GCE’s implementation). Both of these techniques serve the
same basic function—reducing overhead by sending fewer,
larger packets on the virtual NIC, but result in different ob-
servable behavior on the host, and the details of this behavior
depend heavily on the application and workload.

The most striking effect is the way that the size of the
write()s done by the application affects latency and packet
retransmission. Figure 12 plots the effects of the write()
size on latency and bandwidth. On EC2, the size of a single
“packet” tops out at the MTU of 9K, whereas on GCE, TSO
can result in single “packet” at the virtual NIC being as large
as 64K in our experiments. With such large “packets,” per-

ceived latency increases greatly due to the higher perceived
“transmission time” for these large packets. The number of
retransmissions also goes up greatly, presumably due to lim-
ited buffer space in the bottom half of the virtual NIC driver
or tighter bursts on the physical NIC. In practice, the size
of the “packets” passed to the virtual NIC in Linux tends to
equal to the write on the socket (up to the cap noted above).
This makes the observed behavior—and thus repeatability
and the ability to generalize results between clouds—highly
application-dependent. It is also worth noting that all streams
are affected when one stream sends large “packets”, since
they share a queue in the virtual device driver. On GCE, when
we limited our benchmarks to writes of 9K, we got near-zero
packet retransmission and an average RTT of about 2.3ms.
When the benchmark used its default write() size of 128K,
we saw the hundreds of thousands of retransmission shown
in Figure 9 and latencies as high as 10ms.

4 Performance Reproducibility For Big Data
Applications

Having looked at low-level variability in bandwidth and la-
tency, we now move “up” a level to applications and work-
loads. Our main findings are:
F4.1 Under variability resembling Google Cloud and HPC-
Cloud, which can be modeled as stochastic noise, reproducible
experiments can be obtained using sufficient repetitions and
sound statistical analyses.
F4.2 Application transfer patterns exhibit non-trivial interac-
tions with token-bucket network traffic shapers. Depending on
the bucket budget and the application, significant application
performance variability is incurred.
F4.3 Token-bucket traffic shapers in conjunction with (im-
balanced) big data applications can create stragglers.
F4.4 In long-running cloud deployments that have incurred
large amounts of varied network traffic, it is highly difficult
to predict application performance, as it is dependent on the
state of the individual nodes’ remaining token-bucket budgets.

Big Data Workloads. In this section, we run the Hi-
Bench [32] and TPC-DS [49] benchmarks on Spark 2.4.0 (see
Table 4) to showcase our main findings on network variability
and big data workloads reproducibility. In 2015, Ousterhout
et al. [50] found that big data workloads are mostly CPU
bound. The workloads we chose here are no exception. How-
ever, they are sensitive to oscillations in the network transfer
performance. Moreover, most of the CPU load in [50] is at-
tributed to the framework’s inefficiencies [19], which have
been solved in later releases. As a consequence, modern Spark
implementations are more sensitive to network variations.

4.1 Experiments and Stochastic Noise
As detailed in Section 3, the behavior of network performance
variability for Google Cloud and HPCCloud is closer in na-
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Figure 13: CONFIRM analysis for K-Means and TPC-DS
Q65 on Google Cloud and HPCCloud. Median estimates (blue
thick curve), 95% nonparametric confidence intervals (light
blue filled space), and 1% error bounds (red dotted curves).
Vertical axis not starting at 0 for visibility.

Table 4: Big data experiments on modern cloud networks.
Workload Size Network Software #Nodes

HiBench [32] BigData
Token-bucket,

Figure 14
Spark 2.4.0,

Hadoop 2.7.3 12

TPC-DS [49] SF-2000
Token-bucket,

Figure 14
Spark 2.4.0,

Hadoop 2.7.3 12

ture to stochastic variability given by transient conditions in
the underlying resources, such as noisy neighbors. To achieve
reproducible experiments under such conditions, system de-
signers and experimenters need to carefully craft and plan
their tests, using multiple repetitions, and must perform sound
statistical analyses.

We ran several HiBench [32] and TPC-DS [49] benchmarks
directly on the Google Cloud and HPCCloud clouds and re-
port how many repetitions an experimenter needs to perform
in order to achieve trustworthy experiments. While it is true
that running experiments directly on these clouds we can-
not differentiate the effects of network variability from other
sources of variability, the main take-away message of this
type of experiment is that this kind of stochastic variability
can be accounted for with proper experimentation techniques.

On the performance data we obtained, we performed a
CONFIRM [47] analysis to predict how many repetitions
an experiment will require to achieve a desired confidence
interval. Figure 13 presents our findings, showing that for
these two common benchmarks, it can take 70 repetitions or
more to achieve 95% confidence intervals within 1% of the
measured median. As we saw in Section 2, this is far more
repetitions than are commonly found in the literature: most
papers are on the extreme left side of this figure, where the
confidence intervals are quite wide. This points to the need for
stronger experiment design and analysis in our community.
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Figure 14: Validation of the emulation of the token-bucket
policy of Amazon EC2. The similar aspect of the two curves
indicates that emulation is high-quality.
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Figure 15: Link capacity allocated when running Terasort on a
token bucket. Left vertical axis shows the link capacity; right
vertical axis shows the token bucket budget. Budget depletes
due to application network transfers.

4.2 Experiments and Token-Buckets
In contrast to Google Cloud and HPCCloud, the token-bucket
shaping policy of Amazon EC2 is not stochastic noise, and
needs in-depth analysis. Because token-bucket behavior is
dependent on past network access patterns, an application in-
fluences not only its own runtime, but also future applications’
runtimes.

Token-bucket Emulator. We decided to emulate the be-
havior of Amazon EC2 token-bucket instead of directly run-
ning applications in this cloud. We believe this type of ex-
perimentation is superior to the other two alternatives: (i)
simulation, or (ii) directly running applications on the cloud.
For the former, we believe the behavior of big data applica-
tions under network performance variability is far too subtle
and complex to properly simulate while modeling and cap-
turing all possible variables. For the latter, we perform the
emulation in an isolated setup, i.e., a private cluster, that does
not share resources. This allows us to test in isolation the
effects of network performance variability, excluding as much
as possible all other sources of variability one could encounter
in a cloud (e.g., CPU, memory bandwidth, I/O etc.). If we
were to directly run applications in a cloud, it would have
been difficult to separate the effects of network variability
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(b) Performance variability.

Figure 16: HiBench average runtime (left) and performance
variability (right), plotted as IQR box (whiskers represent 1st
and 99th percentiles), induced by token bucket budget vari-
ability. The more network-dependent applications are affected
more by lower budgets.

from, for example, the effects of CPU variability.
We built a network emulator based on the Linux tc [33] fa-

cility. Figure 14 plots the real-world behavior encountered in
Amazon EC2 in comparison with our emulation. This experi-
ment is a zoomed-in view of the experiment in Section 3.1,
where our servers were communicating for either five or ten
seconds, then slept for 30 seconds. At the beginning of each
experiment, we made sure that the token-bucket budget is
nearly empty. During the first few seconds of the experiment
the token-bucket budget gets completely exhausted. For each
sending phase of 5 or 10 seconds, the system starts at a high
QoS (10 Gbps bandwidth), after a few seconds the budget is
emptied, and the system drops to a low QoS (1 Gbps).

Experiment Setup. We perform the experiments described
in Table 4 on a 12-node cluster. Each node has 16 cores,
64GB memory, a 256GB SSD, and FDR InfiniBand network.
Using the emulator presented in Figure 14, we run on the
emulated Amazon EC2 token-bucket policy all applications
and queries in the HiBench [32] and TPC-DS [49] benchmark
suites. The emulated setup is that of the c5.xlarge instance
type, which typically sees a high bandwidth of 10 Gbps and
a low bandwidth of 1 Gbps. Throughout our experiments we
vary the token bucket budget to assess its impact on big data
applications. We run each workload a minimum of 10 times
for each token-bucket configuration and report full statistical
distributions of our experiments.

Token-bucket-induced Performance Variability. One
important parameter for the token-bucket is its budget: the
number of tokens available at a certain moment in time. This
is highly dependent on the previous state of the virtual ma-
chine (i.e., how much network traffic has it sent recently), and
has a large impact on the performance of future deployed
applications. Note that it is difficult to estimate the currently-
available budget for anything other than a “fresh” set of VMs:
each VM has its own token bucket, the remaining budget is
a function of previous runs, and, as we saw in Figure 11 the
constants controlling the bucket are not always identical.

Application performance is highly dependent on the budget,
and deployments with smaller budgets create more network
performance variability. Figure 15 shows the network traf-

fic behavior of the Terasort application with different initial
budgets. For each budget, the subfigures show the application
network profile for 5 consecutive runs. We notice a strong
correlation between small budgets and network performance
variability: there is much more variability for budgets ∈
{10,100}Gbits, than for budgets ∈ {1000,5000}Gbits.

Figure 16 shows how this effect manifests in the runtimes
of HiBench: it plots the average application runtime (left)
over 10 runs for budgets ∈ {10,100,1000,5000}Gbits, and
the performance variability over the same budgets (right). For
the more network-intensive applications (i.e., TS, WC), the
initial state of the budget can have a 25%–50% impact on
performance.

A similar behavior is observed for the TPC-DS benchmark
suite. Figure 17 shows the query sensitivity to the token bud-
get and the variability induced by different budget levels. Fig-
ure 17(a) plots average runtime slowdown for 10-run sets of
TPC-DS queries for budgets ∈ {10,100,1000}Gbits, com-
pared to the 5000 Gbit budget. For all queries, larger budgets
lead to better performance. Figure 17(b) plots the perfor-
mance variability over all tested budgets. Queries with higher
network demands exhibit more sensitivity to the budget and
hence higher performance variability.

These results clearly show that if the system is left in an un-
known state (e.g., a partially-full token bucket, left over from
previous experiments), the result is likely to be an inaccurate
performance estimate. Evidence from Figures 16(b) and 17(b)
strongly supports this, as performance varies widely for the
network-intensive queries and applications depending on the
token-bucket budget.

Token-bucket-induced Stragglers. Non-trivial combina-
tions of token-bucket budgets, application scheduling imbal-
ances, and network access patterns lead to straggler nodes.
Figure 18 shows that for budget = 2500 Gbits and application
TPC-DS, the application gets slowed down by a straggler: all
nodes but one in the deployment do not deplete their bud-
gets completely, thus remaining at a high bandwidth QoS
of 10 Gbps. However, there is one node on which the token-
bucket budget is depleted, causing its bandwidth to get limited
to 1 Gbps. Exacerbating the variability, the behavior is not
consistent: this node oscillates between high and low band-
widths in short periods of time. Such unpredictable behavior
leads to both performance variability of the entire setup and
also poor experiment reproducibility. This behavior will be
prevalent in many unbalanced networked applications, where
certain servers might perform more transfers than others. Es-
pecially in long-running clusters, the state of the individual
servers’ token-buckets will be highly different. As a direct
consequence, the overall system will suffer from stragglers.

Repeatable experiments and token-buckets. Token-
bucket policies for enforcing network QoS can have unex-
pected and detrimental impacts on sound cloud-based exper-
imentation. To explore this, we compute medians and their
nonparametric confidence intervals (CIs), similar to the work
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Figure 17: TPC-DS average runtime slowdown per query depending on initial budget (top); overall performance variability,
summarized over initial budgets (bottom), plotted as IQR box; whiskers represent 1st and 99th percentiles.
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Figure 18: Link capacity allocation for TPC-DS on a token-
bucket network, with initial budget = 2500 Gbit. Regular node
network utilization (left); straggler node (right).

by Maricq et al. [47], across a number of initial token budgets.
Figure 19 plots median estimates for two TPC-DS queries,
along with 95% CIs and 10% error bounds around medians.
Repetitions of the experiments are independent: each one
runs on fresh machines with flushed caches, and at the the
beginning of each repetition, we reset the token budget. We
reduce this initial budget over time to emulate the effects
that previous experiments can have on subsequent ones: what
this models is an environment in which many different ex-
periments (or repetitions of the same experiment) are run in
quick succession. This is likely to happen when running many
experiments back-to-back in the same VM instances.

Query 82 (in the top of Figure 19) is agnostic to the token
budget. Running more repetitions of this experiment tight-
ens the confidence intervals, as is expected in CI analysis.
In contrast, query 65 (in the bottom of the figure) depends
heavily on the bucket budget; as a result, as we run more ex-
periments, depleting the bucket budget, the query slows down
significantly, and the initial CI estimates turn out to be inac-
curate. In fact, the CIs widen with more repetitions, which is
unexpected for this type of analysis. This is because the token
bucket breaks the assumption that experiments are indepen-
dent: in this model, more repetitions deplete the bucket that
the next experiment begins with. These two queries represent
extremes, but, as shown in the bar graph at the bottom of the
figure, 80% of all queries we ran from TPC-DS suffer effects

like Query 65: most produce median estimates that are more
than 10% incorrect by the time we fully deplete the budget.

This demonstrates that, when designing experiments, we
cannot simply rely on the intuition that more repetitions lead
to more accurate results: we must ensure that factors hidden in
the cloud infrastructure are reset to known conditions so that
each run is truly independent. Others have shown that cloud
providers use token buckets for other resources such as CPU
scheduling [62]. This affects cloud-based experimentation, as
the state of these token buckets is not directly visible to users,
nor are their budgets or refill policies.

5 Summary: Is Big Data Performance Repro-
ducible in Modern Cloud Networks?

We return to our two basic questions: (1) How reproducible
are big data experiments in the cloud?; and (2) What can
experimenters do to make make sure their experiments are
meaningful and robust? Our findings are:

F5.1: Network-heavy experiments run on different
clouds cannot be directly compared. Building a cloud in-
volves trade-offs and implementation decisions, especially
at the virtualization layer. Some of these decisions are well-
documented by the platforms [6,28], but others, including the
ones we have examined in this paper, are not. Unfortunately,
these differences can cause behaviors that result in different
application performance, such as the bandwidth differences
seen in Figure 10 or the latency effects seen in Figure 12.

Both of these effects are rather large, and are dependent on
factors such as the size of the application’s write buffer and
specific patterns of communication. While these decisions
presumably serve the clouds’ commercial customers well,
they complicate things for those who are trying to draw sci-
entific conclusions; when comparing to previously-published
performance numbers, it is important to use the same cloud
to ensure that differences measured are that of the systems
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Figure 19: Median estimates (blue thick curve), 95% non-
parametric confidence intervals (light blue filled space), and
10% error bounds (red dotted curves) for running two TPC-
DS queries, over 5 token-bucket budgets. Bottom: number of
queries for which we cannot achieve tight confidence intervals
and accurate median estimates.

under test, and not artifacts of the cloud platform. Running
on multiple clouds, can, however, be a good way to perform
sensitivity analysis [36]: by running the same system with
the same input data and same parameters on multiple clouds,
experimenters can reveal how sensitive the results are to the
choices made by each provider.

F5.2: Even within a single cloud, it is important to es-
tablish baselines for expected network behavior. These
baselines should be published along with results, and
need to be verified before beginning new experiments. Be-
cause cloud providers’ policies can be opaque, and implemen-
tation details can change over time, it is possible for changes
to invalidate over time experiments within the same cloud.
For example, after several months of running experiments in
Amazon EC2, we began encountering new behavior: prior
to August 2019, all c5.xlarge instances we allocated were
given virtual NICs that could transmit at 10 Gbps. Starting
in August, we started getting virtual NICs that were capped
to 5 Gbps, though not consistently (this behavior is part of
the underlying cause of the distributions in Figure 11). The
reasons for this are not clear, and we have no way to know
whether the “new” behavior is a transient effect in response to
increased congestion that month or a new, permanent policy.

If one can establish baseline expectations for how the plat-
form will perform, and incorporate checks for them into
the experimental process [37], one can at least detect when
changes have occurred. Experimenters should check, through
micro-benchmarks, whether specific cloud resources (e.g.,
CPU, network) are subject to provider QoS policies.

As opposed to contention-related variability, this type of
variability is deterministic under carefully selected micro-
benchmarks. In the network, these microbenchmarks should
at a minimum include base latency, base bandwidth, how la-

tency changes with foreground traffic, and the parameters to
bandwidth token-buckets, if they are present. Furthermore,
when reporting experiments, always include these perfor-
mance fingerprints together with the actual data, as possi-
ble changes in results in the future could be explained by
analyzing the micro-benchmark logs.

F5.3: Some cloud network variability (in particular, in-
terference from neighbors) can be modeled as stochastic
noise, and classic techniques from statistics and experi-
ment design are sufficient for producing robust results;
however, this often takes more repetitions than are typi-
cally found in the literature. Standard statistical tools such
as ANOVA and confidence intervals [11, 36, 47] are effective
ways of achieving robust results in the face of random vari-
ations, such as those caused by transient “noisy neighbors”;
however, in order to be effective, they require many repeti-
tions of an experiment, and, as we saw in Section 2, this bar
is often not met in the literature. The more variance, the more
repetitions are required, and as we saw in Figures 4, 5, and 6,
network variance in the cloud can be rather high, even under
‘ideal’ conditions. An effective way to determine whether
enough repetitions have been run is to calculate confidence
intervals for the median and tail, and to test whether they fall
within some acceptable error bound (e.g., 5% of value they
are measuring).

F5.4: Other sources of variability cause behavior that
breaks standard assumptions for statistical analysis, re-
quiring more careful experiment design. Some of the vari-
ability we have seen (e.g., Figures 12, 18, and 19) causes be-
havior that breaks standard assumptions for statistical analysis
(such as iid properties and stationarity). As an integral part
of the experimentation procedure, samples collected should
be tested for normality [56], independence [46], and station-
arity [23]. When results are not normally-distributed, non-
parametric statistics can be used [26]. When performance is
not stationary, results can be limited to time periods when
stationarity holds, or repetitions can be run over longer time
frames, different diurnal or calendar cycles, etc. Techniques
like CONFIRM [47] can be used to test whether confidence
intervals converge as expected.

Discretizing performance evaluation into units of time, e.g.,
one hour is helpful. Gathering median performance for each
interval, and applying techniques such as CONFIRM over
large-numbers of gathered medians results in significant and
realistic performance data. Large intervals can smooth out
noise, helping to reduce unrepresentative measurements.

We also find it helpful to ‘rest’ the infrastructure and ran-
domize [3] experiment order. Because it is hard to tell what
performance-relevant state may build up in the hidden parts
of the underlying cloud infrastructure, experimenters must
ensure that the infrastructure is in as ‘neutral’ a state as possi-
ble at the beginning of every experiment. The most reliable
way to do this is to create a fresh set of VMs for every ex-
periment. When running many small experiments, this can
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be cost- or time-prohibitive: in these cases, adding delays
between experiments run in the same VMs can help. Data
used while gathering baseline runs can be used to determine
the appropriate length (e.g., seconds or minutes) of these rests.
Randomized experiment order is a useful technique for avoid-
ing self-interference.

F5.5: Network performance on clouds is largely a func-
tion of provider implementation and policies, which can
change at any time. Experimenters cannot treat “the cloud”
as an opaque entity; results are significantly impacted by
platform details that may or may not be public, and that are
subject to change. (Indeed, much of the behavior that we doc-
ument in Sections 3 and 4 is unlikely to be static over time.)
Experimenters can safeguard against this by publishing as
much detail as possible about experiment setup (e.g., instance
type, region, date of experiment), establishing baseline per-
formance numbers for the cloud itself, and only comparing
results to future experiments when these baselines match.

Applicability to other domains. In this paper, we focused
on big data applications and therefore our findings are most
applicable in this domain. The cloud-network related findings
we present in Section 3 are general, so practitioners from other
domains (e.g., HPC) should take them in to account when
designing systems and experiments. However, focusing in
depth on other domains might reveal interactions between net-
work variability and experiments that are not applicable to big
data due to the intrinsic application characteristics. Therefore,
while our findings in Section 4 apply to most other networked
applications, they need not be complete. We also believe that
a community-wide effort for gathering cloud variability data
will help us automate reproducible experiment design that
achieves robust and meaningful performance results.

6 Related Work

We have showed the extent of network performance variabil-
ity in modern clouds, as well as how practitioners disregard
cloud performance variability when designing and running
experiments. Moreover, we have showed what the impact of
network performance variability is on experiment design and
on the performance of big data applications. We discuss our
contributions in contrast to several categories of related work.

Sound Experimentation (in the Cloud). Several articles
already discuss pitfalls of systems experiment design and pre-
sentation. Such work fits two categories: guidelines for better
experiment design [3,17,38,47] and avoiding logical fallacies
in reasoning and presentation of empirical results [10, 21, 31].
Adding to this type of work, we survey how practitioners ap-
ply such knowledge, and assess the impact of poor experiment
design on the reliability of the achieved results. We investi-
gate the impact of variability on performance reproducibility,
and uncover variability behavior on modern clouds.

Network Variability and Guarantees. Network variabil-
ity has been studied throughout the years in multiple contexts,

such as HPC [8, 9], experimental testbeds [47] and virtual-
ized environments [35, 40, 55]. In the latter scenario, many
studies have already assessed the performance variability of
cloud datacenter networks [43, 51, 63]. To counteract this
behavior, cloud providers tackle the variability problem at
the infrastructure level [12, 52]. In general, these approaches
introduce network virtualization [30, 54], or traffic shaping
mechanisms [18], such as the token buckets we identified, at
the networking layer (per VM or network device), as well as
a scheduling (and placement) policy framework [41]. In this
work, we considered both types of variability: the one given
by resource sharing and the one introduced by the interaction
between applications and cloud QoS policies.

Variability-aware Network Modeling, Simulation, and
Emulation. Modeling variable networks [27, 45] is a topic of
interest. Kanev et al. [39] profiled and measured more than
20,000 Google machines to understand the impact of perfor-
mance variability on commonly used workloads in clouds.
Uta et al. emulate gigabit real-world cloud networks to study
their impact on the performance of batch-processing applica-
tions [60]. Casale and Tribastone [14] model the exogenous
variability of cloud workloads as continuous-time Markov
chains. Such work cannot isolate the behavior of network-
level variability compared to other types of resources.

7 Conclusion

We studied the impact of cloud network performance vari-
ability, characterizing its impact on big data experiment re-
producibility. We found that many articles disregard network
variability in the cloud and perform a limited number of rep-
etitions, which poses a serious threat to the validity of con-
clusions drawn from such experiment designs. We uncovered
and characterized the network variability of modern cloud net-
works and showed that network performance variability leads
to variable slowdowns and poor performance predictability,
resulting in non-reproducible performance evaluations. To
counter such behavior, we proposed protocols to achieve reli-
able cloud-based experimentation. As future work, we hope
to extend this analysis to application domains other than big
data and develop software tools to automate the design of
reproducible experiments in the cloud.
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Appendix – Code and Data Artifacts

Raw Cloud Data:
DOI:10.5281/zenodo.3576604

Bandwidth Emulator:
github.com/alexandru-uta/bandwidth_emulator

Cloud Benchmarking:
github.com/alexandru-uta/measure-tcp-latency
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Abstract
This paper presents a new approach for caching in CDNs that
uses machine learning to approximate the Belady MIN (ora-
cle) algorithm. To accomplish this complex task, we propose
a CDN cache design called Learning Relaxed Belady (LRB)
to mimic a Relaxed Belady algorithm, using the concept of
Belady boundary. We also propose a metric called good deci-
sion ratio to help us make better design decisions. In addition,
the paper addresses several challenges to build an end-to-end
machine learning caching prototype, including how to gather
training data, limit memory overhead, and have lightweight
training and prediction.

We have implemented an LRB simulator and a prototype
within Apache Traffic Server. Our simulation results with 6
production CDN traces show that LRB reduces WAN traffic
compared to a typical production CDN cache design by 4–
25%, and consistently outperform other state-of-the-art meth-
ods. Our evaluation of the LRB prototype shows its overhead
is modest and it can be deployed on today’s CDN servers.

1 Introduction

Content Distribution Networks (CDNs) deliver content
through a network of caching servers to users to improve
latency, bandwidth, and availability. CDNs delivered 56%
of Internet traffic in 2017, with a predicted rise to 72% by
2022 [29]. Improving CDN caching servers can significantly
improve the content delivery of the Internet.

A CDN cache sits between users and Wide-Area Networks
(WANs). Whenever a user requests content that is not cur-
rently cached, the CDN must fetch this content across Internet
Service Providers (ISPs) and WANs. While CDNs are paid
for the bytes delivered to users, they need to pay for the band-
width required to fetch cache misses. These bandwidth costs
constitute an increasingly large factor in the operational cost
of large CDNs [6, 14, 17, 41, 46, 66]. CDNs are thus seeking
to minimize these costs, which are typically measured as byte
miss ratios, i.e., the fraction of bytes requested by users that
are not served from cache.

The algorithm that decides which objects are cached in
each CDN server plays a key role in achieving a low byte
miss ratio. Yet, the state-of-the-art algorithms used in CDN
caching servers are heuristic-based variants of the Least-
Recently-Used (LRU) algorithm (Section 2). The drawback

of heuristics-based algorithms is that they typically work well
for some access patterns and poorly for others. And, even
with five decades of extensive study since caching was first
proposed [84]—including using machine learning to adapt
heuristics to different workloads—the fundamental limitation
of heuristics remains. We still observe a large gap between the
byte miss ratios of the state-of-the-art online cache replace-
ment algorithms and Belady’s offline MIN algorithm [16] on
a range of production traces.

To bridge this gap, this paper presents a novel machine-
learning (ML) approach that is fundamentally different from
previous approaches to cache replacement. Our approach does
not build on heuristics, nor try to optimize heuristics-based
algorithms. Our approach is to approximate Belady’s MIN
(oracle) algorithm, using machine learning to find objects to
evict based on past access patterns. Belady’s algorithm always
evicts the object with the furthest next request. A naive ML
algorithm that imitates this behavior would incur prohibitively
high computational cost. To overcome this challenge, our key
insight is that it is sufficient to approximate a relaxed Belady
algorithm that evicts an object whose next request is beyond
a threshold but not necessarily the farthest in the future.

To set a proper threshold, we introduce the Belady bound-
ary, the minimum time-to-next-request of objects evicted by
Belady’s MIN algorithm. We show that the byte miss ratio of
the relaxed Belady algorithm using the Belady boundary as its
threshold is close to that of Belady’s MIN algorithm. Approx-
imating relaxed Belady gives our system a much larger set
of choices to aim for, which has two major consequences for
our design. It allows our system to run predictions on a small
sampled candidate set—e.g., 64—which dramatically reduces
computational cost. And, it allows our system to quickly adapt
to changes in the workload by gathering training data that
includes the critical examples of objects that relaxed Belady
would have selected for replacement.

Even with the insight of relaxed Belady, the design space
of potential ML architectures (features, model, loss function,
etc.) is enormous. Exploring this space using end-to-end met-
rics like byte miss ratio is prohibitively time-consuming be-
cause they require full simulations that take several hours for
a single configuration. To enable our exploration of the ML
design space we introduce an eviction decision quality metric,
the good decision ratio, that evaluates if the next request of an
evicted object is beyond the Belady boundary. The good deci-
sion ratio allows us to run a simulation only once to gather
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Figure 1: CDNs place servers in user proximity around the
world (e.g., in a user’s ISP). Incoming requests are sharded
among several caching servers, which use combined DRAM
and flash caches. Cache misses traverse expensive wide-area
networks to retrieve data from the origin datacenter.

training data, prediction data, and learn the Belady boundary.
Then we can use it to quickly evaluate the quality of decisions
made by an ML architecture without running a full simulation.
We use the good decision ratio to explore the design space
for components of our ML architecture including its features,
model, prediction target, and loss function among others.

These concepts enable us to design the Learning Relaxed
Belady (LRB) cache, the first CDN cache that approximates
Belady’s algorithm. Using this approach in a practical system,
however, requires us to address several systems challenges in-
cluding controlling the computational overhead for ML train-
ing and prediction, limiting the memory overhead for training
and prediction, how to gather online training data, and how to
select candidates for evictions.

We have implemented an LRB simulator and an LRB pro-
totype within Apache Traffic Server [1, 2, 10, 43].1 Our evalu-
ation results using 6 production CDN traces show that LRB
consistently performs better than state-of-the-art methods and
reduces WAN traffic by 4–25% compared to a typically de-
ployed CDN cache—i.e., using LRU replacement that is pro-
tected with a Bloom filter [22]. Our evaluation of the proto-
type shows that LRB runs at a similar speed to a heuristic-
based design and its computational overhead and memory
overhead are small.

2 Background and Motivation

In this section, we quantify the opportunities and challenges
that arise in CDN caching. We also discuss the constraints on
the design space of LRB.

2.1 The Challenge of Reducing WAN Traffic
A CDN user request is directed to a nearby CDN server (e.g.,
using DNS or anycast [33]), which caches popular web and
media objects. Each cache miss has to be fetched across the
wide-area network (WAN) (Figure 1). As WAN bandwidth
needs to be leased (e.g., from tier 1 ISPs), CDNs seek to

1The source code of our simulator and prototype alongside with doc-
umentation and the Wikipedia trace used in our evaluation is available at
https://github.com/sunnyszy/lrb .
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Figure 2: Simulated byte miss ratios for Belady and the top-
performaning policies from Section 6 for six CDN production
traces and a 1 TB flash cache size. There is a large gap of
25–40% between Belady and all other policies.

reduce WAN traffic, which corresponds to minimizing their
cache’s byte miss ratio.

CDN caching working sets are massive compared to avail-
able cache space. To reduce bandwidth, a CDN deploys
DRAM and flash caches in each edge server.2 A commer-
cial CDN serves content on behalf of thousands of content
providers, which are often large web services themselves. This
leads to a massive working set, which is typically sharded
across the (tens of) servers in an edge cluster [25, 77]. Even
after sharding traffic, an individual cache serves traffic with a
distinct number of bytes much larger than its capacity. Conse-
quently, there exists significant competition for cache space.

There are significant opportunities to improve byte miss
ratios. CDN traffic has a variety of unique properties com-
pared to other caching workloads. For example, a striking
property observed in prior work [63] is that around 75% of
all objects do not receive a second request within two days
(so-called “one-hit-wonders”). If these objects are allowed to
enter the cache, the vast majority of cache space is wasted.
Therefore, major CDNs deploy B-LRU, an LRU-eviction pol-
icy using a Bloom filter [63,67,74] to prevent one-hit-wonder
objects from being admitted to the cache.

We quantify the opportunity to improve byte miss ratios
over B-LRU. To this end, we use 6 production traces from
3 different CDNs, which are sharded at the granularity of
a single SSD (around 1–2 TB). Figure 2 compares the byte
miss ratios of B-LRU and the other top-performing policies
from Section 6 to Belady’s MIN [16], and we find that there
remains a gap of 25–40%.

Exploiting miss ratio opportunities is challenging in prac-
tice. The key challenge is that workloads change rapidly over
time and differ significantly between servers and geographic
locations. These changes occur due to load balancing dif-
ferent types of content, e.g., web traffic is more popular in
the morning and video more popular at night. Due to these
rapid changes and breadth of different access patterns, prior

2CDNs typically prefer flash storage over HDDs as cache reads lead to
random reads with very high IOPS requirements. While some CDNs have
hybrid deployments, many CDNs rely entirely on flash [46, 67, 74, 78].
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PT-1 PD-2 ET-1 ET-2 CET-1 CET-2

Mean CPU 5% 3% 6% 16% 7% 18%
Peak CPU 19% 12% 10% 24% 13% 30%

Table 1: Mean and peak CPU load in Wikipedia’s produc-
tion deployment CDN across 6 datacenters in three different
timezones, for March 2019. Peak CPU load is below 30%.

caching policies (Section 7) only achieve marginal improve-
ments over B-LRU (Section 6). In fact, many recent caching
policies lead only to gains on some traces with certain cache
size configurations.

In conclusion, there is significant demand to realize caching
policies that can automatically adapt to a geographic loca-
tion’s workload and to changes in request patterns over time.
Machine learning is well suited to achieving this goal. But,
leveraging machine learning for CDN caching requires us to
overcome many challenges we describe in Section 4.

2.2 Opportunity and Requirements
Deployment opportunity. We find that today’s CDN caches
typically have spare processing capacity. Table 1 shows the
CPU load in six production deployments of Wikipedia’s CDN
for March 2019. We see that, on average, there is 90% spare
processing capacity. Even under peak load, there is still 70%
CPU capacity available, as disk and network bandwidth are
frequent bottlenecks. Thus, the opportunity in current deploy-
ment is that we can use this excess processing capacity as part
of more sophisticated caching algorithms.

Deployment requirements. There are three key constraints
when deploying on existing CDN caching servers.
• Moderate memory overhead of a few GBs but not 10s of

GBs because large quantities are not available [19].
• Not require TPUs or GPUs because these are not cur-

rently deployed in CDN servers [41, 63].
• Handle tens of thousands of requests per second be-

cause this is the request rate seen at CDN caches [19].

3 Approximating Belady’s MIN Algorithm

In order to approximate Belady’s MIN algorithm in the design
of an ML-based cache, this section introduces the relaxed
Belady algorithm, Belady boundary, and good decision ratio.

3.1 Relaxed Belady Algorithm
It is difficult for an ML predictor to directly approximate
Belady’s MIN algorithm for two reasons. First, the cost of
running predictions for all objects in the cache can be pro-
hibitively high. Second, in order to find the object with the
farthest next request, an ML predictor needs to predict the
time to next request of all objects in the cache accurately.

Time

Now
Belady
boundary

Cache: { O1, O2, … , Ok, Ok+1, … , On}

Figure 3: The relaxed Belady algorithm partitions objects into
two sets based on their next requests. The next requests of
Ok+1, . . . ,On are beyond the threshold (Belady boundary).

To overcome these two challenges, we define the relaxed
Belady algorithm, a variant of Belady’s MIN, that randomly
evicts an object whose next request is beyond a specific thresh-
old, as shown in Figure 3. The algorithm partitions the objects
of a cache into two sets each time it needs to make an eviction
decision: objects whose next requests are within the thresh-
old (set 1) and objects whose next requests are beyond the
threshold (set 2). If set 2 is not empty, the algorithm randomly
evicts an object from this set. If set 2 is empty, the algorithm
reverts to the classical Belady among object in set 1.

The relaxed Belady algorithm has two important properties.
First, if the threshold is far, its byte miss ratio will be close to
that of Belady’s MIN. Second, since the algorithm can evict
any of the objects in set 2, not necessarily the object with
farthest distance, there will be many eviction choices in the
cache each time it needs to evict an object.

These properties greatly reduce the requirements for an ML
predictor. Instead of predicting next requests for all objects
in the cache, the ML predictor can run predictions on a small
sample of candidates in the cache for an eviction as long as
the sample includes objects from set 2. This allows a dramatic
reduction of computational cost. In addition, it reduces the
required precision of the ML predictor. It only needs to find an
object whose next request is beyond the threshold instead of
the farthest. This greatly reduces the memory overhead when
gathering training data: instead of having to track objects
indefinitely, it is sufficient to track objects until they are re-
requested or cross the threshold.

Shorter thresholds thus make the task of the ML predictor
more tractable. While longer thresholds move the byte miss
ratio of relaxed Belady closer to Belady’s MIN. It is thus
important to find the proper threshold.

3.2 Belady Boundary

To systematically choose a threshold for the relaxed Belady al-
gorithm, we introduce the Belady boundary as the minimum
of time to next request for all evicted objects by Belady’s
MIN algorithm. It is intuitively meaningful—Belady’s MIN
kept all objects with a next request less than this boundary
in the cache—but requires future information to compute.
In practice, we assume that the Belady boundary is approxi-
mately stationary. This allows us to approximate the Belady
boundary by computing the minimum of the next requests of
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Cache size (GB) 64 128 256 512 1024

Boundary (x cache size) 3 2 2 2 2
Objects beyond boundary 19% 19% 16% 12% 10%
Increase in byte miss ratio
over Belady

10% 13% 12% 11% 9%

Table 2: Comparison of the relaxed Belady algorithm to Be-
lady MIN for the Wikipedia trace with different cache sizes.

all evicted objects by the Belady MIN algorithm during the
machine learning warmup period.

Table 2 shows how the Belady boundary affects the byte
miss ratio of relaxed Belady on the Wikipedia trace. We find
that relaxed Belady applies random eviction to a set of objects,
e.g., 19% for a 64 GB cache. While this Belady boundary en-
ables efficient implementations, it comes at the cost of 9-13%
more misses. Compared to the 25%–40% gap between state-
of-the-art online algorithms and Belady’s MIN (Figure 2),
this increase seems acceptable.

Next, we show how to use the Belady boundary to estab-
lish a decision quality metric, which is used to make design
decisions throughout Section 4.

3.3 Good Decision Ratio
To design an algorithm that makes better decisions we need
to determine the quality of individual decisions. End-to-end
metrics like byte miss ratio, however, reflect the aggregated
quality of many decisions. When an algorithm has a byte miss
ratio higher than Belady we know it made some bad decisions,
but we cannot determine which of its decisions were bad. The
individual misses that comprise byte miss ratio are similarly
unhelpful because they are also the result of many earlier
decisions.

Our eviction decision metric is defined with respect to the
relaxed Belady algorithm with the Belady boundary as its
threshold. Evicting an object is a good decision if the next
request of the object is beyond the Belady boundary. It is a
bad decision if its next request is within the Belady boundary.

We find that an algorithm’s good decision ratio—i.e.,
# good decisions / # total eviction decisions—correlates
strongly with the byte miss ratio it ultimately achieves (Sec-
tion 6.4). This metric plays a key part in the design of LRB.

4 Design of Learning Relaxed Belady Cache

This section presents the design details of LRB, which uses
ML to imitate the relaxed Belady algorithm. Accomplish-
ing this requires simultaneously addressing two previously
unsolved problems:

• How to design an ML approach that decreases byte miss
ratio relative to state-of-the-art heuristics?

4. Evict3. ML model Cache

Now

1. Past info

Req

2. Training

········ ReqReqReq ········Req

Figure 4: General architecture that uses ML for caching with
4 key design issues: 1) what past information to use for ML, 2)
how to generate online training datasets, 3) what ML model
to use, and 4) how to select eviction candidates.

• How to build a practical system with that approach?

Each problem introduces several challenges in isolation, si-
multaneously addressing them additionally requires us to
balance their often-competing goals.

Figure 4 presents a general architecture that uses ML to
make eviction decisions. We identify four key design issues:

(1) Past information. The first design issue is determining
how much and what past information to use. More data im-
prove training quality, but we need to limit the information in
order to build a practical system, as higher memory overhead
leads to less memory that can be used to cache objects.

(2) Training data. The second design issue is how to use
past information for training. As workloads vary over time
the model must be periodically retrained on new data. Thus, a
practical system must be able to dynamically generate training
datasets with proper labels.

(3) ML architecture. The third design issue is selecting a
machine learning architecture that makes good decisions. This
includes selecting features, the prediction target, and the loss
function as well as how to translate predictions into eviction
decisions. In addition, these decisions need to be compatible
with available hardware resources to build a practical system.

(4) Eviction candidate selection. The final design issue is
how to select eviction candidates. Although an approximation
of the relaxed Belady algorithm can evict any object whose
next request is beyond the Belady boundary and there are
many eviction choices, we still need a method to select a
small set of candidates that includes such objects with a high
probability.

The rest of this section describes the design decisions of
LRB for each of these design issues. Our general approach
is to guide our design using the good decision ratio metric
defined in Section 3.
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4.1 Past information

LRB keeps information about an object only when its most
recent request is within the sliding memory window. The
information within the sliding memory window is used for
training and prediction.

Setting the size of the sliding memory window is important
to the performance of LRB. If the sliding memory window is
too short, LRB will not have enough training data to produce
a good model and may not have the information it needs
during prediction to make an accurate prediction. If the sliding
memory window is too long, it may take too much space away
from cached data.

LRB uses each trace’s validation prefix to set the sliding
memory window hyperparameter. For small cache sizes, the
validation prefix is long enough to derive the “optimal” sliding
memory window, which achieves the highest good decision
ratio. For large cache sizes, we use a least-squares regression
line fit to the relationship between small cache sizes and their
optimal sliding memory window parameters.

We remark that, at the beginning of a trace (or during initial
deployment), LRB requires training data to build an initial
model. Thus, our implementation uses LRU as a fallback until
sufficient training data is available.

4.2 Training Data

Acquiring training data for our problem is challenging be-
cause the features and corresponding label exist at widely
disparate times. Consider an object that is requested once and
then not requested again until 5 hours later. The features of
the object exist and vary at all times in the 5-hour range. The
label—i.e., what we want to predict—does not exist until the
end of that range, when we know the “future” by waiting until
it is the present. To address the time disparity, LRB decouples
generation of unlabeled training data from labeling that data.

Unlabeled training data generation. To generate unlabeled
training data LRB periodically takes a random sample of
objects in the sliding memory window and then records the
current features of those objects. We choose to randomly
sample over objects instead of over requests to avoid biasing
the training data towards popular objects with many requests.
Such popular objects should be represented in the training
data so the model learns not to evict them. Training data for
less popular objects, however, is more important because they
include the objects beyond the Belady boundary—the good
eviction decisions we want our model to learn. We choose
to randomly sample over all objects in the sliding memory
window instead of only those currently in the cache as cached
objects are similarly biased.

Labeling training data. LRB uses two methods for assign-
ing labels to training data. The first is to wait until an object
is requested again. When this happens, we know the “future”

and use that to determine the label. Some objects, however,
will not be requested until far—e.g., 5 days—in the future.

Waiting until such objects are requested again would intro-
duce many problems. First, it would require excessive mem-
ory overhead as we maintain features for many objects that
were requested a potentially very long time ago. Second, it
would make some of the training data excessively old, e.g., 5
days old. Finally, it would never include training data for ob-
jects that are never requested again—which are a significant
portion of the good decisions we want our method to learn.

LRB’s second method for labeling training data avoids
these problems by leveraging an insight related to the Belady
boundary: all objects that are not requested again for at least
a boundary amount of time are equivalent good eviction de-
cisions. Thus, once the time since last request for an object
exceeds the Belady boundary we can safely label it. LRB uses
this second labeling method when an object falls out of the
sliding memory window.

4.3 ML Architecture
This subsection describes the components of LRB’s ML archi-
tecture. For each component, we describe our choice, describe
its rationale, and then use the good decision ratio to explore
the design space. This exploration is complicated by the fact
that each component influences the others—feature set A may
be better for model X while feature set B may be better for
model Y. Even with our good decision ratio doing a full explo-
ration of all possible combinations is still prohibitive. Instead,
we fix each of the other components on what we ultimately
select in LRB’s design and then vary the specific component.

4.3.1 Features: Deltas, EDCs, and Static

LRB uses three different types of features: deltas, exponen-
tially decayed counters, and static features. The rationale for
these features is to provide a superset of the information used
by previous heuristics. Because our model learns the weight
for different features adding more features should not harm
its accuracy. Thus, the primary tradeoff for features is weigh-
ing how much they help the model against the overhead they
incur. To minimize the overhead of the features we strive to
make storing and updating them efficient (Section 5).

Deltas. Deltas indicate the amount of time between consec-
utive requests to an object. Delta1 indicates the amount of
time since an object was last requested. Delta2 indicates the
time in between an object’s previous two requests and so on,
i.e., deltan is the amount of time between an object’s nth and
(n−1)th previous requests. If an object has been requested
only n times, then above deltan are ∞. We include deltas as
features because they subsume the information used by many
successful heuristics. For instance, LRU uses delta1, LRU-K
uses the sum of delta1 to deltak, and S4LRU uses a combina-
tion of delta1 to delta4.
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Figure 5: Good decision ratios for accumulating features for
LRB on three traces at two cache sizes. LRB uses static
features, 32 deltas, and 10 EDCs (full).

Exponentially decayed counters (EDCs). EDCs track an
approximate per-object request count over longer time periods,
where keeping exact counts would require excessive memory
overhead. Each EDCi is initialized to 0. Whenever there is
a request to the object, we first update Delta1 and then Ci =

1+Ci × 2−Delta1/29+i
. Unlike Delta1, Ci will not be updated

until another request arrives for the same object. The EDCs
with larger values of i cover larger periods, e.g., an object
that was highly popular 1 million requests ago but is now not
popular would have a low EDC1 but still have a high EDC10.

The exact EDC equation is motivated by prior observation
in block storage caching [57] and video popularity predic-
tion [79], where EDCs accurately approximate the decay rate
of object popularities. Tracking long-term popularity is used
by many other algorithms such as LFU variants [11, 75], Hy-
perbolic [21], and LRFU [57] (which uses a single EDC).
LRB uses multiple EDCs with different decay constants to
capture the request rate to the object over multiple time hori-
zons.

Static features. Static features include additional unchang-
ing information about an object. They include the size of
the object and its type—e.g., video on demand segment, live
video segment, image. We include static features because
they are available, require little memory overhead, and intu-
itively correlate with different access patterns. For instance,
live video segments might be useful in a cache for only a short
period, whereas video on demand segments might be useful
in the cache for much longer.

Feature effectiveness, number of deltas, number of EDCs.
To determine if this set of features is effective for our ML
architecture we evaluate them using the good decision ratio
in the validation prefix of our traces at many cache sizes. We
also use the good decision ratio to determine how many deltas
we store and how many EDCs we store. Figure 5 shows the
results for an accumulation of static features, Delta1, EDC1,
Delta2 and EDC2, Deltas 3–8 and EDCs 3—8, and then Deltas
9–32 and EDCs 9–10 (full). As expected, the addition of more
features improves the good decision ratio but has diminishing
returns. Results on the other three traces and at other cache
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Figure 6: Good decision ratios for models. LRB uses GBM
as it robustly achieves high good decision ratios on all
traces/cache sizes.

sizes are not shown but are similar.
The number of deltas and EDCs is each a tradeoff between

giving the ML architecture more information to use for de-
cisions and storage overhead. We settle on 32 deltas and 10
EDCs because both appear to be past the point of diminishing
returns and thus we are not disadvantaging our ML archi-
tecture by stopping there. We go as high as these numbers
because of the efficiency of our feature storage and our ability
to control memory overhead with the sliding memory window.

4.3.2 Model: Gradient Boosting Machines

LRB uses Gradient Boosting Machines [39] (GBM) for its
model, which outperform all other models we explored and
are highly efficient on CPUs. We were inspired to explore
GBM based on their success in many other domains with
tabular data [23,30,42,61,62,72,80]. We also explored linear
regression, logistic regression, support-vector machines, and
a shallow neural network with 2 layers and 16 hidden nodes.
Figure 6 shows the good decision ratios of the different mod-
els on three traces at two cache sizes. Results on the other
traces and other cache sizes are similar and not shown. GBM
robustly achieve a high good decision ratio. Additionally,
GBM do not require feature normalization and can handle
missing values efficiently, which are common as objects have
a varying number of Deltas. In addition, GBM are highly effi-
cient to train and use for prediction. On typical CDN server
hardware, we can train our model in 300 ms. And, we can run
prediction on 64 eviction candidates in 30 µs.

4.3.3 Prediction Target: log (time-to-next-request)

LRB uses regression to predict the time-to-next-request for
objects that are requested within the sliding memory win-
dow. Regression enables LRB to rank these objects (as re-
laxed Belady) and also serves as a confidence measure for
distance to the Belady boundary. Specifically, LRB predicts
the log(time-to-next-request) for an object as we primarily
care about which side of the boundary the next request is on.
If the Belady boundary is 1M (measured by the number of re-
quests), then the difference between predicting 100K and 2M
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Figure 7: Detailed architecture overview of LRB.

is larger than the difference between 2M and 3M. For objects
that are not requested within the sliding memory window,
LRB assigns a label as 2× the window size.

We also explored predicting the time from the last request
to the next request, binary classification relative to a boundary,
and unmodified time-to-next-request. We chose log(time-to-
next-request) because it achieved a higher good decision ratio
than all of these alternatives.

4.3.4 Loss Function: L2

LRB uses L2 loss (mean square error). We also tried all eight
loss functions in the LightGBM library [54]. We chose L2
loss because it achieved the highest good decision ratio.

4.3.5 Training dataset Size: 128K

LRB trains a new model once it accumulates a dataset of 128K
labeled training samples. We also explored training dataset
sizes that were much smaller than 128K and up to 512K. We
found that good decision ratio increases with dataset size
but has diminishing returns. We choose 128K because larger
dataset sizes further increase training time and overhead with-
out a noticeable improvement in good decision ratio.

4.4 Eviction Candidate Selection.

LRB randomly samples cached objects to gain eviction can-
didates and runs a batch prediction for all candidates. LRB
evicts the candidate whose predicted next request distance is
the longest.

We determine the choice for our random sample size—
64 samples—using the good decision ratio. We find that 64
samples are past the point of diminishing returns, and thus
choosing it does not disadvantage our ML architecture. It
is also still low enough for low overhead—prediction on 64
samples takes LRB only 30 µs.

4.5 Putting All Together

Putting our design decisions together with the general archi-
tecture (Figure 4) from the beginning of the section, we have
the complete design of LRB as shown in Figure 7.

LRB learns from the requested objects in a sliding memory
window whose length approximates the Belady boundary.
The features (deltas, EDCs, static) of these objects are stored
in a compact data structure that is updated as new requests
arrive, moving the sliding memory window forward.

A sampling process continuously samples data from this
data structure, generating an unlabeled dataset. A separate
labeling process continuously labels that data. When the la-
beled dataset is full (128K examples), LRB starts training
a GBM model, and empties the labeled dataset. After that,
whenever the labeled dataset is full again, LRB repeats the
process and replaces the old model with the new one. If a
current request is a cache miss and needs to evict an object,
LRB randomly draws k = 64 eviction candidates and runs
GBM predictions on them. LRB evict the candidate with the
farthest predicted next access time.

5 Implementation

We have implemented a LRB prototype within Apache Traffic
Server (ATS). We have also implemented a LRB simulator in
order to compare with a wide range of other algorithms. The
two implementations share the same code and data structures
as a C++ library with about 1400 lines of code.

5.1 Prototype

ATS is a multi-threaded, event-based CDN caching server
written in C++. A typical ATS configuration consists of a
memory cache and a disk/SSD cache. ATS uses a space-
efficient in-memory lookup data structure as an index to the
SSD cache, which is accessed using asynchronous I/Os to
achieve high performance.

To implement LRB, we have replaced the lookup data struc-
tures for ATS’s disk cache with the architecture described in
Section 4.5. We have also changed ATS to make eviction
decisions asynchronously by scheduling cache admissions
in a lock-free queue. A known challenge when implement-
ing SSD-based caches is write amplification due to random
writes [36, 58]. In order to implement LRB, a production im-
plementation would rely on a flash abstraction layer such as
RIPQ [78] or Pannier [58]. Unfortunately, we have no access
to such flash abstraction layers (e.g., RIPQ is proprietary to
Facebook). Our implementation thus emulates the workings
of a flash abstraction layer, reading at random offsets and
writing sequentially to the SSD.

As the memory cache is typically small, which has a negli-
gible impact on the byte miss ratio [19], we leave this part of
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Object class:
# past requests

1 2 3 4 5
6-
12

13-
31

≥32

Obj fraction (%) 36 11 5 3 2 1 <1 <1
Overhead (bytes) 25 94 98 102 106 ≤134 ≤210 214

Table 3: LRB’s memory overhead depends on an object’s
number of past requests, which we call the object’s class.

ATS unchanged. In total, the changes to ATS, excluding the
LRB library, amount to fewer than 100 lines of code.

5.2 Simulator
We have implemented an LRB simulator based on the Adapt-
Size simulator [19]. Besides LRB, our simulator implements
14 state-of-the-art caching algorithms.3 These include clas-
sic and learning-based algorithms. The classic algorithms
include LRUK [68], LFUDA [11, 75], S4LRU [46], LRU,
FIFO, Hyperbolic [21], GDSF [11] and GDWheel [60].
The learning-based algorithms include an adaptive version
of TinyLFU [34] (which subsumes static TinyLFU [35]),
LeCaR [81], UCB [31] (reinforcement learning), LFO [17]
(supervised learning), LHD [15] and AdaptSize [19]. These
14 algorithms and the simulation environment take about 11K
lines of C++. For TinyLFU, LFO, LHD, and AdaptSize, we
verified parameter configurations match the authors’.

5.3 Optimizations
We have implemented two main optimizations to reduce over-
head and improve performance.

Computationally efficient feature updating. To minimize
the overhead of maintaining features we seek to update them
rarely and for necessary updates to be efficient. LRB accom-
plishes this by favoring time-invariant features when possible,
i.e., features that need only be calculated once. Static features
by definition fall in this category. We choose to make deltas
relative to the time in between consecutive requests instead of
the time between n requests ago and the most recent request
because this makes all deltas other than delta1 time-invariant.
A new request to an object shifts deltan to deltan+1. The over-
head to compute delta1 is low and we make EDC updates
efficient using a lookup table with precomputed decay rates.4

Overall, these optimizations result in a constant and small
feature update overhead per request. LRB updates an object’s
feature only at the times when it is requested and when it is
sampled as an eviction candidate.

We compress our features to minimize their memory over-
head. Our compression is based on the predominance of “one-
hit wonders” (Section 2). Consequently, we treat objects for

3For Adaptive-TinyLFU, we integrate the original author’s implementa-
tion (https://github.com/ben-manes/caffeine) into our simulator.

4The size of the table is W/210×4 B where W is the sliding memory
window size—e.g., if W is 228 (256 million), the table is 218× 4 B = 1 MB.

which we registered only a single request separately. Since
such an object was requested only once in the sliding memory
window, there is no recency information and EDC values are
all 0. Instead of keeping this redundant information, we store
only the key, object size, object type, the last request time, and
a pointer to a struct. This reduces the memory overhead for
single-request objects to 25 B on the Wikipedia trace. When
objects receive more requests, we populate the struct with
only as many deltas as they have past requests. This further
reduces the memory overhead for all objects with fewer re-
quests than the maximum number of deltas, 32. The struct
also contains the EDCs, which are compressed to a single
float [57]. Table 3 shows the distribution and overhead of
objects with different number of requests.

6 Evaluation

This section evaluates our LRB prototype. We additionally
use simulations to compare LRB to a wide range of state-of-
the-art caching algorithms. We aim at answering the following
questions:
• What is the WAN traffic reduction using our LRB prototype

compared to the ATS production system (Sec 6.2)?
• What is the overhead of our LRB prototype compared to

CDN production systems (Sec 6.3)?
• How does the byte miss ratio of LRB compare to state-of-

the-art research systems on a wide range of CDN traces and
cache sizes (Sec 6.4)?

• What is the gap between Belady and LRB (Sec 6.5)?
• Can LRB be improved using a longer validation prefix to

select the sliding memory window (Sec 6.6)?

6.1 Experimental Methodology
This subsection describes the traces, competing cache algo-
rithms, warm-up, and the testbed in our experiments.

Traces Our evaluation uses CDN traces from three CDNs,
two of which chose to remain anonymous.
• Wikipedia: A trace collected on a west-coast node, serving

photos and other media content for Wikipedia pages.
• CDN-A: Two traces (A1 and A2) collected from two nodes

on different continents serving a mixture of web traffic for
many different content providers.

• CDN-B: Three traces (B1–B3) collected from nodes in the
same metropolitan area, each serving a different mixture of
web and video traffic for many different content providers.

Table 4 summarizes key properties of the six traces.

State-of-the-art algorithms. In the prototype experiments,
we compare our LRB implementation (Section 5) to unmod-
ified Apache Traffic Server (ATS, version 8.0.3), which ap-
proximates a FIFO eviction policy. Our simulations compare
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Wikipedia CDN-A1 CDN-A2 CDN-B1 CDN-B2 CDN-B3
Duration (Days) 14 8 5 9 9 9
Total Requests (Millions) 2,800 453 410 1,832 2,345 1,986
Unique Obj Requested (Millions) 37 89 118 130 132 116
Total Bytes Requested (TB) 90 156 151 638 525 575
Unique Bytes Requested (TB) 6 65 17 117 66 104
Warmup Requests (Millions) 2,400 200 200 1,000 1,000 1,000

Request Obj Size
Mean (KB) 33 644 155 460 244 351
Max (MB) 1,218 1,483 1,648 1,024 1,024 1,024

Table 4: Summary of the six production traces that are used throughout our evaluation spanning three different CDNs.

LRB with 14 state-of-the-art caching algorithms (Section 5.2).
In addition, our simulations include Belady’s MIN [16] and
relaxed Belady (Section 3) as benchmarks.

Testbed. Our prototype testbed consists of three Google
cloud VMs acting as a client, CDN caching server, and back-
end/origin server, respectively. The VMs are n1-standard-64
VMs with 64 VCPUs, 240 GB of DRAM. To maximize SSD
throughput, we use eight local 375 GB NVMe flash drives
and combine them into one logical drive using software raid.

Clients are emulated using our C++ implementation (≈ 200
LOC), which uses 1024 client threads. The backend/origin
server uses our own concurrent C++ implementation (≈ 150
LOC). This emulation method can saturate the network band-
width between client and caching server. The clients replay
requests in a closed loop to stress the system being tested and
accelerate evaluation.

In Section 6.3, clients send requests in an open loop, using
the original trace timestamps to closely emulate production
workloads for latency measurements. Both unmodified ATS
and LRB use a 1 TB flash cache size. Our simulations are
based on the request order following the request timestamps
and a range of different cache sizes.

To emulate network RTTs [19], we introduce around 10 ms
and 100 ms of delays to the link between client and proxy and
the link between origin and proxy respectively.

Metadata overhead. Different algorithms may have differ-
ent metadata overheads. For fairness, all algorithms except
Adaptive-TinyLFU 5 in the experiments have deducted their
metadata overheads from corresponding cache sizes in all
experiments. For example, if an experiment is for a 64 GB
cache, an algorithm with 2 GB of metadata overhead will use
62 GB to store its data.

Validation and warmup trace sections. The first 20% of ev-
ery trace is used as a "validation" section where LRB tunes its
hyperparameters (Section 4). Each experiment uses a warmup
during which no metrics are recorded. The warmup section
is always longer than the validation section and is defined by
the time by which every algorithm has achieved a stable byte
miss ratio. Table 4 lists each trace’s warmup section.

5Our experiments used an existing implementation of Adaptive-TinyLFU
simulator which does not provide overhead information.
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Figure 8: The byte miss ratios of LRB and unmodified ATS
for the Wikipedia trace using a 1 TB cache size.

6.2 WAN Traffic Reduction of LRB Prototype

Figure 8 compares the byte miss ratios of LRB and unmod-
ified ATS for a 1 TB cache using the Wikipedia trace. LRB
achieves a better overall byte miss ratio than ATS. We ob-
serve that LRB reaches a lower miss ratio than ATS within
the first day, and LRB continues to improve as it obtains more
training data. Throughout the experiment, LRB’s miss ratio
is more stable than ATS’s. We wait for both to stabilize and
measure the WAN bandwidth consumption on days 12-14.
LRB reduces the average bandwidth by 44% over ATS. LRB
also reduces the 95th percentile bandwidth (the basis of some
CDN traffic contracts [6]) by 43% over ATS.

6.3 Implementation Overhead

Table 5 compares the overhead of LRB against unmodified
ATS. We measure throughput, CPU, and memory utilization
at peak throughput (“max” experiment). Note that Table 5
quantifies overheads for the Wikipedia trace, which is pes-

Metric Experiment ATS LRB

Throughput max 11.66 Gbps 11.72 Gbps
Peak CPU max 9% 16%
Peak Mem max 39 GB 36 GB
P90 Latency normal 110 ms 72 ms
P99 Latency normal 295 ms 295 ms
Obj Misses normal 5.7% 2.6%

Table 5: Resource usage for ATS and LRB in throughput-
bound (max) and production-speed (normal) experiments.
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Figure 9: WAN traffic reduction over B-LRU at varying caches for Belady, LRB, and the six best state-of-the-art algorithms.
LRB typically provides 4–25% WAN traffic savings over B-LRU.

simistic as all object sizes in all other traces are at least 5×
larger, which results in significantly less overhead.

LRB has no measurable throughput overhead but its peak
CPU utilization increases to 16% from 9% for ATS and 12%
for B-LRU. We remark that even the busiest production cluster
at Wikipedia (“CET-2” in Table 1 in Section 2) has sufficient
CPU headroom.

We measure the number of object misses (which weights
requests equally) when replaying the Wikipedia trace using its
original timestamps (“normal” experiment in Table 5 ). LRB
has less than half as many object misses as ATS. This miss
reduction allows LRB to improve the 90th percentile latency
(P90) by 35% compared to ATS. At the 99th percentile (P99),
LRB achieves a similar latency to ATS because the origin
server latency dominates.

Cache size Wiki A1 A2 B1 B2 B3

64 GB 3.0% 1.0% 1.7% - - -
128 GB 2.1% 0.6% 1.4% 0.9% 0.8% 1.1%
256 GB 1.4% 0.5% 1.2% 0.8% 0.5% 0.6%
512 GB 1.0% 0.4% 1.0% 0.6% 0.4% 0.5%
1 TB 0.6% 0.3% 0.7% 0.5% 0.4% 0.4%
2 TB - - - 0.4% 0.3% 0.3%
4 TB - - - 0.3% 0.3% 0.3%

Table 6: Fraction of space allocated to metadata for LRB.

As LRB’s memory overhead depends on the cache size
and average object size in a trace, Table 6 measures the peak
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Figure 10: Good decision ratios for different algorithms. Good
decision ratio correlates strongly with byte miss ratio.

memory overhead for all traces and all evaluated cache sizes.
Across all configurations, LRB always uses less than 3% of
the cache size to store LRB metadata. While this overhead
reduces the effective cache size, the small loss in byte miss
ratio is more than offset by LRB’s significant miss ratio im-
provements.

We believe these experimental observations show that LRB
is a practical design for today’s CDNs and that it can be
deployed on existing CDN hardware.

6.4 LRB vs. State-of-the-art Algorithms
We compare the byte miss ratio of LRB to 14 state-of-the-art
caching algorithms using simulations with a wide range of
cache sizes using the six different traces.

Of the 14 algorithms, nine algorithms (FIFO, Hyperbolic,
GDSF, GDWheel, UCB, LFO, AdaptSize, S4LRU, and LHD)
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Figure 11: Comparison of byte miss ratios for Belady, relaxed
Belady, LRB, and the best state-of-the-art (SOA) policy.

achieve a low byte miss ratio on at least one CDN traces. To
improve readability, we show only the five best-performing
algorithms in the following figures (TinyLFU, LeCaR, LRUK,
LFUDA, and LRU). Figure 9 shows the wide-area network
traffic reductions of each of these algorithms relative to B-
LRU, with different cache sizes using the six traces.

LRB robustly outperforms the best state-of-the-art algo-
rithms. It achieves the lowest byte miss ratio for all 33 CDN
trace and cache size combinations. Overall, LRB reduces
WAN traffic by 4–25% on average.

Note that LRB’s WAN traffic reduction does not generally
decrease with larger cache sizes. For example, on CDN-B2
the traffic reduction steadily increases between 128 GB and
4 TB. Our interpretation is that these traces span a wide range
of different CDN request patterns. On average (across all
cache sizes), LRB reduces WAN traffic by over 13% com-
pared to B-LRU. Additionally, LRB is robust across all traces
whereas no prior caching algorithm consistently improves
the performance across traces and cache sizes. For example,
LRU4 is the best on Wikipedia, but among the worst on other
traces. LFUDA does well on Wikipedia, CDN-A1, but poorly
on CDB-B3. TinyLFU does well on CDN-B3 and CDN-A2,
but not on Wikipedia. These results indicate that heuristic-
based algorithms work well with certain patterns and poorly
with others.

To further understand where LRB’s improvement comes
from, Figure 10 shows the good decision ratio of LRB, the
three best-performing state-of-the-art algorithms, and LRU.
TinyLFU is not included as its implementation does not allow
us to evaluate individual decisions. LRB achieves 74–86%
good decision ratios, which are the highest for all but one
of six combinations. This implies that LRB learns a better
workload representation and is able to leverage its model to
make good eviction decisions. Overall, we find that the good
decision ratio of an algorithm strongly correlates with its byte
miss ratio. One exception is CDN-B1 512 GB, where LeCaR
has a higher good decision ratio than LRB, but with a worse
byte miss ratio.

6.5 Comparison to Belady

We have seen that LRB provides significant improvements
over state-of-the-art algorithms. We now compare LRB with
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Figure 12: Traffic reductions of LRB whose sliding memory
window parameter are trained by a small portion of trace vs.
LRB-OPT whose parameters are trained by the full trace.

the offline Belady MIN (oracle) and relaxed Belady algo-
rithms. Figure 11 compares their byte miss ratios on three
cache sizes. We further compare to the state-of-the-art policy,
i.e., best performing policy, on each trace and cache size.

We find that LRB indeed reduces the gap between state-of-
the-art algorithms and Belady, e.g., by about a quarter on most
traces. While a significant gap still remains to Belady, LRB
imitates relaxed Belady, which is thus a better reference point
for LRB (Section 2). Relaxed Belady represents an ideal LRB
with 100% prediction accuracy. The figure shows that LRB
is closer to relaxed Belady, e.g., one third to half the distance
on most traces. The remaining gap between LRB and relaxed
Belady is due to our model’s prediction error. This suggests
that improvements in the prediction model are a promising
direction for future work.

6.6 Sliding Memory Window Size Selection

LRB tunes its memory window on a 20% validation prefix.
However, as described in Section 4, the validation prefix is
short compared to the optimal sliding memory window choice.
To evaluate how much better LRB can do without this restric-
tion, we experimentally determine the best sliding memory
window for the full trace. We call the resulting LRB variant
“LRB-OPT”. LRB-OPT further improves the performance of
LRB. Figure 12 shows the traffic reduction over B-LRU for
the Wikipedia and CDN-B3 trace. For large cache sizes, LRB-
OPT achieves an additional 1–4% traffic reduction compared
to LRB. All in all, the ready availability of large amounts of
training data in production will be highly beneficial for LRB.

7 Related Work

Although cache design has been studied since 1965 [84], we
are only aware of three prior works that have studied how to
leverage Belady’s MIN [16]. Shepherd Cache [71] used a lim-
ited window to the future to emulate Belady’s algorithm and
defers replacement decisions until reuses occur. Hawkeye and
Harmony [47, 48] applied Belady’s algorithm to the history
of memory accesses to help make better eviction or prefetch
decisions. These previous efforts are for hardware caches (in
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the processor) and do not apply to software cache designs,
especially with variable-sized objects.

The rest of the extensive literature can be divided into two
major lines of work: caching algorithms and methods to adapt
these algorithms to the workload.

Heuristic caching algorithms. We classify these algorithms
by the features they use in the eviction decisions (Section 2).
The two most widely used features are recency and frequency.
Recency is typically measured as variants [3,44,52,68,70] of
Delta1 (as defined in Section 4). Some works also consider
static features such as object sizes [4, 5, 12, 24, 37, 76]. Appli-
cation ids are commonly considered in shared caches [27,28].
Some algorithms rely entirely on frequency-based features
(similar to individual EDCs) [7, 11, 38, 53, 63, 75].

Another common approach is to combine a recency feature,
a frequency feature, and an object’s size. This is achieved with
either a fixed weighting function between these features [5,
15, 18, 21, 26, 35, 40, 46, 56, 59, 69, 73, 86, 88], or by using a
single-parameter adaptation method to dynamically set the
weights [13, 19, 34, 49–51, 65, 81].

Two recent proposals consider a larger range of features [17,
55] and are evaluated using simulations. Unfortunately, they
are either outperformed [55] or barely match [17] the miss
ratio of recency/frequency-heuristics such as GDSF [26].

LRB uses a superset of all these features and introduces a
low-overhead implementation in the ATS production system.

Workload adaptation methods. There are three different
methods to adapt caching systems and their parameters to
changing workloads.

Only a few papers propose to use machine learning as
an adaptation method [8, 17, 20, 31, 32, 55, 87]. There are
two branches. The first branch uses reinforcement learn-
ing [31,32,55,87], where the state-of-the-art is represented by
UCB in our evaluation. The second branch uses supervised
learning [17, 20], where the state-of-the-art is represented by
LFO in our evaluation. All of these proposals are evaluated us-
ing simulations. Unfortunately, both UCB and LFO perform
much worse than simpler heuristics such as GDSF [26] on
CDN traces (Section 6). In fact, recent work concludes that
caching “is not amenable to training good policies” [55]. LRB
overcomes this challenge using a different feature set (Sec-
tion 4) and shows the feasibility of implementing machine
learning in CDN production systems (Section 5).

The most common prior tuning approaches rely on shadow
cache and hill climbing algorithms [13,19,28,34,50,52,56,65,
81, 82, 88]. Shadow caches are simulations that evaluate the
miss ratio of a few parameter choices in parallel. Hill climbing
repeatedly reconfigures the system to use the best parameter
seen in these simulations, and restarts the simulations in the
neighborhood of the new parameter.

Several caching systems rely on mathematical prediction
models [9, 45, 64, 83, 85]. All heuristics-based algorithms and
workload adaptation methods share the same fundamental

limitation: they work well with certain workloads and poorly
with others.

8 Conclusions

In this paper, we have presented the design, implementation,
and evaluation of LRB and have shown that it is possible to
design a practical ML-based CDN cache that approximates
Belady’s MIN algorithm and outperforms state-of-the-art ap-
proaches over 6 production CDN traces.

The key advantage of using ML to approximate Belady’s
MIN algorithm over access-pattern specific or heuristics-
based approaches is that it can intelligently make cache evic-
tion decisions based on any access pattern.

More importantly, we have introduced the relaxed Belady
algorithm, Belady boundary, and good decision ratio as an
eviction quality metric, which has enabled us to take a funda-
mentally new approach to caching that approximates Belady’s
MIN algorithm. We expect that these concepts can benefit
others in the future.

We have shown that LRB’s implementation is practical
and deployable by replacing the caching component of a
production CDN caching system with LRB. Our experiments
show that its throughput and latency are on par with the native
implementation. LRB requires neither GPUs nor accelerators
and, in fact, its additional CPU and memory overheads are
moderate and within the constraints of today’s CDN server
hardware. This deployable design is enabled by key design
decisions including our feature selection, sliding memory
window, training data selection, and choice of a lightweight
machine learning model.

We have also shown that there is a sizable gap between
LRB and the relaxed Belady offline algorithm. A promising
direction of future work is to further improve the prediction
accuracy of ML in LRB.

While we show tuning LRB’s hyperparameters can be done
on a small validation trace, we plan to further simplify deploy-
ment by automating the tuning of the sliding memory window
parameter. These improvements will be available from LRB’s
repository at https://github.com/sunnyszy/lrb.
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Abstract
High availability is a critical requirement for cloud appli-

cations: if a sytem does not have high availability, users can-
not count on it for their critical work. Having a metric that
meaningfully captures availability is useful for both users
and system developers. It informs users what they should
expect of the availability of the application. It informs devel-
opers what they should focus on to improve user-experienced
availability. This paper presents and evaluates, in the context
of Google’s G Suite, a novel availability metric: windowed
user-uptime. This metric has two main components. First,
it directly models user-perceived availability and avoids the
bias in commonly used availability metrics. Second, by si-
multaneously calculating the availability metric over many
windows it can readily distinguish between many short peri-
ods of unavailability and fewer but longer periods of unavail-
ability.

1 Introduction

Users rely on productivity suites and tools, such as G Suite,
Office 365, or Slack, to get their work done. Lack of avail-
ability in these suites comes at a cost: lost productivity, lost
revenue and negative press for both the service provider and
the user [1, 3, 6]. System developers and maintainers use
metrics to quantify service reliability [10, 11]. A good avail-
ability metric should be meaningful, proportional, and ac-
tionable. By “meaningful” we mean that it should capture
what users experience. By “proportional” we mean that a
change in the metric should be proportional to the change
in user-perceived availability. By “actionable” we mean that
the metric should give system owners insight into why avail-
ability for a period was low. This paper shows that none
of the commonly used metrics satisfy these requirements
and presents a new metric, windowed user-uptime that meets
these requirements. We evaluate the metric in the context of
Google’s G Suite products, such as Google Drive and Gmail.

The two most commonly used approaches for quantifying
availability are success-ratio and incident-ratio. Success-

ratio is the fraction of the number of successful requests to
total requests over a period of time (usually a month or a
quarter) [5, 2, 9]. This metric has some important short-
comings. First, it is biased towards the most active users;
G Suite’s most active users are 1000x more active than its
least active (yet still active) users. Second, it assumes that
user behavior does not change during an outage, although
it often does: e.g., a user may give up and stop submit-
ting requests during an outage which can make the measured
impact appear smaller than it actually is. Incident-ratio is
the ratio of “up minutes” to “total minutes”, and it deter-
mines “up minutes” based on the duration of known inci-
dents. This metric is inappropriate for large-scale distributed
systems since they are almost never completely down or up.

Our approach, windowed user-uptime has two compo-
nents. First, user-uptime analyzes fine-grained user request
logs to determine the up and down minutes for each user
and aggregates these into an overall metric. By considering
the failures that our users experience and weighing each user
equally, this metric is meaningful and proportional. Second,
windowed user-uptime simultaneously quantifies availability
at all time windows, which enables us to distinguish many
short outages from fewer longer ones; thus it enables our
metric to be actionable.

We evaluate windowed user-uptime in the context of
Google’s G Suite applications and compare it to success-
ratio. We show, using data from a production deployment
of G Suite, that the above-mentioned bias is a real shortcom-
ing of success-ratio and that windowing is an invaluable tool
for identifying brief, but significant outages. Our teams sys-
tematically track down the root cause of these brief outages
and address them before they trigger larger incidents.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 motivates the need
for windowed user-uptime Section 4 describes user-uptime.
Section 5 extends user-uptime with windowed user-uptime.
Section 6 evaluates our approach and Section 8 concludes
the paper.
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2 Related Work

Understanding and improving availability of computer sys-
tems has been a goal for decades [22] with early work aim-
ing at developing stochastic models based on failure char-
acteristics of individual hardware and software components
[30, 20, 27, 21] . A more abstract approach [28] uses mean
time to failure (MTTF) and mean time to recovery (MTTR),
which are well suited to describe a system that shifts be-
tween binary up/down states. An extension to this approach
that differentiates between transient failures and short-term
downtime can be found in Shao et al. [26].

When describing complex distributed systems, however,
a binary up/down state is usually not accurate. Brown et
al. [13] focus on success-ratio instead, describing the avail-
ability of a system as the percentage of requests served suc-
cessfully and understanding it as a spectrum between up and
down.

Brevik et al.[12] show how to compute confidence bounds
for future performance based on collected past performance
data. Treynor et al. [29] describe error budgets connected to
an availability goal and how availability of individual com-
ponents affects the whole system.

In taking a user-centric approach, Dell’Amico et al.[18]
explore problems similar to those presented here, but with a
focus on prediction and future performance. In a sequel[17],
a probabilistic model is used to suggest optimizations to a
network application.

A common application for availability and error budgets
are contracts for cloud service providers [5, 2, 9]. Patel et al.
[25] discuss these Service Level Agreements (SLAs) focus-
ing on a framework to define and monitor metrics and goals
associated with SLAs while Endo et al. [19] describe issues
encountered when trying to achieve high availability in cloud
computing.

Microsoft Cloud services (such as Office 365) compute
and report uptime as the time when the overall service is
up divided by total time. [4] As a metric based on time, it
is immediately meaningful (e.g., everyone interprets 99.9%
uptime as “system will be down for a total of 1 day every
1000 days on average”).

Before the work in this paper, Gmail computed and re-
ported availability as the percentage of successful interactive
user requests (irrespective of which user the request comes
from). Google Cloud Platform computes and reports “down-
time” as the error rate and downtime period as consecutive
minutes of downtime.

Slack’s status page reports that it is “a distributed platform
and during any given incident it is rare for all Slack teams
to be affected. For this reason, we report our uptime as an
average derived from the number of affected users.” [7]

Amazon Web Services computes and reports “Error rate”
as the percentage of requests that result in errors in a 5
minute interval. The average of these five minute calcula-

tions is reported to customers, as “Monthly uptime percent-
age” - the average of all the 5-minute error rates. [2]

In the following sections, we will look at three desirable
properties of an availability metric: meaningful, proportional
and actionable. The surveyed systems each satisfy some but
not all of these three properties.

3 Motivation

Availability is the ability of a service to perform its required
function at an agreed instant or over an agreed period of
time [24]. At a high level, all availability metrics have the
following form:

availability =
good service

total demanded service
(1)

Availability metrics are invaluable to both users and de-
velopers [10].

For users, they tell them whether or not a service is suit-
able for their use case. For some use cases, unavailability
translates into lost productivity and a meaningful measure
can help quantify that.

For developers, availability metrics help prioritize their
work to improve their system. For this to be the case, the
measure should be proportional and actionable. A propor-
tional metric enables developers to quantify the benefit of
an incremental improvement. An actionable metric enables
them to zero in on episodes of worst availability and thus find
problems that they need to address.

Broadly speaking, availability metrics fall in two cate-
gories: time based and count based, according to how they
quantify the “good service” and “total demanded service” in
Eq. (1).

3.1 Time-based availability metrics

Toeroe et al. [28] define availability as MTTF
MTTF+MTTR

where MTTF is the mean-time-to-failure and MTTR is
mean-time-to-recovery. This measure is based on the du-
ration when the system is up or down; these concepts are
meaningful to users. Thus it is no surprise that many cloud
providers, e.g. Microsoft’s Office 365 [4], use it. The time
between failures is uptime and the time to recover from a fail-
ure is downtime, thus we can express this metric as Eq. (1)
once we identify uptime and downtime as the measure of
good and bad service, respectively [29]:

availability =
uptime

uptime+downtime
. (2)

At a deeper level, this measure depends in a complex way
on the precise meanings of “failure” and “recovery”. At one
extreme we could consider a system to have a failure only
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when there is an outage that affects all users. At the other
extreme, we could consider a system to have a failure when
there is an outage that affects even a single user.

Neither of these definitions are adequate. The first is un-
satisfactory because the design and deployment of cloud sys-
tems, such as Azure [14], Dynamo [16], or Gmail, actively
avoid single points of failure by sharding data across many
machines and using replication [23] with failover when prob-
lems occur. Consequently, these systems rarely have an out-
age that affects all users [29]. The other extreme is not suit-
able, particularly for systems with hundreds of millions of
users, because there will always be some that are experienc-
ing failures. The system may not even be at fault for such
outages. For example, we once debugged a situation where
a user had authorized access to their Gmail account to many
third-party services, each of which was repeatedly making
extremely large requests against the user’s account, inadver-
tently and collectively causing a denial of service attack, and
in turn an outage for that user. It would be unreasonable to
consider this as an outage of Gmail.

Consequently, availability in terms of up and down states
either require manual labeling of up and down times (e.g.,
the incident ratio metric) or the use of thresholds, e.g., the
G Suite SLA defines downtime as “if there is more than a five
percent user error rate” [5]. While such thresholds avoid the
extremes above, they do so arbitrarily. Furthermore, avail-
ability metrics that use such thresholds are not proportional.
For example, the G Suite definition treats a system with 5%
error rate the same as a system with 0.0001% error rate; and
it treats a system with 5.1% error rate the same as a system
with 99% error rate.

Thus, commonly used time-based availability metrics:

• are not proportional to the severity of the system’s un-
availability (a downtime with 100% failure rate weighs
as much as one with 10%).
• are not proportional to the number of affected users (a

downtime at night has the same weight as a downtime
during peak period).
• are not actionable because they do not, in themselves,

provide developers guidance into the source of failures.
• are not meaningful in that they rely on arbitrary thresh-

olds or manual judgments (e.g., incident-ratio).

3.2 Count-based availability metrics
While the most common definitions of availability (including
the ones discussed above) are in terms of time, some systems
use “success-ratio” instead. Success-ratio is the ratio of suc-
cessful requests to total requests. Since success-ratio does
not use a threshold, it is more proportional than commonly-
used time-based metrics.

Success-ratio as an availability measure is popular be-
cause it is easy to implement and is a reasonable measure:
it accurately characterizes a service, whose (un-)reliability

stems solely from a stochastic distribution of failures. Be-
cause the computation is based on user requests, it approx-
imates user perception better than if we used some internal
instrumentation to reason about the service’s health. It is,
however, prone to bias: the most active users are often 1000x
more active than the least active users and thus are 1000x
over-represented in the metric.

Even if we disregard the bias with respect to different
users’ activity, this metric can fail to proportionally capture
changes in availability. Consider, for example, that a ser-
vice is down for 3 hours and then up for 3 hours. While the
system is up, users are active on the system and thus make
many (successful) requests to the system. While the system
is down, they will periodically probe the system to check if
is still down but the inter-arrival time of the requests is likely
lower than if the system is in active use. For certain systems,
particularly ones that provide a service to other systems, the
opposite situation may hold: a client service may flood our
system with retries thus inflating failure count. Users ulti-
mately care about time, thus a count-based measure - in con-
trast to a time-based one - can misrepresent the magnitude of
an outage.

In summary, count-based (success-ratio) availability met-
rics:

• are not meaningful in that they are not based on time.
• are biased by highly active users.
• are biased because of different client behavior during

outages.

3.3 Probes

Using synthetic probes may mitigate some of the shortcom-
ings of success-ratio. For example, probing the system au-
tomatically at regular intervals can avoid bias. This ap-
proach works well for low-level systems with modest busi-
ness logic, for example, a network which “just” sends and
receives packets. In contrast, a cloud application may have
hundreds of types of operations and the work required by
an operation type depends on the type and the user’s cor-
pus (e.g., a search operation for a user with a few documents
is fundamentally different, in terms of the work involved,
from a search for a user with millions of documents). Con-
sequently, despite years of effort, we have been unable to
fully represent real workloads on our system with synthetic
probes [8]. Thus, for cloud applications, a metric which uses
synthetic probes may not be representative of real-user expe-
rience.

In summary, availability metrics based on synthetic
probes:

• are not representative of user activity.
• are not proportional to what users experience.
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3.4 Actionable metrics

The availability metrics that we have described so far repre-
sent different points in the tradeoffs for “proportional” and
“meaningful”. All of them, however, have a similar weak-
ness when it comes to being “actionable”: a single number
associated with a reporting period does not allow enough in-
sight into the source or the shape of unavailability.

Indeed, none of the existing metrics can distinguish be-
tween 10 seconds of poor availability at the top of every hour
or 6 hours of poor availability during peak usage time once a
quarter. The first, while annoying, is a relatively minor nui-
sance because while it causes user-visible failures, users (or
their clients) can retry to get a successful response. In con-
trast the second is a major outage that prevents users from
getting work done for nearly a full day every quarter.

In the following section, we describe a new availability
measure, user-uptime that is meaningful and proportional.
Afterwards, we’ll introduce windowed user-uptime, which
augments it to be actionable.

4 Proportional and meaningful availability:
user-uptime

As discussed in Section 3, prior metrics for availability are
not meaningful or proportional. A seemingly straightforward
variant of Eq. (2) satisfies both proportionality and meaning-
fulness:

user-uptime =
∑

u∈users
uptime(u)

∑
u∈users

uptime(u)+downtime(u)
, (3)

Since this metric is in terms of time, it is meaningful to
users. Since it is free from arbitrary thresholds, it is (in-
versely) proportional to the duration and magnitude of the
unavailability. The calculation of this metric, however, is
not straightforward as it requires a definition of uptime(u)
and downtime(u) per user. The remainder of this section
describes how we calculate these.

4.1 Events and durations

An obvious approach to uptime and downtime would be to
introduce evenly spaced synthetic probes for each user (Fig-
ure 1) and count the successful and failing probes. In Fig-
ure 1 the light green circles are successful events and dark
red diamonds are failed ones from a single user’s perspec-
tive. The green horizontal line at the top marks the period
when the user perceives the system to be up (i.e., its length
represents uptime) while the red one on the bottom marks
the period when the user perceives the system to be down.
As discussed in Section 3.1, however, synthetic probes fail to

Figure 1: System availability as seen through evenly-spaced
prober requests. success-ratio=67%, user-uptime=67%

mimic true user behavior. For example, we may probe cer-
tain operations but users may experience unavailability for
other operations. In a recent Gmail outage, for example, the
failure of the system serving attachments impacted only op-
erations that accessed attachments; but other operations were
largely unaffected.

Our key insight, therefore, is to use user requests as
probes. A user’s perception of a system being up or down
depends on the response they get when they interact with it:
if the response is successful (unsuccessful) they perceive the
system as being up (down). For example, as long as the user
can successfully edit a document, she perceives the system to
be up; once she experiences a failing operation she perceives
the system to be down.

Success versus failure of individual events is not always
obvious to the user: for example, if a device’s request to
synchronize the contents of the user’s mailbox fails, the user
may not notice that the system is down. Despite this, we
want our availability metric to be conservative: if there is
any chance that a user may perceive a failure (even one as
subtle as a longer-than-usual delay in the notification for a
new email) we consider it as a failure.

Fig. 2 illustrates this approach. In contrast to Fig. 1, avail-
ability is not necessarily the same as success-ratio. Sec-
tion 4.2 discusses some variations of this approach and the
consequences of our choices.

Figure 2: Availability as seen through unevenly spaced
requests from a single user. success-ratio=68%, user-
uptime=65%

Fig. 3 illustrates a system with four users. Each user ex-
periences an outage of a different duration and generates re-
quests at a different rate from the other users. Thus if we
use success-ratio across the users, it will skew availability
towards the most prolific user. User-uptime does not suffer
from this bias.
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Figure 3: An outage which affects users selectively.

4.2 Challenges with user uptime
While we have illustrated user-uptime using examples, there
are two main questions that we have glossed over: (i) how
do we label a duration as up or down; and (ii) how do we
address users that are inactive. The remainder of this section
addresses these challenges.

4.2.1 Labeling durations

As long as back-to-back events are both failures or suc-
cesses, it is obvious how to label the duration between the
two events. But if back-to-back events are different (i.e.,
one is a failure and one is a success) there are three choices
(Fig. 4):

• After a successful (or failing) operation, assume that the
system is up (or down) until the user sees evidence to
the contrary.
• Before a successful (failing) operation, assume that the

system is up (down) until the previous event. Intu-
itively, this option takes the position that the user re-
quest probes the state (up or down) of the system up to
the previous operation.
• Split the duration between events (i.e., half the time is

uptime and half is downtime).

Assuming that transitions (from up to down or vice versa)
occur at random points between the events, the differences
between the above three options will be negligible. This is
not always the case when the client aggressively retries fail-
ing operations. For simplicity, and because it captures user
intuition of system availability, we use the first option.

4.2.2 Active and inactive periods

If a user stops all activity for an extended period (e.g., goes
on a vacation) they have no perception of the system being
up or down: assuming that the system is up or down continu-
ously after the last seen request does not make sense and may

Figure 4: Three choices to extrapolate uptime or downtime
from neighboring events

even optimistically bias the data: e.g., if a user has an unsuc-
cessful request they may retry until they get success and thus
the last request before a vacation is disproportionately likely
to be successful.

To this end, we introduce a cutoff duration; if a user has
been inactive for more than this duration, we consider the
user as being inactive on the system and thus do not count
uptime or downtime. We pick the cutoff duration as the 99th
percentile of the interarrival time of user requests. For Gmail
this is 30 minutes. Experiments with multiples of this dura-
tion have shown that our availability metric does not change
significantly with different values of the cutoff duration.

Now we can define how we label durations as uptime or
downtime for each user:

Definition (uptime, downtime): A segment between two
consecutive events originating from the same user is:

• inactive if the two events are further apart than cutoff,
otherwise
• uptime if the first of the two events was success
• downtime if the first of the two events was failure.

Fig. 5 illustrates this definition.

Figure 5: Definition of uptime and downtime segments

For each user u and a measurement period of interest,
uptime(u) is the sum of the lengths of the uptime segments
and downtime(u) is the sum of the lengths of the downtime
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segments. We can calculate overall availability for the sys-
tem by aggregating across all users as in Eq. (3).

4.3 Properties of user-uptime

We now study the properties of user-uptime and success-
ratio in synthetic situations where we know the ground truth;
later (Section 6) we evaluate them in a production system.

For the first example, we generated synthetic user requests
for an hour such that all user requests within a contiguous 15
minute period failed. We simulated this thousands of times
for 10,000 synthetic active users. Fig. 6 illustrates what this
outage looks like for 2 users.

Figure 6: Two users’ activity around a hard outage during
30 < t < 45

Fig. 7 shows the distribution of the success-ratio and user-
uptime metrics across the different simulations. We see that
both metrics show an availability of around 0.75 but the stan-
dard deviation for user-uptime is much smaller indicating
that user-uptime more precisely and consistently captures the
outage.

Figure 7: Normalized distribution of success-ratio and user-
uptime measurements

For the second example, we incorporated retries: when a
request fails, the user retries the request. Fig. 8 shows the
distribution for success-ratio and user-uptime for this experi-
ment. We see that user uptime is more accurate than success-
ratio: identifying the availability of 0.75 with a tight distri-
bution. Success-ratio, on the other hand, is affected by the
retries and indicates a lower availability than what users ac-
tually experienced.

In summary, at least with synthetic examples we see that
user-uptime better captures availability than success-ratio.
Section 6 compares the two metrics using production data.

Figure 8: Normalized distribution of success-ratio and user-
uptime measurements with automatic retries

5 Actionable availability: windowed user-
uptime

Cloud productivity suites commonly define, track, and re-
port monthly or quarterly availability. As Section 3.4 points
out, monthly or quarterly availability data is often not action-
able. Concretely, monthly availability does not distinguish
between a flaky system that routinely fails a small percent-
age of the requests from a system whose failures are rare but
when they happen the system is unavailable for an extended
duration.

To distinguish long outages from flakiness, we must look
at availability at the timescale of the outages: looking at a
timescale of months may average away the unavailability and
paints a rosier picture than reality. Our approach, windowed
user-uptime, addresses this by combining information from
all timescales simultaneously. The rest of this section de-
scribes windowed user-uptime and explores its properties.

5.1 Calculating windowed user-uptime

Windowed user-uptime iterates over all time windows fully
included in the period of interest (e.g., month or quarter) and
it computes an availability score for each window size. For
example, to calculate windowed user-uptime over the month
of January 2019, windowed user-uptime finds the worst pe-
riod of each window size from 1 minute up to a month. The
score for a window size w is the availability of the worst
window of size w in our period of interest. We calculate the
availability for a particular window from t1 to t2 as follows:

A(t1, t2) =
good service between t1 and t2
total service between t1 and t2

To obtain the score for a window of size w, we enumerate
all windows of duration w, compute the availability for each
of them, and take the lowest value. Thus, we end up with one
score for each window size. We call this score the minimal
cumulative ratio (MCR).

Formally, the MCR for a window size w in a period (T1,T2)
is as follows:
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Figure 9: Windowed user-uptime:

MCR(w)≡ min
T1<t1<t2<T2

{A(t1, t2)|t2− t1 = w} (4)

MCR picks the worst availability for each window size
because that is the window that had the most impact on over-
all availability. Prior work in evaluating real-time garbage
collectors and specifically the Minimum-Mutator-Utilization
metric [15] inspired our windowing approach.

Fig. 9 shows an example of windowed user-uptime over a
period of one quarter; the x-axis gives the window size and
the y-axis (in log scale) gives the corresponding MCR. Fig. 9
enables us to readily make the following observations:

• The overall availability for the quarter is 99.991%; this
is the rightmost point in the curve.

• There was no window of one minute or longer whose
availability was worse than 92%.

• Knees of the curve can give insight into the longest inci-
dents and their distribution for the service. In the exam-
ple, the knee at about 2 hours indicates that the episode
that brought availability down to 92% lasted for two
hours; availability rapidly improves for larger windows.

By maintaining a mapping from each window size to the
start of the window, we can readily examine the worst win-
dow(s) of a particular size in detail (e.g., Fig. 10). We can
automatically discover the knee by finding the peak of the
2nd derivative of the windowed graph.

In summary, windowed user-uptime provides us with a
rich view into the availability of our services. This data is
actionable: it tells us the windows that degrade our overall
availability. Our engineers use these graphs to find and fix
sources of unavailability.

Figure 10: Per-minute availability over time

5.2 Monotonicity with integer-multiple sized
windows

Intuitively, we expect windowed user-uptime to be mono-
tonically non-decreasing in the size of the window; i.e., we
expect larger windows to have better availability. This sec-
tion proves that this is the case as long as window sizes are
integer multiples of smaller ones.

We use boldface to distinguish windows: w = [t1, t2] from
window sizes: w = t2− t1. For the remainder of this section
a window w will always be a continuous interval. The avail-
ability of a window w is the ratio of uptime and total time1

over that window:

A(w) =
u(w)

t(w)
.

Given a period of interest, [T1,T2], windowed user-uptime, or
the minimal cumulative ratio is the least of the availabilities
of all windows (Eq. (4)) of size w that are fully enclosed
within [T1,T2]:

MCR(w)≡ min
w⊆[T1 ,T2 ]
|w|=w

(
u(w)

t(w)

)
.

One expects MCR(w) to be a monotonic function. Indeed,
the availability over a window w′ of size w′ is intuitively
the mean of a fluctuating time series. Scanning the inter-
val with windows of smaller size w < w′, we should find
both higher and lower availability values and the minimum
of these should be smaller than the mean over the whole win-
dow:

MCR(w)
?
≤MCR(w′) w≤ w′. (5)

1We use user-uptime terminology but windowing can be defined for
other availability metrics. Substitute the corresponding concepts for good
and total service, for example request count in case of success-ratio.
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Eq. (5) indeed holds when we can cover a larger window
fully using windows of the next smaller size without overlap.
Consider w′ of size w′ covered with windows of size w as in
Fig. 11

Figure 11: Covering a window with smaller ones: w′ = kw

We denote the uptime and total time of the ith window as ui
and ti, respectively. Then the availability of w′ can be written
as:

A(w′) =
u1 +u2 + . . .+uk

t1 + t2 + . . .+ tk
.

It is impossible that all of the ratios ui/ti are greater than
A(w′). Indeed, the above equation can be rearranged to

0 =
k

∑
i=1

(ui−A(w′)ti)

and at least one term in the sum must be non-positive for the
sum to yield zero: u j ≤ A(w′)t j. Therefore there is at least
one window of size w whose availability is at most that of
w′:

u j

t j
≤ A(w′).

It follows that every window of length kw contains at least
one window of size w with lower availability. Since there
exists a window whose availability is MCR(kw), it follows
that:

MCR(w)≤MCR(kw) ∀k ∈ N (6)

5.3 Monotonicity in the general case
For practical purposes, Eq. (6) is “enough”: the worst avail-
ability of a day is always better than the worst availability of
an hour or of a minute. Curiously, windowed user-uptime is
not monotonically non-decreasing in the general case. The
Appendix gives a proof that we can bound the extent of this
apparent anomaly:

k
k+1

MCR(w)≤MCR(w′) kw < w′. (7)

In practice, we can guard against the apparent anomaly
and enforce strict monotonicity by restricting to integer mul-
tiples, e.g. compute windowed user-uptime for windows that
are powers of two.

6 Evaluation

Since last year, we have used windowed user-uptime for all
G Suite applications (Calendar, Docs, Drive, Gmail, etc.).
This section presents case studies where this metric pro-
vided keen insight into availability especially compared to
the success-ratio metric.

We present availability data from production Google
servers; in doing so we ignore unavailability due to issues
with user devices or mobile networks.

Since the actual availability data is Google proprietary, we
linearly scale and shift all curves in our graphs. This transfor-
mation preserves the shape of the curves and enables mean-
ingful comparison between them.

6.1 Availability due to hyper-active users
As we have discussed, bias (due to hyper-active users) can
negatively affect success-ratio. This section shows a real-life
example of this phenomenon.

Fig. 12 shows (scaled) user-uptime and success-ratio for
a large user base. One observes a consistent and significant
mismatch between success-ratio and user-uptime.

Figure 12: Uptime discrepancy due to mixed use-cases (log
scale)

Upon diving into this discrepancy, we discovered that
most (99%) active users contribute fewer than 100 events
each in the duration of the graph. The remaining (1%) of
the users are hyper-active and contribute 62% of all events.

Fig. 13 breaks down the availability data. The “Over-
all” curves give overall availability, the “Hyperactive users”
curves give availability for the most active 1% of the users,
and the “Typical users” curves give availability for the rest
of them. Success-ratio appears heavily biased towards the
availability for hyper-active users even though they make up
only 1% of the user base.

Bias due to hyper-active users for success-ratio is, thus,
not a theoretical possibility: we see this in production: in-
deed our most active users are 1000x more active than our
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Figure 13: Left: user-uptime for the two clusters of events and the combined user-uptime. Right: success-ratio for the two
clusters of events and the combined success-ratio

Figure 14: Monthly windowed uptime: success-ratio and
user-uptime

“typical” users which makes this bias a common occurrence.
When this bias occurs, success-ratio can mislead us towards
thinking that an incident is much more or much less severe
than it actually is.

6.2 Availability and hyper-active retries
While so far we have shown availability data for all cus-
tomers of a G Suite application, we also separately measure
availability for large customers since they often have their
own unique patterns of usage and thus may experience differ-
ent availability from other users. From this data we noticed
that a particular large customer (> 100,000 users) had much
poorer success-ratio than other users of Gmail; moreover we
noticed a discrepancy between success-ratio and user uptime
(Fig. 14). While the curves for user-uptime and success-ratio
have the same shape, they are far apart with user-uptime in-
dicating a better availability than success-ratio.

Fig. 15 shows the user-uptime and success-ratio over time.

Figure 15: Effect of abusive users

We can see that before and after the incident (i.e., the two
ends of the graph) the two metrics were similar, but during
the incident the two metrics diverged.

On investigation we uncovered that a small number of
users had enabled a third-party application which synced
their mailboxes; this external service was unable to han-
dle large mailboxes and for these users it would retry the
sync operation repeatedly and without exponential back-off.
This generated bursts of failing requests. The event count of
these failures drove the success-ratio availability down, even
though this impacted only a handful of users and other re-
quests for the users (e.g., to read an email) were successful.
User-uptime did not suffer from the bias due to these retries.
We were able to resolve this incident by communicating with
the third-party vendor.

In summary, users (and the clients they use) can behave
differently during incidents than during normal operations.
Clients may make many more requests during incidents (our
example above) or they may just decide to give up on the
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Figure 16: Impact assessment

system and try few hours later. In both cases, success-ratio
over- or under-estimates the magnitude of an outage while
user-uptime matches user perception.

6.3 Quantifying impact of outages

We quantify the impact of every outage on our users. This
impact advises the aftermath of the outage: for example,
a really severe outage may result in a temporary freeze in
deploying new versions until we address all the underlying
issues while a less severe outage may require less extreme
measures.

When using success-ratio, this quantification is difficult
since the metric is not based on time. Concretely, since re-
quest patterns (and specifically retry behavior) changes dur-
ing outages, using success-ratio to derive impact is not mean-
ingful.

Consider, for example Fig. 16 which displays an outage
from one of our products. Both success-ratio and user-
uptime dip at 12:10 to around 97%, then recover over the
course of an hour. What impact did this outage have on our
users? Was it the case that 100%− 97% = 3% of our users
couldn’t work for over an hour? Or that the impact was more
evenly spread across our users and that automatic retries hid
most of the negative impact?

The seconds of downtime, which we compute as part of
user uptime, provides more insight. From there we see the
minutes of downtime that our users experience. The large
number we measured for this indicated that this was clearly
a significant outage for some users and the retry behavior
was unable to mask this outage from our users.

6.4 Combining user-uptime and success-ratio

The Drive team extensively uses windowed user-uptime to
investigate, root-cause and fix sources of unavailability. The
proportionality of user-uptime is critical for their use case:

Figure 17: User-uptime analysis of Google Drive traffic, 30
days.

they need to be able to make changes and notice a propor-
tional change in the availability metric. Sometimes, combin-
ing user-uptime with success-ratio yields valuable insights.

Fig. 17 illustrates this situation. A first analysis of the up-
time graph shows a drop on the 4th day followed by a degra-
dation that reached a plateau on day 18 then was finally fixed
on day 26. Looking at success-ratio instead of user-uptime
paints the same picture, as can be seen in Fig. 18. Looking
at either of these two graphs, it is reasonable to assume that
this incident has a single cause.

Figure 18: success-ratio of Google Drive, same 30 days as
Fig. 17.

But if we plot success-ratio and user-uptime together as
in Fig. 19, we see that they diverge on day 18. Indeed,
an investigation showed that the period between day 18 and
day 26 was caused by a different issue, introduced by an at-
tempted fix for the first problem. It manifests differently in
user-uptime compared to success-ratio due to different client
behavior for this new issue. This divergence led the engi-
neers to the correct path in fixing the new issue instead of
trying to find out why the old issue was still ongoing, and
made the path to resolution easier and quicker.
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Figure 19: Divergence of user-uptime and success-ratio

6.5 Windowed uptime indicates burstiness of
unavailability

When we look at availability metrics aggregated over a
month or a quarter we cannot see short episodes of poor
availability. Fig. 20 shows the windowed user-uptime of
Drive and Hangouts. The two curves meet at the same point
at the 1 month mark; thus they have the same scaled avail-
ability (99.972%) over the course of the month. Their win-
dowed user-uptime graphs, however, tell different stories.

Windowed user-uptime reveals that it is a four hour
episode (the knee of the curve) that held back Hangouts from
having an even higher availability. In a different month with-
out such an episode or if we fix the root cause behind such
episodes, this product would have a higher availability.

For Drive, the windowed user-uptime curve has no pro-
nounced knee; this means that rather than a single long
episode, there are continuous short episodes which are hold-
ing back the service from having a higher availability. Thus,
unless we fix their root cause, Drive will continue to suffer
from these downtimes month after month.

By exposing shorter episodes of low availability (e.g.,
Hangouts’ four hour episode), windowed user-uptime alerts
us to problems that would otherwise be masked by the
(commonly-used) monthly aggregation. Our teams conse-
quently use windowed user-uptime to identify, root-cause
and then fix the sources of these short episodes, improving
overall availability.

7 Applicability of windowed user-uptime

To calculate windowed user-uptime we need fine-grained
logs of individual user operation. These logs must include
a key that enables us to chain together operations for each
user, the timestamp of the operation and the status of each
operation (success or failure). In some cases, additional in-
formation is invaluable: for example, (i) knowing the type of

Figure 20: Monthly windowed user-uptime distinguishes be-
tween the nature of unavailability

the operation enables us to determine if different operations
have different availability and (ii) knowing the organization
of a user enables us to determine if a particular organization
is experiencing worse availability compared to other organi-
zations.

In the simplest case we need to retain only the cumulative
count of up and down minutes for each minute to calculate
windowed user-uptime over any time duration. If we want to
slice data along additional dimensions we must maintain the
count of up and down minutes for each dimension (organi-
zation, operation type, etc.).

It took us about 1 year to deploy windowed user-uptime
to all of the G Suite applications. This time included imple-
mentation (e.g., to normalize the different log formats so we
can use the same pipeline across all of our applications and to
build the pipeline for calculating the metric) but the bulk of
the time was in determining which operations we should con-
sider in windowed user-uptime and whether or not a given
operation’s availability could be visible to users. From this
experience we are confident that windowed user-uptime is
broadly applicable: any cloud service provider should be
able to implement it.

8 Conclusion

We have introduced a novel availability metric, user-uptime
which combines the advantages of per-user aggregation with
those of using a time-based availability measure. We have
shown that as a result user-uptime avoids multiple kinds of
bias: hyper-active users contribute similarly to the metric as
regular users, and even behavioral changes during an outage
result in a proportional and meaningful measurement that in
many cases is even more precise than success-ratio.

We have evaluated our metric against the commonly-used
success-ratio metric using production data from G Suite ser-
vices. We show that the bias in success-ratio is not an aca-
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demic argument: we actually encounter it in production and
that user-uptime avoids this bias.

We have introduced a visualization technique, windowed
availability, that allows us to study multiple time-scales
from single minutes to a full quarter in an easy to under-
stand graph. Again using production data from G Suite ser-
vices, we show that windowed user-uptime sheds invaluable
and actionable insight into the availability of our services.
Specifically, windowed user-uptime enables us to differenti-
ate between many short and fewer but longer outages. This
ability focuses our engineering efforts into improvements
that will yield the most gains in user-perceived availability.
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Appendix: Monotonicity
We prove Eq. (7) which was stated in Section 5 without
proof.

k
k+1

MCR(w)≤MCR(w′) kw < w′. (7)

Figure 21: Embedding length-w windows in length-w′ one.
for w′ 6= kw

To prove Eq. (7), we cover the larger window of size w′

with windows of size w. Pick some 0 ≤ j ≤ k and fill the
segment with j windows without a gap from the left and k− j

windows from the right, as in Fig. 21. As w′ is not an integer
multiple of w, this will leave a small segment uncovered in
the middle. Like before, we write the availability of w′ in
terms of the uptime and total time of the segments as:

A(w′) =
U
T

=
u1 + . . .+u j +u′j +u j+1 + . . .+uk

t1 + . . .+ t j + t ′j + t j+1 + . . .+ tk
.

The availability of each window of length w is bounded by
MCR(w):

ui

ti
≥MCR(w).

Substituting ui ≥MCR(w)ti and u′j ≥ 0 yields:

A(w′)≥MCR(w)
t1 + . . .+ t j + t j+1 + . . .+ tk

t1 + . . .+ t j + t ′j + t j+1 + . . .+ tk

or

TA(w′)≥MCR(w)(T − t ′j).

Depending on how many windows we add on the left or
on the right, j can be any integer between 0 (all windows
on the right) and k (all windows on the left). Each of these
possibilities yields the same inequality as above, they differ
only in the respective value of t ′j. Let’s add all of these k+1
inequalities:

(k+1)TA(w′)≥MCR(w)(kT +T −
k

∑
j=0

t ′j).

Note, however, that

T −
k

∑
j=0

t ′j ≥ 0

because t ′j are total times of non-overlapping intervals, all
part of T . Substituting this yields the promised bound:

A(w′)≥ k
k+1

MCR(w).

We see, therefore, that every window of length w′ > kw con-
tains at least one window of size w with lower availability.
Since there exists a window whose availability is MCR(w′),
Eq. (7) follows.
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Abstract
Partial failures occur frequently in cloud systems and can
cause serious damage including inconsistency and data loss.
Unfortunately, these failures are not well understood. Nor
can they be effectively detected. In this paper, we first study
100 real-world partial failures from five mature systems to
understand their characteristics. We find that these failures are
caused by a variety of defects that require the unique condi-
tions of the production environment to be triggered. Manually
writing effective detectors to systematically detect such fail-
ures is both time-consuming and error-prone. We thus propose
OmegaGen, a static analysis tool that automatically generates
customized watchdogs for a given program by using a novel
program reduction technique. We have successfully applied
OmegaGen to six large distributed systems. In evaluating 22
real-world partial failure cases in these systems, the generated
watchdogs can detect 20 cases with a median detection time
of 4.2 seconds, and pinpoint the failure scope for 18 cases.
The generated watchdogs also expose an unknown, confirmed
partial failure bug in the latest version of ZooKeeper.

1 Introduction
It is elusive to build large software that never fails. Designers
of robust systems therefore must devise runtime mechanisms
that proactively check whether a program is still functioning
properly, and react if not. Many of these mechanisms are built
with a simple assumption that when a program fails, it fails
completely via crash, abort, or network disconnection.

This assumption, however, does not reflect the complex
failure semantics exhibited in modern cloud infrastructure.
A typical cloud software program consists of tens of mod-
ules, hundreds of dynamic threads, and tens of thousands
of functions for handling different requests, running various
background tasks, applying layers of optimizations, etc. Not
surprisingly, such a program in practice can experience par-
tial failures, where some, but not all, of its functionalities are
broken. For example, for a data node process in a modern
distributed file system, a partial failure could occur when a

rebalancer thread within this process can no longer distribute
unbalanced blocks to other remote data node processes, even
though this process is still alive. Or, a block receiver daemon
in this data node process silently exits, so the blocks are no
longer persisted to disk. These partial failures are not a latent
problem that operators can ignore; they can cause serious
damage including inconsistency, “zombie” behavior and data
loss. Indeed, partial failures are behind many catastrophic
real-world outages [1, 17, 39, 51, 52, 55, 66, 85, 86]. For ex-
ample, Microsoft Office 365 mail service suffered an 8-hour
outage because an anti-virus engine module of the mail server
was stuck in identifying some suspicious message [39].

When a partial failure occurs, it often takes a long time
to detect the incident. In contrast, a process suffering a total
failure can be quickly identified, restarted or repaired by exist-
ing mechanisms, thus limiting the failure impact. Worse still,
partial failures cause mysterious symptoms that are incredibly
difficult to debug [78], e.g., create() requests time out but
write() requests still work. In a production ZooKeeper out-
age due to the leader failing partially [86], even after an alert
was triggered, the leader logs contained few clues about what
went wrong. It took the developer significant time to localize
the fault within the problematic leader process (Figure 1).
Before pinpointing the failure, a simple restart of the leader
process was fruitless (the symptom quickly re-appeared).

Both practitioners and the research community have called
attention to this gap. For example, the Cassandra developers
adopted the more advanced accrual failure detector [73], but
still conclude that its current design “has very little ability
to effectively do something non-trivial to deal with partial
failures” [13]. Prabhakaran et al. analyze partial failure spe-
cific to disks [88]. Huang et al. discuss the gray failure [76]
challenge in cloud infrastructure. The overall characteristics
of software partial failures, however, are not well understood.

In this paper, we first seek to answer the question, how do
partial failures manifest in modern systems? To shed some
light on this, we conducted a study (Section 2) of 100 real-
world partial failure cases from five large-scale, open-source
systems. We find that nearly half (48%) of the studied failures
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public class SyncRequestProcessor {

  public void serializeNode(OutputArchive oa, ...) {

    DataNode node = getNode(pathString);

    if (node == null)

      return;

    String children[] = null;

    synchronized (node) {

      scount++;

      oa.writeRecord(node, "node");

      children = node.getChildren();

    }

    path.append('/');

    for (String child : children) {

      path.append(child);

      serializeNode(oa, path); //serialize children

    }

  }

}
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Figure 1: A production ZooKeeper outage due to partial failure [86].

cause certain software-specific functionality to be stuck. In
addition, the majority (71%) of the studied failures are trig-
gered by unique conditions in a production environment, e.g.,
bad input, scheduling, resource contention, flaky disks, or a
faulty remote process. Because these failures impact inter-
nal features such as compaction and persistence, they can be
unobservable to external detectors or probes.

How to systematically detect and localize partial failures at
runtime? Practitioners currently rely on running ad-hoc health
checks (e.g., send an HTTP request every few seconds and
check its response status [3, 42]). But such health checks are
too shallow to expose a wide class of failures. The state-of-the-
art research work in this area is Panorama [75], which converts
various requestors of a target process into observers to report
gray failures of this process. This approach is limited by
what requestors can observe externally. Also, these observers
cannot localize a detected failure within the faulty process.

We propose a novel approach to construct effective partial
failure detectors through program reduction. Given a program
P, our basic idea is to derive from P a reduced but represen-
tative version W as a detector module and periodically test
W in production to expose various potential failures in P. We
call W an intrinsic watchdog. This approach offers two main
benefits. First, as the watchdog is derived from and “imitates”
the main program, it can more accurately reflect the main
program’s status compared to the existing stateless heartbeats,
shallow health checks or external observers. Second, reduc-
tion makes the watchdog succinct and helps localize faults.

Manually applying the reduction approach on large soft-
ware is both time-consuming and error-prone for developers.
To ease this burden, we design a tool, OmegaGen, that stati-
cally analyzes the source code of a given program and gener-
ates customized intrinsic watchdogs for the target program.

Our insight for realizing program reduction in OmegaGen
is that W ’s goal is solely to detect and localize runtime errors;
therefore, it does not need to recreate the full details of P’s
business logic. For example, if P invokes write() in a tight
loop, for checking purposes, a W with one write() may be
sufficient to expose a fault. In addition, while it is tempting
to check all kinds of faults, given the limited resources, W
should focus on checking faults manifestable only in a produc-

tion environment. Logical errors that deterministically lead
to wrong results (e.g., incorrect sorting) should be the focus
of offline unit testing. Take Figure 1 as an example. In check-
ing the SyncRequestProcessor, W need not check most of the
instructions in function serializeNode, e.g., lines 3–6 and 8.
While there might be a slim chance these instructions would
also fail in production, repeatedly checking them would yield
diminishing returns for the limited resource budget.

Accurately distinguishing logically-deterministic faults and
production-dependent faults in general is difficult. OmegaGen
uses heuristics to analyze how “vulnerable” an instruction is
based on whether the instruction performs some I/O, resource
allocation, async wait, etc. So since line 9 of Figure 1 per-
forms a write, it would be assessed as vulnerable and tested
in W . It is unrealistic to expect W to always include the fail-
ure root cause instruction. Fortunately, a ballpark assessment
often suffices. For instance, even if we only assess that the
entire serializeNode function or its caller is vulnerable, and
periodically test it in W , W can still detect this partial failure.

Once the vulnerable instructions are selected, OmegaGen
will encapsulate them into checkers. OmegaGen’s second con-
tribution is providing several strong isolation mechanisms so
the watchdog checkers do not interfere with the main program.
For memory isolation, OmegaGen identifies the context for
a checker and generates context managers with hooks in the
main program which replicates contexts before using them
in checkers. OmegaGen removes side-effects from I/O opera-
tions through redirection and designs an idempotent wrapper
mechanism to safely test non-idempotent operations.

We have applied OmegaGen to six large (28K to 728K
SLOC) systems. OmegaGen automatically generates tens to
hundreds of watchdog checkers for these systems. To evaluate
the effectiveness of the generated watchdogs, we reproduced
22 real-world partial failures. Our watchdogs can detect 20
cases with a median detection time of 4.2 seconds and local-
ize the failure scope for 18 cases. In comparison, the best
manually written baseline detector can only detect 11 cases
and localize 8 cases. Through testing, our watchdogs exposed
a new, confirmed partial failure bug in the latest ZooKeeper.

2 Understanding Partial Failures

Partial failures are a well known problem. Gupta and Shute
report that partial failures occur much more commonly than to-
tal failures in the Google Ads infrastructure [70]. Researchers
studied partial disk faults [88] and slow hardware faults [68].
But how software fails partially is not well understood. In this
Section, we study real-world partial failures to gain insight
into this problem and to guide our solution design.
Scope We focus on partial failure at the process granularity.
This process could be standalone or one component in a large
service (e.g., a datanode in a storage service). Our studied
partial failure is with respect to a process deviating from the
functionalities it is supposed to provide per se, e.g., store and
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Software Lang. Cases Ver.s (Range) Date Range

ZooKeeper Java 20 17 (3.2.1–3.5.3) 12/01/2009–08/28/2018
Cassandra Java 20 19 (0.7.4–3.0.13) 04/22/2011–08/31/2017
HDFS Java 20 14 (0.20.1–3.1.0) 10/29/2009–08/06/2018
Apache C 20 16 (2.0.40–2.4.29) 08/02/2002–03/20/2018
Mesos C++ 20 11 (0.11.0–1.7.0) 04/08/2013–12/28/2018

Table 1: Studied software systems, the partial failure cases, and the
unique versions, version and date ranges these cases cover.
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Figure 2: Root cause distribution. UE: uncaught error; IB: indefinite
blocking; EH: buggy error handling; DD: deadlock; PB: perfor-
mance bug; LE: logic error; IL: infinite loop; RL: resource leak.

balance data blocks, whether it is a service component or a
standalone server. We note that users may define a partial
failure at the service granularity (e.g., Google drive becomes
read-only), the underlying root cause of which could be either
some component crashing or failing partially.
Methodology We study five large, widely-used software sys-
tems (Table 1). They provide different services and are writ-
ten in different languages. To collect the study cases, we first
crawl all bug tickets tagged with critical priorities in the offi-
cial bug trackers. We then filter tickets from testing and ran-
domly sample the remaining failures tickets. To minimize bias
in the types of partial failures we study, we exhaustively ex-
amining each sampled case and manually determine whether
it is a complete failure (e.g., crash), and discard if so. In total,
we collected 100 failure cases (20 cases for each system).

2.1 Findings
Finding 1: In all the five systems, partial failures appear
throughout release history (Table 1). 54%1 of them occur in
the most recent three years’ software releases.

Such a trend occurs in part because as software evolves,
new features and performance optimizations are added, which
complicates the failure semantics. For example, HDFS intro-
duced a short-circuit local reads feature [30] in version 0.23.
To implement this feature, a DomainSocketWatcher was added
that watches a set of Unix domain sockets and invokes a
callback when they become readable. But this new module
can accidentally exit in production and cause applications
performing short-circuit reads to hang [29].

Finding 2: The root causes of studied failures are diverse. The
top three (total 48%) root cause types are uncaught errors,
indefinite blocking, and buggy error handling (Figure 2).

Uncaught error means certain operation triggers some error
condition that is not expected by the software. As an exam-

1With sample size 100, the percents also represent the absolute numbers.
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Figure 3: Consequence of studied failures.

ple, the streaming session in Cassandra could hang when
the stream reader encounters errors other than IOException

like RuntimeException [6]. Indefinite blocking occurs when
some function call is blocked forever. In one case [27], the
EditLogTailer in a standby HDFS namenode made an RPC
rollEdits() to the active namenode; but this call was blocked
when the active namenode was frozen but not crashed, which
prevented the standby from becoming active. Buggy error han-
dling includes silently swallowing errors, empty handlers [93],
premature continuing, etc. Other common root causes include
deadlock, performance bugs, infinite loop and logic errors.

Finding 3: Nearly half (48%) of the partial failures cause
some functionality to be stuck.

Figure 3 shows the consequences of the studied failures.
Note that these failures are all partial. For the “stuck” fail-
ures, some software module like the socket watcher was not
making any progress; but the process was not completely un-
responsive, i.e., its heartbeat module can still respond in time.
It may also handle other requests like non-local reads.

Besides “stuck” cases, 17% of the partial failures causes
certain operation to take a long time to complete (the “slow”
category in Figure 3). These slow failures are not just inef-
ficiencies for optional optimization. Rather, they are severe
performance bugs that cause the affected feature to be barely
usable. In one case [5], after upgrading Cassandra 2.0.15 to
2.1.9, users found the read latency of the production cluster
increased from 6 ms/op to more than 100 ms/op.

Finding 4: In 13% of the studied cases, a module became a
“zombie” with undefined failure semantics.

This typically happens when the faulty module accidentally
exits its normal control loop or it continues to execute even
when it encounters some severe error that it cannot tolerate.
For example, an unexpected exception caused the ZooKeeper
listener module to accidentally exit its while loop so new
nodes could no longer join the cluster [46]. In another case,
the HDFS datanode continued even if the block pool failed to
initialize [26], which would trigger a NullPointerException

whenever it tried to do block reports.

Finding 5: 15% of the partial failures are silent (including
data loss, corruption, inconsistency, and wrong results).

They are usually hard to detect without detailed correctness
specifications. For example, when the Mesos agent garbage
collects old slave sandboxes, it could incorrectly wipe out the
persistent volume data [37]. In another case [38], the Apache
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web server would “go haywire”, e.g., a request for a .js file
would receive a response of image/png, because the backend
connections are not properly closed in case of errors.

Finding 6: 71% of the failures are triggered by some specific
environment condition, input, or faults in other processes.

For example, a partial failure in ZooKeeper can only
be triggered when some corrupt message occurs in the
length field of a record [66]. Another partial failure in the
ZooKeeper leader would only occur when a connecting fol-
lower hangs [50], which prevents other followers from joining
the cluster. These partial failures are hard to be exposed by
pre-production testing and require mechanisms to detect at
runtime. Moreover, if a runtime detector uses a different setup
or checking input, it may not detect such failures.

Finding 7: The majority (68%) of the failures are “sticky”.

Sticky means the process will not recover from the faults
by itself. The faulty process needs to be restarted or repaired
to function again. In one case, a race condition caused an
unexpected RejectedExecutionException, which caused the
RPC server thread to silently exit its loop and stop listening
for connections [9]. This thread must be restarted to fix the
issue. For certain failures, some extra repair actions such as
fixing a file system inconsistency [25] are needed.

The remaining (32%) failures are “transient”, i.e., the
faulty modules could possibly recover after certain condition
changes, e.g., when the frozen namenode becomes respon-
sive [27]. However, these non-sticky failures already incurred
damage for a long time by then (15 minutes in one case [45]).

Finding 8: The median diagnosis time is 6 days and 5 hours.

For example, diagnosing a Cassandra failure [10] took the
developers almost two days. The root cause turned out to be
relatively simple: the MeteredFlusher module was blocked for
several minutes and affected other tasks. One common reason
for the long diagnosis time despite simple root causes is that
the confusing symptoms of the failures mislead the diagnosis
direction. Another common reason is the insufficient exposure
of runtime information in the faulty process. Users have to
enable debug logs, analyze heap, and/or instrument the code,
to identify what was happening during the production failure.

2.2 Implications
Overall, our study reveals that partial failure is a common
and severe problem in large software systems. Most of the
studied failures are production-dependent (finding 6), which
require runtime mechanisms to detect. Moreover, if a runtime
detector can localize a failure besides mere detection, it will
reduce the difficulty of offline diagnosis (finding 8). Existing
detectors such as heartbeats, probes [69], or observers [75] are
ineffective because they have little exposure to the affected
functionalities internal in a process (e.g., compaction).

One might conclude that the onus is on the developers to
add effective runtime checks in their code, such as a timer

check for the rollEdits() operation in the aforementioned
HDFS failure [27]. However, simply relying on developers
to anticipate and add defensive checks for every operation is
unrealistic. We need a systematic approach to help developers
construct software-specific runtime checkers.

It would be desirable to completely automate the construc-
tion of customized runtime checkers, but this is extremely
difficult in the general case given the diversity (finding 2)
of partial failures. Indeed, 15% of the studied failures are
silent, which require detailed correctness specifications to
catch. Fortunately, the majority of failures in our study vio-
late liveness (finding 3) or trigger explicit errors at certain
program points, which suggests that detectors can be automat-
ically constructed without deep semantic understanding.

3 Catching Partial Failures with Watchdogs

We consider a large server process π composed of many
smaller modules, providing a set of functionalities R, e.g.,
a datanode server with request listener, snapshot manager,
cache manager, etc. A failure detector is needed to monitor
the process for high availability. We target specifically partial
failures. We define a partial failure in a process π to be when
a fault does not crash π but causes safety or liveness violation
or severe slowness for some functionality R f ( R. Besides de-
tecting a failure, we aim to localize the fault within the process
to facilitate subsequent troubleshooting and mitigation.

Guided by our study, we propose an intersection principle
for designing effective partial failure detectors—construct
customized checks that intersect with the execution of a mon-
itored process. The rationale is that partial failures typically
involve specific software feature and bad state; to expose such
failures, the detector need to exercise specific code regions
with carefully-chosen payloads. The checks in existing detec-
tors including heartbeat and HTTP tests are too generic and
too disjoint with the monitored process’ states and executions.

We advocate an intrinsic watchdog design (Figure 4) that
follows the above principle. An intrinsic watchdog is a ded-
icated monitoring extension for a process. This extension
regularly executes a set of checkers tailored to different mod-
ules. A watchdog driver manages the checker scheduling and
execution, and optionally applies a recovery action. The key
objective for detection is to let the watchdog experience simi-
lar faults as the main program. This is achieved through (a)
executing mimic-style checkers (b) using stateful payloads (c)
sharing execution environment of the monitored process.
Mimic Checkers. Current detectors use two types of check-
ers: probe checkers, which periodically invoke some APIs;
signal checkers, which monitor some health indicator. Both
are lightweight. But a probe checker can miss many failures
because a large program has numerous APIs and partial fail-
ures may be unobservable at the API level. A signal checker
is susceptible to environment noises and usually has poor
accuracy. Neither can localize a detected failure.

562    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



main

program

address space

watchdog

watchdog

hooks…

mimic checkers

Request
Listener

Snapshot
Manager

…

Replication
Engine

Contexts

driver

Compaction
Worker

states

= Failure alert

= Failed checker

= Saved context 
= … 

Report

Figure 4: An intrinsic watchdog example.

We propose a more powerful mimic-style checker. Such
checker selects some representative operations from each
module of the main program, imitates them, and detects errors.
This approach increases coverage of checking targets. And
because the checker exercises code logic similar to the main
program in production environment, it can accurately reflect
the monitored process’ status. In addition, a mimic checker
can pinpoint the faulty module and failing instruction.
Synchronized States. Exercising checkers requires payloads.
Existing detectors use synthetic input (e.g., fixed URLs [3]) or
a tiny portion of the program state (e.g., heartbeat variables)
as the payload. But triggering partial failures usually entails
specific input and program state (§2). The watchdog should
exercise its checkers with non-trivial state from the main
program for higher chance of exposing partial failures.

We introduce contexts in watchdogs. A context is bound
to each checker and holds all the arguments needed for the
checker execution. Contexts are synchronized with the pro-
gram state through hooks in the main program. When the
main program execution reaches a hook point, the hook uses
the current program state to update its context. The watchdog
driver will not execute a checker unless its context is ready.
Concurrent Execution. It is natural to insert checkers di-
rectly in the main program. However, in-place checking poses
an inherent tension—on the one hand, catching partial failures
requires adding comprehensive checkers; on the other hand,
partial failures only occur rarely, but more checkers would
slow down the main program in normal scenarios. In-place
checkers could also easily interfere with the main program
through modifying the program states or execution flow.

We advocate watchdog to run concurrently with the main
program. Concurrent execution allows checking to be de-
coupled so a watchdog can execute comprehensive checkers
without delaying the main program during normal executions.
Indeed, embedded systems domain has explored using concur-
rent watchdog co-processor for efficient error detection [84].
When a checker triggers some error, the watchdog also will
not unexpectedly alter the main program execution. The con-
current watchdog should still live in the same address space
to maximize mimic execution and expose similar issues, e.g.,
all checkers timed out when the process hits long GC pause.

4 Generating Watchdogs with OmegaGen
It is tedious to manually write effective watchdogs for large
programs, and it is challenging to get it right. Incautiously

written watchdogs can miss checking important functions,
alter the main execution, invoke dangerous operations, cor-
rupt program states, etc. a watchdog must also be updated as
the software evolves. To ease developers’ burden, we design
a tool, OmegaGen, which uses a novel program reduction
approach to automatically generate watchdogs described in
Section 3. The central challenge of OmegaGen is to ensure
the generated watchdog accurately reflects the main program
status without introducing significant overhead or side effects.

Overview and Target. OmegaGen takes the source code of
a program P as an input. It finds the long-running code re-
gions in P and then identifies instructions that may encounter
production-dependent issues using heuristics and optional,
user-provided annotations. OmegaGen encapsulates the vul-
nerable instructions into executable checkers and generates
watchdog W. It also inserts watchdog hooks in P to update
W’s contexts and packages a driver to execute W in P. Figure 5
shows an overview example of running OmegaGen.

As discussed in Section 2.2, it is difficult to automatically
generate detectors that can catch all types of partial failures.
Our approach targets partial failures that surface through ex-
plicit errors, blocking or slowness at certain instruction or
function in a program. The watchdogs OmegaGen generates
are particularly effective in catching partial failures in which
some module becomes stuck, very slow or a “zombie” (e.g.,
the HDFS DomainSocketWatcher thread accidentally exiting
and affecting short-circuit reads). They are in general inef-
fective on silent correctness errors (e.g., Apache web-server
incorrectly re-using stale connections).

4.1 Identify Long-running Methods
OmegaGen starts its static analysis by identifying long-
running code regions in a program (step Ê), because watch-
dogs only target checking code that is continuously executed.
Many code regions in a server program are only for one-shot
tasks such as database creation, and should be excluded from
watchdogs. Some tasks are also either periodically executed
such as snapshot or only activated under specific conditions.
We need to ensure the activation of generated watchdog is
aligned with the life span of its checking target in the main
program. Otherwise, it could report wrong detection results.

OmegaGen traverses each node in the program call graph.
For each node, it identifies potentially long-running loops in
the function body, e.g., while(true) or while(flag). Loops
with fixed iterations or that iterate over collections will be
skipped. OmegaGen then locates all the invocation instruc-
tions in the identified loop body. The invocation targets are
colored. Any methods invoked by a colored node are also
recursively colored. Besides loops, we also support coloring
periodic task methods scheduled through common libraries
like ExecutorService in Java concurrent package. Note that
this step may over-extract (e.g., an invocation under a condi-
tional). This is not an issue because the watchdog driver will
check context validity at runtime (§4.4).
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public class SyncRequestProcessor {
  public void run() {
    while (running) {
      if (logCount > (snapCount / 2))
        zks.takeSnapshot();
      ...
    }
  }
}
public class DataTree {
  public void serializeNode(OutputArchive oa, ...) {
    ...
    String children[] = null;
    synchronized (node) {
      scount++;
      oa.writeRecord(node, "node");
      children = node.getChildren();
    }
    ...
  }
}
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+ ContextManger.serializeNode_reduced
_args_setter(oa, node);

(a) A module in main program

public class SyncRequestProcessor$Checker {
  public static void serializeNode_reduced(
       OutputArchive arg0, DataNode arg1) {
    arg0.writeRecord(arg1, "node");
  }
  public static void serializeNode_invoke() {
    Context ctx = ContextManger.
       serializeNode_reduced_context();
    if (ctx.status == READY) {
      OutputArchive arg0 = ctx.args_getter(0);
      DataNode arg1 = ctx.args_getter(1);
      serializeNode_reduced(arg0, arg1);
    }
  }
  public static void takeSnapshot_reduced() {
    serializeList_invoke();
    serializeNode_invoke();
  }
  public static Status checkTargetFunction0() {
    ...
    takeSnapshot_reduced();
  }
}
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(b) Generated checker
Figure 5: Example of watchdog checker OmegaGen generated for a module in ZooKeeper.

A complication arises when a method has multiple call-
sites, some of which are colored while others are not. Whether
this method is long running or not depends on the specific
execution. Moreover, an identified long-running loop may
turn out to be short-lived in an actual run. To accurately cap-
ture the method life span and control the watchdog activation,
OmegaGen designs a predicate-based algorithm. A predicate
is a runtime property associated with a method which tracks
whether a call site of this method is in fact reached.

For an invocation target inside a potentially long-running
loop, a hook is inserted before the loop that sets its predicate
and another hook after the loop that unsets its predicate. A
callee of a potentially long-running method will have a predi-
cate set to be equal to this caller’s predicate. At runtime, the
predicates are assigned and evaluated that activates or deacti-
vates the associated watchdog. The predicate instrumentation
occurs after OmegaGen finishes the vulnerable operation anal-
ysis (§4.2) and program reduction (§4.3).

4.2 Locate Vulnerable Operations
OmegaGen then analyzes the identified long-running methods
and further narrows down the checking target candidates (step
Ë). This is because even in those limited number of methods,
a watchdog cannot afford to check all of their operations. Our
study shows that the majority of partial failures are triggered
by unique environment conditions or workloads. This implies
that operations whose safety or liveness are heavily influenced
by its execution environment deserve particular attention. In
contrast, operations whose correctness is logically determinis-
tic (e.g., sorting), are better checked through offline testing or
in-place assertions. Continuously monitoring such operations
inside a watchdog would yield diminishing returns.

OmegaGen uses heuristics to determine for a given oper-
ation how vulnerable this operation is in its execution envi-
ronment. Currently, the heuristics consider operations that
perform synchronization, resource allocation, event polling,
async waiting, invocation with external input argument, file or

network I/O as highly vulnerable. OmegaGen identifies most
of them through standard library calls. Functions contain-
ing complex while loop conditions are considered vulnerable
due to potential infinite looping. Simple operations such as
arithmetic, assignments, and data structure field accesses are
tagged as not vulnerable. In the Figure 5a example, Omega-
Gen considers the oa.writeRecord to be highly vulnerable
because its body invokes several write calls. These heuristics
are informed by our study but can be customized through a
rule table configuration in OmegaGen. For example, we can
configure OmegaGen to consider functions with several ex-
ception signatures as vulnerable (i.e., potentially improperly
handled). We also allow developers to annotate a method with
a @vulnerable tag in the source code. OmegaGen will locate
calls to the annotated method and treat them as vulnerable.

Neither our heuristics nor human judgment can guarantee
that the vulnerable operation criteria are always sound and
complete. If OmegaGen incorrectly assesses a safe operation
as vulnerable, the main consequence is that the watchdog
would waste resources monitoring something unnecessarily.
Incorrectly assessing a vulnerable operation as risk-free is
more concerning. But one nice characteristic of vulnerable
operations is that they often propagate [67] – an instruction
that blocks indefinitely would also cause its enclosing func-
tion to block; and, an instruction that triggers some uncaught
error also propagates through the call stack. For example, in a
real-world partial failure in ZooKeeper [66], even if Omega-
Gen misses the exact vulnerable instruction readString, a
watchdog still has a chance to detect the partial failure if
dserialize or even pRequest is assessed to be vulnerable. On
the other hand, if a vulnerable operation is too high-level (e.g.,
main is considered vulnerable), error signals can be swallowed
internally and it would also make localizing faults hard.

4.3 Reduce Main Program
With the identified long-running methods and vulnerable op-
erations, OmegaGen performs a top-down program reduction
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(step Ì) starting from the entry point of long-running meth-
ods. For example, in Figure 5a, OmegaGen will try to reduce
the takeSnapshot function first. When walking the control
flow graph of a method to be reduced, if an instruction is
tagged as potentially vulnerable, it would be retained in the
reduced method. Otherwise, it would be excluded. For a call
instruction that is not tagged as vulnerable yet, it would be
temporarily retained and OmegaGen will recursively try to
reduce the target function. If eventually the body of a reduced
method is empty, i.e., no vulnerable operation exists, it will
be discarded. Any call instructions that call this discarded
method and were temporarily retained are also discarded.

The resulting reduced program not only contains all vulner-
able operations reachable from long-running methods but also
preserves the original structure, i.e., for a call chain f ↪→ g ↪→ h

in the main program, the reduced call chain is f’ ↪→ g’ ↪→ h’

This structure can help localize a reported issue. In addition,
when later a watchdog invokes a validator (§4.6), the structure
provides information on which validator to invoke.

If a type of vulnerable operation (e.g., the writeRecord call
in Figure 5a) is included multiple times in the reduced pro-
gram, it could be redundant in terms of exposing failures.
Therefore, OmegaGen will further reduce the vulnerable op-
erations based on whether they have been included already.
However, the same type of vulnerable operation may be in-
voked quite differently in different places, and only a par-
ticular invocation would trigger failure. If we are too ag-
gressive in reducing based on occurrences, we may miss
the fault-triggering invocation. So, by default OmegaGen
only performs intra-procedural occurrence reduction: mul-
tiple writeRecord calls will not occur within a single reduced
method but may occur across different reduced methods.

4.4 Encapsulate Reduced Program
OmegaGen will encapsulate the code snippets retained after
step Ì into watchdogs. But these code snippets may not be
directly executable because of missing definitions or payloads.
For example, the reduced version of serializeNode in Fig-
ure 5a contains an operation oa.writeRecord(node, "node").
But oa and node are undefined. OmegaGen analyzes all the
arguments required for the execution of a reduced method.
For each undefined variable, OmegaGen adds a local variable
definition at the beginning of the reduced method. It further
generates a context factory that provides APIs to manage all
the arguments for the reduced method (step Í). Before a vari-
able’s first usage in the reduced method, a getter call to the
context factory is added to retrieve the latest value at runtime.

To synchronize with the main program, OmegaGen inserts
hooks that call setter methods of the same context factory
in the (non-reduced) method in the original program at the
same point of access. The context hooks are further condi-
tioned on the long-running predicate for this method (§4.1).
When the watchdog driver executes a reduced method, it first
checks whether the context is ready and skips the execution

if the context is not ready. Together, context and predicate
control the activation of watchdog checkers—only when the
original program reaches the context hooks and the method
is truly long-running would the corresponding operation be
checked. For example, in the while loop of Figure 5a, if the
log count has not reached the snapshot threshold yet, the pred-
icate for takeSnapshot is true but the context for the reduced
serializeNode is not ready so the checking is skipped.

4.5 Add Checks to Catch Faults
After step Í, the encapsulated reduced methods can be exe-
cuted in a watchdog. OmegaGen will then add checks for
the watchdog driver to catch the failure signals from the
execution of vulnerable operations in the reduced methods.
OmegaGen targets both liveness and safety violations. Live-
ness checks are relatively straightforward to add. OmegaGen
inserts a timer before running a checker. Setting good time-
outs for distributed systems is a well-known hard problem.
Prior work [82] argues that replacing end-to-end timeouts with
fine-grained timeouts for local operations makes the setting
less sensitive. We made similar observations and use a con-
servative timeout (default 4 seconds). Besides timeouts, the
watchdog driver also records the moving average of checker
execution latencies to detect potential slow faults.

To detect safety violations, OmegaGen relies on the vulner-
able operations to emit explicit error signals (assertions, excep-
tions, and error codes) and installs handlers to capture them.
OmegaGen also captures runtime errors, e.g., null pointer
exception, out of memory errors, IllegalStateException.

Correctness violations are harder to check automatically
without understanding the semantics of the vulnerable opera-
tions. Fortunately such silent violations are not very common
in our studied cases (§2). Nevertheless, OmegaGen provides
a wd_assert API for developers to conveniently add seman-
tic checks. When OmegaGen analyzes the program, it will
treat wd_assert instructions as special vulnerable operations.
It performs similar checker encapsulation (§4.4) by analyzing
the context needed for such operations and generates checkers
containing the wd_assert instructions. The original wd_assert
in the main program will be rewritten as a no-op. In this way,
developers can leverage the OmegaGen framework to perform
concurrent expensive checks (e.g., if the hashes of new blocks
match their checksums) without blocking the main execution.

The watchdog driver records any detected error in a log file.
The reported error contains the timestamp, failure type and
symptom, failed checker, the corresponding main program
location that the failed checker is testing. backtrace, etc. The
watchdog driver also saves the context used by the failed
checker to ease subsequent offline troubleshooting.

4.6 Validate Impact of Caught Faults
An error reported by a watchdog checker could be transient or
tolerable. To reduce false alarms, the watchdog runs a valida-
tion task after detecting an error. The default validation is to
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simply re-execute the checker and compare, which is effective
for transient errors. Validating tolerable errors requires testing
software features. Note that the validator is not for handling
errors but rather confirming impact. Writing such validation
tasks mainly involves invoking some entry functions, e.g.,
processRequest(req), which is straightforward.

OmegaGen provides skeletons of validation tasks, and cur-
rently relies on manual effort to fill out the skeletons. But
OmegaGen automates the decision of choosing which valida-
tion task to invoke based on which checker failed. Specifically,
for a filled validation task T that invokes a function f in the
main program, OmegaGen searches the generated reduced
program structure (§4.3) in topological order and tries to
find the first reduced method m’ that either matches f or any
method in the f’s callgraph. Then OmegaGen generates a
hashmap that maps all the checkers that are rooted under m’
to task T . At runtime, when an error is reported, the watchdog
driver checks the map to decide which validator to invoke.

4.7 Prevent Side Effects
Context Replication. To prevent the watchdog checkers from
accidentally modifying the main program’s states, OmegaGen
analyzes all the variables (context) referenced in a checker. It
generates a replication setter in the checker’s context manager,
which will replicate the context when invoked. The replication
ensures any modifications are contained in the watchdog’s
state. Using replicated contexts also avoids adding complex
synchronization to lock objects during checking. But blindly
replicating contexts will incur high overhead. We perform
immutability analysis [74, 77] on the watchdog contexts. If a
context is immutable, OmegaGen generates a reference setter
instead, which only holds a reference to the context source.

To further reduce context replication, we use a simple but
effective lazy copying approach that, instead of replicating
a context upon each set, delays the replication to only when
a getter needs it. To deal with potential inconsistency due to
lazy replication—e.g., the main program has modified the con-
text after the setter call—we associate a context with several
attributes: version, weak_ref (weak reference to the source
object), and hash (hash code for the value of the source ob-
ject). The lazy setter only sets these attributes but does not
replicate the context. Later when the getter is invoked, the
getter checks if the referent of weak_ref is not null. If so, it
further checks if the current hash code of the referent’s value
matches the recorded hash and skip replication if they do
not match (main program modified context). Besides the at-
tribute checks in getters, the watchdog driver will check if the
version attributes of each context in a vulnerable operation
match and skip the checking if the versions are inconsistent
(see further elaboration in Appendix A).

I/O Redirection and Idempotent Wrappers. Besides mem-
ory side effects; we also need to prevent I/O side effects. For
instance, if a vulnerable operation is writing to a snapshot
file, a watchdog could accidentally write to the same snapshot

file and affect subsequent executions of the main program.
OmegaGen adds I/O redirection capability in watchdogs to
address this issue: when OmegaGen generates the context
replication code, the replication procedure will check if the
context refers to a file-related resource, and if so the context
will be replicated with the file path changed to a watchdog
test file under the same directory path. Thus watchdogs would
experience similar issues such as degraded or faulty storage.

If the storage system being written to is internally load-
balanced (e.g., S3), however, the test file may get distributed
to a different environment and thus miss issues that only
affect the original file. This limitation can be addressed as
our write redirection is implemented in a cloning library,
so it is relatively easy to extend the logic of deciding the
redirection path there to consider the load-balancing policy (if
exposed). Besides, if the underlying storage system is layered
and complex like S3, it is perhaps better to apply OmegaGen
on that system to directly expose partial failures there.

For socket I/O, OmegaGen can perform similar redirection
to a special watchdog port if we know beforehand the remote
components are also OmegaGen-instrumented. Since this
assumption may not hold, OmegaGen by default rewrites the
watchdog’s socket I/O operation as a ping operation.

If the vulnerable operation is a read-type operation, redi-
rection to read from the watchdog special test file may not
help. We design an idempotent wrapper mechanism so that
both the main program and watchdog can invoke the wrapper
safely. If the main program invokes the wrapper first, it di-
rectly performs the actual read-type operation and caches the
result in a context. When the watchdog invokes the wrapper,
if the main program is in the critical section, it will wait until
the main program finishes, and then it gets the cached con-
text. In the normal scenario, the watchdog can use the data
from the read operation without performing the actual read.
In the faulty scenario, if the main program blocks indefinitely
in performing the read-type operation, the watchdog would
uncover the hang issue through the timeout of waiting in its
wrapper; a bad value from the read would also be captured by
the watchdog after retrieving it. For each vulnerable operation
of read-type, OmegaGen generates an idempotent wrapper
with the above property, replaces the main program’s original
call instruction to invocation of the wrapper, and places a call
instruction to the wrapper in the watchdog checker as well.

5 Implementation
We implemented OmegaGen in Java with 8,100 SLOC. Its
core components are built on top of the Soot [90] program
analysis framework, so it supports systems in Java bytecode.
OmegaGen does not rely on specific JDK features. The Soot
version we used can analyze bytecode up to Java 8. We lever-
age a cloning library [79] with around 400 SLOC of changes
to support our selective context replication and I/O redirec-
tion mechanisms. OmegaGen’s workflow consists of multiple
phases to analyze and instrument the program and generate
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ZK CS HF HB MR YN
SLOC 28K 102K 219K 728K 191K 229K
Methods 3,562 12,919 79,584 179,821 16,633 10,432

Table 2: Evaluated system software. ZK: ZooKeeper; CS: Cassan-
dra; HF: HDFS; HB: HBase; MR: MapReduce; YN: Yarn.

ZK CS HF HB MR YN
Watchdogs 96 190 174 358 161 88
Methods 118 464 482 795 371 222
Operations 488 2,112 3,416 9,557 6,116 752

Table 3: Number of watchdogs and checkers generated. Not all
watchdogs will be activated at runtime.

watchdogs. A single script automates the workflow and pack-
ages the watchdogs with the main program into a bundle.

6 Evaluation
We evaluate OmegaGen to answer several questions: (1) does
our approach work for large software? (2) can the generated
watchdogs detect and localize diverse forms of real-world
partial failures? (3) do the watchdogs provide strong isolation?
(4) do the watchdogs report false alarms? (5) what is the
runtime overhead to the main program? The experiments
were performed on a cluster of 10 cloud VMs. Each VM has
4 vCPUs at 2.3GHz, 16 GB memory, and 256 GB disk.

6.1 Generating Watchdogs
To evaluate whether our proposed technique can work for real-
world software, we evaluated OmegaGen on six large systems
(Table 2). We chose these systems because they are widely
used and representative, with codebases as large as 728K
SLOC to analyze. OmegaGen uses around 30 lines of default
rules for the vulnerable operation heuristics (most are types
of Java library methods) and an average of 10 system-specific
rules (e.g., special asynchronous wait patterns). OmegaGen
successfully generates watchdogs for all six systems.

Table 3 shows the total watchdogs generated. Each watch-
dog here means a root of reduced methods. Note that these
are static watchdogs. Only a subset of them will be activated
in production by the watchdog predicates and context hooks
(§4.1). We further evaluate how comprehensive the gener-
ated checkers are by measuring how many thread classes in
the software have at least one watchdog checker generated.
Figure 6 shows the results. OmegaGen achieves an average
coverage ratio of 60%. For the threads that do not have check-
ers, they are either not long-running (e.g., auxiliary tools) or
OmegaGen did not find vulnerable operations in them. In
general, OmegaGen may fail to generate good checkers for
modules that primarily perform computations or data struc-
ture manipulations. The generated checkers may still contain
some redundancy even after the reduction (§4.3).

6.2 Detecting Real-world Partial Failures
Failure Benchmark To evaluate the effectiveness of our
generated watchdogs, we collected and reproduced 22 real-
world partial failures in the six systems. Table 10 in the

ZK CS HF HB MR YN KK
0

25

50

75

100 Total threads

Threads w/ checkers

Figure 6: Thread-level coverage by generated watchdog checkers.

Detector Description

Client (Panorama [75]) instrument and monitor client responses
Probe (Falcon [82]) daemon thread in the process that periodically

invokes internal functions with synthetic requests
Signal script that scans logs and checks JMX [40] metrics
Resource daemon thread that monitors memory usage, disk

and I/O health, and active thread count

Table 4: Four types of baseline detectors we implemented.

appendix lists the case links and types. All of these failures
led to severe consequences. They involve sophisticated fault
injection and workload to trigger. It took us 1 week on average
to reproduce each failure. Seven cases are from our study in
Section 2. Others are new cases we did not study before.

Baseline Detectors The built-in detectors (heartbeat) in the
six systems cannot handle partial failures at all. We thus im-
plement four types of advanced detectors for comparison (Ta-
ble 4). The client checker is based on the observers in state-
of-the-art work, Panorama [75]. The probe checker presents
Falcon [82] app spies (which are also manually written in the
Falcon paper). When implementing the signal and resource
checkers, we follow the current best practices [15, 42] and
monitor signals recommended by practitioners [2, 31, 41, 43].

Methodology The watchdogs and baseline detectors are all
configured to run checks every second. When reproducing
each case, we record when the software reaches the failure
program point and when a detector first reports failure. The
detection time is the latter minus the former. For slow failures,
it is difficult to pick a precise start time. We set the start point
using criteria recommended by practitioners, e.g., when num-
ber of outstanding requests exceeds 10 for ZooKeeper [31].

Result Table 5 shows the results. Overall, the watchdogs
detected 20 out of the 22 cases with a median detection time
of 4.2 seconds. 12 of the detected cases are captured by the
default vulnerable operation rules. 8 are caught by system-
specific rules. In general, the watchdogs were effective for
liveness issues like deadlock, indefinite blocking as well as
safety issues that trigger explicit error signals or exceptions.
But they are less effective for silent correctness errors.

In comparison, as Table 5 shows, the best baseline detector
only detected 11 cases. Even the combination of all baseline
detectors detected only 14 cases. The client checkers missed
68% of the failures because these failures concern the internal
functionality or some optimizations that are not immediately
visible to clients. The signal checker is the most effective
among the baseline detectors, but it is also noisy (§6.6).

Case Studies ZK1 [45]: This is the running example in
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ZK1 ZK2 ZK3 ZK4 CS1 CS2 CS3 CS4 HF1 HF2 HF3 HF4 HB1 HB2 HB3 HB4 HB5 MR1 MR2 MR3 MR4 YN1
Watch. 4.28 -5.89 3.00 41.19 -3.73 4.63 46.56 38.72 1.10 6.20 3.17 2.11 5.41 7.89 6 0.80 5.89 1.01 4.07 1.46 4.68 6
Client 6 2.47 2.27 6 441 6 6 6 6 6 6 6 6 4.81 6 6.62 6 6 6 6 8.54 7.38
Probe 6 6 6 6 15.84 6 6 6 6 6 6 6 6 4.71 6 7.76 6 6 6 6 6 6
Signal 12.2 0.63 1.59 0.4 5.31 6 6 6 6 6 6 0.77 0.619 6 0.62 61.0 6 6 6 6 0.60 1.16
Res. 5.33 0.56 0.72 17.17 209.5 6 -19.65 6 -3.13 6 6 0.83 6 6 6 0.60 6 6 6 6 6 6

Table 5: Detection times (in seconds) for the real-world cases in Table 10. 6: undetected.

ZK1 ZK2 ZK3 ZK4 CS1 CS2 CS3 CS4 HF1 HF2 HF3 HF4 HB1 HB2 HB3 HB4 HB5 MR1 MR2 MR3 MR4 YN1
Watchdog ø ø l [ ø [ l [ [ Z ø ø ø ø n/a ø Z ø ø Z ø n/a
Client n/a l l n/a l n/a n/a n/a n/a n/a n/a n/a n/a l n/a m n/a n/a n/a n/a l l
Probe n/a n/a n/a n/a w n/a n/a n/a n/a n/a n/a n/a n/a w n/a w n/a n/a n/a n/a n/a n/a
Signal l ø l l ø n/a n/a n/a n/a n/a n/a ø ø n/a Z Z n/a n/a n/a n/a ø ø
Resource l l l l l n/a l n/a l n/a n/a l n/a n/a n/a l n/a n/a n/a n/a n/a n/a

Table 6: Failure localization for the real-world cases in Table 10.ø: pinpoint the faulty instr. [: pinpoint the faulty function or data
structure. Z: pinpoint a func in the faulty function’s call chain. w: pinpoint some entry function in the program, which is distant from the root
cause. l: only pinpoint the faulty process. m: misleadingly pinpoint another innocent process. n/a: not applicable because failure is undetected.

the paper. A network issue caused a ZooKeeper remote
snapshot dumping operation to be blocked in a critical sec-
tion, which prevented update-type request processing threads
from proceeding (Figure 1). OmegaGen generates a checker
serializeNode_reduced, which exposed the issue in 4 s.
CS1 [7]: The Cassandra Commitlog executor accidentally
died due to a bad commit disk volume. This caused the
uncommitted writes to pile up, which in turn led to exten-
sive garbage collection and the process entering a zom-
bie status. The relevant watchdog OmegaGen generates is
CommitLogSegment_reduced. Interestingly, this case had nega-
tive detection time. This happens because the executor suc-
cessfully executed the faulty program point prior to the fail-
ure and set the watchdog context (log segment path). When
the checker was scheduled, the context was still valid so the
checker was activated and exposed the issue ahead of time.
HB5 [18]: Users observed some gigantic write-ahead-logs
(WALs) on their HBase cluster even when WAL rolling is en-
abled. This is because when a peer is previously removed, one
thread gets blocked for sending a shutdown request to a closed
executor. Unfortunately this procedure holds the same lock
ReplicationSourceManager#recordLog, which does the WAL
rolling (to truncate logs). Our generated watchdog mimics the
procedure of submitting request and waiting for completion,
and experienced the same stalling issue on closed executor.
CS4 [11]: Due to a severe performance bug in the Cassandra
compaction module, all the RangeTombstones ever created for
the partition that have expired would remain in memory until
the compaction completes. The compaction task would be
very slow when the workloads contain a lot of overwrites
to collections. The relevant checker OmegaGen generates is
SSTableWriter#append_reduced. After the tombstones piles
up, this checker reports a slow alert based on the dramatic
(10×) increase of moving average of operation latencies.
YN1 [44]: A new application (AM) was stuck after getting
allocated to a recently added NodeManager (NM). This was
caused by /etc/hosts on the ResourceManager (RM) not be-
ing updated, so this new NM was unresolvable when RM built
the service tokens. RM would retry forever and the AM would

keep getting allocated to the same NM. Our watchdogs failed
to detect the issue. The reason is that the faulty operation
buildTokenService() mainly creates some data structure, so
OmegaGen failed to consider it as vulnerable.

6.3 Localizing Partial Failure
Detection is only the first step. We further evaluate the lo-
calization effectiveness for the detected cases in Table 5. we
measure the distance between the error reporting location
and the faulty program point. We categorize the distance into
six levels of decreasing accuracy. Table 6 shows the result.
Watchdogs directly pinpoint the faulty instruction for 55%
(11/20) of the detected cases, which indicates the effective-
ness of our vulnerable operation heuristics. In case MR1 [35],
after noticing the symptom (reducer did not make progress for
a long time), it took the user more than two days of careful log
analysis and thread dumps to narrow down the cause. With
the watchdog error report, the fault was obvious.

For 35% (7/20) of detected cases, the watchdogs either
localize to some program point within the same function or
some function along the call chain, which can still signifi-
cantly ease troubleshooting. For example, in case HF2 [24],
the balancer was stuck in a loop in waitForMoveCompletion()

because isPendingQEmpty() will return false when no mover
threads are available. The generated watchdog did not pin-
point either place. But it caught the error through timeout in
executing a future.get() vulnerable operation in its checker
dispatchBlockMoves_reduced, which narrows down the issue.

In comparison, the client or resource detectors can only
pinpoint the faulty process. To narrow down the fault, users
must spend significant time analyzing logs and code. In case
HB4 [21], the client checker even blamed a wrong innocent
process, which would completely mislead the diagnosis. The
probe checker localizes failures to some internal functions in
the program. But these functions are still too high-level and
distant from the fault. The signal checker localizes 8 cases.

6.4 Fault-Injection Tests
To evaluate how the watchdogs may perform in real deploy-
ment, we conducted a random fault-injection experiment on
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ZK CS HF HB MR YN
watch. 0–0.73 0–1.2 0 0–0.39 0 0–0.31
watch_v. 0–0.01 0 0 0–0.07 0 0
probe 0 0 0 0 0 0
resource 0–3.4 0–6.3 0.05–3.5 0–3.72 0.33–0.67 0–6.1
signal 3.2–9.6 0 0–0.05 0–0.67 0 0

Table 7: False alarm ratios (%) of all detectors in the evaluated
six systems. Each cell reports the ratio range under three setups
(stable, loaded, tolerable). watch_v: watchdog with validators.

the latest ZooKeeper. In particular, we inject four types of
faults to the system: Infinite loop (modify loop condition to
force running forever); Arbitrary delay (inject 30 seconds de-
lay in some complex operations); System resource contention
(exhaust CPU/memory resource); I/O delay (inject 30 sec-
onds delay in file system or network). After that, we run a
series of workloads and operations (e.g., restart some server).
We successfully trigger 16 synthetic failures. Our generated
watchdogs can detect 13 out of the 16 triggered synthetic
failures with a median detection time of 6.1 seconds. The
watchdogs pinpoint the injected failure scope for 11 cases.

6.5 Discovering A New Partial Failure Bug
During our continuous testing, our watchdogs exposed a new
partial bug in the latest version (3.5.5) of ZooKeeper. We ob-
serve that our ZooKeeper cluster occasionally hangs and new
create requests time out while the admin tool still shows the
leader process is working. This symptom is similar to our stud-
ied bug ZK1. But that bug is already fixed in the latest version.
The issue is also non-deterministic. Our watchdogs report the
failure in 4.7 seconds. The watchdog log helps us pinpoint
the root cause for this puzzling failure. The log shows the
checker that reported the issue was serializeAcls_reduced.
We further inspected this function and found that the problem
was the server serializing the ACLCache inside a critical sec-
tion. When developers fixed the ZK1 bug, this similar flaw
was overlooked and recent refactoring of this class made the
flaw more problematic. We reported this new bug [49], which
has been confirmed by the developers and fixed.

6.6 Side Effects and False Alarms
We ran the watchdog-enhanced systems with extensive work-
loads and verified that the systems pass their own tests. We
also verified the integrity of the files and client responses by
comparing them with ones from the vanilla systems. If we
disable our side-effect prevention mechanisms (§4.7), how-
ever, the systems would experience noticeable anomalies, e.g.,
snapshots get corrupted, system crash; or, the main program
would hang because the watchdog read the data from a stream.

We further evaluate the false alarms of watchdogs and base-
line detectors under three setups: stable: runs fault-free for 12
hours with moderate workloads (§6.7); loaded: random node
restarts, every 3 minutes into the moderate workloads, switch
to aggressive workloads (3× number of clients and 5× request
sizes); tolerable: run with injected transient errors tolerable by
the system. Table 7 shows the results. The false alarm ratio is

ZK CS HF HB MR YN
Analysis 21 166 75 92 55 50
Generation 43 103 130 953 131 89

Table 8: OmegaGen watchdog generation time (sec).

ZK CS HF HB MR YN
Base 428.0 3174.9 90.6 387.1 45.0 45.0
w/ Watch. 399.8 3014.7 85.1 366.4 42.1 42.3
w/ Probe. 417.6 3128.2 89.4 374.3 44.9 44.9
w/ Resource. 424.8 3145.4 89.9 385.6 44.9 44.6

Table 9: System throughput (op/s) w/ different detectors.

calculated from total false failure reports divided by the total
number of check executions. Watchdogs did not report false
alarms in the stable setup. But during a loaded period, they
incur around 1% false alarms due to socket connection errors
or resource contention. These false alarms would disappear
once the transient faults are gone. With the validator mech-
anism (§4.6), the watchdog false alarm ratios (the watch_v
row) are significantly reduced. Among the baseline detectors,
we can see that even though signal checkers achieved better
detection, they incur high false alarms (3–10%).

6.7 Performance and Overhead
We first measure the performance of OmegaGen’s static anal-
ysis. Table 8 shows the results. For all but HBase, the whole
process takes less than 5 minutes. HBase takes 17 minutes to
generate watchdogs because of its large codebase.

We next measure the runtime overhead of enabling watch-
dogs and the baseline detectors. We used popular benchmarks
configured as follows: for ZK, we used an open-source bench-
mark [16] with 15 clients sending 15,000 requests (40% read);
for Cassandra, we used YCSB [61] with 40 clients sending
100,000 requests (50% read); for HDFS, we used built-in
benchmark NNBenchWithoutMR which creates and writes
100 files, each file has 160 blocks and each block is 1MB;
for HBase, we used YCSB with 40 clients sending 50,000 re-
quests (50% read); for MapReduce and Yarn, we used built-in
DFSIO benchmark which writes 400 10MB files.

Table 9 shows that the watchdogs incur 5.0%–6.6% over-
head on throughput. The main overhead comes from the
watchdog hooks rather than the concurrent checker execution.
The probe detectors are more lightweight, incurring 0.2%–
3.2% overhead. We also measure the latency impact. The
watchdogs incur 9.3%–12.2% overhead on average latency
and 8.3%–14.0% overhead on tail (99th percentile) latency.
But given the watchdog’s significant advantage in failure de-
tection and localization, we believe its higher overhead is jus-
tified. For a cloud infrastructure, operators could also choose
to activate watchdogs on a subset of the deployed nodes to
reduce the overhead while still achieving good coverage.

We measure the CPU usages of each system w/o and w/
watchdogs. The results are 57%→66% (ZK), 199%→212%
(CS), 33%→38% (HF), 36%→41% (HB), 5.6%→6.9% (MR),
1.5%→3% (YN). We also analyze the heap memory usages.
The median memory usages (in MiB) are 128→131 (ZK),
447→459 (CS), 165→178 (HF), 197→201 (HB), 152→166
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(MR), 154→157 (YN). The increase is small because contexts
are only lazily replicated every checking interval, compared
to continuous object allocations in the main program.

6.8 Sensitivity
We evaluate the sensitivity of our default 4-sec timeout thresh-
old on detecting liveness issues with ZK1 [45] (stuck fail-
ure) and ZK4 [48] (slow failure). Under timeout threshold
100 ms, 300 ms, 500 ms, 1 s, 4 s, and 10 s, the detection times
for ZK1 are respectively 0.51 s, 0.61 s, 0.70 s, 1.32 s, 4.28 s,
and 12.09 s. The detection time generally decreases with
smaller timeout, but it is bounded by the checking interval.
With timeout of 100 ms, we observe 6 false positives in 5 min-
utes. For ZK4, when the timeout threshold is aggressive, the
slow fault can be detected without the moving average mech-
anism (§4.5), in particular with detection times of 61.65 s
(100 ms), 91.38 s (300 ms), 110.32 s (500 ms). Eventually the
resource leak exhausts all available memory before the watch-
dog exceeds more conservative thresholds.

7 Limitations
OmegaGen has several limitations we plan to address in fu-
ture work: (1) Our vulnerable operation analysis is heuristics-
based. This step can be improved through offline profiling
or dynamic adaptive selection. (2) Our generated watchdogs
are effective for liveness issues and common safety viola-
tions. But they are ineffective to catch silent semantic fail-
ures. We plan to leverage existing resources that contain se-
mantic hints such as test cases to derive runtime semantic
checks. (3) OmegaGen achieves memory isolation with static
analysis-assisted context replication. We will explore more
efficient solutions like copy-on-write when porting Omega-
Gen to C/C++ systems. (4) OmegaGen generates watchdogs
to report failures for individual process. One improvement
is to pair OmegaGen with failure detector overlays [89] so
the failure detector of one process could inspect another pro-
cess’ watchdogs. (5) Our watchdogs currently focus on fault
detection and localization but not recovery. We will integrate
microreboot [58] and ROC techniques [87].

8 Related Work
Partial failure has been discussed in multiple contexts. Arpaci-
Dusseau and Arpaci-Dusseau propose the fail-stutter fault
model [56]. Prabhakaran et al. analyze the fail-partial model
for disks [88]. Correia et al. propose the ASC fault model [62].
Huang et al. propose a definition for gray failure in cloud [76].
Gunawi et al. [68] studies the fail-slow performance faults in
hardware. Our study presented in Section 2 focuses on partial
failures in modern cloud software. A recent work analyzes
failures in cloud systems caused by network partitions [54].
Our work’s scope is at the process granularity. A network
partition may causes total failures to the partitioned processes
(disconnected from other processes). Besides, our work covers
much more diverse root causes beyond network issues.

Failure detection has been extensively studied [53, 59, 60,
63, 65, 71, 72, 80–82, 91]. But they primarily focus on detect-
ing fail-stop failures in distributed systems; partial failures
are beyond the scope of these detectors. Panorama [75] pro-
poses to leverage observability in a system to detect gray
failures [76]. While this approach can enhance failure detec-
tion, it assumes some external components happen to observe
the subtle failure behavior. These logical observers also can-
not isolate which part of the failing process is problematic,
making subsequent failure diagnosis time-consuming [32].

Watchdog timers are essential hardware components found
in embedded systems [57]. For general-purpose software,
watchdogs are more challenging to construct manually due
to the large size of the codebase and complex program logic.
Consequently, existing software using the watchdog con-
cept [4, 14] only designs watchdogs as shallow health checks
(e.g., http test) and a kill policy [42]. Our position paper [83]
advocates for the intrinsic watchdog abstraction and articu-
lates its design principles. OmegaGen provides the ability
to automatically generate comprehensive, customized watch-
dogs for a given program through static analysis.

Several works aim to generate software invariants or ease
runtime checking. Daikon [64] infers likely program invari-
ants from dynamic execution traces. PCHECK [92] uses pro-
gram slicing to extract configuration checks to detect latent
misconfiguration during initialization. OmegaGen is comple-
mentary to these efforts. We focus on synthesizing checkers
for monitoring long-running procedures of a program in pro-
duction by using a novel program reduction technique.

9 Conclusion
System software continues to become ever more complex.
This leads to a variety of partial failures that are not captured
by existing solutions. This work first presents a study of 100
real-world partial failures in popular system software to shed
light on the characteristics of such failures. We then present
OmegaGen, which takes a program reduction approach to gen-
erate watchdogs for detecting and localizing partial failures.
Evaluating OmegaGen on six large systems, it can generate
tens to hundreds of customized watchdogs for each system.
The generated watchdogs detect 20 out of 22 real-world par-
tial failures with a median detection time of 4.2 seconds, and
pinpoint the scope of failure for 18 cases; these results signifi-
cantly outperform the baseline detectors. Our watchdogs also
exposed a new partial failure in latest ZooKeeper.
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Appendix A Additional Clarifications

Consistency under Lazy Replication Section 4.7 describes
that we associate a context with three attributes (version,
weak_ref, and hash) to deal with potential inconsistency due
to the lazy replication optimization. Here, we give a concrete
example to clarify how potential inconsistency could arise and
how it is addressed. With lazy replication (essentially “copy-
on-get”), a context may be modified or even invalidated after
the context setter call; if this occurs, the getter will replicate a
different context value. For example,

Main Program Watchdog Checker

------------------------------ ---------------------------

void foo() { void foo_reduced_invoke() {

foo_reduced_args_setter(oa);

write(oa);

Id. Root Cause Conseq. Sticky? Study?

ZK1 [45] Bad Synch. Stuck No Yes
ZK2 [66] Uncaught Error Zombie Yes Yes
ZK3 [47] Logic Error Inconsist. Yes No
ZK4 [48] Resource Leak Slow Yes Yes

CS1 [7] Uncaught Error Zombie Yes Yes
CS2 [8] Indefinite Blocking Stuck No Yes
CS3 [12] Resource Leak Slow Yes No
CS4 [11] Performance Bug Slow Yes No

HF1 [29] Uncaught Error Stuck Yes Yes
HF2 [24] Indefinite Blocking Stuck No Yes
HF3 [23] Deadlock Stuck Yes No
HF4 [28] Uncaught Error Data Loss Yes No

HB1 [20] Infinite Loop Stuck Yes No
HB2 [19] Deadlock Stuck Yes No
HB3 [22] Logic Error Stuck Yes No
HB4 [21] Uncaught Error Denial Yes No
HB5 [18] Indefinite Blocking Silent Yes No

MR1 [35] Deadlock Stuck Yes No
MR2 [34] Infinite Loop Stuck Yes No
MR3 [36] Improper Err Handling Stuck Yes No
MR4 [33] Uncaught Error Zombie Yes No

YN1 [44] Improper Err Handling Stuck Yes No

Table 10: 22 real-world partial failures reproduced for evalua-
tion. ZK: ZooKeeper; CS: Cassandra; HF: HDFS; HB: HBase; MR:
MapReduce; YN: Yarn. Sticky?: whether the failure persists forever.
Study?: whether the failure is from the studied cases in Section 2.

oa.append("test");

<--- oa = foo_reduced_ctx.args_getter(0);

}

By the time the context getter is invoked in the checker, oa
may already be invalidated (garbage collected). But since
the getter will check the weak_ref attribute, it will find out
the fact that the context is invalid (weak_ref returns null)
and hence not replicate. If oa is still valid, the context getter
will further check the hash code of the current value and
skip replication if it does not match the recorded hash. This
approach is lightweight. But it assumes the hash code contract
of Java objects being honored in a program. If this is not
the case, e.g., oa’s hash code is the same regardless of its
content, inconsistency (getter replicates a modified context)
could arise. Such inconsistency may or may not cause an issue
for the checker. For the above example, the checker’s write

may write "xxxtest" instead of "xxx" to the watchdog test
file, which is still fine. But if another vulnerable operation has
a special invariant on "xxx", the inconsistency will lead to a
false alarm at runtime. Our low false alarm rates during the
12-hour experiment period suggest that hash code contract
violation is generally not a major concern for mature software.

Another consistency scenario to consider is when a checker
uses some vulnerable operation that requires multiple context
arguments. Since the context retrieval is asynchronous under
the lazy replication optimization, a race condition could occur
while a getter is retrieving all the arguments. For example,

Main Program Watchdog Checker

----------------------------------- ---------------------------
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Figure 7: Illustration of idempotent wrapper

// called in a loop

synchronized void foo() { void foo_reduced_invoke() {

<--- arg0 = foo_reduced_ctx.args_getter(0);

...

foo_reduced_args_setter(oa, node);

oa.writeRecord(node);

<--- arg1 = foo_reduced_ctx.args_getter(1);

}

After the getter retrieves oa, the second argument (node) is up-
dated before the getter retrieves it. In this case, both arguments
are valid and match their recorded hash attributes. However,
they are mixed from two invocations of foo(). We address this
inconsistency scenario with the version attributes. A checker
will compare if the version attributes of all the contexts it
needs are the same before invoking the checked operation,
and skip the checking if the versions are inconsistent.

Appendix B Implementation Details

Idempotent Wrapper Section 4.7 describes our idempotent
wrapper mechanism that allows watchdogs to safely invoke
non-idempotent operations, especially read-type operations.
We further elaborate the details for this mechanism here.

The basic idea is to have both the watchdog and main pro-
gram invoke the wrapper instead of the original operation in
a coordinated fashion. The wrapper distinguishes whether the
call is from main program or the watchdog. Take a vulnerable
operation readRecord as an example. In the fault-free scenario,
the main program performs the actual readRecord like normal;
the watchdog checker would get a cached value. In a faulty
scenario, the main program may get stuck in readRecord; the
watchdog would be blocked outside the critical section of
the wrapper so it can detect the hang without performing the
actual readRecord. Figure 7 illustrates both scenarios.

OmegaGen automatically generates idempotent wrappers
for all read-type vulnerable operations. OmegaGen first lo-
cates all statements that invoke a read operation in the main
program. It extracts the stream objects from these statements.
A wrapper is generated for each type of stream object. The
watchdog driver maintains a map between the stream objects
and the wrapper instances. For the wrapper to later perform
the actual operation, OmegaGen assigns a distinct operation
number for each read-type method in the stream class, and gen-
erates a dispatcher that calls the method based on the op num-
ber. Then, OmegaGen replaces the original invocation with
a call to the watchdog driver’s wrapper entry point using the

ZK CS HF HB MR YN
Disk Base 3.97 6.04 88.26 1.50 0.10 0.05
(MB/s) w/ WD 4.04 6.12 89.02 1.53 0.10 0.05
Network Base 997 2,884 27 993 1.3 1.5
(KB/s) w/ WD 1,031 2,915 28 1,048 1.7 1.8

Table 11: Average disk and network I/O usages of the base sys-
tems and w/ watchdogs.

stream object, operation number, and caller source as the argu-
ments. For example, buf = istream.read(); in the main program
would be replaced with buf = WatchdogDriver.readHelp(istream, 1,

0); where 1 is the op number for read and 0 means the wrapper
is called from the main program.

The other steps in the checker construction for the read-type
operations are similar to other types of vulnerable operations.
The key difference is that OmegaGen will generate a self-
contained checker for the wrapped operation instead of the
operation. It particular, the checker OmegaGen generates will
contain a call instruction to the proper wrapper using source
1 (from watchdog) as the argument.

Appendix C Supplementary Evaluation

Semantic Check API Our experiments in Section 6 did not
use semantic checks, wd_assert (§4.5), to avoid biased results.
But we did test using wd_assert on a hard case ZK3. Although
the watchdog OmegaGen automatically generates detected
this case, it is because the failure-triggering condition (bad
disk) also affected some other vulnerable I/O operations in
the watchdog. We wrote a wd_assert to check if the on-disk
transaction records are far behind in-memory records:

wd_assert(lastProcessedZxid <= (new

ZKDatabase(txnLogFactory)).loadDataBase()+MISS_TXN_THRESHOLD);

OmegaGen handles the tedious details by automatically ex-
tracting the necessary context, encapsulating a watchdog
checker, and removing this expensive statement from the main
program. The resulted semantic checker can detect the failure
within 2 seconds and pinpoint the issue.

I/O Usage Overhead We measured the disk I/O usages (us-
ing iotop) and network I/O usage (using nethogs) for the six
systems with and without watchdogs under the same setup
as our overhead experiment in Section 6.7. Table 11 shows
the results. We can see the I/O usage increase incurred by the
watchdogs is small (a median of 1.6% for disk I/O and 4.4%
for network I/O).
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Abstract
The reliability of cloud services can be significantly under-
mined by correlated failures due to shared service dependen-
cies, even when the services are already replicated across ma-
chines. State-of-the-art failure prevention systems can proac-
tively audit a service before its deployment to detect risks
for correlated failures, but their auditing speeds are too slow
for frequent service updates. This paper presents CloudCa-
nary, a system that can perform real-time audits on service
updates to identify the root causes of correlated failure risks,
and generate improvement plans with increased reliability.

CloudCanary achieves this with two primitives, SNAPAUDIT

and DEPBOOSTER. SNAPAUDIT leverages two insights to
achieve high accuracy and efficiency: a) service updates typ-
ically affect only a small part of the service stack, allowing
the majority of previous auditing results to be reused; and
b) structural reliability auditing tasks can be reduced to a
Boolean satisfiability problem, which can then be solved ef-
ficiently using modern SAT solvers. DEPBOOSTER, on the
other hand, can generate improvement plans efficiently by
reducing the required reasoning load, using novel techniques
such as model counting. We demonstrate in our experiments
that CloudCanary can perform audits over large deployments
200× faster than state-of-the-art systems, and that it consis-
tently generates high-quality improvement plans within min-
utes. Moreover, CloudCanary can yield valuable insights over
real-world traces collected from production environments.

1 Introduction
High reliability is an essential requirement for cloud services.
To enhance reliability, cloud providers typically replicate
states and functionality across multiple servers, under the
assumption of failure independence [33, 34, 54].

Reality, however, is more complicated. The complex, multi-
layered nature of network/software stacks in cloud services
may conceal underlying interdependencies between seem-
ingly independent components, such as network switches and
software modules. Failures of these common service depen-
dencies can lead to correlated failures despite replication,
causing service downtime [11, 25, 39, 70]. For example, a
faulty top-of-rack (ToR) switch would affect all replicas in
the same rack [18], and a buggy software component could
propagate failures across all service instances it supports [38].

∗ Work done while at Yale University.

Such incidents have repeatedly made the headlines: in one of
the Rackspace outage events [9], glitches in two core switches
caused multiple servers to be inaccessible, leading to signif-
icant service disruption; in another incident, a single faulty
data collector in Amazon EBS brought down the Relational
Database service in an entire availability zone [3].

A number of previous efforts have focused on diagnosing
the root causes of correlated failures [14,23,47,58]. While this
is useful, post-failure diagnostics typically involves prolonged
failure recovery time [12, 64], as even the best of diagnostic
tools cannot prevent service outages. Such outages can be
quite costly: on average, a single datacenter outage can cause
an economic loss of $740,357 [4].

More recent proposals aim to proactively prevent correlated
failures by auditing the structural reliability of cloud services
before deployment [22, 70, 71]. At a high level, these systems
collect a comprehensive set of structural dependency data in
cloud services, and construct a system-wide fault graph to
encode the dependencies. They then identify potential risks
for correlated failures from the fault graph.

However, state-of-the-art auditing systems are designed to
perform audits at service initialization, not for conducting
real-time audits throughout the service lifetime. Runtime au-
dits are necessary, because existing work has shown that many
dependencies potentially causing correlated failures are intro-
duced by network and software updates (e.g., reconfigurations
and upgrades) during service runtime [39]. For example, a
Gmail service upgrade configured microservice replicas to
share the same vulnerable component, which later rendered
user data unavailable for many hours [5]. Existing systems
are impractical for real-time audits for two reasons.

• First, they are too slow in analyzing cloud-scale deploy-
ments in real time. For example, a state-of-the-art sys-
tem takes ∼35 hours to analyze a 30,528-component ser-
vice [70], making it only possible to perform a few audits
per week. This cannot match the update frequency in to-
day’s clouds—for instance, Google reported 58 updates per
week, roughly one update every three hours [37].
• Second, these tools can only alert the operator to corre-

lated failure risks, but do not offer further support to find
effective improvement plans. Thus, the operator needs to
either manually reason about improvements to the exist-
ing deployment, or use automated tools to generate a plan
from scratch [22, 70]. The former is error-prone, and the
latter may result in a plan that requires considerable service
reconfiguration. Moreover, both are inefficient.
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In other words, although the operator may have enough lead
time to perform audits at service initialization, the high
turnaround time of existing systems prohibits their use in
real-time auditing during service runtime.

We present CloudCanary, a system that can efficiently and
accurately a) alert the operator to the root causes of correlated
failure risks introduced by service updates, and b) generate
a set of improved deployment plans with higher reliability.
CloudCanary achieves this using two primitives—SNAPAUDIT

and DEPBOOSTER—to help prevent correlated failures during
service runtime in a timely manner.
Contribution #1. SNAPAUDIT (§3) can efficiently and accu-
rately identify root causes for correlated failures in a given
service snapshot. The design of SNAPAUDIT addresses two
challenges. The first is how to rapidly analyze a fault graph
representing the service update snapshot. To address this
challenge, we propose an incremental auditing algorithm to
identify a set of differential fault graphs, which represents
the “delta” between the service snapshots before and after
an update. Based on the insight that service updates usually
affect a small part of service stacks [37, 49, 60], extracting
differential fault graphs enables us to avoid the need to re-
analyze the entire fault graph from scratch. Second, although
differential fault graphs are already smaller than the over-
all fault graph, analyzing each of them is still NP-hard and
time-consuming [63]. We therefore propose an approach that
speeds up the fault graph analysis by transforming a differen-
tial fault graph into a Boolean formula, and then solving the
formula using a high-performance MinCostSAT solver [35].
Contribution #2. DEPBOOSTER (§4), on the other hand, helps
the operator improve a risk-prone deployment. It allows the
operator to specify a reliability goal (e.g., the failure proba-
bility needs to be lower than a certain threshold), and then
generates a set of alternative improvement plans that meet
the specification. DEPBOOSTER also addresses two challenges.
First, there are infinitely many potential improvement plans
to be checked for their capability to satisfy the specified
goal. To overcome this challenge, we utilize network compres-
sion [17]—a technique that can simplify a datacenter network
by collapsing symmetric network structures and slicing away
irrelevant parts—to significantly reduce the number of states
we need to check. Second, even after compression, it still
takes a long time to check whether a candidate deployment
meets the specified goal. We further propose a novel algorithm
based on model counting [20] for efficient checks.

To the best of our knowledge, CloudCanary is the first
practical system capable of preventing correlated failure risks
in service updates. We have built a CloudCanary prototype
and evaluated it with a set of real-world scenarios (§6). Our
results show that SNAPAUDIT can identify correlated failure
root causes in a 1,183,360-component service within 8 min-
utes, 200× faster than the state-of-the-art systems, and that
DEPBOOSTER can find high-quality improvement plans within
minutes.
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Figure 1: An update that affects the Cinder DB deployment,
where the path Agg2→Core2 is shifted to Agg2→Core1 due
to an ECMP configuration change.

2 Overview
In this section, we first motivate our problem further (§2.1).
Then, we describe the state-of-the-art auditing systems and
their limitations (§2.2 and §2.3). Finally, we present the archi-
tecture of CloudCanary (§2.4).

2.1 Motivation
Cloud operators ensure service reliability by replicating im-
portant state and functionality. Suppose that an operator de-
ploys Cinder DB (a block storage system in OpenStack) in her
datacenter, and that she replicates Cinder DB across multiple
servers to increase reliability. Unbeknownst to this operator,
the replicated Cinder DB instances may share deep dependen-
cies, such as certain network or software components [3, 9].
The failures of such latent common dependencies can lead
to a correlated failure across the entire system, undermining
the use of replication. Such common dependencies are often
called a risk group—a (small) number of components whose
simultaneous failure results in a correlated failure.

To prevent correlated failures, the operator needs a tool to
check for risk groups in a service deployment and generate
improvement plans. For instance, if a risk group only contains
one element, e.g., a shared switch, it may potentially become
a single point of failure. In this case, the operator may want to
improve the deployment so that even the smallest risk group
contains more than one element. In a similar spirit, if the
estimated probability for correlated failures is above a thresh-
old, the operator may want to find a functionally equivalent
deployment with a lower failure probability.

Suppose that a service never goes through updates, then
the above tasks only need to be performed once at service ini-
tialization. However, this is rarely the case in today’s clouds,
as most services experience frequent updates in their lifetime,
and risk groups can be introduced in any of the updates [39].
Figure 1 shows an example: if the network path Agg2→Core2
is shifted to Agg2→Core1 (e.g., due to a change to the ECMP
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configuration), such an update will introduce a new risk group
σ ={Core1}, the fault of which will result in a correlated fail-
ure across both Cinder DB instances. Therefore, checking
for risk groups and generating improvement plans need to be
performed continuously in real time.

2.2 Starting Basis: Fault Graphs
Operators already apply a set of “golden standards” for in-
creasing service reliability, such as rack-aware replica place-
ment [8], geo-replication [1], canary tests [10], but achieving
a comprehensive understanding of failure risks is a task that
needs to be automated. To this end, several state-of-the-art au-
diting systems [22, 70, 71] have been proposed to proactively
check for correlated failures. They do so using a common
abstraction called a fault graph [63], which represents the
structural dependencies of a service.
Fault graph. A fault graph is a layered DAG representing the
logical relationships between component faults within a given
system [63]. Figure 2 shows the fault graph of the example
service in Figure 1. The fault graph has two types of nodes:
fault events and logic gates. The leaf nodes in a fault graph
are basic faults, which are the smallest units of failures under
consideration, e.g., the failure of a switch or software library.
The root node in a fault graph represents a target service fault,
which indicates the failure of the entire service. The rest of
the nodes are intermediate faults, which describe how basic
faults may cause larger service disruptions.

The fault propagation is encoded by layers of logic gates in
between. If a component fails, the corresponding fault node
outputs a 1 to its parent node, which could be either an AND
or OR gate; otherwise the fault node outputs a 0. For an OR
gate, if any of its children fail, a fault propagates upwards;
for an AND gate, it only propagates a fault upwards if all of its
children fail. Faulty nodes could be further associated with
weights that encode the failure probabilities. Each non-leaf
node has an input gate that connects its lower-layer faults, but
leaf nodes, i.e., basic faults, do not have an input gate.
Fault graph generation. State-of-the-art auditing systems
(e.g., INDaaS [70], reCloud [22]) have used existing data
acquisition tools to automatically collect the structural de-
pendency data needed for generating fault graphs. These
tools cover a variety of dependency data, including network
path dependencies [56, 70, 77], software component call
flows [69, 73–75], and micro-service execution dependen-
cies [24, 61]. Then, these auditing systems invoke various
fault graph synthesis algorithms [51, 70–72] to automatically
build fault graphs based on the acquired dependency data.
Large-scale fault graph generation has been shown to be
efficient—for example, INDaaS generates a 70,656-leaf fault
graph within minutes [70].

Commercial data centers also deploy a variety of such
profiling tools to track inter-service dependency, although
the specific tools would differ from company to company.
For instance, the Maelstrom [61] system at Facebook collects
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Figure 2: A fault graph representing the post-update ser-
vice snapshot shown in Figure 1. Path 1, Path 2, and
Path 3 represent the links Agg1→Core1, Agg2→Core1, and
Agg2→Core1, respectively. Dashed boxes are logical compo-
nents that do not exist physically.

service dependency data and uses it for failure mitigation.
Later in our evaluation, we have also collected dependency
data from a production data center using tools that are already
in active deployment.

2.3 State of the Art and Limitations
State-of-the-art systems, such as INDaaS [70], reCloud [22],
and RepAudit [71], can perform structural reliability audits
on fault graphs to detect risk groups. They then output the
identified risk groups to the operator to alert her to the risk.
For instance, they may identify {Core1} to be a risk group,
because its failure would cause the entire service to fail. How-
ever, existing systems all focus on one-shot audits at service
initialization. They cannot handle real-time audits during ser-
vice runtime due to the following two reasons.
Inefficient risk group auditing. Since detecting risk groups
is NP-hard [63], existing auditing systems either perform an
exhaustive search, which scales poorly to large deployments,
or use heuristics, which sacrifices accuracy. For instance, IN-
DaaS [70] takes ∼35 hours to analyze a 30,528-component
service. Such speeds cannot match the frequency of network
and software updates in today’s clouds—for instance, Google
reported 58 network updates per week [37].
Lack of support for generating improvement plans. Exist-
ing systems offer no support for the operator to automatically
generate improvement plans. As a result, even after perform-
ing hours-long audits, the operator still needs to reason about
improvement plans if the current service snapshot does not
meet her reliability requirements. Existing systems such as
INDaaS [70] and reCloud [22] can compute deployment plans
from scratch, but such plans may differ considerably from
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Table 1: Key techniques in CloudCanary.
Objective Key techniques Section(s)

Reusing previous audit results Caching + Cache refreshes 3.1 + 3.4
Avoiding full-blown Cartesian products Reduction to DNF (Disjunctive Normal Form) conversion 3.1
Incremental auditing Differential fault graphs 3.2
Efficient auditing Reduction to minimum-cost SAT 3.3
Avoiding large-scale Markov chains Reduction to model counting 4.2
Handling non-uniform probabilities Adding virtual leaf nodes 4.2
Reducing the search space Network compression + Search heuristics 4.3
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Figure 3: The workflow and architecture of CloudCanary with
two novel primitives: SNAPAUDIT and DEPBOOSTER.

the current snapshots and require non-trivial reconfiguration.
Moreover, these systems are also inefficient to use in service
runtime with high update frequency.

Therefore, although the two tasks can be performed with
looser time constraints at service initialization, services with
frequent updates demand better support for efficient audits
and improvements in real time.

2.4 Our Approach: CloudCanary
We propose CloudCanary to achieve the above goals. Figure 3
shows CloudCanary’s workflow. For a given service snapshot
S, CloudCanary collects its dependency data and constructs a
fault graph using existing dependency acquisition and fault
graph generation modules [70]. The key innovation in Cloud-
Canary is its two primitives SNAPAUDIT and DEPBOOSTER.
SNAPAUDIT can extract risk groups from S, and DEPBOOSTER

can generate improvement plans, both in a matter of minutes.
Table 1 highlights the key techniques we have used and the
objectives they are designed to achieve.

SNAPAUDIT. To accelerate auditing, SNAPAUDIT uses two in-
sights. First, since service updates typically just affect a small
subset of dependencies [37, 49, 60], there is no need to audit
from scratch for each update. Rather, SNAPAUDIT performs
a complete fault graph analysis at service initialization, and
aggressively reuses cached results to perform incremental au-
diting afterwards. Second, we use a novel encoding to reduce
fault graph analysis to a minimum cost Boolean Satisfiability
(SAT) solving problem, and leverage modern SAT solvers for
fast auditing. This insight is driven by the fact that modern
SAT solvers can solve complex Boolean formulas efficiently
with accuracy guarantees.

DEPBOOSTER. The second primitive automatically gener-
ates improvement plans to meet a reliability goal, e.g., the

minimal risk group containing more than k elements, or the
failure probability being lower than α. If naïvely done, as-
sessing the failure probability requires solving a long Markov
chain [63], and searching through all possible plans further
exacerbates the inefficiency. We use a novel reduction to
model counting to compute the failure probability, as well as
a combination of network compression and search heuristics
to reduce the search space.

3 The SNAPAUDIT Design
This section details the design of SNAPAUDIT that identifies
the minimal risk groups in a given service snapshot. Figure 4
presents the key algorithms of SNAPAUDIT: FIRSTAUDIT is
only executed once at service initialization. INCAUDIT per-
forms incremental auditing for the subsequent snapshots dur-
ing service runtime. For a given service snapshot, the input of
FIRSTAUDIT or INCAUDIT is a fault graph G representing its
underlying dependency structure, and the output is ΣG which
contains the top-k minimal risk groups of G.
Minimal risk group. A risk group is minimal if the removal
of any of its constituent elements makes it no longer a risk
group. For instance, in Figure 2, there are two minimal risk
groups: σ1 ={Core1} and σ2 ={Agg1∧Agg2}. On the other
hand, σ3 ={Agg1∧Core1} is also a risk group but is not a
minimal risk group, because the failure of Core1 alone can
cause the entire service to fail. Moreover, we can characterize
a risk group’s criticality by its cardinality, e.g., σ1 is more
critical than σ2 because |σ1|= 1 < |σ2|= 2—it takes two fail-
ures in σ2 to take down the service but only a single failure in
σ1. The top-k risk groups of a given fault graph G are a ranked
list of minimal risk groups by size or by failure probability.
e.g., ΣG = {σ1,σ2}. Extracting minimal risk groups in a fault
graph is NP-hard [63, 72].

3.1 The First Audit
At service initialization, we use FIRSTAUDIT to compute the
risk groups from scratch. FIRSTAUDIT not only audits the over-
all fault graph G, but also every subgraph in G, thus enabling
subsequent audits (performed by INCAUDIT) to reuse the re-
sults for these subgraphs. All audit results are recorded in a
key-value cache Σ, where the key corresponds to a particu-
lar subgraph, and the value is its top-k minimal risk groups.
FIRSTAUDIT builds a unique identifier for each subgraph by
constructing a Merkle Hash Tree [53], and uses the root node’s
hash as the identifier of the entire subgraph. This allows for a
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function FIRSTAUDIT(G)
if isleaf(G) then

ΣG←{G}
for c ∈ G.children do

if Σc = /0 then
Σc← FIRSTAUDIT(c)

ΣG← MERGE(G)
return ΣG

function MERGE(G)
c1, · · · ,ck ← G.children
if G.gate = AND then

ΣG← DNF(Σc1 ∧·· ·∧Σck )
else

ΣG← DNF(Σc1 ∨·· ·∨Σck )

return ΣG

function INCAUDIT(G)
Π← GETBORDER(G)
for t ∈Π, t.children /∈Π do

for c ∈ t.children,Σc = /0 do
Σc←MINCOSTSAT(c)

ΣG←MERGEALL(G)
return ΣG

function GETBORDER(G)
while BFS(G) with Q do

n← Q.Pop()
if Σn = /0 then

if c∈ n.child, Σc 6= /0 then
L.append(n)

Q.Push(n.children)
return L

Figure 4: The key functions in SNAPAUDIT: FIRSTAUDIT and MERGE (§3.1), INCAUDIT and GETBORDER (§3.2).
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Figure 5: Merging risk groups for AND/OR gates.

more compact encoding of the subgraphs in the cache, given
that the number of subgraphs in G is very large. For exam-
ple, in Figure 5(a), the key of the subgraph rooted at B is
h(B) = h(h(E)||h(F)), where h is a hash function and || de-
notes concatenation. Indexing Σ by B’s key would return
ΣB = {{A3},{A4},{A1∧A2}}.

To generate Σ for both G and its subgraphs, a strawman
solution is to directly call existing auditing systems such as
INDaaS [70]. However, as discussed in §2.3, these systems
are quite slow because their fault graph analysis algorithms
scale poorly. Here, any inefficiency would be amplified sev-
eral times over, because we are computing the minimal risk
groups for each subgraph in G. To address this problem, we
propose a completely different approach to computing the
minimal risk groups, using high-performance Boolean for-
mula translation toolchains such as Z3 [27] and Velev [62].

Overall, our FIRSTAUDIT algorithm starts with the leaf
nodes, and recursively ascends to upper layers, until it reaches
the root node of G. The base case for FIRSTAUDIT is to com-
pute the minimal risk group list Σn for a leaf node n, where it
simply returns Σn = {{n}}. In the inductive case, FIRSTAUDIT

processes an intermediate node n with children n1, · · · ,nk by
calling MERGE on n and combining results for all its chil-
dren. If n’s children are connected by an OR gate, we have
Σn = Σn1 ∪·· ·∪Σnk ; otherwise, if n’s children are connected
by an AND gate we have Σn = Σn1×·· ·×Σnk , where× denotes
Cartesian product. Figure 5 shows a concrete example.
Reduction to DNF conversion. A naïve MERGE over an AND
gate requires a full-blown Cartesian product between risk
groups, which leads to state explosion. If the size of each Σni

is |Σ|, merging k of them would result in a set of size |Σ|k;
after s merges, the size would further grow to |Σ|ks. To solve
this problem, our insight is that MERGE can be achieved by a
DNF (Disjunctive Normal Form) conversion, which can be
efficiently computed using modern solvers [27]. A Boolean
formula is in DNF if it is a disjunction of conjunctive clauses.

Consider the case shown in Figure 5(b), where we have ΣE =
{{A3},{A1∧A2}} and ΣF = {{A4},{A1∧A3}}. We need
to compute ΣB = ΣE ×ΣF , which can be transformed to a
Boolean formula: φ = ΣE ∧ΣF = ((A1∧A2)∨A3)∧ ((A1∧
A3)∨A4). By using Z3, we can quickly compute the DNF of
φ, getting (A1∧A3)∨(A1∧A2∧A4)∨(A3∧A4). As a result,
ΣB contains three minimal risk groups: {A1,A3}, {A3,A4},
and {A1,A2,A4}. Note that only DNF transformation can
output all the minimal risk groups within one-run, and other
solvers, e.g., MinCostSAT, do not support such a capability.

3.2 Subsequent Audits
All subsequent audits are performed using INCAUDIT, which
reuses the results in Σ generated by FIRSTAUDIT. As
shown in Figure 4, INCAUDIT has three steps: GETBORDER,
MINCOSTSAT, and MERGEALL. Given a fault graph G,
INCAUDIT first uses GETBORDER to identify the differential
fault graphs, and then invokes MINCOSTSAT to extract risk
groups from each differential fault graph. Finally, INCAUDIT

uses MERGEALL to merge the results for the differential fault
graphs and those for the unchanged subgraphs, getting the
final result ΣG (i.e., G’s minimal risk groups).

GETBORDER. This step identifies a set of special border
nodes that delineates the changed and unchanged portions of
the fault graph. Concretely, a node n with children n1, · · · ,nk
is called a border node if a) at least one of n1−nk’s key has a
hit in Σ (i.e., Σni 6= /0), and b) at least one of them has a miss
in Σ (i.e., Σn j = /0). If all n’s children have been previously
audited, or none of them has been audited, then n is not a
border node. For instance, in Figure 6, A and B are border
nodes, but C–F are not.

To identify border nodes, we traverse G in a breadth-first
order from the root. For each traversed node n, we check
whether n has a hit in Σ. If n has a hit, we can reuse its result
because 1) n is not a border node, and 2) n’s subgraph has
not changed. If n misses in Σ (e.g., A in Figure 6), we check
its children. If any of n’s children has a hit in Σ (e.g., D in
Figure 6), we record n as a border node, and recurse and
process n’s children in order to find more border nodes.

We then extract differential fault graphs based on the border
nodes and analyze such subgraphs from scratch, starting from
the bottom border node. A node is a bottom border node if
a) it is a border node, and b) none of its subgraphs contains
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Figure 6: A service update where a subgraph C is added to
the fault graph; this changes the keys for subgraphs rooted at
A and B. In the updated fault graph, A and B are border nodes,
B is the bottom border node, and D–F are unchanged. The
subgraph rooted at C is a differential fault graph, which we
invoke MINCOSTSAT on to obtain ΣC. The results for ΣD, ΣE ,
and ΣF have already been cached in Σ.

more border nodes. For example, in Figure 6, the only bottom
border node is B; A is a border node, but not a bottom border
node. We identify the bottom border nodes’ children who
miss in Σ (e.g., C in Figure 6) as the roots of differential fault
graphs, and analyze such subgraphs from scratch.

MINCOSTSAT. To analyze a differential fault graph, G∆,
from scratch, a straightforward approach is to directly invoke
FIRSTAUDIT. However, unlike the first audit at service initial-
ization, which could be performed at leisure, INCAUDIT is
frequently invoked during service runtime; thus, efficiency
is much more critical. Thus, rather than audit all subgraphs
in G∆, we only audit G∆ itself. We achieve this by reducing
this single audit to a minimum-cost SAT problem, which can
be efficiently solved using modern SAT solvers. This step is
denoted by MINCOSTSAT. For example, in Figure 6, because
the subgraph rooted at C is a differential fault graph, we in-
voke MINCOSTSAT to compute its minimal risk groups, i.e.,
ΣC. We detail this MINCOSTSAT reduction in §3.3.

MERGEALL. After we use MINCOSTSAT to compute the risk
groups for all differential fault graphs, we need to recompute
the risk groups of G. Our insight is that we already have
results for the siblings of these differential fault graphs (e.g.,
D, E, and F in Figure 6), and we could directly use the DNF
conversion in MERGE (§3.1), to obtain the risk groups for
the entire G. Specifically, we generate a Boolean formula
φ by only combining all the border nodes’ children using
their respective logic gates. Then, we transform φ into DNF,
obtaining ΣG. For example, in Figure 6, we first generate
φ = (ΣC ∨ ΣE ∨ ΣF)∧ ΣD, and then transform it into DNF,
getting the recomputed ΣA.

3.3 The MinCostSAT Solving
We now detail the design of MinCostSAT function, which can
efficiently and accurately extract minimal risk groups from a
given fault graph.

At a high level, a minimum-cost SAT problem [35] takes as
input a Boolean formula φ with n Boolean variables b1, b2, . . .,
bn, and a cost vector {wi|wi≥ 0,1≤ i≤ n}. The goal is to find
a satisfying assignment to these variables such that φ evaluates
to True, and simultaneously minimizing the following value:
W = ∑

n
i=1 wibi.

We design the MINCOSTSAT function to compute the top-k
risk groups. Initially, we transform an input fault graph into a
Boolean formula φ, and initialize the cost of all the Boolean
variables to one. For example in Figure 7, the fault graph
at the left-hand can be transformed into (Agg1 ∨ Core1) ∧
(Core1 ∨ Agg2). We then use a MinCostSAT solver to find
the top-k critical risk groups through k rounds. Without loss
of generality, for the i-th round, we identify the i-th smallest
risk group in three steps: 1) we input the current formula φi
and its cost vector into the MinCostSAT solver to generate the
satisfying assignment with the minimal cost, 2) we obtain a
risk group by extracting all the True literals from the resulting
assignment, denoted as ψ. and 3) we use a conjunction to
connect the current φi and the negation of ψ, generating a new
φi+1 = φi∧¬ψ for the next round.

3.4 Further Speedups
Since SNAPAUDIT heavily relies on the cache Σ for efficient
audits, we propose two additional techniques to achieve fur-
ther speedups. First, the results obtained during INCAUDIT can
also be cached in Σ, so that Σ would grow over the service
lifetime and the hit rate would improve. Second, INCAUDIT

does not audit the subgraphs of a G∆, but the subgraphs may
be needed for subsequent audits. We therefore run a back-
ground process that periodically invokes FIRSTAUDIT over the
more recent snapshot to refresh the cache. However, we have
omitted these techniques from the pseudocode for brevity.

4 The DEPBOOSTER Design
Identifying risk groups is a useful first step, but the opera-
tor still needs to reason about ways to increase the service
reliability. Rather than ask the operator to achieve this manu-
ally, CloudCanary offers a second primitive, DEPBOOSTER, to
generate improvement plans in an automated fashion.

4.1 The DEPBOOSTER Workflow
DEPBOOSTER offers the operator an interface to specify “reli-
ability goals”, and assesses if the current deployment meets
the goals. If not, DEPBOOSTER generates improvement plans
with increased reliability. These goals are specified as spec =
req∧ action∧ cons. req is a requirement parameter. It can
be a) rcg > t, which means the smallest risk groups in the
deployment should contain more than t elements, b) fp < α,
which means the failure probability should be lower than some
threshold α, or c) a combination of both. While DEPBOOSTER

currently only supports constraints like failure probability and
the size of risk groups, more constraints, e.g., key paths, are
easily added.
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Figure 7: Transforming G by adding virtual leaf nodes.

DEPBOOSTER first assesses whether rcg > t and fp < α

already hold on the current snapshot. (Computing whether
rcg > t is achieved using SNAPAUDIT, which we described
in §3; we defer the algorithm for computing whether fp <
α to §4.2.) If both predicates hold, DEPBOOSTER reports so
and terminates. Otherwise, it uses the strategies in action
and the constraints in cons to generate improvement plans.
action specifies an extensible set of basic actions to generate
improvement plans with. Currently, DEPBOOSTER supports
1) mov{r, A→B}, which moves a service replica r from a
node A to another node B; 2) add{r, A}, which instantiates
an additional replica r on node A; and 3) link{A, B}, which
adds a network link between network components A and B.
DEPBOOSTER then performs a search for improvement plans
based on the basic actions. cons contains positive and negative
constraints which specify that certain components must or
must not be used in an improvement plan.

Example. We now provide a concrete example based
on the scenario in Figure 1. Here, the operator provides
DEPBOOSTER with a goal: spec = {rcg > 1∧ fp < 0.08} ∧
{mov} ∧ {Agg3}, which specifies that a) the smallest risk
groups should contain more than one elements, and b) the fail-
ure probability should be lower than 0.08. If the current snap-
shot does not meet either of these two goals, DEPBOOSTER

will generate a set of improvement plans. Moreover, the spec
requires DEPBOOSTER to generate improvement plans by only
moving replicated instances from the current replica servers
to other servers. Finally, any improvement plan must still
use the switch Agg3, as specified in cons. For this speci-
fication, DEPBOOSTER has generated two potential plans: a)
mov{CinderDB, S1->S4}, and b) mov{CinderDB, S2->S4}. In
other words, if we migrate the Cinder DB instance on S1 or
S2 to S4, then new deployment would meet the desired goals.

4.2 Computing Failure Probability

We now describe how DEPBOOSTER computes the failure
probability of a service snapshot. A strawman solution would
be to derive the failure probability of the root node from these
of the leaf nodes step by step, which is equivalent to comput-
ing the conditional probability of a Markov chain [63]. As we
will show later, this is a time-consuming operation over large
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Figure 8: DEPBOOSTER searches through combinations of
AND/OR gates to approximate a given probability.

deployments, infeasible to be performed in real time. Instead,
DEPBOOSTER uses two techniques to address this.

Technique #1: Model counters. DEPBOOSTER sidesteps the
need for Markov chain computation by encoding this into a
model counting problem. Suppose that the Boolean formula
of the fault graph G is φ. A model counter [20] can find M—
the number of satisfying assignments of φ. Assuming for now
that all leaf nodes have a failure probability of exactly 1

2 ,
then the failure probability of G is simply M/2n, where n is
the number of leaf nodes in G. Since model counting does
not need to compute the solutions themselves, but only the
number of satisfying assignments, this is much more efficient
than solving a Markov chain.

Technique #2: Virtual leaf nodes. However, another chal-
lenge arises: in practice, not all leaf nodes have the same
failure probability, and such a probability is typically much
lower than 1

2 . We address this by adding “virtual nodes” in
the fault graph and reducing the problem again into the plain
version of model counting. At a high level, we achieve this
by substituting a node with failure probability of p with a
subtree of virtual nodes, where all virtual nodes have a failure
probability of 1

2 , and the failure probability of the entire vir-
tual subtree evaluates to p with a user-defined precision ε. For
instance, in the example shown in Figure 7, our goal would
be to transform the node with p = 5

8 (i.e., Core1 fault) into
a virtual subtree.

Figure 8 shows the solution space that DEPBOOSTER

searches through to find a combination of gates that approxi-
mates a given failure probability. At any point in the search,
the path from the root to a node n represents the current com-
bination of gates. These gates further connect virtual nodes of
failure probability 1

2 (not shown in the figure). For instance,
the path from the root to node 5 consists of an AND gate and
then an OR gate, so the formula would be (v1 AND v2) OR
v3, where v1-v3 are virtual nodes with a failure probability
of 1

2 . The failure probability of n5 can then be computed
as p(n5) = (( 1

2 ×
1
2 )+

1
2 )− ( 1

2 ×
1
2 )×

1
2 = 5

8 . Our algorithm
performs a BFS over the solution space, and constructs a com-
bination of gates based on the path from the root to the current
node. If |p(n j)− p|< ε holds for the current node, the search
stops and we use the current combination to approximate
a given probability. This transformation converts the fault
graph G to a larger fault graph G′ with (roughly) the same
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Figure 9: An example state-space tree.

failure probability that can be solved by model counters—i.e.,
p = M′/2n′ , where M′ is the model counter output for G′ and
n′ is the number of leaf nodes in G′.

4.3 The DEPBOOSTER Algorithm
If the current deployment already meets the reliability goals,
DEPBOOSTER directly terminates. Otherwise, it generates im-
provement plans by searching through a state-space tree. Each
node in this tree represents one concrete move in action, and
a path from the root to a leaf represents an improvement plan.
Since there could be a large number of possible improve-
ment plans, DEPBOOSTER uses two techniques to accelerate
the search. Below, we use Figure 9 as an example to illus-
trate how DEPBOOSTER generates improvement plans for our
running example in §4.1.
Technique #3: Network compression. We use the observa-
tion that datacenter network topologies tend to be highly sym-
metric, and can be “simplified” to equivalent topologies much
smaller in size [17]. This enables DEPBOOSTER to perform
the search on the smaller networks, and then map the solution
back onto the original topologies. Driven by this observation,
DEPBOOSTER transforms the input network topology D to a
simplified topology d while preserving its original connec-
tivity and reachability. Briefly, this is achieved by collapsing
symmetric network structures (i.e., routers and paths) and slic-
ing away irrelevant structures. For instance, Figure 9 shows
how the symmetric branch at S2 has been pruned. We refer
interested readers to the original paper [17] for proofs.
Technique #4: Iterative deepening. DEPBOOSTER then gen-
erates the state-space tree Td based on the simplified topology
d. It never materializes Td in its entirety, but only explores it
step by step. Concretely, DEPBOOSTER performs an Iterative
Deepening Depth-First Search (IDDFS) [46] on Td starting
from the root. For each traversed node n, DEPBOOSTER checks
whether n or any of n’s children violates the specified con-
straints. If any constraint is violated, then the corresponding
branches are pruned. For example, in Figure 9, the branch
mov(S2 -> S3) under mov(S1 -> S3) is pruned because mov-
ing Cinder DB instances on S1 and S2 to S3 violates the con-
straint that Agg3 must be used in the new deployment. For
the remaining nodes, DEPBOOSTER runs INCAUDIT and the
failure probability computation approach (designed in §4.2)
to check whether the size of risk groups and failure proba-
bility meet the specified goals. For instance, in Figure 9, we

do not need to check any branches below the state mov(S1 ->
S4), since moving the Cinder DB instance on S1 to S4 has
already satisfied the specified goals.

DEPBOOSTER can be configured to a) produce improvement
plans with the smallest number of actions, b) find the first t
improvement plans, and c) run until a timeout occurs. In the
running example, we have used b) to find four improvement
plans: 1) mov{CinderDB, S1->S4}, 2) mov{CinderDB, S2-
>S4}, 3) mov{CinderDB, S1->S3}, mov{CinderDB, S2->S4},
and 4) mov{CinderDB, S2->S3}, mov{CinderDB, S1->S4}.
The first two plans correspond to those shown in §4.1.

5 Limitations and Discussions
We discuss three high-level limitations of CloudCanary and
potential ways to address them.

Quality of inputs. CloudCanary takes two types of inputs
as given: a) dependencies, and b) failure probabilities; so it
would be limited by the accuracy of the inputs (see §6.5 for a
concrete example). For instance, an operator might not know
that two upstream ISPs share the same undersea fiber, and that
a fiber cut would bring down both networks; or an operator’s
estimate of the failure probabilities might not be perfectly
accurate. In such cases, CloudCanary cannot automatically
identify these inaccuracies. However, CloudCanary can bene-
fit from advances in dependency collection systems or failure
estimation algorithms: enhancement to CloudCanary’s inputs
always leads to improved utility.

Dependency granularity. CloudCanary is also limited by
the dependency granularity of its data acquisition system; it
currently cannot reason about more fine-grained dependen-
cies such as configuration files. If a misconfigured component
handles two upper-layer services differently, the current ver-
sion of CloudCanary would not be able to identify that. This
is somewhat akin to the previous limitation, and could benefit
from a similar solution—e.g., enhancing the fault graphs to
capture configuration files.

Non-deterministic failures. The logic gates in CloudCa-
nary’s fault graph are deterministic, which assumes that if
two services depend on a common component, the failure of
the component would affect both services. This assumption
does not capture well non-deterministic and/or partial failures,
e.g., when a bit flip in switch TCAM only affects a subset
of services but not others. Modeling such behaviors might
require extensions to the fault graph abstraction, which we
leave as future work.

6 Evaluation
Our evaluation aims to answer three high-level questions: (1)
How efficient and accurate is CloudCanary in identifying
the risk groups? (2) How quickly can CloudCanary generate
improvement plans? and (3) How well can CloudCanary shed
light on failure risks in real-world traces?
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Table 2: The configuration of our deployments.
Deploy. A Deploy. B Deploy. C

# Switch ports 24 64 128
# Core routers 144 1,024 4,096
# Agg switches 288 2,048 8,192
# ToR switches 288 2,048 8,192
# Virtual machines 3,456 65,536 524,288
# Libraries/Microservices 4,492 79,824 638,592
Total # of components 8,668 150,480 1,183,360

Prototype implementation. We have developed a CloudCa-
nary prototype using a mix of C++, Python, and open-source
software libraries. Our system consists of three components:
a) fault graph generator, b) SNAPAUDIT, and c) DEPBOOSTER.
The fault graph generator uses NSDMiner [56] and TS [24] to
acquire network and software dependency data, and uses IN-
DaaS [70] to parse and generate fault graphs. Our SNAPAUDIT

prototype uses a) a high-performance MinCostSAT solver,
Maxino [6], for solving the Boolean formulas that encode the
fault graphs, b) the Z3 solver [27] for DNF conversion, and
c) a fault graph parser based on pyeda [7] to optimize the
encoding and transformation of formulas. Our DEPBOOSTER

prototype uses a scalable open-source SAT model counter,
ApproxMC [2], to compute failure probabilities.

6.1 Experimental Setup
We have emulated a datacenter network with a Clos
topology [59], and installed Apache Hadoop 3.2.0 and
ZooKeeper 3.4.0 as the cloud services. In the performance ex-
periments, we varied the service size from 8,668 to 1,183,360
software and network components using up to 524 k virtual
machines, as shown in Table 2. We also used a real failure
probability distribution trace for network devices in our exper-
iments. All machines have an Intel Xeon E5-1620 v2 Quad
Core HT 3.7 GHz CPU and 16 GB memory.

Baseline systems. Table 3 presents the three state-of-the-art
auditing systems that we have used as the baseline to compare
CloudCanary against. Among these systems, INDaaS [70] is
more accurate than RepAudit [71] and reCloud [22], but the
latter two are faster. This is because the minimal risk group al-
gorithm in INDaaS relies on an exhaustive search, which can
produce 100% accurate results but scales poorly. RepAudit
and reCloud trade accuracy for efficiency: the former uses a
simple MaxSAT solving that cannot guarantee that the identi-
fied risk groups are minimal1, and the latter uses sampling for
approximation, which may miss risk groups. Furthermore, we
have included a fourth baseline that we call ProbINDaaS [70],
which is a randomized version of INDaaS that also relies on
sampling for efficiency. We note that reCloud uses a more
advanced sampling algorithm (i.e., dagger sampling) than
ProbINDaaS (i.e., Monte Carlo), and that reCloud can addi-

1MaxSAT solving means: given an SAT formula with weight one to each
clause, find truth values for its variables that maximize the combined weight
of the satisfied clauses.

Table 3: All evaluated systems and their comparisons.
System Accurate? Efficient? Imp. Plans?

INDaaS [70] X × ×
ProbINDaaS [70] × X– ×

reCloud [22] × X– ×
RepAudit [71] X– X– ×
CloudCanary X X X

tionally provide the ability to generate a deployment from
scratch to meet a reliability goal. Unlike all these baseline
systems, CloudCanary can generate improvement plans based
on the current deployment, and it performs incremental audit-
ing while preserving accuracy. As shown later, CloudCanary
achieves 100% accuracy while outperforming all baselines.

6.2 Performance: SNAPAUDIT

We start by evaluating the performance of SNAPAUDIT using
the deployments in Table 2 (A: small, B: medium, C: large).
For each deployment, we measured a) the time each system
took to audit the service from scratch, and b) the time to audit
an updated snapshot when 10% of the hosts and links have
been affected. All audits asked for top-50 risk groups.

Efficiency. At service initiation, we observe that INDaaS is
the slowest, taking up to ∼5811 minutes on the largest de-
ployment. The two probabilistic approaches ProbINDaaS and
reCloud (both with 107 sampling rounds) also perform poorly
due to the large search space. RepAudit outperforms other
baselines and is slightly (∼1.3×) faster than SNAPAUDIT’s
FIRSTAUDIT. However, this is expected, because RepAudit
only audits the overall fault graph, whereas FIRSTAUDIT au-
dits both the overall fault graph and its subgraphs to create
reusable results for subsequent audits.

We then updated the three deployments by randomly
adding or removing 10% hosts and links, and ran the four au-
diting systems on the resulting deployments A′–C′. Figure 10
shows the turnaround time (X-axis) versus audit accuracy
(Y-axis). As we can see, SNAPAUDIT’s INCAUDIT consistently
outperforms INDaaS, ProbINDaas, reCloud, and RepAudit for
all subsequent audits. On deployment B, INCAUDIT is faster
than the second fastest system RepAudit by 200×.

Accuracy. Moreover, SNAPAUDIT always has an accuracy
of 100% across deployments—the same with INDaaS—
but RepAudit only has 96%, 83%, and 68% in deploy-
ment A′–C′, respectively. ProbINDaaS and reCloud are even
less accurate. Here, an inaccurate audit in RepAudit, re-
Cloud, and ProbINDaaS means that a) some risk groups
are missing from the output, and b) some risk groups gen-
erated by these systems are not minimal. For instance,
SNAPAUDIT outputs Σ = {{A},{B},{C,D}} as the top-3 risk
groups. An inaccurate system, however, may output Σ′ =
{{A,E},{C,D,E},{C,D,F}}, where {B} is missing and the
rest of the risk groups are not minimal. Therefore, even a low
inaccuracy rate (e.g., 100%−96%=4%) means that human
operators need to manually inspect the results to identify re-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    583



 20

 40

 60

 80

 100

 1  2  4  8  16  32  64  512  2048

T
h

e
 t

o
p

-5
0

 c
ri
ti
c
a

l
 r

is
k
 g

ro
u

p
s
 d

e
te

c
te

d
 (

%
)

Turnaround time (minutes)

CloudCanary

RepAudit

INDaaS

reCloud (10
7
 rounds)

ProbINDaaS (10
7
 rounds)

(a) Deployment A′.
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(b) Deployment B′.
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(c) Deployment C′.
Figure 10: Performance evaluation of CloudCanary, INDaaS, reCloud (with 107 rounds of sampling) and ProbINDaaS (with 107

rounds of sampling), and RepAudit in one of the update snapshots.

 0.1

 1

 10

 100

 1000

 10000

 100000

Topology A Topology B Topology C

C
o
m

p
u
ta

ti
o
n
a
l 
ti
m

e
(m

in
u
te

s
)

SnapAudit
SnapAudit without fast DNF conversion

SnapAudit without caching
RepAudit

Figure 11: SNAPAUDIT microbenchmarks.

dundancy and reason about the possibility of unidentified risk
groups—a task that is time-consuming to perform at runtime.

Microbenchmarks. To further understand the performance
improvements of the incremental auditing algorithm in
SNAPAUDIT, we have performed a set of microbenchmarks
to break down the speedups. We used RepAudit as the base-
line, as it performs faster than other systems and is closest
to SNAPAUDIT in its use of SAT solvers. For each of the de-
ployments A′–C′, we measured the execution times for four
scenarios: a) SNAPAUDIT with all optimizations turned on, b)
SNAPAUDIT without the fast DNF conversion, c) SNAPAUDIT

further without caching previous results, and d) RepAudit. Fig-
ure 11 shows that, without any optimization, SNAPAUDIT per-
forms very similarly with RepAudit; the slight speedup comes
from the differences in the SAT formulations. The fast DNF
conversion led to speedups of 2×–40×, and reusing cached
results led to speedups of 4×–8×. These results demonstrate
that the optimization techniques in SNAPAUDIT can signifi-
cantly accelerate incremental auditing.

Degrees of update. A third observation is that the time IN-
DaaS, ProbINDaas, reCloud, and RepAudit took on each sub-
sequent audit is roughly the same with that on their first audits,
because they perform each audit from scratch. SNAPAUDIT’s
INCAUDIT, on the other hand, is significantly faster on subse-
quent audits than its first audit.

To further evaluate how the degree of updates affects the
auditing time of SNAPAUDIT, we tested updates that affect
10%–50% of the components in deployment C, and used
SNAPAUDIT to audit these five updates. As shown in Figure 12,
the turnaround time of CloudCanary increases roughly lin-
early with the update percentage. This is good news, because
a complete overhaul of a deployed service is rare. Most up-
dates only affect a small part of the service, and they can reap
the benefits of CloudCanary easily. On the contrary, since
RepAudit never used any incremental algorithm, the RepAu-

dit performance in Figure 10 reflects the update that affects
the majority of the deployment.

6.3 Performance: DEPBOOSTER

We now evaluate the performance of DEPBOOSTER for com-
puting failure probabilities and generating improvement plans.
For the first task, our baseline systems are INDaaS and RepAu-
dit, both of which solve a Markov chain to obtain the proba-
bility. For the second task, our baseline systems are reCloud
and RepAudit, although they are not designed to generate
improvement plans directly.

Failure probability computation. Figure 13 shows the time
DEPBOOSTER, reCloud (with 107 sampling rounds) and the
baseline system (Markov chain computation) took to compute
the failure probability of each deployment. For DEPBOOSTER,
we set the precision per leaf node to be 10−4 (defined in
§4.2) when adding virtual leaf nodes. As shown in Fig-
ure 13, DEPBOOSTER achieves a speedup of two to three or-
ders of magnitude compared to reCloud and the baseline. On
the largest deployment, DEPBOOSTER only took 2.5 minutes,
whereas the baseline and reCloud took more than 10 hours.
In terms of the failure probability precision, we found that
DEPBOOSTER approximates the probability of the baseline
system (which does not use any approximation) with an er-
ror of 10−3 for all tested deployments, whereas the error in
reCloud is 10−2 for all tested deployments.

Improvement plan generation. Next, we evaluate the perfor-
mance of DEPBOOSTER, using reCloud as the baseline. Each
deployment hosted the service instances on 50% of the servers,
and the query asked for improvement plans to reduce the fail-
ure probability to under 0.008 using the mov strategy. Fig-
ure 14 shows the results. We can see that DEPBOOSTER fin-
ished within 30 minutes across deployments, and outperforms
reCloud and RepAudit by at least one order of magnitude.
DEPBOOSTER can do better for two reasons. First, the model
counter-based failure probability computation (§4.2) speeds
up the result checking for each candidate solution. In fact,
Figure 13 can also be looked as the microbenchmark evalu-
ation for DEPBOOSTER, because the bottleneck operation of
DEPBOOSTER is failure probability computation. Second, the
pruning technique (§4.3) reduces the number of solutions
searched; thus, we can observe few failure probability com-
putations are needed.
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6.4 Case Study
To better understand how the auditing (in)efficiency affects
real-time updates, we have performed a case study that em-
ulates a series of network and software updates. They con-
sisted of 52 updates over the span of one week—we col-
lected the update frequency and distribution from a large-
scale cloud provider. We adapted six of these updates from
realistic update scenarios [37, 48, 57] and from the Apache
issue tracker [13]. All other updates were randomly generated
and each of them affected 10% nodes in the deployment. This
set of experiments was conducted over a deployment with
576 64-port core routers, 1,152 64-port aggregation switches,
1,152 64-port top-of-rack switches, and 27,648 servers.

Figure 15 shows the results for the first six updates, which
we adapted from existing work.

• Snapshot S0. At service initialization, the operator set up
the entire service, and performed an audit from scratch
using the four auditing systems.
• Snapshot S1: Small updates [48]. The first update

changed 1% of network links.
• Snapshot S2: Large updates [57]. The second update

changed 20% servers and 20% links based on a network
update trace, and it is designed as “pressure test”.
• Snapshots S3 and S4: Frequent updates [37]. The subse-

quent two updates occurred within a short interval of seven
hours, designed as another pressure test.
• Snapshots S5 and S6: Software version updates. The

final two updates were to software dependencies, where
ZooKeeper was updated from version 3.4.0 to 3.4.6, and
then to 3.4.8. They were designed to test the systems’ abil-
ity to identify software-level risk groups.

Identifying risk groups. Figure 15 shows that existing sys-
tems are too inefficient for real-time auditing. INDaaS was
only able to finish the auditing for S0 (at service initialization)
and S6, but failed for all other updates, because its turnaround
time exceeded the intervals between them. RepAudit and re-
Cloud took roughly eight and sixteen hours per snapshot, and
they finished S0, S2, and S6, which happened to be spaced
out from their previous updates by more than sixteen hours,
But they failed to finish for S3–S5, which came close to each
other. Recall that, as explained in §6.2, RepAudit and reCloud
achieve this speedup by trading accuracy for efficiency, so
operators still need to manually reason about missing and
non-minimal risk groups after audits.

CloudCanary achieves 100% accuracy in all tested cases,
outputting the same results with INDaaS on scenarios where
INDaaS was able to finish. However, for each real-time audit,
it only took 4.7–6.5 minutes, outperforming INDaaS by 290×,
reCloud by 250×, and RepAudit by 150×–200×. The only
case where CloudCanary was slightly slower than RepAudit
was at service initialization—when auditing S0, CloudCanary
needs to audit all subgraphs in the fault graph from scratch.

Generating improvement plans. We then ran DEPBOOSTER

to generate improvement plans for each snapshot. Since the
strategies in CloudCanary do not involve changes to soft-
ware components, we only evaluated S0–S4, where the re-
liability can be improved using CloudCanary’s mov strategy.
Our reliability goal was specified as spec = {rcg > 5∧ fp <
0.008}∧{mov}, and we assigned the failure probability of
each switch or server to be 0.002 [36]. For S0–S4, CloudCa-
nary generated improvement plans in 4.87, 2.32, 5.77, 7.12
and 6.29 minutes, respectively. In all cases, CloudCanary fin-
ished well before the next update arrived. Furthermore, in
order to test the effectiveness of our improvement, we in-
jected errors via a chaos-monkey-like way, randomly killing
four components, because our constraints set rcg > 5. We
observed that the improved deployments never failed.

Overall success rates: We now report results for all 52 up-
date snapshots. Our metric is the success rate of a system,
defined as r = m

n , where m is the number of updates for which
the system finished on time, and n is the total number of up-
dates. In other words, m− n is the number of updates that
cannot be handled due to an audit system’s high turnaround
time. Overall, INDaaS failed on almost all cases (r = 1.92%)
due to its inefficiency. reCloud and RepAudit are faster, but
still only had a success rate of 3.85%. CloudCanary, on the
other hand, achieved a success rate of 100%, finishing all
audits with an average turnaround time of 5.23 minutes.

6.5 Identifying Real Risk Groups
Finally, we evaluate the usability of CloudCanary using a real-
world update trace collected from a major service provider.
The trace contains 300+ updates to its infrastructure, including
software microservices, power sources, and network switches.
The operators that executed these updates have already been
trained with best practices for service reliability, but system-
atically understanding service dependencies is always a chal-
lenging task. For each update in this trace, we have used
CloudCanary to identify the top-5 risk groups, and obtained
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Figure 15: Results on a deployment running Hadoop 3.2.0 and ZooKeeper 3.4.0 in a Clos-topology datacenter with 27,648 hosts
and 880 routers. Si are service updates, which potentially lead to new risk groups.

feedback from the operators. Upon their request, the numbers
below are presented as 50+, 10+, and so on, by rounding off
their last digits. A key highlight here is that operators have
confirmed that 50%+ of these risk groups were previously un-
known to them, and that some of them actually caused service
downtime in the past.

Microservices. We found 50+ risk groups in the microser-
vice updates. The operators have confirmed that 96% of them
could lead to correlated failures; the rest 4% are due to false
positives of the dependency collection tool (see §5 for dis-
cussion on quality of inputs). One particularly risky example
from the operators’ feedback is an update that routes all re-
quests to the same authentication service on a single machine.
If this machine fails, this would lead to a major outage. The
operators can fix this risk group by replicating the authentica-
tion service across multiple machines.

Power sources. We found 10+ risk groups in the power
sources. Operators have confirmed that all of them could
lead to correlated failures, and, in fact, 30%+ of them did
trigger service downtime in the past. As a highlight, one of
the updates assigned primary and backup power sources in
the same cluster to serve several racks hosting a critical ser-
vice. The cloud provider had experienced multiple hours of
downtime due to a failure of these power sources.

Network. CloudCanary reported 30+ risk groups, including
ToR/aggregation switches and shared fiber, all of which have
been confirmed by the operators. As an example, we found
that multiple data centers in the same city shared the same
fiber bundles, which presents a risk of correlated failures.
These risks can be prevented by adding redundant fiber bun-
dles across different cities.

7 Related Work

Structural reliability auditing. The most relevant to
CloudCanary are structural reliability auditing systems, IN-
DaaS [70], reCloud [22], and RepAudit [71], which can con-
struct fault graphs from dependency data and perform au-
dits to prevent correlated failures. INDaaS and CloudCanary
have higher accuracy than RepAudit and reCloud, because
the latter two use approximate algorithms to trade accuracy
for efficiency. Moreover, different from all existing work,

CloudCanary is designed to perform incremental auditing
over service updates.

Network/System verification. Failure prevention can also
be achieved by formal analysis, such as configuration ver-
ification [16, 19, 31, 32, 50, 55, 60, 68], and synthesis/re-
pair [29, 30, 48, 52, 65]. Some of these systems also use in-
cremental verification for speedup when performing analy-
sis [40, 43, 44]. Compared to these systems, CloudCanary has
a very different goal—it aims at preventing correlated fail-
ures resulting from common dependencies—and also involves
completely different algorithms as a result. On the contrary,
network verification and synthesis systems primarily focus on
reachability and performance properties, such as host-to-host
connectivity. Similarly, software misconfiguration detection
tools like PCheck [67] also focused on configuration logic,
rather than failures caused by common dependencies.

Post-failure diagnostics. Many diagnostic systems [14, 15,
21, 23, 26, 28, 41, 42, 45, 56, 58] and provenance systems [66,
76,77] have been proposed for failure troubleshooting. Cloud-
Canary aims at a different goal from these efforts.

8 Conclusion
We have presented CloudCanary, a system that can perform
real-time audits to prevent correlated failures in service up-
dates. Our system can compute the risk groups in a service
snapshot using cached results from previous audits, and it
can generate improvement plans with increased reliability.
It achieves this using a set of novel techniques, such as in-
cremental auditing and network pruning. CloudCanary out-
performs state-of-the-art systems by 200× and can generate
improvement plans for large deployments within several min-
utes. Moreover, it can yield valuable insights over real-world
traces from production environments.
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Abstract

Linearizability reduces the complexity of building correct
applications. However, there is a tradeoff between using lin-
earizability for geo-replicated storage and low tail latency.
Traditional approaches use consensus to implement lineariz-
able replicated state machines, but consensus is inefficient
for workloads composed mostly of reads and writes.

We present the design, implementation, and evaluation of
Gryff, a system that offers linearizability and low tail la-
tency by unifying consensus with shared registers. Gryff in-
troduces carstamps to correctly order reads and writes with-
out incurring unnecessary constraints that are required when
ordering stronger synchronization primitives. Our evaluation
shows that Gryff’s combination of an optimized shared reg-
ister protocol with EPaxos allows it to provide lower service-
level latency than EPaxos or MultiPaxos due to its much
lower tail latency for reads.

1 Introduction

Large-scale web applications rely on replication to provide
fault-tolerant storage. Increasingly, developers are turning to
linearizable [32] storage systems because they reduce the
complexity of implementing correct applications [2, 13, 17].
Recent systems from both academia [27, 35, 40, 52, 53, 57]
and industry [6, 11, 14, 17, 23] demonstrate this trend.

Traditionally, linearizable storage systems for geo-
replicated settings are built using state machine replication
via consensus [33, 36, 37, 38, 45, 47, 50, 51]. These pro-
tocols are safe under the asynchronous network conditions
that are common in wide-area networks. Furthermore, they
provide the abstraction of a shared command log, which al-
lows for the implementation of arbitrary deterministic state
machines. Strong synchronization primitives, such as read-
modify-write operations (rmws), can thus be used in appli-
cations built on top of these systems, further easing the pro-
gramming burden on developers.

Linearizability for geo-replicated storage, however, comes
with a tradeoff between strong guarantees and low latency.
At least one communication delay between replicas is nec-
essary to maintain a legal total order of operations [41], and
in the wide-area, this communication incurs a considerable
latency cost even in the best case. The tradeoff is starker for
tail latency, where adverse conditions such as network de-

lays, slow or failed replicas, and concurrent operations fur-
ther delay responses to clients.

Tail latency is of particular importance for large-scale web
applications, where end-user requests for high-level applica-
tion objects fan-out into hundreds of sub-requests to storage
services [18]. For example, when a user loads a page in a so-
cial networking service, an application server typically needs
to invoke and wait for the completion of dozens of requests
to replicas before returning the page to the client [2]. Only
once the client receives the page can it begin loading addi-
tional assets and rendering the page. Thus, the median la-
tency experienced by the end-user depends on the maximum
of tens or hundreds of operations, which is dictated by the
tail of the latency distribution.

Consensus protocols demonstrate the tradeoff between
strong guarantees and low tail latency. Fundamentally, no
protocol can solve consensus and guarantee termination in
an asynchronous system with failures [24]. In practice, this
impossibility result manifests as performance inefficiencies,
such as serializing operations through a designated leader or
delaying concurrent operations. In geo-replicated settings at
scale, these inefficiencies impact tail latency.

In contrast, shared register protocols can implement lin-
earizable shared registers, which support simple reads and
writes, and guarantee termination in asynchronous systems
with failures [5]. This translates to favorable tail latency for
real protocols: shared register protocols are typically lead-
erless and often do not delay reads or writes, even if there
are concurrent operations. The reads and writes provided
by shared registers are the dominant types of operations in
large-scale web applications [9]. Yet, shared registers are
fundamentally too weak to directly implement strong syn-
chronization primitives like rmws [31]. To resolve this trade-
off, the solution is to combine the strong synchronization
provided by consensus with the favorable read/write tail la-
tency of shared registers in a single protocol.

The idea of unifying consensus and shared registers is
not new [8]. However, the only previous attempt of which
we are aware is incorrect because it does not safely handle
certain interleavings of operations. Our key insight is that
protocol-level mechanisms for enforcing the interaction be-
tween rmws and reads/writes are difficult to reason about,
which can lead to subtle safety violations. Instead, we argue
the interaction be enforced at a deeper level, in the ordering
mechanism itself, to simplify reasoning about correctness.

We introduce consensus-after-register timestamps, or
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carstamps, a novel ordering mechanism for distributed stor-
age to leverage this insight. Carstamps allow writes and
rmws to concurrently modify the same state without seri-
alizing through a leader or incurring additional round trips.
Reads use carstamps to determine consistent values without
interposing on concurrent updates.

Gryff is our system that implements this ordering mech-
anism to achieve unification.1 It is the first such system to
be proven correct, implemented, and empirically evaluated.
Gryff combines a multi-writer variant [43] of the ABD [5]
protocol for reads and writes with EPaxos [47] for rmws.
In addition to the challenges associated with unifying these
protocols, we introduce an optimization to further rein in tail
latency by reducing the frequency of reads taking multiple
wide-area round trips.

We implemented Gryff in the same framework as
EPaxos [47] and MultiPaxos [36] and evaluated its perfor-
mance in a geo-replicated setting. Our evaluation shows that
Gryff reduces the tradeoff between linearizability and low
tail latency for workloads representative of large-scale web
applications [10, 16, 17]. For moderate contention work-
loads, Gryff reduces p99 read latency to ∼56% of EPaxos,
but has ∼2x higher write latency. This tradeoff allows Gryff
to reduce service-level p50 latency to ∼60% of EPaxos
for large-scale web applications whose requests fan-out into
many storage-level requests.

In summary, the contributions of this paper include:

• A novel ordering mechanism, carstamps, that enables effi-
cient unification of consensus with shared registers. (§3)

• The Gryff design that combines a shared register protocol
with EPaxos to provide reads, writes, and rmws. (§4, §5)

• The implementation and evaluation of Gryff, which
demonstrates its latency improvements. (§6)

2 Consensus vs. Shared Registers
This section covers preliminaries and then compares and
contrasts consensus and shared register protocols. It looks
at the interfaces they support, the ordering constraints they
impose, and the ordering mechanisms they use.
Model and Preliminaries. We study systems comprised of
a set P of m processes that communicate with each other over
point-to-point message channels. Processes may fail accord-
ing to the crash failure model: a failed process ceases exe-
cuting instructions and its failure is not detectable by other
processes. The system is asynchronous such that there is no
upper bound on the time it takes for a message to be deliv-
ered and there is no bound on the relative speeds at which
processes execute instructions.

Linearizability is a correctness condition for a concurrent
object that requires (a) operations invoked by processes ac-

1A gryffin is a mythological hybrid creature that combines the power of
a lion with the speed of an eagle.

cessing the object appear to execute in some total order that
is consistent with the semantics of the object (i.e., that is le-
gal) and (b) the total order is consistent with the order that
operations happened in real time [32]. Linearizability is a lo-
cal property, meaning it holds for a collection of objects if
and only if it holds for each individual object.

For the remainder of this text, we consider linearizable
replication of a single object by omitting object identifiers;
it is straightforward to compose instances of such a system
to obtain a linearizable multi-object system.

2.1 State Machines and Consensus
State machine replication is the canonical approach to im-
plementing fault-tolerant services [56]. It provides a fault-
tolerant state machine that exposes the following interface:

• COMMAND(c(·)): atomically applies a deterministic com-
putation c(·) to the state machine and returns any outputs

Each command can include zero or more arguments, read
local state, perform deterministic computation, and produce
output. The state machine approach applies these commands
one by one starting from the same initial state to move repli-
cas through identical states. Thus, if some replicas fail, the
remaining replicas still have the state and can continue to
provide the service.

Applying commands in the same order on all replicas re-
quires an ordering mechanism that is stable, i.e., a replica
knows when a command’s position is fixed and it will never
receive an earlier command [56]. In asynchronous systems
where processes can fail, consensus protocols [33, 36, 37,
38, 45, 47, 50, 51] are used to agree on this stable ordering.

Figure 1a shows the stable ordering provided by consen-
sus protocols for state machine replication. Commands are
assigned positions in a log and a command becomes stable
once there are no empty slots preceding its own in the log.

2.2 Shared Registers and Their Protocols
A shared register has the following interface:

• READ(): returns the value of the register
• WRITE(v): updates the value of the register to v

Shared registers provide a simple interface with read and
write operations. They are less general than state machines as
they provably cannot be used to implement consensus [31].
Shared register protocols replicate shared registers across
multiple processes for fault tolerance [5, 22, 43].

Shared register protocols provide a linearizable ordering
of operations. That ordering does not have to be stable, how-
ever, because each write operation fully defines the state of
the object. Thus, a replica can safely apply a write w4 even
if it does not know about earlier writes. If an earlier write w3
ever does arrive, the replica simply ignores that write because
it already has the resulting state from applying w3 and then
w4. Figure 1b shows shared register ordering where there is
a total order of all writes (denoted by <) without stability.
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op1 op2 op3 op4

(a) Ordering in consensus protocols. Operations op1, op2, and
op3 are stable, but op4 is not.

w1 < w2 < w3 < w4

(b) Ordering in shared register protocols. No writes are stable.

Figure 1: Comparison of ordering in consensus and
shared register protocols. Shared register protocols pro-
vide an unstable ordering where new writes can be in-
serted between writes that have already completed.

2.3 Shared Objects and Their Ordering
A shared object exposes the following interface:

• READ(): returns the value of the object
• WRITE(v): updates the value of the object to v
• RMW( f (·)): atomically reads the value v, updates the

value to f (v), and returns v

The abstraction of a shared object captures an intuitive pro-
gramming model that is used in real-world systems [12, 15,
23, 44, 54, 55]. Most operations read or write data, but rmws
support stronger primitives to synchronize concurrent ac-
cesses to data. For example, a conditional write can be im-
plemented with a rmw by using a function f (·) that returns
the new value to be written only if some condition is met.

Shared objects and state machines are equivalent in that
an instance of one can be used to implement the other [31].
However, the difference is that shared objects expose a more
restrictive interface for directly reading and writing state,
as do shared registers. These simpler operations can be im-
plemented more efficiently because their semantics impose
fewer ordering constraints.

Yet, neither the stable ordering of state machine replica-
tion nor the unstable total ordering of shared register proto-
cols is a good fit for shared objects. A stable order, on the
one hand, over constrains how reads and writes are ordered
and results in less efficient protocols. On the other hand, an
unstable total order under constrains how rmws are ordered
and results in an incorrect protocol.

Figure 2 demonstrates these different constraints. Con-
sider the execution in Figure 2a where two processes, p2 and
p3, write concurrently. Linearizability stipulates that w2 and
w3 be ordered after w1 because they are invoked after w1
completes in real time. However, there is no stipulation for
how w2 and w3 are ordered with respect to each other be-
cause the result of a write does not depend on preceding op-
erations. Both w1→ w2→ w3 and w1→ w3→ w2 are valid.

Now consider the execution in Figure 2b involving a rmw.
Process p2 writes while p3 concurrently executes a rmw. The
base update of a rmw is the operation that writes the value
that the rmw reads. Assume that w1 is the base update of

(a) w2 and w3 may be
arbitrarily ordered.

(b) if rmw reads w1, it
must be before w2.

Figure 2: Solid arrows are real time ordering constraints.
Dashed arrows are operation semantic constraints.

rmw. Then, not only does rmw need to be ordered after w1,
but no other write may be ordered between w1 and rmw. This
additional constraint ensures legality because the semantics
of a rmw requires that it must appear to atomically read and
update the object based on the value read. Thus, only w1→
rmw→ w2 is a valid order.

3 Carstamps for Correct Ordering
Consensus-after-register timestamps, or carstamps, precisely
capture the ordering constraints of shared objects. They pro-
vide the necessary stable order for rmws and the more ef-
ficient unstable order for reads and writes. This section de-
scribes the requirements of a precise ordering mechanism for
shared objects and then describes carstamps.

3.1 Precise Ordering for Shared Objects
An ordering mechanism is an injective function g : X → Y
from a set X of writes and rmws to a totally ordered set
(Y,<Y ). A mechanism g produces a total order <g on X :
for all x1,x2 ∈ X , x1 <g x2 if and only if g(x1)<Y g(x2).

Typically, replication protocols augment an ordering
mechanism with protocol-level logic to enforce real time and
legality constraints on the total order given by the ordering
mechanism to provide linearizability. While the logic for en-
forcing real time constraints is often straightforward, legality
constraints can be more complex.
Protocol-level Legality. For example, consider the Active
Quorum Systems (AQS) protocol [7, 8]. AQS is the only
prior protocol of which we are aware that attempts to com-
bine consensus and shared registers and it does so with an un-
stable ordering mechanism. This allows for executions where
a rmw rmw with base update u is ordered such that there ex-
ists a y ∈ Y with g(u)<Y y <Y g(rmw). This can result in an
illegal total order when a write w is concurrent with rmw be-
cause w may be assigned g(w) = y. AQS contains no logic at
the protocol-level to prevent this subtle scenario. We discuss
such an execution in detail in Appendix C and describe how
there does not exist a linearizable order of all operations.
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w1 < w2 < w3 < w4

rmw1 rmw3 rmw6 rmw7

rmw2 rmw4

rmw5

rmw8

Figure 3: Unified ordering provided by carstamps for
writes and rmws. Writes are unstably ordered while
rmws are stably ordered with their base updates.

Ordering-level Legality. Our key insight is that the legal-
ity constraints of linearizability can be encoded in the or-
dering mechanism itself. An ordering mechanism that does
this must ensure that for all rmw ∈ X such that u is the
base update of rmw, g(u) <Y g(rmw) and g(u) is a cover
of g(rmw). This means that there is no y ∈ Y such that
g(u) <Y y <Y g(rmw). With such an ordering mechanism,
there is no need for protocol-level logic to prevent other
writes in X from being assigned an illegal position in the
total order between g(u) and g(rmw).

3.2 Carstamps

Our solution which leverages this insight is called carstamps.
A carstamp is a triple cs = (ts, id,rmwc) with three fields:
a logical timestamp ts, a process identifier id, and a rmw
counter rmwc. The logical timestamp and process identifier
can be used by a write protocol to form an unstable order of
writes. A rmw rmw with base update u whose carstamp is csu
is assigned a carstamp csrmw = (csu.ts,csu.id,csu.rmwc+1).
The fields encode ordering constraints between operations
via a lexicographical comparison such that cs1 < cs2 if and
only if cs1.ts < cs2.ts or cs1.ts = cs2.ts and cs1.id < cs2.id or
cs1.ts = cs2.ts and cs1.id = cs2.id and cs1.rmwc < cs2.rmwc.

By incrementing the lowest order field of the carstamp,
each carstamp assigned to a base update of a rmw is guar-
anteed to cover its rmw. This stable ordering of rmws with
their base updates is visualized in Figure 3. Writes are as-
signed to carstamps in the first row as part of an increasing
unstable order. RMWs are assigned to carstamps in the col-
umn to which their base update belongs immediately below
their base update.

Consider the example from Figure 2b and assume that
w1 is assigned carstamp csw1 = (1,1,0) by p1. Then, since
rmw reads w1, it will be assigned carstamp csrmw = (1,1,1).
Based on the lexicographical ordering of carstamps, there
does not exist a carstamp cs such that csw1 < cs < csrmw,
so w2 cannot be arbitrarily re-ordered between w1 and rmw.

4 Gryff Protocol
Gryff unifies shared registers with consensus using
carstamps. It implements a linearizable shared object (§2)
that tolerates the failure of up to f out of n = 2 f +1 replicas.
We divide its description into three components. First, we
provide additional background including the shared register
protocol and consensus protocol upon which its read, write,
and rmw protocols are built (§4.1). Second, we describe
how Gryff adapts these protocols with carstamps (§4.2,§4.3).
Third, we describe an optimization to the base Gryff protocol
that improves read latency in geo-replicated settings (§5).

In addition, in Appendix B we prove Gryff implements a
shared object with linearizability. Appendix B also proves
read/write wait-freedom—every read or write invoked by
a correct process eventually completes—and rmw wait-
freedom with partial synchrony—if there is a point in time
after which the system is synchronous, every rmw invoked
by a correct process eventually completes.

4.1 Background
Section 2 provides background on our model, linearizabil-
ity, and state machines and shared registers in general. This
subsection adds useful definitions and then describes the
two specific protocols that Gryff adapts, a multi-writer vari-
ant [43] of ABD [5] and EPaxos [47].
Definitions. A subset of processes R ⊆ P are replicas that
store the value of the object. We assume reliable message de-
livery, which can be implemented on top of unreliable mes-
sage channels via retransmission and deduplication.

Replicas are often deployed across a wide-area network
such that inter-replica message delivery latency is on the or-
der of tens of milliseconds. This is commonly done so that
replica or network failures correlated by geographic region
do not immediately cause the system to become unavailable.
We say that a process p is co-located with a replica r if the
message delivery latency between p and r is much less than
the minimum inter-replica latency. Client processes running
applications are typically co-located with a single replica, for
example, within the same datacenter.

A quorum system Q ⊆P(R) over R is a set of subsets of
R with the quorum intersection property: for all Q1,Q2 ∈Q,
Q1∩Q2 6= /0. We use quorum both to mean a set of replicas in
a particular quorum system and the size of such a set. Gryff
can use any quorum system, but for liveness with up to f
replica failures, we assume the use of the majority quorum
system Qmaj such that ∀Q ∈Qmaj. |Q|= f +1.

A coordinator is a process that executes a read, write, or
rmw protocol when it receives such an operation from an
application. In shared register protocols, the coordinators are
typically the client processes on which the application is run-
ning. In consensus protocols, the coordinators are typically
one of the replicas to which client processes forward their re-
quests. We assume all processes possess a unique identifier
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that can be used when coordinating an operation to distin-
guish the coordinator from other processes.
Multi-Writer ABD. The multi-writer variant [43] of
ABD [5] is a shared register protocol that requires two phases
for both reads and writes. To provide a linearizable order of
reads and writes, it associates a tag t = (ts, id) with each
write where ts is a logical timestamp and id is the identi-
fier of the coordinator. Writes are ordered lexicographically
by their tags. Each replica stores a value v and an associated
tag t.

Reads and writes have two phases. A read begins with the
coordinator reading the current tag and value from a quorum.
Once it receives these, it determines the value that will be re-
turned by the read by choosing the value associated with the
maximum tag from the tags returned in the quorum. Then,
the coordinator propagates this maximum tag and value to
a quorum and waits for acknowledgments. We say that a
replica applies a value v′ and tag t ′ when it overwrites its
v and t with v′ and t ′ if t ′ > t. After a replica receives the
propagated tag and value, it applies them and sends an ac-
knowledgment to the coordinator.

A coordinator for a write follows a similar two-phase pro-
tocol, except instead of propagating the maximum tag tmax
and associated value received in the first phase, it generates
a new tag t = (tmax.ts+ 1, id) to associate with the value to
be written where id is the identifier of the coordinator. In the
second phase, the coordinator propagates this new tag and
value to a quorum and waits for acknowledgments.
EPaxos EPaxos [47] is a consensus protocol that provides
optimal commit latency in the wide-area. It has three phases
in failure-free executions: PreAccept, Accept, and Commit.
If a command commits on the fast path, the coordinator re-
turns to the client after the PreAccept phase and skips the
Accept phase. Otherwise, the command commits on the slow
path after the Accept phase. Commands that do not read state
complete at the beginning of the Commit phase; commands
that do read state complete after a single replica, typically
the coordinator, executes the command to obtain the returned
state. The purpose of the PreAccept and Accept phases is to
establish the dependencies for a command, or the set of com-
mands that must be executed before the current command.
The purpose of the Commit phase is for the coordinator to
notify the other replicas of the agreed-upon dependencies.

PreAccept phase. The coordinator of a command con-
structs the preliminary dependency set consisting of all other
commands of which the coordinator is aware that interfere
(i.e., access the same state machine state) with it. It sends the
command and its dependencies to a fast quorum of replicas.
When replicas receive the proposed dependencies, they up-
date them with any interfering commands of which they are
aware that are not already in the set and respond to the coor-
dinator with the possibly updated dependencies. If the leader
receives a fast quorum of responses that all contain the same
dependencies, it proceeds to the Commit phase.

v - value of shared object
cs - carstamp of shared object
prev - value and carstamp generated by the previously
executed rmw
i - next unused instance number
cmds - two-dimensional array of instances indexed by
replica id and instance number each containing:

cmd - command to be executed
deps - instances whose commands must be exe-
cuted before this one
seq - approximate sequence number of command
used to break cycles in dependency graph
base - possible base update for rmw
status - status of instance

Figure 4: State at each replica.

Accept phase. Otherwise, the coordinator continues to the
Accept phase where it builds the final dependencies for the
command by taking the union of all the dependencies that it
received in the PreAccept phase. It sends these to a quorum
and waits for a quorum of acknowledgments before commit-
ting. Regardless of whether the command is committed after
the first or second phase, once it is committed, a quorum
store the same dependency set for the command.

Execution. Dependency sets for distinct commands de-
fine a dependency graph over all interfering commands. The
EPaxos execution algorithm, separate from the commit pro-
tocol, executes all commands in the deterministic order spec-
ified by the graph. Cycles may exist in the graph, in which
case a total order is determined by a secondary attribute
called an approximate sequence number. We refer the reader
to the EPaxos paper for more details [47].

4.2 Read & Write Protocols
The read and write protocols are based on multi-writer ABD.
Figure 4 summarizes the state that is maintained at each
replica. Algorithms 1 and 2 show the pseudocode for the co-
ordinators and replicas. The key difference from multi-writer
ABD is that replicas maintain a carstamp associated with the
current value of the shared object instead of a tag so that
rmws are properly ordered with respect to reads and writes.
Reads. We make the same observation as Georgiou et al.
[26] that the second phase in the read protocol of multi-writer
ABD is redundant when a quorum already store the value
and associated carstamp chosen in the first phase. In such
cases, the coordinator may immediately complete the read
(Line 6 of Algorithm 1). Otherwise, it continues as normal
to the second phase in order to propagate the observed value
and carstamp to a quorum.
Writes. When generating a carstamp after the first phase
of a write, the coordinator chooses the ts and id fields as
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Algorithm 1: Read and write coordinator protocols.

1 procedure Coordinator::READ() at p ∈ P
2 send Read1 to all r ∈ R
3 wait to receive Read1Reply(vr,csr) from all

r ∈ Q ∈Q
4 csmax←maxr∈Q csr
5 v← vr : csr = csmax
6 if ∀r ∈ Q : csr = csmax then
7 return v

8 send Read2(v,csmax) to all r ∈ R
9 wait to receive Read2Reply from all r ∈ Q′ ∈Q

10 return v

11 procedure Coordinator::WRITE(v) at p ∈ P
12 send Write1 to all r ∈ R
13 wait to receive Write1Reply(csr) from all r ∈Q ∈Q
14 csmax←maxr∈Q csr
15 cs← (csmax.ts+1, id,0)
16 send Write2(v,cs) to all r ∈ R
17 wait to receive Write2Reply from all r ∈ Q′ ∈Q

in multi-writer ABD. The rmwc field is reset to 0 (Line 15
of Algorithm 1). While not strictly necessary, this curbs the
growth of the rmwc field in practical implementations.

4.3 Read-Modify-Write Protocol
Gryff’s rmw protocol uses EPaxos to stably order rmws as
commands in the dependency graph. Figure 4 summarizes
the replica state. Algorithms 3 and 4 show the pseudocode
for a rmw coordinator and replica message handling exclud-
ing the recovery procedure. Appendix B includes the pseu-
docode for the recovery procedure. The highlighted portions
of the pseudocode show the changes from canonical EPaxos.
We denote by Icmd the set of commands of which the local
replica is aware that interfere with cmd.

We make three high-level modifications to canonical
EPaxos in order to unify its stable ordering with the unstable
ordering of Gryff’s read and write protocols.

1. A base update attribute, base, is decided by the replicas
during the same process that establishes the dependencies
and the approximate sequence number for a rmw.

2. A rmw completes after a quorum execute it.
3. When a rmw executes, it chooses its base update from

between its base attribute and the result of the previously
executed rmw prev. The result of the executed rmw is ap-
plied to the value and carstamp of the executing replica.

The first change adapts EPaxos to work with the unstable
order of writes by fixing the write upon which it will oper-
ate. The second change adapts it to work with reads that by-
pass its execution protocol and directly read state. The third
change ensures that concurrent rmws that choose the same

Algorithm 2: Read and write replica protocols.

1 when replica r ∈ R receives a message m from p ∈ P do
2 case m = Read1 do
3 send Read1Reply(v,cs) to p

4 case m = Read2(v′,cs′) do
5 APPLY(v′,cs′)
6 send Read2Reply to p

7 case m = Write1 do
8 send Write1Reply(cs) to p

9 case m = Write2(v′,cs′) do
10 APPLY(v′,cs′)
11 send Write2Reply to p

12 procedure Replica::APPLY(v′,cs′)
13 if cs′ > cs then
14 cs← cs′

15 v← v′

initial base update are stably ordered using the ordering and
execution protocols of EPaxos. We next discuss each of these
changes in more detail.

Base Attribute. The base attribute associated with a rmw
represents a possible base update on which the rmw will exe-
cute. Initially, the coordinator sets this to what it believes are
the current value and carstamp of the shared object (Line 6
of Algorithm 3). When a replica receives a PreAccept mes-
sage, it merges what it believes is the correct base update
with the base update proposed by the coordinator (Line 5 of
Algorithm 4). The fast path condition remains essentially un-
changed: the coordinator commits the command if it receives
PreAcceptOK responses from a fast quorum indicating that
all replicas in the quorum agree on the attributes for the com-
mand. Otherwise, the coordinator merges all attributes it has
received in the PreAccept phase and sends out the final at-
tributes in the Accept phase.

Quorum Execute. In canonical EPaxos, a rmw completes
after a single replica executes it because reads are executed
through the same consensus protocol. Since Gryff’s read pro-
tocol circumvents consensus and reads the state of the shared
object directly from a quorum, a rmw must be executed at a
quorum so that it is visible to reads that come after it in real
time. This guarantees the rmw will be visible to future reads
by the quorum intersection property.

Execution. The algorithm for determining the execution or-
der of commands is unchanged from canonical EPaxos. The
EXECUTE procedure in Algorithm 4 is called when a rmw
rmw in the dependency graph committed at position (i, j) in
the cmds array is ready to be executed.

In the procedure, the final base update for rmw is chosen
to be the value and carstamp pair with the larger carstamp
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Algorithm 3: RMW coordinator protocol.

1 procedure Coordinator::RMW( f (·)) at c ∈ R
PreAccept Phase:

2 i← i+1
3 cmd← f (·)
4 seq← 1+max({cmds[ j][k].seq|( j,k) ∈ Icmd}∪{0})
5 deps← Icmd
6 base← (v,cs)
7 cmds[id][i]← (cmd,seq,deps,base,pre-accepted)
8 send PreAccept(cmd,seq,deps,base, id, i) to all

r ∈ F \{c} where F ∈F
9 wait to receive PreAcceptOK(seq′r,deps′r,base′r)

from all r ∈ F \{c}
10 if ∀r1,r2 ∈ F \{c} : seq′r1

= seq′r2
∧deps′r1

=

deps′r2
∧ base′r1

= base′r2
then

11 deps,seq,base← deps′r,seq′r,base′r: r ∈ F \{c}
12 goto Commit Phase

Accept Phase:
13 deps←∪r∈F depsr
14 seq←maxr∈F seqr
15 base← baser : ∀r′ ∈ F.baser.cs≥ baser′ .cs
16 cmds[id][i]← (cmd,seq,deps,base,accepted)
17 send Accept(cmd,seq,deps,base, id, i) to all

r ∈ Q\{c} where Q ∈Q
18 wait to receive AcceptOK from all r ∈ Q\{c}

Commit Phase:
19 cmds[id][i]← (cmd,seq,deps,base,committed)
20 send Commit(cmd,seq,deps,base, id, i) to all

r ∈ R\{c}
21 wait to receive Executed(v) from all r ∈ Q′ ∈Q
22 return v

between the result prev of the previously executed rmw and
the base attribute of rmw (Line 15 of Algorithm 4). The prev
variable is the most recent state of the shared object produced
by the execution of a rmw whereas the base attribute is the
most recent state of the shared object that the coordinator ob-
served after rmw was invoked. In the absence of concurrent
updates, these states are equivalent, so it is safe for the rmw
to choose the state as the base update.

However, when rmws are concurrent, prev may be more
recent than the base attribute of rmw because concurrent
rmws were ordered and executed before rmw. In such cases,
rmw must remain consistent with the stable order of rmws
provided by EPaxos by executing on the most recent state.

The resulting value and carstamp of rmw are decided by
executing the modify function f (·) on the value of the base
update and incrementing the rmwc of the carstamp of the
chosen base update. The replica finishes by applying the new
value and carstamp and notifying the coordinator that the
rmw has been executed.

Algorithm 4: RMW replica protocol.

1 when replica r ∈ R receives a message m from c ∈ R do
2 case m = PreAccept(cmd,seq,deps,base, idc, i) do
3 seq′←max({seq}∪{1+ cmds[ j][k].seq|( j,k) ∈

Icmd}
4 deps′← deps∪ Icmd
5 base′← if cs > base.cs then (v,cs) else base
6 cmds[idc][i]←

(cmd,seq′,deps′,base′,pre-accepted)
7 send PreAcceptOK(seq′,deps′,base′) to c

8 case m = Accept(cmd,seq,deps,base, idc, i) do
9 cmds[idc][i]← (cmd,seq′,deps′,base′,accepted)

10 send AcceptOK to c

11 case m = Commit(cmd,seq,deps,base, idc, i) do
12 cmds[idc][i]←

(cmd,seq′,deps′,base′,committed)

13 procedure Replica::EXECUTE( j,k)
14 base← cmds[ j][k].base
15 if cmds[ j][k].base.cs < prev.cs then
16 base← prev

17 v′← cmds[ j][k].cmd(base.v)
18 cs′← (base.cs.ts,base.cs.id,base.cs.rmwc+1)
19 prev← (v′,cs′)
20 APPLY(v′,cs′)
21 send Executed(base.v) to replica j

5 Proxying Reads

The base Gryff read protocol, as described in the previous
section, provides reads with single round-trip time latency
from the coordinator to the nearest quorum including itself
(1 RTT) when there are no concurrent updates. Otherwise,
reads have at most 2 RTT latency. We discuss how read la-
tency can be further improved in deployments across wide-
area networks.

Because the round-trip time to the replica that is co-
located with a client process is negligible relative to the inter-
replica latency, replicas can coordinate reads for their co-
located clients and utilize their local state in the read coor-
dinator protocol to terminate after 1 RTT more often. When
using this optimization, we say that the coordinating replica
is a proxy for the client process’s read.

Propagating Extra Data in Read Phase 1. The proxy
includes in the Read1 messages its current value v and
carstamp cs. Upon receiving a Read1 message with this ad-
ditional information, a replica applies the value and carstamp
before returning its current value and carstamp. This has the
effect of ensuring every replica that receives the Read1 mes-
sages will have a carstamp (and associated value) at least as
large as the carstamp at the proxy when the read was invoked.
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When this is the most recent carstamp for the shared ob-
ject, the read is guaranteed to terminate after 1 RTT. This is
because every Read1Reply that the coordinator receives will
contain this most recent carstamp and associated value.
Updating the Proxy’s Data. The proxy also applies the val-
ues and carstamps that it receives in Read1Reply messages as
it receives them and before it makes the decision of whether
or not to complete the read after the first phase. If every reply
contains the same carstamp, then the read completes after 1
RTT even if the carstamp at the proxy when the read was in-
voked is smaller than the carstamp contained in every reply.

Given our assumption that each quorum contains f + 1
replicas, these two modifications ensure that reads coordi-
nated by a proxy r only take 2 RTT during normal operation
when there is a concurrent update that arrives at the f nearest
replicas to r in an order that interleaves with the Read1 mes-
sages from r. Algorithm 7 in Appendix B describes the read
proxy changes to base Gryff in pseudocode. Appendix B also
contains a brief argument for why the read proxy optimiza-
tion maintains the correctness of base Gryff.
Always Fast Reads When n = 3. This optimization in-
creases the likelihood that a read completes in 1 RTT because
the proxy replica is privy to more information—i.e., the num-
ber of replicas that contain the same value and carstamp—
than a client process. Moreover, it allows Gryff to always
provide 1 RTT reads when n = 3 since the proxy and any
single other replica comprise a quorum. This optimization is,
in some sense, the dual of the optimization that EPaxos [47]
uses to always provide 1 RTT writes when n = 3. In both
cases, the coordinator and the other replica in the quorum
adopt each other’s state so that the quorum always has the
same state at the end of the first phase.

6 Evaluation
Gryff unifies consensus with shared registers to avoid the
overhead of consensus for reads and writes. To quantify the
benefits and drawbacks of this approach for storing data in
geo-replicated, large-scale web applications, we ask:

• Do Gryff’s shared register read and write protocols reduce
read tail latency relative to the state-of-the-art? (§6.3)

• How do the read/write/rmw latency and throughput of
Gryff compare to state-of-the-art protocols? (§6.4,§6.5)

• Does Gryff improve the median service-level latency for
large scale web applications? (§6.6)

We find that, for workloads with moderate contention,
Gryff reduces p99 read latency to ∼56% of EPaxos, but has
∼2x higher write latency. This tradeoff allows Gryff to re-
duce service-level p50 latency to∼60% of EPaxos for large-
scale web applications whose requests fan-out into many
storage-level requests. Gryff and EPaxos each achieve a
slightly higher maximum throughput than MultiPaxos due
to their leaderless structure.

CA VA IR OR JP
CA 0.2
VA 72.0 0.2
IR 151.0 88.0 0.2

OR 59.0 93.0 145.0 0.2
JP 113.0 162.0 220.0 121.0 0.2

Figure 5: Round trip latencies in ms between nodes in
emulated geographic regions.

6.1 Baselines and Implementation
We evaluate Gryff against MultiPaxos and EPaxos. Multi-
Paxos [36], VR [50], Raft [51] and other protocols with
leader-based architectures are used in commercial sys-
tems to provide linearizable replicated storage [14, 17, 23,
52]. While leader-based protocols have drawbacks in geo-
replicated settings, their extensive use in real systems pro-
vides a practical measuring stick. EPaxos [47] is the state-
of-the-art for geo-replicated storage.

We implemented Gryff in Go using the framework of
EPaxos to facilitate apples-to-apples comparisons between
protocols. Our implementation is a multi-object storage sys-
tem that uses the protocols as described in this paper with the
addition of object identifiers to messages and state. Our code
and experiment scripts are available online [29]. We use the
existing implementation of MultiPaxos in the framework for
our experiments. All of our experiments use the thrifty opti-
mization for EPaxos, MultiPaxos, and Gryff. We use the read
proxy optimization for Gryff.

6.2 Experimental Setup
Testbed. We run our experiments on the Emulab
testbed [61] using pc3000 nodes. These node types
have 1 Dual-Core 3GHz CPU, 2GB RAM, and 1Gbps links
to all other nodes. For three replica latency experiments,
we emulate replicas in California (CA), Virginia (VA), and
Ireland (IR). In five replica latency experiments, we add
replicas in Oregon (OR) and Japan (JP). In all experiments,
we place the MultiPaxos leader in CA.

We emulate wide-area network latencies using Linux’s
Traffic Control (tc) to add delays to outgoing packets on
all nodes. Table 5 shows the configured round-trip times be-
tween nodes in different regions. We choose these numbers
because they are the typical round-trip times between the
corresponding Amazon EC2 availability regions.
Clients. For all experiments, we use 16 clients co-located
with each replica. This number of clients provides enough
load on the evaluated protocols to observe the effects of con-
current operations from many clients, but only moderately
saturates the system. We avoid full saturation in order to iso-
late the protocol mechanisms that affect tail latency from
hardware and software limitations at various levels in our
stack. Clients perform operations in a closed loop.
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(a) 2% conflicts.
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(b) 10% conflicts.
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(c) 25% conflicts.

Figure 6: Gryff’s reads always complete in 1 RTT when n = 3. 99th percentile read latency is between 0ms and 115ms
lower than EPaxos and 134ms lower than MultiPaxos.

Measurement. Each experiment is run for 180 seconds and
we exclude results from the first 15 seconds and last 15 sec-
onds to avoid artifacts from start-up and cool-down. The la-
tency for an individual operation is measured as the time be-
tween when a client invokes the operation and when it is no-
tified of the operation’s completion.
Conflicting Operations. When two operations target the
same object in a storage system, we say the operations con-
flict. We use conflict percentage as a parameter in our work-
loads to control the percentage of operations from each client
that target the same key. Workloads are highly skewed if and
only if their conflict percentage is high.

6.3 Tail Latency
Gryff is designed to reduce the latency cost of linearizability
for large scale web applications. Tail latency is of particular
importance for these applications because end-user requests
for high-level application objects typically fan-out into hun-
dreds of sub-requests to storage services [2, 18]. The object
can only be returned to the end-user once all of these sub-
requests complete, so the median latency experienced by the
end-user is dictated by the tail of the latency distribution for
operations to these storage services.

6.3.1 Varying Conflict Percentage

To understand the read tail latency of Gryff and the base-
lines, we use a variant of the YCSB-B [16] workload that
contains 94.5% reads, 4.5% writes, and 1.0% rmws. We ex-
amine a read-heavy distribution of operations because most
large-scale web applications are read-heavy. For example,
more than 99.7% of operations are reads in Google’s adver-
tising backend, F1 [17], 99.8% of operations in Facebook’s
TAO system are reads [10], and 3 out of 5 of YCSB’s core
workloads contain over 95% reads [16].
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(a) Read operations.
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(b) Write operations.

Figure 7: Gryff reduces p99 read latency between 1ms
and 44ms relative to EPaxos and 134ms relative to Mul-
tiPaxos for varying write percentages. EPaxos’ p99 write
latency is 89ms lower than Gryff’s p99 write latency re-
gardless of write percentage and conflicts.

Figure 6a shows the results for three different conflict per-
centages with n = 3. In each sub-figure, a log-scale CDF up
to p99.99 is shown below the normal-scale CDF.
1 RTT Reads for Gryff. For n = 3 replicas, Gryff always
completes reads in 1 RTT due to the read proxy optimiza-
tion (§5). Figure 6 shows that clients in each region receive
responses to their read requests after 1 RTT to the nearest
quorum regardless of conflict percentage. Clients in CA are
closest to the replicas in CA and VA and vice versa for clients
in VA. This results in 66% of the reads completing in the
round-trip time between CA and VA (72ms). Clients in IR
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Figure 8: Gryff’s writes take 2 RTT, which is always more than EPaxos when n = 3. MultiPaxos writes can be faster or
slower than Gryff depending on client location and geographic setup.
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Figure 9: Gryff trades off worse write latency for better read and rmw latency relative to EPaxos when n = 5.

are closest to the replicas in IR and VA, so 33% of the reads
complete in the round-trip time between IR and VA (88ms).
Execution Dependencies Delay EPaxos. EPaxos always
commits in 1 RTT for n = 3. However, a read cannot com-
plete until a replica executes it and a replica can only exe-
cute it after receiving and executing its dependencies. This
increases latency when a locally committed read has depen-
dencies on operations that have not yet arrived at the local
replica from other replicas. As shown in Figure 6a, these de-
lays do not affect the p99 read latency of EPaxos when there
are few conflicts. However, the log-scale CDF shows that a
small number of reads are, in fact, delayed.
MultiPaxos has Client-dependent Stable Latency. The
MultiPaxos leader can always commit and execute opera-
tions in 1 RTT to the nearest quorum. However, clients must
also incur a 1 RTT delay to the leader. For clients co-located
with the leader (in CA), this delay is negligible, so the la-
tency experienced by these clients with MultiPaxos is less
than or equal to the latency experienced with the other pro-
tocols. This is demonstrated in the 33rd percentile latencies
in Figure 6. For clients not co-located with the leader, the
latency is roughly 2 RTT.

Gryff improves 99th percentile read latency between 0ms
and 115ms relative to EPaxos for low and high conflict per-
centages and 134ms relative to MultiPaxos.

6.3.2 Varying Write Percentage

While Gryff’s read tail latency is low for read-heavy work-
loads, we also quantify the tail latency under balanced and
write-heavy workloads. To do so, we fix the conflict percent-

age at 2% and measure the 99th percentile latency of read
and write operations for workloads containing 1% rmws and
varying ratios of reads and writes. We vary the write percent-
age from 9.5% to 89.5% and the read percentage from 89.5%
to 9.5%. Figure 7 shows the results for n = 3 replicas.

Gryff and MultiPaxos Unaffected. The write percentage
does not affect Gryff’s write latency because its write pro-
tocol arbitrarily orders concurrent writes. Similarly, Multi-
Paxos commits writes through the same path regardless of
conflicting operations.

EPaxos Reads Slowdown. With increasing write percent-
age, the chance that a read obtains a dependency increases
even with a fixed conflict percentage (Figure 7a). Unlike
reads, writes do not need to be executed before they com-
plete, so they still complete as soon as they are committed.
This only takes 1 RTT in EPaxos when n = 3. EPaxos domi-
nates Gryff and MultiPaxos for p99 write latency.

Five Replica Varying Write Ratio. We run the same work-
load with n = 5 and show the results in Figure 12 in Ap-
pendix A. Gryff can no longer always complete reads in 1
RTT, but due to the low conflict percentage it still achieves
a p99 read latency of 1 RTT regardless of write percentage.
EPaxos can no longer always commit in 1 RTT. This espe-
cially impacts EPaxos’ p99 write latency, which becomes ap-
proximately the same as Gryff (290ms).

6.4 Read/Write/RMW Latency
We also quantify the latency distributions of write and rmws
in Gryff relative to that of the baselines. For these experi-
ments, we use a variant of the YCSB-A workload with 49.5%
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Figure 10: Gryff’s throughput at saturation is within
7.5% of EPaxos and is higher than MultiPaxos.

reads, 49.5% writes, and 1.0% rmws with 25% conflicts. The
balance between reads and writes allows us to observe the ef-
fects that interleavings of operations with different semantics
have on the performance of the evaluated protocols. Simi-
larly, the high conflict percentage reveals performance when
concurrent operations to the same object interleave.

Figure 8 shows the cumulative distribution functions of the
latencies for each operation type for n = 3 replicas. Figure 9
shows the same for n = 5.

1 RTT Reads for Gryff. For n > 3, Gryff often completes
reads in 1 RTT, but sometimes takes 2 RTT. Figure 9a
demonstrates this behavior as the tail surpasses the 1 RTT
latency for any region.

EPaxos Writes are Fast, Reads are Slower. EPaxos dom-
inates Gryff and MultiPaxos for write latency because it al-
ways commits in a single round trip for n= 3 (Figure 8b) and
often commits in a single round trip for n = 5 (Figure 9b).
As discussed in Section 6.3.1, reads cannot complete until
they are executed, so when there are more replicas and more
concurrent writes, EPaxos’ read latency increases due to the
increased likelihood that reads acquire dependencies on up-
dates from other regions.

2 RTT Writes for Gryff. Writes in Gryff takes 2 RTT to
complete. Figure 8b demonstrates the gap between EPaxos
and Gryff for n= 3. When n> 3 replicas (Figure 9b), EPaxos
still typically completes writes faster than Gryff because it
only takes 2 RTT when conflicting concurrent operations ar-
rive at replicas in the intersections of their fast quorums in
different orders.

Less Blocking for RMWs in Gryff. Gryff achieves 2 RTT
rmws when there are no conflicts and 3 RTT when there
are. While Gryff must still block the execution of rmws un-
til all dependencies have been received and executed, Gryff
experiences significantly less blocking than EPaxos. This is
because EPaxos needs to have dependencies on writes, but
Gryff’s rmw protocol does not.

EPaxos dominates Gryff for write latency. For n = 3, the
p50 write latency of Gryff is 72ms higher and the p99 write
latency is 89ms higher than EPaxos.
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Figure 11: Gryff improves service-level p50 latency when
the expected tail-at-scale request contains many reads.

6.5 Throughput
We measure median latency at varying levels of load in a
local-area cluster. Again, we use the variant of YCSB-A with
49.5% reads, 49.5% writes, and 1.0% rmws with 25% con-
flicts. Figure 10 shows the results for n = 3. We find that
Gryff’s throughput at saturation is about 11,600 ops/s, within
7.5% of EPaxos. This is also about 1,200 ops/s higher than
the maximum throughput of MultiPaxos. Like EPaxos, Gryff
does not require a single replica to be involved in the execu-
tion of every operation, so it achieves better scalability and
load-balancing than leader-based protocols.
Gryff Scales Better. We run the same workload with n = 5
and show the results in Figure 13 in Appendix A. Gryff’s
maximum throughput is higher than EPaxos because EPaxos
can no longer always commit on the fast path. Each oper-
ation that commits on the slow path on EPaxos requires an
additional quorum of messages and replies, which causes the
system to more quickly saturate.

6.6 Tail at Scale
Our primary experiments show that Gryff improves read la-
tency relative to our baselines. However, p50 write and p50
rmw latency are lower in EPaxos for n = 3. For other parts
of the distributions and for MultiPaxos, the latency trade-
off is not comparable. To understand how these tradeoffs
with EPaxos and MultiPaxos affect the performance of large-
scale web applications whose structure resembles the com-
mon structure discussed in Section 6.3, we ran experiments
that emulate end-user requests.

We emulate the request pattern of an application preparing
a high-level object for an end-user. The object is composed
of m sub-requests to the storage system that are drawn from a
fixed distribution of reads, writes, and rmws. For example, in
order to display a profile page in a social network, dozens of
requests to the storage systems that store profile information
must be initiated simultaneously [10]. The latency of one of
these tail at scale requests is the maximum latency of all
of its sub-requests. Thus, the median latency of tail at scale
requests depends on the tail latency of the sub-requests.

The large-scale web applications whose workloads we
emulate are typically read-heavy (§6.3). Moreover, they are
often highly skewed. Facebook engineers report that a small
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set of objects account for a large fraction of total read and
write operations in the social graph [2]. This experiment uses
a 99%/0.9%/0.1% read/write/rmw workload with 25% con-
flicts. We vary the number of sub-requests m from 1 to 105
in increments of 15. Figure 11 summarizes the results.
Fast Reads Improve Median End-to-end Latency. Gryff’s
median latency is lower than that of EPaxos and MultiPaxos
when fewer than half of the tail at scale requests are expected
to contain a write or rmw operation. Compared to EPaxos’
p50 latency, Gryff’s is up to 57ms lower for n = 3.
Five Replica Tail-at-scale. We run the same workload with
n = 5 and show the results in Figure 14 in Appendix A. All
protocols follow trends similar to the n = 3 case. However,
Gryff cannot always complete reads in 1 RTT, so the longer
tail of the read latency distribution causes the median latency
of these tail at scale requests to increase at a smaller num-
ber of sub-requests. Similarly, EPaxos can no longer always
commit in 1 RTT, so its tail latency is 2 RTTs plus the delay
from blocking for dependencies.

7 Related Work
We review related work in geo-replicated storage systems
and combining consensus with shared registers.
EPaxos. EPaxos [47] is the state-of-the-art for linearizable
replication in geo-replicated settings. Our evaluation shows
that EPaxos dominates Gryff for blind write latency. On the
other hand, Gryff dominates EPaxos for read latency and its
rmw latency ranges from higher to lower as the contention
in the workload increases. This tradeoff is possible because
Gryff only uses consensus for operations that require it.
Read Leases. Read leases allow clients to read replicated
state from leaseholders by requiring updates to the replicated
state be acknowledged by the leaseholders before complet-
ing [28, 49]. While this enables reads that need only com-
municate with a single replica, it sacrifices write availabil-
ity when a leaseholder fails until the lease expires. Further-
more, to implement read leases safely, clocks at each process
must have bounded skew, which is not satisfied by current
commodity clocks [25]. Given these difficult availability and
safety tradeoffs, we do not consider read leases in the context
of Gryff or the baseline systems, but we believe they can be
adapted to Gryff’s write and rmw protocols.
Other Linearizable Protocols. Paxos [36], VR [50], Fast
Paxos [38], Generalized Paxos [37], Mencius [45], Raft [51],
Flexible Paxos [33], CAESAR [4], and SD Paxos [62] are
consensus protocols that are used to implement linearizable
replicated storage systems by ensuring the Agreement prop-
erty for state machine replication [56]. Other systems, such
as Sinfonia [1] and Zookeeper [34], use similarly expen-
sive coordination protocols (2PC and atomic broadcast re-
spectively) to provide strong consistency. CURP [53], Chain
Replication [59], and other primary-backup protocols [3]

achieve good performance when failures are detectable.
Gryff guarantees linearizability in systems with undetectable
failures for reads, writes, and rmws and only incurs expen-
sive coordination overhead when needed.

ABD [5] provides linearizable reads and writes with guar-
anteed termination in asynchronous settings. Subsequent
work has established the conditions under which linearizable
shared register protocols can provide fast—i.e., complete in
1 RTT—reads [20] or writes [22]. Gryff maintains the per-
formance benefits of these protocols for reads and writes
and incorporates rmws for when application developers need
stronger synchronization primitives.

Weaker Semantics for Lower Latency. Other geo-
replicated systems eschew strong consistency for weaker
consistency models that support lower latency operations.
PNUTS [15] provides per-timeline sequential consistency,
OCCULT [46], COPS [42], and GentleRain [19] pro-
vide causal consistency. ABD-Reg [60] provides regular-
ity. Moreover, some systems provide hybrid consistency:
Pileus [58], Gemini [39], and ICG [30] allow some oper-
ations to be strongly consistent and other operations to be
weakly consistent. Gryff provides linearizability to free de-
velopers from reasoning about complex consistency models.

Consensus and Shared Registers. Active Quorum Systems
(AQS) [7, 8], to our knowledge, was the first attempt to com-
bine consensus with shared registers. We found that AQS
allows for non-linearizable executions because its ordering
mechanism is unstable for rmws (Appendix C). In contrast,
Gryff uses carstamps to stably order rmws with their base
updates while allowing for efficient reads and writes with an
unstable order. In addition, Gryff is implemented and empir-
ically evaluated.

Cassandra [44] provides reads and writes with tunable
consistency and implements a compare-and-swap for appli-
cations that occasionally need stronger synchronization. Un-
like Gryff, Cassandra’s reads and writes are not linearizable
by default and its compare-and-swap is not consistent when
operating on data also accessed via reads and writes.

8 Conclusion
Gryff unifies consensus and shared registers with carstamps.
This reduces latency by avoiding the cost of consensus for
the common case of reads and writes. Our evaluation shows
that the reduction in latency for individual operations re-
duces the median service-level latency to ∼60% of EPaxos
for large-scale web applications.
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A Additional Experiments
This appendix contains figures for experiments run with n =
5 replicas. Discussions of these results are in the main body
of the paper in Section 6.

B Proof of Correctness
The proof of correctness for Gryff is presented in five parts.
First, we define our model and introduce definitions (§B.1).
Second, we describe the remainder of the rmw protocol
(§B.2). Third, we prove safety for the base protocol (§B.3).
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Figure 12: Gryff has better p99 read latency for n = 5 be-
cause, even though reads sometimes complete in 2 RTT,
enough still complete in 1 RTT that the p99 latency is
determined by 2 RTT in a region (CA) where the near-
est quorum are relatively close (72ms per RTT). EPaxos
cannot always commit reads or writes in 1 RTT, so its
latency increases relative to n = 3.

Fourth, we prove liveness for the base protocol (§B.4). Fifth,
we argue that the read proxy optimization maintains the de-
sired correctness properties (§B.5).

B.1 Preliminaries
We introduce the system model (§B.1.1) and define a shared
object (§B.1.2).

B.1.1 Model

The system is comprised of a set P of processes {p1, ..., pm}.
A subset R ⊆ P of processes are replicas {r1, ...,rn}. Pro-
cesses communicate with each other over point-to-point
message channels. We assume reliable message delivery.
This abstraction can be implemented on top of unreliable
message channels that guarantee eventual delivery via re-
transmission and deduplication.

Processes may fail according to the crash failure model: a
failed process ceases executing instructions and its failure
is not detectable by other processes. The system is asyn-
chronous such that there is no upper bound on the time it
takes for a message to be delivered and there is no bound on
relative speeds at which processes execute instructions.

Processes are state machines that deterministically transi-
tion between states when an event occurs. A process interacts
with its environment via a set of objects O. The process may
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Figure 13: Gryff’s throughput at saturation is higher
than both EPaxos and MultiPaxos when n = 5.
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Figure 14: For n = 5, the difference in service-level p50
latency is larger because reads in EPaxos suffer from
more blocking with more replicas and clients executing
operations.

receive an operation op for an object via an invocation event
inv(op). The process indicates the result of the operation by
generating a response event resp(op). Internal events are the
modification of local state at a process, the sending or re-
ceipt of a message, and the failure of process. We denote the
process associated with an event e by process(e).

An execution is an infinite sequence of events generated
when the processes run a distributed algorithm. A partial
execution is a finite prefix of some execution. A process is
correct in an execution if there are infinite number of events
associated with it. Otherwise, the process is faulty. Given a
set of processes P and an execution e, we denote the set of
correct processes in P by alive(e,P), and the set of faulty
processes in P by faulty(e,P).

We borrow histories and related definitions from Herlihy
and Wing [32]. A history h of an execution e is an infinite
sequence of operation invocation and response events in the
same order as they appear in e. A history may also be defined
with respect to a partial execution e′; such a history is a finite
sequence. A subhistory of a history h is a subsequence of the
events of h.

We denote by ops(h) the set of all operations whose invo-
cations appear in h. An invocation is pending in a history if
no matching response follows the invocation. If h is a history,
complete(h) is the maximal subsequence of h consisting only
of invocations and matching responses. A history h is com-
plete if it contains no pending invocations.

A history h is sequential if (1) the first event of h is an

invocation and (2) each invocation, except possibly the last,
is immediately followed by a matching response and each
response is immediately followed by an invocation.

A process subhistory, h|i, of a history h is the subsequence
of all events in h which occurred at pi. An object subhistory
h/o is similarly defined for an object o ∈ O. Two histories h
and h′ are equivalent if ∀1 ≤ i ≤ m.h|i = h′|i. A history h is
well-formed if ∀1 ≤ i ≤ m.h|i is sequential. We assume all
histories are well-formed.

A set S of histories is prefix-closed if, whenever h is in S,
every prefix of h is also in S. A single-object history is one
in which all events are associated with the same object. A
sequential specification for an object o∈O is a prefix-closed
set of single-object sequential histories for o. A sequential
history h is legal if ∀o ∈ O.h/o belongs to the sequential
specification for o.

A history induces an irreflexive partial order on ops(h),
denoted <h, as op1 <h op2 if and only if resp(op1) <
inv(op2) in h.

A quorum system Q ⊆P(R) over R is a set of subsets of
R with the quorum intersection property: for all Q1,Q2 ∈Q,
Q1 ∩Q2 6= /0. We use quorum both to mean a set of replicas
in a particular quorum system and the size of such a set.

B.1.2 Shared Objects

A shared object is a data type that supports the following
operations:

• READ(): returns the value of the object
• WRITE(v): updates the value of the object to v
• RMW( f (·)): atomically reads the value v of the object,

updates the value to f (v), and returns v

We use reads(h), writes(h), and rmws(h) to denote the set
of all operations that are reads, writes, and rmws in ops(h) re-
spectively. We use updates(h) = writes(h)∪ rmws(h) to de-
note the set of operations which update the state of a shared
object in ops(h). We use observes(h) = reads(h)∪ rmws(h)
to denote the set of operations which observe the state of a
shared object in ops(h).

Definition B.1. (Shared Object Specification) A sequential
object subhistory h/o belongs to the sequential specification
of a shared object if for each op ∈ observes(h/o) such that
resp(op)∈ h/o, resp(op) contains the value of the latest pre-
ceding operation u∈ updates(h/o) or if there is no preceding
update, then resp(op) contains the initial value of o.

B.2 Recovery for RMW Protocol
Algorithms 5 and 6 show the modifications to the basic
EPaxos recovery protocol. In addition to the replica state
in Figure 4, each replica also maintains epoch, the current
epoch used in generating ballot numbers, and b, the highest
ballot number seen in the current epoch. Each instance in the
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Algorithm 5: Recovery coordinator protocol for rmws.

1 when replica r ∈ R suspects replica c ∈ R failed while
committing instance j do

2 ballot← (epoch,(b+1), idr)
3 send Prepare(ballot, idc, j) to all r ∈ R
4 wait to receive

PrepareOK(cmdr,seqr,depsr,baser,statusr,ballotr)
from all r ∈ Q ∈Q

5 R←{(cmdr,seqr,depsr,baser,statusr) | ∀r′ ∈ Q :
ballotr ≥ ballotr′}

6 if (cmd,seq,deps,base,committed) ∈R then
7 run Commit Phase for (cmd,seq,deps,base) at

(idc, j)

8 else if (cmd,seq,deps,base,accepted) ∈R then
9 run Accept Phase for (cmd,seq,deps,base) at

(idc, j)

10 else if ∃S⊆R :
(cmdc,seqc,depsc,basec,statusc) /∈ S)∧
(|S| ≥ b n

2c)∧
(∀reply1,reply2 ∈ S.reply1 =
reply2∧ reply1.status = pre-accepted) then

11 run Accept Phase for
(cmdr,seqr,depsr,baser) ∈ S at (idc, j)

12 else if (cmd,seq,deps,base,pre-accepted) ∈R then
13 run PreAccept Phase for cmd at (idc, j), avoid

fast path

14 else
15 run PreAccept Phase for no-op at (idc, j),

avoid fast path

cmds array also contains a ballot number that is only used
during recovery.

Note that the only change Gryff makes is that the base
attribute is recovered along with the deps and seq attributes.
To support optimized EPaxos, similar changes must be made
to the optimized recovery protocol. We refer the reader to
the optimized recovery protocol description in the EPaxos
technical report [48] and our implementation of Gryff [29]
for more details.

B.3 Proof of Linearizability
More Definitions. A consistency condition is specified by
a particular set of schedules. Linearizability [32] is a strong
consistency condition that reduces the complexity of build-
ing correct applications.

Definition B.2 (Linearizability). A complete history h sat-
isfies linearizability if there exists a legal total order τ

of ops(h) such that ∀op1,op2 ∈ ops(h).op1 <h op2 =⇒
op1 <τ op2.

Algorithm 6: Recovery replica protocol for rmws.

1 when replica r ∈ R receives a message m from x ∈ R do
2 case m = Prepare(ballot, j,k) do
3 if ballot > cmds[ j][k].ballot then
4 cmds[ j][k].ballot = ballot
5 send PrepareOK(cmds[ j][k]) to x

6 else
7 send NACK to x

Given a particular consistency condition, we are interested
in whether a system enforces the condition for all possible
partial executions.

Definition B.3. The system provides consistency condition C
if, for every partial execution e of the system, the history h of
e can be extended to some history h′ such that complete(h′)
is in C.

Unless otherwise noted, the rest of this section considers
a complete history h produced by the distributed algorithm
specified in Algorithms 1, 2, 3, and 4 in the main body of the
paper and Algorithms 5 and 6 in this appendix.

The coordinator of a read or write is the invoking process.
For rmws, the coordinator is the replica that notifies the in-
voking process its rmws has been executed. We assume that
each u ∈ updates(h) writes a unique value.

Definition B.4. A complete operation op ∈ observes(h) ob-
serves an update u ∈ updates(h) if the value returned in
resp(op) was written by u.

Definition B.5. The carstamp csop assigned to a complete
operation op ∈ ops(h) is:

• If op ∈ writes(h), csop is the carstamp determined on
Line 15 of Algorithm 1.

• If op ∈ rmws(h), csop is the carstamp determined by
Property B.4.

• If op ∈ reads(h), csop is the carstamp csu assigned to
the update u that op observes.

Structure. We abstract the implementation details of the
rmw protocol into four sufficient properties. The proofs of
the subsequent lemmas and theorem assume that the rmw
protocol provides these properties. At the end of this subsec-
tion, we prove that Gryff’s rmw protocol does exactly this.

Property B.1. (Freshness) Every complete rmw ∈ rmws(h)
is assigned a carstamp such that ∀Q∈Q.csrmw >minr∈Q csr
where csr is the carstamp at r when rmw is invoked.

Property B.2. (Propagation) For every complete rmw ∈
rmws(h) there exists a Q ∈Q such that ∀r ∈ Q.csr ≥ csrmw
where csr is the carstamp at r when rmw completes.
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Property B.3. (Uniqueness) For all complete rmw1,rmw2 ∈
rmws(h), csrmw1 6= csrmw2 .

Property B.4. (Assignment) Every complete rmw∈ rmws(h)
is assigned the carstamp csrmw = (csu.ts,csu.id,csu.rmwc+
1) where u is the update that rmw observes.

The linearizability proof follows a linear structure. We
first prove that the carstamps assigned to each operation re-
spect the real time order of h in Lemmas B.1-B.5. These
proofs leverage the quorum intersection property. Then, we
prove that a partial order on operations induced by their
carstamps respects both the real time order of h and the le-
gality condition for shared objects in Lemmas B.6-B.10. Fi-
nally, we connect these lemmas in Theorem B.1 to show that
a total order of this partial order satisfies linearizability.

Lemma B.1. After a replica r ∈ R executes the APPLY func-
tion with tuple (v,cs) and before it executes any other in-
struction, csr ≥ cs where csr is the carstamp at r.

Proof. By the condition on Line 13 of Algorithm 2.

Lemma B.2. ∀r ∈ R,csr monotonically increases where csr
is the carstamp at r.

Proof.

1. csr is only modified via the APPLY function.

PROOF: By the fact that, out of all of the replica pseu-
docode in Algorithms 2, 3, 4, 5, and 6, the APPLY func-
tion in Algorithm 2 is the only place that csr is assigned a
value.

2. Q.E.D.

PROOF: By Lemma B.1 and 1.

Lemma B.3. If an operation op ∈ ops(h) is complete, then
after resp(op) there exists a Q ∈Q such that ∀r ∈ Q.csr ≥
csop where csr is the carstamp at r.

Proof.

1. Let op be an operation in ops(h)
2. CASE: op ∈ writes(h)

2.1. Let Q∈Q be the quorum from which the coordinator
of op receives Write2Reply messages.

PROOF: By the hypothesis that op is complete and the
requirement that the coordinator of op waits to receive
Write2Reply messages from a quorum before complet-
ing op (Line 17 of Algorithm 1).

2.2. Each r ∈ Q received a Write2 message for op con-
taining (v,csop) where v is the value written by op.

PROOF: By 2.1 and that a replica sends a Write2Reply
message for op to the coordinator of op only if it re-
ceives a Write2 message for op containing (v,csop).

2.3. Each r ∈ Q applied (v,csop) before sending a
Write2Reply message for op.

PROOF: By 2.1, 2.2, and the requirement that a replica
sends a Write2Reply message after it applies the tuple it
received in a Write2 message (Line 10 of Algorithm 2).

2.4. Q.E.D.

By Lemma B.1, Lemma B.2, and 2.3.

3. CASE: op ∈ reads(h)

3.1. CASE: op completed after Read Phase 1 (Line 7 of
Algorithm 1).

3.1.1. Let Q ∈Q be the quorum from which the coor-
dinator of op receives Read1Reply messages.

PROOF: By the hypothesis that op is complete and
the requirement that the coordinator of op waits to
receive Read1Reply messages from a quorum before
completing op (Line 3 of Algorithm 1).

3.1.2. When each r ∈ Q sent their Read1Reply mes-
sage, csr = csop where csr is the carstamp at r.

PROOF: By 3.1.1, Definition B.5, the case 3.1 as-
sumption, and the fast read condition (Line 6 of Al-
gorithm 1).

3.1.3. Q.E.D.

PROOF: By Lemma B.2 and 3.1.2.

3.2. CASE: op completed after Read Phase 2 (Line 10 of
Algorithm 1).

3.2.1. Let Q ∈Q be the quorum from which the coor-
dinator of op receives Read2Reply messages.

PROOF: By the hypothesis that op is complete, the
case 3.2 assumption, and the requirement that the
coordinator of op waits to receive Read2Reply mes-
sages from a quorum before completing op in Read
Phase 2 (Line 9 of Algorithm 1).

3.2.2. Each r∈Q received a Read2 message for op con-
taining (v,csop) where v is the value written by
op.

PROOF: By 3.2.1 and that a replica sends a
Read2Reply message for op to the coordinator of op
only if it receives a Read2 message for op containing
(v,csop).

3.2.3. Each r ∈ Q applied (v,csop) before sending a
Read2Reply message.

PROOF: By 3.2.1, 3.2.2, and the requirement that a
replica sends a Read2Reply message after it applies
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the tuple it received in a Read2 message (Line 5 of
Algorithm 2).

3.2.4. Q.E.D.

By Lemma B.1, Lemma B.2, and 3.2.3.

4. CASE: op ∈ rmws(h)

PROOF: By Property B.2.

5. Q.E.D.

PROOF: By 1, 2, 3, and 4.

Lemma B.4. For all operations op ∈ ops(h) and updates
u ∈ updates(h), op <h u =⇒ csop < csu.

Proof.

1. Let Qop ∈Q be a quorum such that ∀r ∈ Qop.csr ≥ csop
where csr is the carstamp at r when u is invoked.

PROOF: By the hypothesis that op completed before u was
invoked and Lemma B.3.

2. Let u be an update in updates(h).
3. CASE: u ∈ writes(h)

3.1. Let Qu ∈Q be the quorum from which the coordina-
tor of u receives Write1Reply messages and csmax be
the largest carstamp contained in these messages.

PROOF: By the hypothesis that u is complete and the
requirement that the coordinator of u waits to receive
Write1Reply messages from a quorum before complet-
ing u (Line 13 of Algorithm 1).

3.2. Let r ∈ Qop∩Qu be a replica.

PROOF: By 1, 3.1, and the Quorum Intersection prop-
erty.

3.3. op completed before r received a Write1 message for
u.

PROOF: By the hypothesis that op completed before u
was invoked and 3.2.

3.4. The Write1Reply message that r sent for u contains a
carstamp csr ≥ csop.

PROOF: By 1 and 3.3.

3.5. The coordinator for u assigns u the carstamp csu =
(csmax.ts+1, id,0) where csmax ≥ csr and id is the id
of the coordinator for u.

PROOF: By 3.1 and the assignment of a carstamp to u
(Lines 14 and 15 of Algorithm 1).

3.6. Q.E.D.

PROOF: By 3.4, and 3.5.

4. CASE: u ∈ rmws(h)

PROOF: By 1 and Property B.1.

5. Q.E.D.

PROOF: By 2, 3, and 4.

Lemma B.5. For all operations op ∈ ops(h) and reads ρ ∈
reads(h), op <h ρ =⇒ csop ≤ csρ .

Proof.

1. Let u be the update that ρ observes.

PROOF: By the hypothesis that ρ is complete and Defini-
tion B.4.

2. CASE: u = op

2.1. csρ = csu = csop

PROOF: By the assumption of case 2, 1, and Defini-
tion B.5.

2.2. Q.E.D.

PROOF: By 2.1.

3. CASE: u 6= op

3.1. Let Qop ∈Q be a quorum such that ∀r ∈ Qop.csr ≥
csop where csr is the carstamp at r when ρ is invoked.

PROOF: By the hypothesis that op completed before ρ

was invoked and Lemma B.3.

3.2. Let Qρ ∈Q be the quorum from which the coordina-
tor of ρ receives Read1Reply messages and csmax be
the largest carstamp contained in these messages.

PROOF: By the hypothesis that ρ is complete and the
requirement that the coordinator of ρ waits to receive
Read1Reply messages from a quorum before complet-
ing ρ (Line 3 of Algorithm 1).

3.3. Let r ∈ Qop∩Qρ be a replica.

PROOF: By 3.1, 3.2, and the Quorum Intersection prop-
erty.

3.4. op completed before r received a Read1 message for
ρ .

PROOF: By the hypothesis that op completed before u
was invoked and 3.3.

3.5. The Read1Reply message that r sent for ρ contains a
carstamp csr ≥ csop.

PROOF: By 3.1 and 3.4.

3.6. The coordinator for ρ chooses u to be the update cor-
responding to csmax.
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PROOF: By 3.2 and the selection of an update to observe
for ρ (Lines 4 and 5 of Algorithm 1).

3.7. Q.E.D.

PROOF: By 3.5 and 3.6.

4. Q.E.D.

PROOF: By 1, 2, and 3.

We define the relation <ψ on ops(h) as follows:

• ∀op1,op2 ∈ ops(h).csop1 < csop2 =⇒ op1 <ψ op2.
• ∀ρ ∈ reads(h) such that ρ observes an update u ∈

updates(h), u <ψ r. ∀u′ ∈ updates(h) such that u <ψ u′,
r <ψ u′.

• ∀ρ1,ρ2 ∈ reads(h) such that ρ1 and ρ2 observe the same
update u, inv(ρ1)< inv(ρ2) =⇒ ρ1 <ψ ρ2.

• ∀op1,op2,op3 ∈ ops(h).op1 <ψ op2∧op2 <ψ op3 =⇒
op1 <ψ op3.

Less formally, <ψ orders operations by their carstamps and
inserts reads in between the updates that the reads observe
and subsequent updates.

Lemma B.6. For all u1,u2 ∈ updates(h), u1 <h u2 =⇒
u1 <ψ u2.

Proof.

1. csu1 < csu2 .

PROOF: By the hypothesis that u1 <h u2 and Lemma B.4.

2. Q.E.D.

PROOF: By 1 and the definition of <ψ .

Lemma B.7. For all u ∈ updates(h) and ρ ∈ reads(h), u <h
ρ =⇒ u <ψ ρ .

Proof.

1. csu ≤ csρ .

PROOF: By the hypothesis that u <h ρ and Lemma B.5.

2. CASE: csu < csρ .

PROOF: By the definition of <ψ .

3. CASE: csu = csρ .

3.1. ρ observes u

PROOF: By the assumption of case 3 and Definition B.4.

3.2. Q.E.D.

PROOF: By 3.1 and the definition of <ψ .

4. Q.E.D.

PROOF: By 1, 2, and 3.

Lemma B.8. For all ρ ∈ reads(h) and u ∈ updates(h), ρ <h
u =⇒ ρ <ψ u.

Proof.

1. csρ < csu.

PROOF: By the hypothesis that ρ <h u and Lemma B.4.

2. Q.E.D.

PROOF: By 1 and the definition of <ψ .

Lemma B.9. For all ρ1,ρ2 ∈ reads(h), ρ1 <h ρ2 =⇒ ρ1 <ψ

ρ2.

Proof.

1. csρ1 ≤ csρ2 .

PROOF: By the hypothesis that ρ1 <h ρ2 and Lemma B.5.

2. CASE: csρ1 < csρ2

PROOF: By the definition of <ψ .

3. CASE: csρ1 = csρ2

3.1. resp(ρ1)< inv(ρ2)

PROOF: By the hypothesis that ρ1 <h ρ2.

3.2. inv(ρ1)< inv(ρ2)

PROOF: By 3.1.

3.3. Q.E.D.

PROOF: By 3.2 and the definition of <ψ .

4. Q.E.D.

PROOF: By 1, 2, and 3.

Lemma B.10. If τ is a topological sort of <ψ , τ is a legal
total order of ops(h).

Proof.

1. Let op∈ observes(h) be an operation that observes an up-
date u ∈ updates(h).

PROOF: By the hypothesis that op is completed.

2. CASE: op ∈ reads(h).

2.1. There is no u′ such that u <ψ u′ <ψ op.

PROOF: By the assumption of case 2 and the definition
of <ψ .

2.2. There is no u′ such that u <τ u′ <τ op.
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PROOF: By the hypothesis thatτ is a topological sort of
<ψ and 2.1.

2.3. Q.E.D.

PROOF: By 2.2, the definition of legal, and Defini-
tion B.1.

3. CASE: op ∈ rmws(h).

3.1. csop = (csu.ts,csu.id,csu.rmwc+1).

PROOF: By Property B.4.

3.2. SUFFICES ASSUME: ∃u′ ∈ updates(h) with
carstamp csu′ such that
u <ψ u′ <ψ op.

PROVE: False.

3.2.1. csu < csu′ < csop.

PROOF: By assumption 3.2 and the definition of <ψ .

3.2.2. CASE: csu.ts < csu′ .ts

3.2.2.1. csop.ts < csu′ .ts.

PROOF: By the assumption of case 3.2.2 and 3.1.

3.2.2.2. Q.E.D.

PROOF: By 3.2.2.1 and 3.2.1.

3.2.3. CASE: csu.ts = csu′ .ts and csu.id < csu′ .id.

3.2.3.1. csop.ts = csu′ .ts and csop.id < csu′ .id.

PROOF: By the assumption of case 3.2.3 and 3.1.

3.2.3.2. Q.E.D.

PROOF: By 3.2.3.1 and 3.2.1.

3.2.4. CASE: csu.ts = csu′ .ts, csu.id = csu′ .id, and
csu.rmwc < csu′ .rmwc.

3.2.4.1. csop.ts = csu′ .ts and csop.id = csu′ .id.

PROOF: By the assumption of case 3.2.4 and 3.1.

3.2.4.2. csop.rmwc = csu.rmwc+1≤ csu′ .rmwc.

PROOF: By the assumption of case 3.2.4 and 3.1
and that the rmwc component of a carstamp is a
natural number.

3.2.4.3. CASE: u′ ∈ writes(h)

3.2.4.3.1. csu′ .rmwc = 0

PROOF: By the assignment of a carstamp to u′

(Lines 14 and 15 of Algorithm 1).

3.2.4.3.2. Q.E.D.

PROOF: By 3.2.4.3.1 and 3.2.4.2.

3.2.4.4. CASE: u′ ∈ rmws(h)

3.2.4.4.1. csop.rmwc 6= csu′ .rmwc.

PROOF: By 3.2.4.1 and Property B.3.

3.2.4.4.2. csop.rmwc < csu′ .rmwc.

PROOF: By 3.2.4.4.1 and 3.2.4.2.

3.2.4.4.3. Q.E.D.

PROOF: By 3.2.4.1, 3.2.4.4.2, and 3.2.1.

3.2.4.5. Q.E.D.

PROOF: By 3.2.4.3 and 3.2.4.4.

3.3. Q.E.D.

PROOF: By 3.2, the definition of legal, and Defini-
tion B.1.

4. Q.E.D.

PROOF: By 1, 2, and 3.

Theorem B.1. The system implements a shared object with
linearizability.
Proof. Consider a partial execution e with history h. Let
h′ be h with a response for each pending operation in
updates(h) appended to h. Let h′′ = complete(h′).
1. Let op1 and op2 be operations in ops(h′′). We prove that

op1 <h op2 =⇒ op1 <ψ op2.
2. CASE: op1,op2 ∈ updates(h′′).

PROOF: By Lemma B.6.

3. CASE: op1 ∈ updates(h′′) and op2 ∈ reads(h′′).

PROOF: By Lemma B.7.

4. CASE: op1 ∈ reads(h′′) and op2 ∈ updates(h′′).

PROOF: By Lemma B.8.

5. CASE: op1,op2 ∈ reads(h′′).

PROOF: By Lemma B.9.

6. Let τ be a topological sort of <ψ on ops(h′′).
7. τ is a legal total order on ops(complete(h′)).

PROOF: By 6 and Lemma B.10.

8. Q.E.D.

PROOF: By 1, 2, 3, 4, 5, and 7.

RMW Properties. In order to prove that Gryff’s rmw pro-
tocol provides the aforementioned properties, we rely on the
correctness of EPaxos [48]. Because replicas act as coordi-
nators for a rmw invoked by other processes, the failure of
a replica during a rmw before the invoking process learns of
the result may cause the invoking process to submit its rmw
to another replica. Replicas must be able to recognize dupli-
cates, only execute the rmw once, and store the result until
the invoking process generates a response event.
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This issue affects all protocols that rely on a subset of pro-
cesses to coordinate the execution of operations on behalf of
other processes. In Gryff, if a process learns that a pending
rmw has been executed by at least one replica, it must ensure
that a quorum have executed the rmw before completing it.
A replica can ensure this by sending Commit messages with
the appropriate attributes to all replicas. Replicas that receive
Commit messages for a rmw they have already executed can
immediately reply with an Executed message. For brevity,
we omit the duplicate execution check for a replica receiving
a rmw in Algorithm 3 and assume that if a replica has already
executed a rmw, it will skip to Line 20 of Algorithm 3.

We assume the use of the majority quorum system Qmaj
such that ∀Q∈Qmaj. |Q|= b n

2c+1. This assumption implies
each quorum is a subset of a fast quorum and equivalent to a
slow quorum in canonical EPaxos.

Definition B.6. A command γ is committed at a replica r ∈
R if the cmds array at r contains an instance with γ as the
command and committed as the status.

Lemma B.11. The system provides Property B.1.
Proof. Let rmw be an operation in rmws(h) and Q ∈Q be a
quorum.
1. rmw committed with attributes that are the union of the

attributes computed by each r ∈ S where S⊇Q′ for some
Q′ ∈Q.

1.1. rmw commits with basic EPaxos or with optimized
EPaxos.

1.2. CASE: rmw commits with basic EPaxos.

PROOF: By Step 1.1 of the proof of Theorem 4 in the
EPaxos technical report, which states that rmw is com-
mitted with the union of attributes from b n

2c+ 1 repli-
cas, and the assumption that the majority quorum sys-
tem Qmaj is used.

1.3. CASE: rmw commits with optimized EPaxos.

There are two sub-cases:
1.3.1. CASE: rmw commits without running the recov-

ery procedure.

PROOF: By 1.2 and that a fast quorum in optimized
EPaxos is larger than a majority quorum because this
case reduces to 1.2 with the fast quorum size reduced
from n−1.

1.3.2. CASE: rmw commits through the optimized re-
covery procedure.

1.3.2.1. CASE: rmw commits before step 7 of the
optimized recovery procedure, or af-
ter exiting one of the Else branches
in step 7.

PROOF: By Step 2.1 of Theorem 7 of the EPaxos
technical report, which states that rmw must have
been pre-accepted by a majority of replicas, and

the assumption that the majority quorum system
Qmaj is used.

1.3.2.2. CASE: rmw committed after exiting the op-
timized recovery procedure on the If
branch in step 7.

PROOF: By Step 2.2.2 of Theorem 7 of the EPaxos
technical report, which states that rmw must have
been pre-accepted by a majority of replicas, and
the assumption that the majority quorum system
Qmaj is used.

1.3.2.3. Q.E.D.

PROOF: By 1.3.2.1 and 1.3.2.2.

1.3.3. Q.E.D.

PROOF: By 1.3.1 and 1.3.2.

1.4. Q.E.D.

PROOF: By 1.1, 1.2, and 1.3.

2. The base attribute of rmw is chosen such that base.cs ≥
maxr∈S csr ≥ maxr∈Q′ csr where csr is the carstamp at r
when rmw is invoked.

2.1. rmw committed after the PreAccept Phase or the
Accept Phase. Note that the basic recovery proce-
dure and optimized recovery procedure always exit
by running the PreAccept, Accept, or Commit phase.
Each of these is reducible to committing after the
PreAccept phase or Accept phase.

2.2. CASE: rmw committed after the PreAccept Phase
(Line 12 of Algorithm 3).

2.2.1. When each r ∈ S sent their PreAcceptOK mes-
sage, csr = base.cs where csr is the carstamp at
r.

PROOF: By 1, the case 2.2 assumption, and the fast
path condition (Line 10 of Algorithm 3).

2.2.2. Q.E.D.

PROOF: By Lemma B.2 and 2.2.1.

2.3. CASE: rmw committed after the Accept Phase.

2.3.1. CASE: The Accept phase is run during normal
processing.

PROOF: By Lemma B.2 and the selection of base in
the Accept Phase (Line 15 of Algorithm 3).

2.3.2. CASE: The Accept phase is run during recovery
(either basic or optimized).

PROOF: By the fact that the recovery procedures exit
directly to the Accept phase only if rmw has previ-
ously been pre-accepted by a majority.

2.4. Q.E.D.
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PROOF: By 2.1, 2.2, and 2.3.

3. base.cs≥minr∈Q csr.

PROOF: By 2 and the Quorum Intersection property
(maxr∈Q′ cs≥minr∈Q∩Q′ csr ≥mins∈Q′ csr).

4. csrmw > base.cs.

PROOF: By the generation of the carstamp of rmw
(Line 18 of Algorithm 4).

5. Q.E.D.

PROOF: By 3 and 4.

Lemma B.12. The system provides Property B.2.

Proof. Let rmw be an operation in rmws(h).
1. After rmw completes, ∃Q ∈Q such that each r ∈ Q has

executed rmw.

PROOF: By the hypothesis that rmw is complete and
the requirement that the coordinator only completes rmw
when it has received Executed messages from a quorum
(Line 21 of Algorithm 3).

2. Each r ∈ Q applied csrmw.

PROOF: By 1 and that a replica only sends an Executed
message for rmw if it has applied the carstamp and value
of rmw (Line 20 of Algorithm 3).

3. Q.E.D.

PROOF: By 2, Lemma B.1, and Lemma B.2.

Lemma B.13. The system provides Property B.3.

Proof. Let rmwa and rmwb be operations in rmws(h).
1. Either rmwa is executed before rmwb or vice versa.

PROOF: By Theorem 4 and Theorem 7 from the EPaxos
technical report, that the logic for determining the deps
and seq attributes of a command remains unchanged from
EPaxos, and that the logic for determining the execution
order of commands remains unchanged from EPaxos.

2. CASE: rmwa is executed before rmwb.

2.1. csrmwa < csrmwb .

2.1.1. For any two interfering commands rmwa and
rmwb, there is a sequence of zero of more in-
terfering commands that are executed between
rmwa and rmwb. Let this sequence be rmwa =
rmw1, ...,rmwk = rmwb.

PROOF: By Theorem 4 and Theorem 7 from the
EPaxos technical report.

2.1.2. Proof by induction on the sequence
rmw1, ...,rmwk.

2.1.2.1. Base case: k = 2 (rmw2 immediately follows
rmw1).

2.1.2.1.1. prev.cs = csrmw1 .

PROOF: By the assumption of the base case
2.1.2.1 and that prev is only modified when a
rmw is executed (Line 19 of Algorithm 4).

2.1.2.1.2. csrmw2 > prev.cs.

PROOF: By the generation of csrmw2 to be larger
than prev at the time that rmw2 is executed
(Lines 15, 16, and 18 of Algorithm 4).

2.1.2.1.3. Q.E.D.

PROOF: By 2.1.2.1.1 and 2.1.2.1.2.

2.1.2.2. ASSUME: csrmw1 < csrmwi .
PROVE: csrmw1 < csrmwi+1 .

2.1.2.2.1. prev.cs = csrmwi .

PROOF: By the assumption that rmwi was the
last rmw to be executed and that prev is only
modified when a rmw is executed (Line 19 of
Algorithm 4).

2.1.2.2.2. csrmwi+1 > prev.cs

PROOF: By the generation of csrmwi+1 to be
larger than prev at the time that rmwi+1 is ex-
ecuted (Lines 15, 16, and 18 of Algorithm 4).

2.1.2.2.3. Q.E.D.

PROOF: By 2.1.2.2.1 and 2.1.2.2.2.

2.1.3. Q.E.D.

PROOF: By 2.1.1 and 2.1.2.

2.2. Q.E.D.

PROOF: By 2.1.

3. CASE: rmw2 is executed before rmw1.

PROOF: By symmetry with case 2.

4. Q.E.D.

PROOF: By 1, 2, and 3.

Lemma B.14. The system provides Property B.4.

Proof. Let rmw be an operation in rmws(h).
1. Let u ∈ updates(h) be the update that rmw observes.

PROOF: By the assumption that rmw is complete.

2. Let csu be the carstamp chosen on Lines 14 and 16 of
Algorithm 4.
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PROOF: By 1 and Definition B.4.

3. Q.E.D.

PROOF: By 2, Definition B.5, and the generation of csrmw
(Line 18 of Algorithm 4).

Lemmas B.11, B.12, B.13, and B.14 imply that Gryff’s
rmw protocol satisfies the assumptions needed to prove The-
orem B.1.

B.4 Proof of Wait-Freedom
More Definitions. Wait-freedom is a strong liveness prop-
erty that guarantees a correct process can always make
progress regardless of concurrent operations invoked by
other processes.

Definition B.7. (Wait-Freedom) A subset S ⊆ ops(h) of op-
erations are wait-free in a history h with execution e if
∀op ∈ S.process(inv(op)) ∈ alive(e,P) =⇒ resp(op) ∈ h.

Unless otherwise noted, the rest of this section considers
an execution e with history h produced by the distributed
algorithm specified in Algorithms 1, 2, 3, and 4 in the main
body of the paper and Algorithms 5 and 6 in this appendix.

We assume that there are n= 2 f +1 replicas and that up to
f replicas may fail and any number of other processes may
fail in e. Thus, we assume the use of the majority quorum
system Qmaj such that ∀Q ∈Qmaj. |Q|= f +1.

Structure. We first prove that Gryff’s reads and writes are
wait-free in Theorems B.2 and B.3. To prove wait-freedom
for rmws, we discuss why the synchrony assumption must
be strengthened from asynchrony to partial synchrony. With
this stronger assumption, we restate the liveness property of
EPaxos and use this to prove that Gryff’s rmws are wait-free
in Theorem B.5.

Theorem B.2. The system provides read wait-freedom.

Proof. 1. Let op be an operation in reads(h).
2. The coordinator of op is correct.

PROOF: By the definition of a coordinator of a read and by
the hypothesis that process(inv(op)) ∈ alive(e,P).

3. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1
replicas can fail in any execution.

4. The coordinator sends a Read1 message for op to every
replica r ∈ R.

PROOF: By 2 and Line 2 of Algorithm 1.

5. Each r ∈ alive(e,R) delivers a Read1 message for op.

PROOF: By 4, the assumption that r ∈ alive(e,R), and the
assumption that the network guarantees eventual reliable
message delivery.

6. Each r ∈ alive(e,R) sends a Read1Reply message for op
to the coordinator.

PROOF: By 5, the assumption that r ∈ alive(e,R), and
that the message handler for a Read1 message contains
no blocking instructions or conditional branches (Algo-
rithm 2).

7. The coordinator delivers Read1Reply messages from a
quorum Q ∈Q.

PROOF: By 2, 3, 6, the assumption that the network guar-
antees eventual reliable message delivery, and the assump-
tion that the majority quorum system Qmaj is used.

8. CASE: ∀r ∈ Q.csr = csmax

PROOF: By 7, the assumption of the case and that the co-
ordinator generates resp(op) when this assumption holds
(Lines 6 and 7 of Algorithm 1).

9. CASE: ∃r ∈ Q : csr 6= csmax

9.1. The coordinator sends a Read2 message for op to ev-
ery replica r ∈ R.

PROOF: By 2, the assumption of the case, and Line 8 of
Algorithm 2.

9.2. Each r ∈ alive(e,R) delivers a Read2 message for op.

PROOF: By 9.1, the assumption that r ∈ alive(e,R), and
the assumption that the network guarantees eventual re-
liable message delivery.

9.3. Each r ∈ alive(e,R) sends a Read2Reply message for
op to the coordinator.

PROOF: By 9.2, the assumption that r ∈ alive(e,R), and
that the message handler for a Read2 message con-
tains no blocking instructions or conditional branches
on sending a reply (Algorithm 2).

9.4. The coordinator delivers Read2Reply messages from
a quorum Q ∈Q.

PROOF: By 2, 3, 9.3, the assumption that the network
guarantees eventual reliable message delivery, and the
assumption that the majority quorum system Qmaj is
used.

9.5. Q.E.D.

PROOF: By 7, 9.4, and the fact that the coordina-
tor generates a resp(op) after receiving a quorum of
Read2Reply messages (Line 10 of Algorithm 1).

10. Q.E.D.
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PROOF: By 7, 8, and 9.

Theorem B.3. The system provides write wait-freedom.

Proof. 1. Let op be an operation in writes(h).
2. The coordinator of op is correct.

PROOF: By the definition of a coordinator of a write and
by the hypothesis that process(inv(op)) ∈ alive(e,P).

3. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1
replicas can fail in any execution.

4. The coordinator sends a Write1 message for op to every
replica r ∈ R.

PROOF: By 2 and Line 12 of Algorithm 2.

5. Each r ∈ alive(e,R) delivers a Write1 message for op.

PROOF: By 4, the assumption that r ∈ alive(e,R), and the
assumption that the network guarantees eventual reliable
message delivery.

6. Each r ∈ alive(e,R) sends a Write1Reply message for op
to the coordinator.

PROOF: By 5, the assumption that r ∈ alive(e,R), and
that the message handler for a Write1 message contains
no blocking instructions or conditional branches (Algo-
rithm 2).

7. The coordinator delivers Write1Reply messages from a
quorum Q ∈Q.

PROOF: By 2, 3, 6, the assumption that the network guar-
antees eventual reliable message delivery, and the assump-
tion that the majority quorum system Qmaj is used.

8. The coordinator sends a Write2 message for op to every
replica r ∈ R.

PROOF: By 2, 7, and Line 16 of Algorithm 2.

9. Each r ∈ alive(e,R) delivers a Write2 message for op.

PROOF: By 8, the assumption that r ∈ alive(e,R), and the
assumption that the network guarantees eventual reliable
message delivery.

10. Each r ∈ alive(e,R) sends a Write2Reply message for op
to the coordinator.

PROOF: By 9, the assumption that r ∈ alive(e,R), and that
the message handler for a Write2 message contains no
blocking instructions or conditional branches on sending
a reply (Algorithm 2).

11. The coordinator delivers Write2Reply messages from a
quorum Q ∈Q.

PROOF: By 2, 3, 10, the assumption that the network guar-
antees eventual reliable message delivery, and the assump-
tion that the majority quorum system Qmaj is used.

12. Q.E.D.

PROOF: By 11 and the fact that the coordinator generates
a resp(op) after receiving a quorum of Write2Reply mes-
sages (Algorithm 1).

Note that Theorems B.2 and B.3 rely on our weak net-
work assumption that messages are eventually delivered and
do not require any stronger assumptions about the synchrony
of the system. Eventual message delivery only precludes in-
finitely long partitions in the network, which is unlikely to
occur in any practical system.
RMW Wait-Freedom. The FLP impossibility result im-
plies that no consensus protocol can provide both safety
and liveness in asynchronous systems where processes can
fail [24]. Because rmw can solve consensus [31], this also
implies that no rmw protocol can provide both.

The rest of this section shows that Gryff’s rmw protocol
provides wait-freedom if we relax the system model from
asynchrony to partial synchrony [21]. In the partial syn-
chrony model, there are two bounds ∆ and Φ such that af-
ter some unknown point in time during an execution of the
system, all messages are delivered within ∆ time of when
they are sent and all correct processes take at most Φ time
between the execution of instructions.

As in the proof of linearizability, we rely on the correct-
ness of EPaxos in the partial synchrony model [48].

Theorem B.4. EPaxos guarantees with high probability that
every proposed command will eventually be committed by
every r ∈ alive(e,R) as long as messages eventually reach
their destination before their recipient times out.

Lemma B.15. With high probability, every r ∈ alive(e,R)
executes every rmw that commits.
Proof. Let r be a correct replica, rmw be an operation in
rmws(h), and D be the transitive closure of the set of de-
pendencies for rmw determined by the commit protocol.
1. With high probability, every rmw′ ∈ D eventually com-

mits at r.

PROOF: By Theorem B.4.

2. With high probability, every rmw′ ∈ D is executed at r.
Proof by generalized induction on D.

2.1. Base case: rmw0 ∈D is the first rmw committed in e.

PROOF: By the assumption that r is correct, the assump-
tion of the base case 2.1, and that the EPaxos execution
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algorithm contains no blocking instructions for com-
mands with no dependencies.

2.2. ASSUME: For any rmw′′ ∈ D such that rmw′′ is be-
fore rmw′ in the EPaxos execution order,
rmw′′ is executed at r.

PROVE: rmw′ is executed at r

PROOF: By the assumption that r is correct, the induc-
tion hypothesis 2.2, and that the EPaxos execution al-
gorithm only blocks the execution of a command until
all of its dependencies have executed.

2.3. Q.E.D.

By 1, 2.1, and 2.2.

3. With high probability, after all rmw′ ∈ D have executed,
rmw will be executed.

3.1. CASE: rmw is in its own strongly connected compo-
nent in the dependency graph.

PROOF: By the execution order specified by the EPaxos
execution algorithm, which requires every dependency
of a command to be executed before the command is
executed.

3.2. CASE: rmw is in a cycle in the dependency graph.

PROOF: By the execution order specified by the EPaxos
execution algorithm, which requires that cycles be bro-
ken in order of seq, and the fact that rmw may be exe-
cuted before some of its dependencies within the same
cycle.

3.3. Q.E.D.

PROOF: By 3.1 and 3.2.

4. Q.E.D.

PROOF: By 2 and 3.

Theorem B.5. If there is a point in time after which the sys-
tem is synchronous with bounds ∆ and Φ, the system provides
rmw wait-freedom with high probability.

Proof. Let op be an operation in rmws(h).
1. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1
replicas can fail in any execution.

2. With high probability, every r ∈ alive(e,R) commits an
instance containing op.

PROOF: By the hypothesis that there is a finite time after
which all messages are delivered within ∆ time of when
they are sent and Theorem B.4.

3. With high probability, every r ∈ alive(e,R) executes op.

PROOF: By 2 and Lemma B.15.

4. With high probability, every r ∈ alive(e,R) sends an Exe-
cuted message for op to the coordinator.

By 3 and that there are no blocking instructions or con-
ditional branches on sending an Executed message in the
EXECUTE function.

5. With high probability, the coordinator delivers an Exe-
cuted message for op from a quorum Q ∈Q.

PROOF: By 1, 4, the assumption that the network guaran-
tees eventual reliable message delivery, and the assump-
tion that the majority quorum system Qmaj is used.

6. Q.E.D.

PROOF: By 5 and the fact that the coordinator generates a
resp(op) after receiving a quorum of Executed messages.

B.5 Read Proxy Correctness

Algorithm 7: The modified read coordinator protocol
and Read1 message handler for using the read proxy op-
timization.

1 procedure Coordinator::READ(v,cs) at p ∈ P
2 send Read1(v,cs) to all r ∈ R
3 wait to receive Read1Reply(vr,csr) from all

r ∈ Q ∈Q
4 for r ∈ Q do
5 APPLY(vr,csr)

6 csmax←maxr∈Q csr
7 v← vr : csr = csmax
8 if ∀r ∈ Q : csr = csmax then
9 return v

10 send Read2(v,csmax) to all r ∈ R
11 wait to receive Read2Reply from all r ∈ Q′ ∈Q
12 return v

13 when replica r ∈ R receives a message m from p ∈ P do
14 case m = Read1(v′,cs′) do
15 APPLY(v′,cs′)
16 send Read1Reply(v,cs) to p

The pseudocode for the read proxy optimization described
in Section 5 is in Algorithm 7. We briefly argue that the op-
timization does not change the correctness proofs.

The optimization changes the definition of the coordinator
of a read from the invoking process to the replica that no-
tifies the invoking process of the result of the read. Neither
the definition change nor the added logic for the optimiza-
tion affect the proof of linearizability because the value that
a read observes is still chosen to be the one associated with
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the maximum carstamp on a quorum. Reads can be executed
multiple times without affecting the state of the shared ob-
ject, so it is safe for a client to timeout after a finite time t
and forward its read to another replica if it suspects the ini-
tial coordinator failed.

The proof of wait-freedom for reads remains the same, but
needs a small clarification in the proof of Step 2. Since at
most f replicas can fail, a client will eventually forward its
read to a correct replica that will complete the read coordina-
tor protocol. This will happen after at most f · t time, which
is finite.

C Non-Linearizable AQS Execution
AQS [8] attempts to exploit the same observation that Gryff
does about the relationship between shared register and con-
sensus protocols to improve performance under the Byzan-
tine failure model. In Figure 15, we demonstrate an explicit
execution of AQS that exhibits non-linearizable behavior.

Here, process p1 first issues and completes w1 with ts =
(1,1) that is seen by all replicas (Figure 15.1). After this
write has completed, process p2 begins w2 and sees w1 with
ts = (1,1), so it chooses ts = (2,2) for w2 (Figure 15.2).
This write then pauses, and process p3 issues rmw3 to pri-
mary s4. The primary gathers state from all replicas and picks
base state = 〈w1, ts=(1,1)〉 (Figure 15.3). The primary then
generates an updated state vl based on w1 and sends PRE-
PREPARE messages to all replicas. These messages are ac-
cepted by all replicas because w1 is the most recent state
they have observed (Figure 15.4). All replicas then broad-
cast PREPARE messages to all other replicas, and the mes-
sages are received and accepted. All replicas then broadcast
COMMIT messages (Figure 15.5) and rmw3 pauses. Process
p2 now finishes w2 by sending out a second round of mes-
sages with ts = (2,2), and all replicas accept and apply this
write (Figure 15.6). Shortly after, replicas receive COMMIT
messages from all other replicas for rmw3, forming a commit
certificate. All replicas generate tsl = succ(ts = (1,1),s4) =
(2,4) and apply rmw3 (Figure 15.7). Process p4 now issues
a read ρ4, and the read completes in one round, returning
ts = (2,4) from rmw3 (Figure 15.8).

There is no legal total order for this execution because
rmw3 must follow w1 with no writes in between because
rmw3 picks base state = 〈w1, ts = (1,1)〉. Thus, rmw3 must
be ordered before w2. We also must have ρ4 ordered after
both rmw3 and w2 because it begins in real time after both
operations have finished. The read ρ4 sees rmw3, so rmw3
must be ordered after w2. Thus, there is no legal total order
of operations and linearizability is not satisfied.

p1 p2 p3 p4r1 r2 r3 r4*
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3 4 5
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Figure 15: Labeled numbers represent the following
events: 1. p1 issues and completes w1 with ts = (1,1).
2. p2 issues w2 and gets back ts = (1,1); the process
then picks ts = (2,2) for w2. 3. The primary s4 picks
base state = 〈w1, ts = (1,1)〉. 4. All replicas accept PRE-
PREPARE messages because w1 is the most recent state
observed. 5. All replicas broadcast COMMIT messages
to all other replicas. 6. All replicas apply w2 because
ts = (2,2)> ts = (1,1). 7. All replicas apply rmw3 because
ts = (2,4)> ts = (2,2). 8. p4 issues and completes ρ4 in 1
round, returning rmw3 with ts = (2,4).
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Abstract

Cable broadband networks are one of the few “last-mile”
broadband technologies widely available in the U.S. Unfortu-
nately, they have poor reliability after decades of deployment.
Cable industry proposed a framework called Proactive Net-
work Maintenance (PNM) to diagnose the cable networks.
However, there is little public knowledge or systematic study
on how to use these data to detect and localize cable network
problems. Existing tools in the public domain have prohibitive
high false-positive rates.

In this paper, we propose CableMon, the first public-
domain system that applies machine learning techniques to
PNM data to improve the reliability of cable broadband net-
works. CableMon uses statistical models to generate features
from time series data and uses customer trouble tickets as
hints to infer abnormal thresholds for these generated fea-
tures. We use eight-month of PNM data and customer trouble
tickets from an ISP to evaluate CableMon’s performance. Our
results show that 81.9% of the abnormal events detected by
CableMon overlap with at least one customer trouble ticket.
This ticket prediction accuracy is four times higher than that
of the existing public-domain tools used by ISPs. The tickets
predicted by CableMon constitute 23.0% of the total network-
related trouble tickets, suggesting that if an ISP deploys Cable-
Mon and proactively repairs the faults detected by CableMon,
it can preempt those customer calls. Our current results, while
still not mature, can already tangibly reduce an ISP’s opera-
tional expenses and improve customers’ quality of experience.
We expect future work can further improve these results.

1 Introduction

Broadband access networks play a crucial role in modern
life. They help narrow digital divide, enable e-commerce, and

∗ Jiyao Hu and Zhenyu Zhou, placed in alphabetic order, are the lead
student authors and contributed equally to this work.

provide opportunities for remote work, study, and entertain-
ment. In the US, cable networks are one of the few available
infrastructures that can provide broadband Internet access
to US homes. In many rural areas, they are often the only
broadband choice. According to a study in 2016 [6], cable
broadband is available to 93% of US homes, far more than
the two alternative choices: high bitrate digital subscriber line
(VDLS) (43%) and Fiber-to-the-Premises (FTTP) (29%).

However, cable networks are prone to reliability problems,
partly due to their Hybrid Fiber-Coaxial (HFC) architecture.
This architecture uses both optical fibers and coaxial cables
to deliver a mixed bundle of traffic, including video, voice,
and Internet data. Unlike fiber optics, coaxial cables are vul-
nerable to radio frequency (RF) interference. Many parts of
the cable networks are now decades old [1]. Aging can lead
to problems such as cable shielding erosion, loose connec-
tors, and broken amplifiers. All those problems can manifest
themselves as poor application-layer performance, e.g., slow
web responses or low-quality video streaming. Much mea-
surement study has shown that broadband networks have poor
reliability [3,12,17,22,23,28]. A recent one [3] shows that the
average availability of broadband Internet access is at most
two nines (99%), much less than the minimum FCC’s require-
ment (four nines 99.99%) for the public switched telephone
network (PSTN) [20]. Admittedly, if ISPs replace the last-
mile coaxial cables with fiber optics, many of these problems
may disappear. However, due to the prohibitive cost of FTTP,
cable broadband networks are likely to remain as one of the
few broadband choices in rural America for the next decade
or two. Therefore, it is critically important that the cable In-
ternet services remain robust during emergencies, especially
as more and more subscribers migrate their landline phones
to VoIP phones.

The cable industry has long recognized this problem and
developed a platform called Proactive Network Maintenance
(PNM) to improve the reliability of their networks [7]. PNM
enables a cable ISP to collect a set of performance metrics
from each customer’s cable modem. We refer to this set of
data as PNM data. One example of a PNM metric is a cable
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channel’s signal-to-noise ratio. PNM aims to enable an ISP to
proactively detect and fix network faults before they impact
services and customers.

Although PNM has been incorporated into DOCSIS since
2005 [7], how to use PNM data to improve network relia-
bility remains an open challenge. The best current practice
recommended by CableLabs1 [7] and the tools used by some
ISPs [22] use a set of manually configured thresholds to flag a
faulty network condition. The feedback from deploying ISPs
is that these thresholds are often too conservative, leading to
high false positives.

This work aims to improve the reliability of cable broad-
band networks. We speculate that the challenge of using PNM
data is due to the lack of expert knowledge or ground truth on
what PNM values warrant a proactive network repair. In an RF
system like a cable network, network conditions may degrade
gradually, making it challenging to define a static threshold
that separates what is faulty from what is not. We develop a
system called CableMon, which uses machine learning tech-
niques to infer network faults that demand immediate repair.
CableMon couples PNM data with customer trouble tickets
to identify the ranges of PNM values that are likely to lead to
a customer’s trouble call. Our hypothesis is that if a network
fault impacts an ISP’s customers, then some customer is likely
to call to report the problem. Therefore, we can use customer
trouble tickets as hints to learn what network conditions are
likely to lead to customer trouble calls. It is desirable for an
ISP to prioritize its effort to repair those problems, because
if they persist, they are likely to reduce customer satisfaction
and increase the cost for customer support.

A key technical challenge we face is that both customer
tickets data and PNM data contain much noise. Customer tick-
ets are not reliable indicators of network faults. A customer
may or may not call when there is an underlying network
problem, and vice versa. PNM data, by its nature, describe
cable channels’ conditions as well as environmental noises.
Therefore, if we use customer tickets to label PNM data as
normal or faulty, and apply an off-the-shelf machine learning
technique to detect network faults, we may not have good
detection results. In addition, manual labeling is not practical
in this context, because there lacks expert knowledge and the
dataset is too large.

In CableMon’s design, we use three techniques to address
the above challenges (§ 4). First, to reduce noise in customer
tickets, we filter customer tickets according to the ticket de-
scriptions and only choose the tickets that suggest network
problems as hints. Second, to reduce noise in PNM data, we
treat a modem’s PNM data as time series data and use its time
series features (e.g., expected moving average or variance) for
fault detection. Third, we develop a customized classification
method that is robust to both noise in tickets and noise in
PNM data.

1CableLabs is a research and development lab founded by American
Cable operators in 1988 and led the development of DOCSIS and PNM.

With the support of CableLabs, we have obtained eight
months of anonymized PNM data and the corresponding cus-
tomer trouble tickets from a mid-size U.S. ISP. We use five
months of data to train CableMon, and use the next three
months data following the training set as the test set to eval-
uate how well CableMon detects network faults. CableMon
takes the PNM data in our test set as input and detects when
a network fault occurs and when it ends. Due to the lack
of ground truth, we evaluate CableMon’s performance using
customer trouble tickets in the test set. When CableMon de-
tects a network anomaly, if a customer who experiences the
anomaly reports a ticket, we consider the detection a success.
We compare CableMon with a tool currently used by our
collaborating ISP, which we refer to as AnonISP, and with a
tool developed by Comcast [22]. Our results show that 81.9%
of the anomalies detected by CableMon lead to a customer
trouble ticket. In contrast, only 10.0% of the anomalies de-
tected by AnonISP’s tool lead to a trouble ticket; and 23.5%
of the anomalies detected by Comcast’s tool lead to a cus-
tomer ticket. In addition, CableMon predicts 23.0% of all
network-related tickets, while AnonISP’s tool predicts 25.3%
and Comcast’s tool predicts less than 3%. The trouble tickets
predicted by CableMon on average last 32.5 hours (or 53.3%)
longer than those predicted by other tools, suggesting that
those tickets are more likely to require repair efforts. The me-
dian time from the beginning of a fault detected by CableMon
to the reporting time of a ticket is 164.1 hours (or 29.3%)
shorter than that of a fault detected by other tools, suggesting
that the faults detected by CableMon require more immediate
repair.

To the best of our knowledge, this work is the first large-
scale public study that couples PNM data with customer trou-
ble tickets to improve the reliability of cable networks. Our
main contribution is CableMon, a system that detects network
faults more reliably than the existing public-domain work. It
serves as a starting point to unleash the full potential of PNM
data. We are working with an ISP and the CableLabs to de-
ploy CableMon in practice and we expect the feedback from
practice can further improve the performance of CableMon.
One general lesson we learn is that one can use customer
trouble tickets as hints to learn what values of network perfor-
mance metrics indicate customer-impacting problems, despite
the presence of noise in both the ticket data and the network
performance data. We believe this lesson is applicable to
proactive network maintenance in other types of networks,
including cellular networks, WIFI access networks, and data-
center networks.

2 Background and Datasets

In this section, we briefly introduce the cable Internet archi-
tecture and describe the datasets we use in this work.
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Figure 1: An overview of the Hybrid Fiber Coaxial (HFC) ar-
chitecture.

2.1 Cable Network Architecture

Figure 1 shows a high-level overview of a cable broadband
network. A cable broadband network is an access network. It
provides the “last-mile” Internet connectivity to end users. A
customer connects to the cable network via a cable modem
residing in her home. The cable access network terminates at
a device called a Cable Modem Termination System (CMTS),
which is a router with one port connecting to the Internet and
many other ports connecting to customers’ cable modems.

At the IP level, there is only one hop between a customer’s
cable modem/home router and the CMTS. Underlying this
single IP hop, there is a complicated link-level structure that
consists of different types of physical links and devices. The
“last-mile” links that connect to the customer premises are
often made of copper coaxial cables. These cables terminate
at a device called a fiber node (FN). A fiber node connects
to the CMTS via optical fibers. It converts the incoming opti-
cally modulated signals into electrical signals and sends the
signals towards the customers’ homes, and vice versa. Due
to signal attenuation, cable networks deploy radio frequency
(RF) amplifiers between a fiber node and a residential home.
Along the way to a customer’s home, new branches may split
from the main cable by the line splitters. All these devices
could introduce signal distortion and noise.

Historically, cable TV networks divide radio frequency into
multiple channels, each of 6MHz width. Cable broadband
networks use a subset of these channels as data carriers. A
cable ISP typically uses three or four of these channels at the
lower end of the spectrum to carry data from a user’s cable
modem to CMTS. We refer to this direction as the upstream
direction. An ISP may use sixteen or more of the channels at
the higher end of the spectrum to carry data from a CMTS
to a modem. We refer to this direction as the downstream
direction.

2.2 Datasets

We have obtained two types of anonymized modem-level data
from a U.S. cable ISP for this study. They include (1) PNM
data and (2) customer trouble ticket data. We have a total of
eight months of data dating from 01/06/2019 to 08/31/2019.

Next, we describe each dataset in turn. 2

PNM data: The PNM data we obtained were collected by
a common standard built into DOCSIS. A CMTS can query
a DOCSIS-compliant cable modem (CM) to obtain certain
performance data. DOCSIS standardizes how a CM or CMTS
stores these performance data in a local Management Infor-
mation Base (MIB) [7]. A remote process can use the Simple
Network Management Protocol (SNMP) to query the MIBs
of each CM or a CMTS to obtain performance data [36].

Currently, we only have PNM data from the upstream chan-
nels. DOCSIS 3.0 gives a cable operator the ability to collect
the full spectrum view of a cable modem’s RF channels. It is
our future work to investigate whether this type of data may
further improve our detection accuracy.

A record in the PNM data we obtain has the following
fields:
• Timestamp: The time when a PNM query is sent.
• Anonymized MAC: The hashed MAC address of the

queried CM.
• Anonymized Account Number: The hashed user account

number. This field is used to link a customer ticket with
the corresponding PNM data from the customer’s CM.
• Channel Frequency: This field identifies which upstream

channel this record is about.
• SNR: The upstream signal-to-noise ratio of this channel.
• Tx Power: A CM’s signal transmission power.
• Rx Power: The received signal power at the CMTS.
• Unerrored: The number of unerrored codewords re-

ceived at the CMTS.
• Corrected: The number of errored but corrected code-

words received at the CMTS.
• Uncorrectable: The number of errored but uncorrected

codewords.
• T3 Timeouts: The number of DOCSIS T3 timeouts [5]

the CM has experienced since its last reboot. A DOCSIS
T3 timeout occurs when there is an error in a CM’s
ranging process, which we will soon explain.
• T4 Timeouts: The number of DOCSIS T4 timeouts [5]

the CM has experienced since its last reboot. Similarly,
a T4 timeout occurs when there is a ranging error.
• Pre-Equalization Coefficients: The set of parameters a

CM uses to compute how to compensate for channel
distortions during a ranging process.

A CM uses a process called ranging to compute a set of
parameters called pre-equalization coefficients for mitigating
channel distortions. When RF signals travel along a coaxial
cable, they may be distorted as different frequencies attenuate
at different speeds and noise may be added to the channel. To
mitigate the channel distortions, a CM adds correction signals
to the data signals it transmits. Ideally, the correction signals
will cancel out the distortions when the signals arrive at the
CMTS. A CM and a CMTS exchange messages periodically

2We note that we have discussed this work with our institute’s IRB. And
they consider it does not involve human subjects.
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to compute the correction signals. This process is called rang-
ing. And the set of parameters used to compute the correction
signals are called pre-equalization coefficients.

The PNM data we obtain are collected every four hours
from several of an ISP’s regional markets. There are around
60K unique account numbers in our datasets.
Customer Ticket Data: We have also obtained the records
of customer trouble tickets from the same ISP. The relevant
fields in each record include the hashed customer’s account
number, the ticket creation time, the ticket close time (if it
was closed), a brief description of the actions taken to resolve
the ticket, and a possible diagnosis.

3 Overview

In this section, we motivate the design of CableMon by de-
scribing the limitations of existing work. We then describe
the design rationale of CableMon, its design goals, and the
design challenges we face.

3.1 Limitations of Existing Work
The existing PNM work in the public domain [7, 17, 22] use
a set of PNM metrics and manually-set thresholds to detect
network faults. If the value of a metric is below or above
a threshold, it indicates a fault. This approach has several
limitations. First, it is challenging to set the right thresholds.
If the thresholds were set too conservatively, they might flag
too many faults for an ISP to fix. In contrast, if they were
set too aggressively, an ISP might miss the opportunities for
proactive maintenance. There lacks a systematic study on how
to set the threshold values to achieve the best tradeoff. Second,
the existing work mostly uses the instantaneous values of
PNM data for fault detection. However, due to the inherent
noise in PNM data, using the instantaneous values may lead
to instability in detection results. In addition, it may fail to
detect faults that can only be captured by abnormalities in a
PNM metric’s statistical values, e.g., variations.

For ease of explanation, we use one threshold value recom-
mended in the CableLabs’ PNM best practice document [7]
to illustrate the limitations. CableLabs’ recommendation uses
a variable called Main Tap Ratio (MTR) computed from a
modem’s pre-equalization coefficients. It specifies that when
the MTR value of a modem is below a threshold (<18dB),
there is a fault in the network that needs immediate repair.

We sample the MTR values in one of the ISP’s markets.
There are more than 60K modems in this market. We choose
five random days’ records during an eight-month period in
2019 and measure the MTR values of all modems during the
sampled days. Table 1 shows the percentage of modems that
have a channel whose MTR value is below the recommended
threshold. If an ISP used the recommended MTR threshold,
at any sampled day, there would be more than 24% of cable
modems that require immediate repair. We also measure the

MTR values among all PNM records during this eight-month
period. In more than 26% of the records, a modem’s MTR
value is below 18dB.

3.2 Design Goals
CableMon aims to enable an ISP to detect network prob-
lems that demand immediate repair. Specifically, it aims to
accurately detect the set of network conditions that adversely
impact customer experience. We refer to these network condi-
tions as network anomalies or faults in this work. Its design
goals include the following:

• High ticket prediction accuracy, and moderate ticket cov-
erage. Ideally, we would like to use precision (the set of
true positives detected over all detected positives) and
recall (the set of true positives detected over all true pos-
itives) to measure the performance of CableMon. How-
ever, because we do not know ground truth, we instead
use customer tickets as indications of true positives. We
define ticket prediction accuracy as the ratio between
the number of anomalies detected by CableMon that
lead to one or more customer tickets and the number
of total anomalies CableMon detects. Similarly, we de-
fine ticket coverage as the ratio between the number
of tickets CableMon predicts and the total number of
network-related customer tickets. It is desirable that Ca-
bleMon has high ticket prediction accuracy because an
ISP is often limited by the number of technicians it has
to repair network faults, avoiding false alarms is practi-
cally more important than repairing all faults proactively.
What we learned from AnonISP is that even a 10% reduc-
tion in customer calls can reduce their operational costs
significantly. Therefore, as a starting point, we aim for
a high ticket prediction accuracy and a moderate ticket
coverage.

• No manual labeling. One approach to detect network
anomalies is to train a supervised learning classifier on
labeled data. The labels tell what PNM metrics indicate
network anomalies and what do not. However, we do
not have such labeled data. And due to lack of ground
truth and the large size of the data, manual labeling is
also practically challenging. Therefore, we aim to design
CableMon without requiring manual labeling.

• No extensive parameter tuning. We aim to release Cable-
Mon as an off-the-shelf-tool at cable ISPs. Therefore, we
require that CableMon’s fault detection methods work
effectively without much parameter tuning on the ISP
side.

• Efficient. We require that CableMon can detect whether
there is a network fault or not in real time. This is be-
cause an ISP can deploy CableMon as a diagnosis tool in
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03/13/2019 04/09/19 06/25/19 07/15/19 08/15/19 Eight-month

MTR < 18dB 24.95 % 25.45 % 27.16 % 27.07 % 27.38 % 26.15 %

Table 1: The percentage of cable modems that need to be repaired if an ISP were to follow one of the CableLabs’ recommendations.
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Figure 2: This figure shows how the customer ticketing rate
varies with the values of SNR. Ticketing rate tends to increase
when SNR values are low.

addition to using it for proactive network management.
When an ISP receives a customer trouble call, it is often
challenging to diagnose what has caused the customer’s
problem. An ISP can use CableMon to help diagnose
whether the problem is caused by a network fault.

3.3 Design Rationale
To meet CableMon’s design goals, we use customer trouble
tickets as hints to train a customized classifier to detect net-
work faults. We hypothesize that the occurrences of customer
trouble tickets should correlate with those of network faults.
When a customer-impacting fault occurs, some customers are
likely to call the ISP to fix it. Each call creates a trouble ticket.
If the values of PNM data can indicate network faults, then
the values of PNM data should correlate with how frequently
customer trouble tickets are created. In this paper, we define
the average number of customer tickets created in a unit time
as the ticketing rate.

To validate this hypothesis, we measure how ticketing rate
changes with different values of a PNM metric. For a PNM
metric m (e.g., SNR), we sort the values of m in an ascending
order. Each pair of adjacent values define a bin b. For each
bin b, we measure the number of tickets Nb that occur in the
time periods where the value of m falls within the bin, and the
total length of those time periods Tb. We then divide Nb by
Tb to obtain the ticketing rate for bin b. We note that a PNM
record is collected at discrete time points (roughly four hours
apart in our datasets). We assume that a PNM value remains

unchanged between its collection points.
As an example, we show how the ticketing rate varies with

the values of SNR in Figure 2. We normalize this value by
the baseline ticketing rate, which we obtain by dividing the
total number of customer tickets in our dataset by the total
collection period. The line marked by the legend “All Tickets”
shows how the ticketing rate varies with the values of SNR
if we consider all tickets; and the line marked by “Network-
related Tickets” shows how the ticketing rate of network-
related tickets varies with SNR. As can be seen, when the
values of SNR are low, both the network-related ticketing rate
and the all-ticket ticketing rate tend to increase, suggesting
that low SNR values signal network faults.

In practice, customer tickets do not always indicate network
faults. On the one hand, many customers may call an ISP for
non-network related problems. The customer ticket data we
obtain includes a ticket action field and a ticket description
field, which provide the information on how an ISP deals
with a ticket. We observe that nearly 25% of tickets are re-
solved via“Customer Education” or “Cancelled”, suggesting
that they are not caused by networking problems. On the other
hand, customers may not report tickets when network outages
indeed take place. In our ticket dataset, when an outage affects
an entire region, all tickets caused by that outage are labeled
as “part of primary,” grouped and pointed to a primary ticket,
which is a representative ticket of the outage. We manually
checked an outage that affected more than 200 customers’
PNM data and observed that only ≈ 6.1% of the customers
have a “part of primary” tickets and the rest ≈ 93.9% of the
customers did not report anything.

To reduce noise in tickets, we select a subset of customer
tickets that are likely to be caused by network problems. We
select the tickets based on both a ticket’s action field and
the ticket’s description field. From the action field, we select
tickets that lead to a “Dispatch” action. We assume that the
tickets that caused an ISP to dispatch a technician are likely to
be triggered by network-related problems. From the descrip-
tion field, we select tickets whose ticket description keywords
suggest networking problems. Examples of such keywords
include “Data Down”, “Noisy Line” and “Slow Speed”. In
the rest of this paper, we refer to those selected tickets as
“network-related tickets.”

Figure 2 compares how the ticketing rate of network-related
tickets and all tickets vary with SNR values. As can be seen,
network-related tickets have higher ticketing rates when SNR
is low, suggesting that the occurrences of those tickets are
better indicators of network faults.

We note that according to the ISP who provided us
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the datasets, network-related tickets may also contain non-
networking tickets due to human errors. A human operator
who fills a ticket action or description field may make a mis-
take. And a technician may be dispatched when there is no
network fault due to an erroneous diagnosis.
Challenges: A key question we need to answer is how to use
customer tickets as hints for detecting network faults. Ideally,
if a customer calls only when a network fault occurs, we could
label the PNM records collected around the ticket creation
time as abnormal, and apply supervised learning to learn the
PNM thresholds that suggest a network fault. We have tried
several such machine learning algorithms when we started
this project, but found that that this approach did not work
well with our datasets. First, customer calls are unreliable fault
indicators. A customer may or may not call when there is a
fault and vice versa. Second, PNM data contain noise. During
a faulty period, some PNM metrics may occasionally show
normal values due to the added noise. Similarly, even when
there is no fault, some PNM metrics may show instantaneous
abnormal values. Thus, if we use the tickets to label PNM
data, it may introduce many false positives as well as many
false negatives. We found it challenging to tune a machine
learning algorithm with this labeling method. It is even harder
to explain the results when we change a parameter. Next,
we describe how we design CableMon to use a simple and
customized classifier to address these challenges.

4 Design

In this section, we describe the design of CableMon. We first
describe how we reduce the noise in customer tickets and the
noise in PNM data. We then describe a customized classifier
that aims to robustly classify PNM values as normal and
abnormal despite the presence of noise. Finally, we describe
how an ISP can use the classification results to detect network
faults and to help diagnose a customer’s trouble call.

4.1 Reducing Noise in PNM data
PNM data measure the instantaneous state of cable’s RF chan-
nels and contain noise. An added noise may make a PNM
metric take an abnormally low or high instantaneous value. To
address this problem, we treat PNM data as time-series data
and apply statistical models to smooth the noise and generate
additional features for fault detection.

Table 2 summarizes all the statistical models we use to pro-
cess PNM data. For each PNM metric collected at timestamp
i with value Vi, we calculate its average, its weighted mov-
ing average (WMA), exponentially weighted moving average
(EWMA), the difference between the current value and its
WMA (WMA Diff), and its variance. We note that the average,
WMA, WMA Diff, and variance values all require a window
size as a hyper-parameter. Because we do not have any prior
knowledge on how to set this parameter, we try a series of

Model Equation

Average AV Gi =
Vi+Vi−1+···+Vi−win+1

win

WMA WMAi =
win·Vi+(win−1)·Vi−1+···+1·Vi−win+1

win·(win−1)/2

EWMA
EWMA1 =V1

EWMAi = λ ·Vi +(1−λ)EWMAi−1
WMA Diff Vi−WMAi

Variance VARi =
1

win ∑
i
k=i−win+1(Vk−AV Gi)

2

Table 2: This table summarizes the statistical models we use
to generate the time-series features. (WMA: Weighted Moving
Average, EWMA: Exponentially Weighted Moving Average.)

window sizes, ranging from 1 day to 7 days, incrementing by
1 day at each step. For the λ parameter required by EWMA,
we vary the value of λ from 0.1 to 0.9, incrementing by 0.1 at
each step. For each PNM metric, we generate 37 time-series
features. We apply this approach to all nine PNM metrics and
totally generate 333 time-series features. We refer to them as
time-series features.

4.2 Determining A Fault Detection Threshold

After we reduce noise in both the customer tickets and the
PNM data, we aim to determine a threshold for each PNM
metric that indicates network faults. We note that there is
no explicit definition of what a network fault is. Instead, we
choose to use the network conditions that are likely to cause a
trouble call to approximate a network fault. With this approx-
imation, we may not detect minor issues that do not warrant
a trouble call. We argue that this design is advantageous, be-
cause it allows an ISP to prioritize its resources to fix the
customer-impacting problems.

In the case of SNR, if we choose too high a value as a fault
detection threshold, an ISP may become too proactive, fixing
minor problems that many customers may not care, which we
refer to as false positives. If we choose too low a value, an
ISP may miss opportunities to proactively repair a problem
before a customer calls, which we refer to as false negatives.

We aim to design an algorithm that minimizes both false
positives and false negatives. From our investigation in § 3.3,
we see that different values of a PNM metric have different
likelihood to concur with a trouble ticket. Inspired by this
observation, we use the ticketing rate as a metric to help
choose a fault detection threshold. Our intuition is that the
customer ticketing rate during a faulty period should be higher
than a normal period when there is no fault. Therefore, for
each feature f generated from a PNM metric, we determine
a threshold value thr f such that thr f maximizes the ratio
between the ticketing rate in the time periods when a network
fault exists and the time periods when there is no fault. We
refer to this ratio as the ticketing rate ratio.

Specifically, we search through the range of values of a fea-
ture f in small steps. At each step s, we consider the value of
the feature fs ∈ [ fmin, fmax], as a candidate for the threshold.
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Figure 3: Analysis of ticketing rate ratio.

We then compare the value of f at a PNM data collection
point with fs, and label the collection time period as abnormal
or normal, based on whether the value of f is below or above
the candidate threshold value fs. For some features such as
the average SNR, below the threshold is abnormal. For other
features, the opposite is true. After determining each collec-
tion period as normal or abnormal, we count the number of
network-related tickets occurred in the normal and abnormal
periods respectively and divide them by the normal and ab-
normal time periods determined by fs. We then compute the
ticketing rate ratio: T RR( fs). The threshold value thr f is cho-
sen as the value of fs that maximizes the ticketing rate ratio
T RR( fs).

We also note that for features following a normal distri-
bution such as Rx Power, we choose to use two threshold
values to determine whether a collection period is normal or
abnormal. The pseudo code can be found at §A.

We now explain why choosing a threshold that maximizes
the ticketing rate ratio may help minimize the false positives
and false negatives. The entire time line can be divided into
two subspaces: the normal (no fault) and the abnormal (with
fault) periods. Ideally, the normal sub-space should not re-
ceive any trouble ticket. In practice, there is always a ticketing
noise. We assume a uniformly distributed ticketing noise with
the rate λn spreads the whole space. Similarly, we assume
an additional uniformly distributed ticketing rate that occurs
only in the abnormal sub-space and denote it as λa.

A threshold value thr f of a feature also divides the time
line into two subspaces: normal and abnormal. The first sub-
space includes a true negative part Tn and a false negative part
TFN , where an abnormal period is erroneously considered as
normal. The second subspace includes a true positive part
Ta and a false positive part TFP, where a normal period is
considered abnormal. The ticketing rate ratio determined by
the threshold thr f can be computed as follows:

D(Tn,TFP,TFN ,Ta) =

λnTFP+(λa+λn)Ta
Ta+TFP

λnTn+(λa+λn)TFN
Tn+TFN

Both the numerator and denominator can be regarded as
a weighted average of λn and λa +λn, with the time period

Features Ticketing Rate Ratio
snr-var-2 14.49

uncorrected-var-1 7.66
rxpower-wma-diff-4 5.31

t3timeouts-wma-diff-1 4.93
t4timeouts-var-1 4.18

Table 3: Top 5 features and their ticketing rate ratio.

lengths as the weights. Because λa +λn > λn always holds,
we can show that the derivatives of D over the false positives
TFP and the false negatives TFN are non-increasing:

∂D
∂TFP

< 0 and
∂D

∂TFN
< 0

Therefore, because TFP and TFN are non-negative, the ticket
rate ratio is maximized when both false positives and false
negatives are zero:

Dmax = lim
TFP→0
TFN→0

D =
λa

λn
+1

4.3 Feature Selection
We have a total of more than three hundred time-series fea-
tures and it is unlikely they are all useful indicators of network
faults. To find the relevant features, we only select the fea-
tures with high ticketing rate ratios from each PNM metric.
Specifically, among the same type of features derived from a
PNM metric with different hyperparameters, we choose the
one with the highest ticketing rate ratio as the representative
feature. For each representative feature derived from the same
PNM value, we choose the top two with the highest ticket-
ing rate ratios. Finally, among the remaining candidates, we
choose the top N features that have the highest ticketing rate
ratios. We determine the number of features N based on the
desired ticketing rate ratios, ticket prediction accuracy, and
ticket coverage as we soon describe in § 5.1.

Table 3 shows the top five features we used and their ticket-
ing rate ratios calculated from our training sets (Section 5.2).
The name of each feature consists of the raw PNM metric, the
statistical model we apply to the metric, and the parameter.
For example, the snr-var-2 means the variance of SNR with
a 2-days window size. We note that all features have a high
ticketing rate ratio and we expect them to effectively detect
network faults.

4.4 Combining Different Features
Different PNM features may detect different types of network
faults. Therefore, we build the final classifier by combining
the detection results of all selected features. As long as one
selected feature considers a PNM collection period abnor-
mal, we classify the collection period as abnormal. For each
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Figure 4: This figure explains the sliding window algorithm.
When the number of abnormal points within a sliding window
exceeds a threshold, the window is considered to be abnormal.
An abnormal event is given by merging the abnormal windows.

selected feature, we have already chosen a threshold that
maximizes the ticketing rate ratio. Therefore, we expect that
combining the results of all selected features will also pro-
vide a high ticketing rate ratio. We evaluate the results of our
classifier in § 5.1.

4.5 ISP Deployment

An ISP can use CableMon in two ways: proactive network
maintenance for predicted trouble tickets and diagnosing the
root cause of a trouble ticket when receiving a call. In this
section, we describe the algorithms for an ISP to decide when
to send out a repair technician proactively and how to diagnose
the root cause.

CableMon’s classifier can monitor an ISP’s network contin-
uously. It can output a normal and abnormal decision when a
PNM record is collected from a customer’s modem. However,
due to the existence of noise and the intermittent nature of
some faults, if an ISP makes a dispatch decision whenever it
observes an abnormal PNM data point, it may lead to many
false positives. To address this problem, we design a sliding
window algorithm for an ISP to make a dispatch decision.
The high-level idea of this algorithm is that an ISP should
only dispatch a technician after a fault persists.

Figure 4 explains this algorithm. The algorithm takes two
parameters: y and x, where y is the size of the window, and x
is the number of abnormal data points detected in the window.
When an ISP collects a new PNM record, it looks back to a
window size y of collection points. If x out of y data points
are considered as abnormal, then the ISP should dispatch a
technician to examine and repair the network.

An ISP can determine the parameters x and y based on
the false positives and false negatives it is willing to tolerate.
The ISP can estimate the values of false positives and false
negatives from its historic PNM data and ticket data. There-
fore, choosing those parameters only requires an ISP to train
CableMon using its own PNM and ticket data and does not
require tuning. In § 5.1, we use our datasets to show how an
ISP can effectively choose the parameters x and y.

Similarly, an ISP can use CableMon to help diagnose the
root cause of a call. When it receives a trouble call, if the
customer complains about a performance problem, and the
ISP sees that in the past collection window of size y, there

exists x abnormal collection points, the ISP can conclude that
the trouble is likely to be caused by a network problem.

5 Evaluation

In this section, we describe how we evaluate CableMon’s
performance.

5.1 Establishing Evaluation Metrics
Ideally, we would like to deploy CableMon on a real cable
ISP and measure how it reduces the number of trouble tickets
over a long term. It is our future work to conduct such a real-
world experiment. In this work, we aim to estimate how many
trouble tickets CableMon would reduce were it deployed on
our collaborating ISP.

To do so, we emulate the sliding window algorithm de-
scribed in § 4.5 using our test dataset. We start from the
beginning of the test dataset. If there are x abnormal points
detected in a window size of y, we mark it as the beginning
of a fault. We then move the window to the next data point.
When the number of abnormal points falls below x, we mark
it as the end of a fault. If there is a trouble ticket occurred
during a fault, we consider this fault detection as a true fault.
We note that if we detect a fault simultaneously within mul-
tiple customers, as long as one customer reports a ticket, we
consider it a true fault. We assume that if an ISP dispatched
a repair technician when it detected the onset of the fault, it
could have avoided the trouble ticket. We define ticket pre-
diction accuracy as the number of true faults divided by the
total number of detected faults. We define ticket coverage as
the number of trouble tickets occurred during a detected fault
divided by the total number of network-related trouble tickets.

It is not sufficient to use only ticket prediction accuracy and
ticket coverage to gauge CableMon’s performance. This is
because if CableMon detects the entire time period that spans
the test dataset as a faulty period, it will achieve 100% ticket
coverage and ticket prediction accuracy. To avoid this pitfall,
we also use the normalized ticketing rate, which is defined
as the ticketing rate in all faculty periods normalized by the
ticketing rate of the time period that spans the test dataset.
If CableMon erroneously detects the entire time period as
abnormal, it will achieve a low normalized ticketing rate close
to 1.
How an ISP chooses the sliding window parameters: In
practice, an ISP can use a training set to determine the thresh-
old values of CableMon’s classifier. It can use the ticket pre-
diction accuracy, ticket coverage, and the normalized ticketing
rate obtained from a validation set to choose the combination
of the sliding window parameters.

We show an example in Figure 5. In this example, we
choose a window size of 12 data points (y = 12), which is
roughly two days long. We then measure the ticket prediction
accuracy, ticket coverage, and the normalized ticketing rate
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Figure 5: This figure shows the ticket detection accuracy, the
ticket coverage, and the normalized ticketing rate of the sliding
window algorithm with different parameters.

when the number of abnormal points x varies from 0 to 12. As
can be seen, when x is around 8, the sliding window algorithm
achieves a high normalized ticketing rate, a relatively high
ticket prediction accuracy 80%, and a ticket coverage around
20%. Since avoiding false dispatches is more important than
predicting all trouble tickets, an ISP can choose (8, 12) as its
sliding window parameters for fault detection.

We have tried different sizes of the sliding window, ranging
from one to 60 data points. For each window size, we use
the above method to choose the parameter x such that both
the ticket prediction accuracy and the normalized ticketing
rate are high, and the ticket coverage is above a minimum
threshold 15%. We compare the tickets and the faulty periods
detected by different window parameters. We use the Jaccard
similarity metric [25] to measure the overlaps of faulty periods
detected by different window parameters. As can be seen in
Figure 6, 90% of the tickets detected by windows larger than
12 overlap; and the faulty periods detected by them have a
Jaccard similarity larger than 60%. This result suggests that
different window parameters are likely to detect the same sets
of faults, and the performance of CableMon is not sensitive
to the window parameters.

5.2 Experiment Setup
After we establish the evaluation metric, we train and evaluate
CableMon on a 50-machine Linux cluster with 40 ∼ 512
GB RAM and 8 ∼ 48 core running Ubuntu 18.04. Ca-
bleMon is trained on five-month data from 01/06/2019 to
05/30/2019 and tested with three-month data from 06/01/2019
to 08/31/2019.

Comparing with the existing work: We compare Cable-
Mon’s performance with two existing methods. One is from
our collaborating ISP, AnonISP, which uses a visualization
tool that colors different ranges of PNM values for an operator
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Figure 6: This figure shows what percentage of tickets detected
by different window sizes overlap with those detected by a win-
dow size of 12 and the Jaccard similarity between the faulty
periods detected by different window sizes and those detected
by a window size of 12.

to manually monitor its networks’ conditions. AnonISP’s tool
has two manually configured thresholds for several raw PNM
values and therefore has three fault indication levels: normal
(green), marginal (yellow), and abnormal (red). We compare
AnonISP’s tool against CableMon with these thresholds and
regard both yellow and red levels as network fault, as the ISP’s
experts usually do.

Another tool from industry uses Comcast’s scoreboard
method [22]. Comcast is considered as the leading company
in the area of PNM research. They developed a method that
compares a PNM metric to a threshold and assigns a score to
each comparison result. If the sum of the comparison scores
exceeds a threshold value, then the method considers there is
a fault in the network.

Since both AnonISP and Comcast’s tool detects a fault
using a single PNM data record, we apply the sliding window
algorithm to both tools for a fair comparison.

Comparing with Machine Learning Techniques: We
also compare the performance of CableMon with three clas-
sical machine learning algorithms: Decision Tree (DT) [34],
Random Forest (RF) [4] and Support Vector Machine
(SVM) [14]. Since these algorithms require labeled data, we
label the PNM data with tickets. Each ticket has a creation
time and a closed time. We label the PNM data collected
between this time interval as positive samples and other data
as negative samples. We generate 47,518 positive samples
and the same number of abnormal samples as our training set
to train the machine learning models and evaluate them with
the same evaluation metrics.

Table 4 shows the ticket prediction accuracy, the ticket cov-
erage, and the normalized ticketing rate of different methods.
As can be seen, CableMon achieves the highest ticket pre-
diction accuracy and the highest normalized ticketing rate
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Figure 7: This figure shows the number of different types of
tickets detected by different methods.

among all methods. Its ticket coverage is lower than that of
AnonISP. However, this is because AnonISP detects too many
false faults, as shown by its low ticket prediction accuracy. We
note that all three machine learning algorithms require a long
training time, as each has multiple parameters to tune. The
results we present here are the best ones after many rounds of
tuning. When we started this project, we started with those
algorithms, but abandoned them due to the challenges to tune
them and to explain the results when certain parameters are
changed.

Methods
Ticket Ticket Normalized

Prediction Coverage Ticketing Rate
Accuracy

CableMon 81.92% 22.99% 3.55
Decision Tree 68.93% 15.53% 2.52

SVM 75.64% 12.54% 2.02
Random Forest 73.14% 14.21% 2.24

Comcast 23.48% 2.21% 1.18
AnonISP’s tool 10.04% 25.13% 0.98

Table 4: Performance of different methods

5.3 Detected Tickets Statistics
To further analyze the detected tickets, we examine the tickets
detected by CableMon and existing ISP tools according to the
ticket action and description fields. We omit the results of the
machine learning algorithms for clarity. The characteristics of
the tickets detected by those algorithms are similar to those
of CableMon, but they have lower ticket detection accuracy
and coverage. Figure 7 shows the number of different types
of tickets detected by different methods. As can be seen, Ca-
bleMon can detect a significantly more number of dispatched
and high severity tickets than the two existing ISP tools.

Figure 8(a) shows the distribution of a detected ticket’s life
time, and figure 8(b) shows the average and median life time
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Figure 8: The figures show the CDF, mean, and median of the
life time of tickets predicted by different methods. A longer
ticket life time indicates that the problem that triggered the
ticket takes a longer time to fix.

of a detected ticket. A ticket’s life time is defined as the time
between a ticket is created to the time a ticket is closed. As
can be seen, the tickets detected by CableMon have longer
life times, suggesting that CableMon detects the problems
that take longer to resolve.

We also measure the time elapsed from when a fault is
detected to when a ticket is created. We refer to this time
as “Report Waiting Time.” Figure 9(a) shows the cumulative
distribution of the report waiting time of different methods,
and figure 9(b) shows the average and median report waiting
time of different methods. As can be seen, CableMon’s report
waiting time is also significantly shorter that that of other
methods, indicating that its detected faults lead to customer
trouble tickets faster than those detected by other methods.

Finally, we measure the distribution of a fault detected by
different methods. Figure 10 shows the PDF of the length
of a fault detected by different methods. As can be seen,

628    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100  200  300  400  500  600  700

C
D

F

Report Waiting Time / h

CableMon AnonISP Comcast

(a) CDF

 0

 100

 200

 300

 400

 500

 600

CableMonAnonISP Comcast

R
e
p
o
rt

 W
a
it
in

g
 T

im
e
 /
 h

Mean Median

(b) Mean and Median

Figure 9: The figures show the CDF, mean, and median of the
report waiting time of tickets predicted by different methods. A
shorter report waiting time indicates that the problem triggered
by the ticket is more urgent.
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Figure 10: This figure shows the PDF of the length of a detected
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CableMon detected faults tend to last a moderate period of
time. The highest probability density is slightly less than
100 hours (roughly four days). Comcast’s tool detects many
faults that last less than one day, shorter than what a typical
network repair action takes. This result suggests that many of
the detected faults could be false positives. The faults detected
by AnonISP’s tool have a wide range of life span, from very
short faults to very long faults (>500 hours), which are outside
the normal range of repair actions. Again, this result suggests
that many of the detected faults could be false positives.

6 Related Works

Previous work measured the reliability of broadband networks.
The Federal Communications Commission launched the Mea-
suring Broadband America (MBA) project [10] since 2010.
Bischof et al. [3] showed that poor reliability will heavily
affect user traffic demand. Padmanabhan et al. [28] demon-
strated that the outages of broadband networks tend to happen
under bad weather conditions. Baltrunas et al. [2] also mea-
sured the reliability of mobile broadband networks.

Network fault diagnosis has attracted much attention from
the community for a long time. Many approaches from in-
dustry, especially the cable industry, set manual thresholds
for certain measured metrics to detect network outages. Ama-
zon [11] used a fixed threshold to monitor the condition for its
cloud services. Zhuo et al. [41] treated packet loss as a fault
indicator and showed the correlation between Tx/Rx Power
and packet loss rate. They again use manually set thresholds
to detect network faults. Lakhina et al. [21] proposed the first
framework that applied Principal Component Analysis (PCA)
to reduce the dimension of network traffic metrics. Huang et
al. [16] showed that Lakhina’s framework works well with a
limited number of network devices, but has performance is-
sues on larger datasets. Moreover, Ringberg et al. [35] pointed
out that using PCA for traffic anomaly detection is much
more tricky than it appears. Besides PCA, many other statis-
tical models are applied to network anomaly detection. Gu
et al. [13] measured the relative entropy of the metrics and
compared them to the baseline. Subspace [26] is introduced
to deal with high-dimensional and noisy network monitoring
data. Kai et al. [19] used Expectation–Maximization (EM)
algorithm to estimate the parameters of their model and ob-
tain the upper or lower bound of the common metric values.
Independent Component Analysis [30], Markov Modulated
Process [32], and Recurrence Quantification Analysis [29] are
also introduced to find the anomaly points in time series data.
These methods aim to detect sudden changes in data. Dif-
ferently, CableMon uses customer ticket as hints to label the
input data and uses the ticketing rate ratio to select relevant
features.

Recently, machine learning has been used for network
anomaly detection. Leung et al. [24] designed a networking
anomaly detection system using a density-based clustering
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algorithm, which obtained the accuracy as 97.3%. Dean et
al. [9] presented an Unsupervised Behavior Learning frame-
work based on the clustering algorithm. However, cluster-
based approaches do not work well with sparse data, which
is the case of our PNM data where abnormal events are rare.
Sung et al. [37] deployed Support Vector Machines (SVMs)
to estimate the actual crucial features. According to our eval-
uation, SVMs do not perform as well as CableMon. Liu et
al. [27] adopted more than twenty statistics models to obtain
more features from the original data. They used all generated
features in Random Forest and achieved high accuracy and
effectiveness. However, they still require manual labeling to
train the Random Forest model. PreFix [39] predicts switch
failures with high precision and recall. However, it also re-
quires significant manual efforts for labeling, while our work
does not. Pan et al. [31] also used the tickets as the hints
to select potential network faults. However, they still asked
experts to manually label network faults and use this labelled
data to train a Decision Tree model. In contrast, CableMon
does not use any manual label.

Previous researches have also focused on processing cus-
tomer report tickets. LOTUS [38] deploys Natural Lan-
guage Processing (NLP) techniques to understand the tickets.
Potharaju et al. [33] built a system that automatically pro-
cesses the raw text of tickets to infer the networking faults
and find out the resolution actions. Jin et al. [18] studied
the tickets in cellular networks and categorized the types of
customer trouble tickets. Chen et al. [8] and Hsu et al. [15]
use both customer trouble tickets and social media postings
to determine network outages. This work combines an ISP’s
customer trouble tickets and PNM data to infer network faults.

7 Discussion

CableMon uses customer trouble tickets as network fault indi-
cators to build a classifier without manual labeling. We plan to
focus on the following directions to improve the performance
of CableMon:

• When there lacks a large set of labeled data, semi-
supervised learning [40] combines a small set of labeled
data and a large set of unlabeled data to improve classi-
fication accuracy. We plan to investigate whether semi-
supervised learning approach as well as other machine
learning methods such as deep learning can improve the
performance of CableMon.

• Presently, we use network-related tickets to train the clas-
sifier. We have discovered that customers tend to report
tickets at weekdays rather than on weekends and during
the day rather than at night. From this pattern, one may
infer that if a customer reports a ticket at an “atypical”
time, it is more likely to indicate a customer-impacting
problem. If we place a higher weight for such “outlier”

tickets in a classification algorithm, we may increase
both the ticket prediction accuracy and coverage.

• ISPs desire to differentiate failures that affect a group of
customers from those that affect a single customer. We
refer to faults that affect multiple customers as “mainte-
nance issues.” If there is a maintenance issue, it is also
desirable to locate the place where this issue has hap-
pened. It is possible to infer maintenance issues by clus-
tering customers’ PNM data, and to infer the location of
a maintenance issue by combining the geographical loca-
tion of each modem with the topology of HFC network.
It is our future work to study these problems.

• When detecting network faults, CableMon outputs
whether there is an abnormal event and how long it exists.
It is desirable to rank the severity of abnormal events
so that an ISP can prioritize its repair actions. It is our
future work to explore such ranking algorithms.

8 Conclusion

Cable broadband networks are widely deployed all around
U.S. and serve millions of U.S. households. However, cable
networks have poor reliability. Although the cable industry
has developed a proactive network maintenance (PNM) plat-
form to address this issue, cable ISPs have not fully utilized
the collected data to proactively detect and fix network faults.
Existing approaches rely on instantaneous PNM metrics with
manually set thresholds for fault detection and can introduce
an unacceptably high false positive rate. We design CableMon,
a system that learns the fault detection criteria from customer
trouble tickets. Our design overcomes the noise from both
PNM data and customer trouble tickets and achieves a nearly
four times higher ticket prediction accuracy than the existing
tools in the public domain. This is a first step toward enabling
an ISP to use PNM data to proactively repair a failure before
a customer calls and to diagnose whether a customer trouble
call is caused by a network fault.
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A Pseudo-code of Determining Thresholds

Algorithm 1 Threshold Determining

1: Plabel ←− Set of all data points associated with tickets
2: P ←− Set of all data points
3: if one threshold then
4: V ←− Set of all distinct values
5: for each v ∈ V do
6: Nl ←− {p|p ∈ Plabel , p.value≤ v}
7: Tl ←− ∑p∈P ,p.value≤v p.time
8: Nr←− {p|p ∈ Plabel , p.value > v}
9: Tr←− ∑p∈P ,p.value>v p.time

10: T RRv←−max( |Nl |/Tl
|Nr |/Tr

, |Nr |/Tr
|Nl |/Tl

)

11: thrm←− argmaxT RRv

12: return thrm
13: else
14: A ←− Sorted array of all data points
15: B ←− Binning A
16: V ←− Set of maximum value in each bin b ∈ B
17: for each vl ∈ V do
18: for each vr ∈ V do
19: Nn←− {p|p ∈ Plabel ,vl ≤ p.value≤ vr}
20: Tn←− ∑p∈P ,vl≤p.value≤vr p.time
21: Na←− {p|p ∈ Plabel , p 6∈ Nn}
22: Ta←− ∑p∈P ,p.value>vr |p.value<vl

p.time

23: T RR(vl ,vr)←−
|Na|/Ta
|Nn|/Tn

24: thrl , thrr←− argmaxT RR(vl ,vr)

25: return thrl , thrr
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Abstract
Data flow graphs are a popular program representation in
machine learning, big data analytics, signal processing, and,
increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow.
To improve CPU cache locality and exploit data-level paral-
lelism, nodes usually process data in batches. Unfortunately,
as batches are split across dozens or hundreds of parallel pro-
cessing pathways through the graph they tend to fragment
into many small chunks, leading to a loss of batch efficiency.

We present Batchy, a scheduler for run-to-completion
packet processing engines, which uses controlled queuing
to efficiently reconstruct fragmented batches in accordance
with strict service-level objectives (SLOs). Batchy comprises
a runtime profiler to quantify batch-processing gain on dif-
ferent processing functions, an analytical model to fine-tune
queue backlogs, a new queuing abstraction to realize this
model in run-to-completion execution, and a one-step reced-
ing horizon controller that adjusts backlogs across the pipeline.
We present extensive experiments on five networking use
cases taken from an official 5G benchmark suite to show that
Batchy provides 2–3× the performance of prior work while
accurately satisfying delay SLOs.

1 Introduction

One near-universal technique to improve the performance
of software packet processing engines is batching: collect
multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets in
batches is much more efficient than processing a single packet
at a time, thanks to amortizing one-time operational overhead,
optimizing CPU cache usage, and enabling loop unrolling
and SIMD optimizations [7, 8, 11, 22, 26]. Batch-processing
alone often yields a 2–5× performance boost. Fig. 1 presents
a series of micro-benchmarks we performed in BESS [14]
and FastClick [3], two popular software switches, showing
that executing an ACL or a NAT function is up to 4 times
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Figure 1: Maximum packet rate (in millions of pack-
ets per second, mpps) over different packet processing
micro-benchmarks in BESS [14] (marked with B) and in
FastClick [3] (FC) when varying the input batch size.

as efficient on batches containing 32 packets compared to
single-packet batches. Prior studies provided similar batch-
processing profiles in VPP [2, 22], [27, Fig. 3]. Accordingly,
batching is used in essentially all software switches (VPP [2,
27], BESS [14], FastClick [3], NetBricks [36], PacketShader
[15], and ESwitch [30]), high-performance OS network stacks
and dataplanes [3,6,8,11], user-space I/O libraries [1,16], and
Network Function Virtualization platforms [19,21,42,45,50].

Unfortunately, even if the packet processing engine receives
packets in bursts [1, 2, 6, 27, 29, 41, 50], batches tend to break
up as they progress through the pipeline [20]. Such batch-
fragmentation may happen in a multi-protocol network stack,
where packet batches are broken into smaller per-protocol
batches to be processed by the appropriate protocol mod-
ules (e.g., pure Ethernet, IPv4, IPv6, unicast/multicast, MPLS,
etc.) [8, 11]; by a load-balancer that splits a large batch into
smaller batches to be sent to different backends/CPUs for pro-
cessing [19]; in an OpenFlow/P4 match-action pipeline where
different flow table entries may appoint different next-stage
flow tables for different packets in a batch [30, 38], or in es-
sentially any packet processing engine along the branches of
the data flow graph (splitters) [3,14,16,31,47]. In fact, any op-
eration that involves matching input packets against a lookup
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Figure 2: A sample packet processing data flow graph: a two-
way splitter with two network functions (NFs). Both NFs
incur one unit of execution cost per each processed batch
and another one unit per each packet in the batch; the splitter
incurs negligible cost. There are two service chains (or flows),
one taking the upper and one taking the lower path.

table and distributing them to multiple next-stage processing
modules may cause packet batches to fragment [20]. Worse
still, fragmentation at subsequent match-tables combine mul-
tiplicatively; e.g., VRF-splitting on 16 VLANs followed by
an IP lookup on 16 next-hops may easily break up a single
batch of 256 packets into 256 distinct batches containing one
packet each. Processing packets in the resultant small chunks
takes a huge toll on the compute efficiency of the pipeline,
which was designed and optimized for batch-processing in
the first place [2, 11, 27]. We stress that batch-fragmentation
is quite dynamic, depending on the input traffic profile, the
offered load, the packet processing graph, the NFs, and flow
table configuration; therefore, modeling and quantifying the
resultant performance loss is challenging [22].

Trivially, fragmented batches can be “de-fragmented” us-
ing queuing, which delays the execution of an operation until
enough packets line up at the input [1, 6, 15, 50]. This way,
processing occurs over larger batches, leading to potentially
significant batch-processing gains. However, queuing packets,
thereby artificially slowing down a pipeline in order to speed it
up, is tricky [8, 11]; a suboptimal queuing decision can easily
cause delay to skyrocket. Fig. 2 shows a motivating example:
if two batches containing 2 packets each enter the pipeline
then unbuffered execution incurs 8 units of execution cost, as
the splitter breaks up each batch into two batches containing
one packet each. Placing a queue at the NF inputs, however,
enables recovery of the full batches, bringing the execution
cost down to 6 units (1 unit per the single batch processed and
2 units per the 2 packets in the batch) but increasing delay
to 2 full turnaround times. For a k-way splitter the cost of an
unbuffered execution over k batches including k packets each
would be 2k2, which buffering would reduce to k+ k2; about
2× batch-processing gain at the cost of k× queuing delay.

Of course, packet processing cannot be delayed for an ar-
bitrarily long time to recover batches in full, since this may
violate the service level objectives (SLOs) posed by differ-
ent applications. A typical tactile internet and robot control
use case requires 1–10 msec one-way, end-to-end, 99th per-
centile latency [28]; the 5G radio access/mobile core requires
5–10 msec; and reliable speech/video transport requires de-

lay below 100-200 msec. At the extreme, certain industry
automation, 5G inter-base-station and antenna synchroniza-
tion, algorithmic stock trading, and distributed memory cache
applications limit the one-way latency to 10-100 µsec [12,25].

The key observation in this paper is that optimal batch-
scheduling in a packet processing pipeline is a fine balanc-
ing act to control queue backlogs, so that processing occurs
in as large batches as possible while each flow traversing
the pipeline is scheduled just fast enough to comply with
the SLOs. We present Batchy, a run-to-completion batch-
scheduler framework for controlling execution in a packet-
processing pipeline based on strict service-level objectives.
Our contributions in Batchy are as follows:
Quantifying batch-processing gain. We observe that batch-
processing efficiency varies widely across different packet-
processing functions. We introduce the Batchy profiler, a
framework for quantifying the batched service time profile
for different packet-processing functions.
Analytical model. We introduce an expressive mathematical
model for SLO-based batch-scheduling, so that we can reason
about the performance and delay analytically and fine tune
batch de-fragmentation subject to delay-SLOs. We also fix
the set of basic assumptions under which the optimal schedule
is well-defined (see earlier discussion in [6, 15, 50]).
Batch-processing in run-to-completion mode. Taking in-
spiration from Nagle’s algorithm [32], we introduce a new
queuing abstraction, the fractional buffer, which allows us
to control queue backlogs at a fine granularity even in run-
to-completion scheduling, which otherwise offers very little
control over when particular network functions are executed.
Design, implementation, and evaluation of Batchy. We
present a practical implementation of our batch-scheduling
framework and, taking use cases from an official 5G NFV
benchmark suite (L2/L3 gateway with and without ACL, NAT,
VRF, a mobile gateway, and a robot-control pipeline), we
demonstrate that Batchy efficiently exploits batch-processing
gain consistently across a wide operational regime with small
controller overhead, bringing 1.5–3× performance improve-
ment compared to outliers and earlier work [21], while satis-
fying SLOs. Batchy is available for download at [4].

The rest of the paper is structured as follows. In Section 2
we introduce the Batchy profiler, Section 3 presents the ide-
alized mathematical model and introduces fractional buffers,
Section 4 discusses our implementation in detail, and Sec-
tion 5 describes our experiments on real-life use cases. Finally,
Section 6 discusses related work and Section 7 concludes the
paper. A detailed exposition of the algorithms used in our
implementation is given in the Appendix.

2 Profiling Batch-processing Gain

There are many factors contributing to the efficiency of batch-
processing; next, we highlight some of the most important

634    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



1 8 16 24 32
0

250

500

750

1k

β = 0.28642

(a) LPM

68.51+27.5 ·b

1 8 16 24 32
0

250

500

750

1k

β = 0.19919

(b) DPDK ACL

122.27+30.41 ·b

1 8 16 24 32
0

250

500

750

1k

β = 0.3254

(c) NAT

43.52+20.99 ·b

1 8 16 24 32
0

250

500

750

1k

β = 0.20691

(d) ExactMatch

94.03+24.53 ·b

Figure 3: Service-time profile: execution time [nsec] for differ-
ent modules as the function of the input batch size, averaged
over 10 runs at 100,000 batches per second. The inset gives
the batchiness βv and the linear regression Tv,0 +Tv,1bv. Ob-
serve the effects of quad-loop/SIMD optimization for the ACL
module at batch size 4, 8, and 16.

ones [26,47]. First, executing a network function on a batch in-
curs non-negligible computational costs independent from the
number of packets in it, in terms of CPU-interrupt, scheduling,
function call, I/O, memory management, and locking over-
head, and batching amortizes this fixed-cost component over
multiple packets [8, 26]. Second, executing an operation on
multiple packets in one turn improves CPU cache usage: pack-
ets can be prefetched from main memory ahead of time and
data/code locality improves as CPU caches are populated by
the first packet and then further processing happens without
cache misses. For example, VPP modules are written so that
the entire code fits into the instruction cache, reducing icache
misses [2, 27]. Third, loop unrolling, a compiler optimiza-
tion to rewrite loops into dual- or quad-loops [26] to improve
branch predictor performance and keep the CPU pipeline full,
is effective only if there are multiple packets to process in
one shot. Batch-processing also opens the door to exploit
data-level parallelism, whereby the CPU performs the same
operation on a batch of 4–32 packets in parallel for the cost
of a single SIMD instruction (SSE/AVX) [16].

Intuitively, different packet-processing functions may ben-
efit differently from batch-processing; e.g., a module process-
ing packets in a tight loop may benefit less than a heavily
SIMD-optimized one. This will then affect batch-scheduling:
reconstructing batches at the input of a lightweight module
might not be worth the additional queuing delay, as there is
very little efficiency gain to be obtained this way.

Fig. 3 provides a service time profile as the execution time
for some select BESS modules [14] as the function of the
batch size [22]. We observe two distinct execution time com-
ponents. The per-batch cost component, denoted by Tv,0 [sec]

for a module v, characterizes the constant cost that is incurred
just for calling the module on a batch, independently from
the number of packets in it. The per-packet cost component
Tv,1, [sec/pkt], on the other hand, models the execution cost of
each individual packet in the batch. A linear model seems a
good fit for the service time profiles: accordingly we shall
use the linear regression Tv = Tv,0 +Tv,1bv [sec] to describe
the execution cost of a module v where bv is the batch-size,
i.e., the average number of packets in the batches received by
module v. The coefficient of determination R2 is above 96%
in our tests, indicating a good fit for the linear model.

The per-batch and per-packet components determine the
potential batch-processing gain on different packet processing
modules. We quantify this gain with the batchiness measure
βv, the ratio of the effort needed to process B packets in a
single batch of size B through v compared to the case when
processing occurs in B distinct single-packet batches:

βv =
Tv,0 +B∗Tv,1

B(Tv,0 +Tv,1)
∼

Tv,1

Tv,0 +Tv,1
for large B . (1)

Batchiness varies between 0 and 1; small βv indicates sub-
stantial processing gain on v and hence identifies a potential
control target. The relatively small batchiness measures in
Fig. 3 suggest that most real-world packet-processing func-
tions are particularly sensitive to batch size.

Batchy contains a built-in profiler that runs a standard
benchmark on the system under test at the time of initial-
ization, collects per-batch and per-packet service-time com-
ponents for common NFs, and stores the results for later use.

3 Batch-scheduling in Data Flow Graphs

Next, we present a model to describe batch-based packet pro-
cessing systems. The model rests on a set of simplifying
assumptions, which prove crucial to reason about such sys-
tems using formal arguments. We adopt the terminology and
definitions from BESS, but we note that the model is gen-
eral enough to apply to most popular data flow graph packet-
processing engines, like VPP [47], Click/FastClick [3, 31],
NetBricks [36], or plain DPDK [16]; match-action pipelines
like Open vSwitch [38] or ESwitch [30]; or to data flow pro-
cessing frameworks beyond the networking context like Ten-
sorFlow [10] or GStreamer [43].

3.1 System model
Data flow graph. We model the pipeline as a directed graph
G = (V,E), with modules v ∈V and directed links (u,v) ∈ E
representing the connections between modules. A module v
is a combination of a (FIFO) ingress queue and a network
function at the egress connected back-to-back (see Fig. 4).
Input gates (or ingates) are represented as in-arcs (u,v) ∈ E :
u ∈ V and output gates (or outgates) as out-arcs (v,u) ∈ E :
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u ∈V . A batch sent to an outgate (v,u) of v will appear at the
corresponding ingate of u at the next execution of u. Modules
never drop packets; we assume that whenever an ACL module
or a rate-limiter would drop a packet it will rather send it to a
dedicated “drop” gate, so that we can account for lost packets.
A normal queue is a module with an empty network function.
Batch processing. Packets are injected into the ingress, trans-
mitted from the egress, and processed from outgates to ingates
along data flow graph arcs, in batches [2, 14, 16, 27, 30]. We
denote the maximum batch size by B, a system-wide param-
eter. For the Linux kernel and DPDK B = 32 or B = 64 are
usual settings, VPP sets the batch size to 256 packets by de-
fault [27], while GPU/NIC offload often works with B = 1024
or even larger to maximize I/O efficiency [40, 50].
Splitters/mergers. Any module may have multiple ingates
(merger) and/or multiple outgates (splitter), or may have no in-
gate or outgate at all. An IP Lookup module would distribute
packets to several downstream branches, each performing
group processing for a different next-hop (splitter); a NAT
module may multiplex traffic from multiple ingates (merger);
and an IP Checksum module would apply to a single datapath
flow (single-ingate–single-outgate). Certain modules are rep-
resented without ingates, such as a NIC receive queue; we call
these ingress modules S. Similarly, a module with no outgates
(e.g., a transmit queue) is an egress module.
Compute resources. A worker is an abstraction for a CPU
core, where each worker w ∈W is modeled as a connected
subgraph Gw =(Vw,Ew) of G with strictly one ingress module
Sw = {sw} executing on the same CPU. We assume that when
a data flow graph has multiple ingress modules then each
ingress is assigned to a separate worker, with packets passing
between workers over double-ended queues. A typical setup
is to dedicate a worker to each receive queue of each NIC and
then duplicate the entire data flow graph for each worker. Each
worker may run a separate explicit scheduler to distribute CPU
time across the modules in the worker graph, or it may rely
on run-to-completion; see Appendix A for an overview.
Flows. A flow f = (p f ,R f ,D f ), f ∈ F is our abstraction for
a service chain, where p f is a path through G from the flow’s
ingress module to the egress module, R f denotes the offered
packet rate at the worker ingress, and D f is the delay-SLO,
the maximum permitted latency for any packet of f to reach
the egress. What constitutes a flow, however, will be use-case
specific: in an L3 router a flow is comprised of all traffic des-
tined to a single next-hop or port; in a mobile gateway a flow

is a complex combination of a user selector and a bearer selec-
tor; in a programmable software switch flows are completely
configuration-dependent and dynamic. Correspondingly, flow-
dissection in a low-level packet processing engine cannot rely
on the RSS/RPS function supplied by the NIC, which is con-
fined to VLANs and the IP 5-tuple [6, 19]. Rather, in our
framework flow dispatching occurs intrinsically as part of the
data flow graph; accordingly, we presume that match-tables
(splitters) are set up correctly to ensure that the packets of
each flow f will traverse the data flow graph along the path
p f associated with f .

3.2 System variables

We argue that at multiple gigabits per second it is overkill
to model the pipeline at the granularity of individual pack-
ets [22]. Instead, in our model variables are continuous and
differentiable, describing system statistics over a longer pe-
riod of time that we call the control period. This is analogous
to the use of standard (continuous) network flow theory to
model packet routing and rate control problems. We use the
following variables to describe the state of the data flow graph
in a given control period (dimensions indicated in brackets).
Batch rate xv [1/s]: the number of batches per second entering
the network function in module v (see again Fig. 4).
Batch size bv [pkt]: the average number of packets per batch
at the input of the network function in module v, where bv ∈
[1,B] and, recall, B is the maximum allowed batch size.
Packet rate rv [pkt/s]: the number of packets per second
traversing module v: rv = xvbv.
Maximum delay tv [sec]: delay contribution of module v to
the total delay of packets traversing it. We model tv as

tv = tv,queue + tv,svc = 1/xv +(Tv,0 +Tv,1bv) , (2)

where tv,queue = 1/xv is the queuing delay by Little’s law and
tv,svc = Tv,0 +Tv,1bv is the service time profile (see Section 2).
System load lv (dimensionless): the network function in mod-
ule v with service time tv,svc executed xv times per second in-
curs lv = xvtv,svc = xv(Tv,0 +Tv,1bv) system load in the worker.
Turnaround-time T0 [sec]: the maximum CPU time the sys-
tem may spend pushing a single batch through the pipeline.
The turnaround time typically varies with the type and number
of packets in each batch, the queue backlogs, etc.; correspond-
ingly, we usually consider the time to execute all modules on
maximum sized batches as an upper bound:

T0 ≤ ∑
v∈V

(Tv,0 +Tv,1B) . (3)

3.3 Assumptions

Our aim is to define the simplest possible batch-processing
model that still allows us to reason about flows’ packet rate
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and maximum delay, and modules’ batch-efficiency. The be-
low assumptions will help to keep the model at the minimum;
these assumptions will be relaxed later in Section 4.
Feasibility. We assume that the pipeline runs on a single
worker and this worker has enough capacity to meet the delay-
SLOs. In the next section, we show a heuristic method to
decompose a data flow graph to multiple workers in order to
address SLO violations stemming from inadequate resources.
Buffered modules. We assume that all modules contain an
ingress queue and all queues in the pipeline can hold up to at
most B packets at any point in time. In the next section, we
show how to eliminate useless queues in order to remove the
corresponding latency and processing overhead.
Static flow rate. All flows are considered constant-bit-rate
(CBR) during the control period (usually in the millisecond
time frame). This assumption will be critical for the poly-
nomial tractability of the model. Later on, we relax this as-
sumption by incorporating the model into a receding-horizon
optimal control framework.

3.4 Optimal explicit batch-schedule
Workers typically run an explicit scheduler to distribute CPU
time across the modules in the worker graph. Common exam-
ples include Weighted Fair Queueing (WFQ) and Completely
Fair Scheduling (CFS); here, the user assigns integer weights
to modules and the scheduler ensures that runtime resource
allocation will be proportional to modules’ weight [46]. For
simplicity, we consider an idealized WFQ/CFS scheduler in-
stead, where execution order is defined in terms per-module
rates and not weights; rates will be converted to weights later.

The idealized scheduler runs each module precisely at the
requested rate. When scheduled, the modules’ network func-
tion dequeues at most a single batch worth of packets from the
ingress queue, executes the requested operation on all packets
of the batch, forms new sub-batches from processed packets
and places these to the appropriate outgates.

In this setting, we seek for a set of rates xv at which each
module v ∈ V needs to be executed in order to satisfy the
SLOs. If multiple such rate allocations exist, then we aim to
choose the one that minimizes the overall system load.

Recall, executing v exactly xv times per second presents
lv = xvtv,svc = xv(Tv,0 +Tv,1bv) load to the system. The objec-
tive function, correspondingly, is to find rates xv that minimize
the total system load ∑v∈V lv, taken across all modules:

min ∑
v∈V

xv(Tv,0 +Tv,1bv) . (4)

Once scheduled, module v will process at most bv ∈ [1,B]
packets through the network function, contributing tv,svc =
Tv,0 +Tv,1bv delay to the total latency of each flow traversing
it. In order to comply with the delay-SLOs, for each flow f it
must hold that the total time spent by any packet in the worker
ingress queue, plus the time needed to send a packet through

the flow’s path p f , must not exceed the delay requirement D f
for f . Using that the ingress queue of size B may develop
a backlog for only at most one turnaround time T0 (recall,
we assume there is a single worker and each queue holds
at most B packets), and also using (2), we get the following
delay-SLO constraint:

t f = T0 + ∑
v∈p f

(1/xv +Tv,0 +Tv,1bv)≤ D f ∀ f ∈ F . (5)

Each module v∈V must be scheduled frequently enough so
that it can handle the total offered packet rate Rv =∑ f :v∈p f

R f ,
i,e., the sum of the requested rate R f of each flow f traversing
v (recall, we assume flow rates R f are constant). This results
the following rate constraint:

rv = xvbv = ∑
f :v∈p f

R f = Rv ∀v ∈V . (6)

Finally, the backlog bv at any of the ingress queues across
the pipeline can never exceed the queue size B and, of course,
all system variables must be non-negative:

1≤ bv ≤ B, xv ≥ 0 ∀v ∈V . (7)

Together, (4)–(7) defines an optimization problem which
provides the required static scheduling rate xv and batch
size bv for each module v in order to satisfy the SLOs
while maximizing the batch-processing gain. This of course
needs the turnaround time T0; one may use the approxima-
tion (3) to get a conservative estimate. Then, substituting
bv = ∑ f :v∈p f R f/xv = Rv/xv using (6), we get the following sys-
tem, now with only the batch-scheduling rates xv as variables:

min ∑
v∈V

xv(Tv,0 +Tv,1
Rv

xv
) (8)

t f = T0 + ∑
v∈p f

(
1
xv

+Tv,0 +Tv,1
Rv

xv

)
≤ D f ∀ f ∈ F (9)

Rv/B≤ xv ≤ Rv ∀v ∈V (10)

Since the constraints and the objective function are convex,
we conclude that (8)–(10) is polynomially tractable and the
optimal explicit batch-schedule is unique [5]. Then, setting
the scheduling weights proportionally to rates xv results in the
optimal batch-schedule on a WFQ/CFS scheduler [46].

3.5 Run-to-completion execution
WFQ/CFS schedulers offer a plausible way to control batch
de-fragmentation via the per-module weights. At the same
time, often additional tweaking is required to avoid head-of-
line blocking and late drops along flow paths [21], and even
running the scheduler itself may incur non-trivial runtime
overhead. Run-to-completion execution, on the other hand,
eliminates the explicit scheduler all together, by tracing the
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entire input batch though the data flow graph in one shot
without the risk of head-of-line blocking and internal packet
drops [6,14]. Our second batch-scheduler will therefore adopt
run-to-completion execution.

The idea in run-to-completion scheduling is elegantly sim-
ple. The worker checks the input queue in a tight loop and,
whenever the queue is not empty, it reads a single batch and in-
jects it into pipeline at the ingress module. On execution, each
module will process a single batch, place the resulting packets
at the outgates potentially breaking the input batch into mul-
tiple smaller output batches, and then recursively schedule
the downstream modules in order to consume the sub-batches
from the outgates. This way, the input batch proceeds through
the entire pipeline in a single shot until the last packet of the
batch completes execution, at which point the worker returns
to draining the ingress queue. Since upstream modules will
automatically schedule a downstream module whenever there
is a packet waiting to be processed, run-to-completion execu-
tion does not permit us to control when individual modules
are to be executed. This makes it difficult to enforce SLOs,
especially rate-type SLOs, and to delay module execution to
de-fragment batches.

Below, we introduce a new queuing abstraction, the frac-
tional buffer, which nevertheless lets us exert fine-grained
control over modules’ input batch size. The fractional buffer
is similar to Nagle’s algorithm [32], originally conceived to
improve the efficiency of TCP/IP networks by squashing mul-
tiple small messages into a single packet. The backlog is
controlled so as to keep end-to-end delay reasonable. Indeed,
Nagle’s algorithm exploits the same batch-efficiency gain
over the network as we intend to exploit in the context of
compute-batching, motivating our choice to apply it when-
ever there is sufficient latency slack available.

A fractional buffer maintains an internal FIFO queue and
exposes a single parameter to the control plane called the
trigger b, which enables tight control of the queue backlog
and thereby the delay. The buffer will enqueue packets and
suppress execution of downstream modules until the backlog
reaches b, at which point a packet batch of size b is consumed
from the queue, processed in a single burst through the suc-
ceeding module, and execution of downstream modules is
resumed. Detailed pseudocode is given in Appendix C.

We intentionally define the trigger in the batch-size do-
main and not as a perhaps more intuitive timeout [32], since
timeouts would re-introduce an explicit scheduler into the oth-
erwise “schedulerless” design. Similarly, we could in theory
let the buffer to emit a batch larger than b whenever enough
packets are available; we intentionally restrict the output batch
to size b so as to tightly control downstream batch size.

What remains is to rewrite the optimization model (8)–(10)
from explicit module execution rates xv to fractional buffer
triggers. Interestingly, jumping from rate-based scheduling to
the run-to-completion model is as easy as substituting vari-
ables: if we replace the ingress queue with a fractional buffer

with trigger bv in each module v, then the subsequent network
function will experience a batch rate of xv = Rv/bv at batch
size bv. Substituting this into the optimization problem (4)–(7)
yields the optimal batch-schedule for the run-to-completion
model with variables bv : v ∈V :

min ∑
v∈V

Rv

bv
(Tv,0 +Tv,1bv) (11)

t f = T0 + ∑
v∈p f

(
bv

Rv
+Tv,0 +Tv,1bv

)
≤ D f ∀ f ∈ F (12)

1≤ bv ≤ B ∀v ∈V (13)

Again, the optimization problem is convex and the optimal
setting for the fractional buffer triggers is unique. In addi-
tion, the feasible region is linear, which makes the problem
tractable for even the simplest of convex solvers. Since the
substitution xv = Rv/bv can always be done, we find that for
any feasible batch-rate xv : v ∈ V in the explicit scheduling
problem (8)–(10) there is an equivalent set of fractional buffer
triggers bv : v∈V in the run-to-completion problem (11)–(13)
and vice versa; put it another way, any system state (collection
of flow rates and delays) feasible under the explicit scheduling
model is also attainable with a sufficient run-to-completion
schedule. To the best of our knowledge, this is the first time
that an equivalence between the two crucial data flow-graph
scheduling models is shown. We note however that the as-
sumptions in Section 3.3 are critical for the equivalence to
hold. For instance, explicit scheduling allows for a “lossy”
schedule whereas a run-to-completion schedule is lossless by
nature; under the “feasibility” assumption, however, there is
no packet loss and hence the equivalence holds.

4 Implementation

We now describe the design and implementation of Batchy,
our batch-scheduler for data flow graph packet-processing
engines. The implementation follows the model introduced
above, extended with a couple of heuristics to address prac-
tical limitations. We highlight only the main ideas of the
implementation below; a detailed description of the heuristics
with complete pseudocode can be found in the Appendix.
Design. To exploit the advantages of the simple architecture
and zero scheduling overhead, in this paper we concentrate
on the run-to-completion model (11)–(13) exclusively and
we leave the implementation of the explicit scheduling model
(8)–(10) for further study. This means, however, that currently
we can enforce only delay-type SLOs using Batchy. In our de-
sign, the control plane constantly monitors the data plane and
periodically intervenes to improve batch-efficiency and satisfy
SLOs. Compared to a typical scheduler, Batchy interacts with
the data plane at a coarser grain: instead of operating at the
granularity of individual batches, it controls the pipeline by
periodically adjusting the fractional buffer triggers and then
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it relies entirely on run-to-completion scheduling to handle
the fine details of module execution.
Receding-horizon control. A naive approach to implement
the control plane would be to repeatedly solve the convex
program (11)–(13) and apply the resulting optimal fractional-
buffer triggers to the data plane. Nevertheless, by the time the
convex solver finishes computing the optimal schedule the
system may have diverged substantially from the initial state
with respect to which the solution was obtained. To tackle
this difficulty, we chose a one-step receding-horizon control
framework to implement Batchy. Here, in each control period
the optimization problem (11)–(13) is bootstrapped with the
current system state and fed into a convex solver, which is
then is stopped after the first iteration. This results a coarse-
grain control action, which is then immediately applied to the
data plane. After the control period has passed, the system is
re-initialized from the current state and a control is calculated
with respect to this new state. This way, the controller rapidly
drives the system towards improved states and eventually
reaches optimality in steady state, automatically adapting to
changes in the input parameters and robustly accounting for
inaccuracies and failed model assumptions without having to
wait for the convex solver to fully converge in each iteration.
Main control loop. Upon initialization, Batchy reads the data
flow graph, the flows with the SLOs, and per-module service
time profiles from the running system. During runtime, it mea-
sures in each control period the execution rate x̃v, the packet
rate r̃v, and the mean batch size b̃in

v at the input of the ingress
queue for each module v ∈V , plus the 95th percentile packet
delay t̃ f measured at the egress of each flow f ∈ F . (The
overbar tilde notation is to distinguish measured parameters.)
The statistics and the control period are configurable; e.g.,
Batchy can be easily re-configured to control for the 99th per-
centile or the mean delay. Due to its relative implementation
simplicity and quick initial convergence, we use the gradient
projection algorithm [5] to compute the control but in each run
we execute only a single iteration. The algorithm will adjust
triggers so as to obtain the largest relative gain in total system
load and, whenever this would lead to an SLO violation, cut
back the triggers just enough to avoid infeasibility.
Insert/short-circuit buffers. An unnecessary buffer on the
packet-processing fast path introduces considerable delay and
incurs nontrivial runtime overhead. In this context, a buffer is
“unnecessary” if it already receives large enough batches at the
input (Batchy detects such cases by testing for b̃in

v ≥ 0.7B); if
it would further fragment batches instead of reconstructing
them (bv ≤ b̃in

v ); or if just introducing the buffer already vi-
olates the delay-SLO (1/xv > D f for some v ∈ p f ). If one
of these conditions hold for a module v, Batchy immedi-
ately short-circuits the buffer in v by setting the trigger to
bv = 0: the next-time module v is executed the ingress queue
is flushed and subsequent input batches are immediately fed
into the network function without buffering. Similar heuris-
tics allow Batchy to inject buffers into the running system: at

initialization we short-circuit all buffers (“null-control”, see
below) and, during runtime, we install a buffer whenever all
flows traversing a module provide sufficient delay-budget.

Recovering from infeasibility. The projected gradient con-
troller cannot by itself recover from an infeasible (SLO-
violating) state, which may occur due to packet rate fluc-
tuation or an overly aggressive control action. A flow f is
in SLO-violation if t̃ f ≥ (1−δ)D f where δ is a configurable
parameter that allows to trade off SLO-compliance for batch-
efficiency. Below, we use the setting δ = 0.05, which yields a
rather aggressive control that strives to maximize batch size
with a tendency to introduce relatively frequent, but small,
delay violations. Whenever a flow f ∈ F is in SLO violation
and there is a module v in the path of f set to a non-zero
trigger (bv > b̃in

v ), we attempt to reduce bv by
⌈

D f−t f
∂t f/∂bv

⌉
. If

possible, this would cause f to immediately recover from
the SLO-violation. Otherwise, it is possible that the invariant
bv ≥ b̃in

v may no longer hold; then we repeat this step at as
many modules along p f as necessary and, if the flow is still
in SLO-violation, we short-circuit all modules in p f .

Pipeline decomposition. Batchy contains a pipeline con-
troller responsible for migrating flows between workers to
enforce otherwise unenforceable delay-SLOs. Consider the
running example in Fig. 2, assume a single worker, let the pro-
cessing cost of NF1 be 1 unit and that of NF2 be 10 units, and
let the delay-SLO for the first flow be 2 units. This pipeline is
inherently in delay-SLO violation: in the worst case a packet
may need to spend 10 time units in the ingress queue until
NF2 finishes execution, significantly violating the delay-SLO
for the first flow (2 units). This inherent SLO violation will
persist as long as NF1 and NF2 share a single worker. Batchy
uses the analytical model to detect such cases: a worker w is
in inherent delay-SLO violation if there is a flow f ∈ F for
which ∑v∈Vw(Tv,0 +Tv,1B)≥D f holds, using the conservative
estimate (3). Then Batchy starts a flow migration process: first
it packs flows back to the original worker as long as the above
condition is satisfied and then the rest of the flows are moved
to a new worker. This is accomplished by decomposing the
data flow graph into multiple disjunct connected worker sub-
graphs. Note that flows are visited in the ascending order of
the delay-SLO, thus flows with restrictive delay requirements
will stay at the original worker with a high probability, exempt
from cross-core processing delays [19].

Implementation. We implemented Batchy on top of BESS
[14] in roughly 6,000 lines of Python/BESS code. (Batchy
is available at [4].) BESS is a high-performance packet pro-
cessing engine providing a programming model and interface
similar to Click [31]. BESS proved an ideal prototyping plat-
form: it has a clean architecture, is fast [24], provides an
efficient scheduler, exposes the right abstractions and offers a
flexible plugin infrastructure to implement the missing ones.
The distribution contains two built-in controllers. The on-off
controller (“Batchy/on-off”) is designed for the case when
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fractional buffers are not available in the data plane. This
controller alters between two extremes (bang-bang control):
at each module v, depending on the delay budget it either
disables buffering completely (bv = 0) or switches to full-
batch buffering (bv = B), using the above buffer-insertion/
deletion and feasibility-recovery heuristics. On top of this, the
full-fledged Batchy controller (“Batchy/full”) adds fractional
buffers and fine-grained batch-size control using the projected
gradient method.

5 Evaluation

Batchy is a control framework for packet-processing engines,
which, depending on flows’ offered packet rate and delay-
SLOs, searches for a schedule that balances between batch-
processing efficiency and packet delay. In this context the
following questions naturally arise: (i) how much do batches
fragment in a typical use case (if at all) and how much effi-
ciency is there to gain by reconstructing these? how precisely
does Batchy enforce SLOs?; (ii) which is the optimal opera-
tional regime for Batchy and what is the cost we pay?; (iii)
does Batchy react quickly to changes in critical system pa-
rameters?; and finally (iv) can Batchy recover from inherent
SLO-violations? Below we seek to answer these questions.
Evaluation setup. To understand the performance and
latency-related impacts of batch control, we implemented two
baseline controllers alongside the basic Batchy controllers
(Batchy/on-off and Batchy/full): the null-controller performs
no batch de-fragmentation at all (bv = 0 : v ∈ V ), while the
max-controller reconstructs batches in full at the input of
all modules (bv = B : v ∈ V ). Both baseline controllers ig-
nore SLOs all together. The difference between performance
and delay with the null- and max-controllers will represent
the maximum attainable efficiency improvement batching
may yield, and the price we pay in terms of delay. We also
compared Batchy to NFVnice, a scheduling framework orig-
inally defined for the NFV context [21]. NFVnice is imple-
mented in a low-performance container-based framework; to
improve performance and to compare it head-to-head, we re-
implemented its core functionality within BESS. Our imple-
mentation uses WFQ to schedule modules with equal weights
and enables backpressure. All controllers run as a separate
Python process, asserting real-time control over the BESS
data plane via an asynchronous gRPC channel.

The evaluations are performed on 5 representative use cases
taken from an official industry 5G benchmark suite [24].
The L2/L3(n) pipeline implements a basic IP router, with
L2 lookup, L3 longest-prefix matching, and group processing
for n next-hops; the GW(n) use case extends this pipeline
into a full-fledged gateway with NAT and ACL processing for
n next-hop groups; and the VRF(m,n) pipeline implements
m virtual GW(n) instances preceded by an ingress VLAN
splitter (see Fig. 5). The MGW(m,n) pipeline is a full 4G
mobile gateway data plane with m users and n bearers per
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Figure 5: The VRF pipeline. The GW pipeline is identical to
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user, with complete uplink and downlink service chains (see
Fig. 6). Finally, the RC(n) pipeline models a 5G robot con-
trol use case: RC(n) corresponds to the running example in
Fig. 2 with n branches, with the upper branch representing an
ultra-delay-sensitive industry automation service chain and
the rest of the branches carrying bulk traffic. We obtained test
cases of configurable complexity by varying the parameters
m and n and installing a flow over each branch of the resultant
pipelines; e.g., in the VRF(2,4) test we have a separate flow
for each VRF and each next-hop, which gives 8 flows in total.

Each pipeline comes with a traffic source that generates syn-
thetic test traffic for the evaluations. For the L2/L3 pipeline,
we repeated the tests with a real traffic trace taken from a
CAIDA data set [9], containing 1.85 million individual trans-
port sessions of size ranging from 64 bytes to 0.8 Gbytes (18
Kbyte mean) and maximum duration of 1 min (5.4 sec mean);
the results are marked with the label *L2L3. Unless otherwise
noted, the pipelines run on a single worker (single CPU core),
with the traffic generator provisioned at another worker. The
maximum batch size is 32, the control period is 100 msec,
and results are averaged over 3 consecutive runs.

Each evaluation runs on a server equipped with an Intel
Xeon E5-2620 v3 CPU (12 cores total, 6 isolated, power-
saving disabled, single socket) with 64GB memory (with 12
× 1GB allocated as hugepages), installed with the Debian/
GNU operating system, Linux kernel v4.19, a forked version
of BESS v0.4.0-57-g43bebd3, and DPDK v17.11.
Batch-scheduling constant bit-rate flows. In this test round,
we benchmark the static performance of the Batchy con-
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Figure 7: Static evaluation results (mean, 1st and 3rd quartile) with the null-controller, max-controller, NFVnice, Batchy/on-off
and Batchy/full on different pipelines: average batch-size, cumulative packet rate, and delay-SLO statistics as the percentage of
control periods when an SLO-violation was detected for at least one flow.

trollers against the baselines and NFVnice over 6 represen-
tative 5G NFV configurations. The null-controller, the max-
controller, and NFVnice do not consider the delay-SLO, while
for Batchy/on-off and Batchy/full we set the delay-SLO to
80% of the average delay measured with the max-controller;
this setting leaves comfortable room to perform batch de-
fragmentation but sets a firm upper bound on triggers. (With-
out an SLO, Batchy controllers degrade into a max-controller.)

After a warmup (100 control periods) we ran the pipeline
for 100 control periods and we monitored the batch size
statistics averaged across modules, the cumulative packet rate
summed over all flows, and the delay-SLO statistics as the
percentage of control periods when an SLO violation occurs
for at least one flow. Fig. 7 highlights the results for 6 select
configurations and Appendix B details the full result set. Our
observations are as follows.

First, the full-fledged Batchy controller (Batchy/full) can
successfully reconstruct batches at the input of network func-
tions, achieving 70–80% of the average batch size of the max-
controller in essentially all use cases (same proportion as
the delay-SLO constraints). Batch-fragmentation gets worse
as the number of branches increases across which batches
may be split (the branching factor), to the point that when
there are 16–64 pathways across the data flow graph the
null-controller works with just 2–3 packets per batch. The
simplified controller (Batchy/on-off) produces mixed results:
whenever there is enough delay-budget to insert full buffers it
attains similar de-fragmentation as Batchy/full (MGW(16,4),
RC(16)), while in other cases it degrades into null-control
(GW(64)).

Second, batch de-fragmentation clearly transforms into
considerable efficiency improvement. Batchy/full exhibits
1.5–2.5× performance compared to the case when we do
no batch de-fragmentation at all (null-control), and Batchy/
on-off shows similar, although smaller, improvements. In the

robot-control use case we see 7.5× throughput margin. This
experiment demonstrates the benefits of selective per-module
batch-control: there is only one highly delay-sensitive flow
but this alone rules out any attempt to apply batching globally
(even at the I/O); Batchy can, however, identify this chain
and short-circuit all buffers along just this chain while it can
still buffer the remaining bulk flows, yielding a dramatic per-
formance boost. Despite the firm upper bound on the delay,
and on the maximum attainable batch size, Batchy performs
very close to the max-controller and in some tests even out-
performs it (e.g., for L2L3(16)). This is because the max-
controller buffers all modules unconditionally while Batchy
carefully removes unnecessary buffers, and this helps in terms
of valuable CPU cycles saved. The results are consistently
reproduced over both the synthetic and the real traffic traces.

Third, despite the rather aggressive controller settings (δ =
0.05, see the previous Section), Batchy controllers violate
the delay-SLO at most 9% of time for at least one out of the
possibly 64 flows, and even in these cases the relative delay
violation is always below 1–2% (not shown in the figures).
We believe that this is a price worth paying for the efficiency
gain; manually repeating a failed test with a less aggressive
control (δ= 0.2) eliminated delay-SLO violations all together,
at the cost of somewhat lower throughput.

Finally, we see that the Batchy/on-off controller is already
useful in its own right in that it produces substantial batch-
performance boost in certain configurations, but it hardly im-
proves on null-control in others. It seems that discrete on-off
control is too coarse-grained to exploit the full potential of
batch de-fragmentation; to get full advantage we need finer-
grained control over batch sizes, and the ensuing delay, using
fractional buffers and the Batchy/full controller.
Optimal operational regime and runtime overhead. Next,
we attempt to obtain a general understanding of the efficiency
improvements attainable with Batchy, and the cost we pay in
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Figure 8: Batchiness and burstiness vs. branching: Batchy/full
packet rate normalized to the maximally fragmented case.

terms of controller overhead. For this, we first define a set of
meta-parameters that abstract away the most important factors
that shape the efficiency and overhead of Batchy, and then we
conduct extensive evaluations in the configuration space of
these meta-parameters.

The meta-parameters are as follows. Easily, it is the com-
plexity of the underlying data flow graph that fundamentally
determines Batchy’s performance. We abstract pipeline com-
plexity using the branching meta-parameter, which repre-
sents the number of distinct control-flow paths through the
data flow graph; the higher the branching the more batches
may break up inside the pipeline and the larger the potential
batch de-fragmentation gain. Second, batchiness, as intro-
duced in Section 2, determines each module’s sensitivity to
batch size; small batchiness usually indicates huge potential
de-fragmentation gain. Finally, the specifics of the input traf-
fic pattern is captured using the burstiness meta-parameter,
which measures the average size of back-to-back packet bursts
(or flowlets [37]) at the ingress of the pipeline. Indeed, bursti-
ness critically limits batch-efficiency gains: as packet bursts
tend to follow the same path via the graph they are less prone
to fragmentation, suggesting that the performance margin of
de-fragmentation may disappear over highly bursty traffic.

To understand how these factors shape the efficiency of
Batchy, Fig. 8 shows two contour plots; the first one charac-
terizes the speedup with Batchy/full compared to null-control
in the branching–batchiness domain and the second one mea-
sures branching against burstiness. The plots clearly outline
the optimal operational regime for Batchy: as the number of
branches grows beyond 4–8 and batchiness remains under
0.5 we see 1.5–4× speedup, with diminishing returns as the
mean burst size grows beyond 10. These gains persist with
realistic exogenous parameters; batchiness for real modules is
between 0.2–0.3 (see Fig. 3) and the CAIDA trace burstiness
is only 1.13 (see the vertical indicators in the plots). But even
for very bursty traffic and/or poor batch sensitivity, Batchy
consistently brings over 1.2× improvement and never wors-
ens performance: for workloads that do not benefit from batch
de-fragmentation Batchy rapidly removes useless buffers and

Branching (n) Response time Stats Gradient Control
1 2.4 msec 66% 31% 3%
2 3.5 msec 61% 37% 2%
4 6.9 msec 65% 32% 3%
8 11.6 msec 65% 32% 3%

16 21.9 msec 66% 30% 4%
32 34.8 msec 68% 28% 4%
64 89.1 msec 72% 22% 6%

Table 1: Batchy/full runtime overhead on increasingly more
complex RC(n) pipelines: branching, total controller response
time, and contribution of each phase during the control, i.e.,
monitoring (Stats), gradient control (Gradient), and applying
the control (Control).

falls back to default, unbuffered forwarding.
Table 1 summarizes the controller runtime overhead in

terms of the “pipeline complexity” meta-parameter (branch-
ing). The profiling results indicate that the performance gains
come at a modest resource footprint: depending on pipeline
complexity the controller response time varies between 2–90
milliseconds, with roughly two thirds of the execution time
consumed by marshaling the statistics out from the data-plane
and applying the new triggers back via gRPC, and only about
one third taken by running the gradient controller itself.
System dynamics under changing delay-SLOs. We found
the projected gradient controller to be very fast in the static
tests: whenever the system is in steady state (offered load
and delay-SLOs constant), Batchy usually reaches an optimal
KKT point [5] in about 5–10 control periods. In the tests
below, we evaluated Batchy under widely fluctuating system
load to get a better understanding of the control dynamics.

First, we study how Batchy reacts to changing delay-SLOs
(see the conf/l2l3_vd.batchy config file in the Batchy
source distribution [4]). The results are in Fig. 9a. In this
experiment, we set up the VRF(4, 8) pipeline and vary the
delay-SLO between 60 µsec and 300 µsec in 6 steps; see the
blue dotted “square wave” in Fig. 9a/Delay panel. The SLOs
were set so that we test abrupt upwards (“rising edge”) and
downwards (“falling edge”) delay-SLO changes as well. The
figure shows for each control period the value of the trigger at
the ACL module of the top branch (first VRF, first next-hop),
the total delay and the delay-SLO for the flow provisioned
at the top branch, and the normalized cumulative packet rate
with the null-controller, the max-controller, and Batchy/full.

The results suggest that Batchy promptly reacts to “bad
news” (SLO-reduction, falling edge, Fig. 9a/Delay) and in-
stantaneously reduces fractional buffer triggers (Fig. 9a/
Control), or even completely short-circuits buffers to recover
from SLO-violations, whereas it is much more careful to react
to “good news” (increasing SLO, rising edge). Overall, the
packet delay closely tracks the SLO dynamics. Meanwhile,
whenever there is room to perform batch de-fragmentation
Batchy rapidly reaches the efficiency of the max-controller,
delivering 2–3× the total throughput of the null-controller.
System dynamics with variable bitrate traffic. Next, we
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Figure 9: System dynamics with changing SLOs and variable bit-rate traffic: (a) control and delay for the first flow, and cumulative
packet rate in the VRF(4,8) pipeline when the delay-SLO changes in the range 60–300 µsec; (b) control and delay for the first
flow, and cumulative packet rate in the VRF(4,8) pipeline with the delay-SLO of all flows fixed at 1 msec and varying the total
offered load between 50 kpps to 3 mpps; and (c) control, delay, and packet rate for the first user’s bearer-0 (B0) flow in the
MGW(2,16) pipeline, delay-SLO fixed at 1 msec, bearer-0 rate varying between 1 kpps and 50 kpps for all users.

test Batchy with variable bitrate flows. Intuitively, when the
offered load drops abruptly it suddenly takes much longer for
a buffer to accumulate enough packets to construct a batch,
which causes delay to skyrocket and thereby leads to a grave
delay-SLO violation. In such cases Batchy needs to react fast
to recover. On the other hand, when the packet rate increases
and queuing delays fall, Batchy should gradually increase
triggers across the pipeline to improve batch-efficiency.

To understand the system dynamics under changing packet
rates, we conducted two experiments. First, we fire up the
VRF(4,8) pipeline and we fix the delay-SLO for all flows at
1 msec and vary the total offered load between 50 kpps to 3
mpps in 6 steps; this amounts to a dynamic range of 3 orders
of magnitude (see conf/l2l3_vbr.batchy in [4]). Second,
we set up the MGW(2,16) pipeline (2 bearers and 16 users,
see conf/mgw_vbr.batchy in [4]), but now only bearer-0
flows (B0, the “QoS” bearer) vary the offered packet rate
(between 1 kpps and 50 kpps) and set a delay-SLO (again, 1
msec). The results are in Fig. 9b and Fig. 9c, respectively.

Our observations here are similar as before. Even in the face
of widely changing packet rates, Batchy keeps delay firmly
below 1 msec except under transients: it instantaneously re-
covers from SLO violations and rapidly returns to operate
at full batch-size whenever possible. Meanwhile, the max-
controller causes a 100× SLO violation at small packet rates.
In the second experiment we again see significant improve-
ment in the total throughput with Batchy, compared to the
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Figure 10: Recovery from inherent delay-SLO violations:
MGW(2,8) test case with two users at bearer-0, delay-SLO
set to 1 msec. The pipeline controller is started manually at
the 20-th control period, moving bulk bearer-1 uplink and
downlink traffic to a new worker each. (Downlink traffic and
the other user’s traffic exhibit similar performance.)

null-controller (recall, only bearer-0 rate is fixed in this case).
Resource-(re)allocation when SLOs cannot be satisfied.
Finally, we study the effects of inherent delay-SLO violations,
which occur when the turnaround time grows prohibitive at
an over-provisioned worker and ingress queue latency ex-
ceeds the delay-SLO even before packets would enter the
pipeline. Batchy implements a pipeline controller to detect
inherent delay-SLO violations and to heuristically re-allocate
resources, decomposing the data flow graph to multiple sub-
graphs to move delay-insensitive traffic to new workers.

Fig. 10 shows the pipeline controller in action (see conf/
mgw_decompose.batchy) in [4]). Again we set up the
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MGW(2,8) pipeline but now only two users open a flow at
bearer-0, with delay-SLO set to 1 msec both in the uplink
and downlink direction. The rest of the users generate bulk
traffic at bearer-1 with no delay-SLO set. In addition, the
service time of the bearer-1 uplink/downlink chains is artifi-
cially increased, which causes the turnaround time to surpass
1 msec and the latency for the delay-sensitive bearer-0 flows
to jump to 4 msec. The pipeline controller kicks in at the 20-
th control period and quickly recovers the pipeline from the
inherent delay-SLO violation: by decomposing the data flow
graph at the output of the Bearer selector splitter module,
it moves all bearer-1 traffic away to new workers. The delay
of bearer-0 flows quickly falls below the SLO, so much so
that from this point Batchy can safely increase buffer sizes
across the pipeline, leading to more than 10× improvement
in the cumulative throughput (not shown in the figure).

6 Related Work

Batch-processing in data-intensive applications. Earlier
work hints at the dramatic performance improvement batch-
processing may bring in data-intensive applications and in
software packet I/O in particular [1, 6, 7, 20, 29, 41, 50]. Con-
sequently, batch-based packet-processing has become ubiqui-
tous in software network switches [2, 3, 14, 15, 20, 27, 30, 36],
OS network stacks and dataplanes [3, 6, 8, 11], user-space
I/O libraries [1, 16], and Network Function Virtualization
[19,21,42,45,50]. Beyond the context of performance-centric
network pipelines, batch-processing has also proved useful in
congestion control [37], data streaming [18], analytics [44],
and machine-learning [10].
Dynamic batch control. Clearly, the batch size should be set
as high as possible to maximize performance [1,6,8,11,16,20,
27,29,41,50]; as long as I/O rates are in the range of multiple
million packets per second the delay introduced this way may
not be substantial [16]. Models to compute the optimal batch
size statically and globally for the entire pipeline, subject to
given delay-SLOs, can be found in [6,22,41,50]; [41] presents
a discrete Markovian queuing model and [22] presents a
discrete-time model for a single-queue single-server system
(c.f. Fig. 4) with known service-time distribution. Dynamic
batch-size control was proposed in [29], but again this work
considers packet I/O only. Perhaps the closest to Batchy is
IX [6], which combines run-to-completion and batch-size op-
timization to obtain a highly-efficient OS network data-plane,
and NBA [20], which observes the importance avoiding “the
batch split problem” in the context of data flow graph schedul-
ing. Batchy extends previous work by providing a unique
combination of dynamic internal batch de-fragmentation (in-
stead of applying batching only to packet I/O), analytic tech-
niques for controlling queue backlogs (using a new abstrac-
tion, fractional buffers), and selective SLO-enforcement at the
granularity of individual service chains (extending batching
to bulk flows even in the presence of delay-sensitive traffic).

Data flow graph scheduling. Data flow graphs are universal
in data-intensive applications, like multimedia [43], machine
learning [10], and robot control [39]. However, most of the
previous work on graph scheduling considers a different con-
text: in [23, 33] the task is to find an optimal starting time for
the parallel execution of processing nodes given dependency
chains encoded as a graph, while [13] considers the version of
the scheduling problem where graph-encoded dependencies
exist on the input jobs rather than on the processing nodes.
Neither of these works takes batch-processing into account.
Service chains and delay-SLOs. With network function vir-
tualization [26] and programmable software switches [24, 38]
becoming mainstream, scheduling in packet-processing sys-
tems has received much attention lately. Previous work con-
siders various aspects of NF scheduling, like parallel [42]
implementation on top of process schedulers [21], commod-
ity data-centers [19, 35], and run-to-completion frameworks
in an isolated manner [36], or in hybrid CPU–GPU systems
[15, 20, 48, 49]. Recent work also considers SLOs: [45] uses
CPU cache isolation to solve the noisy neighbor problem
while [50] extends NFV to GPU-accelerated systems and
observes the importance of controlling batch-size to enforce
delay-SLOs. Apart from complementing these works, Batchy
also contributes to recent effort on network function perfor-
mance profiling (BOLT [17]), efficient worker/CPU resource
allocation for enforcing delay-SLOs (Shenango [34]), and
avoiding cross-CPU issues in NF-scheduling (Metron [19]).

7 Conclusions

In this paper we introduce Batchy, the first general-purpose
data flow graph scheduler that makes batch-based processing
a first class citizen in delay-sensitive data-intensive appli-
cations. Using a novel batch-processing profile and an an-
alytic performance modeling framework, Batchy balances
batch-processing efficiency and latency and delivers strict
SLO-compliance at the millisecond scale even at multiple mil-
lions of packets per seconds of throughput. As such, Batchy
could be used as a central component in 5G mobile cores
(e.g., the MGW use case) and industry-automation (e.g., the
robot-controller use case) applications and latency-optimized
network function virtualization (e.g., the VRF use case). It
may also find use outside the networking context, as the batch-
scheduler in streaming, analytics, machine learning, or mul-
timedia and signal processing applications. In these applica-
tions, however, the default run-to-completion execution model
adopted in Batchy may not provide sufficient workload isola-
tion guarantees; future work therefore involves implementing
a WFQ controller based on the model (8)–(10) to incorporate
Batchy into an explicit process-scheduling model.

References

[1] Advanced Networking Lab/KAIST. Packet I/O Engine. https:

644    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/PacketShader/Packet-IO-Engine


//github.com/PacketShader/Packet-IO-Engine.

[2] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli,
and D. Rossi. High-speed software data plane via vector-
ized packet processing. IEEE Communications Magazine,
56(12):97–103, December 2018.

[3] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
userspace packet processing. In ACM/IEEE ANCS, pages 5–16,
2015.

[4] Batchy. https://github.com/hsnlab/batchy.

[5] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M
Shetty. Nonlinear programming: Theory and algorithms. John
Wiley & Sons, 2013.

[6] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. IX: A protected
dataplane operating system for high throughput and low latency.
In USENIX OSDI, pages 49–65, 2014.

[7] Ankit Bhardwaj, Atul Shree, V. Bhargav Reddy, and Sorav
Bansal. A Preliminary Performance Model for Optimizing
Software Packet Processing Pipelines. In ACM APSys, pages
26:1–26:7, 2017.

[8] Jesper Dangaard Brouer. Network stack challenges at increas-
ing speeds. Linux Conf Au, Jan 2015.

[9] The CAIDA UCSD Anonymized Internet Traces - 2019. Avail-
able at http://www.caida.org/data/passive/passive_
dataset.xml, 2019.

[10] Hong-Yunn Chen et al. TensorFlow: A system for large-scale
machine learning. In USENIX OSDI, volume 16, pages 265–
283, 2016.

[11] Jonathan Corbet. Batch processing of network packets. Linux
Weekly News, Aug 2018.

[12] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan
Lu, Jitendra Padhye, Lihua Yuan, and Ming Zhang. Duet:
Cloud scale load balancing with hardware and software. In
ACM SIGCOMM, pages 27–38, 2014.

[13] Mark Goldenberg, Paul Lu, and Jonathan Schaeffer. Trellis-
DAG: A system for structured DAG scheduling. In JSSPP,
pages 21–43, 2003.

[14] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A software NIC
to augment hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berkeley, May
2015.

[15] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon.
Packetshader: A GPU-accelerated software router. In ACM
SIGCOMM, pages 195–206, 2010.

[16] Intel. Data Plane Development Kit. http://dpdk.org.

[17] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal
Pirelli, Katerina Argyraki, and George Candea. Performance
contracts for software network functions. In USENIX NSDI,
pages 517–530, 2019.

[18] Apache Kafka. https://kafka.apache.org.

[19] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca
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Appendix

A Data Flow Graph Scheduling

Scheduling in the context of data flow graphs means to de-
cide which module to execute next. The goal of the scheduler
is to provide efficiency and fairness: efficiency is ultimately
determined by the amount of load the system can process
from the ingress modules to the egress modules and fairness
is generally measured by the extent to which the eventual re-
source allocation is rate-proportional [21]. Here, limited CPU
resources need to be allocated between competing modules
based on the combination of the offered load (or arrival rate)
for the module and its processing cost. Intuitively, if either
one of these metrics is fixed then the CPU allocation should
be proportional to the other metric. Consider the example in
Fig. 2; if the two modules have the same CPU cost but NF1
has twice the offered load than NF2, then we want it to have
twice the CPU time allocated, and hence twice the output
rate, relative to NF2. Alternatively, if the NFs have the same
offered load but NF1 incurs twice the processing cost then
we expect it to get twice as much CPU time, resulting in both
modules having roughly the same output rate.
Explicit scheduling. In explicit scheduling there is a stan-
dalone mechanism that runs side-by-side with the pipeline
and executes modules in the given order. A typical exam-
ple is Weighted Fair Queueing (WFQ) or Completely Fair
Scheduling (CFS), where the user assigns integer weights to
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Figure 11: Rate-proportional fairness in WFQ and run-to-
completion scheduling in the asymmetric rate case (NF1 re-
ceives twice the offered load of NF2 and CPU costs are equal)
and asymmetric cost case (same offered load but NF1 needs
twice as much CPU time to process a packet as NF2). Packet
rate is in mpps and delay is in µsec, and denotes the first
flow while denotes the second flow as in Fig. 2.

646    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://spark.apache.org/docs/latest/streaming-programming-guide.html#setting-the-right-batch-interval
https://spark.apache.org/docs/latest/streaming-programming-guide.html#setting-the-right-batch-interval
https://spark.apache.org/docs/latest/streaming-programming-guide.html#setting-the-right-batch-interval


Batch size [pkt] Rate [Mpps] Delay [% of violations]
Pipeline # modules Null Max NFVnice Batchy/on-off Batchy/full Null Max NFVnice Batchy/on-off Batchy/full Null Max NFVnice Batchy/on-off Batchy/full

L2L3(1) 9 31.5 32 31.8 31.5 31.5 8.29 8.31 4.78 8.29 8.47 0% 100% 100% 0% 0%
L2L3(4) 21 12.6 32 14.53 12.6 29.2 7.49 7.46 5.86 7.26 7.77 0% 100% 13% 0% 0%
L2L3(8) 37 7.0 32 8.1 5.8 30.9 6.26 7.38 4.65 5.18 7.42 0% 100% 0% 0% 0%
L2L3(16) 69 2.6 32 3.92 3.7 28.9 3.63 6.11 2.75 4.94 6.33 0% 100% 0% 0% 0.5%
*L2L3(16) 69 8.5 32 4.7 9.2 24.2 5.24 5.7 2.4 5.25 5.79 0% 75% 2% 8.3% 2.4%
*L2L3(32) 133 3.1 32 3 5.8 24.5 4.47 5.32 1.46 4.61 5.48 0% 63% 0% 1.9% 1.3%
*L2L3(64) 261 1.1 32 2.1 4.9 23.4 2.12 5.17 0.82 3.81 5.03 0% 68% 1% 5.7% 5.2%
GW(1) 12 31.5 32 31.7 31.5 31.5 6.06 6.08 3.11 6.08 6.08 0% 100% 100% 0% 0%
GW(8) 61 5.6 32 6.21 5.6 31.4 4.2 5.22 2.7 4.23 5.25 0% 100% 23.6% 0% 0.6%
GW(16) 117 2.9 32 3.16 2.9 30.7 2.66 4.51 1.47 2.8 4.58 0% 100% 44.3% 0% 0.5%
GW(64) 453 2.2 32 2 2.2 24.4 1.85 3.39 0.54 1.86 3.73 0% 100% 0% 0% 5.2%
VRF(1,1) 11 32 32 32 32 32 5.88 5.76 3.48 5.87 5.92 0% 100% 100% 0% 0%
VRF(2,4) 43 5.3 32 7.1 10.7 22.2 3.49 4.77 2.53 4.37 4.03 0% 100% 54% 0% 2.2%
VRF(16,4) 323 2 32 2 10.8 24.4 1.01 2.7 0.42 2.41 2.84 0% 100% 0% 0% 8.9%
VRF(12,8) 435 1.7 32 1.7 5.9 23.4 0.95 2.34 0.35 1.82 2.5 0% 100% 0% 0% 8.2%
MGW(2,4) 110 4.5 32 4.5 13.7 17.3 1.75 3.15 1.03 1.78 2.03 0% 100% 100% 0% 0%
MGW(4,4) 206 4 32 3.7 11.4 20.2 1.5 2.83 0.8 1.69 2.19 0% 100% 61.6% 0% 1%
MGW(8,4) 398 5.1 32 4.1 20.9 25.7 1.61 2.77 0.6 2.12 2.5 0% 100% 0% 0% 5%
MGW(16,4) 782 4.9 32 4.1 25.9 27.8 1.49 2.34 0.39 2.1 2.25 0% 100% 0% 0% 0.3%
RC(16) 25 2.24 32 3.43 30.14 30.14 0.43 3.27 0.58 3.25 3.27 100% 100% 100% 0% 0%

Table 2: Static evaluation results with the null-controller, max-controller, NFVnice, Batchy/on-off and Batchy/full on different
pipelines: number of modules, average batch-size over the pipeline, packet rate, and delay statistics in terms of the percentage of
control periods when a delay-SLO violation was detected for at least one flow.

modules and the scheduler ensures that the runtime resource
allocation will be proportional to modules’ weight. WFQ does
not provide rate-proportional fairness out of the box; e.g., in
the example of Fig. 2 NF1 will not receive more CPU time
neither when its offered load (asymmetric rate) or process-
ing cost (asymmetric cost) is twice that of NF2 (see Fig. 11).
Correspondingly, WFQ schedulers need substantial tweaking
to approximate rate-proportional fairness, and need further
optimization to avoid head-of-line blocking and late drops
along a service chain [21]. Even running the scheduler itself
may incur non-trivial runtime overhead. Worse still, packets
may get dropped inside the pipeline when internal queues
overflow; this may be a feature (e.g., when we want to apply
rate-limitation or traffic policing via the scheduler) or a bug
(when useful traffic gets lost at an under-provisioned queue).

Run-to-completion execution. This model eliminates the
explicit scheduler and its runtime overhead all together. In
run-to-completion execution the entire input batch is traced
though the data flow graph in one shot, by upstream mod-
ules automatically scheduling downstream modules whenever
there is work to be done [6, 14]. As Fig. 11 shows, this model
introduces much smaller delay vs. explicit scheduling, as it
needs no internal queues. In addition, run-to-completion pro-
vides rate-proportional fairness out-of-the-box, even without
additional tweaking and without the risk of head-of-line block-
ing and internal packet drops. This yields an appealingly sim-
ple “schedulerless” design. On the other hand, since module
execution order is automatically fixed by the pipeline and the
scheduler cannot by itself drop packets, the share of CPU time
a module gets is determined by the offered load only. This
makes enforcing rate-type SLOs through a run-to-completion
scheduler difficult. In our example, if NF2 receives twice the
packet rate of NF1 then it will receive twice the CPU share,
and hence the second flow will have twice the output rate,
even though we may want this to be the other way around.

B Static Evaluations: Detailed Results

The detailed static performance results are given in Table 2.
The table specifies the number of modules in each pipeline,
the batch size statistics averaged across each module in time,
the throughput as the cumulative packet rate summed over all
flows, and the delay-SLO violation statistics as the percentage
of control periods when we detected an SLO violation for
at least one flow, for each of the 5G NF use cases, varying
pipeline complexity using different settings for the parameters
n and m.

C The Fractional Buffer

The below algorithm summarizes the execution model of a
fractional buffer. Here, queue means the internal queue of the
fractional buffer, b is the trigger, q.pop(x) dequeues x packets
from the beginning of queue q, and q.push(batch) appends
the packets of batch to the queue q.

procedure FRACTIONALBUFFER::PUSH(batch)
while queue.size≤ b AND batch.size > 0 do

queue.push(batch.pop(1))
end while
if queue.size = b then

new_batch← queue.pop(b)
process new_batch through the network function
put v’s downstream modules to the run queue
queue.push(batch.pop(batch.size))

end if
end procedure

D The Projected Gradient Controller

Below, we discuss the high-level ideas in the projected gra-
dient controller implemented in Batchy and then we give the
detailed pseudocode.

First, we compute the objective function gradient ∇l =
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[∂l/∂bv : v ∈V ], which measures the sensitivity of the total sys-
tem load l = ∑v∈V lv as of (11) to small changes in the trigger
bv for each module:

∂l
∂bv

=−
r̃vT0,v

b2
v

=−
x̃vT0,v

bv
.

The delay-gradients ∇t f = [∂t f/∂bv : f ∈ F ] are as follows:

∂t f

∂bv
=

{
1
r̃v
+T1,v if v ∈ p f

0 otherwise

Note that the delay t f of a flow f is affected only by the
modules along its path p f , as long as the turnaround time is
considered constant as of (3).

Second, project the objective gradient ∇l to the feasible
(i.e., SLO-compliant) space. For this, identify the flows f that
may be in violation of the delay-SLO: t̃ f ≥ (1−δ)D f .

Third, let M be a matrix with row i set to ∇t f if f is the i-th
flow in delay violation and compute the projected gradient
∆b =−(I−MT (MMT )−1M)∇l. Note that if M is singular or
the projected gradient becomes zero then small adjustments
need to be made to the projection matrix [5].

Fourth, perform a line-search along the projected gradient
∆b. If for some module v the corresponding projected gradient
component ∆bv is strictly positive (it cannot be negative) then
calculate the largest possible change in bv that still satisfies
the delay-SLO of all flows traversing v:

λv = min
f∈F :v∈p f

D f − t̃ f

∆bv
.

Finally, take λ = minv∈V λv and adjust the trigger of each
module v to bv + d∆bvλe. Rounding the trigger up to the
nearest integer yields a more aggressive control.

The below pseudo-code describes the projected gradient
controller in detail. Vectors and matrices are typeset in bold
in order to simplify the distinction from scalars. We generally
substitute matrix inverses with the Moore-Penrose inverse in
order to take care of the cases when M is singular.

procedure PROJECTEDGRADIENT(G ,F ,D, f )

M is a matrix with row i set to ∇t f =
[

∂t f
∂bv

: f ∈ F
]
, where f

is the i-th flow in F with t̃ f ≥ (1−δ)D f
. Gradient projection
while True do

P = I−MT (MMT )−1M
∆b = P∇l
if ∆b 6= 0 then break
w =−(MMT )−1M∇l
if w≥ 0 then return . Optimal KKT point reached
delete row for f from M for some f ∈ F : w f < 0

end while
. Line search
for v ∈V, f ∈ pv do

if ∆bv > 0 then

λv = min
f∈F :v∈p f

⌈
D f − t̃ f

∆bv

⌉

end if
end for
λ = minv∈V λv
for v ∈V do SETTRIGGER(v, bv +∆bvλ)

end procedure

E The Feasibility-recovery Algorithm

The projected gradient controller cannot by itself recover from
situations when a fractional buffer at some module is triggered
at a too small rate to deliver the required delay-SLO to each
flow traversing the module. The below pseudo-code describes
the feasibility recovery process implemented in Batchy, which
is implemented to handle such situations.

procedure FEASIBILITYRECOVERY(G ,F ,D, f )
for f ∈ F do t f ← t̃ f
. Recover from SLO violation
for v ∈V : bv ≥ b̃in

v do
if ∃ f ∈ F : v ∈ p f AND t f ≥ (1− ε)D f then

∆bv = max
f∈F :v∈p f∧
t f≥(1−ε)D f

⌈
D f − t f
∂t f/∂bv

⌉
if ∆bv > bv− b̃in

v then ∆bv← bv− b̃in
v

for f ∈ F : v ∈ p f do t f ← t f −
∂t f
∂bv

∆bv
bv← bv−∆bv

end if
end for
. Injecting a buffer
for v ∈V : bv = 0 do

if ∀ f ∈ F : v ∈ p f it holds that t f < (1− ε)D f then

∆bv = min
f∈F :v∈p f∧
t f <(1−ε)D f

⌈
t f −D f
∂t f/∂bv

⌉
if ∆bv > b̃in

v then ∆bv← b̃in
v

for f ∈ F : v ∈ p f do t f ← t f +
∂t f
∂bv

∆bv
bv← ∆bv

end if
end for
for v ∈V do SETTRIGGER(v, bv)

end procedure

F The Data Flow Graph Decomposition Algo-
rithm

Pipeline decomposition is initiated in Batchy whenever an
inherent delay-SLO violation is detected. This occurs when
a worker is overprovisioned and the turnaround time grows
beyond the SLO for a delay-sensitive flow; in such cases
Batchy migrates delay-insensitive traffic to new workers to
address SLO violations. The below pseudo-code describes the
pipeline decomposition procedure implemented in Batchy.

procedure DECOMPOSEPIPELINE(G ,F ,D, f )
Vt ← /0

Ft ← /0

τt ← /0

for f ∈ (F in ascending order of D f ) do
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if CHECK_DELAY_SLO(Vt ,Ft ,τt , f ) then
Ft ← Ft ∪ f
Vt ←Vt ∪ p f
τt ← τt +∑v∈Pf ,v/∈Vt

(T0v +T1vB)
else

M← /0

MIGRATEFLOWS(Vt ,Ft ,M,F )
end if

end for
end procedure
procedure MIGRATEFLOWS(Vt ,Ft ,M,F )

for g ∈ (F \Ft) do
for v ∈ pg do

if v /∈Vt and v /∈M then
create new worker
add a queue before v
attach queue to new worker
M←M∪ v

end if
end for

end for
end procedure
procedure CHECKDELAYSLO(Vt ,Ft ,τt , f )

for g ∈ (Ft ∪ f ) do
if (τt +∑v∈Pf ,v/∈Vt

(T0v +T1vB)+∑v∈Pg
(T0v +T1v))> Dg

then
return False

end if
return True

end for
end procedure
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Abstract
Reconfigurable datacenter networks (RDCNs) augment tra-

ditional packet switches with high-bandwidth reconfigurable
circuits. In these networks, high-bandwidth circuits are as-
signed to particular source-destination rack pairs based on
a schedule. To make efficient use of RDCNs, active TCP
flows between such pairs must quickly ramp up their sending
rates when high-bandwidth circuits are made available. Past
studies have shown that TCP performs well on RDCNs with
millisecond-scale reconfiguration delays, during which time
the circuit network is offline. However, modern RDCNs can
reconfigure in as little as 20 µs, and maintain a particular con-
figuration for fewer than 10 RTTs. We show that existing TCP
variants cannot ramp up quickly enough to work well on these
modern RDCNs. We identify two methods to address this
issue: First, an in-network solution that dynamically resizes
top-of-rack switch virtual output queues to prebuffer packets;
Second, an endpoint-based solution that increases the conges-
tion window, cwnd, based on explicit circuit state feedback
sent via the ECN-echo bit. To evaluate these techniques, we
build an open-source RDCN emulator, Etalon, and show that
a combination of dynamic queue resizing and explicit circuit
state feedback increases circuit utilization by 1.91× with an
only 1.20× increase in tail latency.

1 Introduction

Modern datacenter applications need high-bandwidth, high–
port-count, low-latency, low-cost networks to connect their
hosts. Unfortunately, traditional packet switches are hitting
CMOS manufacturing limits and are unable to simultaneously
provide both high bandwidth and large numbers of ports [43].
Thus, researchers have proposed augmenting datacenter net-
works with reconfigurable circuit switches (e.g., optical or
wireless) that provide high bandwidth between racks on de-
mand [6, 16, 20, 25, 26, 32, 38, 42, 47, 51, 57].

However, it can be challenging for endpoints to extract
the full potential of reconfigurable datacenter networks (RD-
CNs) that combine both circuit and packet networks. Circuit

switches incur non-trivial reconfiguration delays while they
adjust the high-bandwidth topology, and portions of the circuit
network may be unavailable during these periods. Hence, such
hybrid designs often result in fluctuations between periods
of high bandwidth—when a circuit is provisioned—and low
bandwidth—when the packet network is in use. While periods
of higher bandwidth are attractive in principle, recent propos-
als suggest adjusting the topology frequently. The resulting
bandwidth fluctuations pose a problem for end-host appli-
cations: their active TCP connections must rapidly increase
transmission rates to use the available bandwidth and then
slow down again to avoid massive queuing. In this paper, we
explore these adverse interactions between TCP and RDCNs,
and techniques to mitigate their performance impacts.

To amortize the cost of reconfiguration, circuits must be
provisioned for a long period of time relative to the reconfig-
uration delay of the switch. TCP interactions with RDCNs
were initially explored in the context of switches with mil-
lisecond-scale reconfiguration delays [16, 51]. Given the sub-
millisecond propagation delays found in modern datacenters,
circuits in millisecond-scale reconfiguration networks are en-
abled for many, many round-trip times (RTTs). These early
studies found that TCP was able to adapt to the link speed
changes over these time periods. However, modern recon-
figurable switches that can change link state on the scale of
microseconds [20, 38, 47] have redefined these problems. At
first glance, these lower reconfiguration delays result in lower
overheads and allow more rapid provisioning of bandwidth to
where it is needed. However, when circuit uptimes are only
a few (e.g., <10) RTTs long, TCP’s ramp-up is too slow to
utilize the large (e.g., 10×), temporary bandwidth increase
before the circuit disappears, leading to low circuit utilization
(Section 3). This raises the question of whether an RDCN can
employ the rapid reconfigurations needed to meet changing
traffic demands while also providing good performance.

The performance issues arise from a broken assumption
made by end-hosts about the network: congestion control
algorithms generally assume that bandwidth does not fluc-
tuate at short timescales. We explore the consequences of
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this broken assumption for TCP, and identify two methods, at
different levels in the network stack, for ramping up TCP in
the environment of rapid bandwidth fluctuation.

First, we build on the insight that in RDCNs, bandwidth
fluctuation is not arbitrary; it is part of a known schedule.
Therefore, we can proactively modify the network to trans-
parently influence end-host behavior. In this case, we entice
TCP to ramp up earlier by eliminating packet drops due to
full top-of-rack (ToR) switch virtual output queues (VOQs),
thereby triggering end-hosts to increase their sending rates.
We accomplish this by dynamically increasing the size of
ToR VOQs in advance of provisioning a circuit (Section 5.2).
Dynamic VOQ resizing does not require modifying end-hosts
and, thus, works with existing TCP implementations.

Our second technique involves minor modifications to the
end-host TCP stack to enable further performance improve-
ments. At sending end-hosts, we increase the congestion win-
dow, cwnd, based on explicit circuit state feedback sent by
the reconfigurable switch (Section 5.3). For some rack pair
(S,D), we configure our emulated switch to set the ECN-echo
(ECE) bit in the TCP headers of ACKs sent by D if there is
currently a circuit enabled from S to D . The sender monitors
the ECE stream, explicitly expanding and contracting cwnd
when circuits begin and end, respectively.

To evaluate our solutions, we design and implement an
open-source RDCN emulator, Etalon1, for use on public
testbeds (Section 4). Experiments on 3-rack (48-host) and
8-rack (128-host) emulated testbeds show that dynamic buffer
resizing and explicit circuit state feedback increase circuit uti-
lization by 1.91× while increasing 99th percentile tail latency
by 1.20× (Sections 6.1 and 6.3).

Ultimately, datacenters must adapt to reap the benefits of
RDCNs. In-network changes yield impressive improvements,
and if modifying end-hosts is an option, then even higher
performance is feasible. We make three contributions:

1. We characterize the critical challenge of rapid bandwidth
fluctuation in RDCNs. We use a combination of exper-
imental results and simulations to identify the range of
reconfiguration delays that impact TCP performance, and
show that a wide range of TCP congestion control algo-
rithms suffer from poor performance in these settings.

2. We propose two solutions, at different layers of the network
stack, to ramp up TCP under rapid bandwidth fluctuation:
dynamic buffer resizing and explicit circuit state feedback.
Our evaluation of these techniques shows the benefits that
modifying higher network layers can have for RDCNs.

3. We design and implement an emulation platform, Etalon,
for evaluating hybrid networks end-to-end with real ap-
plications, and use it to demonstrate the efficacy of our
proposed techniques. Etalon is open source [15].

1Named after an optical filter used for solar observation.

2 Background

To better understand the challenges and solutions presented
in this paper, we first examine RDCNs in detail in Figure 1.
While we use optical circuit switching [16, 38, 47, 51] as an
illustrative example for the rest of the paper, the results gener-
alize to other reconfigurable technologies, such as free-space
optics [20, 26] and 60-GHz wireless [25, 32, 57]). We eschew
older millisecond-scale reconfigurable switches [16, 51] for
modern microsecond-scale switches [20, 38, 42, 47], as the
nature of the challenges and solutions differ with timescale.

2.1 Hybrid Network Model
We consider an RDCN of N racks of M servers, with each rack
containing a ToR switch (Figure 1(a)). ToRs connect racks to
an arbitrarily-complex packet network (one or more switches)
and a circuit network composed of a single, central circuit
switch. The packet network is low bandwidth (e.g., 10 Gb/s),
but can make forwarding decisions for individual packets.
The circuit network is high bandwidth (e.g., 80-100 Gb/s),
but makes forwarding decisions for many packets on much
longer timescales to amortize its reconfiguration penalty.

Reconfiguration time is an inherent trade-off in circuit-
switched networks. Instead of providing continuous connec-
tivity between all endpoints, like in a packet network, a circuit
network establishes exclusive, but temporary, connections be-
tween pairs of endpoints. Here, the endpoints are the ToRs.
To expand this design to provide full connectivity, the network
periodically changes which pairs of endpoints are spanned
by a circuit. The physical limits of the specific underlying
technology determine how long this reconfiguration takes.

Following prior work [38, 39, 47], we make the pessimistic
assumption that, during circuit reconfiguration, no circuit
links can be used. This allows us to apply our results to a
broader set of technologies. The packet network, on the other
hand, can be used at all times. Both switches source pack-
ets from N ×N virtual output queues (VOQs) on the ToRs.
The circuit switch itself is queue-less: It functions as a cross-
bar, only allowing configurations that form perfect match-
ings [2, 16, 38, 39, 47, 51]. I.e., a given sender is connected
to exactly one receiver, and vice-versa. Thus, at any point in
time, the circuit switch can drain at most one VOQ on each
ToR, whereas the packet switch may drain multiple VOQs on
each ToR simultaneously.

2.2 Computing Circuit Schedules
The circuit scheduler is tasked with estimating demand on
the network and then computing a set of configurations that
best satisfies this demand (Figure 1(b)). During reconfigura-
tion, the circuit network is unavailable. Therefore, the circuit
scheduler must balance the competing objectives of (1) servic-
ing demand from many different rack pairs by reconfiguring
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Figure 1: Overview of RDCNs.

frequently and (2) achieving high circuit uptime by allowing a
configuration to persist for a (relatively) long time. To achieve
a high relative uptime of 90%, schedules typically hold a par-
ticular circuit state for 9× the duration of a reconfiguration.

Network scheduling in most RDCNs entails mapping
rack-level demand to a set of circuit configurations (port-
matchings) with corresponding time duration2. Any “leftover”
demand is handled by the lower-bandwidth packet switch.
Borrowing terminology from prior work [47], we refer to a
single circuit uptime as a day and the reconfiguration period,
during which the circuit switch is offline, as a night. Night
length is determined by switch technology and is generally
10-30 µs [20,38,39,47]. To allow for at least 90% link uptime,
the average day length must be ≥9× greater than the night
length, or ∼90-270 µs. A series of one or more day/night pairs
that implement a set schedule is a week. Weeks should be suf-
ficiently long (e.g., 2 ms) to amortize schedule computation.

Scheduling is a three-step loop: 1) Demand for the next
week is estimated (e.g., through ToR VOQ occupancy); 2) An
algorithm computes the schedule for the next week; 3) The
schedule is disseminated to the switch. Scheduling algorithms
for RDCNs (e.g., Solstice [39] and Eclipse [2]) use skew and
sparsity in demand to minimize the number of configurations.
Prior work on circuit scheduling informs, but is orthogonal
to, our investigation into the resulting bandwidth fluctuations.

2.3 Schedule Execution
Once a schedule is disseminated to the circuit switch, it runs
the circuit configurations for their respective duration (Fig-
ure 1(c)). After reconfiguration, a flow may transition from
using the packet network to using the circuit network and
vice versa. Because of the short day length, flows likely spend
only a few (e.g., <10) RTTs on the circuit network each day.
Therefore, transport protocols must cope with large (e.g., 10×)
bandwidth variations based on which network a flow traverses.

2A major exception being RotorNet [42], which uses a predetermined
schedule. It still suffers from the same bandwidth fluctuations.

Prior work has avoided the bandwidth fluctuation problem
by segregating traffic into mice and elephant flows and routing
them exclusively over the packet and circuit networks, respec-
tively [16, 38]. Each flow encounters one bandwidth regime,
albeit the elephant flows must pause during circuit downtime.
However, recent work has proven that such segregation is
sub-optimal [19]. We adopt a non-segregated approach, treat-
ing the hybrid network as indivisible and routing all traffic
over available circuit links, thus trading off reduced network
complexity for bandwidth fluctuation.

3 TCP in RDCNs: Trends and Challenges

This section investigates how TCP’s interactions with RDCNs
are evolving with the underlying hardware trends.

3.1 Evolving Reconfiguration Delays
Circuit networks are characterized by their inherently high
bandwidth. However, that comes at the cost of flexibility. With
the exception of pathological examples, switching flexibility
enables the circuit network to better serve diverse workloads.
Improving flexibility by reducing the reconfiguration time has
been an ongoing challenge for hardware designers, with the
hope that circuit technologies will eventually be capable of
approximating packet switching.

A decade ago, the best MEMS (Micro-Electro-Mechanical
Systems) optical switches, which reconfigure by physically
rotating laser-directing mirrors, changed paths on the order
of a few milliseconds. If we generously assume that such a
switch can reconfigure in 1 ms, our 90% uptime target implies
that each configuration will persist for 9 ms. On network
timescales, this is an eternity: Assuming a conservative RTT
of 60 µs, 9 ms is 150 RTTs.

To understand how TCP behaves on RDCNs, we use an em-
ulator, described in Section 4, and analyze the expected TCP
sequence number of flows over time. We run an 8-rack sched-
ule with 1 ms nights and 9 ms days, using the CUBIC [24]
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(a) A decade ago: 1-ms reconfiguration delays and 9-
ms circuit uptimes give TCP time to saturate the link.
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(b) Today: TCP struggles to fill the link for circuits
with short 20 µs reconfiguration delays and 180 µs up-
times.

Figure 2: TCP CUBIC performance, then and now. Cir-
cuit days are shaded in blue. Dotted lines are the corre-
sponding VOQ length.

variant of TCP. 16 emulated hosts on rack 1 each send a flow
to a counterpart host on rack 2. In this experiment, we con-
sider a circuit switch that delivers 8× higher bandwidth than
the packet network. The ToR VOQ capacity is 16 packets. The
expected sequence number is measured as packets leave the
hybrid switch, as described in Section 4.2, and then averaged
across experimental runs.

Figure 2a shows the results of this experiment. Circuit
uptimes are delineated by the blue vertical shaded regions.
Since the sequence number represents the number of bytes
transferred, the slope of a line corresponds directly to a flow’s
achieved bandwidth. We always compare to two baselines:
(1) optimal, which is calculated based on the line rate of
the packet and circuit links (taking into account that the net-
work is offline during reconfigurations), and (2) packet only,
which is calculated assuming that flows always use the packet
network only (and that the packet network is always avail-
able). Intuitively, circuit utilization is how well the slope of a
line matches that of optimal during the blue shaded regions.
Experimental results can never exceed optimal, and any im-
provement over packet only illustrates the benefit of the hybrid
network over a purely packet network. Throughout our anal-
ysis, we use the length of the ToR VOQs, described further
in Section 4.2, to understand TCP’s behavior. For a particular
line on a sequence number graph, the dotted line in the same
color reports the corresponding average VOQ length.

We can see that TCP roughly keeps up with the optimal
throughput of the hybrid network, saturating the link. During
the circuit days, which are shaded in blue, the VOQs contain
approximately 8 packets. Since the VOQs never empty except
for a brief moment when the days begin, there are always
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Figure 3: Simulated flow completion time for transfer-
ring 25 GB of data using 10 flows, for various buffer sizes.

packets to send over the network, resulting in high utilization.
Let us consider how hybrid networks have evolved over the

past decade. Figure 2b shows the same results for a modern
schedule with 20 µs nights and 180 µs days. The ratio of
circuit uptime is the same, 90%, but TCP performs differently.
Because the number of RTTs in a day has decreased from
∼150 to ∼3, TCP does not ramp up before the circuit ends.
For TCP CUBIC, 3 RTTs is simply not enough time to in-
crease the congestion window (cwnd) [24]. Moreover, packet
drops during the subsequent reconfiguration period and the
transition to the packet network cut TCP’s sending rate. While
TCP does recover while using the packet network, the process
repeats at the next cycle, with TCP unable to ramp up to use
the circuit network’s full bandwidth regardless of how many
periods elapse. We can also see this manifested in the VOQ
length: When a day begins, the VOQs drain immediately to
fill the larger bandwidth-delay product (BDP) of the circuit
network, but there are insufficient outstanding packets to do
so completely and insufficient time for TCP to ramp up, so
the VOQs stay empty throughout the day.

To extend these results to a wider range of circuit uptimes,
we ran a simulation that transfers 25 GB of data from one
rack to another using 10 TCP CUBIC flows3. Figure 3 shows
the resulting flow completion times (FCTs) for five orders of
magnitude of circuit uptimes, where each line corresponds
to a different amount of queuing at the ToR switch. In all
cases, the RTT is 60 µs. The takeaways here are twofold:
First, considering the smaller queue sizes (8-32 packets), the
FCTs are low for short (e.g., 10 µs) and long (e.g., 10 ms)
days, yet degrade by 2−4× for moderate values (e.g., 1 ms).
For short circuits, the network is effectively approximating
packet switching, whereas for long circuits, the uptime is suffi-
cient that fluctuating bandwidth is not an issue. Unfortunately,
today’s RDCNs fall in the middle region. Techniques to adapt
TCP for RDCNs, like those presented in this paper, are neces-
sary as long as circuit reconfiguration and propagation delays
place us in a regime similar to this. We predict that the order-
of-magnitude improvement in underlying circuit technology
that is required to reach the "short circuits" region, where the
network approximates packet switching and TCP ramp-up is
no longer a problem, is still many years away.

3The simulator uses 1500B packets while the Etalon emulator uses 9000B
packets. For the experiment in Figure 3, we scale the buffer size by 6× for
easier comparison. I.e., for “8 packets”, the buffer was 8×6 = 48 packets.
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We find inspiration, however, from a second takeaway:
With larger queue sizes (e.g., 64 and 128 packets), the flows
complete quickly regardless of the circuit uptime. This in-
dicates that large buffers build up enough excess in-flight
data to burst packets quickly when more bandwidth becomes
available. We discuss this further in Section 5.1, and this re-
alization become the basis for the dynamic buffer resizing
technique that we propose in Section 5.2.

3.2 Categorizing TCP Variants

Before diving into our technical solutions, it is important to re-
member that TCP comes in many shapes and sizes. The exper-
iments above use TCP CUBIC, a common loss-based variant,
but there are dozens of other variants designed for a plethora
of network contexts, from low latency to high bandwidth to
frequent loss, and more. This section gives an overview of
the broad classes of TCP variants and demonstrates that no
existing variant works well for hybrid networks.

At the highest level, the goal of TCP congestion control is
to maximize the sending rate while fairly sharing the avail-
able bandwidth between flows and avoiding overloading the
network. Determining the sending rate involves looking at sig-
nals from the network to infer its current state. The efficacy of
a congestion control algorithm depends on how well it gleans
information from such signals. Below, we discuss the three
main categories of signals that TCP variants use to detect
congestion (packet loss, network delay, and explicit network
feedback), and discuss how they are effected by RDCNs.

3.2.1 Loss-based Congestion Control

Packet loss is the most commonly used congestion signal. The
intuition here is that when the sender determines that packets
are being lost, it assumes that the losses are a result of network
congestion. Examples include TCP CUBIC [24], Reno [31],
BIC [54], Illinois [40], and Highspeed [18]. In the absence
of loss, these protocols increase their transmission rates to
probe for available bandwidth, until a loss occurs. Different
protocols choose different approaches for this probing, but
all of them limit the aggressiveness of their probing to coex-
ist reasonably with other TCP variants. This results in poor
performance in RDCNs since these protocols cannot ramp up
quickly enough to make use of the high-bandwidth circuits.

3.2.2 Delay-based Congestion Control

Another technique is to use measurements of the packet RTT
in the congestion control protocol. Such protocols use RTT
increases as an indicator of queue buildup in the network,
and therefore congestion. Examples include BBR [5], TCP
Vegas [4], and TIMELY [45]. Vegas and BBR are both rate-
based protocols that use the difference between the offered
load and the achieved throughput to detect queue buildup.

TIMELY uses high-fidelity NIC timers to measure the RTT
and then paces transmission based on delay gradients.

Like other TCP variants, delay-based variants are typically
conservative in their probing for available bandwidth to ensure
fair coexistence. An additional interaction with RDCNs is that,
due to topology differences, the circuit and packet networks
typically have different propagation delays (as discussed in
Section 4.4: 30 µs vs. 10 µs, respectively). This poses a
challenge for TCP variants that use changes in RTT as an
indication of queuing.

3.2.3 Explicit Feedback–based Congestion Control

Finally, some TCP variants rely on explicit feedback from the
network to detect congestion. Two manifestations of this are
XCP [33] and DCTCP [1]. DCTCP responds to switch signals
sent when a switch is likely to drop packets soon. If the act
of a switch accepting a packet would increase its internal
buffer length beyond a threshold (which is set to be lower
than the total capacity of the queue), then the switch accepts
the packet but sets the ECN flag in its TCP header. This flag is
then communicated back to the sender via the packet’s ACK.
The sender monitors this stream of ECN marks to estimate
when the network is close to being congested.

For domains where a single entity controls the senders and
the network, coordination in this manner is a direct technique
for improving performance. In Section 5.3, we propose a
similar technique for adapting to bandwidth fluctuations in
RDCNs that uses the ECE bit in ACKs to notify a sender
when one of its flows transitions between the packet network
and a high-bandwidth circuit.

3.2.4 A Common Underlying Issue

We repeat the experiment in Section 3.1 with the 17 TCP
variants pre-installed on Ubuntu 18.04. Figure 4a shows the
average circuit utilization, which does not exceed 55%. Fig-
ure 4b visualizes the expected TCP sequence number over
time for a selection of 8 of the 17 variants. Most perform
slightly better than CUBIC, with BBR and NV falling behind,
but no variant is aggressive enough to overcome the limitation
that 3 RTTs is insufficient time to ramp up.

These results demonstrate that the challenge of TCP not
ramping up quickly enough is not isolated to CUBIC, and
cannot be solved by simply choosing a more appropriate
TCP variant. Instead, we need a technique that more-directly
interacts with the basic properties of TCP. Furthermore, the
fact that all of the (sometimes quite) different TCP variants
perform similarly (i.e., with surprisingly little variation, given
their technical differences) suggests that they are all hampered
in a similar way. If we address this common issue, then we
have the potential to improve circuit utilization across the
board, for all of these TCP variants.
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4 The Etalon Emulator

One of the key challenges in understanding TCP performance
on RDCNs is performing repeatable experiments at scales
appropriate for modern distributed cloud applications (i.e.,
across dozens or hundreds of hosts). In this section, we present
our open-source emulator, Etalon [15], which measures the
end-to-end performance of real applications and end-host
stacks on emulated RDCNs in public testbeds.

4.1 Overview
Figure 5 presents an overview of Etalon. Each of the N phys-
ical machines emulates a rack of M servers using Docker
containers [11, 44]. Containers are connected to the physical
NIC using macvlan [12], which virtualizes a physical NIC into
multiple virtual NICs, connecting them with a lightweight
layer-2 software switch. tc [49] controls link bandwidths

between the containers and the virtual switch, emulating a
host-to-ToR link.

A separate physical machine emulates the reconfigurable
datacenter network, as described in Section 4.2. Therefore, a
cluster of N +1 physical machines can emulate N ×M virtual
hosts. For convenience, each physical host is connected to
separate control and data networks, but this is not necessary.
The experiment harness communicates with the testbed using
RPyC [48]. Section 4.3 explains how time dilation enables
Etalon to emulate many hosts with high-bandwidth links on a
small testbed.

4.2 Click Software Switch

The (N +1)st machine emulates the RDCN itself, namely the
ToR VOQs and the hybrid switch. This host runs a Click [34]
software switch that uses DPDK [13] to process packets at line
rate. We choose to emulate ToR VOQs in the software switch
to make circuit and packet link emulation straightforward.

Figure 6 shows the software switch’s internals. Packets
enter the switch via DPDK [13] and are sent to an emu-
lated ToR VOQ based on their (source rack, destination rack)
pair. To achieve line rate, Etalon uses the Click elements
FromDPDKDevice [7] and ToDPDKDevice [8] to exchange
packets with the NIC. Packets are pulled from each VOQ
by either the packet switch or the circuit switch. In Figure 6,
packet uplink i is connected to the N VOQs in ToR i, pulling
packets from these VOQs in a round-robin fashion. A packet
pulled by a packet uplink enters the packet switch, where it
is multiplexed over a packet downlink and transmitted using
DPDK. If a packet would be dropped in the packet switch,
it is held at the ToR VOQ (similar to PFC [28]). Circuit link
i is connected to the ith VOQ of each of the N ToRs via a
pull switch. A settable “input” value on pull switch i connects
circuit link i to exactly one VOQ at a time. After packets
traverse the circuit link, they are transmitted using DPDK. Be-
fore releasing a packet, the Click hybrid switch logs its IP and
TCP headers, the current circuit state, and timing information.
These logs are used offline to analyze the expected sequence
number over time. The experiment harness communicates
with the software switch using Click’s control socket.

Our software switch contains three control elements (shown
in gray in Figure 6): a demand estimator, a scheduler, and
a schedule executor. The demand estimator estimates rack-
to-rack demand using ToR VOQ occupancy. The scheduler
computes a schedule from this demand, which is then run
by the schedule executor by modifying the circuit link pull
switches’ “input” value (as described above). Our scheduler
element is pluggable: We implement Solstice [39] as an ex-
ample, but modify its objective to schedule maximal demand
within a set window W (like Eclipse [2]), rather than schedul-
ing all demand in unbounded time. We integrate Solstice,
however, purely for implementation completeness. For our
evaluation, a simple fixed strobe schedule, as described in
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Figure 6: The Click software switch emulates the ToRs, the packet and circuit networks, and scheduling elements.

Section 4.5, is sufficiently illustrative.

4.3 Time Dilation
As the goal of Etalon is to emulate RDCNs on public testbeds,
the machine emulating the hybrid network likely has only
a single high-speed NIC. However, we wish to emulate a
switch with N high-speed ports. We solve this problem with
time dilation (TD). Originally proposed for VMs [21, 22, 50]
and recently containers [35, 55, 56], TD provides accurate
emulation of higher-bandwidth links by “slowing down” the
rest of the machine. We refer to the constant factor by which
time is dilated as the time dilation factor (TDF). We imple-
ment an open-source interposition library called LibVirtu-
alTime (LibVT) [37], which applies TD to many common
syscalls without requiring applications changes. We catch:
clock_gettime(), gettimeofday(), sleep(), usleep(),
alarm(), select(), poll(), and setitimer(). Extending
LibVT to other syscalls is trivial. We verify that common
network benchmarks (iperf [29], iperf3 [30], netperf [27],
sockperf [41], flowgrind [58,59], ping [46]) perform correctly
with TD. We also limit CPU time for containers with respect
to TD. Using time dilation to emulate high-speed links is one
of Etalon’s main advantages.

4.4 Etalon Testbeds
We use two testbeds for our experiments: a CloudLab cluster
emulating 8 racks (128 hosts) and a local cluster emulating 3
racks (48 hosts). We use the large CloudLab cluster to validate
the Etalon emulator, and run our experiments on the small
local cluster. For the contributions in this paper, we do not
require a large cluster or complex workload.

The local testbed uses four servers to emulate three racks
of 16 machines plus the hybrid switch, as described in Sec-
tion 4.2 and Figure 5. Each physical machine has 2 × 20-

core 2.8 GHz Intel Xeon E5-2680v2 and is connected to a
40 Gb/s Ethernet data network (with jumbo frames). We also
use Etalon on the public CloudLab APT cluster [9,14], where
nine R320 machines emulate eight racks of 16 hosts each and
the hybrid switch. Each APT machine has an 8-core 2.1 GHz
Intel Xeon E5-2450 and is connected to a 40 Gb/s Ethernet
data network (with jumbo frames). At the time of our experi-
ments, the CloudLab APT cluster was configured for 56 Gb/s
InfiniBand, so we manually reconfigured the switches into
40 Gb/s Ethernet mode.

We use a TDF of 20× across our experiments. For ex-
ample, in our 3-rack cluster, we emulate a 3-port 10 Gb/s
(0.5 Gb/s)4 packet switch and a 3-port 80 Gb/s (4 Gb/s)
circuit switch. Outside of TD, the network can produce
3× 0.5 Gb/s+ 3× 4 Gb/s = 13.5 Gb/s of total traffic, far be-
low our data network’s 40 Gb/s physical link speed. Each
per-container link (i.e., each intra-rack link between the ToR
and a host) is limited to 10 Gb/s (0.5 Gb/s).

Packet switch up/down links have 5 µs (100 µs with TDF)
of delay each. Prior work assumes that the circuit network
consists of ToRs connected to a pod-level central circuit
switch, thus requiring long fibres (in the case of an optical
network) [16]. To model this, we conservatively configure the
circuit delay as 30 µs (600 µs), or 3× higher than the total
packet link delay (5 µs× 2 = 10 µs total). To avoid out-of-
order packet delivery, if there is a circuit scheduled between
racks S and D, then we disable the packet switch for rack
pair (S,D) both during the reconfiguration leading up to a
circuit and during the circuit period itself. Therefore, between
S and D there exists exactly one connection: either packet or
circuit. This is an example of non-segregated routing: Mice
and elephant flows traverse the same links.

4Values in parenthesis represent bandwidth/delay outside of TD, i.e.,
actual bandwidth and delay values.
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Figure 7: An 8-rack strobe schedule. All (src rack, dst
rack) pairs can communicate 1/7th of the time.

4.5 Schedule and Workload
This paper focuses specifically on congestion control mecha-
nisms, and therefore we believe that a simple traffic pattern is
sufficient. With a couple of exceptions, we use the following
schedule and workload for all experiments. Extending this
investigation to complex workloads is future work.

Schedule We use a strobe schedule that, for a cluster with
R racks, creates a circuit from a rack to each other rack 1

R−1
of the time5. Figure 7 shows how, for an 8-rack schedule,
a rack connects to each other rack in turn, repeating after a
week. Solstice [39] would produce this schedule for an all-
to-all workload such as a MapReduce shuffle [10]. For our
experiments, a 25-rack cluster (described next) with 20 µs
nights and 180 µs days (90% uptime) yields a week of dura-
tion (20 µs+180 µs)× (25−1) = 4800 µs. The time between
circuit days is 4800−180 = 4620 µs.

Workload The 16 emulated hosts on rack 1 each use flow-
grind [58, 59] to send a TCP flow to their counterpart host on
rack 2. The other racks are idle. We choose a flow duration
of 3000 weeks, or 14.4 seconds for a 25-rack strobe schedule
with 4800 µs per week. Each set of three weeks is treated as
one experimental run, and the 1000 runs are averaged when
reporting expected sequence number and VOQ length.

To better illustrate our contributions, we take advantage
of our simple workload, described above, to emulate a larger
testbed. Since our workload involves only racks 1 and 2, from
the perspective of either of those racks, the cluster size effects
only the duration between circuits. Therefore, we mimic a
larger cluster by artificially lengthening this duration. We use
this technique to run a 25-rack strobe schedule on our 3-rack
local testbed.

4.6 Validating Etalon
We validate Etalon on the 8-rack CloudLab cluster using a
strobe schedule while sending TCP traffic between pairs of
racks for 2 seconds. ACKs are diverted around the switch
for this one experiment to avoid ACK loss. By bypassing the
hybrid switch, ACKs are transported instantly across the core
of the emulated network, enticing TCP to ramp up faster, thus

5A rack need not connect to itself, so there are R−1 days in a week.

Expected Experimental Mean Std. Dev.

Circuit day 180µs 180.25µs 0.04µs
Week length 1400µs 1400.02µs 0.05µs

Packet utilization 10 Gbps 9.93 Gbps 0.75 Gbps
Circuit utilization 80 Gbps 79.99 Gbps 1.60 Gbps

Table 1: Validating Etalon’s timing and throughput.

nullifying the bandwidth fluctuation described in Section 3.
This is, of course, an unrealistic technique for actual networks,
but we employ it to validate the Etalon emulator. We present
timing and bandwidth results in Table 1. These results demon-
strate that the emulator is sufficiently accurate to achieve the
desired circuit schedule times (night and day lengths) and
packet and circuit bandwidths.

5 Overcoming Rapid Bandwidth Fluctuation

As discussed in Section 3, the short uptimes (e.g., < 3 RTTs)
of modern reconfigurable datacenter networks create band-
width fluctuations such that TCP is unable to fully utilize the
available bandwidth. This section describes two distinct tech-
niques, implemented at different network layers, that adapt
TCP to this challenge: 1) dynamic VOQ resizing that transpar-
ently prebuffers packets at the ToR before a circuit activates,
and 2) explicit circuit state feedback to end-hosts that directly
triggers a cwnd increase. Before introducing our techniques,
however, we first consider a simpler, static-buffer approach
that illustrates the bandwidth and latency trade-off that our
solutions must navigate.

Section 3.2 presented the general signals that TCP variants
use to infer network congestion. Increasing switch buffer sizes
masks packet loses caused by queue overflows. For loss-based
TCP variants like CUBIC and New Reno, removing this con-
gestion signal triggers ramp-up. However, this technique is
not appropriate for delay-based variants such as TIMELY or
Vegas. We demonstrate in Section 6.2 that for variants which
rely at least partially on loss as a congestion signal, hiding
congestion-based drops is effective at increasing circuit uti-
lization. Our second technique, explicit circuit state feedback
via the ECE-echo bit, is more general since it provides a di-
rect signal to end-hosts, but of course has the trade-off that it
requires modifying end-hosts.

5.1 Leveraging VOQs to Increase Bandwidth

It is well understood that switch buffer sizing presents a trade-
off between high bandwidth and low latency [5, 17]. The
more traffic that can be queued up in the network, the better
it will be able to saturate links in the presence of transient
demand—or, in our case, capacity variations—because pack-
ets will be available to burst immediately in the event of a
capacity increase. However, when packets incur queuing la-
tency, the effective round-trip time increases. Because latency
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(and tail latency in particular) impacts short flow—and po-
tentially job—completion times, much work on datacenter
transport protocols has focused on achieving high bandwidth
while keeping queues short [1, 5]. As a starting point toward
mitigating the effects of bandwidth fluctuation in RDCNs,
we experiment with various sizes of static ToR VOQs and
demonstrate that loading the network with excess traffic does
help saturate the high-bandwidth circuits, but, as expected, at
the cost of high latency.

Using the schedule and workload described in Section 4.5,
we configure the hosts to run TCP CUBIC, vary the size of
the ToR VOQs from 4 to 128 packets, and examine the impact
on circuit utilization. Figure 8a. shows utilization measured
as the aggregate achieved bandwidth of all of a rack’s flows
versus the maximum bandwidth the flows should have been
able to achieve, averaged over all of the circuit periods in an
experiment. For small buffers, circuit utilization is low. Large
buffers fare better, with 64 packets building up a sufficient
“backlog” of packets to absorb the bandwidth fluctuations.

Figure 8b shows the expected TCP sequence number dur-
ing the lead-up to a circuit day, for various queue sizes, as
measured by the software switch (Section 4.2). The slope of
each line is a flow’s achieved bandwidth. The optimal and
packet only baselines are computed as in Figure 2. Larger
buffers yield a steady convergence to optimal. While TCP
grows at a rate of one packet per RTT, regardless of buffer
size, larger switch buffers allow flows to queue up a packet
backlog which then drains during circuit uptime, as shown by
the dotted VOQ lines. The VOQ length is level throughout
the packet network period.

Finding the “proper” VOQ size for a hybrid switch is dif-
ficult. Common wisdom is to use the bandwidth-delay prod-
uct (BDP) of the network, but the BDP is different for the
packet network and the circuit network: ∼2 and ∼34 packets,
respectively. A time-weighted average based on the sched-
ule suggests ∼8 packets may be appropriate. As shown in
Figure 8a, however, none of these values provide full circuit
utilization: 64+ packets are needed6. However, we cannot
simply adopt queues this large because of their high latency.
In a datacenter, where link lengths are short, queuing delay
impacts tail latency, which in turn directly impacts distributed
applications [1]. Figure 8c shows 99th percentile tail latency
for the various ToR VOQ sizes, measured as each packet en-
ters and leaves the software switch. As expected, the packet
and circuit latencies both grow as we increase the buffer size.

We want the best of both worlds: Can we achieve full
circuit utilization while simultaneously not incurring a latency
penalty? No static buffer configuration achieves this. The
following subsections describe two techniques to meet this
goal: dynamic buffer resizing (Section 5.2) and explicit circuit
state feedback to end-hosts (Section 5.3).

6Our later experiments show that ∼45 packets may suffice.

5.2 Dynamic Buffer Resizing

We propose dynamically resizing ToR VOQ capacity to rem-
edy the effects of rapid bandwidth fluctuations on TCP. This
is an entirely in-network solution, which, to our knowledge,
has not been explored in the context of network scheduling.
In this section, we focus specifically on loss-based variants of
TCP, such as CUBIC.

Our key insight is that bandwidth fluctuation within RD-
CNs is not arbitrary: It is part of a schedule and is known in
advance. With this knowledge, we can align in-network buffer
sizes with either the packet switch or the circuit switch in real
time. By itself, a packet switch can effectively achieve full
throughput with a very small buffer (e.g., 4 packets), whereas
large buffers cause queuing delay, as shown in Figure 8c.
The previous section demonstrated that a circuit switch needs
larger buffers (e.g., 64+ packets) to achieve full utilization due
to bandwidth fluctuations. With dynamic buffer resizing, we
take a step in the right direction by keeping buffers shallow
when the packet switch is in use and deep when a circuit is
active. Doing this naïvely (i.e., resize buffers when the circuit
comes up) provides little benefit; there is simply not enough
time in one day for TCP to grow to fill the circuit link, re-
gardless of how large the buffer. Data needs to be available
immediately at circuit start (either buffered or via a high TCP
sending rate); ramping up ex post facto means that circuit
time has already been wasted.

Instead, we dynamically resize ToR VOQs for a (source,
destination) rack pair in advance of a circuit starting for that
pair. This implies that if the circuit schedule dictates that
this rack pair should spend most of the time using the packet
switch, then small buffers will be used to avoid incurring addi-
tional latency. Increasing a rack pair’s VOQ size provides two
benefits: 1) Packets build up in the queue and are then drained
immediately when the circuit activates, creating a momentary
burst of traffic, and 2) When the buffered packets drain at
circuit start, they generate a surge of ACKs that increase the
sender’s congestion window (cwnd) and sending rate. Exactly
how quickly cwnd grows depends on the TCP variant in use.

Our buffer resize function has three parameters:
resize(s,b, τ), where s and b are the small and large buffer
sizes in packets, respectively, and τ is how early a buffer
should be resized in advance of the circuit start. For the rest of
the paper, we use s = 16 and b = 50. τ is a trade-off: Resizing
too late means low circuit utilization, but resizing too early
increases latency. We vary τ in experiments in Section 6.1.
While the value of τ impacts the circuit utilization/latency
trade-off, we find that waiting to resize the buffer back to s
after a circuit stops (and thus retaining large buffers for a
short time while the packet network comes back into use)
has no benefit. Thus, we always reset buffers back to s
immediately after circuit teardown.
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Figure 8: Tradeoffs of various static VOQ sizes. Larger buffers improve utilization at the cost of latency.

5.3 Incorporating Explicit Network Feedback

Dynamically resizing ToR VOQs is a transparent, in-network
technique that raises circuit utilization without harming la-
tency and does not require end-host modifications. However,
this approach is intended for loss-based congestion control
schemes and does entail additional latency and buffering. In
this section, we propose a direct form of circuit state feedback
that applies to more TCP variants (e.g., delay and explicit-
feedback–based schemes) and ultimately mitigates this la-
tency penalty. Of course, the trade-off is that techniques in-
volving explicit feedback require modifying the TCP conges-
tion control algorithm running at the sender, making them
non-transparent and more difficult to deploy.

The idea behind explicit network feedback is simple: No-
tify the sender when a flow is traversing a circuit and should
ramp up. However, the delay in this feedback reaching the
sender is crucial. Since circuits are live for as few as 3 RTTs,
a signal that requires 1 RTT to propagate to the sender (e.g.,
marking ECN bits of outgoing flows), provides limited bene-
fit. We tighten the feedback loop by instead marking ACKs
as they return to the sender. For some rack pair (S,D), we
modify our software switch to set the ECN-echo (ECE) bit in
the TCP headers of ACKs sent by D, if there is currently a
circuit enabled from S to D. The hybrid switch examines the
circuit state and marks ACKs after they traverse the circuit
link, so the “freshness” of the feedback signal is equal to the
propagation delay of a single packet link between the ToR
and the sending end-host, S.

We create a pluggable TCP congestion control module
for Linux called reTCP (REconfigurable datacenter network
TCP) which looks at this stream of ECE bits, multiplicatively
increasing its cwnd by α ≥ 1 on 0→ 1 transitions and decreas-
ing it by 0 ≤ β ≤ 1 on 1→ 0 transitions. reTCP is an edge
detector: It modifies cwnd on ECE-bit state transitions, not for
every packet. We set α = 2 and β = 0.5, based on the results of
a parameter sweep. Intuitively, this provides higher circuit uti-
lization because TCP will immediately have a higher sending
rate when a circuit starts.

Our reTCP implementation is based on TCP New
Reno [23] and relies on its congestion control algorithm, in
addition to the above-mentioned technique. reTCP also re-

quires a single-line kernel change, as the kernel only passes
ECE flags to congestion control modules if ECN is enabled.
Enabling ECN shrinks cwnd upon receiving an ECE-marked
packet (because ECE bits typically convey congestion infor-
mation), so we leave ECN disabled and instead modify the
kernel to always pass the ECE flag to reTCP.

reTCP is beneficial on its own by increasing the TCP send-
ing rate when a circuit begins, but in combination with dy-
namic buffer resizing, its benefits multiply. As a starting point,
consider the period when the packet network is active, oper-
ating with static VOQs (not dynamic buffer resizing). The
sender ramps up to a steady state that saturates the packet
network bandwidth and VOQ capacity. Suppose that we trig-
ger a reTCP cwnd increase during this regime. The network
would drop the additional packets and the sender would slow
back down, with no benefit. However, dynamic buffer resiz-
ing is specifically designed to provide extra VOQ capacity to
flows before circuit start, but the usefulness of this capacity
and for how long it must be available is determined by the
sender’s ramp-up rate. The two techniques play to each other’s
strengths: Combining them, dynamic buffer resizing provides
more capacity for flows, and then reTCP fills it. When used in
this way, we modify reTCP to mark ACKs not at the start of
a circuit, but at the start of the dynamic buffer resizing period.
By increasing cwnd at the same time that the VOQs grow,
reTCP quickly fills the larger capacity, dramatically reducing
the duration of prebuffering required to achieve full utiliza-
tion. Bringing the collaboration full-circle, reTCP’s ramp-up
burst reduces the prebuffering duration, which in turn lessens
the time fraction during which the network experiences deep
buffers, thus mitigating the ensuing tail latency spike. Sec-
tion 6.3 visualizes how dynamic buffer resizing and reTCP
jump-start the TCP sender just in time for the circuit network.

Instead of communicating circuit state on-demand via
ACKs and their ECE bits, an alternative design is to inform
end-hosts directly using control plane messages, similar to
how the ToRs are notified to increase their VOQ capacity
prior to circuit start. This would allow the sender to increase
its cwnd exactly when desired, instead of after the first marked
ACK arrives. However, this requires invasive modifications
to the end-hosts, since the sender TCP stack would need to
communicate with the central scheduler. Our approach is
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(b) Expected TCP sequence number vs. time, for vari-
ous prebuffering durations. Circuit days are shaded in
blue. Dotted lines are the corresponding VOQ length.
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Figure 9: Dynamic buffer resizing improves circuit utilization at the expense of tail latency.
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less reactive but more practical because it uses existing TCP
header fields, modifies only a few lines of code, and avoids
distributed control challenges like time synchronization.

6 Evaluation

This section demonstrates that our two proposed techniques,
dynamic buffer resizing and explicit circuit state feedback,
overcome the challenge of bandwidth fluctuation in RDCNs
and enable TCP to take advantage of high-bandwidth circuits
when they become available. Additionally, we demonstrate
that dynamic buffer resizing provides a general benefit to
many TCP variants (beyond CUBIC).

6.1 Evaluating Dynamic Buffer Resizing

To test the efficacy of dynamic in-network buffer resizing, we
repeat the experiments from Section 5.1, but with dynamic
instead of static ToR VOQs. Using the schedule and workload
described in Section 4.5, we configure the hosts to run TCP
CUBIC and vary how early buffer resizing takes place, τ,
from 0 µs to 3000 µs, in intervals of 300 µs. Buffers switch
between a short capacity of 16 packets and a large capacity
of 50 packets. Figure 9a shows average circuit utilization for
the various τ. The earlier we resize, the higher utilization
flows achieve. With τ = 1800 µs, circuit utilization increases
by 1.87× (48.6% → 91.1%), compared to 16-packet static
queues.

Figure 9b shows a graph of the expected TCP sequence
number and the VOQ length during the lead-up to a circuit

day, for selected τ. VOQ length hovers at the small buffer
size until dynamic buffering takes effect, then grows steadily,
and finally drains sharply when the higher bandwidth circuit
activates. For situations that see high utilization, sufficiently
many ACKs return and ramp up the sending rate before the
VOQs drain completely, which, for TCP CUBIC, is effectively
achieved at τ = 1800 µs.

The queue length required for high utilization is a function
of the BDPs of the packet (10 Gb/s×2×5 µs = 100 Kb) and
circuit (80 Gb/s× 30 µs = 2.4 Mb) networks. These BDPs
differ by ∼32 9000 B packets. Assuming a few extra packets
due to store-and-forward delays, between 35 and 40 packets
must be in the VOQs before circuit start to keep the network
fully utilized. The matches the growth of the VOQ line for
τ = 1800 µs (91% utilization) in Figure 9b.

The remaining question is whether this high utilization
comes at the cost of high latency, as it did for static buffers.
Median latency does not increase until τ = 2700 µs; we omit
the results for brevity. Figure 9c shows how dynamic resiz-
ing affects 99th percentile tail latency. Tail latency depends
on the length of the VOQs, which increases with the pre-
buffering duration. The 1.87× circuit utilization increase is
paired with a tail latency growth of 2.33× (123 µs→ 286 µs).
These results can be compared to static VOQs in two ways:
(1) Comparing τ = 1800 µs to a static buffer with similar
throughput (64 packets), dynamic buffering improves tail la-
tency by 0.59× (484 µs→ 286 µs); (2) Comparing to a static
buffer with similar tail latency (32 packets), the circuit utiliza-
tion increases by 1.19× (76.7%→ 91.1%). Ultimately, this
experiment demonstrates that dynamic buffer resizing has the
potential to meet our goal of achieving full circuit utilization
with less of an impact on latency than large static buffers, but
its latency penalty, especially at the tail, is still unreasonably
high for distributed applications.

Given that resizing provides large buffers to flows for a
significant amount of time (e.g., 41% of the schedule for
τ = 1800 µs) it is surprising that tail latency is not as bad as
static buffers for comparable circuit utilization. We can use
large buffers for a large fraction of time because when circuits
are torn down and flows transition back to the packet network,
the resulting bandwidth reduction (8× in these experiments)
causes TCP to dramatically scale back its sending rate at
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blue. Dotted lines are the corresponding VOQ length.
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Figure 11: reTCP achieves high utilization with much lower tail latency than dynamic buffers alone.

the same moment when the VOQs shrink. In effect, switch-
ing back to the packet network resets TCP and the networks
experiences a period of short queues while TCP recovers.

However, a 2.33× tail latency increase is unacceptable for
many latency-sensitive applications. We have not yet met our
goal of achieving the “best of both worlds” of high through-
put without the corresponding latency penalty. Section 6.3
demonstrates how reTCP completes the picture, achieving
high utilization with only a 1.20× tail latency increase.

6.2 Benefits for all TCP Variants
In Section 3.2.4, we demonstrated that the problem of band-
width fluctuation impacts many TCP variants we tested. Re-
turning to the experiment in Figure 4, we evaluate the variants’
performance with dynamic buffer resizing, with τ = 1200 µs.
Figure 10 shows the utilization achieved by the 17 variants.
The variants experience an average utilization improvement of
36%, compared to static 16-packet buffers, without any modi-
fications to the end-hosts. Resizing earlier (e.g., τ = 1800 µs)
yields still-higher utilization, but we present τ = 1200 µs to
better illustrate how the TCP variants respond differently.
BBR [5] and TCP NV [3], being delay-based protocols that
seek to keep buffer occupancy low, naturally do not take ad-
vantage of dynamic buffer resizing and realize only 43% and
54% utilization, respectively. Note that DCTCP [1] relies on
explicit congestion feedback from network switches in the
form of a stream of ECN marks set if adding a packet to
a switch queue would cause the queue’s capacity to pass a
threshold. To accurately support DCTCP in the Etalon em-
ulator, we modify the hybrid switch to mark packets in this
way, at 10 packets when using small queues (16 packets) and
31 packets when using large queues (50 packets).

6.3 Evaluating Explicit Network Feedback
Conveying circuit state information to end-hosts provides an
explicit signal that TCP can use to adapt to bandwidth fluctu-
ations in RDCNs. In isolation, reTCP yields higher average
circuit utilization than static buffers alone, with an average
improvement of 2.65% across the static buffer capacities in
Figure 8a. An improvement of 6% with 32-packet buffers

is the most significant. For 64 and 128–packet queues, both
static buffers and reTCP achieve full utilization. We omit the
graphs for brevity.

When used in combination with dynamic buffer resizing,
reTCP achieves high circuit utilization with a shorter pre-
buffering duration and, in turn, lower tail latency. Figure 11
repeats the experiments from Section 6.1, but with both dy-
namic buffer resizing and reTCP, and instead varies τ from
0 µs to 300 µs, in intervals of 50 µs. Note that the x-axis
range in Figure 11b is different than in Figure 9b to better
visualize the range of τ values during which reTCP ramps
up. Figure 11a shows that the two techniques working to-
gether achieve a 1.91× (48.7%→ 92.7%) circuit utilization
improvement compared to 16-packet static buffers, but with
lower τ than dynamic buffers alone: at τ = 150 µs instead of
τ = 1800 µs. The impact of this order-of-magnitude decrease
in prebuffering duration manifests itself in lower tail latency
in Figure 11c: an only 1.20× increase (123 µs → 147 µs),
compared to 2.33× for dynamic buffer resizing alone.

Comparing Figures 9b and 11b, the steady VOQ growth is
replaced by a jump as cwnd doubles, sending more packets
into the network. At τ = 150 µs, the sender injects sufficiently
many packets to grow the VOQ large enough to saturate the
higher BDP of the circuit network, when it becomes active.
The rate of growth is quick: It keeps the required prebuffering
duration short, which reduces tail latency. Overall, dynamic
buffer resizing and reTCP overcome the challenge of band-
width fluctuation in RDCNs, increasing circuit utilization by
1.91× with an only 1.20× tail latency penalty.

6.4 Limitations

Increasing the VOQ size does not, on its own, lead to higher
circuit utilization. The TCP sender must ramp up to fill the
additional capacity. Section 6.1 shows that this ramp-up may
take milliseconds, posing a challenge for schedules that allo-
cate circuits between some rack pairs frequently: The circuit
downtime period may be too short to support this lengthy
ramp-up. E.g., the time between circuits for a 3-rack cluster
with a strobe schedule (week length = 400 µs) is 220 µs, far
lower than the τ = 1800 µs deemed necessary by Section 6.1.
Investigating this case revealed that as the prebuffer start time
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approaches the end of the previous circuit, the residual high
sending rate quickly fills the VOQs, causing the network to
enter a mode similar to using large static buffers, with high
tail latency. reTCP ameliorates this problem.

7 Related Work

Research into RDCN design [6,16,20,25,26,32,38,47,51,57]
and scheduling [2,36,39] has yet to examine TCP-related chal-
lenges for modern RDCNs. c-Through [51] proposes resizing
end-host network buffers, but for the purpose of traffic batch-
ing, which is necessary to ensure that senders have enough
data to fill a circuit when it becomes available. This is only
an issue for circuits with long (e.g., millisecond-scale) upti-
mes, not the microsecond-scale technologies we address in
this paper. Other work avoids the bandwidth fluctuation prob-
lem by segregating traffic to use either the packet or circuit
networks exclusively [16, 38]. Our techniques simplify the
network design by not segregating traffic.

Many of the TCP variants in Section 3.2 are tailored for
high-bandwidth networks, but they assume that the bandwidth
does not change on short timescales. Prior work [52] has ex-
amined how TCP reacts to bandwidth fluctuations in wireless
networks, but these networks are fundamentally different than
RDCNs. Wireless networks have lower bandwidths and BDPs
than RDCNs, and unlike in wireless networks, bandwidth
fluctuations in RDCNs are not random: They are part of a
schedule that is known in advance. This insight enables proac-
tive techniques like dynamic VOQ resizing.

8 Conclusion

With new advances in RDCN technology comes the need to
reexamine the protocols running on top of these networks.
This paper proposes two techniques to adapt TCP to the rapid
bandwidth fluctuation inherent in microsecond-scale recon-
figurable datacenter networks: 1) In the network, we transpar-
ently resize ToR VOQ buffers prior to circuit activation to help
TCP ramp up, but at the cost of higher tail latency; 2) Involv-
ing the end-hosts opens the door for high utilization without a
latency penalty by incorporating explicit circuit state signals
sent from the hybrid switch. Etalon provides opportunities for
future work, e.g., exploring multicast-enabled optical circuit
switching (e.g., Blast [53]), providing a cross-cutting evalua-
tion of different RDCN designs, and investigating challenges
in future sub-µs RDCNs. While this paper focuses on TCP
specifically, our investigation into implicit and explicit tech-
niques for adapting the sending rate to the state of the network
applies to congestion control in general. We believe that our
experiences speak to the need for an end-to-end evaluation of
future RDCN designs.
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Abstract
Large service providers use load balancers to dispatch

millions of incoming connections per second towards
thousands of servers. There are two basic yet critical
requirements for a load balancer: uniform load distribution
of the incoming connections across the servers and
per-connection-consistency (PCC), i.e., the ability to map
packets belonging to the same connection to the same
server even in the presence of changes in the number of
active servers and load balancers. Yet, meeting both these
requirements at the same time has been an elusive goal.
Today’s load balancers minimize PCC violations at the price
of non-uniform load distribution.

This paper presents CHEETAH, a load balancer that supports
uniform load distribution and PCC while being scalable,
memory efficient, resilient to clogging attacks, and fast at
processing packets. The CHEETAH LB design guarantees
PCC for any realizable server selection load balancing
mechanism and can be deployed in both a stateless and
stateful manner, depending on the operational needs. We im-
plemented CHEETAH on both a software and a Tofino-based
hardware switch. Our evaluation shows that a stateless version
of CHEETAH guarantees PCC, has negligible packet process-
ing overheads, and can support load balancing mechanisms
that reduce the flow completion time by a factor of 2−3x.

1 Introduction

The vast majority of services deployed in a datacenter need
load balancers to spread the incoming connection requests
over the set of servers running these services. As almost
half of the traffic in a datacenter must be handled by a
load balancer [41], the inability to uniformly distribute
connections across servers has expensive consequences for
datacenter and service operators. The most common yet cost-
ineffective way of dealing with imbalances and meet stringent
Service-Level-Agreements (SLAs) is to over-provision [13].

Existing LBs rely on a simple hash computation of the
connection identifier to distribute the incoming traffic among

the servers [3, 13, 15, 20, 37, 41, 53]. Recent measurements
on Google’s production traffic showed that hash-based load
balancers may suffer from load imbalances up to 30% [13].

A natural question to ask is why existing load balancers do
not rely on more sophisticated load balancing mechanisms,
e.g., weighted round robin [51],“power of two choices” [33],
or least loaded server. The answer lies in the extreme
dynamicity of cloud environments. Services and load bal-
ancers “must be designed to gracefully withstand traffic
surges of hundreds of times their usual loads, as well as
DDoS attacks” [3]. This means that the number of servers
and load balancers used to provide a service can quickly
change over time. Guaranteeing that packets belonging
to existing connections are routed to the correct server
despite dynamic reconfigurations requires per-connection-
consistency (PCC) [32] and has been the focus of many
previous works [3, 13, 15, 20, 32, 37, 41]. When only the
number of load balancers change, hash-based load balancing
mechanisms guarantee PCC as packets reach the correct
server even when hitting a different LB [3, 37]. To deal with
changes in the numbers of servers, existing LBs either store
the “connection-to-server” mapping [13, 20, 32, 41] or let the
servers reroute packets that were misrouted [3, 37]. In both
cases, a hash function helps mitigate PCC violations, though
it cannot completely avoid them (more details in Sect. 2).
To summarize, existing load balancers cannot uniformly
distribute connections across the servers as they rely on hash
functions to mitigate (but not avoid) PCC violations.

This paper presents the design and evaluation of CHEETAH,
a load balancer (LB) system with the following properties:
• dynamicity, the number of LBs and servers can increase or

decrease depending on the actual load;
• per-connection-consistency (PCC), packets belonging to

the same connection are forwarded to the same server;
• uniform load distribution, by supporting advanced load

balancing mechanisms that efficiently utilize the servers;
• efficient packet processing, the LB should have minimal

impact on communication latency; and
• resilience, it should be hard for a client to “clog” the LB
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and the servers with spurious traffic.
CHEETAH takes a different approach compared to

existing LBs. CHEETAH stores information about the
connection mappings into the connections themselves. More
specifically, when a CHEETAH LB receives the first packet
of a connection, it encodes the selected server’s identifier
into a cookie that is permanently added to all the packet
headers exchanged within this connection. Unlike previous
work, which relies on hash computations to mitigate PCC
violations, the design of CHEETAH completely decouples
the load balancing logic from PCC support. This in turn
allows an operator to guarantee PCC regardless of the
“connection-to-server” mapping produced by the chosen load
balancing logic. The goal of this paper is not the design of
a novel load balancing mechanism for uniformly spreading
the load but rather the design of CHEETAH as a building
block to support PCC for any realizable load balancing
mechanisms without violating PCC. As for resilience, we
cannot expose the server identifiers to users as this would
open the doors to clogging a targeted server. CHEETAH
is designed with resilience in mind, thwarting resource
exhaustion and selective targeting of servers. To this end,
CHEETAH generates “opaque” cookies that can be processed
fast and can only be interpreted by the LB.

We present two different implementations of CHEETAH,
a stateless and a stateful version. Our stateless and stateful
CHEETAH LBs carefully encode the connection-to-servers
mappings into the packet headers so as to guarantee levels of
resilience that are no worse (and in some cases even stronger)
than existing stateless and stateful LBs, respectively. For
instance, our stateful LB increases resilience by utilizing
a novel and fast stack-based mechanism that dramatically
simplifies the operation of today’s cuckoo-hash-based stateful
LBs, which suffer from slow insertion times.

In summary, our contributions are:
• We quantify limitations of existing stateless and stateful

LBs through large-scale simulations. We show that the
quality of the load distribution of existing LBs is 40 times
worse than that of an ideal LB. We also show stateless LBs
(such as Beamer and Faild) can reduce such imbalances at
the price of increasing PCC violations.

• We introduce CHEETAH, an LB that guarantees PCC for
any realizable load balancing mechanisms. We present a
stateless and a stateful design of CHEETAH, which strike
different trade-offs in terms of resilience and performance.

• We implement our stateless and stateful CHEETAH LBs in
FastClick [5] and compare their performance with state-
of-the-art stateless and stateful LBs, respectively. We also
implement both versions of CHEETAH with a weighted
round-robin LB on a Tofino-based switch [6].

• In our experiments, we show the potential benefits of
CHEETAH with a non-hash-based load balancing mech-
anism. The number of processor cycles per packet for both
our stateless and stateful implementation of CHEETAH is

comparable to existing stateless implementations and 3.5x
less than existing stateful LBs.

2 Background and Motivation

Internet organizations deploy large-scale applications using
clusters of servers located within one or more datacenters
(DCs). We provide a brief background on DC load balancers,
discuss related work, and show limitations of the existing
schemes. We do not discuss geo-distributed load balancing
across DCs. Further, we distinguish between stateless LBs,
which do not store any per-connection state, and stateful LBs,
which store some information about ongoing connections.

Multi-tier load balancing architectures. Datacenter
operators assign a Virtual IP (VIP) address to each operated
service. Each VIP in a DC is associated with a set of servers
providing that service. Each server has a Direct IP (DIP)
address that uniquely identifies the server within the DC.

A LB inside the DC is a device that receives incoming
connections for a certain VIP and selects a server to provide
the requested service. Each connection is a Layer 4 connection
(typically TCP or QUIC). For each VIP, a LB partitions
the space of the connection identifiers (e.g., TCP 5-tuples)
across all the servers (i.e., DIPs) associated with that VIP. The
partitioning function is stored in the LB and is used to retrieve
the correct DIP for each incoming packet.

A large-scale DC may have tens of thousands of servers and
hundreds of LBs [13, 15, 32]. These LBs are often arranged
into different tiers (see Fig. 1). The 1st-tier of LBs are faster
and less complex than those in subsequent tiers. For example,
a typical DC would use BGP routers using ECMP forwarding
at the 1st-tier, followed by Layer 4 LBs, in turn followed by
Layer 7 LBs and applications [20]. Similar to previous work
on DC load balancing, we consider Layer 7 LBs to be at
the same level as the services [13, 20, 41]. Any 1st tier LB
receiving a packet directed to a VIP, performs a look up to
fetch the set of 2nd tier LBs responsible for that VIP. It then
forwards the packet towards any of these LBs. The main
goal of the 1st-tier is demultiplexing the incoming traffic at
the per VIP level towards their dedicated 2nd tier LBs. The
2nd-tier LBs perform two crucial operations: (i) guaranteeing
(PCC) [32] and (ii) load balancing the incoming connections.

2.1 Limits of Stateless Load Balancers

Traditional stateless LBs cannot guarantee PCC. A
stateless LB partitions the space of connection identifiers
among the set of servers. The partitioning function is
stored in the LB and does not depend on the number of
active connections. Most stateless LBs, e.g., ECMP [9, 19]
& WCMP [53], store this partitioning in the form of an
indirection table, which maps the output of a hash function
modulo the size of the table to a specific server [3, 19, 37, 53].
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Figure 1: A traditional datacenter load balancing architecture.

A uniform hash scheme maps each server to an equal number
of entries in the indirection table. When a LB receives a
packet, it extracts the connection identifier from the packet
and feeds it as input to a hash function. The output of the hash
modulo the size of the indirection table determines the index
of the entry in the table where the LB can find to which server
the packet should be forwarded. If the number of servers
changes, the indirection table must be updated, which may
cause some existing connections to be rerouted to the new
(and wrong) server that is now associated with an entry in the
table, i.e., a PCC violation.

Advanced stateless LBs cannot always guarantee PCC.
Beamer [37] and Faild [3] introduced daisy-chaining to
tackle PCC. They encapsulate in the header of the packet
the address of a “backup” server to which a packet should be
sent when the LB hits the wrong server. This backup server
is selected as the last server that was assigned to a given
entry in the indirection table before the entry was remapped.
PCC violations are prevented as long as (i) one does not
perform two reconfigurations that change the same entry in
the table twice (as only one backup server can be stored in
the packet) and (ii) one can simultaneously reconfigure all the
LBs (see [37] for an example).

Fig. 2a shows the percentage of broken connections
(i.e., PCC violations) with and without daisy chaining in
our large-scale simulations. We used the same parameters,
traffic workloads, and cluster reconfiguration events derived
from previous work on real-world DC load balancing, i.e.,
SilkRoad [32]. Namely, we simulated a cluster of 468
servers and we generated a workload using the same traffic
distribution of a large web server service. We performed DIP
updates, i.e. removal or additional of servers from the cluster,
using different frequency distributions. SilkRoad reports that
95% of their clusters experience between 1.5 and 80 DIP
updates/minute and provide distributions for the update time.
We define the number of broken connections as the number of

connections that have been mapped to at least two different
servers during their starting and ending times. Fig. 2a shows
that Beamer and Faild (plotted using the same line) still break
almost 1% of the connections at the highest DIP update
frequency, which may lead to an unacceptable level of service
level agreement (SLA) violations [32].

Hash-based LBs cannot uniformly spread the load. We
now investigate the ability of different load balancing mech-
anisms to uniformly spread the load across the servers for
a single VIP. Similarly to the Google Maglev work [13],
we define the imbalance of a server as the ratio between
the number of connections active on that server and the
average number of active connections across all servers.
We also define the system imbalance as the maximum
imbalance of any server. The imbalance of a simulation
run is the average imbalance of the system during the
entire duration of the simulation. We discuss different load
metrics in Sect. 4. Using the same simulation settings as
described above, we compare (i) Beamer [37]/Faild [3],
which use a uniform hash, (ii) Round-Robin [50], which
assigns each new connection to the next server in a list,
(iii) Power-Of-Two [33], which picks the least loaded among
two random servers, and (iv) Least-Loaded [50], which
assigns each new connection to the server with fewest active
connections. We note that Round-Robin, Power-Of-Two,
and Least-Loaded require storing the connection-to-server
mapping, hence they cannot be supported by Beamer/Faild.
In this simulation, we do not change the size of the cluster
but rather vary only the number of connections that are active
at the same time in the cluster between 20K and 200K. We
choose this range of active connections to induce the same im-
balances (15%-30%) observed for uniform hashes in Google
Maglev [13]. Fig. 2b shows the results of our simulations. We
note that Beamer-like hash-based LBs outperform consistent
hashing by a factor of 2x. Round-Robin outperforms a
Beamer-like LB by a factor of 1.2x. When comparing these
schemes with Power-Of-Two, we observe a reduction in
imbalance by a factor of 10x. Finally, Least-Loaded further
reduces the imbalance by an additional factor of 4x. These
results show that a more uniform distribution of loads can be
achieved by storing the mapping between connections and
servers, though one still has to support PCC when the LB pool
size changes. We note that today’s stateful LBs [13,20,32,41]
rely on different variations of uniform-hash, thus suffer from
imbalances similarly to Beamer.

Beamer can reduce imbalance at the cost of a greater
number of PCC violations. We tried to reduce the
imbalances in Beamer by monitoring the server load
imbalances and modify the entries in the indirection
table accordingly. We extended Beamer with a
dynamic mechanism that gets as input an imbalance
threshold and remove a server from the indirection table
whenever its load is above this threshold. The server is
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Figure 2: Analysis of PCC-violations and load imbalances of state-of-the-art load balancers. To ease visibility, points are
connected with straight lines along the x-axis.

re-added to the table when its number of active connections
drops below the average. Note that, if an entry in the
indirection table changes its server mapping twice, Beamer
will break those existing connections that were relying on
the initial state of the indirection table. Fig. 2c shows the
percentage of broken connections for increasing imbalance
thresholds. We set the number of active connections to 70K
(corresponding to an average 30% imbalance in Fig. 2b).
We note that guaranteeing an imbalance of at most 10%
would cause 3% of all connections to break. Even with an
imbalance threshold of 40% one would still observe 0.1%
broken connections because of micro-bursts. Hence, even
this extended Beamer cannot guarantee PCC and uniform
load balancing at the same time.

2.2 Limits of Stateful Load Balancers
Stateful LBs store the connection-to-server mapping in a
so-called ConnTable for two main reasons: (i) to preserve
PCC when the number of servers changes and (ii) to enable
fine-grain visibility into the flows.

Today’s stateful LBs cannot guarantee PCC. Consider
Fig. 1 and the case in which we add an additional stateful LB
for a certain VIP. The BGP routers, which rely on ECMP, will
reroute some connections to a LB than does not have the state
for that connection. Thus, this LB does not know to which
server the packet should be forwarded unless all LBs use an
identical hash-based mechanism (and therefore experience
imbalances). Therefore, existing LBs (including Facebook
Katran [20], Google Maglev [13], and Microsoft Ananta [41])
rely on hashing mechanisms to mitigate PCC violations.
However, this is not enough if the number of servers also
changes, then some existing connections will be routed to
an LB without state, hence it will hash the connection to the
wrong server, thus breaking PCC.

Today’s stateful LBs rely on complex and slow data
structures. State-of-the-art LBs rely on cuckoo-hash
tables [40] to keep per-connection mappings. These data
structures guarantee constant time lookups but may require
non-constant insertion time [43]. These slow insertions may
severely impact the LB’s throughput, e.g., a throughput
loss by 2x has been observed on OpenFlow switches when
performing ∼ 60 updates/second [34].

2.3 Service Resilience and Load Balancers

Load balancers are an indispensable component against
clogging Distributed Denial of Service (DDoS) attacks, e.g.,
bandwidth depletion at the server and memory exhaustion at
the LB. Dealing with such attacks is a multi-faceted problem
involving multiple entities of the network infrastructure [30],
e.g., firewalls, network intrusion detection, application gate-
ways. This paper does not focus on how the LB fits into this
picture but rather studies the resilience of the LB itself and
the resilience its design provides to the service operation.

LBs shield servers from targeted bandwidth depletion
attacks. An LB system should guarantee that the system
absorb sudden bursts due to DDoS attacks with minimal
impact on a service’s operation. Today’s LB mechanisms
rely on hash-based load balancing mechanisms to provide a
first pro-active level of defense, which consists in spreading
connections across all servers. As long as an attacker does
not reverse engineer the hash function, multiple malicious
connections will be spread over the servers. A system should
not allow clients to target specific servers with spurious traffic.

Stateful LBs support per-connection view at lower re-
silience. Stateful LBs provide fine-grained visibility into
the active connections, providing resilience to the service
operation, e.g., by selectively rerouting DDoS flows. At the
same time, stateful LBs are a trivial target of resource deple-
tion clogging DDoS attacks: incoming spurious connections
add to the connection table rapidly exhaust the limited LB
memory (e.g., [37]) or grow the connection table aggres-
sively, rapidly degrading performance even with ample mem-
ory [34]. Stateless LBs can inherently withstand clogging
DDoS, sustaining much higher throughput, but can only offer
per-server statistics visibility to the service operation.

Having analyzed the above limitations of existing load bal-
ancers, we conclude this section by asking the following ques-
tion: “Is it possible to design a DC load balancing system that
guarantees PCC, supports any realizable load balancing
mechanism, and achieves similar levels of resiliency of today’s
state-of-the-art LBs?”
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3 The CHEETAH Load Balancer

In this section, we present CHEETAH, a load balancing
system that supports arbitrary load balancing mechanisms and
guarantees PCC without sacrificing performance. CHEETAH
solves many of the today’s load balancing problems by
encoding information about the connection into a cookie that
is added to all the packets of a connection.1 CHEETAH sets the
cookie according to any chosen and realizable load balancing
mechanism and relies on that cookie to (i) guarantee future
packets belonging to the same connection are forwarded to
the same server and (ii) speed up the forwarding process in
a stateful LB, which in turn increases the resilience of the
LB. Understanding what information should be encoded into
the cookie, how to encode it, and how to use this information
inside a stateless or stateful LB is the goal of this section. We
start our discussion by introducing the stateless CHEETAH
LB, which guarantees PCC and preserves the same resilience
and packet processing performance of existing stateless LBs.
We then introduce the stateful CHEETAH LB, which improves
the packet processing performance of today’s stateful LBs,
and present an LB architecture that strikes different tradeoffs
in terms of performance and resilience. We stress the fact
that CHEETAH does not propose a novel LB mechanism but
is a building block for supporting arbitrary LB mechanisms
without breaking PCC (we show the currently implemented
LB mechanisms in Sect. 4).

A naïve approach. We first discuss a straightforward
approach to guarantee PCC that would not work in practice
because of its poor resiliency. It entails storing the identifier
of a server (i.e., the DIP) in the cookie of a connection. In
this way, an LB can easily preserve PCC by extracting the
cookie from each subsequent incoming packet. We note that
such naïve approaches are reminiscent of several previous
proposals on multi path transport protocols [10, 39], where
the identifiers of the servers are explicitly communicated
to the clients when establishing multiple subflows within
a connection. There is at least one critical resiliency issue
with this approach. Some clients can wait to establish
many connections to the same server and then suddenly
increase their load. This is highly undesired as it leads to
cascade-effect imbalances and service disruptions [47].

3.1 Stateless CHEETAH LB

The stateless CHEETAH LB: encoding an opaque offset
into the cookie. We now discuss how we overcome the
above issues in CHEETAH. We aim to achieve the same
resiliency levels2 of today’s production-ready stateless LBs
(e.g., Faild [3]/Beamer [37, 47]) while supporting arbitrary
load balancing mechanisms and guaranteeing PCC. We

1We discuss legacy-compatibility issues in Sect. 4
2See Sect 2.3 for details of stateless/stateful load balancing resiliency.
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Figure 3: CHEETAH stateless LB operations.

assume a single tier LB architecture and defer the discussion
of multi-tier architectures to later in this section.

The CHEETAH stateless LB keeps two different types of
tables (see Fig. 3): an AllServers table that maps a server
identifier to the DIP of the server and a VIPToServers table
that maps each VIP to the set of servers running that VIP.
The AllServers table is mostly static as it contains an
entry for each server in the DC network. Only when servers
are deployed in/removed from the DC is the AllServers
table updated. The VIPToServers table is modified when
the number of servers running a certain service increases/
decreases, a more common operation to deal with changes in
the VIP current demands.

When the LB receives the first packet of a connection
(top part of Fig. 3), it extracts the set of servers running the
service (i.e., with a given VIP) from the VIPToServers table,
selects one of the servers according to any pre-configured load
balancing mechanism, and forwards the packet.3 For every
packet received from a server (middle part of Fig. 3), the LB
encodes an “opaque” identifier of the server mapping into the
cookie for this connection. To do so, CHEETAH computes the
hash of the connection identifier with a salt S (unknown to
the clients), XORs it with the identifier of the server, and adds
the output of the XOR to the packet header as the cookie. The
salt S is the same for all connections. When the LB receives
any subsequent packet belonging to this connection (bottom
part of Fig. 3), it extracts the cookie from the packet header,
computes the hash of the connection identifier with the salt
S, XORs the output of the hash with the cookie, and uses the
output of the XOR as the identifier of the server. The LB then
looks up the DIP of the server in the AllServers table.

Stateless CHEETAH guarantees PCC. CHEETAH relies
on two main design ideas to avoid breaking connections:

3How to implement different LB mechanisms in programmable hardware
and software LBs is shown in Sect. 4.
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(i) moving the state needed to preserve the mapping between
a connection and its server into the packet header of the
connection and (ii) using the more dynamic VIPToServers
table only for the 1st packet of a connection. Subsequently, the
static AllServers table is used to forward packets belonging
to any existing connection. This trivially guarantees PCC. We
defer discussion of multi-path transport protocols to Sect. 6.

Compared to existing stateless LBs Stateless CHEETAH
achieves similar resiliency. Binding the cookie with the
hash of the connection identifier brings one main advantage
compared to the earlier naïve scheme, as an attacker must first
reverse engineer the hash function of the LB in order to launch
an attack targeting a specific server. This makes CHEETAH
as resilient as other production-ready stateless LBs. We note
that CHEETAH is orthogonal to DDoS mitigation defence
mechanisms, especially when deployed in reactive mode. We
further discuss CHEETAH resilience, including support for
multi path transport protocols, in Sect. 6.

Stateless CHEETAH supports arbitrary load balancing
mechanisms. All the reviewed state-of-the-art LBs (even
stateful ones) are restricted to uniform hashing when it comes
to load balancing mechanisms — as any other mechanism
would break an unacceptable number of connections when the
number of servers/LBs changes. In contrast, whenever a new
connection arrives at a stateless CHEETAH LB, CHEETAH
selects a server among those returned from a lookup in the
VIPToServers table. The selected server may depend upon
the specific load balancing mechanism configured by the
service’s operator. We note that the selection of the server may
or may not be implementable in the data-plane. The CHEETAH
LB guarantees that once the mapping connection-to-server
has been established by the LB logic (not necessarily at the
data-plane speed), all the subsequent packets belonging that
that connection will be routed to the selected server. Since
the binding of the connection to the server is stored in the
packet header, CHEETAH can support LB mechanisms that go
well beyond uniform hashing. For instance, an operator may
decide to rely on “power of two choices” [33], which is known
to reduce the load imbalance by a logarithmic factor. Another
service operator may prefer a weighted round-robin load
balancing mechanism that uses some periodically reported
metrics (e.g., CPU utilization) to spread the load uniformly
among all the servers.

Lower bounds on the size of the cookie. In CHEETAH, the
size of the cookie has to be at least log2 k bits, where k is the
maximum number of servers stored in the AllServers table.
Therefore, the size of the cookie grows logarithmically in the
size of the number of servers. One question is whether PCC
can be guaranteed using a cookie whose size is smaller than
log2(k) and the memory size of the LB is constant. We defer
proof of the following theorem to App. A.

Theorem 1. Given an arbitrarily large number of connections,
any load balancer using O(1) memory requires cookies of

size Ω(log(k)) to guarantee PCC under any possible change
in the number of active servers, where k is the overall number
of servers in the DC that can be assigned to the service with a
given VIP.

In App. A, we generalize the above theorem to show
a certain class of advanced load balancing mechanisms,
including round-robin and least-loaded, requires cookies with
a size of at least log2(k) bits even in the absence of changes
in the set of active servers.

While the above results close the doors to any
sublogarithmic overhead in the packet header; in practice,
operators may decide to trade some PCC violations and load
imbalances for a smaller sized cookie. We refer the reader to
App. B for a discussion about how to implement CHEETAH
with limited size cookies.

3.2 Stateful CHEETAH LB

We also designed a stateful version of CHEETAH to support
a finer level of visibility into the flows than that offered by
stateless LBs. A stateful LB can keep track of the behaviour
of each individual connection and support complex network
functions, such as rate limiters, NATs, detection of heavy-
hitters, and rerouting to dedicated scrubbing devices (as in
the case of Microsoft Ananta [41] and CloudFlare [30]).
In contrast to existing LBs, our stateful LB guarantees
PCC (inherited from the stateless design) and uses a more
performant ConnTable that is amenable to fast data plane
implementations. In the following text we say that PCC is
guaranteed if a packet is routed to the correct server as long
as an LB having state for its connection exists.

The stateful CHEETAH load balancer: encoding table
indices in the packet header. As discussed in Sect. 2,
today’s stateful LBs rely on advanced hash tables, e.g.,
cuckoo-hashing [40], to store per-connection state at the
LB [32]. Such data structures offer constant-time data-plane
lookups but insertion/modification of any entry in the table
requires intervention of the slower control plane or complex &
workload-dependant data structures (e.g., Bloom filters [32],
Stash-based data structures [43]), which are both complex
and hard to tune for a specific workload.

We make a simple yet powerful observation about stateful
tables that any insertion, modification, or deletion of an
entry in a table can be greatly simplified if a packet carries
information about the index of the entry in the table where
its connection is stored. Since datacenters may have tens of
billions of active connections, we need to devise a stateful
approach where the size of the cookie is explicitly given as
input. In a stateful CHEETAH LB (see Fig. 4), we store a set of
m ConnTable tables that keep per-connection statistics and
DIP mappings. We also use an equal number of ConnStack
stacks of indices, each storing the unused entries in its
corresponding ConnTable.
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Figure 4: CHEETAH stateful LB operations for the 1st packet
of a connection. We do not show the stateless cookie for
identifying the stateful LB. The VIP-to-servers is included
within the LB-logic and not shown. The server performs
Direct Server Return (DSR) so the response packet does
not traverse the load balancers. Subsequent packets from the
client only access their index in the correspoding ConnTable.

For the sake of simplicity, we first assume there is only one
LB and one ConnTable with its associated ConnStack, i.e.,
m = 1. Whenever a new connection state needs to be installed,
CHEETAH pops an index from ConnStack and incorporates
it as part of the cookie in the packet’s header. It also stores the
selected server and the hash of the connection identifier with
a salt S into the corresponding table entry. This hash value
allows the LB to filter out malicious attempts to interfere with
legitimate traffic flows, similarly to SilkRoad [32]. Whenever
a packet belonging to an existing connection arrives at the
LB, CHEETAH extracts the index from the cookie and uses
it to quickly perform a lookup only in the ConnTable. Note
that insertion, modification, and deletion of connections can
be performed in constant time entirely in the data plane. We
explain details of the implementation in Sect. 4.

The number of connections that we can store within a single
ConnTable is equal to 2r, where r is the size of the cookie.
In practice, the size of the cookie may limit the number of
connections that can be stored in the LB. We therefore present
a hybrid approach that uses a hash function to partition the
space of the connection identifiers into m partitions. As for
any stateful table, m should be chosen high enough so the total
number of entries m∗2r is suitable. The same cookie can be
re-used among connections belonging to distinct partitions.

A hybrid datacenter architecture. Stateful LBs are
typically not deployed at the edge of the datacenter for two
reasons: they are more complex and slower compared to
stateless LBs. As such, they are a weak point that could

compromise the entire LB availability. Therefore, we propose
a 2-tier DC architecture where the first tier consists of
stateless CHEETAH LBs and the second tier consists of
stateful CHEETAH LBs. The stateless LB uses the first bytes
of the cookie to encode the identifier of a stateful load
balancer, thus guaranteeing a connection always reaches
the same LB regardless of the LB pool size. The stateful
load balancer uses the last bytes of the cookie to encode
per-connection information as described above.

4 Implementation

The simplicity of our design makes CHEETAH amenable
to highly efficient implementations in the data-plane. We
implemented stateful and stateless CHEETAH LBs on
FastClick [5], a faster version of the Click Modular
Router [26] that supports DPDK and multi-processing.
Previous stateless systems, such as Beamer [37], have also
relied on FastClick for their software-based implementation.
We also implemented stateless and stateful versions of
the CHEETAH LB with a weighted round-robin LB on a
Tofino-based switch using P4 [6].4 We can only make a
general P4 implementation available due to Tofino-related
NDAs. Both implementations are available at [4]. We first
discuss the critical question of where to actually store the
cookie in today’s protocols and then describe the FastClick
and P4-Tofino implementations.

Preserving legacy-compatibility. Our goal is to limit the
amount of modifications needed to deploy CHEETAH on
existing devices. Ideally, we would like to use a dedicated
TCP option for storing the CHEETAH cookie into the packet
header of all packets in a connection. However, this would
require modifications to the clients, which would be infeasible
in practice. We therefore identified three possible ways to
implement cookies within existing transport protocols without
requiring any modifications to the clients’ machines: (i)
incorporate the cookie into the connection-id of QUIC
connections, (ii) encode the cookie into the least significant
bits of IPv6 addresses and use IPv6 mobility support to
rebind the host’s address (the LB acts as a home agent),
and (iii) embed the cookie into part of the bits of the TCP
timestamp options. In this paper, we implemented a proof-
of-concept CHEETAH using the TCP timestamp option as
explained in App. C.5 . We note that similar encodings of
information into the TCP timestamp have been proposed in
the past but require modifications to the servers [39]. The
stateless CHEETAH LB can transparently translates the server
timestamps with the encoded timestamps without interfering

4Detailed performance benchmarking of CHEETAH on the Tofino switch
is subject to an NDA. The Tofino implementations follow the description
of the mechanisms presented in Sect. 3, use minimal resources, and incur
neither significant performance overheads nor require packet recirculation.

5We verified in App. C that the latest Android, iOS, Ubuntu, and MacOS
operating systems support TCP timestamp options but not Windows.
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with TCP timestamp related mechanisms (i.e., RTT estimation
and protections against wrapped sequences [8]). Therefore,
no modifications are required to the servers for stateless
mode unless the datacenter operator wants to guarantee Direct
Server Return (DSR), i.e., packets from the servers to the
client do not traverse any load balancer. In that case, the server
must encode the cookie into the timestamp itself. The cookie
must also be sent back by the server for stateful mode, as the
load balancer would not be able to find the stack index for
returning traffic. Server modifications are described in C.2.
We leave the implementation of CHEETAH on QUIC and IPv6
as future work. We note that a QUIC implementation would
be easier and more performant since parsing TCP options is
an expensive operation in both software and hardware LBs.

4.1 FastClick implementation
The FastClick implementation is a fully-fledged
implementation of CHEETAH that supports L2 & L3
load balancing and multiple load balancing mechanisms
(e.g., round-robin, power-of-2 choices, least-loaded server).
The LB supports different load metrics including number
of active connection and CPU utilization. The LB decodes
cookies for both stateless and stateful modes using the TCP
timestamp as described above, and can optionally fix the
timestamp in-place if the server is not modified to do it.

Parsing TCP options. Each TS option has a 1-byte identifier,
1-byte length, and then the content value. Options may
appear in any order. This makes extracting a specific option
a non-trivial operation [10]. We focus on extracting the
timestamp option T Secr from a packet. To accelerate this
parsing operation, we performed a statistical study over 798M
packets headers from traffic captured on our campus.

Table 1 shows the most common patterns observed across
the entire trace for packets containing the timestamp option.
The Linux Kernel already implements a similar fast parsing
technique for non-SYN(/ACK) packets. We first consider
non-SYN packets (i.e., “Other packets” in the table). Our
study shows that 99.95% of the packets have the following
pattern: NOP (1B) + NOP (1B) + TimeStamp (10B) possibly
followed by other fields. When a packet arrives, we can easily
determine whether it matches this pattern by performing a
simple 32-bit comparison and checking that the first two bytes
are NOP identiers and the third one is the Timestamp id. We
process the remaining 0.05% of the traffic in the slow path. We
now look at SYN packets. Consider the first row in the table,
i.e., MSS (4B) + SAckOK (2B) + TimeStamp (10B) + SAck
+ EOL. To verify if a packet matches this pattern, we perform
a 64-bit wildcard comparison and check that the first byte is
the MSS id, the fifth byte is the SAckOK id, and the seventh
byte is the TimeStamp id. We can apply similar techniques
for the remaining patterns matchable with 64 bits. Some types
of hosts generate packets whose patterns are wider than 64
bits, which is the limit of our x86_64 machine. We then rely

Table 1: TCP Options pattern

SYN packets
MSS SAckOK Timestamp [NOP WScale] 49.86%
MSS NOP WScale NOP NOP Timestamp [SAckOK EOL] 44.49%
MSS NOP WScale SAckOK Timestamp 4.53%
Slow path 1,12%

SYN-ACK packets
MSS SAckOK Timestamp [NOP WScale] 76.85%
MSS NOP WScale SAckOK Timestamp 18.79%
MSS NOP NOP Timestamp [SAckOK EOL] 1.69%
MSS NOP WScale NOP NOP Timestamp [SAckOK EOL] 1.55%
Slow path 1,12%

Other packets
NOP NOP Timestamp 98.46%
NOP NOP Timestamp [NOP NOP SAck] 1.49%
Slow path 0,05%

on one SSE 128bit integer wildcard comparison to verify
such patterns. The remaining 2.24% of patterns are handled
through a standard hop-by-hop parsing following the TCP
options Type-Length-Value chain. Finally, we note that we
can completely avoid the more complex parsing operations for
SYNs and SYN/ACKs if servers use TCP SYN cookies [12]
(see App. C for more details).

Load balancing mechanisms. CHEETAH supports any re-
alizable LB mechanisms while guaranteeing PCC. We im-
plemented several load balancing mechanisms that will be
evaluated using multiple workloads in Sect. 5.2. Among
the load-aware LB mechanisms, we distinguish between
metrics that can be tracked with or without coordination.
Without any coordination, the LB can keep track of the
number of packets/bytes sent per server and an estimate of the
number of open connections based on a simple SYN/FIN
counting mechanism.6 For LB approaches that require
coordination with the servers, our implementation supports
load distribution based on the CPU utilization of the servers.
Note that using a least-loaded server for coordination-based
approaches is a bad idea as a single server will receive all the
incoming connections until its load metric increases and is
reported to the LB, ultimately leading to instabilities in the
system. Therefore, we decided to implement the following
two load-aware balancing mechanisms, which we introduced
in Sect. 2: (i) power-of-2 choices and (ii) a weighted round
robin (WRR). For WRR, we devised a system where the
weights of the servers change according to their relative
(CPU) loads. We increase the weights for servers that are
underutilized depending on the difference between their load
and the average server load. More formally, the number
of buckets Ni assigned to server i is computed as Ni =

round(10 Lavg
(1−α)∗Li+α∗Lavg

) where Li is the load of a server, and
α is a factor that tunes the speed of the convergence, which
we set to 0.5. A perfectly balanced system would give N = 10
buckets to each server. An underutilized server gets more than

6We envision an ad-hoc mechanism to signal closed connection between
the LB and the server would make the estimate reliable in the future.
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N buckets (in practice limited to 3N) while an overloaded
server gets less than N buckets (lower bounded by 2).

4.2 P4-Tofino prototype
The stateless CHEETAH LB follows exactly the descrip-
tion from Sect. 3.1. We store the all-servers and the
VIP-to-servers tables using exact-match tables. We rely on
registers, which provide per-packet transactional memories, to
store a counter that implements the weighted-round-robin LB.
We note that implementing other types of LB mechanisms
such as least-loaded in the data-plane is non trivial in P4 since
one would need to extract a minimum from an array in O(1).
This operation will likely requires to process the packet on
the CPU of the switch. The insertion/deletion of the cookie on
any subsequent non-SYN packet can be performed in the data-
plane. The stateful CHEETAH LB adheres to the description
in Sect. 3.2. We use P4 registers to enable the insertion of
connections into the ConnTable at the speed of the data-plane.
We store the elements of the ConnStack stack in an array of
registers, the ConnTable into an array of registers, and the
pointer to the head of the stack in another register.

5 Evaluation

The CHEETAH LB design allows datacenter operators to
unleash the power of arbitrary load balancing mechanisms
while guaranteeing PCC, i.e., the ability to grow/shrink the
LB and DIP pools without disrupting existing connections.
In this section, we perform a set of experiments to assess
the performance achievable through our stateless and stateful
LBs. We focus only on evaluating the performance of the
FastClick implementation.7 All experiments scripts, including
documentation for full reproducibility are available at [4].

We pose three main questions in this evaluation:
• “How does the cost of packet processing in CHEETAH

compare with existing LBs?” (Sect. 5.1)
• “Can we reduce load imbalances by implementing more

advanced LB mechanisms in CHEETAH?” (Sect. 5.2)
• “How does the PCC support in CHEETAH compare with

existing stateless LBs?” (Sect. 5.3)

Experimental setting. The LB runs on a dual-socket, 18-
core Intel R©Xeon R©Gold 6140 CPU @ 2.30GHz, though only
8 cores are used from the socket attached to the NIC. Our
testbed is wired with 100G Mellanox Connect-X 5 NICs [48]
connected to a 32x100G NoviFlow WB5000 switch [36]. All
CPUs are fixed at their nominal frequency.

Workload generation. To generate load, we use 4 machines
with a single 8-core Intel R©Xeon R©Gold 5217 CPU @
3.00GHz with hyper-threading enabled using an enhanced
version of WRK [17] to generate load towards the LB. We also

7We argue that our Tofino implementation would perform similarly in
terms of ability to uniformly distribute the load.
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Figure 5: CPU cycles/packets for various methods. CHEETAH
achieves the same load balancing performance as stateful LBs
with 5x fewer cycles and only a minor penalty over hashing.

use four machines to run up to 64 NGINX web servers (one
per hyper-thread), isolated using Linux network namespaces.
Each NGINX server has a dedicated virtual NIC using SRIOV,
allowing packets to be switched in hardware and directly
received on the correct CPU core. We generate requests from
the clients using uniform and bimodal distributions, as well
as the large web server service distributions already used in
the simulations of Sect. 2.

Metrics. We evaluate the imbalance among servers using
both the variance of the server loads and the 99th percentile
flow completion times (FCTs), where the latter one is key for
latency-sensitive user applications. We measure the LB packet
processing time in CPU cycles per second. Each point is the
average of 10 runs of 15 seconds unless specified otherwise.

5.1 Packet Processing Analysis
We first investigate the cost in terms of packet processing
time for using stateless CHEETAH. We compare it against
stateful CHEETAH, a stateful LB based on per-core DPDK
cuckoo-hash tables, and two hashing mechanisms, one using
the hash computed in hardware by the NIC for RSS [21], and
one computed in software with DPDK [29]. We also compare
with a streamlined version of Beamer [38], without support for
bucket synchronization, UDP, and MPTCP, thus representing
a lower-bound on the Beamer packet processing cost.

Stateless CHEETAH incurs minimal packet processing
costs. Fig. 5 shows the number of CPU cycles consumed
by different LBs divided by the number of forwarded packets
for increasing number of requests per second. We tune the
request generation for a file of 8KB so that none of the
clients or servers were overloaded. The main result from this
experiment is that stateless CHEETAH consumes almost the
same number of CPU cycles per packet as the most optimized,
hardware assisted hash-based mechanism and significantly
fewer cycles than stateful approaches. Beamer consumes more
cycles than both CHEETAH LBs, still without bringing PCC
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Figure 6: 99th-perc. FCT for the increasing average server
load. CHEETAH achieves 2x−3x lower FCT than Hash RSS.

guarantee (see Sect. 5.3). This is mainly due to the operation
of encapsulating the backup server into the packet header and
the more compute-intensive operations needed by Beamer
to lookup into a bigger "stable hashing" table. Finally, we
note that, with the web service requests size distribution, each
methods only need 4 CPU cores to saturate the 100Gbps link.

Stateful CHEETAH outperforms cuckoo-hash based LBs.
We also note in Fig. 5 the improvements in packet process-
ing time of stateful CHEETAH (which uses a stack-based
ConnTable table) compared to the more expensive stateful
LBs using a cuckoo-hash table. Stateful CHEETAH achieves
performance close to a stateless LB and a factor of 2− 3x
better that cuckoo-hash based LBs.

Dissecting stateless CHEETAH performance. The key in-
sight into the extreme performance of CHEETAH is that the
operation of obfuscating the cookie only adds less than a
4-cycle hit. We in fact rely on the network interface card
hardware to produce a symmetric hash (i.e., using RSS).
We expect the advent of SmartNICs as well as QUIC and
IPv6 implementations, which have easier-to-parse headers,
to perform even better. We note that our stateless CHEETAH
implementation uses server-side TCP timestamp correction
(see Sect. 4), which only imposes a 0.2% performance hit
over the server processing time. If we were to use LB-side
timestamp correction, we observe that the stateless CHEETAH
modifies the timestamp MSB on the LB in just 30 cycles per
packet performance hit. To summarize, stateless CHEETAH
brings the same benefits as stateful LBs (in terms of load
balancing capabilities) in addition to PCC guarantees at
basically the same cost (and resilience) of stateless LBs.

5.2 Load Imbalance Analysis

We now assess the benefits of running CHEETAH using
a non-hash-based load balancing mechanism and compare
it to different uniform hash functions (similarly to those
implemented in Microsoft Ananta [41], Google Maglex [13],
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Figure 7: Variance among servers’ load of various methods
for an increasing number of servers. The average requests/s
is 100 per server. CHEETAH, though stateless, allows a near-
perfect load spreading.

Beamer [37], and Faild [3]). We stress that we do not propose
novel load balancing mechanisms but rather showcase the
potential benefits of a load balancer design that supports
any realizable load balancing mechanisms. We only evaluate
stateless CHEETAH as the load imbalance does not depend on
the stored state (and would result in similar performance).

In this experiment, each server performs a constant amount
of CPU-intensive work to dispatch a 8KB file. The generator
makes between 100 and 200 requests per server per second
on average depending on our targeted system load. Given this
workload and service type, we expect an operator to choose a
uniform round-robin LB mechanism to distribute the load.

CHEETAH significantly improves flow completion time.
Fig. 6 compares CHEETAH with round-robin and hash-
based LB mechanisms with 64 servers. We consider three
hash functions: Click [26], DPDK [29], and the hardware
hash from RSS. We stress the fact that these hash-based
functions represent the quality of load balancing achievable
by existing stateless (e.g., Beamer [37]) and stateful LBs
(e.g., Ananta [41]) LBs. We measure the 99th percentile
flow completion time (FCT) tail latency for the increasing
average server load. We note that CHEETAH reduces the 99th

percentile FCT by a factor of 2− 3x compared to the best
performing hash-based mechanism, i.e., Hash RSS.

CHEETAH spreads the load uniformly. To understand why
CHEETAH achieves better FCTs, we measure the variance of
the servers’ load over the experiment for an average server
load of 60% and 16, 32, and 64 servers. Fig. 7 shows that
(as expected) the variance of RR is considerably smaller
than hash-based methods. This is because the load balancer
iteratively spreads the incoming requests over the servers
instead randomly spreading them. In this specific scenario,
CHEETAH allows operators to leverage RR, which would
otherwise be impossible with today’s load balancers. Fig. 7
also shows that the quality of the hash function is important
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Figure 8: Evaluation of multiple load balancing methods for a
bimodal workload. Both AWRR and Pow2 outperform Hash
RSS by a factor of 2.2 and 1.9 respectively with 64 servers.

as the default function provided in Click does not perform
well. In contrast, the CRC hash function used by DPDK is
comparable to the Toeplitz based function used in RSS [28].
Moreover, the RSS function has the advantage of being
performed in hardware.

CHEETAH improves FCT even with non-uniform work-
loads. Fig. 8 shows the tail FCT for a bimodal workload,
where 10% of requests take 500ms to be ready for dispatching
and the remaining ones take a few hundred microseconds. In
this scenario, some servers will be loaded in an unpredictable
way thus creating a skew that requires direct feedback from
the servers to solve. We can immediately see that RR with
64 servers leads to very high FCTs. We evaluate three
ways to distribute the incoming requests according to the
current load (see Sect. 4.1): automatic weighted round robin
(AWRR), power of two choices (Pow2), and the least loaded
server. Each server piggybacks its load using a monitoring
Python agent on the server that reports its load through an
HTTP channel to the LB at a frequency of 100Hz, though
experimental results showed similar performance at 10Hz.
Least loaded performs poorly since it sends all the incoming
requests to the same server for 10ms, overloading a single
server. Pow2 and AWRR spread the load more uniformly
as the LB penalizes those servers that are more overloaded.
Consequently, both methods reduce the FCT by a factor
of two compared to Hash RSS with 64 servers. These
experiments demonstrate the potential of deploying advanced
load balancing mechanisms to spread the service load.

5.3 PCC Violations Analysis
We close our evaluation by demonstrating the key feature of
the stateless CHEETAH LB, i.e., its ability to avoid breaking
connections while changing the server and/or LB pool sizes.
We compare CHEETAH against Hash RSS, consistent hashing,
and Beamer. We start our experiment with a cluster consisting
of 24 servers. We tune a python generator [4] to create 1500
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Figure 9: Percentage of broken requests while scaling the
number of servers. Cheetah guarantees PCC whereas hashing
breaks up to 11% of the connections, consistent hashing 3%
and Beamer up to 0.5%.

requests/s, increasing following a sinusoidal load to 2500
requests/s and descending back to 1500 over the 40 seconds
of the experiment. The size and duration of the requests are
served using the web server distribution. We iteratively add
7 servers to the pool as the load increases. We then drain 8
servers when the rate goes down. Fig. 9 shows the percentage
of broken requests over completed requests every second
over time. Some connections gets accounted as broken dozen
of seconds later as clients continue sending retransmission
before raising an error. Compared to Beamer, Cheetah not
only achieves better load balancing with AWRR (Sect. 5.2),
but it also does not break any connection.

6 Frequently Asked Questions

Does CHEETAH preserve service resilience compared to
existing LBs? Yes. We first discuss whether a client can clog
a server. A client generating huge amounts of traffic using the
same connection identifier can be detected and filtered out
using heavy-hitter detectors [41]. This holds for any stateless
LBs, e.g., Beamer [37]. A more clever attack entails reverse
engineering the salted hash function and deriving a large num-
ber of connection identifiers that the LB routes to the same
(specific) server, possibly with spoofed IP addresses. To do
so, an attacker needs to build the (conn.id,cookie) 7→ server
mapping. This requires performing complex measurements
to verify whether two connection IDs map to the same
server. Given that CHEETAH uses the same hash function
of any existing LB (which is not cryptographic due to their
complexity [3]), reverse engineering this mapping will be as
hard as reverse engineering the hash of the existing LBs. As
for the resilience to resource depletion, we note from Fig. 5
that stateless (stateful) CHEETAH has similar (better) packet
processing times of today’s stateless (stateful) LBs. Thus, we
argue that CHEETAH achieves the same levels of resilience of
today’s existing LB systems.
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Does CHEETAH make it easy to infer the number of
servers? Not necessarily. A 16-bit cookie permits at least an
order of magnitude more servers than the number of servers
used to operate the largest services [32]. If this is still a
concern, one can hide the number of servers by reducing the
size of the cookie and partitioning the connection identifier
space similarly to our stateful design of CHEETAH.

Does CHEETAH support multipath transport protocols?
Yes. In multipath protocols, different sub-connection identi-
fiers must be routed to the same DIP. Previous approaches
exposed the server’s id to the client [10, 39]; however, this
decreases the resilience of the system decreases. CHEETAH
can use a different permutation of AllServers for each
additional i’th sub-connection. Clients inform the server of
the new sub-connection identifier to be added to an existing
connection. The server replies with the cookie to be used
using the i’th AllServers table. This keeps the resilience of
the system unchanged compared to the single path case.

7 Related Work

There exists a rich body of literature on datacenter LBs [2, 7,
11, 13, 16, 18–20, 22–25, 32, 37, 41, 52, 53]. We do not discuss
network-level DC load balancers [2, 7, 16, 18, 22, 24, 25, 52],
whose goal is to load balance the traffic within the DC network
and do not deal with per-connection-consistency problems.

Stateless LBs. Existing stateless LBs rely on hash functions
and/or “daisy chaining” techniques to mitigate PCC violations
(2), e.g., ECMP [19], WCMP [53], consistent hashing [23],
Beamer [37], and Faild [3]. The main limitation of such
schemes is the suboptimal balancing of the server loads
achieved by the hash function, which is known to grow
exponentially in the number of servers [49]. Shell [42]
proposed a similar use of the timestamp option as a reference
to an history of indirection tables, which comes at both the
expense of memory and low-frequency load rebalancing.

QUIC-LB [11] is a high-level design proposal at the IETF
for a stateless LB that leverages the connection-id of the
QUIC protocol for routing purposes. While sharing some
similarities to our approach, QUIC-LB (i) does not present a
design of a stateful LB that would solve cuckoo-hash insertion
time issues, (ii) does not evaluate the performance obtainable
on the latest generation of general-purpose machines, (iii)
relies on the modulo operation with an odd number to hide
the server from the client, an operation that is not supported
in P4, and (iv) does not discuss multi path protocols. We
note that our cookie can be implemented as the 160-bit
connection-id in QUIC, which is also easier to parse than
the TCP timestamp option. Encoding the connection-to-
server mapping has recently been briefly discussed in an
editorial note without discussing LB resilience, stateful LBs,
or implementing and evaluating such a solution [31].

Several stateless load balancers that support multi path
transport protocols have been proposed in the past. Such load

balancers guarantee all the subflows of a connection are routed
to the same server by explicitly communicating an identifier
of the server to the client [10, 39]. These approaches may be
exploited by malicious users to cause targeted imbalances in
the system, which is prevented in CHEETAH thanks to using
distinct hashes for the subflows (see Sect. 6).

Stateful LBs. Existing stateful LBs store the connection-
to-server mapping in a cuckoo-hash table [13, 15, 20, 32,
41] (see Sect. 2). These LBs still rely on hash-based LB
mechanisms — as these lead to fewer PCC violations when
changing the number of LBs. In contrast, CHEETAH decouples
PCC support from the LB logic, thus allowing operators to
choose any realizable LB mechanism. Moreover, cuckoo-
hash tables suffer from slow (non-constant) insertion time.
FlowBlaze [43] and SilkRoad [32] tackled this problem
using a stash-based and bloom-filter-based implementations,
respectively. Yet, both solutions cannot guarantee insertions
in constant-time: FlowBlaze relies on a stash that may be
easily filled by an adversary while SilkRoad is limited by
both the size of the Bloom Filter and the complexity of
the implementation. CHEETAH uses a constant-time stack
that is amenable to fast implementation in the dataplane.
Existing stateful LBs also suffer from the fact that the 1st-tier
of stateless ECMP LBs reshuffle connections to the wrong
stateful LB when the number of LBs changes. In contrast,
1st-tier stateless CHEETAH guarantees connections reach the
correct stateful LB regardless of changes in the LB pool size.

8 Conclusions

We introduced CHEETAH, a novel building block for load
balancers that guarantees PCC and supports any realizable LB
mechanisms. We implemented CHEETAH on both software
switches and programmable ASIC Tofino switches. We
consider this paper as a first step towards unleashing the power
of load balancing mechanisms in a resilient manner. We leave
the question of whether one can design novel load balancing
mechanisms tailored for Layer 4 LBs as well as deployability
with existing middleboxes as future work.
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APPENDIX

A Proof of Theorem 1

Theorem 1. Given an arbitrarily large number of connections,
any load balancer using O(1) memory requires cookies of
size Ω(log(k)) to guarantee PCC under any possible change
in the number of active servers, where k is the overall number
of servers in the DC that can be assigned to the service with
a given VIP.

Proof sketch. We prove the statement of the theorem in
the widely adopted Kolmogorov descriptive complexity
model [27]. We leverage similar techniques used in the past
to demonstrate a variety of memory-related lower bounds for
shortest-path routing problems [14].

Let R be the set of all the possible connection identifiers.
Let C be the set of all possible cookies. Let S = {s1, . . . ,sk}
be the set of servers. We assume |R| � |S|, which is the
most interesting case in real-world datacenters. Suppose,
by contradiction, that there exists an LB which uses O(1)
memory with cookies of size smaller than log(k) bits that
guarantees under any arbtirary number of changes in the
subset of active servers A⊆ S. For any possible set of active
servers A, the LB maps a new incoming connection identifier
r∈R to a certain server s∈ S, i.e., the LB logic maps incoming
connections using an arbitrarily function f : R×2A→ S.

Let us now restrict our focus to the |S| distinct sets of
active servers in which only a single server is active, i.e., A1 =
{s1}, . . . ,Ak = {sk}. Depending on the time instance when a
connection r ∈ R arrives, the connection may be mapped to
any of these servers. The mapping must be preserved for the
entire duration of the connection, which means the LB must
be able to forward any future packet belonging to r regardless
of the current set of active servers. Therefore, the LB must be
able to distinguish among |R|×|S| distinct possible mappings
between connections and servers. Consider our cookie with
l bits, where l < |S|= log(k). This information allows us to
distinguish among |R|× l possible mappings, which leaves
|R|× (|S|− l) = O(|R||S|) mappings to the LB memory. This
is a contradiction since we assumed the LB uses a memory of
O(1).

It is trivial to verify that the above theorem holds even
if one wants to implement an advanced LB mechanism, e.g.
round-robin, least-loaded, even without allowing any changes
in the number of servers.

B Constant-size cookies

Minimizing PCC violations with constant-size cookies:
keeping a history at the LB. A simple way to deal with
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changes in the number of active servers when using a uniform-
hash load balancing mechanism is to encode in the cookie
a tag that can be used by the LB to uniquely identify a
previous configuration of active servers. The LB stores the last
n configurations of active servers and identifies them using
log2(n) bits, which are encoded into the cookie. Thus, as long
as a connection is mapped to a server that existed in any of
the last n configurations, the connection will be unbroken.
The LB can modify the cookie associated with a connection
to use “fresher” cookies. 8. Clearly, if an operator drains a
server, i.e., purposely does not assign new connections to it,
any remaining connections will be broken after n changes in
the tag.

Minimizing load imbalances using constant-size cookies:
adding a hash function index to the cookie. A common
technique to reduce load imbalances in a system is to rely
on “power-of-two” choices mechanisms to map a request to
a server. When the LB receives a new incoming connection,
it computes the hash of the connection identifier using two
different hash functions h1 and h2, whose outputs are used
to select two servers. The LB then compares the load of the
two selected servers and maps the incoming connection to
the least loaded server among these two (according to some
definition of “load”). The main issue in the DC context with
power-of-two choice load balancing mechanisms is that the
LB needs to remember for each connection, which of the two
servers was used to serve the connection, that is, the LB must
be stateful. CHEETAH can support a power-of-two choices LB
mechanism simply by storing in the cookie a single bit that
identifies which of the two hash functions is to be used for that
connection. Similarly, multiple hashes could be supported by
increasing the size of the cookie logarithmically in the number
of hash functions. We note that when the number of servers
change, connections may break. We refer the reader to the
previous paragraph on how to deal with PCC violations with
constant-size cookies.

C TCP timestamp encoding

We decided to encode the CHEETAH cookie into the 16
most significant bits of the TCP timestamp. We acknowledge
that alternative ways to encode information into the TCP
timestamps are possible [39] but require modifications to the
servers.

Encoding cookies in the TCP timestamp option. TCP end-
hosts use TCP timestamp options to estimate the RTT of the
connection. The timestamp consists of a 64-bit pair (T Sval ,
T Secr), where T Sval and T Secr are the 32-bit timestamps set
by the sender and receiver of the packet, respectively. When

8This operation requires a bit more than one Round-Trip-Time (RTT)
to update the client from the LB (the packet must first be processed by the
server, which has to send an acknowledgment to the client with the updated
cookie

an end-host receives a packet, it echoes the T Sval back to
the other end-host by copying it into the T Secr. We leverage
the T Sval to carry the CHEETAH cookie on every packet
directed towards the client, which will echo it back as the
T Secr. We encode the cookie in the 16 most significant bits of
the 32-bit T Sval for every packet directed towards a client.9

We must therefore fix the original 16 most significant bit of
the T Secr before it is processed by the TCP stack of the server.
This can be done in the load-balancer or on the server itself.
Our measurements of the top 100 ranked Alexa websites [1]
reported in App. D shows that the minimal unit of a timestamp
is 1 millisecond. This means that the least significant 16 bits
of the timestamp would wrap up every 216ms.

TCP timestamps are mostly supported in today’s OSes.
We ran a small experiment to verify whether today’s client
devices support the echoing of TCP timestamp options back
to the servers. We tested the latest OSes available in both
recent smartphones and desktop PCs: Google Android 9, iOS
13, Ubuntu 18.04, Microsoft Windows 10, and MacOS 10.14.
We observed that all except Microsoft Windows correctly
negotiate and echo the TCP timestamp option when the server
requires to use it. Based on some recent measurements, more
than 98% of the smartphone and tablet devices are either
using Android or iOS [46]. Smartphone devices are the most
common type of devices, representing 53% of all devices [45].
For desktop devices, Windows is the predominant OS with
over 75% of the desktop share whereas MacOS represent a
16% of this share [44]. For Windows desktop devices, a cloud
operator can either encode the cookie in the QUIC header
(69% of the Windows users use Google Chrome, compatible
with QUIC [35]), IPv6 address, or install stateful information
into the LB for these devices.

C.1 Fixing the timestamp in the load balancer

For each server, we keep in memory two versions of the
16 most significant bits (MSB) replaced by our cookie: the
current one and the previous one. We use one bit of the cookie
to remember the version of the original MSB for every given
packet sent to the client. When a wrap up of the timestamp
happens, we set the oldest MSB bucket to the new MSB
timestamp of the server, and we change the version bit of
outgoing packets to designate that one. When a packet is
received, the cookie is read, then the original MSB given by
the version bit found in the packet reader is rewritten back in

9Timestamp options have already been used in the past for protecting
against SYN flood attacks, e.g., TCP SYN cookies [12]. We note that several
large cloud networks completely disable TCP SYN cookies and rely on
different mechanisms to handle SYN flood attacks [30], thus CHEETAH would
not cause deployment issues. We note that an alternative implementation of
CHEETAH, in which the mapping with the server is only performed at the end
of the 3-way handshake does not prevent the cloud provider from using TCP
SYN cookies. This solution requires all the servers to use exactly the same
parameters when generating the TCP SYN cookies and is left as a minor
future work extension.
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the timestamp of the packet. To avoid having clients sending
very old cookies, we rely on TCP keepalives set to 25 seconds,
which allows us to both detect timestamp wraps at the LB10

and deal with TCP PAWS packet filters11.

C.2 Fixing the timestamp on the server
We modified the Linux Kernel 5.1.5 (available at 12) to
enable the same mechanism directly on the server. Doing
so increase the server packet processing time by only 0.2%,
as the timestamp is parsed in any cases on the server. This
enables the server to keep the value of the cookie, and directly
encode the cookie in the T Sval . Such returning packet do not
need to go through the load balancer and allows the use of
DSR. Having the cookie on both sides of the load-balancer is
also needed for the stateful implementation.

D Alexa Top100 Timestamp Measurements

We ran a comprehensive set of measurements to determine the
granularity of the TCP timestamp unit utilized by the largest

10Detecting a wrap at the server is a straightforward operation. To detect
a wrap at the LB, we need to guarantee the server sends a packet at least
once every 215ms≈ 33s.This would typically be the case for every real-world
Internet service.

11We note that flipping the MSB of the timestamp (i.e. the version bit)
every time a wrap is detected may create problems with PAWS [8]. PAWS
is a TCP mechanism that discards packets with TCP timestamps that are
not “fresh”, i.e., a timestamp is considered old if the difference between the
latest received timestamp and the newest received timestamp is smaller than
231. To avoid enabling this condition, it is sufficient to guarantee the server
keeps a TCP keep-alive timer of (215−maxRT T ) milliseconds. Assuming a
maxRT T of 5 seconds, we set the keep-alive to a conservative value of 25
seconds. With 100K connections, the bandwidth overhead is just 0.00002%
on a 100Gbps server interface.

12https://github.com/cheetahlb/linux

service providers according to the Alexa Top100 ranking [1].
We downloaded large files from each the top 15 ranked web
sites and extracted both the TCP timestamp T Sval options and
the client side timestamp. We then computed the difference
between the TCP last and first timestamps and divided this
amount by the different between the client measured last and
first (non-TCP) timestamps. The result is the granularity of
the server-side TCP timestamp unit. We report the results in
Table 2. All the service providers using TCP timestamps have
a granularity of at least 1ms. This means the timestamp wraps
every 216 ≈ 65 seconds when using CHEETAH to support
these services.
Table 2: Measured TCP timestamp granularity for different
websited. Some service providers do not use TCP timestamp
options.

Web site TS granularity Method
drive.google.com 1ms gdown
dropbox.com 1ms wget
twitch.tv 1ms watch video
weobo.com 1ms watch video
bilibili.com N.A. -
pan.baidu.com N.A. -
reddit.com 4ms watch video
qq.com 4ms watch video
instagram.com 4ms watch video
onedrive.live.com N.A. -
facebook.com 1ms watch video
twitter.com N.A. -
imdb.com 10ms watch video
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Abstract
Packet schedulers traditionally focus on the prioritized trans-
mission of packets. Scheduling is often realized through
coarse-grained queue-level priorities, as in today’s switches,
or through fine-grained packet-level priorities, as in recent
proposals such as PIFO. Unfortunately, fixed packet priorities
determined when a packet is received by the traffic manager
are not sufficient to support a broad class of scheduling al-
gorithms that require the priorities of packets to change as
a function of the time it has spent inside the network. In
this paper, we revisit the Calendar Queue abstraction and
show that it is an appropriate fit for scheduling algorithms
that not only require prioritization but also perform dynamic
escalation of packet priorities. We show that the calendar
queue abstraction can be realized using either dataplane prim-
itives or control-plane commands that dynamically modify
the scheduling status of queues. Further, when paired with
programmable switch pipelines, we can realize programmable
calendar queues that can emulate a diverse set of scheduling
policies. We demonstrate the power of this abstraction us-
ing three case studies that implement variants of LSTF, Fair
Queueing, and pFabric in order to provide stronger delay
guarantees, burst-friendly fairness, and starvation-free priori-
tization of short flows, respectively. We evaluate the benefits
associated with these scheduling policies using both a custom
simulator and a small-scale testbed.

1 Introduction
Many network scheduling algorithms today require a notion
of dynamic priority, where the priority of individual pack-
ets within a flow varies over the lifetime of the flow. These
packet priorities generally change with either the amount of
bytes sent by the flow, how fast the flow is transmitting, or
time spent by the packet inside the network. Such scheduling
algorithms enable richer application-level prioritization and
performance guarantees, such as shortest-job first to minimize
average flow completion time, earliest deadline first to enable
timely delivery of all messages, or fair-queueing, as illustrated
by a long list of proposed scheduling algorithms (e.g., pFab-
ric [4], PIAS [5], WFQ [14], FIFO+ [13], LSTF [17], and
EDF [18]).

Switch-level support for multiple fine-grained priority lev-
els (as in PIFO [28], pHeap [7]) can aid the realization of these
scheduling algorithms. However, there are still several chal-

∗University of Washington
†School of Computing, National University of Singapore
‡Barefoot Networks
§NYU

lenges in faithfully implementing these algorithms efficiently
and at line rate. First, implementing strict and fine-grained
priority levels is expensive, especially at scale involving high
bandwidths and hundreds or thousands of unique flows at
multiple terabits per second. Second, and more crucially, ex-
isting switch support for priorities does not allow for dynamic
changes to the priority of a packet during its stint inside the
switch buffer. Fixed packet priorities cannot effectively emu-
late the ageing property required by many of the scheduling
algorithms, wherein the priority of a packet increases with
the time it spends inside a queue.

Consider, for instance, the Least Slack Time First
(LSTF [17]) scheduling discipline wherein each packet main-
tains a delivery deadline, and the switch emits from its buffer
the packet with the least slack at a given instant. LSTF cannot
be realized using fixed packet priorities that are determined
when the packets are inserted into a priority queue. Notably,
given a packet that has a deadline of current_time+ slack, a
switch scheduler that maps this deadline to a priority level
would quickly exhaust a finite number of priority levels. As
long as there are packets buffered inside the switch, packets
received with later deadlines would have to be progressively
assigned lower priority levels, and the switch will eventually
run out of priority levels to use for incoming packets.

In this paper, we argue that what is needed is a scheduling
mechanism that supports both prioritization and implicit es-
calation of a packet’s priority as it spends more time inside
the switch buffer. We observe that a mechanism similar to
Calendar Queues [10] would be a more appropriate fit for
implementing these scheduling algorithms. Calendar Queues
allow events (or packets) to be enqueued at a priority level or
rank corresponding to a future time, and this rank gradually
changes as time moves forward. A scheduling algorithm sim-
ply decides how far in the future a packet must be processed
and then controls how time is advanced, say based on the
switch’s physical clock (i.e., physical time) or the number of
communication rounds across flows (i.e., logical time).

Calendar queues have certain properties that make them
amenable to efficient hardware realization, especially on up-
coming programmable switch hardware. A calendar queue
consists of multiple physical switch queues, and at any point
in time, only one of the queues in a calendar queue is active.
Further, a calendar queue imposes a fixed rotation order for
activating queues. We describe how the activation of queues
in a fixed order can be achieved by periodically modifying
the priority and active status of queues, either through data-
plane primitives expected in future programmable switches
or through today’s control-plane operations, albeit at a higher
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latency. When combined with the stateful and flexible packet
processing capabilities of a programmable switch (such as
Barefoot’s Tofino and Cavium’s Xpliant), we can customize
the calendar queue abstraction to realize a broad class of
scheduling algorithms that capture both physical and logical
notions of time.

We demonstrate the power and flexibility of the calendar
queue abstraction using three case studies. First, we use a cal-
endar queue to perform deadline-aware scheduling of aggre-
gate flows (or co-flows) and further use the same underlying
calendar queue to implement fair queuing for the background
traffic. The programmable switch pipeline performs the ac-
counting operations required to keep track of the slack avail-
able for a packet and computes its rank as it traverses a net-
work path. In our second case study, we use calendar queues
to implement fair queueing and its variants that can tolerate
a limited amount of burstiness, thereby providing a config-
urable balance between fairness and burst-friendliness. Here,
the programmable switch pipeline maintains the flow state to
perform the accounting operations required for scheduling.
For our third case study, we realize pFabric and its variant
that can provide a configurable amount of starvation preven-
tion. We use a programmable pipeline to ensure the in-order
transmission of packets even as the switch attributes higher
priorities to later packets transmitted within a flow. We use a
small-scale testbed comprising of Barefoot Tofino switches
and a custom event-driven simulator to evaluate the benefits
of these different scheduling algorithms.

2 Background
In this section, we discuss background material related to
reconfigurable switches, the structure of the traffic manager
(which is the same for both fixed-function and today’s recon-
figurable switches), and prior work on programmable packet
scheduling.

2.1 Reconfigurable Switches

In this work, we assume that this programmable scheduling
is used in conjunction with a reconfigurable switch, such
as the Reconfigurable Match Table (RMT) model described
in [8, 9]. A reconfigurable switch can operate at terabits/s by
providing a restricted match+action (M+A) processing model:
match on arbitrary packet header fields and perform simple
packet processing actions. When a packet arrives at the switch,
relevant headers fields are extracted via a user-defined parser
and passed into a pipeline of user-defined M+A stages. Each
stage matches on a subset of extracted headers and performs
simple processing primitives or actions on any header. After
traversing the ingress pipeline stages, packets are deposited
in one of the multiple queues, typically 32–64, associated
with the egress port for future transmission. On transmission,
the packet goes through a similar egress pipeline undergoing
further modifications.

In addition to a programmable parser and pipeline stages,

these switches provide several hardware features to imple-
ment more complex use-cases: (1) a limited amount of stateful
memory, such as counters and meters, which can be read and
updated to maintain state across packets, (2) computation
primitives, such as simple arithmetic operations and hash-
ing, which can perform a limited amount of processing on
header fields and data retrieved from stateful memory, and (3)
the ability to recirculate or generate special datapath packets
using timers that can be used to modify Traffic Manager sta-
tus as well as synchronize the ingress and egress pipelines.
Further, switch metadata, such as queue lengths, congestion
status, and bytes transmitted, can also be used in packet pro-
cessing. The complete packet processing, including parsing
and match+action stages, can be configured using a high-
level language, such as P4 [8]. A number of such switches,
e.g., Cavium XPliant [11], Barefoot Tofino [6] and Intel Flex-
pipe [20], are available today.

A single pipeline’s throughput is limited by the clock fre-
quency achievable using today’s transistor technology (typ-
ically about 1 GHz). To scale to higher packet-processing
rates, which is required for switches with aggregate switch
capacity in the Tbit/s range, the switch consists of multiple
identical pipelines where the programmable stateful memory
is local to each pipeline.

2.2 Traffic Manager

We now briefly describe the architecture of the traffic manager
(TM) on merchant-silicon switches (e.g., Barefoot’s Tofino
and Broadcom’s Trident series). The TM is responsible for
two tasks: (1) buffering packets when more than one input
port is trying to send packets to the same output port simulta-
neously, and (2) scheduling packets at each output port when
the link attached to the port is ready to accept another packet.

Buffering: The TM is organized as a fixed number of first-in,
first-out (FIFO) queues per output port. The ingress pipeline
of the switch is responsible for determining both the FIFO
queue and the output port that the packet should go to. Once
the packet exits the ingress pipeline, the TM checks if there is
sufficient space in the packet buffer to admit the new packet.
Once the packet has been admitted to the buffer, it can not
be dropped later because dropping a previously enqueued
packet requires additional memory accesses to the packet
buffer, which is expensive at line rate.

Scheduling: Packets are eventually dequeued from the buffer
when the link attached to an output port goes idle and requests
a new packet. During dequeue, the TM has to pick a particular
FIFO at that output port, remove the earliest packet at that
queue, and transmit it. The TM uses a combination of factors
to determine which queue to dequeue from. First, each queue
has a priority; queues with higher priority are strictly preferred
to those with lower priorities. Next, within a priority level,
the queues are scheduled in weighted round-round robin order
(using an algorithm like DRR [26]). Lastly, each queue can
be limited to a maximum rate and is paused and removed
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from consideration for scheduling if it has exceeded this rate
over some time interval. Queues can also be paused because
of a PFC [16] pause frame from a downstream switch.

To perform buffering and scheduling, the TM maintains a
per-queue priority level, a per-queue pause status flag, and
counters that track buffer occupancy on a per-input-port, per-
PFC-class, per-output-port, and per-output-FIFO basis. These
are required both to decide when and whether to admit pack-
ets and which queues to schedule. Because the status flag and
counters support limited operations (e.g., toggling or incre-
ment/decrement), they can be implemented very efficiently in
hardware, allowing simultaneous access from multiple ingress
and egress switch pipelines in a single clock cycle (unlike
state within the pipeline that can only be accessed once per
clock cycle). It is important to note that these hardware mech-
anisms appear in traffic managers in both fixed-function and
programmable switches.

2.3 Programmable Scheduling

The discussion above focused on a fixed-function TM that
supports a small menu of scheduling algorithms (typically
priorities, weighted round-robin, and traffic shaping). Recent
proposals for programmable scheduling [2, 19, 23, 27–29]
propose additional switch hardware in the TM to make the
scheduling decision programmable, assuming the existence
of a programmable ingress and egress switch pipeline like
RMT. Of the proposals for programmable scheduling, we
describe the PIFO work because it targets a switch similar to
our paper, and it is representative of the hardware consider-
ations associated with programmable scheduling. We defer
a detailed comparison of both expressiveness and feasibility
with prior work to later sections.

PIFOs enable programmable scheduling by using a pro-
grammable priority queue to express custom scheduling algo-
rithms. Some external computation (either on the end host or
a programmable switch’s ingress pipeline) sets a rank for the
packet. This rank determines the packet’s order in the priority
queue. By writing different programs to compute different
kinds of packet ranks (e.g., deadlines or virtual times), differ-
ent scheduling algorithms can be expressed using PIFOs.

While PIFOs are flexible, they have two shortcomings.
PIFOs not only require the development of new hardware
blocks that can scale with line rate (as we discuss below), but
they are also limited given their support for a finite priority
range (as we discuss in the next section). The scaling chal-
lenge arises out of needing to maintain a priority queue. The
PIFO paper assumes that ranks within flows are naturally in
strictly increasing order (i.e., flows are FIFOs), requiring the
switch to only find the minimum rank among the head pack-
ets across all flows. While this reduces the sorting/ordering
requirement of PIFO, sorting the total number of flows in the
buffer is still challenging. The PIFO work provides a custom
hardware primitive, the flow scheduler, which maintains a
sorted array of a few thousand flows and can process tens of

flows per output port across about 64 output ports on a single
pipeline for an aggregate throughput of 640 Gbit/s. Scaling
this primitive to higher speeds and a multi-pipeline switch
can be challenging. Thus, a key goal of our programmable
scheduling proposal is that it should be realized without in-
creasing the temporal and spatial complexity of existing TM
implementations.

3 Packet Scheduling using Programmable
Calendar Queues

In this section, we begin by describing the Calendar Queue
concept as introduced by Randy Brown in 1988 [10]. We then
consider the abstraction of a Programmable Calendar Queue
that combines the calendar queue scheduling mechanism with
programmable packet processing pipelines. This combination
allows for flexibility and extensibility, and we show how we
can instantiate different variants of Programmable Calendar
Queues to emulate different scheduling algorithms that appear
in the literature.

3.1 Motivating Calendar Queues

Calendar Queues: The Calendar Queue was first intro-
duced for organizing the pending event set in a discrete event
simulation. It is a type of priority queue implementation that
has low insertion and removal costs for certain priority dis-
tributions. Calendar Queues (CQs) are analogous to desk
calendars used for storing future events for the next year in
an ordered manner. A CQ consists of an array of buckets or
queues, each of which stores events for a particular day in
sorted order. Events can be scheduled for a future date by
inserting the event in the bucket corresponding to the date. At
any point, events are dequeued and processed from the current
day in sorted order. Once all events are processed from the
current day, we stop processing events for the current day and
move onto the next day. The emptied bucket is then used to
store tasks that need to be performed a year from now.

Drawbacks of existing priority queueing schemes: Prior
work has made the observation that, scheduling algorithms
make two decisions: in what order packets should be sched-
uled (in the case of work-conserving algorithms) or when
they should be scheduled (in the case of non-work-conserving
algorithms). For most scheduling algorithms, these decisions
can be made at packet enqueue time. Comparison-based
fine-grained priority queueing schemes, such as pHeap [7] or
PIFO [28], can realize some of these algorithms by comput-
ing an immutable rank for a packet at packet enqueue time
and dequeuing packets in increasing rank order. Eiffel [23]
further observes that packet ranks often have a specific range
(which can be expressed as integers) and that a large number
of packets share the same rank. These characteristics make a
bucket-based priority queue an efficient and feasible solution
for implementing various scheduling algorithms.

We observe that many scheduling algorithms cannot be
realized using fine-grained priority queuing schemes if the
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Figure 1: Example of a Programmable Calendar Queue.

computed rank needs to fall within a finite range. Consider the
example of fair queuing (as in WFQ or STFQ), where for each
arriving packet, a finishing round is computed based on the
current round number and the finishing round of the previous
packet in that packet’s flow. Packets are then transmitted in
order of increasing finishing round numbers. Further, the al-
gorithm periodically increases the current round number. One
could attempt to realize fair queuing using a fine-grained pri-
ority queuing scheme by mapping a packet’s finishing round
number to an immutable rank. Since the ranks of buffered
packets cannot be changed, the mapping function needs to
be monotonic, i.e., it needs to map higher finishing rounds to
higher ranks. The mapping function would then exhaust any
finite range of ranks, and the switch would then not be able
to attribute a meaningful rank for incoming packets.

Similarly, in the case of the earliest deadline first (EDF),
each packet in a flow is associated with a wall-clock dead-
line, and packets need to be scheduled in increasing order of
deadlines. If one were to compute the rank of a packet as a
monotonic function of the packet’s deadline, the switch would
exhaust the rank space as the wall-clock time progresses.

It is worth noting that, when the switch has no buffered
packets, the mapping function could execute a "reset" and
start reusing lower ranks. However, an implementation cannot
assume that the switch would ever enter such a state, let alone
periodically (i.e., within a bounded period of time before the
rank space is exhausted).

Utility of Calendar Queues: We propose to use the Calen-
dar Queues abstraction as a mechanism to realize scheduling
algorithms such as EDF and fair queuing. A CQ is an attrac-
tive option for implementing these algorithms as it allows for
implicit and en-masse escalation of the priorities of buffered
packets when the CQ moves from one day to another. For
instance, when a CQ completes processing the events for Day
k and performs a rotation to Day k+1, it implicitly increases
the priority of all days except Day k, which now occupies
the lowest priority in the priority range. This rotation mecha-
nism allows scheduling algorithms to escalate the priorities
of buffered packets with time (as is the case with EDF and
fair queuing) and reuse emptied buckets for incoming packets
with low priority.

3.2 Programmable Calendar Queues (PCQs)

We now describe Programmable Calendar Queues in the con-
text of reconfigurable switches. The programmable packet

processing pipelines on these switches allow us to customize
not only the rank computation but also the CQ rotation pro-
cess. Just like a calendar has 365 days, we assume our Cal-
endar Queue abstraction has a fixed number of buckets or
FIFO queues, say N, each of which stores packets scheduled
for next N periods (see Figure 1). Any network scheduling
algorithm using CQs must then make the following key de-
cisions. First, the scheduling algorithm must decide how far
in the future the incoming packet should be scheduled, i.e.,
choose a future period from [0, N-1] to enqueue the packet
into. This is similar to rank computation in PIFO. Second, it
must periodically decide when and how to advance time, i.e.,
decide when a period is over and move onto the next period.
This stops the enqueueing of packets in the current period
and allows the reuse of the corresponding queue resource for
the period that is N periods into the future. Third, when the
CQ advances to the next period, the pipeline state has to be
suitably modified to ensure the appropriate computation of
ranks for incoming packets.

The advancing of time can be done using a physical clock,
i.e., the CQ moves onto the next queue after a fixed time
interval periodically; we call this a Physical Calendar Queue.
Alternatively, the CQ can advance to the next queue when-
ever the current queue is empty, i.e., it happens logically
depending on metrics such as bytes sent or number of com-
munication rounds; we call this a Logical Calendar Queue.
A Physical Calendar Queue lets us implement both work-
conserving schemes, such as EDF, and non-work-conserving
schemes, such as Leaky Bucket Filter, Jitter-EDD, and Stop-
and-Go, whereas a Logical Calendar Queue can implement
work-conserving schemes, such as LSTF, WFQ, and SRPT.

We now list the interface methods exposed to the packet
processing pipelines that enable these forms of customization.

• CQ.enqueue(n): Used by the ingress pipeline to schedule
the current packet n periods into the future.

• CQ.dequeue(): Used by the egress pipeline to obtain a
buffered packet, if any, for the current period.

• CQ.rotate(): Used by the pipelines to advance the CQ so
that it can start transmitting packets for the next period.

We observe that PCQs have certain properties that allow
for efficient implementations. (In Section 3.4, we describe
how to realize this abstraction in hardware.) When individual
CQ periods are mapped to separate physical switch queues, a
CQ scheduler needs to maintain state only at the granularity
of switch queues (e.g., the queue corresponding to the current
period). The scheduler does not require expensive sorting or
comparisons to determine packet transmission order. More
importantly, a CQ rotation involves a deterministic and pre-
dictable transition from one switch queue to another at the
end of each period. This transition can be realized either using
data-plane primitives in upcoming reconfigurable hardware
(as we discuss in Section 3.4) or through the switch’s control
plane (as is the case with our prototype).
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3.3 Programmable Scheduling using PCQs

We now show how various scheduling algorithms can be
realized using Calendar Queues in conjunction with a pro-
grammable packet processing pipeline. We describe three
different algorithms, each of which differs in the way it uti-
lizes CQs. First, an approximate variant of WFQ that uses
a Logical CQ. Next, we implement approximate EDF us-
ing LSTF scheduling that uses a work-conserving Physical
CQ. Finally, we realize a Leaky Bucket Filter that utilizes a
non-work-conserving Physical CQ.

3.3.1 Weighted Fair Queueing

Weighted Fair Queueing (WFQ) scheduling achieves max-
min fair allocation among flows traversing a link by emulating
a bit-by-bit round-robin scheme where each active flow trans-
mits a single bit of data each round. This emulation is realized
at packet granularity by assigning each incoming packet a de-
parture round number based on the current round number
and the total bytes sent by the flow. All buffered packets are
dequeued in order of increasing departure round numbers.

Packet State
weight : Packet flow’s weight

Switch State
bytes[f] : Number of bytes sent by flow f
round : Current round number
BpR : Bytes sent per round for each flow

Rank Computation & Enqueueing
bytes[f] = max(bytes[f], round * BpR * weight)
n = (bytes[f] + pkt.size) / (BpR * weight) - round
CQ.enqueue(n)

Queue Rotation
if CQ.dequeue() is null

CQ.rotate()
round = round + 1

Figure 2: WFQ implementation using a Logical CQ.

We implement WFQ using Logical CQs closely following
the round number approximation described in [25]. We use
coarse-grain rounds that are only incremented after all active
flows have transmitted a configurable quantum of bytes. The
rank computation is done in such a way that each fair queuing
round is mapped to a day (queue) in the Calendar Queue and,
whenever a day finishes (i.e., the queue is drained completely),
the round number is incremented by one. The complete switch
state and computation required is shown in Figure 2. Note
that this is an approximation of the WFQ algorithm where the
round numbers are not as precise or faithful to the original
algorithm, and there can be situations in which packets are
transmitted in an unfair order. However, this unfairness has
an upper-bound and is controlled by the BpR variable in the
rank computation. As we show later in the evaluation, this
approach closely approximates ideal fair queueing.

3.3.2 Earliest Deadline First

In Earliest Deadline First (EDF) scheduling, each packet from
a flow is assigned a deadline or expected time of reception.
At each network hop, the packet with the closest deadline is
transmitted first. We implement EDF using Least Slack Time
First scheduling, where each packet carries a slack value of
the time remaining till its deadline. The slack is initialized
to deadline-arrivalTime at the source and updated at each
hop along the way (i.e., each switch subtracts the time spent at
the hop from the slack). The implementation uses a Physical
CQ, as shown in Figure 3, which we describe next.

Packet State
slack : Initialize to flow_deadline - arrival_time

Switch State
dT : Time interval of each queue
delta : Skew between ideal and measured time
lastRot : Timestamp of last rotation

Rank Computation & Enqueueing
n = (slack - delta + (currentTime - lastRot)) / dT
CQ.enqueue(n)

Queue Rotation
if CQ.dequeue() is null
CQ.rotate()
delta = delta + (dT - (currentTime - lastRot))
lastRot = currentTime

Figure 3: EDF using a work-conserving Physical CQ.

We choose a fixed time interval for each day or queue for
our Physical CQ, say dT . Packets with an effective slack
of 0− dT are assigned to queue 1, slack of dT − 2 · dT are
assigned to queue 2, and so on. This assignment ensures that
packets with closer deadlines are prioritized. Queue rotation
occurs when the current queue becomes empty. Since we can
spend a longer or shorter time than dT in any queue depend-
ing on the traffic pattern, we require some additional state to
ensure that new packets are inserted in the correct queue with
respect to the deadlines of already enqueued packets. The
delta variable keeps track of how far ahead the CQ is com-
pared to the ideal time. If we spend less than dT for a queue,
delta increases, and if we spend more than dT , it decreases.
The delta is then incorporated in the rank computation and
is reset to 0 whenever there are zero buffered packets. Note
that the programmable switch pipeline allows us to perform
not only the rank computation but also decide when to per-
form the CQ rotation and how to update switch state after a
rotation.

3.3.3 Leaky Bucket Filter

A Leaky Bucket Filter (LBF) is a non-work-conserving
scheduling algorithm that rate limits a flow to a specified
bandwidth and a maximum backlog buffer size. An LBF can
be realized using a Physical Calendar Queue by storing a
fixed quantum of bytes per flow in each queue and rotating
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Packet State
rate : Output rate limit
size : Maximum bucket size

Switch State
dT : Time interval size of each queue
bytes[f] : Bytes sent by flow f
round : Current round number

Rank Computation & Enqueueing
bytes[f] = max(bytes[f], round * rate * dT)
n = bytes[f] / (rate * dT) - round
if n > size / (rate * dT)
drop packet

else
CQ.enqueue(n)

Queue Rotation
if dT time has elapsed

CQ.rotate()
round = round + 1

Figure 4: A Leaky Bucket Filter using a non-work-conserving
Physical CQ.

queues at fixed time intervals, very similar to the WFQ exam-
ple discussed earlier. However, we do not dequeue packets
from the next queue even if the current queue is empty, which
gives us the desired non-work-conserving behavior. The byte
quantum depends on the rate limit set for the flow and the
configured time interval dT of each queue. If the number of
enqueued bytes for a flow exceeds the bucket size, we simply
drop the packet. This scheme lets us realize multiple filters
using the same underlying CQ, as shown in Figure 4.

We assume the configured rate and size parameters for
the filter are in the packet header, but they can be stored at the
switch as well. For each flow, we keep track of bytes sent so
far and compute the queue id by dividing it with the quantum,
which is the configured filter rate times the queue interval
dT . We assume that the cumulative rate of all flows does not
exceed the line rate at the switch; if that happens, all flows
will be slowed down in proportion to their configured rates
equally.

3.4 Implementing PCQs in Hardware

We now describe how Calendar Queues can be implemented
on programmable switches. We assume an RMT model
switch (as described in Section 2) with an ingress pipeline, fol-
lowed by the traffic manager, which maintains multiple packet
queues, and finally an egress pipeline. Implementing a CQ in
this model is non-trivial because the packet enqueue decision
(i.e., which queue to insert the packet into) is made in the
ingress pipeline, but the queue status (i.e., occupancy, depth)
is available in the egress pipeline after the packet traverses
the traffic manager. Since these modules are implemented
as separate hardware blocks, we need to synchronize state
among them to achieve the CQ abstraction.

We can realize CQs on programmable switches using mu-
table switch state, multiple FIFO queues, the ability to create
and recirculate packets selectively, and the ability to pause/re-
sume queues or alter queue priorities directly in the data plane.

All these capabilities are either already available in today’s
programmable switches except for the data-plane-based queue
pausing, resuming, and priority updating. However, we con-
firmed with experts in switching ASIC design that adding
such a capability is relatively straightforward because doing
so doesn’t change the order of temporal or spatial complex-
ity of existing TM implementations. Existing TMs already
support several per-packet metadata to expose controllable
features or statistics. Moreover, PFC already requires a sim-
ilar queue pausing/resuming capability triggered by certain
protocol messages in the data plane anyway. This new feature
exposes a similar functionality only in a programmatic way
by exposing such knobs to the programmable pipeline. More-
over, even in the absence of data-plane support for priority
changes, we can still approximate this functionality using the
control plane (as we do in our testbed).

Implementation Overview: We first provide a high-level
description of our scheme. Each period in the CQ is mapped
to a single FIFO queue within a set of queues associated with
the outgoing port. The ingress pipeline computes which pe-
riod or queue each incoming packet is enqueued into. We
assume a TM that allows the pipeline to enqueue incoming
packets into any of the available FIFO queues. At any given
time, the queue settings satisfy the following properties: (a)
The queue corresponding to the current period has the highest
priority level, so that its packets can be transmitted immedi-
ately. We refer to this queue as the head queue. (b) The queue
corresponding to the next period has a lower priority level
and is active/unpaused. (c) All other queues corresponding to
future periods are at the lowest priority level and are paused.
This specific configuration has two desirable properties. First,
since the next period’s queue is also active, the switch can
start transmitting packets from the next period’s queue as soon
as the head queue becomes empty. Second, when we perform
a CQ rotation, we need to perform only a small number of
changes to queue priorities and active statuses.

The CQ cycles or rotates through available queues one at
a time, making each queue the head queue. The rotation is
triggered when the head queue is empty (in case of a logical
CQ) or the CQ time interval has elapsed (in case of a physical
CQ). When a rotation happens, we need to make sure all
packets from the head queue are drained completely and that
it is empty before changing its priority to lowest. Once the
priority is set, the head queue can be reused to store packets
for future periods.

Implementation Details: We break down the implemen-
tation of CQs into the following three steps. Appendix A
provides additional details.

Step 1 - Initiate Rotation: This step detects when a rotation
needs to happen and initiates the rotation by informing the
ingress pipeline using a recirculation packet. In the case of
a logical CQ, we initiate rotation when the head queue is
empty. This can be detected in two ways. First, in some
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by updating the tailQ.

programmable switches, the traffic manager metadata could
provide the egress pipeline information regarding the depth of
the queue from which the packet was dequeued. If it is zero,
this is the last packet from the head queue, and we initiate
rotation. Second, we can check the queue id from which
the packet was dequeued to infer whether the head queue is
empty. Since the successor head queue is also unpaused with
a lower priority, a packet dequeued from it implies the head
queue is empty. We use the latter method in our prototype as it
imposes fewer requirements on the traffic manager metadata
available to the switch pipeline. In the case of a physical CQ,
the rotation happens at fixed time intervals and is configured
through timers or packet generators. When a rotation begins,
we recirculate a special rotate packet to the ingress pipeline
so that it stops enqueuing packets in the head queue and
begins draining it, which happens in Step 2.

Step 2 - Drain Queue: This step ensures that the head queue is
completely drained, and no more packets are enqueued into it
till the rotation finishes. On receiving the rotate recirculation
packet, the ingress pipeline advances the head queue pointer,
essentially stopping any new packets from being enqueued
into it. But, there could still be some packets in the pipeline
currently making their way into the head queue. To make sure
these are transmitted in the right order, the ingress enqueues a
special marker packet into the head queue after updating the
head of the calendar queue. This packet is the last packet to
be enqueued into the head queue, and its arrival at the egress
pipeline means the queue is completely drained, and we can
proceed with finishing the rotation described in Step 3.

Step 3 - Finish Rotation: The marker packet is recirculated
back to the ingress pipeline, and this informs the ingress
pipeline that it is safe to reuse the queue for future periods.
The ingress changes the priority of the just emptied queue
to lowest and also pauses it, essentially pushing the queue
to the end of the CQ. The ingress also unpauses the queue
associated with the next period to ensure that there are no
transmission stalls after the current period ends. The queue
configuration change can be achieved in two ways depend-
ing on the underlying hardware support. The marker packet
can be pushed up to the control plane CPU, which can alter
the queue configurations using traffic manager APIs. This

approach incurs a latency overhead before the drained queue
can be used for packets associated with future periods. Al-
ternatively, if the hardware supports priority change in the
datapath, the processing of the marker packet with the appro-
priate metadata tags affects the configuration change almost
immediately.

We now briefly highlight some of the attributes of PCQ
that aid in efficient hardware realization. First, CQs maintain
state at the granularity of physical switch queues instead of
individual packets or flows. Second, at any given point in
time, there is a designated head queue that is responsible
for providing the packets that are to be transmitted. Third,
the rotation operation involves changing just the metadata of
queue and that too of at most three queues. This combination
of factors allows us to bolt-on the PCQ abstraction on to a
traditional TM.

3.5 Analysis and Extensions

We now analyze our PCQ abstraction and compare it to both
fine-grained priority queuing schemes and an ideal Calen-
dar Queue along different dimensions. We also provide an
extension that expands the scheduling capability of the PCQ.

Expressiveness: From a theoretical perspective, a static pri-
ority mechanism (e.g., PIFO) with infinite priority levels is
equivalent to a Calendar Queue with infinite buckets, and
most scheduling algorithms can be expressed in both these
hypothetical schemes. However, a practical PIFO has finite
priority levels, and a practical CQ has finite buckets, which
affects the feasibility and the fidelity of scheduling algorithms.
An algorithm can be implemented using PIFOs if all packets
throughout the "lifetime" of the algorithm have ranks strictly
in the priority queue range. This is true for algorithms like
pFabric where packet rank is solely a function of flow size, but
not true for WFQ or EDF where packet ranks are computed
based on a round number or current time, which is mono-
tonically increasing. As discussed earlier, the priority-level
space will roll over eventually, and the ordering of enqueued
packets will be violated. On the other hand, our realization of
PCQs requires that the enqueued packets’ ranks at any instant
fit within the available buckets or queues, which makes it
challenging to implement algorithms that require both a large
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packet rank range as well as high fidelity in distinguishing
between the packet ranks; we can extend the range of a CQ by
bucketing several packet ranks together, but that introduces
approximations which we discuss next.

Approximations: There are two sources of approximations
that arise in a PCQ. First, inversions within a FIFO queue.
The original Calendar Queue [10] maintains events in a single
bucket in sorted order, whereas we simply use a FIFO queue.
This can lead to inversions if multiple ranks are assigned to
the same bucket, i.e., a higher priority packet is scheduled
after a lower priority packet. This presents a feasibility vs.
accuracy trade-off for the scheduling algorithm, and if the
bucket intervals are chosen carefully, the approximation is
acceptable as we show later in the evaluation. It is worth
noting that one could borrow some of the mechanisms from
the SP-PIFO work [2] to reduce rank inversions, but we leave
that to future work. Second, the PCQ imposes a limit on
the range of the CQ. Since the number of FIFO queues is
limited, there is a possibility that packets will arrive with
a rank beyond the range of the CQ. One can theoretically
increase the bucket size to include a larger priority schedule
such packets that are very far in the future. However, this will
lead to an increase in inversions and reduce the accuracy of
the priority queuing mechanism. Another option is to store
overflowing packets into a separate queue and recirculate
them into their appropriate queue when they get close to
their service time. Furthermore, the range of a CQ can be
significantly increased by employing a hierarchical structure,
and we describe this next.

Hierarchical Calendar Queues: One way to extend the
range of a CQ is to employ a hierarchical structure among the
available FIFO queues, similar to hierarchical timing wheels,
at the cost of recirculating some data packets. To create a
2-level hierarchical calendar queue (HCQ), we split the N
FIFO queues into two groups of sizes n1 and n2, respectively.
The two groups run independent calendar queues CQ1 and
CQ2 on top of them, however with different bucket intervals:
CQ1 having an interval of one time period and CQ2 having
an interval of n1 time periods, as shown in Figure 6. The
idea is that a single queue of CQ2 has an interval equivalent
to the full rotation of all n1 queues of CQ1. A packet with a
scheduled time between 1 to n1 is inserted into the appropriate
queue in CQ1, packets with time between n1 +1 to 2×n1 are
inserted into the first queue of CQ2, packets with 2×n1+1 to
3×n1 are inserted into the second queue of CQ2, and so on.
This approach provides a total range of n1 ×n2 time periods,
whereas just using a single CQ over N queues would give a
range of just n1 +n2.

However, this comes at the cost of recirculating any data
packet that is enqueued in CQ2. When a full rotation of all
n1 queues in CQ1 finishes, all packets from the head queue of
CQ2 are recirculated and deposited into appropriate queues
in CQ1. Note that this approach is still significantly better

Day 1

Day 2

Day 3

Day N

1st level CQ
with N queues

Days (0,N]

Days (N,2*N]

Days ((M-1)*N,M*N]

2nd level CQ
with M queues

Figure 6: Example of a 2-level Hierarchical CQ. Packets are
enqueued into the higher level CQ if they are too far into the
future and recirculated into the finer level CQ periodically.

than the approach described in [10], where packets scheduled
too far in the future are simply enqueued in the scheduled
queue modulo N, and recirculated if the scheduled time has
not arrived; Brown’s scheme can recirculate a packet multiple
times, whereas an HCQ recirculates a packet only once lead-
ing to more efficient use of bandwidth. Implementing HCQs
also requires storing and managing extra state for both CQs
and more complex computations when determining the des-
tination queue for a packet. With 32 FIFO queues, a 2-level
HCQ can be implemented with 16×16 queues to achieve a
reach of 256 time periods or a 3-level HCQ with 16×8×8
queues with a total reach of 1024, which is significantly larger
than 32.

Limitations: Similar to PIFOs, CQs compute the enqueue
rank only on packet arrival. Therefore, the relative order of
already buffered packets cannot be changed after enqueuing.
This limitation prevents CQs from realizing mechanisms such
as pFabric’s starvation prevention technique [4], where the de-
queue order of multiple previously received packets changes
on an enqueue; a later packet within a flow would signal that
there are fewer remaining bytes within the flow and, thereby,
increase the priority of the flow’s previously enqueued pack-
ets. CQs do allow us to realize other, arguably stronger, forms
of starvation prevention, as we will see in Section 4.5. An-
other limitation of CQs is that we can schedule packets only
in the future. If the computed rank is before the current CQ
time, the resulting packet schedule will be different from the
desired ordering. Essentially, this means that CQs cannot
correctly order packets that have ranks in the past. One could
address this limitation by not immediately reusing a queue
for a future period as soon as we perform a CQ rotation and
allowing some number of queues from the past to be active.
Finally, CQs have an upper limit on the range of ranks they
can enqueue at a time. If a scheduling algorithm requires a
large range, it cannot be implemented accurately using CQs;
the hierarchical scheme outlined above can increase a CQ’s
range, but it comes with an approximation cost.

4 Evaluation
We evaluate the practical feasibility, expressiveness, and per-
formance of Calendar Queues by implementing them on a
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Figure 7: Average and tail latencies for both synthetic and datamining workloads with WFQ and EDF policies implemented using
Calendar Queues on top of Barefoot Tofino switch in the hardware testbed.

programmable Barefoot Tofino switch and realizing two clas-
sical scheduling algorithms using CQs. Next, using large
scale packet-level simulations, we demonstrate the flexibility
of the Calendar Queue abstraction with three case studies.
First, we instantiate a physical calendar queue that performs
deadline-aware scheduling of both aggregate flows (or co-
flows) and individual flows. Second, we instantiate a logical
calendar queue that implements a variant of fair-queueing that
can tolerate a limited amount of burstiness, thereby providing
a configurable balance between fairness and flow comple-
tion time for short flows. Finally, we implement a variant
of pFabric that prevents long flows from starving by gradu-
ally increasing the priority of all enqueued packets. None of
these scheduling algorithms can be realized using traditional
priority queuing schemes such as PIFO.

4.1 Hardware Prototype Implementation

We implement and evaluate programmable calendar queues
on the Barefoot Tofino 100BF-32X switch. As the current
Tofino switch does not support updating a queue’s priority
on the datapath, we implement CQs using a combination of
in-built packet generator, packet re-circulation, and control
plane operations to drain packets in the correct order.

First, we use the in-built packet generator on the switch to
periodically generate probe packets and detect when a queue
rotation needs to be performed. The egress pipeline tracks
the current head of the CQ, and when a packet is dequeued
from the next queue (signifying the current queue is empty),
it re-circulates the probe packet back to the ingress to initiate
a rotation. Next, the ingress pipeline updates the current head
of the CQ and enqueues the probe packet into the queue being
rotated out to drain it fully, and no more packets are inserted
into it. When the egress pipeline receives the probe packet
again, it is safe to update the priority of the drained queue,
and we achieve this by setting a flag in the egress pipeline.
Finally, the control CPU polls on this flag variable, and when
set, it makes an API call to update the queue’s priority and
notifies the ingress pipeline that it is safe to use this queue to
store the future packets.

Testbed and Workload We implement two scheduling al-
gorithms, WFQ [14] and EDF [18] using Calendar Queues

and compare them against standard FIFO droptail scheduling
in a 2-level fat-tree topology, consisting of 2 ToR switches, 2
aggregation switches, and 4 servers by using loopback links
with ingress-port based virtualization to divide the 32 phys-
ical ports into multiple switches. All links in the network
are 40Gbps with 80µs end-to-end latency. Each server opens
80 concurrent long-running connections to other servers and
generates flows according to a Poisson process at a rate con-
figured to achieve the desired network load. We tested a
synthetic workload that draws flow sizes at uniform with a
max size of 12.5 MB and the data mining workload from [4].

Performance Figure 7 shows the average and 99th per-
centile latencies. Across both workloads, we can see the
WFQ and EDF implementations performing better than sim-
ple droptail queues. The difference is more significant at
higher network load when queues build up at the switch due
to bursty arrivals. This is when the prioritization and correct
scheduling of packets leads to a visible difference in FCTs.
However, the important point here is that we were able to
realize these scheduling policies at a line-rate of 40 Gbps
without being limited by the number of flows. We further
measured the extra physical switch resources consumed by
our implementation of WFQ and EDF using CQs, and report
them in Appendix B.

4.2 Packet-level Simulations

We study our use-cases in a large-scale cluster deployment
using an event-driven, packet-level simulator. We extend the
mptcp-htsim simulator [21] to implement Calendar Queues
and several other comparison schemes. The simulation con-
sists of 256 servers connected in a 3-level fat-tree topology
consisting of 8 ToR switches, 8 aggregation switches, and 4
core switches. Each ToR switch is connected to 32 servers
using 10 Gbps links, and all other switches are connected
to each other using 40 Gbps links. Next, we describe each
case-study and evaluate them.

4.3 Use Case 1: Coflow scheduling using Least Slack
Time First (LSTF) scheduling

Distributed applications running inside datacenters generate
network traffic patterns that require optimizing the perfor-
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mance on a collection of flows [12], called coflows, rather
than individual flows, e.g., partition-aggregate or bulk syn-
chronous programming tasks such as multi-get Memcached
queries and MapReduce jobs. The performance of such appli-
cations depends on the last finishing flow among the collection
and prior work [1] has shown that near-optimal performance
can be achieved by ordering coflows using a Shortest Remain-
ing Processing Time (SRPT) first mechanism and ensuring
that any packet from any flow of a coflow X ordered before
coflow Y is transmitted before any packet from coflow Y.

We implement the above approach using LSTF scheduling
on top of Calendar Queues to optimize coflow completion
times (CCT). However, instead of using the complex BSSI al-
gorithm in [1], which decides priorities based on other coflows
in the system, we choose a much simpler heuristic to order
coflows as they arrive. We compute a deadline for the whole
coflow, assuming the largest sub-flow in the coflow is the bot-
tleneck and will be the last to finish. Therefore, the deadline
is simply the largest sub-flow size divided by endhost link
speed. All we need to do is assign this deadline to all packets
of all flows in the coflow and ensure that packets with the
earliest deadline are transmitted first at each switch.

We calculate each packet’s slack as the time remaining
until the deadline of its corresponding coflow. The slack
is initialized in the packet header at the endhost, and as the
packet traverses the network, each switch enqueues the packet
in the Calendar Queue based on this slack value. The higher
the slack value, the farther in future the packet is scheduled
for transmission. On departure, the switch deducts the time
spent at the switch from the slack and updates the packet
header. As a result, critical flows with lower slack values
and closer deadlines are dynamically prioritized over non-
critical flows with larger slack values and farther deadlines.
Note that this scheme could have been implemented using an
exact priority queue (such as PIFO) with absolute deadlines
embedded in the packet header, but that would require clocks
to be synchronized. More importantly, the switch would
run out of priority levels eventually and would not be able
to enforce deadlines. We, therefore, implement the scheme
using LSTF on top of Calendar Queues.

We measure the performance of the above coflow schedul-
ing mechanism using event-driven simulations and compare
it with the following queueing schemes:

• Droptail: Traditional switch with a single FIFO queue that
drops packets from the tail when full.

• Fair Queue: Bit-by-bit round-robin algorithm from [14]
that achieves max-min fairness.

• Ideal Calendar Queue: A CQ with infinite buckets that
also transmits packets in sorted order within each bucket.

• Approx Calendar Queue: Our implementation of CQs
that uses 32 FIFO queues and 10µs round interval.

In all the above schemes, we use the same end-host flow
control protocol, DCTCP, with the additional embedding of
slack value based on the coflow deadline.

Workload and Performance Metric We use a mix of
background traffic, which is the enterprise workload in [3]
and a synthetic coflow workload derived from a Facebook
trace [1]. Coflows, on average, have ten sub-flows and a total
size of 100 KB. The ratio of background traffic to coflow
traffic is 3:1. Flows and coflows arrive according to a Pois-
son process at randomly and independently chosen source-
destination server pairs with an arrival rate chosen to achieve
the desired level of utilization in the aggregation-core switch
links. We evaluate the performance in terms of flow comple-
tion time (FCT) or, in case of coflows, the coflow completion
time (CCT), which is the maximum FCT of comprising sub-
flows and report both mean and 99th percentile numbers.

Since we have a mix of background flows and coflows, we
must decide how they co-exist together and are scheduled
inside the network. One trivial way is to treat background
traffic as a separate class with a lower priority than coflow
traffic. This configuration is evaluated in Setup 1. Another
option made possible by CQs is to treat background traffic
as fair-queued and coflow traffic as deadline-aware using the
same underlying CQ to schedule packets belonging to both
classes. This demonstrates the flexibility of CQs in realizing
multiple scheduling policies at once, and we evaluate this
configuration in Setup 2.
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Figure 9: Average and percentile flow completion times for short flows with varying network load and permissible burst size.

Setup 1: Coflows have priority over background traffic.
We treat background flows as a different traffic class with
lower priority than coflows by using a separate queue with
strictly lower priority. As a result, the background traffic
performance is not affected by the coflow scheduling policy,
and we report coflow completion times in Figure 8. The
average CCT improves by up to 3x and 99th percentile CCT by
5x at high network loads. This improvement is both because
we are emulating an SRPT policy as well as because we de-
prioritize shorter sub-flows within a coflow over other more
critical flows. Both droptail and fair-queuing finish short flows
within a coflow quickly, although they have a significant slack
till the deadline. Moreover, our CQ implementation is able to
accurately emulate an ideal calendar queue mechanism using
a limited number of FIFO queues, and the gap between ideal
CQ and our CQ is fairly negligible.

We present the results for Setup 2 in Appendix C.

4.4 Use Case 2: Weighted Fair Queueing with Burst Al-
lowance

First, we implement Fair Queueing using calendar queues
as described in Section 3.3.1, which emulates a round-robin
scheme wherein each active flow transmits a fixed number of
bytes each round (BpR). The departure round computed for
each packet is mapped to a future day (or queue) in the CQ,
which transmits the packets in the correct order. This scheme
has been shown to emulate Fair Queuing accurately [25] and
while it implements Start Time Fair Queueing at a coarse
granularity, it is often desirable to allow a burst of packets
from a single flow to be transmitted back-to-back to achieve
a better latency for short flows and improve tail latency [13].
This only affects fairness at very short timescales while main-
taining fairness at larger timescales.

We modify WFQ to allow short bursts to go through using
a simple modification to the enqueuing logic at the ingress. In
addition to maintaining a byte counter per flow and computing
a packet’s round number as byte counter divided by BpR, we
maintain a permitted burst size. While our original WFQ
implementation allows a flow to send at most BpR bytes per
round, the burst-friendly variant lets a flow enqueue up to a
fraction of available burst size into a single round, allowing it
to exceed its fair share allocation temporarily.

More precisely, instead of computing the round number as
R = bytes[f]/BpR, where bytes[f] is the amount of bytes
enqueued by flow f, we incorporate burst size into the calcu-
lation as follows,

R = bytes[f]/max(BpR, BurstSize - bytes[f])

where BurstSize is the configured permissible burst size.
This essentially lets BurstSize/2 bytes to be enqueued in the
current round, BurstSize/4 in the next round, and so on, as
show in Figure 10. Any enqueued bytes exceeding the burst
size are assigned the same round number as before.

We implement this burst-friendly fair-queuing scheme with
configured burst sizes of 8 and 16 packets (denoted by FQ-
8 and FQ-16), along with ideal fair-queueing on top of our
Calendar Queues and measure the impact on flow completion
times using simulations. We use the same 3-level fat-tree
topology and enterprise workload for this use case.

Figure 9 shows the flow completion times of short flows
as we increase the network load. At higher network loads,
allowing a burst of bytes to go through leads to up to 2-3x re-
duction in higher percentile latencies. Figure 11 breaks down
the latency improvement across different flow size buckets,
and it confirms that short flows in the region of burst size
show the most improvement. More importantly, larger flows
are unaffected by this temporary burst allowance.

4.5 Use Case 3: pFabric with Starvation Prevention

pFabric [4] is a transport layer designed to provide near-
optimal flow completion time by essentially emulating Short-
est Remaining Processing Time (SRPT) first scheduling at
each switch. Each flow packet carries a single number that
encodes its priority – in this case, it is set to the remaining
flow size when the packet is transmitted. All switches forward
the packet with the shortest remaining flow size at any given
time. This simple scheme can be implemented using a static
fine-grained priority scheme such as PIFO, as it does not re-
quire the gradual priority escalation. However, this leads to
potential starvation of long flows, which are always depriori-
tized compared to shorter flows, making it impractical to run
in real environments. This is shown in Table 1, where we
simulated the same 3-level fat-tree topology and ran the enter-
prise workload at 80% network load. As flow size increases,
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Flowsize 10k 100k 1M 10M 100M

pFabric 679 651 670 524 265
pFabric-fair 650 642 638 543 442

Table 1: Average bandwidth in MBps achieved by flows in vari-
ous bucket sizes.
the average transmission rate decreases resulting in reduced
bandwidth available for longer flows.

If we were to think of fair queuing and pFabric as ends
of the spectrum, calendar queues would provide us with op-
tions in the middle. We implement a fairer version of pFab-
ric, called pFabric-fair, by slightly altering the enqueuing
mechanism. A packet with k bytes remaining in the flow is
enqueued f (k) periods into the future, where f (k) is a log
function. Thus, higher rounds are exponentially bigger, and
the CQ can accommodate large flow sizes. Whenever the cur-
rent head queue is empty, we rotate to the next queue, which
ensures that low priority packets from larger flows are not
permanently starved, merely deprioritized at enqueue time,
and their priorities increase with time. However, we need
some additional state to ensure that we do not enqueue a later
packet from a flow ahead of the flow’s previously received
packets, which we achieve by keeping track of the highest
queue for each flow.

Figure 12 shows the average and 99th percentile FCT for all
flows with varying network loads for pFabric and pFabric-fair.
Although pFabric-fair has a slightly higher average FCT at
higher network loads, it also provides higher bandwidth to
large-sized flows, preventing them from starving.

5 Related Work
Packet schedulers available in switching hardware today are
fixed function, supporting specific primitives such as strict pri-
ority, rate limits, round-robin fairness, although a vast number
of richer scheduling algorithms that provide stronger guar-
antees exist in the literature, such as WFQ [14], pFabric [4],
STFQ [15], SRPT [24], EDF [18].

Several recent proposals aim to provide a programmable
packet scheduler that can implement these scheduling algo-
rithms while operating at line rate of terabits per second, such
as PIFO [28], PIEO [27], and SP-PIFO [2]. All of these

proposals provide the abstraction of static and finite priority
levels, which we argue is insufficient to implement several
scheduling algorithms that require monotonically escalating
priorities. pHeap [7], PIFO and PIEO provide fine-grained
priority levels, which makes it challenging for them to scale to
large packet buffers and multi-pipeline switches. SP-PIFO is
similar to Calendar Queues as it also provides coarse-grained
priority levels using only FIFO queues, and can scale to cur-
rent line-rate switches. SP-PIFO dynamically adjusts the
priority range of individual queues by changing queueing
thresholds, which can be explored further in the context of
Calendar Queues as well.

Another chain of work proposes efficient packet scheduling
in software such as Carousel [22], Loom [29], and Eiffel [23].
These approaches rely on timing wheel data structures or
bucketed integer priority queue-like data structures for effi-
cient operation. Calendar Queue borrows ideas from similar
data structures while targeting switching hardware that can
support today’s large buffer and multi-pipeline routers.

6 Conclusion

We propose a flexible packet scheduler designed for line-rate
hardware switches, called Programmable Calendar Queues,
that enables the efficient realization of several classical
scheduling algorithms. It relies on the observation that most
algorithms require both prioritization and implicit escalation
of a packet’s priority. We show how they can be implemented
efficiently on today’s programmable switches by dynami-
cally changing the priority of queues using either dataplane
primitives or control-plane operations. We demonstrate that
PCQs can be used to realize interesting variants of LSTF, Fair
Queueing, and pFabric to provide stronger delay guarantees,
burst-friendly fairness, and starvation-free prioritization of
short flows, respectively.

Acknowledgments

We would like to thank the anonymous NSDI reviewers and
our shepherd Rachit Agarwal for their valuable feedback. This
research was partially supported by NSF Grant CNS-1714508
and Futurewei.

696    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References
[1] AGARWAL, S., RAJAKRISHNAN, S., NARAYAN, A., AGAR-

WAL, R., SHMOYS, D., AND VAHDAT, A. Sincronia: Near-
optimal network design for coflows. In Proceedings of the
ACM SIGCOMM Conference (2018).

[2] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. SP-
PIFO: Approximating push-in first-out behaviors using strict-
priority queues. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (Santa Clara,
CA, 2020).

[3] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM, V. T.,
MATUS, F., PAN, R., YADAV, N., AND VARGHESE, G.
CONGA: Distributed congestion-aware load balancing for
datacenters. In Proceedings of the ACM SIGCOMM Confer-
ence (2014).

[4] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCK-
EOWN, N., PRABHAKAR, B., AND SHENKER, S. pFabric:
Minimal near-optimal datacenter transport. In Proceedings of
the ACM SIGCOMM Conference (2013).

[5] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND

WANG, H. Information-agnostic flow scheduling for com-
modity data centers. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation
(Oakland, CA, 2015).

[6] BAREFOOT NETWORKS. Tofino Programmable Switch.
https://www.barefootnetworks.com/technology/.

[7] BHAGWAN, R., AND LIN, B. Design of a High-speed Packet
Switch with Fine-grained Quality-of-Service Guarantees. In
Proceedings of the IEEE International Conference on Commu-
nications (June 2000), vol. 3, pp. 1430–1434 vol.3.

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKE-
OWN, N., REXFORD, J., SCHLESINGER, C., TALAYCO, D.,
VAHDAT, A., VARGHESE, G., AND WALKER, D. P4: Pro-
gramming protocol-independent packet processors. ACM SIG-
COMM Computer Communication Review 44, 3 (July 2014).

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G.,
MCKEOWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ,
M. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN. In Proceedings of the
ACM SIGCOMM Conference (2013), pp. 99–110.

[10] BROWN, R. Calendar queues: A fast 0(1) priority queue
implementation for the simulation event set problem. Commu-
nications of the ACM 31 (1988), 1220–1227.

[11] CAVIUM. XPliant Ethernet switch prod-
uct family. http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.html.

[12] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient
coflow scheduling with varys. In Proceedings of the ACM
SIGCOMM Conference (2014), SIGCOMM ’14, pp. 443–454.

[13] CLARK, D. D., SHENKER, S., AND ZHANG, L. Supporting
real-time applications in an integrated services packet network:
Architecture and mechanism. In Proceedings on the ACM
SIGCOMM Conference (1992).

[14] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In Proceedings on the
ACM SIGCOMM Conference (1989).

[15] GOYAL, P., VIN, H. M., AND CHEN, H. Start-time fair queue-
ing: A scheduling algorithm for integrated services packet
switching networks. In Proceedings of the ACM SIGCOMM
Conference (1996), SIGCOMM ’96, pp. 157–168.

[16] IEEE. Priority based flow control. IEEE 802.11Qbb (2011).

[17] LEUNG, J. Y.-T. A new algorithm for scheduling periodic,
real-time tasks. Algorithmica 4, 1-4 (1989), 209.

[18] LIU, C. L., AND LAYLAND, J. W. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM
20, 1 (Jan. 1973), 46–61.

[19] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND

SHENKER, S. Universal packet scheduling. In 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16) (Santa Clara, CA, 2016).

[20] OZDAG, R. Intel® Ethernet Switch FM6000 Series-Software
Defined Networking. http://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/
ethernet-switch-fm6000-sdn-paper.pdf.

[21] RAICIU, C. MPTCP htsim simulator. http://nrg.cs.ucl.
ac.uk/mptcp/implementation.html.

[22] SAEED, A., DUKKIPATI, N., VALANCIUS, V., THE LAM,
V., CONTAVALLI, C., AND VAHDAT, A. Carousel: Scal-
able traffic shaping at end hosts. In Proceedings of the ACM
SIGCOMM Conference (2017), SIGCOMM ’17, pp. 404–417.

[23] SAEED, A., ZHAO, Y., DUKKIPATI, N., ZEGURA, E., AM-
MAR, M., HARRAS, K., AND VAHDAT, A. Eiffel: Efficient
and flexible software packet scheduling. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19) (Boston, MA, 2019), pp. 17–32.

[24] SCHRAGE, L. E., AND MILLER, L. W. The queue m/g/1 with
the shortest remaining processing time discipline. Oper. Res.
14, 4 (Aug. 1966), 670–684.

[25] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNA-
MURTHY, A. Approximating fair queueing on reconfigurable
switches. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18) (Renton, WA, 2018),
pp. 1–16.

[26] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queue-
ing using deficit round robin. In Proceedings on the ACM
SIGCOMM Conference (1995).

[27] SHRIVASTAV, V. Fast, scalable, and programmable packet
scheduler in hardware. In Proceedings of the ACM SIGCOMM
Conference (2019), SIGCOMM ’19, pp. 367–379.

[28] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M.,
CHOLE, S., CHUANG, S.-T., AGRAWAL, A., BALAKRISH-
NAN, H., EDSALL, T., KATTI, S., AND MCKEOWN, N. Pro-
grammable packet scheduling at line rate. In Proceedings of
the ACM SIGCOMM Conference (2016).

[29] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom: Flex-
ible and efficient NIC packet scheduling. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19) (Boston, MA, 2019), pp. 33–46.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    697

https://www.barefootnetworks.com/technology/
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html


A Detailed Implementation Notes for Realiz-
ing PCQs in Hardware

We now present the traffic manager API and how it is invoked
by the different steps involved in transitioning a CQ from one
period to another.

Traffic Manager API
• tm_enqueue(packet, queue): Enqueues a packet in

the given queue.

• tm_pause(queue): Stop or pause queue from transmit-
ting any packets until unpause is called on the same
queue.

• tm_unpause(queue): Resume queue, allowing it to send
out packets until pause is called.

• tm_setPriority(queue, p): Set priority of queue to p

(one of different levels supported by the TM)

• tm_dequeue() (called from egress): Returns a packet
from the highest priority unpaused queue, along with the
queue id from which it was dequeued.

The exact details of enqueue/dequeue and rotation are
described in the pseudocode below. In addition, we store
the following state at ingress and egress to keep track of
Calendar Queue status and perform queue rotations. The
special recirculation packets also contain metadata regarding
which queue is being rotated out.

Ingress State
currQ: queueId currently at the head of the CQ
prevQ: queueId that was just rotated out and is draining
nextQ: queueId that will be unpaused next

Egress State
currQ: queueId at the head of the CQ (egress)

Packet Enqueue Function
packet_enqueue(pkt, X) (called from ingress)
// According to desired scheduling algorithm.
x = compute_rank(pkt)
// Enqueue packet in queue (currQ + x) % N
tm_enqueue(pkt, (currQ + x) % N)

// process initiate rotate packet
if packet == rotate:

ingress.prevQ = ingress.currQ
ingress.currQ = ingress.nextQ
ingress.nextQ = (ingress.nextQ + 1) % N
tm_enqueue(marker, ingress.prevQ)
tm_setPriority(prevQ, High)
tm_setPriority(currQ, Medium)

// process marker packet
if packet == marker:

tm_pause(marker.queueId)
tm_unpause(nextQ)
tm_setPriority(nextQ, Low)

Packet Dequeue Function
packet_dequeue() (called from egress)
// Returns the highest priority packet
pkt, queueId = tm_dequeue()

// Need to initiate rotation
if queueId != egress.currQ:

create and circulate a rotate packet on egress.currQ
egress.currQ++

// Normal packet dequeue
if queueId == egress.currQ:

perform normal packet processing

if pkt == marker:
recirculate marker back to ingress

Note that, if no more packets remain to be transmitted, then
rotate packet is never sent out and currQ remains the same.
This avoids unnecessary rotations when the link traffic is less
than the link bandwidth.

B Resource Overhead of Implementing CQs
Table 2 shows the additional overhead of implementing CQs
along with various scheduling policies, as reported by the P4
compiler. First, since we were able to compile CQs directly
onto the Tofino hardware, we can support an arbitrary number
of flows at the configured line-rate of 40 Gbps, and are not
scale limited in any way. We do require some additional
state that is proportional to the number of CQs instantiated
across all ports and the number of queues in each CQ. Each
scheduling policy also keeps extra state for rank computation,
which takes extra resources, e.g., keeping flow byte counters
for WFQ results in 50% increase in SRAM usage.

Resource Baseline CQ w/ CQ w/ CQ w/
EDF WFQ EDF+WFQ

Pkt Header Vector 356 356 356 356
Pipeline Stages 9 9 12 12
Match Crossbar 50 54 63 68
Hash Bits 113 124 140 150
SRAM 27 29 46 48
TCAM 2 2 2 2
ALU Instruction 11 12 13 14

Table 2: Summary of resource usage for a Calendar Queue im-
plementation with 32 physical queues on top of P4 switch.

C Scheduling Deadline-aware and Back-
ground Traffic using the same CQ

In Setup 2 described in Section 4.3, we use the same un-
derlying Calendar Queue to schedule background flows as
fair-queued traffic and coflows as deadline or slack based
traffic. For a background flow packet, which is fair-queued,
we compute its departure queue based on bytes enqueued by
the flow using the WFQ implementation described in Sec-
tion 3.3.1. For a deadline-aware coflow packet, we calculate
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Figure 13: CCT and FCT when scheduling background traffic as fair-queued and coflow traffic as deadline-aware using the same
Calendar Queue.
its departure queue using the slack inside the packet header
by dividing it with the configured bucket interval as described
in Section 3.3.2. We can control the relative priority of back-
ground vs. coflow traffic by changing the bucket interval. A
higher bucket interval will accommodate more bytes from
deadline traffic compared to fair-queued traffic. We use a
default value of 10µs as the bucket interval and 1 MSS as the
bytes quantum per round for fair queueing.

Figure 13 shows the coflow completion times and FCT of
background flows in this setup. The average CCT shows up

to 2.5x and 1.5x improvement compared to droptail and fair
queuing, respectively. This benefit again comes from the fact
that we are able to schedule shorter coflows before longer
coflows, as well as de-prioritize shorter sub-flows within a
coflow over other more critical sub-flows. The 99th percentile
shows a similar improvement of 3x over droptail queues.
Moreover, the average FCT of background flows stays roughly
the same and is unaffected by the coflow scheduling being
done by the Calendar Queue.
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Abstract
We present Contra, a system for performance-aware routing
that can adapt to traffic changes at hardware speeds. While
point solutions exist for a fixed topology (e.g., a Fattree) with
a fixed routing policy (e.g., use least utilized paths), Con-
tra can operate seamlessly over any network topology and
a wide variety of sophisticated routing policies. Users of
Contra write network-wide policies that rank network paths
given their current performance. A compiler then analyzes
such policies in conjunction with the network topology and
decomposes them into switch-local P4 programs, which col-
lectively implement a new, specialized distance-vector proto-
col. This protocol generates compact probes that traverse the
network, gathering path metrics to optimize for the user pol-
icy dynamically. Switches respond to changing network con-
ditions by routing flowlets along the best policy-compliant
paths. Our experiments show that Contra scales to large net-
works, and that in terms of flow completion times, it is com-
petitive with hand-crafted systems that have been customized
for specific topologies and policies.

1 Introduction
Configuring a network to achieve a diverse range of ob-
jectives, such as routing constraints (e.g., traffic should go
through a series of middleboxes), and traffic engineering
(e.g., minimize latency and maximize throughput), is a chal-
lenging task. To handle this complexity, one approach has
been to use SDN solutions, which have a centralized point
for management [25, 26]. However, centralized controllers
are inherently too slow to respond to fine-grained traffic
changes, such as short traffic bursts. In fact, even the soft-
ware control planes locally on the switches are often limited
in their ability to select new routes fast enough.

Recent work has developed load-balancing mechanisms
that operate entirely in the data plane to enable real-time
adaptation [11, 30]. By making use of fine-grained perfor-
mance information on hardware timescales, these systems
can deliver considerable performance benefits over static
load-balancing mechanisms like ECMP. Unfortunately, ex-
isting systems, such as Conga [11] and Hula [30], are point
solutions that only work under specific assumptions about
the network topology, routing constraints, and performance

objectives—they only support a “least utilized shortest path”
policy on a data center topology. It is not obvious how to
adapt them for other kinds of topologies or policies.

In this paper, we describe Contra, a general and pro-
grammable system for performance-aware routing. Network
operators configure Contra by describing the network topol-
ogy as well as a high-level policy that defines routing con-
straints and performance objectives. Contra then generates
P4 programs for switches in the network, which execute in
a fully distributed fashion. Collectively, they implement a
specialized version of a distance-vector protocol that for-
wards traffic based on routing constraints and optimizes for
the user-defined performance objectives. This protocol op-
erates by generating periodic probes that traverse policy-
compliant paths and collect user-defined performance met-
rics. Switches analyze the incoming probes and rank paths
in real time, storing the current best next hop to reach any
given destination. Since the programs run in the data plane,
switches can react to performance changes quickly. Overall,
Contra is designed to achieve the following objectives:

• General – operates over a wide range of policies
• Reusable – works correctly for any topology
• Distributed – does not require central coordination
• Responsive – adapts to changing metrics quickly
• Implementable – on today’s programmable data planes
• Policy-compliant – packets only use allowed paths
• Loop-free – mitigates persistent/transient loops
• Optimal – converges to best paths under stable metrics
• Stable – mitigates oscillation under changing metrics
• Efficient – avoids undue traffic and switch overhead
• Ordered – limits out-of-order packet delivery

To achieve these objectives, we need to address several
challenges. First, to operate over arbitrary topologies, Contra
requires new techniques to search the set of possible paths for
optimal routes. State-of-the-art solutions, such as Conga [11]
and Hula [30], assume a tree-based data center topology,
which makes exploring possible paths, avoiding forward-
ing loops, and finding optimal routes straightforward. Sec-
ond, link and path metrics can change constantly, which may
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Objective Key idea(s) Section(s)

General Language for performance-aware routing 2Policies as path-ranking functions
Reusable Policy analyzed jointly with topology 4.1
Distributed Synthesis of data-plane routing protocol

4.1–4.3Responsive & Periodic probes to collect path metrics
Implementable Implemented in P4

Policy-compliant Probes and packets carry policy states 4.1–4.3Switches keep track of state transitions

Loop-free
Monotonicity analysis

2, 5.1, 5.5Probes carry version numbers
Early loop breaking for flowlets

Optimal Isotonicity analysis
2, 5.2, 5.4Stable & Limit the frequency of probes

Efficient Failure detection and metric expiration
Ordered Policy-aware flowlet switching 5.3

Figure 1: Key ideas in Contra.

cause unsynchronized views at different switches. Making
forwarding decisions based on inconsistent views may lead
to forwarding loops or paths that violate the routing policy.
Third, a naı̈ve solution that constantly changes routes can
cause transient or even persistent chaos. We draw inspira-
tions from wireless network routing [16, 38, 39], and design
mechanisms that leverage programmable data planes to ad-
dress this. Finally, we develop policy-aware flowlet switch-
ing, which routes flowlets to mitigate out-of-order packet de-
livery while ensuring policy compliance.
Summary. We make several contributions in the design of
Contra, and Figure 1 summarizes the key ideas.

• We define a new programming abstraction that views
policies as path-ranking functions, and generalizes ex-
isting languages by allowing operators to specify path
constraints and dynamic metrics simultaneously.
• We design a new configurable, performance-aware,

distance-vector routing protocol.
• We develop compilation algorithms that generate

switch-local P4 programs that implement a particular
configuration of the protocol based on user policy.
• We have built a system prototype, and conducted thor-

ough experiments to demonstrate that Contra is compet-
itive with state-of-the-art systems that are customized
for a specific topology and routing policy.

Non-goals. There has been abundant recent research on ef-
ficient load-balancing strategies, especially in data centers.
The goal of this work is not to outperform such strategies in
the contexts for which they have been manually optimized.
Rather, our goal is to facilitate the deployment of such tech-
niques on a much broader set of networks and with a broader
collection of optimization criteria, and to do so without ask-
ing network operators to take the time, or acquire the exper-
tise necessary, to write “assembly-level” P4 programs.

2 Policy language
Contra includes a high-level language that can express a wide
range of user policies, which are functions that rank network
paths. Our compiler then ensures that switches always use
the best policy-compliant paths. Users can combine regular

expressions, which express hard constraints on the allowed
paths, with performance metrics to express dynamic prefer-
ences. As a concrete example, consider the following policy:

minimize( if A .∗ then path.util else path.lat )

It first classifies paths using a regular expression (A .*), and
then based on the classification, it defines the rank to be ei-
ther path utilization or latency. Each node will separately
choose its best paths according to this function. So node
A will always choose the least utilized path, while all other
nodes will select the path with the lowest latency.

The Contra language can also capture static policies in ex-
isting systems that are not related to performance. For in-
stance, FatTire [40] uses regular expressions to classify legal
and illegal paths (though it says nothing about the perfor-
mance of such paths). To route packets through a waypoint
W, a FatTire policy would be (.* W .*), which allows any
path through W but no other paths. Contra can represent this
by mapping all legal paths to 0 and illegal paths to ∞:

minimize( if .∗ W .∗ then 0 else ∞ )

This policy will ensure that every node always selects a path
through W if one exists in the network, and drops traffic oth-
erwise; no path is preferred to a path with rank ∞.

As another example, Propane [14] allows users to write
policies about failover preferences. A Propane policy (A

B D) >> (A C D) indicates a preference for sending traf-
fic through path A B D and only using A C D if the first path
is not available (e.g., a link has failed). In Contra, we can
achieve the same effect by ranking paths statically as below.

minimize( if A B D then 0 else if A C D then 1 else ∞ )

In Contra, it is also possible to rank paths based on multi-
ple metrics. For example, suppose we prefer that A reaches
D via B instead of via C, and we also prefer shorter, less
utilized paths. This can be achieved by lexicographically
ranking paths, e.g., prefer paths through B first, then shortest
paths, and finally, least utilized paths.

minimize( if A .∗ B .∗ D then (0, path.len, path.util)
else if A .∗ C .∗ D then (1, path.len, path.util)
else ∞ )

Ranking paths using regular expressions defines strict, in-
violate preferences; however, operators may have softer con-
straints based on path performance: e.g., one path may be
preferred up to a point, but if the utilization is too high then
some traffic should be shunted along another path instead.
For example, to prefer least-utilized paths when the network
load is light (utilization of the path is less than 80%), even
if those paths are long, but to prefer shortest paths when net-
work load is heavy (and hence to save bandwidth globally),
one might use the following policy.

minimize( if path.util < .8
then (1, 0, path.util)
else (2, path.len, path.util) )
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Policy
pol ::= minimize(e) optimization
Expressions

e ::= n constant numeric rank
| ∞ infinite rank
| path.attr path attribute
| e1 ◦ e2 binary operation
| if b then e1 else e2 if statement
| (e1, . . . ,en) tuple

Boolean Tests
b ::= r | e1 ≤ e2 | not b | b1 or b2 | b1 and b2

Regular Paths
r ::= node id | . | r1 + r2 | r1 r2 | r∗

Figure 2: Syntax for Contra policies.

Finally, to steer traffic towards or away from particular
links, one may add or subtract weights. For instance, the fol-
lowing policy demonstrates how to add weight to costly links
AB and CD while otherwise using simple shortest paths.

minimize( (if .∗ AB .∗ then 10 else 0) +
(if .∗ CD .∗ then 20 else 0) + path.len )

Figure 2 presents the full language syntax, and Table 1
presents selected policy examples taken from the literature.
The key novelty of the language is that it can capture many of
the static conditions expressed by earlier work such as Fat-
Tire [40] or NetKAT [13] as well as the relative preferences
of Propane [14], and yet it also augment such policies with
dynamic preferences based on current network conditions.

Policy Implementation
P1. Shortest path routing [24] path.len
P2. Minimum utilization [30] path.util
P3. Widest shortest paths [32] (path.len, path.util)
P4. Waypointing [13] if .*(F1+F2).* then path.util else ∞

P5. Link preference [14] if .*XY.* then path.util else ∞

P6. Weighted link [19] (if .*XY.* then 10 else 0) + path.len
P7. Source-local preference [12] if X.* then path.util else path.lat
P8. Congestion-aware routing [27] if path.util < .8 then (1, 0, path.util)

else (2, path.len, path.util)

Table 1: Selected Contra policies.
Policy analysis and guarantees. Contra requires user poli-
cies to be monotonic (metrics do not improve for longer
paths) and isotonic (switches have consistent preferences).
If a policy is non-isotonic (e.g., P8), Contra will attempt to
decompose it into multiple isotonic subpolicies that can be
processed separately. Contra can do this for many condi-
tional policies (e.g., P8), but it will not always succeed, e.g.,
for “shortest widest paths”; see Appendix A for more discus-
sion. These algebraic constraints guarantee that when met-
rics are stable, new flows will be sent along globally optimal
paths [22]. Our system also guarantees that hard constraints
expressed by regular expressions are never violated. Under
changing metrics, when switches make distributed decisions
based on their local views, routes may be suboptimal [11].

3 Selected Challenges
Contra addresses three key challenges. To illustrate these
challenges, we first describe a simple strawman solution de-
signed for a specific topology (data center networks) and spe-
cific policy (use least utilized paths). Consider the simple
leaf-spine topology in Figure 3(a), where switch S wants to
send traffic to switch D over the least-utilized path:

minimize( if S.∗D then path.util else ∞)

One strawman solution is to use a distance-vector protocol,
where each switch propagates link metrics (i.e., utilization)
to its neighbors via periodic probes, and builds up a local
forwarding table of “best next hops” to reach other switches.

Concretely, at time 1, D sends two probes to A and B car-
rying utilizations u(A-D)=0.1 and u(B-D)=0.2, respectively.
Upon receiving a probe, a spine switch updates its metric,
and then disseminates the probe to its downstream neighbors.
The updated probe metric is the maximum of a) the original
probe metric, and b) the utilization of the inbound link from
the switch’s neighbor, so the probe always carries the utiliza-
tion of the bottleneck link on its traversed path. For instance,
when B receives the probe from D, it updates the utilization
to 0.3, which is the maximum of a) the original probe met-
ric, u(B-D)=0.2, and b) the utilization u(S-B)=0.3; when A
receives the probe from D, it updates the utilization in the
probe to be 0.4, which is the maximum of u(A-D)=0.1 and
u(S-A)=0.4. At time 2, both A and B disseminate the updated
probes to S. Now, S has received probes on both paths S-A-D
(u=0.4) and S-B-D (u=0.3), and it chooses B as the best next
hop to reach D due to its lower utilization. Changes in link
metrics are then propagated by the next round of probes. In
fact, this describes Hula [30], a state-of-the-art solution for
utilization-aware routing in data centers.
Challenge #1: Arbitrary topologies. On a tree topology,
simple mechanisms (e.g., defining a set of “downstream”
and “upstream” neighbors for each switch) suffice to ex-
plore paths and prevent forwarding loops [30], but on a non-
hierarchical topology, it is insufficient.

Consider the sequence of events in Figures 3(b)-(e), where
S prefers the least-utilized path to D. Suppose that at time 1,
D sends out probes to A and S, and A propagates D’s probe
to B and S, with the utilizations shown in Figure 3(b); now,
both B and S prefer to reach D via A. At time 2, S propa-
gates A’s probe to B about S-A-D (u=0.1), so B changes its
preference to go through S; B then propagates S’s probe to A
(u=0.2), but it gets delivered only at time 4. At time 3, u(A-
D) increases to 0.5, which is discovered by a new periodic
probe from D to A and S. From A’s perspective, the best path
to reach D is still A-D, except that now the utilization is 0.5
instead. At time 4, when B’s (old) probe to A arrives with
u=0.2, A mistakenly thinks that it should instead reach D via
B, not knowing that A is itself on B’s best path to reach D.
As a result, a forwarding loop S-A-B-S would form, and it
will persist as long as the link utilizations remain stable.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    703



S D

A B

0.2

0.10.3

0.4

S0.1

A

B D

0.7

0.2 0.1

S0.1

A

B D

0.7

0.2 0.1

S0.1

A

B D

0.7

0.2

0.1

0.1->0.5

S0.1

A

B D

0.7

0.2

0.1

0.5

(a)	Strawman	solution (b)	Arbitrary	topologies	(t=1) (c)	Arbitrary	topologies	(t=2) (d)	Arbitrary	topologies	(t=3)

(e)	Arbitrary	topologies	(t=4)

S

0.1

A

B D

0.1

0.1 0.9

0.20.1

S

0.1->0.7

A

B D

0.1

0.1 0.9->0.1

0.20.1

S

0.7

A

B D

0.1

0.1 0.1->0.3

0.20.1

(f)	Constrained	routing	(t=1) (g)	Constrained	routing	(t=2) (h)	Constrained	routing	(t=3)

0.1 0.1

Figure 3: Supporting sophisticated policies over arbitrary topologies is challenging. (Solid, red arrows represent probes, and
dotted, green arrows represent packet forwarding. Links are labeled with performance metrics.)

It might seem that path-vector protocols would address
this problem, where probes record their traversed paths, and
switches avoid picking paths that involve themselves. How-
ever, the root cause of transient loops is the inconsistent
views during network convergence; so transient loops can
still form even with path-vector protocols [37]. Carrying the
path traversed by the probe would also increase traffic over-
heads and the complexity for processing probes.

Solution. Our solution is inspired by DSDV [39] and a more
recent proposal Babel [16], which were originally developed
for wireless mesh networks. At a high level, switches as-
sign version numbers to probes, so that they can identify and
avoid using outdated probes. In addition, Contra uses flowlet
switching [44] to pin traffic to particular paths and avoid out-
of-order packet delivery. Still, because flowlet entries expire
at different times, it is possible for transient loops to form on
rare occasions. Contra quickly detects and breaks such loops
by monitoring hop counts.

Challenge #2: Constrained routing. Supporting routing
policies with path constraints leads to additional challenges.
Consider the scenario in Figure 3(f), where the policy is not
only to prefer least-utilized paths, but also that traffic should
never first go through B and then A due to security concerns:

minimize(if .∗B.∗A.∗ then ∞ else path.util)

Under this policy, S can only send traffic to D via a) S-D,
b) S-A-D, c) S-B-D, or d) S-A-B-D; initially, S prefers c)
(u=0.1). Now consider the sequence of events shown in Fig-
ures 3(f)-(h). Suppose that at time 1, the traffic from S arrives
at B. At time 2, the u(B-D) increases to 0.7, and u(S-D) de-
creases to 0.1, so B updates its best next hop (to reach D) to
be S, preferring the path B-S-D. At time 3, B sends the traf-
fic back to S, which already forms a loop. But things can get
even worse: at time 3, u(S-D) increases to 0.3, so S changes
its preference to be S-A-D (u=0.2). So the traffic has been
forwarded along a path S-B-S-A-D, which not only contains
a loop but also violates the intended policy.

Solution. Contra compiles the regular expression con-
straints in the user policy into automata, and intersects these

automata with the network topology to obtain a product
graph [45, 14], which specifies a probe and packet tagging
scheme for each switch. Intuitively, tags represent states of
the user-defined automata; by checking that probes and pack-
ets carry the right state when arriving at a switch, it is possi-
ble to enforce the global user policy in a distributed fashion.
This tagging scheme guarantees that no packet ever deviates
from a user’s regular expression constraints in the policy.

Challenge #3: Custom performance metrics. Support-
ing custom performance metrics also introduces new chal-
lenges. As discussed earlier, a switch only propagates the
probe with the best metric to its neighbors. However, such
local decisions do not always give rise to globally optimal
results, unless the policy is isotonic [22] (i.e., roughly speak-
ing, downstream nodes respect the preferences of upstream
nodes). Unfortunately, some useful policies, such as some
congestion-aware routing schemes, are not isotonic [27].

Solution. Contra analyzes the user policy to determine if
it is isotonic. If not, Contra decomposes the non-isotonic
policy into multiple isotonic subpolicies. Information about
each subpolicy is propagated separately in different classes
of probe and the best probe from each class is chosen locally.
The classes are recombined and a route corresponding to the
best current path is chosen only at a traffic source. Hence,
if metrics are stable, then new flows will be sent along glob-
ally optimal paths. To avoid packet reordering due to un-
stable metrics, we follow Conga and Hula’s strategy and
use flowlet switching, which trades the fact that packets in
pinned flowlets may follow suboptimal paths for stability.

4 Compilation: Stable metrics
The goal of the compiler is to generate a particular configu-
ration of the Contra protocol that efficiently implements the
desired policy in the data plane. We describe compilation in
two phases. First, in this section, we describe an algorithm
that operates as if link metrics do not change, so probes only
need to be propagated once. The next section explains how
this algorithm is extended to handle changing metrics.

Challenge. One key challenge during compilation involves
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Figure 4: Naı̈ve solutions may lead to suboptimal paths.
Node A uses ABCD even though a better path ABD exists.

policies with conditional regular expression matches, such as
(if r then m1 else m2), because nodes may rank paths
differently based on the branch of the conditional they use. In
fact, conditional regular expression matches are one source
of non-isotonicity: if every node selects the best next hop
according to its own preferences alone, other nodes might
wind up with suboptimal routes. For example, consider the
following policy when applied to the topology in Figure 4:

minimize( if (A B D) then 0 else path.util)

In this example, A prefers path ABD, but B prefers the least uti-
lized path BCD. The correct behavior in this scenario would
be for B to carry A’s traffic along path ABD while simultane-
ously sending its own traffic along path BCD.

However, a naı̈ve (and erroneous) implementation may
disseminate probes along the paths DB and DCB1 and ask B

to decide which path is best. In this case, B would use the
probe from DCB and discard the one from DB. However, if
the latter probe is discarded, A will not receive information
about its preferred route! To avoid this, another naı̈ve solu-
tion would be to propagate probes along all possible paths
in the network to avoid missing good paths. For instance, B
might send every probe it receives to A. However, this would
lead to far too many probes, as the number of paths in a graph
may be exponential in the number of nodes.
Solution. Instead, for a conditional (if r then m1 else

m2), if one could determine the path with minimal metric m1
that matches r using one probe, and separately determine the
path with minimal metric m2 that does not match r using an-
other probe, then nodes could delay choosing their best path
until both probes have been received and only then combine
the information to make a decision. This is one concrete in-
stance where Contra needs to decompose the non-isotonic
policy (due to regular expressions) into multiple isotonic
subpolicies. Contra achieves this by creating an efficient data
structure that combines all regular expressions appearing in
a policy with the network topology, and by sending separate
probes for different regular expression matches.

4.1 Finding policy-compliant paths
Inspired by Merlin [45] and Propane [14], Contra constructs
a data structure called a product graph (PG), which com-
pactly represents all paths allowed by the policy.

1Recall that probes travel in the opposite direction to actual traffic.

Policy automata. A policy’s regular expressions define the
different ways the shape of a path can affect its ranking. To
process a policy, we first convert all such regular expressions
into finite automata. Because probes disseminate informa-
tion starting from the destination, but policies describe the
direction of traffic that flows in the opposite direction, we
actually construct an automaton for the reverse of each reg-
ular expression. Each automaton is a tuple (Σ,Qi,Fi,q0i ,σi).
Σ is the alphabet, where each character represents a switch
ID in the network. Qi is the set of states in automaton i. The
initial state is q0i . Fi is the set of accepting / final states.
σi : Qi×Σ→ Qi is the transition function. Consider the ex-
ample policy in Figure 5(b), which a) allows A to reach D via
the path A-B-D, b) allows B to reach D via any path with the
least utilization, and c) disallows all other paths. The Contra
compiler would generate the automata in Figure 5(c).

Network topology. The construction of the automata has
not considered the actual network topology, so not all au-
tomaton transitions are legitimate. For instance, although the
automaton for D.*B could in principle accept a sequence of
transitions D-A-B, this sequence would never happen on the
network shown in Figure 5(a), simply because D is not di-
rectly connected to A. Therefore, our compiler merges the
topology with the automata and prunes invalid transitions.

Product graph (PG). If there are k automata (one for each
regular expression used in the policy), then each state in the
PG would have k + 1 fields, (X ,s1, · · · ,sk), where the first
field X is a topology location, and si is a state in the i-th
automaton; there is a directed edge from (X ,s1, · · · ,sk) to
(X ′,s′1, · · · ,s′k), if a) X −X ′ is a valid link on the topology,
and b) for each automaton i, we have σi(si,X ′) = s′i.

Concretely, in the PG in Figure 5(d), every edge repre-
sents both valid transitions on the two policy automata and
a valid forwarding action on the topology. As examples, no
edges exist from any (D,*,*) state to (A,*,*) state, be-
cause they have been eliminated due to topology constraints;
also, there is a transition between node D0 and B0 because a)
the topology connects D and B, and b) applying B to each au-
tomaton from state 1 leads to state 2. We use the symbol “−”
to denote the special “garbage” state—the state from which
there is no valid transition in an automaton.

Virtual nodes. We distinguish PG nodes (“virtual nodes”)
from topology locations (“physical nodes”). A physical node
X may have multiple virtual nodes, because probes could ar-
rive via different paths, and reach different automaton states
as a result. For instance, the physical node B has two virtual
nodes (B0,-,2) and (B1,2,2); we have labeled their loca-
tion fields as B0, B1 to capture this, and we call them tags.
If multiple virtual nodes exist, then probes must be dupli-
cated to traverse paths that satisfy different constraints. For
instance, B will receive a probe for B0 representing a path on
the way to matching regex ABD, and a second probe for B1
representing a path on the way to matching regex B.*D.
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Figure 5: A running example of the compilation algorithm.

Probe sending states. If a physical node X is a valid des-
tination allowed by the policy, then exactly one of its vir-
tual nodes is a probe sending state. This state has the
form (X0,σ0(q00 ,X), · · · ,σk(q0k ,X)); all probes that origi-
nate from X initially carry this state. This is because, when
probes start at the originating node, they have only traversed
the first hop “X” from the initial automata states q0i .

Policy compliance. Any path in the PG from an accepting
state to a probe sending state is a policy-compliant path. All
policy-compliant physical paths also exist in the PG.

4.2 Packet forwarding
Before describing the protocol itself, we first describe the
structure of the forwarding (FwdT) tables on each switch.
The compiler only generates the table layout, and then ac-
tual entries are populated at runtime based on link metrics,
which we describe in the next subsection.

An entry in the forwarding table has the form
[dst∗,tag∗,pid∗,mv,ntag,nhop], where the star fields
are table lookup keys. Each row of the table indicates where
the given switch will send packets destined for dst when
those packets carry a PG node tag and probe number id
pid. The sender of packets will set the initial tag and the
probe number based on its best path. At each intermediate
hop, when a packet with a given dst, tag, and pid matches
an entry in FwdT, the switch looks up the next tag (ntag) and
replace the packet’s tag with it; it also forwards the packet to
the next hop (nhop). The metrics vector (mv) is not used for
packet forwarding, but for populating the entries. A property
of FwdT is that any tag-ntag pair in this table corresponds
to a PG edge, and when a ntag is written into a packet it
is then forwarded out the nhop port that leads to a topology
node corresponding to that ntag. This process implies that
forwarding will always follow edges in the PG.

As an example, consider the FwdT table for switch B: the
policy allows B to reach D either through a) B-D, satisfying
(part of) the regular expression ABD, or through b) the best
of B-D, B-C-D, and B-A-C-D, satisfying the regular expres-

sion B.*D. The former corresponds to the virtual node B0 in
the PG, and the latter is implemented by a combination of
both B0 and B1. Hence, the reader may observe that it is
possible for nodes of the product graph to contribute to the
implementation of more than one regular expression in the
policy—this sharing improves algorithm performance as a
single probe can contribute to uncovering information useful
in more than one place in the policy.

Ignoring for now how the forwarding entries were popu-
lated, consider the first entry in B’s table in Figure 5(e). The
entry is generated from the virtual node B0: if a packet is at B
with tag=B0 and a destination D, then either that packet was
sent from A, and traveled to B or it was sent directly from B.
In either case, the current best path is through the next hop
nhop=D with a metric mv=0.3. Moreover, before B sends the
packet to D, it should update the tag to the new virtual node’s
tag D0. The second entry in B’s table is generated from B1.
When packets are tagged with B1, there are two paths they
could take to D: B-C-D and B-A-C-D. Currently, the least
utilized path is B-C-D, so nhop=C and mv=0.2. The updated
tag will then be C0. For this policy, only one probe is needed
(carrying utilization), so there is only a single probe id (pid)
of 0. The asterisk next to the B1 entry indicates that B prefers
B-C-D over B-D, which is determined after evaluating the
user policy on both paths. Hence, traffic sourced from B will
choose B-C-D. Note that each source can determine its own
preference: although B prefers C, A can still use A-B-D since
A’s traffic will be forwarded using the B0 entry.

Function SWIFORWARDPKT in Figure 6 summarizes the
packet forwarding logic. When a packet first arrives at the
switch from a host, it is treated differently. In this case, this
first switch must determine the preferred path for the packet
(with each path having a representative destination, PG start
node and probe id), which is stored in the BestT table.

4.3 Sending probes
While the forwarding tables compactly encode how devices
should forward traffic in a policy-compliant way, we have
yet to describe how these tables are populated. To this end,
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function INITPROBE(PGNode n, ProbeId pid)
if n.isPrbSendingState then

p.origin← TOTOPONODE(n)
p.pid← pid
p.tag← n.tag
p.mv← INITMVEC
MULTICASTPROBE(n, p)

function MULTICASTPROBE(PGNode n, Probe p)
pg neighbors← GETPGOUTNEIGHBORS(n)
topo neighbors← TOTOPONODES(pg neighbors)
MULTICAST(p→topo neighbors)

function PROCESSPROBE(Switch S, Probe p)
n← NEXTPGNODE(S, p.tag)
p.mv← UPDATEMVEC(p.inport)
key← (p.origin, n.tag, p.pid)
(mv, ntag, nhop)← FwdT[key]
if f(p.pid, p.mv) < f(p.pid, mv) then

FwdT[key]← (p.mv, p.tag, p.inport)
oldKey← BestT[p.origin]
if s(key) < s(oldKey) then

BestT[p.origin]← key
p.tag← n.tag
MULTICASTPROBE(n, p)

function SWIFORWARDPKT(Packet p, Switch S)
key← (p.dst, p.tag, p.pid)
if fromHost(p.inport) then

key← BestT[S]
p.pid← key.pid

(mv, ntag, nhop)← FwdT[key]
p.tag← ntag
SENDPKT(p, nhop)

Figure 6: Pseudocode for the synthesized switch-local programs. Underlined variables are PG states.

the Contra compiler generates protocol logic for propagating
probes from probe sending states in order to populate the
tables with the best paths to each destination.

At a high level, each node in the PG propagates probes to
its neighbors. For instance, a probe starts at D0 (D with tag
0) and is sent to B0 and C0. C0 updates the utilization to be
0.1 and adds this entry to its forwarding table before sending
a new probe to A0 and B1. Similarly, B0 adds an entry for
the probe it received from D0 with utilization now 0.3 before
sending a new probe to A1. A1 receives a probe from B0 and
adds an entry with utilization 0.5, etc. A0 receives a probe
from C0 with metric now 0.4 and adds this entry to its table
before sending the probe to C0 and B1. Probes will continue
to propagate through the PG so long as they decrease the best
available metric for that probe type and PG node. Since a
static analysis ensures that policy metrics are monotonically
increasing, probes will not be propagated endlessly in loops.

To determine which entry to use for forwarding local traf-
fic, switches compute the best path by keeping a pointer to
their overall best entry (the asterisks in Figure 5(e)). For
example, consider the node A. Evaluating the policy on A0

results in ∞ because A0 is not an accepting state for regex
ABD or B.*D. On the other hand, evaluating the policy in A1

results in 0 (the best rank) because A1 is an accepting state
for regex ABD. Hence, the asterisk appears by A1.

Probe generation. Probes are generated from initial PG
states (e.g., (D0,1,1) in our example). These sending states
use the procedure in INITPROBE to initiate probes, and use
MULTICASTPROBE to multicast the probes along the outgoing
PG edges to all downstream neighbors. Each probe carries
four fields: (1) origin denotes the topology location of the
sending switch (i.e., D for the state (D0,1,1)); (2) pid is
the probe id, as obtained from the policy decomposition; (3)
mv denotes the metrics vector used in the policy (i.e., utiliza-
tion in the example, which is initialized to a default value 0);
and (4) tag denotes the id of the PG node the probe is at.

Probe dissemination. The PROCESSPROBE algorithm de-
scribes how a switch processes a probe from its neighbor.
It first obtains the PG node for the neighbor (n). Next, it up-
dates the metrics in the probe based on the port at which the
probe arrived, e.g., the maximum of the probe’s carried uti-
lization and the local port’s utilization. If this probe (with id

i and tag t) contains a better metric according to f than what
is currently associated with i and t, then it updates its FwdT
table with the new nhop, ntag, and mv based on this probe.
The switch also checks if an update affects its overall best
choice (i.e., where the asterisk points to), as recorded in the
BestT. The switch looks up the existing value and compare
it to the current probe using the function s that checks the
overall value of the probe (not just per tag / probe id). Fi-
nally, the probe tag is updated to the correct value for n, and
the probe is multicast to all PG neighbors.

5 Compilation: Unstable metrics
Consider using the same solution as described in Section 4,
but instead of sending just one probe, sending many probes
periodically, one per time interval. This introduces new com-
plications due to the lack of synchronization; certain parts of
the network may be working with outdated information. In
fact, the example sequence from Section 3, Figure 3(b)-(f)
demonstrates exactly how a problem can arise—the example
culminates with the forwarding loop S-A-B-S. Notice also
that this loop is technically policy-compliant because any
path from S to D is allowed, so the packet tagging mecha-
nism would not prohibit it.

The key issue is that when switches use old probes to make
decisions, loops can form. In Figure 3(b), the probe p from
B to A took a long time to propagate; by the time p arrived
at A, the metrics had already changed again. Concretely, p
was computed using an old metric u(A-D)=0.1, which had
since changed to 0.5; but A still used this outdated probe and
thought D was a better next hop.

5.1 Preventing persistent loops
To prevent loops, we draw on ideas from Babel [16], which
distinguishes outdated probes from new ones using a ver-
sion number, and discards outdated probes. In our scenario,
this suggests A should discard p because it has an older ver-
sion number, and should continue to use D as the next hop,
thereby avoiding the loop. When a round of probes is still
in propagation, switches may have temporarily inconsistent
views, so a packet may experience a transient (yet policy-
compliant) loop. However, versioned probes would guaran-
tee that persistent loops would not form [16].
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We note that there is a long body of work on loop preven-
tion in routing protocols with tradeoffs being made in terms
of space overhead and convergence time. Contra’s compi-
lation algorithm can potentially be integrated with different
loop prevention techniques. For example one could prevent
loops by adding a bit vector to each probe to record visited
nodes (i.e., a path-vector protocol) at the cost of greatly in-
creased probe overhead (one bit for every router). We opt for
our approach to limit the space overhead of probes.

Refinement (Versioned probes). As before, except that a)
switches attach version numbers to the probes, which in-
crease for each round; b) the FwdT table records the version
number of the probe that was used to compute each entry;
and c) before a switch updates an entry with version v with
a probe of version v′, it needs to check that v′≥v.

5.2 Probe frequency
Versioning the probes, however, leads to an additional com-
plexity: a node may not always be able to pick the best path.
Consider a case where D sends probes to S every 0.2 ms
along two available paths: a) p1 with utilization of 0.4 and
a latency of 0.1 ms, and b) p2 with utilization of 0.1 but a
latency of 0.2 ms. Due to the higher latency of p2, whenever
S receives a probe from this path, it would find the probe to
be outdated, since newer probes had arrived from p1. As a
result, S ends up always using p1 which has a higher utiliza-
tion, even if the policy prefers the least-utilized path p2.

We observe that this problem can be addressed by ensur-
ing (with high probability) that old probes are fully prop-
agated throughout the network before new probes are sent
out. In the above scenario, if we set the probe period to be
0.2 ms or larger, then S would instead pick p2 to be the better
path after both probes have been received.

Refinement (Limited probe frequency). As before, except
that the probe period needs to be larger than or equal to
0.5× RT T , where RT T is the highest round-trip time be-
tween any pair of switches in the network.

5.3 Policy-aware flowlet switching
Since Contra can spread traffic in the same flow across mul-
tiple paths, it is important to mitigate the potential out-of-
order packet delivery. One classic approach is flowlet switch-
ing [44], where packets in the same flow are grouped in
bursts/flowlets and the same forwarding decision is applied
to the entire flowlet. By doing so, the first packet in the
flowlet is always forwarded to the best path, and subsequent
packets in the same flowlet would inherit this (slightly out-
dated) forwarding decision. This also increases network sta-
bility: although each switch’s best path is constantly fluctu-
ating, at any given point, much of the current network traffic
is pinned to a particular path. Only new flowlets will make
use of the current path information.
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Figure 7: Challenges due to flowlet switching.

A first attempt to implement flowlet switching in Contra
would be to have each switch maintains a table of the form
[fid∗,nhop,t], where fid is the flowlet ID (from hash-
ing a packet’s five tuple), nhop is the temporarily “pinned”
next hop, and t is the timestamp of the last packet in fid.
When the next packet in fid arrives, the switch computes
the gap between its timestamp and t: if the gap is small,
this packet will use the current nhop; otherwise, the switch
expires this entry and starts a new flowlet. Perhaps surpris-
ingly, deploying such a flowlet switching mechanism with
Contra may result in policy violations. Consider the exam-
ple in Figure 7(a), where the policy prefers the least utilized
of the upper or lower paths, but avoids the “zigzag” path.

if SCEFD + SAEBD then path.util else ∞

Suppose that at t=1, S sends traffic to D via the lower
path due to its lower utilization; using flowlet switching, all
switches temporarily pin this flowlet to their respective next
hops along the path when they receive the first packet in the
flowlet (e.g., A pins to E at t=1.1, which expires at t=2.1; E
pins to B at t=1.2, which expires at t=2.2; and so forth). At
t=2, S discovers that the utilization of the upper path has im-
proved, and changes its preference to D instead. However,
if the packets from S arrive at E before t=2.2, which is its
flowlet switching expiration time, E will continue to forward
these packets to the lower path, causing a policy violation.

The fundamental reason for this is that flowlet switch-
ing is oblivious to routing constraints. Our solution makes
it policy-aware by adding PG tags to flowlet entries. Con-
cretely, policy-aware flowlet switching extends the table for-
mat to be [tag∗,pid∗,fid∗,nhop,t], where tag and pid

are obtained from the probe that created the forwarding en-
try, and tag, pid, and fid are match keys. This enables
flowlet switching within each policy constraint and probe
type. Now, when E processes the packet at t=2.2, it would
see that the packet was constrained to traverse the upper path
and use the flowlet entry for that path.

Refinement (Policy-aware flowlet switching). As before,
except that switches perform policy-aware flowlet switching
by maintaining multiple entries for the same flowlet, each for
a different path constraint/tag and probe type.
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5.4 Handling failures
Switches also need to discover new best paths when links or
switches fail. Suppose that the best path for S to reach D is
S-A-D, but the link A-D goes down at some point. We need
to ensure that S will learn about the failure and change to
another available path if one exists. Our solution is to first
detect failed links, and then to expire flowlet entries when
their next hop is along a link that is believed to be failed.

Refinement (Expiration). As before, except that a flowlet
entry is expired when a packet arrives at a switch and is go-
ing to be forwarded by the flowlet entry, and the next hop is
along a failed link.

Handling failures, of course, requires the existence of a
failure detection mechanism. The specific link failure de-
tection methods are beyond the scope of Contra; the above
approach merely ensures that switch routes around detected
failures for future flowlets. In our implementation of Con-
tra, a switch marks a link as failed when there have been no
probes along the link for k probe periods, where k is a param-
eter that determines how fast failures should be discovered.

5.5 Breaking transient loops
As we discussed, transient loops may still occur when probes
are in propagation. Figure 7(b) is a concrete example. At
t=1, the best path for S to reach D is S-B-A-D. Then, at t=2,
A receives a probe from D carrying a worse metric, so it
propagates the probe to S and B. Before this probe arrives at
S and B, A learns of the better path through S, and traffic that
is already in flight will be forwarded along a transient loop
S-B-A-S; this loop will be broken once S and B receive the
new probe because it has a higher version number.

Interestingly, flowlet switching may lengthen the duration
of transient loops because flowlet switching decisions may
expire at different times across hops. Suppose that A’s timer
expires at t=3, and it starts using the new best next hop S to
reach D; however, the timers at S and B do not expire until
t=4. Then the traffic would continue to be forwarded in the
loop S-B-A-S regardless of the newer probe, until S and B
have updated their flowlet switching decisions.

We address this by detecting loops lazily and flush-
ing the offending flowlet switching entries upon detection.
Concretely, each switch maintains a loop detection table
{flow hash∗,maxttl,minttl}, which maps a flow’s CRC
hash to the maximum and minimum TTL values seen at this
switch. δ=maxttl-minttl should be stable in the absence
of loops: it is the difference between the longest and the
shortest paths packets could have traversed to reach the cur-
rent switch. However, when there is a loop, δ would con-
tinue to grow. Therefore, switch detects a potential loop
(with false positives) when its δ exceeds a threshold. When
this happens, the switch expires its flowlet switching deci-
sion, and starts a new flowlet using the latest metric in the
FwdT table. Hence, we arrive at our final solution below.

Final solution. As before, except that switches use loop de-
tection tables to detect and break loops by refreshing their
flowlet switching decisions using the latest metrics.

6 Evaluation
We aim to answer three main questions in our evaluation: a)
How well does Contra scale to large networks? b) How com-
petitive is Contra compared to hand-crafted systems? and c)
How well does Contra work on general topologies? Due to
space constraints, some results appear in the Appendix.

6.1 Prototype implementation and setup
Our prototype [3] consists of 7485 lines of code in F# [6],
which processes policy and topology descriptions, and gen-
erates switch-local P4 programs. The compilation also min-
imizes the number of tags and forwarding table sizes.
Experimental setup. We have used three types of topolo-
gies: a) data center topologies, b) random graphs, and c) real-
world topologies (e.g., Abilene [1] and those from Topol-
ogy Zoo [7]). Our baseline systems for data center networks
are ECMP and Hula [30], load-balancing schemes for a Fat-
tree topology. ECMP balances traffic randomly without con-
sidering network load, and Hula is load-aware and always
chooses the least-utilized path among all shortest paths. Our
baseline system for arbitrary graphs is SPAIN [35], which
statically (i.e., independently of network load) selects multi-
ple paths to route traffic. We used two workloads obtained
from production networks for our evaluation: a web search
workload [12], and a cache workload [43].
Simulation vs. Emulation. For simulation, we have used a
customized version of ns-3 [4] that implements P4 switches
using the bmv2 model, and it runs on a Dell server with six
Intel i7-8700 CPU cores and 16 GB of RAM. For emulation,
we have used the bmv2 switches in a Mininet [34] cluster on
15 CloudLab [17] servers, each with eight cores and 128 GB
of RAM. The simulation allows us to conduct experiments
at high link speeds (up to 40 Gbps), as traffic forwarding
is simulated in an idealized environment. The emulation,
on the other hand, generates and forwards real network traf-
fic across machines. This allows us to evaluate the systems
in a high-fidelity environment [34], albeit with lower link
speeds (50 Mbps) to avoid causing bottlenecks in the soft-
ware switches.

We have replicated the emulation setup (45 switches in
a 6-ary Fattree) in our simulator, and measured for eight
setups (workloads+policies) the Pearson correlation coeffi-
cient (PCC) [42] between the emulated and simulated results.
Seven of the setups produced PCC values of 0.99+, and the
other produced 0.98 (1.0 means perfect correlation). This
“meta” experiment confirms that the simulation and emula-
tion results closely mirror each other, and that our observa-
tions are consistent across setups. Below, after presenting
compiler results (§6.2), we first describe our simulation re-
sults (§6.3-§6.5), and then the high-fidelity emulation (§6.6).
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Figure 8: Contra achieves a similar FCT as Hula, outper-
forming ECMP considerably.

6.2 Compiler scalability
To test the scalability of our compiler, we used topologies
of varying sizes from 20 to 500 nodes. For each topology,
we evaluated three different policies: a) minimum utiliza-
tion (MU: no regular expressions, single performance met-
ric), b) waypointing (WP: three regular expressions, single
performance metric), and c) congestion-aware routing (CA:
no regular expression, non-isotonic policy with two perfor-
mance metrics). The concrete numbers are included in Fig-
ure 14 in Appendix C, and we summarize the key takeaways
here: The compiler scales roughly linearly with topology
size, and completes in seconds on topologies with hundreds
of nodes. Use of regular expressions increases product graph
size and hence compilation time. Non-isotonic policies add
some overhead due to the additional policy analysis.

We have also measured the switch state used by the gener-
ated P4 programs (Figure 15 in Appendix C). At a high level,
WP and CA require more state than MU: WP’s regular ex-
pressions require tracking automaton states. and CA’s non-
isotonic policy requires a separate table for each metric in the
decomposed policy (i.e., separate entries for different pid
values). However, no more than 70 kB of switch state was
necessary in any experiment—a tiny fraction of the available
memory on modern switches (tens of megabytes) [2].

6.3 Performance: Data center topology
We compare Contra with ECMP and Hula in terms of their
flow completion time (FCT) in simulation. In our topol-
ogy (Figure 13a), we used 32 hosts with 10 Gbps links, with
10 Gbps links between switches, and an oversubscription ra-
tio of 4:1. Half of these hosts were configured as senders,
and the other half receivers. We set the probe period to
256µs and flowlet timeout to 200µs for both Contra and
Hula. All links have a queue buffer size of 1000 MSS by
default. Moreover, we tuned the desired network load from
10% to 90% by adjusting the flow arrival times, and obtained
the FCT for each setting. The policy used in Contra is widest
shortest paths (WSP; policy P3 in Table 1), which picks the
least-utilized shortest paths and is equivalent to Hula; we
found that the performance of Contra with the MU policy
(P2 in Table 1) is similar to WSP in this setup.

Symmetric Fattrees. Figure 8 shows that both Contra and
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Figure 9: Contra achieves a significantly shorter FCT than
ECMP on an asymmetric topology with a failed link.

Hula outperform ECMP considerably because they balance
traffic based on network load. At 90% load, they reduce
the average FCT by 30% for the web search dataset and by
47% for the cache dataset. Hula outperforms Contra slightly,
by 0.33% on average across different datasets and network
loads. This is because Hula knows statically what paths are
shortest paths (and hence what ports to send probes from),
whereas Contra has to discover this information dynamically
(i.e., by carrying the path length as well as the utilization, and
also by sending probes both “up” and “down” at each level in
the datacenter)—hence Contra sends more probes than Hula
in order to achieve generality over different topologies and
policies. Further compiler optimizations could likely reduce
this gap further (e.g., by identifying shortest paths statically).
We also refer interested readers to Appendix I for detailed
breakdown of probe and tag overheads.

Asymmetric Fattrees. Next, we ran the same experiment af-
ter injecting a failure on a link between an aggregation switch
and a core switch, so that the topology became asymmetric.
Figure 9 shows the FCT for this setting. In this case, we
found that ECMP incurred heavy traffic loss beyond 50%
network load, even though 75% of all capacity remains after
the link failure. The average FCT increased by 3.18× for the
web search dataset and 8.72× for the cache dataset. In con-
trast, Contra and Hula only had an increase of 1.80× for the
web search dataset and 1.67× for the cache dataset, relative
to the FCTs on the symmetric topology.

We further measured the queue growths under ECMP and
Contra with 60% workload on the web search dataset without
bounding the maximum queue sizes (see Figure 16 in Ap-
pendix D). We found that Contra’s queue lengths never ex-
ceeded 1000 MSS, whereas ECMP saw queue lengths larger
than 1000 MSS more than 97% of the time, which can cause
heavy traffic loss when the queues are full.

In order to measure Contra’s response time to link failures,
we sent UDP workloads at 4.25 Gbps rate, and brought down
an aggregate-core link. Contra successfully detected the link
failure after 800µs, which is close to the failure detection
threshold (3×probe period=768µs) that we used. Upon de-
tection, Contra routed around the failure and recovered the
throughput within 1 ms. We found that Hula performs simi-
larly as Contra (Figure 17 in Appendix D).
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6.4 Performance: Arbitrary topologies
We now evaluate the performance of Contra on general
topologies. We modeled our network after the Abilene [1]
topology, configured all links to be 40 Gbps, and randomly
chose four pairs of senders/receivers. Since Hula is special-
ized to a Fattree topology and will not work outside of this
context, and since ECMP will not load balance when there is
only a single shortest path, we have used two other baselines:
a) shortest path routing (SP), which simply sends traffic to
the shortest paths, and b) SPAIN [35], which precomputes
all paths using (static) heuristics that avoid overlap, and then
load balances between these paths.
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Figure 10: Contra outperforms SPAIN in FCT.

Figure 10 shows the FCT for these different systems. A
naı̈ve strategy that simply chooses shortest paths performs
the worst. Since SPAIN can utilize multipath routing, it out-
performs SP by 32.5% on average for the web search work-
load and 26.9% on for the cache workload. Contra achieves
the best performance among the three: it evenly distributes
traffic based on path utilization, and reduces FCT relative to
SPAIN by 31.3% on average for the web search workload
and 13.8% for the cache workload.

6.5 Protocol dynamics
Next, we study the network dynamics of performance-aware
routing. The high-level note here is that, if a policy uses m
as the metric, then paths with better m values may not nec-
essarily be shorter and have lower end-to-end latency. The
MU policy is a case in point, because 1) a least-utilized path
could be a non-shortest path; and 2) compared to a slightly
more utilized shortest path, the non-shortest path may also
have higher end-to-end delay if its extra propagation delay
offsets its lower queueing delay. Finally, when nodes are
temporarily out of sync (§5.5), transient loops may arise.
Transient loops. We first quantify the amount of pack-
ets forwarded in transient loops. Under the MU policy on
the Fattree and Abilene topologies at 60% load, only tiny
fractions of traffic (0.024% and 0.021%, respectively) expe-
rienced loops. Compared to the shortest paths, these packets
traversed 3.15 more hops on average for the Fattree, and 3.09
for Abilene. They also experienced an increase in end-to-end
latency by 72.4µs (Fattree) and 65.2µs (Abilene). Our loop
detection mechanisms successfully broke these loops.
Non-shortest paths. Packets could also traverse non-
shortest paths without experiencing loops. We observed that

the fractions of such packets are 16.6% for Fattree and 39.8%
for Abilene. These packets also experienced latency in-
creases of 42.3µs (Fattree) and 39.3µs (Abilene). An inter-
esting observation here is that the application performance
(in terms of FCT) depends on the tradeoff between propa-
gation delay and queueing delay. In other words, if least-
utilized paths happen to have high propagation delays, then
the MU policy may not always lead to FCT improvement.
We have observed both cases in our experiments with differ-
ent topologies, path latencies, and number of shortest paths.

Contra, Hula, ECMP. Figure 11a shows the end-to-end la-
tency packets experienced in Contra for two policies (WSP
and MU) on the Fattree, and shows the breakdown for the
MU policy (shortest paths, non-shortest paths, and transient
loops). As expected, packets never experienced loops un-
der WSP, which routes traffic to the least utilized of shortest
paths. For Contra (MU), packets forwarded in loops took
more time than those on non-shortest paths, and both took
longer than those on shortest paths; they experienced slightly
higher latency than in Hula. Nevertheless, Contra (MU) still
outperforms ECMP significantly, because shortest paths with
high utilization in ECMP have higher queuing delays than
non-shortest paths with low utilization. (Results for Abilene
are similar; see Figure 19a in Appendix E.)

Network loads. We also found that more packets tend
to traverse longer paths as the network load increases (Fig-
ures 19b and 19c; in Appendix E). Across all scenarios, 12%-
16% traffic took longer paths in the Fattree; within such traf-
fic, 93%-98% took 2 extra hops and the rest took 4 extra
hops. On Abilene, where shortest paths are fewer, 32%-50%
traffic took longer paths; within this, 97%-99% took fewer
than 4 extra hops and the longest path had 9 extra hops.

Load imbalance. Next, we focus on understanding the
load imbalance over small timescales in ECMP, Hula, and
Contra. Figure 11b shows the CDF of load imbalance of
the four aggregate-core links on the Fattree topology at 70%
load. We measured the throughput of these links for each
100µs interval for 1 second; we then computed the through-
put differences between the most and least loaded links, and
normalized them by the average throughput across the links.
As we can see, Contra and Hula perform similarly, and they
both balance the load much more evenly than ECMP. In par-
ticular, this shows that packets traversing non-shortest paths
or transient loops in Contra do not lead to notable load im-
balance even at small timescales.

6.6 High-fidelity emulation
We have set up a high-fidelity emulator on 15 CloudLab [17]
servers using a distributed cluster of Mininet [34]. Our topol-
ogy is a 6-ary Fattree with 45 switches running P4 bmv2 [5]
and 57 end-hosts with 1:1 oversubscription. We have set the
link speeds to be 50 Mbps and verified that this is the highest
link speed achievable in our testbed without causing bottle-
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Figure 11: Packets that experience transient loops or non-
shortest paths spent more time in the network (a); but they
do not lead to notable load imbalance (b).

necks in the software switches. As discussed before, we have
mirrored the same setup in simulation and conducted exper-
iments in both settings. The highest-level takeway is that
we observed similar results on both setups. Below, we sum-
marize the key findings, and note that the full set of figures
(Figures 20-25) are in Appendix F.
Symmetric Fattree. Contra and Hula outperform ECMP
considerably in FCT, and they perform similar to each other.
At 90% load for the web search workload, they improve the
performance of small flows (<100 kB) by 21%, large flows
(>10 MB) by 12.7%, and 13.7% across flows.
Asymmetric Fattree. We then re-ran the FCT experi-
ments, after bringing down three out of 27 aggregate-core
links (11.1% reduction to overall capacity). Compared to the
topology without failures, at 90% load, the average FCT in-
creased by 15% for the web search dataset and 23% for the
cache dataset in ECMP. Contra, on the other hand, only in-
creased by 6% (web search) and 9% (cache), respectively.
Arbitrary topologies. We have also set up the Abilene
topology in emulation and compared Contra with SPAIN,
and note again that Hula only works on a tree topology. We
found that at 90% load, Contra reduces FCT by 22.0% (web
search) and 45.7% (cache) under the MU policy. For the web
search (cache) dataset, it achieves 11.0% (36.5%) speedup
for small flows, and 20.9% (46.1%) speedup for large flows.

7 Related Work
Traffic engineering and load balancing. Contra is different
from centralized TE solutions, such as B4 [26], SWAN [25],
Hedera [9], MicroTE [15], and Gvozdiev [23], as well as dis-
tributed TE solutions, such as TeXCP [28], MATE [18], and
Halo [33], in that Contra performs fine-grained load balanc-
ing in the data plane. Contra borrows a similar load bal-
ancing mechanism from Hula [30] and Conga [11], so their
characteristics are similar in terms of dynamics and perfor-
mance benefits. The main novelty of Contra over all of these
systems is to generalize point solutions to a wide range of
policies and arbitrary topologies.
Routing. Existing work has studied loop prevention in
distance-vector routing [21, 36, 10, 39, 16, 38] with differ-

ent overhead, convergence, and stability tradeoffs. Contra
is most related to DSDV [39], AODV [38], and Babel [16],
which use sequence numbers on route updates for conver-
gence. The novelty of Contra lies in its use of programmable
data planes to implement a wide array of distance-vector pro-
tocols in the presence of unstable metrics, and its design of
policy-aware flowlet switching mechanisms.
Regular languages for networking. NetKAT [13], Mer-
lin [45], FatTire [40], and Propane [14] all use regular ex-
pressions to specify path constraints, but none of them sup-
ports dynamic preferences based on network conditions.

8 Discussion
Correctness guarantees. Contra guarantees that traffic al-
ways follows policy-compliant paths even in the presence of
unstable metrics. In terms of performance, previous work
has shown that when switches make distributed decisions,
the resulting mechanism is not globally optimal [11]. How-
ever, as demonstrated in our experiments as well as previous
work [11, 30], performance-aware routing still leads to FCT
improvements compared to static routing.
Policy changes. Policy changes can be handled by recompi-
lation, which would generate new switch programs. As we
demonstrated in the experiments, policy compilation is fast
and scales to large networks. We expect policy changes to
happen infrequently and only on a larger timescale. In or-
der to implement the updates, Contra may be able to borrow
existing work on consistent update algorithms [41].
Traffic classes. Contra currently does not support traffic
classes. Adding such support would require extending the
language with header predicates [20, 13], and designing new
mechanisms to prioritize one traffic class over another.

9 Conclusion
We have presented Contra, a system for specifying and en-
forcing performance-aware routing policies. Policies in Con-
tra are written in a declarative language, and compiled to
switch programs that run on the data plane to implement a
variant of distance-vector protocols. These programs gener-
ate probes to collect path metrics, and dynamically choose
the best paths along which to forward traffic. Our evaluation
shows that Contra scales well to large topologies, and that
the synthesized switch programs can achieve performance
competitive with hand-crafted solutions that are specialized
to particular topologies and hard-coded policies. Contra is
also substantially more general, supporting a wide range of
policies over arbitrary topologies.
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A Policy analysis and decomposition
At a high level, the Contra compiler implements the poli-
cies in a distance-vector protocol, where switches propagate
periodic probes and compute a best next hop for each des-
tination using the path metrics. To avoid flooding the net-
work with probes, a switch will only disseminate the best
probe in a batch and discard the rest. Moreover, if a pol-
icy uses multiple metrics, each probe will carry all metrics
to further reduce traffic. However, these techniques are not
always safe—the policy needs to be isotonic, because oth-
erwise downstream switches can wind up with suboptimal
paths. The policy also needs to be monotonic, because oth-
erwise loops may form.

Monotonicity. A policy f is monotonic iff. extending a
path p by an additional link l does not result in a better
ranked path, i.e., f (p) ≤ f (p · l); f is strictly monotonic if
f (p) < f (p · l). Strict monotonicity ensures that loops will
not form in distance-vector protocols (assuming static met-
rics that do not change), because a path’s rank only degrades
as it gets longer [22]. In principle, one could write a policy
that is not monotonic, such as minimize (- path.len),
but in practice, we are not aware of such policies actually in
use. On the other hand, there are practical policies such as
minimize (path.util) that are not strictly monotonic. To
ensure safety, the Contra compiler implements a conserva-
tive monotonicity analysis and alerts a programmer of a po-
tential error if the policy is non-monotonic. But our compiler
accepts non-strict monotonic programs: our probe propaga-
tion mechanism associates an “age” with each probe stored
in a switch, and break ties by rejecting more recent probes
if they have the same value as the currently used metric, be-
cause they may have traversed zero-weight cycles.

C
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"#: "(:

%:

u=0.5,	l=5 u=0.6,	l=4

u=0.9

A B

Figure 12: Contra requires (sub)policies to be isotonic.

Isotonicity. A policy f is isotonic iff. for any paths p1, p2,
and any link l, extending both paths by l preserves the orig-
inal relative ranking, i.e., f (p1) ≤ f (p2) ⇐⇒ f (p1 · l) ≤
f (p2 · l). Isotonicity guarantees convergence to the best
paths [22] even if a switch discards suboptimal probes. Fig-
ure 12 demonstrates the idea: if C prefers the probe from
path p1 over that from p2 and discards the latter, then its
downstream neighbor D must have the same preference, or
else it would miss a path with a better metric. However, there
are some useful policies that are non-isotonic, such as the

following congestion-aware routing policy [27] that switches
between metrics depending on the network condition.

if path.util < .8 then (1, path.util) else (2, path.len)

To see why the policy is non-isotonic, consider the switch
C in Figure 12 that receives two probes with metrics
{u=0.5,l=5} and {u=0.6,l=4}. C prefers the first probe
because path.util < 0.8 evaluates to true for both probes
and the two probes will be ranked based on utilization. How-
ever, C cannot simply discard the second probe, because all
paths to its downstream neighbor D may be highly congested
(e.g., u(D-S)=0.9). In this case, path.util < 0.8 evalu-
ates to false at D for both probes, causing D’s preference to
be inverted.
Policy decomposition. The Contra compiler tries to decom-
pose non-isotonic policies into multiple isotonic (and mono-
tonic) subpolicies, and generates different types of probes to
propagate each subpolicy. If such a decomposition is impos-
sible, then it rejects the policy. For instance, the compiler
decomposes the previous policy as follows:

if path.util 0<.8 then (1, path.util 0) else (2, path.len 1)

where type-0 probes carry path.util, and type-1 probes
carry path.len. Switches can discard suboptimal probes
within each type, but must propagate both types of probes.
The complete policy is only evaluated at source nodes. We
only attempt this analysis on conditional policies, such as
the one above. There remain non-isotonic policies such as
“shortest widest paths” (path.util, path.len) that the Contra
compiler is unable to implement.

More generally, our compiler performs an analysis to try
to decompose f to a collection of subpolicies (s, f1, . . . , fn),
where each fi is monotonic and isotonic, and s combines the
subpolicies such that f (p) = s( f1(p), . . . , fn(p)). For this de-
composition to be correct, s needs to be strictly increasing in
each of its arguments, i.e., for any xi ≤ x′i, we need to have
s(x1, . . . ,xi−1,xi,xi+1,xn) ≤ s(x1, . . . ,xi−1,x′i,xi+1,xn). Intu-
itively, this condition allows a switch to safely discard any
non-minimum xi values of each probe type.
Limitations. Currently, Contra does not support traffic clas-
sification, but extending the language with header predicates
as in prior work [20, 13] should not present any significant
intellectual challenge. A more notable limitation involves
policies that prioritize one traffic class over another. For in-
stance, B4 [26] prioritizes small, latency-sensitive user re-
quests over large, latency-insensitive bulk transfers. Cur-
rently, Contra ranks paths and selects the best path for each
flowlet, but does not compare different types of traffic in or-
der to prefer one over the other. We leave integration of such
policies into our framework to future work.

B Key topologies for experimental evaluation
We briefly talked about our experimental setups in Sec-
tion 6.1. Here, we provide more details of topologies we
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Figure 13: The topologies we have used in the simulation
environment.

have used. We conducted our experiments in simulation (ns-
3) and emulation (bmv2 in Mininet) using two topologies—a
Fattree network and the Abilene network. Figure 13 shows
topologies we used in simulation setup. The links between
switches in both topologies operate at high speed: 10 Gbps
in Fattree and 40 Gbps in Abilene . The emulation envi-
ronment, on the other hand, uses a 6-ary Fattree with 45
switches (not shown, see [8] for more details), as well as the
Abilene topology (Figure 13b). In both emulated topologies,
the links operate at lower speed (50 Mbps) to avoid causing
bottlenecks in the software switches.

C Compiler scalability
We tested Contra compiler scalability (more details in Sec-
tion 6.2) using topologies of varying sizes from 20 to 500
nodes. Figure 14 shows the time to compile P4 programs
from high-level policies as topology size increases. Fig-
ure 15 shows the amount of resources used by the P4 pro-
grams compiled for different policies.

0

2

4

20 125 245 405 500

C
o
m
p
ila
tio
n

 t
im
e

 (
s
)

Topology size

WP
CA
MU

(a) Fattree topologies

0

2

4

100 200 300 400 500

C
o
m
p
ila
tio
n

 t
im
e

 (
s
)

Topology size

WP
CA
MU

(b) Random networks

Figure 14: The Contra compiler scales well to large network
sizes and sophisticated policies (unit: seconds).

D Link failure
To understand the degree of congestion when topology be-
comes asymmetric due to link failures, we injected a link
failure between aggregation and core switches, and then
measured queue lengths of other links. Figure 16 shows the
CDF of queue lengths for Contra (under the WSP policy:
widest shortest paths) and ECMP when there is a link fail-
ure. As we can see, Contra has much shorter queues than
ECMP, and Contra queue length is less than 1000 MSS. Note
that we have not bounded to queue sizes in order to study the
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Figure 15: The Contra compiler generates programs with
low memory overhead (unit: kB).

queue growths in different systems. Figure 17 shows the ag-
gregate throughput before and after a link failure. Contra
successfully detected this failure in 800 µs and recovered its
throughput in 1 ms.
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Figure 16: Contra has shorter queues than ECMP.
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Figure 17: Contra recovers from the link failure within 1 ms.

E Protocol dynamics
Previously, in Section 6.5 we have summarized the results
of network dynamics experiments. Here, we present the full
results across network loads. Figures 18a and 19a show the
end-to-end latency packets experience in the Fattree topol-
ogy and the Abilene topology at 60% network load (dataset:
web search). For MU policy, we further break down the
number of extra hops in transient loops and non-shortest
paths for both topologies: Figures 18b and 19b show number
of extra hops in non-shortest paths as network load increases;
Figures 18c and 19c show the number of extra hops in tran-
sient loops.
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Figure 18: (a): Contra (MU) packets that traverse transient loops and non-shortest paths spent more time in the Fattree network
when traffic load is 60%. (b)-(c): breakdowns of extra hops as network load increases; the numbers in the legends denote
numbers of extra hops.
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Figure 19: (a): Contra (MU) packets that traverse transient loops and non-shortest paths spent more time in the Abilene
network when traffic load is 60%. (b)-(c): breakdowns of extra hops as network load increases; the numbers in the legends
denote numbers of extra hops.

F High-fidelity emulation
In the main paper, Section 6.6 already summarized the key
FCT results obtained in our emulation testbed. Here, we
show the full results across workloads, network loads, and
Contra policies. All results are obtained over four runs.
Figure 20 and Figure 22 show the FCT results for web search
and cache workloads in 6-ary symmetric Fattree topology.
Figure 21 and Figure 23 show the FCT results for web search
and cache workloads in 6-ary asymmetric Fattree topology.
Figure 24 and Figure 25 show the FCT results for web search
and cache workloads in the Abilene topology.

G Comparison with the FMCF solution
Although the experiments on flow completion times already
demonstrate that Contra can boost application performance,
we would like to further investigate how Contra performs
when compared to an idealized solution for which we can
derive an optimal bound. To this end, we use a Fractional
Multi-Commodity Flow problem (FMCF) [29] to model this
scenario, and note that similar formulations have been used

in other projects [31, 47]. An MCF problem takes as input
the (fixed) demand for sender/receiver pairs and the network
topology, and computes the optimal traffic splitting across
paths in order to minimize the utilization of the most con-
gested link. The fractional version of MCF simply means
that a flow can be split across different paths as well. This
formulation makes several simplifying assumptions, which
require minor modifications to the tested systems. Neverthe-
less, we believe that the results we obtain are still illustrative,
as these assumptions make it possible to derive an optimal
solution to compare against. The policy we have used in
Contra is WSP (widest shortest paths) for Fattree, and MU
(Minimum Utilization) for Abilene.

G.1 The FMCF formulation

We have used the same formulation as the Linear Program-
ming Formulation (LPF) in [46]. This formulation models
the physical network as G(V,E), where V denotes the set of
switches and E denotes the set of links. For each link (i, j),
ci j represents its link capacity. Xk

i j ∈ [0,1] is the percentage
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Figure 20: FCT results for web search workload in 6-ary Fattree topology.
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Figure 21: FCT results for web search workload in asymmetric 6-ary Fattree topology.
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Figure 22: FCT results for cache workload in 6-ary Fattree topology.
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Figure 23: FCT results for cache workload in asymmetric 6-ary Fattree topology.
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Figure 24: FCT results for web search workload in Abilene topology.
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Figure 25: FCT results for cache workload in Abilene topology.

718    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



of traffic a solution sends to link (i, j) for a given commod-
ity flow from the source sk to the destination tk, where k ∈ K
represents a commodity flow chosen from the set K of flows
to be sent. The total demand for a flow k is dk. Our goal is to
minimize the maximum link utilization α ∈ [0,1] across the
network.

The problem can then be formulated as follows:

min(α) (1)
s.t.

∑
j:(i, j)∈E

Xk
i j− ∑

j:( j,i)∈E
Xk

ji = 0, k ∈ K, i 6= sk, tk (2)

∑
j:(i, j)∈E

Xk
i j− ∑

j:( j,i)∈E
Xk

ji = 1, k ∈ K, i = sk (3)

∑
k∈K

dkXk
i j ≤ ci jα, (i, j) ∈ E (4)

0≤ Xk
i j ≤ 1,α ≥ 0.

Equations 1 and 4 define α as the maximum link utiliza-
tion and set the objective function to minimize this. Equa-
tion 2 encodes the flow conservation principle, which speci-
fies that all nodes should have the same amount of incoming
and outgoing traffic, except for the sources and destinations.
Equation 3 specifies the source switch of each flow.

Simplifying assumptions: We note that this formulation
makes several simplifying assumptions when testing the sys-
tems. In order to ensure that the created demands are static,
we used UDP instead of TCP to avoid its flow control al-
gorithm, and we artificially made the buffers deep enough to
avoid packet loss. Given that the FMCF formulation does not
have the notion of flowlets (which requires reasoning with
timing behaviors), we have configured ECMP, SPAIN, and
Contra to perform per-packet load balancing to emulate the
problem that FMCF models. This configuration significantly
disadvantages Contra, because unlike ECMP, SPAIN, which
are inherently multipath, Contra is designed to spread traf-
fic per-flowlet over time, and it only changes paths based on
periodic probes. Since this feature is disabled, we instead
measured the utilization of all systems at a coarser timescale
over multiple RTTs, so that Contra is given an opportunity to
balance the load. Despite the above simplifications, we be-
lieve that the results we obtain are still illustrative, as these
assumptions make it possible to derive an optimal solution
that we can compare the actual systems against.

G.2 Experimental results for FMCF
Figures 27 and 28 show three setups where the optimal so-
lutions returned by our solver are 20%, 40%, and 60%, re-
spectively. For each setup, we have tested the systems on a
Fattree topology and on Abilene. On a Fattree, both ECMP
and Contra are very close to the optimum: they are 0.049%
and 0.16% higher than optimum on average. Since ECMP
splits traffic on a per-packet basis, it is expected to achieve
almost perfect load balancing; Contra underperforms slightly
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R3

S1 R1Sender Receiver

(a) Abilene setup 1
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(b) Abilene setup 2

Figure 26: Selection of sender/receiver pairs on Abilene.
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Figure 27: The performance of Contra is close to the opti-
mum in the FMCF formulation (Fattree topology).

since it only changes forwarding decisions based on periodic
probes, but it performs close to ECMP and the optimum.

On a general topology, the performance of SPAIN is
highly dependent on the locations of senders and re-
ceivers, as its load balancing mechanism precomputes non-
overlapping paths when possible. We found that, when alter-
native paths in SPAIN do not overlap, it performs very close
to optimum (worse only by 2.53%), but when paths overlap,
SPAIN could underperform by as much as 6.55%. Contra,
on the other hand, has consistent performance, and achieves
similar performance with the same scenarios used to evaluate
SPAIN. Compared to the optimum, the results for Contra are
2.41% and 2.36% higher, respectively. Figure 26 shows the
two setups we have used for the experiments with SPAIN.

H Waypoint policy
The performance evaluation in our main paper has focused
on policies that do not involve regular expressions, because
regular expressions constrain paths rather than optimize for
performance. Nevertheless, we have conducted a set of ex-
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Figure 28: The performance of Contra is close to the opti-
mum in the FMCF formulation (Abilene topology).
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Figure 29: FCT for the waypoint policy (workload: web
search)
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Figure 30: FCT for the waypoint policy (workload: cache)
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Figure 31: FCT for the waypoint policy on an asymmetric
topology (workload: web search)

periments on such policies, and report the key findings in
this section. We have used the waypoint policy (WP) with
one regular expression, and measured the performance and
protocol overhead in different workloads.

Flow completion time. Figures 29 and 30 show the FCT
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Figure 32: FCT for the waypoint policy on an asymmetric
topology (workload: cache)
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Figure 33: The tags in the waypoint (WP) policy introduce
more traffic overhead.

achieved by the WP policy on a symmetric data center topol-
ogy, on the web search and cache datasets, respectively. As
we can see, on the symmetric topology, WP performs simi-
larly to Hula and WSP on both workloads. Figures 31 and
32 show the FCT results for the asymmetric topology, where
we have injected a failed link. When the topology is asym-
metric, WP performs worse than ECMP. This is expected, as
WP imposes additional path constraints.
Protocol overhead. Figure 33 shows the traffic overhead of
the WP policy. As we can see, WP sends more traffic than
WSP because it tags packets with policy states and creates
separate probes for different regular expression matches. At
10% load, 92% of the traffic overhead is due to probes and
8% due to tags; at 60% load, 70% of the traffic overhead is
due to probes and 30% due to tags.

I Traffic overhead
To evaluate the traffic overhead incurred by Contra due to
additional probes (the policies below do not require tags),
we measured the amount of traffic sent over the network by
Contra, Hula, and ECMP at 10% and 60% network load.
Figure 34 shows the results a normalized by the traffic sent
by ECMP (i.e., no extra tags or probes). Across workloads,
Contra incurred 0.79% more traffic than ECMP, and 0.44%
more than Hula, which seems to be reasonable.

We also evaluated the traffic overhead of SPAIN and Con-
tra on the Abilene network, at 10% and 60% network load.
Figure 35 shows the results. We found that only 0.54% of
traffic is due to the extra probes in Contra. Interestingly, al-
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Figure 34: The traffic overhead of Contra is low.

though SPAIN did not use any extra probes, the amount of
traffic SPAIN sent across the network is higher than that of
Contra, and even higher than the total traffic of Contra. This
is because SPAIN’s paths are on average longer than these
used in Contra. As a result, Contra requires 6.65% less net-
work bandwidth than SPAIN.
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Figure 35: The traffic overhead of Contra and SPAIN on the
Abilene network
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Abstract 
We present FLAIR, a novel approach for accelerating read 
operations in leader-based consensus protocols. FLAIR 
leverages the capabilities of the new generation of 
programmable switches to serve reads from follower 
replicas without compromising consistency. The core of the 
new approach is a packet-processing pipeline that can track 
client requests and system replies, identify consistent 
replicas, and at line speed, forward read requests to replicas 
that can serve the read without sacrificing linearizability. An 
additional benefit of FLAIR is that it facilitates devising 
novel consistency-aware load balancing techniques. 

Following the new approach, we designed FlairKV, a 
key-value store atop Raft. FlairKV implements the 
processing pipeline using the P4 programming language. We 
evaluate the benefits of the proposed approach and compare 
it to previous approaches using a cluster with a Barefoot 
Tofino switch. Our evaluation indicates that, compared to 
state-of-the-art alternatives, the proposed approach can bring 
significant performance gains: up to 42% higher throughput 
and 35-97% lower latency for most workloads. 

1. Introduction 
Replication is the main reliability technique for many mod-
ern cloud services [1, 2, 3] that process billions of requests 
each day [3, 4, 5]. Unfortunately, modern strongly-con-
sistent replication protocols [6] – such as multi-Paxos [7], 
Raft [8], Zab [9], and Viewstamped replication (VR) [10] – 
deliver poor read performance. This is because these proto-
cols are leader-based: a single leader replica (or leader, for 
short) processes every read and write request, while follower 
replicas (followers for short) are used for reliability only. 

Optimizing read performance is clearly important; for in-
stance, the read-to-write ratio is 380:1 in Google’s F1 adver-
tising system [11], 500:1 in Facebook’s TAO [5], and 30:1 
in Facebook memcached deployments [12]. Previous efforts 
have attempted to accelerate reads by giving read leases [13] 
to some [14] or all followers [1, 15, 16], While holding a 
lease, a follower can serve read requests without consulting 
the leader; each lease has an expiration period. Unfortu-
nately, this approach complicates the system’s design, as it 
requires careful management of leases, affects the write op-
eration – as all granted leases need to be revoked before an 
object can be modified – and imposes long delays when a 
follower holding a lease fails [1, 14].  

Alternatively, many systems support a relaxed con-
sistency model (e.g., eventual [2, 17, 18, 19, 20, 21] or read-
your-write [5, 21, 22]), in exchange for the ability to read 
from followers, albeit the possibility of reading stale data. 

In this paper, we present the fast, linearizable, network-
accelerated client reads (FLAIR), a novel protocol to serve 
reads from follower replicas with minimal changes to cur-
rent leader-based consensus protocols without using leases, 
all while preserving linearizability. In addition to improving 
read performance, FLAIR improves write performance by 
reducing the number of requests that must be handled by the 
leader and employing consistency-aware load-balancing. 

FLAIR is positioned as a shim layer on top of a leader-
based protocol (§3). FLAIR assumes a few properties of the 
underlying consensus protocol: the operations are stored in 
a replicated log; at any time, there is at most one leader in 
the system that can commit new entries in the log; reads 
served by the leader are linearizable; and after committing 
an entry in the log, the leader knows which followers have a 
log consistent with its log up to that entry. These properties 
hold for all major leader-based protocols (Raft [8], VR [10], 
DARE [23], Zookeeper [2], and multi-Paxos [24, 25, 26]). 

FLAIR leverages the power and flexibility of the new 
generation of programmable switches. The core of FLAIR is 
a packet-processing pipeline (§4) that maintains compact 
information about all objects stored in the system. FLAIR 
tracks every write request and the corresponding system re-
ply to identify which objects are stable (i.e., not being mod-
ified) and which followers hold a consistent value for each 
object, then uses this information to forward reads of stable 
objects to consistent followers. Followers optimistically 
serve reads and the FLAIR switch validates read replies to 
detect stale values. If the switch suspects that a reply from a 
follower is stale, it will drop the reply and resubmit the read 
request to the leader. 

An additional benefit of FLAIR is that it facilitates the 
building of novel consistency-aware load balancing tech-
niques. In systems that grant a lease to                     
followers [1, 14, 15, 16], clients send read requests to a ran-
domly selected follower. If the follower does not hold a 
lease, it blocks the request until it obtains a lease, or it for-
wards the request to the leader; either way, this approach 
adds additional delay. FLAIR does not incur this ineffi-
ciency as FLAIR load balances read requests only among 
followers that hold a consistent value for the requested ob-
ject. In this paper we design three consistency-aware load 
balancing techniques (§6): random, leader avoidance, and 
load awareness. 

Unlike other systems that use switch’s new                      
capabilities [27, 28, 29], FLAIR does not rely on the control-
ler to update the switch information after every write opera-
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tion, as this approach would add unacceptable delays. In-
stead, FLAIR piggybacks control messages on system re-
plies, and the switch extracts and processes them.  

Despite its simplicity, implementing this approach is 
complicated by the limitations of programmable switches 
(§2) and the complexity of handling switch failures, network 
partitioning, and packet loss and reordering (§4). 

To demonstrate the powerful capabilities of the proposed 
approach, we prototyped FlairKV (§6), a key-value store 
built atop Raft [8]. We made only minor changes to Raft’s 
implementation [30] to enable followers to serve reads, 
make the leader order write requests following the sequence 
numbers assigned by the switch, and expose leader’s log in-
formation to the FLAIR layer. The packet-processing pipe-
line was implemented using the P4 programming                 
language [31]. We implemented the three aforementioned 
load-balancing techniques (§6). 

Our evaluation of FlairKV (§7) on a cluster with a Bare-
foot Tofino switch shows that FLAIR can bring sizable per-
formance gains without increasing the complexity of the 
leader-based protocols or the write operation overhead. Our 
evaluation with different read-to-write ratios and workload 
skewness shows that FlairKV brings up to 2.8 times higher 
throughput than an optimized Raft implementation, at least 
4 times higher throughput compared to Viewstamped repli-
cation, Raft, and FastPaxos, and up to 42% higher through-
put and up to 35-97% lower latency for most workloads 
compared to state-of-the-art leases-based design [1, 16]. 

The performance and programmability of the new gener-
ation of switches opens the door for the switches to be used 
beyond traditional network functionalities. We hope our ex-
perience will inform a new generation of distributed systems 
that co-design network protocols with systems operations. 

2. Background 

In this section, we present an overview of leader-based con-
sensus protocols, followed by a look at the new programma-
ble switches and their limitations. 

2.1. Leader-based Consensus 

Leader-based consensus (LC) protocols [8, 9, 10, 23, 24, 25] 
are widely adopted in modern systems [2, 3, 4, 16]. The idea 
of having a leader that can commit an operation in a single 
round trip dates back to the early consensus protocols [7, 32]. 
Having a leader reduces contention and the number of mes-
sages, which greatly improves performance [7, 24]. 

LC protocols divide time into terms (a.k.a. views or 
epochs). Each term has a single leader; if the leader fails, a 
new term starts and a new leader is elected. 

Clients send write requests to the leader (1 in Figure 1). 
The leader appends the request to its local log (2) and then 
sends the request to all follower replicas (3). A follower ap-
pends the request to its log (4) before sending an acknowl-

edgment to the leader (5). If the leader receives an acknowl-
edgment from a majority of its followers, the operation is 
considered committed. The leader applies the operation to its 
local state machine (e.g., in memory key-value store in     
Figure 1)  in  (6), then acknowledges the operation to the 
client (7). The leader will asynchronously inform the follow-
ers that it committed the operation. Followers maintain a 
commit_index, a log index pointing to the last committed op-
eration in the log; when a follower receives the commit no-
tification, it advances its commit_index and applies the write 
to its local store.  

The replicated log has two properties that make it easy to 
reason about: it is guaranteed that if an operation at index i 
is committed, then every operation with an index smaller 
than i is committed as well; and if a follower accepts a new 
entry to its log, it is guaranteed that its log is identical to the 
leader’s log up to that entry.  

Client read requests are also sent to the leader. In Raft, 
the leader sends a heartbeat to all followers to make sure it 
is still the leader. If a majority of followers reply, the leader 
serves the read form its local store: it will check that all com-
mitted operations related to the requested object are applied 
to the local store before serving the request. 

A common optimization is the leader lease optimization. 
Instead of collecting a majority of heartbeats for every read 
request, a majority of the followers can give the leader a 
lease [8, 24]. While holding a lease, the leader serves reads 
locally without contacting followers. Unfortunately, even 
with this optimization, the performance of the leader-based 
protocols is limited to a single-node performance. 

2.2. Programmable Switches 

Programmable switches allow the implementation of an ap-
plication-specific packet-processing pipeline that is de-
ployed on network devices and executed at line speed. A 
number of vendors produce network-programmable ASICs, 
including Barefoot’s Tofino [33], Cavium’s XPliant [34], 
and Broadcom Trident 3 [35]. 

Figure 4(a) illustrates the basic data plane architecture of 
modern programmable switches. The data plane contains 
three main components: ingress pipelines, a traffic manager, 

 
Figure 1. The path for a write operation. 

724    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



 
 

and egress pipelines. A packet is first processed by an ingress 
pipeline before it is forwarded by the traffic manager to the 
egress pipeline that will finally emit the packet. 

Each pipeline is composed of multiple stages. At each 
stage, one or more tables match fields in the packet header 
or metadata; if a packet matches, the corresponding action is 
executed. Programmers can define custom headers and 
metadata as well as custom actions. Each stage has its own 
dedicated resources, including tables and register arrays (a 
memory buffer). Figure 4(b) shows a simple example of a 
pipeline that routes a request to a key-value store based on 
the key, and Figure 4(c) shows the details of the KV routing 
stage. The stage forwards the request based on the key in the 
packet’s custom L4 header. The programmer implements a 
forward() action that accesses the register array holding 
nodes’ IP addresses. An external controller can modify the 
register array and the table entries. 

Stages can share data through the packet header and 
small per-packet metadata (a few hundred bytes in size) that 
is propagated between the stages as the packet is processed 
throughout the pipeline (Figure 4(b)). The processing of 
packets can be viewed as a graph of match-action stages. 

Programmers use domain-specific languages like P4 [36] 
to define their own packet headers, define tables, implement 
custom actions, and configure the processing graphs.  

Challenges. While programmable ASICs and their domain-
specific languages significantly increase the flexibility of 
network switches, the need to execute custom actions at line 
speed restricts what can be done. To process packets at line 
speed, P4 and modern programmable ASICs have to meet 
strict resource and timing requirements. Consequently, mod-
ern ASICs limit (1) the number of stages per pipeline, (2) the 
number of tables and registers per stage, (3) the number of 
times any register can be accessed per packet, (4) the amount 
of data that can be read/written per-packet per register, (5) 

the size of per-packet metadata that is passed between stages. 
Finally, modern ASIC’s lack support of loops or recursion. 

3. FLAIR Overview 
FLAIR is a novel protocol that targets deployments in a sin-
gle data center. Figure 2 shows the system architecture, 
which consists of a programmable switch, a central control-
ler, and storage nodes. Typically, multiple FLAIR instances 
are deployed with each serving a disjoint set of objects. For 
simplicity, we present a FLAIR deployment with one replica 
set (i.e., one leader and its followers).  

FLAIR is based on the following assumptions; the net-
work is unreliable and asynchronous, as there are no guaran-
tees that packets will be received in a timely manner or even 
delivered at all, and there is no limit on the time a node or 
switch takes to process a packet. Finally, FLAIR assumes a 
non-byzantine failure model in which nodes and switches 
may stop working but will never send erroneous messages.  

FLAIR divides time into sessions (Figure 3). During a 
session the leader is bonded to a single switch that runs the 
FLAIR pipeline. Each session has a unique id that is assigned 
in a strictly increasing order. A session ends when a leader 
fails or the leader suspects that the switch has failed. An LC 
term may have one or more sessions, but a session does not 
span multiple terms. 

A session starts with the FLAIR module at the leader 
(dubbed the lflair module) incrementing the session id, com-
mitting it to the LC log, updating the switch information 
about the objects in the system, then activating the session at 
the switch. lflair module keeps the switch’s information up 
to date while in an active session. If the switch does not have 
an active session it drops all FLAIR packets. 

 
Figure 2. System architecture. The solid arrow shows a client 
request, while the dashed arrow show control messages. 

 
Figure 3. FLAIR sessions. Time is divided into terms. Each 
term starts with a leader election. Each term has one or more 
sessions that start with updating the switch data. 

(a) Switch data plane. 

(b) Pipeline for routing based on 
a hash-based key 

(c) Simple match-action stage for routing based on a hash-based 
key for the KV routing table in subfigure (b) 

Figure 4. Switch data plane. 
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Clients. FLAIR is accessed through a client library with a 
simple read/write/delete interface. Read (get) and write (put) 
read or write entire objects. The library adds a special FLAIR 
packet header to every request, that contains an operation 
code (e.g., read) and a key (a hash-based object identifier).  

Controller. Our design targets data centers that use a SDN 
network following a variant of the multi-rooted tree               
topology [37, 38]. A central controller uses OpenFlow [39] 
to manage the network by installing per-flow forwarding, fil-
tering, and rewriting rules in switches.  

As with previous projects that leverage SDN                     
capabilities [27, 29, 40, 41], the controller assigns a distinct 
address for each replica set. The controller installs forward-
ing rules to guarantee that every client request for a range of 
keys served by a single replica set is passed through a spe-
cific switch (dubbed FLAIR switch); that switch will run the 
FLAIR logic for that range of keys. The controller typically 
selects a common ancestor switch of all replicas and installs 
rules to forward system replies through the same switch. 
Only client request/replies are routed through the FLAIR 
switch, leader-follower messages do not have the FLAIR 
header nor are necessarily routed through the FLAIR switch. 

While this approach may create a longer path than tradi-
tional forwarding, the effect of this change is minimal.          
Li et al. [40] reported that for 88% of cases, there is no addi-
tional latency, and the 99th percentile had less than 5 µs of 
added latency. This minimal added latency is due to the fact 
that the selected switch is the common ancestor of target rep-
licas and client packets have to traverse that switch anyway. 

On a switch failure, the controller selects a new switch 
and updates all the forwarding rules accordingly. The con-
troller load balances the work across switches by assigning 
different replica sets to different switches. 

Storage Nodes. The storage nodes run the FLAIR and LC 
protocols. For read requests, before serving a read, followers 
verify that all committed writes to the requested object have 
been applied to the follower’s local storage. 

Write requests are processed by the leader. After a suc-
cessful write operation, the leader passes to the lflair module 
the log index at which the write was committed and the list 
of followers that accepted the write operation and have a 
consistent log up to that log index. The lflair encodes this list 
into a compact bitmap and uploads it and the log index to the 
switch (piggybacked on the write reply).  

Programmable Switch. The switch is a core component of 
FLAIR: it tracks every write request and the corresponding 
reply to identify which objects are stable (not being modi-
fied) and which replicas have a consistent value of each ob-
ject (encoded in the bitmap provided by the lfair module). If 
a read is issued while there are outstanding writes for the tar-
get object (i.e., writes without corresponding replies), the 
read is forwarded to the leader. If a read request is processed 

by the switch when there are no outstanding writes to the 
requested object, the switch forwards the request to one of 
the followers included in the last bitmap for the object sent 
by the lflair module. Followers optimistically serve read re-
quests. The switch inspects every read reply; if it suspects 
that a follower returned stale data (Section 4.4), it will con-
servatively drop the reply and forward the request to the 
leader. FLAIR forwards all writes to the leader. 

FLAIR also includes techniques to handle multiple con-
current writes to the same object (Section 4.3), packets reor-
dering (Section 4.6), and tolerating switch, node, and net-
work failures (Section 4.6). 

4. System Design 
4.1. Network Protocol 

Packet format. FLAIR introduces an application-layer pro-
tocol embedded in the L4 payload of packets. Similar to 
many other storage systems [27, 29, 40], FLAIR uses UDP 
to issue client requests in order to achieve low latency and 
simplify request routing. Communication between replicas 
uses TCP for its reliability. A special UDP port is reserved 
to distinguish FLAIR packets; for UDP packets with this 
port, the switch invokes the FLAIR custom processing pipe-
line. Other switches do not need to understand the FLAIR 
header and will treat FLAIR packets as normal packets. In 
this way, FLAIR can coexist with other network protocols. 

Figure 5 shows the main fields in the FLAIR header. We 
briefly discuss the fields here (a detailed discussion of the 
protocol is presented next):  
 OP: the request type. Clients populate this field in the 

request packet (e.g., read, or write); replicas populate this 
field in the reply packets (e.g., read_reply, write_reply).  

 KEY: hash-based object identifier.  
 SEQ: a sequence number added by the switch. The switch 

increments the sequence number on every write operation. 
 SID: a unique session id. The <SID, SEQ> combination 

represents a unique identifier for every write request. 
 LOG_IDX: a log index. In a write_reply, the log index 

indicates the index at which the write was committed. For 
reads, the switch populates LOG_IDX  to make sure the 
followers’ logs are committed and applied up to that index. 

 CFLWRS: In write_reply, the CFLWRS is a map of the 
followers that have a consistent log up to LOG_IDX. 

Following the FLAIR header is the original LC protocol pay-
load, which includes the value for read/write operations. 

4.2. Switch Data Structures 

To process a read request, the switch performs two specific 
tasks (Section 4.4). First, it forwards read requests to con-
sistent followers while balancing the load among them. Sec-
ond, it verifies the read replies to preserve safety. To perform 
these tasks, the switch maintains two data structures: a ses-
sion array and a key group array. 

726    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



 
 

Session array. A single switch typically supports multiple 
replica sets (i.e., FLAIR+LC instances) with each set storing 
a disjoint set of keys. Each entry in the session array main-
tains the session status for a single replica set. An entry con-
tains an is_active flag, session id, leader IP address, current 
session sequence number, and the timestamp of the last 
heartbeat received from the lflair module (Listing 1). When 
is_active is true, we say the session is active, which indicates 
that the session entry and kgroup array are consistent with 
the leader’s information. The switch processes packets using 
the FLAIR custom pipeline only if the session is active; oth-
erwise, it will drop all FLAIR packets, rendering the system 
unavailable to clients until the switch can reach the lflair 
module and sync its session entry and key group array. 

Key group (KGroup) array. To decide if followers can 
serve a certain read request, the switch needs to maintain in-
formation about which followers have the latest committed 
value of every object. Maintaining such information in the 
switch ASIC’s memory is not feasible; instead, FLAIR 
groups objects based on their key and maintains aggregate 
information per group. We use the most significant k bits of 
the key to map an object to a key group (kgroup).  

Every FLAIR+LC instance has a dedicated kgroup array. 
Each entry in the array (Listing 1) contains the status of a 
single kgroup, including an is_stable flag that indicates if all 
objects in the kgroup are stable. If a kgroup is not stable 
(is_stable is false), this indicates that at least one object in 
the kgroup is being modified (i.e., has an outstanding write 
in the system). The array entry also includes the sequence 
number (seq_num) of the last write request processed by the 
switch for any object in the kgroup, the log index (log_idx) 
of the last successful write to any object in the kgroup, and 
the consistent_followers bitmap pointing to all followers 
that have a consistent log up to log_idx. 

4.3. Handling Write Requests 

To issue a write request, a client populates the OP and KEY 
fields of the FLAIR packet header and puts the value in the 

payload, then sends the request.  
When the switch receives the request, it will mark the 

corresponding kgroup entry as unstable. The switch will in-
crement the session_seq_num in the session array and use it 
to populate the sequence number (seq_num) in the kgroup 
entry and the sequence number (SEQ) in the request header. 
Finally, the switch populates the session id (SID) field in the 
header and forwards the request to the leader. 

The lflair module will verify that the session id is valid, 
and will pass the write request to the leader. The leader ver-
ifies that the <SID, SEQ> combination is larger than the   
<SID, SEQ> number of any previous write request it ever re-
ceived, else it will drop the packet. The LC leader will pro-
cess the write request following the LC protocol          (Sec-
tion 2.1): it will replicate the request to all followers, and 
when a majority of followers acknowledge the operation, the 
write operation is considered committed. A follower will 
acknowledge a write operation only if its log is identical to 
the leader’s log up to that entry. 

For the write reply, the leader will pass the following to 
the lflair module: the LC protocol payload for the write_re-
ply, the log index at which the write was committed, and the 
list of followers that acknowledged the write. The lflair mod-
ule will create the write reply packet with the leader provided 
payload, and will populate the LOG_IDX and the bitmap of 
the consistent followers (CFLWRS) using the information 
provided by the leader. lflair module populates the sequence 
number (SEQ) in the write_reply header using the SEQ of the 
corresponding write request. The lflair module then sends 
the write_reply packet. 

The switch will process the write_reply header and verify 
its session id. The switch will compare the sequence number 
(SEQ) of the reply to the sequence number (seq_num) in the 
kgroup entry; if they are equal, this signifies that no other 
write is concurrently being processed in the system for any 
object in the kgroup. Consequently, it will update the log_idx 
and the consistent_followers fields in the kgroup entry using 
the values in the write reply. Then it will mark the kgroup 
stable and forward the reply to the client.  

If the sequence number in the reply is smaller than the 
sequence number in the kgroup entry, this indicates that a 
later write to an object in the same kgroup has been pro-
cessed by the switch. In this case, the switch forwards the 
write reply to the client without modifying the kgroup entry. 
The kgroup entry remains unstable until the last write to the 
kgroup (with a SEQ number in the write_reply equal to the 
seq_num in the kgroup entry) is acknowledged by the leader. 

In a nutshell, the switch acts as a look-through metadata 
cache. Write requests invalidate the switch metadata related 
to the accessed kgroup, and write replies update the kgroup 
metadata at the switch. As we see next, the kgroup metadata 
is used to consistently load balance reads. 

 

Figure 5. FLAIR packet format. 
SessionArrayEntry { 
bit<1>   is_active; 
bit<32> session_id; 
bit<32> leader_ip; 
bit<64> session_seq_num; 
bit<48> heartbeat_tstamp;  } 

KGroupArrayEntry { 
bit<1>   is_stable; 
bit<64> seq_num; 
bit<64> log_idx; 
bit<8>   consistent_followers;   

} 

Listing 1. Session and kgroup entries. The numbers indicate the 
field size in bits. 
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4.4. Handling Read Requests 

Clients fill the OP and KEY fields of the FLAIR header and 
send the request. When the switch receives the request, it 
will check the kgroup entry. If the entry is stable, the switch 
will fill the sequence number (SEQ) and log index (LOG_IDX) 
header fields using the values in the kgroup entry. Then it 
will forward the request to one of the followers indicated in 
the consistent_followers bitmap. Section 6.2 details our load 
balancing techniques.  

If the kgroup entry is not stable, the switch forwards the 
read request to the leader. We note that there is a chance for 
false positives in this design, as a single write will render all 
the objects in the same kgroup unstable. This is a drawback 
of maintaining information per group of keys. This ineffi-
ciency is incurred by leases-based protocols as well, as they 
maintain a lease per group of objects. 

When a follower receives a read request, the follower’s 
FLAIR module validates the request, then calls                       
advance_then_read(LOG_IDX, key) routine, which compares 
the follower’s commit_index to LOG_IDX. If the commit_in-
dex is smaller, the follower advances its commit_index to 
equal LOG_IDX, apply all the log entries to the local store, 
then serve the read request. The FLAIR module will popu-
late the read_reply header; for the SEQ and SID fields, it will 
use the values found in the read request header.  

We note that it is safe to advance the follower’s com-
mit_index to match the LOG_IDX in the read request, as the 
switch forwards read requests to a follower only if the leader 
indicates that all entries in the log up to that log index are 
committed, and that this specific follower is one of the rep-
licas that have a log consistent to the leader’s log up to that 
index. We discuss FLAIR correctness in Section 5. 

When the switch receives a read_reply from a follower, 
it validates the session id, then verifies that the SEQ number 
of the read_reply equals the seq_num of the kgroup entry. If 
the sequence numbers are not equal, this signifies that a later 
write request was processed by the switch and there is a 
chance the follower has returned stale value. In this case, the 
switch drops the read_reply, generates a new read request 
using the KEY field from read_reply packet, and submits the 
read request to the leader. If the sequence number of the 
read_reply equals the sequance number in the kgroup entry, 
the switch forwards the reply to the client. 

If a read request is forwarded to the leader, the lflair 
module verifies the session id, then calls                                     
advance_then_read(LOG_IDX, key). The switch verifies that 
the leader reply is valid (i.e., has the correct session id) be-
fore forwarding it to the client, without checking the 
seq_num in the kgroup entry. 

4.5. Session Start Process 

On the start of a new session, the lflair module reads the last 
session id from the LC log, increments it, and commits the 
new session id to the LC log. Then the lflair module asks the 

central controller for a new switch. The central controller 
neutralizes the old switch (making it drop all FLAIR pack-
ets) and reroutes FLAIR packets to a new switch, then con-
firms the switch change to the lflair module. This step guar-
antees that at any time at most one FLAIR switch is active. 
The lflair module updates the session entry (Listing 1) at the 
switch with the current leader IP and session id. For each 
new session, session_seq_num is reset to zero.  

Populating the kgroup array. The lflair module maintains 
a copy of the kgroup array similar to the one maintained by 
the switch. If the leader did not change between sessions 
(e.g., the session change is due to switch failure), the kgroup 
array at the lflair module is up to date. The lflair module will 
set the seq_num entry in all kgroup entries to zero (equal to 
the session_seq_num in the session entry)., and upload it to 
the switch. 

If the kgroup array at the lflair module is empty – for 
instance, after electing a new leader – the lflair module will 
query the leader for three pieces of information: its com-
mit_index, the list of followers with the same commit_index, 
and a list of all uncommitted operations in the log (i.e., the 
operations after the commit_index in the log). The list of un-
committed operations is typically small, as it only includes 
operations that were received before the end of the last term 
but were not committed yet. The lflair module will traverse 
the list of uncommitted writes and mark their target kgroup 
entries unstable. For all other kgroup entries, the lflair mod-
ule will mark them stable and set their seq_num  to zero, 
log_idx to the leader’s commit_index, and consistent_follow‐
ers  to include all the followers that have the same com-
mit_index as the leader’s. After updating the session entry 
and the kgroup array at the switch, the lflair module activates 
the switch session (sets is_active to true). 

4.6. Fault Tolerance 

Follower Failure. We rely on the LC protocol to handle fol-
lower failures. To avoid sending read requests to a failing 
follower, the leader notifies the lflair module when it detects 
the failure of a follower. The lflair module removes the fol-
lower from the switch-forwarding table (Section 3). 

Leader Failure. On leader failure, a new leader is elected 
and a new term starts. The new leader informs the lflair mod-
ule of the term change; and the lflair module starts a new 
session (Section 3). 

The lflair module sends periodic heartbeats to the switch. 
Upon receiving a heartbeat, the switch determines whether it 
is from the current session. If the heartbeat is valid, the 
switch updates the heartbeat_timestamp in the session array 
and replies to the lflair module.  

Switch Failure. If the lflair module misses the switch heart-
beats for a switch_stepdown period of time (3 heartbeats in 
our prototype), the lflair module will suspect that the switch 
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has failed and will start a new session. For efficiency (i.e. 
does not affect safety), if the switch misses three heartbeats 
from the leader, it will deactivate the session. 

Network Partitioning. If a network partition isolates the 
switch from the leader, the leader treats it as a failed switch, 
as detailed above. If a network partition isolates the switch 
from a follower, read requests forwarded to the follower will 
time out and the client will resubmit the request. This failure 
affects performance, but not correctness. Upon determining 
that a follower is not reachable, the leader removes it from 
the forwarding table, as in the case of the failed follower de-
scribed above. 
Packet Loss. If a read or write request is lost, the client times 
out and resubmits the request. If a write reply is lost before 
reaching the switch, the kgroup entry will remain unstable 
until a new write operation to any key in the kgroup suc-
ceeds. While the kgroup entry is not stable, all read requests 
are forwarded to the leader. 
Packet Reordering. It is critical for FLAIR correctness that 
the leader processes write requests in the same order that 
they are processed by the switch. Every write operation gets 
a unique <SID, SEQ> number. The switch marks a kgroup 
entry unstable until the leader replies to the last write issued 
for a key in the kgroup. Consequently, if the leader processes 
the requests out of order, the switch will incorrectly mark a 
kgroup stable while the out-of-order writes are modifying its 
objects. To prevent this scenario, the leader keeps track of 
the largest <SID, SEQ> it has ever processed and drops any 
write request with a smaller number. While session numbers 
(SIDs) are maintained in the log, the largest processed se-
quence number is retained in memory. If the leader fails, the 
new leader starts a new session, increments the session id 
(SID), and sets the session sequence number (SEQ) to zero. 

5. Correctness 
FLAIR guarantees linearizability, which means that concur-
rent operations must appear to be executed by a single         
machine. FLAIR relies on the LC protocol for any operation 
that updates the log and for reads from the leader. 

FLAIR only adds the ability to serve reads from follow-
ers. In this section, we sketch out the proof of FLAIR cor-
rectness when the read is served by a follower. A full and 
detailed proof is available in the technical report [42]. Fur-
ther, we used the TLA+ model checking tool [43] to verify 
the FLAIR correctness. We started from Raft’s TLA+ spec-
ification [44] and extended it with a formal specification for 
our protocol and new invariants to validate the linearizability 
of reads. The TLA+ specification is in our technical report 
[42].  

Safety. FLAIR guarantees that all read replies are lineariza-
ble. FLAIR trusts that the leader’s read replies are lineariza-
ble and forwards them to the client. For reads served by fol-
lowers, FLAIR guarantees that the read reply returns an 

identical value, as if the read was served by the leader. This 
is guaranteed using the following two steps: 

First, when the switch receives a read request, the switch 
forwards that request to followers only when the switch has 
an active session and the kgroup entry is stable. This signi-
fies that the switch information is up-to-date with the lflair 
module’s information. Identifying a kgroup entry as stable 
signifies that there are no current writes to any object in the 
kgroup and that the last leader-provided consistent_follow‐
ers bitmap points to followers that have the last committed 
value for every object in the kgroup. Consequently, any of 
the consistent followers will return a value identical to the 
leader’s value. 

Second, after forwarding a read request to a follower 
(say, flwrA), the switch may receive a write request that 
modifies the object. The leader may replicate the write re-
quest to a majority of nodes that does not include flwrA. If 
the leader processes the write request before flwrA serves 
the read request, flwrA will return stale data. To avoid this 
case, the switch performs a safety check on every read reply 
coming from followers: it verifies that the kgroup is still sta-
ble, and that the sequence number in the read_reply is equal 
to the sequence number in the kgroup entry. If the sequence 
numbers do not match (which indicates that there are later 
writes to objects in the kgroup), the switch conservatively 
drops the read reply and forwards the request to the leader. 
At all times, reads are linearizable in FLAIR. 

6. Implementation 
To demonstrate the benefits of the new approach, we proto-
typed FlairKV, a FLAIR-based key-value store built atop 
Raft [30]. We chose Raft due to its adoption in production 
systems [45, 46, 47, 48, 49], and the availability of 
standalone production-quality implementations [50]. 

6.1. Storage System Implementation 

We have implemented FlairKV, including all switch data 
plane features, the FLAIR module, leaders’ and followers’ 
modifications, and the client library. We extended the Raft’s 
follower code to implement an advance_then_read() func-
tion. We extended the leader to notify the lflair module as 
soon as it gets elected, and to extract its commit_index, the 
list of followers with a commit_index equal to the leader’s 
commit_index, and the list of uncommitted writes. We ex-
tended the write reply with the list of followers which 
acknowledged the write. We implemented the leader lease 
optimization [8, 24] and modified Raft’s client library to add 
the FLAIR header to client requests. 

6.2. Switch Data Plane Implementation 

The switch data plane is written in P4 v14 [31] and is com-
piled for Barefoot’s Tofino ASIC [33], with Barefoot’s 
P4Studio software suite [51]. Our P4 code defines 30 tables 
and 12 registers: six for the session array and six for the 
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kgroup array. The kgroup array has 4K entries. Larger num-
ber of kgroups had negligible effect on performance. In total, 
our implementation uses less than 5% of the on-chip 
memory available in the Tofino ASIC, leaving ample re-
sources to support other switch functionalities or more 
FlairKV instances. The rest of this section discusses optimi-
zations implemented in FlairKV to cope with the strict tim-
ing and memory constraints of P4 and switch ASIC. 

Heartbeats implementation. The leader and the switch ex-
change periodic heartbeats. If the switch_stepdown period 
passes without receiving a leader heartbeat, the switch deac-
tivates the session. Instead of running a process in the con-
troller to continuously track heartbeats, the switch monitors 
missed heartbeats as part of the validation step in the pro-
cessing pipeline. The switch keeps track of the timestamp of 
the last heartbeat received in the session array (Listing 1). 
When processing any FLAIR packet, the switch computes 
the difference between the current time and the last heartbeat 
timestamp; if the difference is larger than switch_stepdown, 
the switch deactivates the session, making the system una-
vailable until the leader starts a new session. 

Forwarding logic translates the consistent followers’ 
bitmap to follower IP addresses. Storing the IP addresses of 
consistent followers for every entry in the kgroup array 
significantly increases the memory footprint. Moreover, 
randomly selecting a follower from the list while avoiding 
inconsistent ones is tricky given the P4 and current ASIC 
challenges (Section 2.2). Instead, the FlairKV leader 
encodes the follower status in a one-byte 
consistent_followers bitmap (Listing 1). Replicas are 
ordered in a list. If the least significant bit in the 
consistent_follower bitmap is set, this indicates that the first 
replica in the list is consistent, and so forth. 

When forwarding a read request, the switch translates the 
encoded bitmap of consistent followers to select one fol-
lower; Figure 6 shows the translation process. The con‐
sistent_followers bitmap is used as an index to the transla-
tion table. Each entry in the table has an action that randomly 
selects a number that is then used as an index to the IP ad-
dresses table. 

This design has two benefits: it significantly reduces the 
memory footprint of the kgroup array, and it can be acceler-
ated using P4 “action profiles” [52]. 

Load balancing. In addition to the aforementioned random 
load-balancing technique (Figure 6), we implemented two 
load-aware techniques: 

 Leader avoidance. Our benchmarking revealed that the 
write operation takes 35 times longer than a read 
operation; most of this overhead is borne by the leader. 
Consequently, this load-balancing technique avoids 
sending read requests to the leader for stable kgroups if 
there are any writes in the system. The aim is to reduce the 
leader load, as it is already busy serving writes and serving 
reads for unstable kgroups. 
To implement this technique, we compare the sequence 
number of a write_reply with the session_seq_num. If 
they are not equal, then there are pending writes in the sys-
tem and the leader should not be burdened with any reads 
to stable kgroups. 

 Follower load awareness. This technique distributes the 
load across followers proportionally to their load in the 
last n seconds. This technique is especially useful for 
deployments that use heterogeneous hardware, experience 
workload variations, or deploy more than one replica (i.e., 
replicas for different ranges of keys) on the same machine. 
In our design, followers report the length of the request 
queue in every heartbeat. Every second, the leader calcu-
lates the average queue length for each follower and as-
signs proportional weights to each follower. The leader 
updates the translation table to reflect these weights. For 
instance, if follower 1 should receive double the load of 
any other replica, the action for a bitmap 00111 will be 
rand(1, 1, 2, 3), doubling the chance replica 1 is selected.  

Register access logic. Each stage has its own dedicated reg-
isters, and a register can be accessed only once in a stage. 
This restriction complicates FlairKV’s logic, as different 
packet types (e.g., read and write_reply) must access the 
same registers at different stages in the pipeline. To cope 
with this restriction, FlairKV adds a dedicated table to access 
each register. Figure 7 shows an example of an action table 
for accessing register r1. Our code aggregates the infor-
mation about all possible modes of accessing r1 in the 
packet’s metadata, including the access type (read or write), 
the index, and which data should be written or where the 
value should be read to. We then use a dedicated match-ac-
tion table (Figure 7) to perform the actual read or write op-
eration to/from the register in a single stage with a single in-
vocation of the table. This approach has the additional ben-
efit of reducing the number of stages. 

Processing concurrent requests. The switch processes 
packets sequentially in a pipeline. Each pipeline stage pro-
cesses one packet at a time. The switch may have multiple 

Figure 6. Logical view of the forwarding logic. The stability 
bitmap matches an entry in the translation table and executes the 
corresponding action, generating an index of the selected 
destination’s IP address. Using the index, the IP address table 
sets the destination’s IP address in the metadata. 
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pipelines, each serving a subset of switch ports. FLAIR uses 
a single ingress pipeline and all egress pipelines. If a FLAIR 
packet is received on a different ingress pipeline, the packet 
is recirculated [52] to the FLAIR pipeline. 

6.3. Putting the Switch Pipeline Together 
Figure 8 shows the pipeline layout in the switch data plane 
and the flow for a FlairKV packet. The pipeline starts by 
reading the session information (1 in Figure 8) and adding it 
to the packet metadata. Then the it extracts the operation type 
(2) and validates the request (3) by verifying the session id. 
If the packet has an older session id the packet is dropped. 
Further, in the validation stage the switch confirms that it did 
not miss leader heartbeats in the last switch_stepdown period 
(Section 4.6), else it deactivates the session.  

Read requests access the kgroup array (6), and if the 
group is stable, the request is forwarded to a load-balancing 
logic (10) that implements the forwarding logic            (Sec-
tion 6.2); otherwise, it is sent to the leader. 

If a read reply is from the leader, it is forwarded to the 
client (12). If it is from a follower, the pipeline performs the 
safety check (9) and, if it suspects the reply is stale, drops 
the reply, then resubmits the read request to the leader (11).  

Write requests update the session_seq_num (4) and the 
kgroup entry (6), then are sent to the leader (11). 

Write replies compare the sequence number of the reply 
to the one in the kgroup entry (5); if they match, the kgroup 

entry is updated (6) and the pipeline forwards the reply to the 
client (12). 

The egress pipeline (13) has one logical stage that popu-
lates the header fields (e.g., SEQ number, SID, etc.) using the 
data available in the packet’s metadata. 

7. Evaluation 
We compare our prototype with previous approaches in 
terms of throughput and latency (§7.1) with different work-
load skewness (§7.2) and read/write ratios (§7.3).  

Testbed. We conducted our experiments using a 13-node 
cluster. Each node has an Intel Xeon Silver 10-core CPU, 
48GB of RAM, and 100Gbps Mellanox NIC. The nodes are 
connected to an Edgecore Wedge 100 ×32BF switch with 32 
100Gbps ports. The switch has Barefoot’s Tofino ASIC, 
which is P4 programmable. Unless otherwise specified, 
three machines ran the server code, while the other 10 ma-
chines generated the workload.  

Alternatives. We compare the throughput and latency of the 
following designs and optimizations: 
 Leader-based. We used two leader-based protocol 

implementations: LogCabin, the original implementation 
of Raft (Raft), and an implementation of Viewstamped 
replication (VR) [26]. Raft and VR implement a batching 
optimization which batches and replicates multiple log 
entries in a single round trip.  

 Optimized Leader-based (Opt. Raft). Our 
benchmarking revealed that the original Raft 
implementation could not utilize the resources of our 
cluster. We implemented two main optimizations: first, we 
changed the request-processing logic from an event-
driven to a thread-pool design, as our benchmarking 
indicated a thread-pool performs better; second, we 
implemented the leader-lease optimization. These changes 
significantly improved Raft’s performance.  

 Quorum-based reads (Fast Paxos). An alternative to the 
leader-based design is the quorum design [40, 41, 53]. 
Typically, client read requests are sent to all followers, and 
each follower responds directly to the client. The client 
waits for a reply from a supermajority [53] before 

 
Figure 7. Register access table. P4 code aggregates access in-
formation that is used by a dedicated register access table. 

Figure 8. Logical view of the FlairKV switch data plane. 
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completing a read. We used a Fast Paxos implementation 
that implements only the normal case [26]. 

 Follower-lease optimization (FLeases). Similar to 
MegaStore [1], the leader grants read leases to all 
followers. Before serving a write, the leader revokes all 
leases, processes the write operation, and then grants a 
new lease to followers. The lease’s grant/revoke messages 
are piggybacked on the consensus protocol messages. 
However, writes should be processed by all followers 
before replying to the client. In our experiments, if a 
follower receives a read request for an object for which it 
does not have an active lease, it forwards the request to the 
leader. MegaStore applications typically partition the keys 
into thousands of groups, each group contains logically-
related keys [1] (e.g., a key group per blog [1]). We 
partitioned the keys into 4K groups (the same number of 
kgroups in FlairKV), and followers get a lease per group. 
Clients randomly select a follower for each read request 
and send the request directly to it. 

 Unreplicated/NOPaxos (Unrep.). As a baseline, the 
unreplicated configuration deploys Optimized-Raft 
(discussed above) on a single node. The single node stores 
the data set and serves all operations without replication.  

This configuration also represents the best possible 
performance of the network-optimized NOPaxos [40] 
protocol. NOPaxos uses a network switch to order and 
multicast read and write operations to all replicas. An 
operation is successful if the majority accepts a write or 
returns the same value for a read. Consequently, NOPaxos 
read performance is limited by the slowest node in the 
majority of nodes. NOPaxos evaluation shows that the 
best throughput and latency the protocol can achieve are 
within 4% that of an unreplicated system [40]. 

 FlairKV. Unless otherwise specified, we used FlairKV 
with the leader-avoidance load-balancing technique. 

We benchmarked every system and selected a configuration 
that maximized its performance. We stored all data in 
memory. In all experiments, all systems’ performance (with 
the exception of FastPaxos) was stable with a standard devi-
ation less than 1%. 

Workload. We used synthetic benchmarks and the YCSB 
benchmark [54] to evaluate the performance of all systems. 
In our evaluation, we considered both uniform and skewed 
workloads. The skewed workload follows the Zipf distribu-
tion with a skewness parameter of 0.99. We also used the 
YCSB benchmark. We experimented with 100,000 and 1 
million keys. We present the results with 100,000 keys as, in 
skewed workloads, the fewer number of hot keys increased 
the chance of having concurrent requests accessing the same 
key (i.e. is less favorable for FlairKV). FlairKV brings 
slightly higher performance benefit when  using 1 million 
keys than 100,000 keys. The key size is 24 bytes and the hash 
of the key string is used as the key in the FLAIR protocol. 
The value size is 1KB. 

7.1. Performance Evaluation 
We compared the seven systems using YCSB workload B 
(95:5 read:write ratio) while varying the number of clients, 
with uniform and skewed workload distribution. Figure 9 
shows the throughput and average latency with a uniform 
and skewed distributions. With the uniform distribution 
(Figure 9 (a) and (c)), FlairKV achieves up to 42% higher 
throughput and 23.7% lower average latency than FLeases, 
and 1.3 to 2.1 times higher throughput and 1.5 to 2.4 times 
lower latency compared to optimized Raft and unreplicated 
setup. Fast Paxos, Raft, and VR, achieve the lowest through-
put and highest latency as these systems contact the majority 
of nodes for every read.  

FlairKV achieved better performance than FLeases for 
three reasons. First, FlairKV uses the leader-avoidance load-
balancing technique, which reduces the load on the leader 
when there are writes, thereby accelerating writes and short-
ening the time period in which kgroups are marked unstable. 
This approach is effective as writes take almost 35 times 
longer than reads in Opt.Raft, and 30 times longer in the un-
replicated setup. We recorded the number of read requests 
served by the leader. For instance, with 300 clients              
(Figure 9.a) the leader served 2% of the reads in FlairKV 
(those are reads to unstable kgroups), while it served 34% of 
the reads in FLeases. We note that the leader-avoidance tech-
nique cannot be applied to FLeases which tasks the clients 

(a) Throughput - Uniform    (b) Throughput -Zipf             (c) Latency-Uniform        (d)   Latency-Zipf 
Figure 9. Throuhgput and Latency while varying the number of clients. The figures show the throughput and the average latency for 
different number of clients for workload B for the uniform distribution (a, c), and for the Zipf distribution (b, d).   
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with selecting a follower to send the read request to. This 
technique requires accurate information about the current 
load of the leader and which followers are stable which are 
not available to clients. 

Second, in FLeases, when an object is not stable, if a    
client sends a request to a follower, the follower will redirect 
the request to the leader, increasing overhead and incurring 
extra latency. Unlike FLeases, FlairKV switch knows if an 
object is not stable and forwards read requests for that object 
directly to the leader. The third reason which had a minor 
impact when using 3 replicas is that the write operation in 
FLeases need to reach all followers, while FlairKV writes 
only need a majority.  

Optimized-Raft’s performance is better than that of Raft, 
VR, and FastPaxos. The unreplicated deployment slightly 
improves throughput and latency over Optimized-Raft by 
avoiding the replication overhead for write operations. These 
two systems still lag behind FlairKV as they only utilize a 
single node (the leader) for serving all reads and writes. 

Figure 9 (b) and (d) show the throughput and average    
latency with a skewed workload (Zifpian constant of 0.99). 
The skewed workload results in higher contention and an in-
creased frequency at which a read request finds a kgroup un-
stable. This contention reduces the chances of reading from 
followers. FlairKV leader served 21% of reads of which 1% 
are redirected from followers, while FLeases leader served 

37% of reads. Even under the skewed workload, FlairKV 
still achieves the highest performance, up to 26% higher 
throughput and 18.1% lower latency than FLeases, and 1.5 
to 1.8 times higher throughput and 2 to 2.4 times lower la-
tency than optimized Raft and the unreplicated setup.   

Latency evaluation. Figure 13.a shows the latency CDF of 
FlairKV, FLeases, OptRaft, and Raft. Under the uniform 
workload B with 300 clients (other workloads had similar 
results). FlairKV lowered the latency for the slowest 40% 
requests by at least 38% relative to FLeases. Under the Zipf 
workload (Figure 13.b), FlairKV lowered the slowest 50% 
of request by up to 35% relative to FLeases.  

FLeases has higher latency as it incurs extra delay due to 
the load imbalance between nodes (e.g., the leader serves 
41% of requests for workload B with Zipf distribution) and 
due to followers redirecting 4% of requests to the leader. 

Under all workloads, FlairKV significantly improved op-
eration’s latency relative to OptRaft and Raft. The median 
latency of FlairKV is 2% of Raft’s latency and 2-8% of      
OptRaft’s latency. 

7.2. Workload Skewness 
We measured the impact of the workload skewness on 
throughput (Figure 10.a) and average latency (Figure 10.b) 
by varying the Zipfian constant from 0.5 to 0.99. FlairKV 
consistently achieves better performance: 1.26 to 2.25 times 
higher throughput and 1.13 to 2.48 times lower average la-
tency compared to all other systems. We notice that as the 
skewness increases FlairKV and FLeases performance de-
creases as higher skewness increases contention on the few 
popular kgroups, making them unstable for longer time, and 
increases the number of requests the leaders have to process. 
Other systems performance is not noticeably affected by 
skewness. 

We noticed high workload skewness affects FlairKV’s 
performance more than FLeases. This is due to a subtle side 
effect of FlairKV. When there are concurrent writes to the 
same kgroup, FlairKV will mark a group unstable from the 
moment the first request is processed by the switch until the 

 
 

 

 

 

 

 

Figure 12.  Subtle effect of 
FLAIR. FLeases may grant leases 
for up to 25% more time compared
to FlairKV.    Bars mark the time              (a) Throughput          (b) Read latency  

Figure 10. Throughput and Latency while varying skewness. The 
figures show the throughput (a) and the average latency (b) for differ-
ent zifpian constants for a uniform workload B with 300 clients.  

Figure 11. Throughput while 
varying the read ratio. Using 
uniform workload B. 

from the moment a switch receives 
a write request (w1 or w2) until it 
receives a corresponding reply.12

 

(a) B-Uniform (b) B-Zipf 
Figure 13. Latency CDF. The figures show the latency CDF for
reads under workload B using 300 clients with a uniform distribu-
tion (a), and a Zipf distribution with skewness of 0.99 (b). The lines 
for Opt. Raft and Unrep. almost overlap. 
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last request to the kgroup is replied to ([t1, t2] in Figure 12). 
In FLeases, the lease revocation is piggybacked on the write 
replication step (black diamonds in Figure 12). Once the 
leader commits a write, it sends a commit notification and 
grants a new lease to the followers (white diamonds). Hence, 
FLeases may grant a lease between concurrent writes, creat-
ing more opportunity for serving reads from followers.  

To further understand this effect, we tracked leases and 
the stability of kgroups under the skewed (factor of 0.99) 
write heavy YCSB workload A (1:1 read:write ratio). We 
noticed that while 29% of reads found the kgroup unstable 
in FlairKV, only 4% of reads in FLeases reached a follower 
that did not have a lease. We further profiled the write oper-
ation path and found that FLeases revokes leases for 75% of 
the write operation time (Figure 12), 25% shorter than the 
period FlairKV marks a kgroup unstable. Despite this subtle 
effect FlairKV leader still has lighter load, it served 29% of 
reads compared to 37% served by the FLeases leader. Not-
withstanding this effect FlairKV still brings 17% to 26% per-
formance improvement even under skewed workloads. 

7.3. Read/Write Ratio 

Figure 11 shows the effect of the ratio of reads to writes on 
systems’ performance with a uniform workload B. Com-
pared to FLeases, FlairKV has up to 1.5 times higher 
throughput for all read to write ratios, with the exception of 
the read-only workload in which their performance is com-
parable. FlairKV has 1.25 to 2.8 times higher throughput 
compared to the Opt. Raft. Compared to the unreplicated 
setup, FlairKV has up to 2.8 times higher throughput for 
workloads with 70% reads or more and a comparable perfor-
mance under write heavy workloads (read ratio 50-70%). 

8. Related Work 
Network-accelerated systems. Recent projects have utilized 
SDN capabilities to provide load balancing [55, 56, 57], ac-
cess control [58], seamless virtual machine migration [59], 
and improving system security, virtualization, and network ef-
ficiency [60]. SwitchKV [29] uses SDN capabilities to route 
client requests to the caching node serving the key. A central 
controller populates the forwarding rules to invalidate routes 
for objects that are being modified and installs routes for 
newly cached objects. NetCache [28] proposes using the 
limited switch memory as a look-through cache for key-
value stores.   

Network-accelerated consensus. A number of recent efforts 
leverage SDN’s capabilities to optimize consensus protocols. 
Speculative Paxos [41] builds a mostly ordered multicast 
primitive and uses it to optimize the multi-Paxos consensus 
protocol. Network-ordered Paxos (NOPaxos) [40] leverages 
modern network capabilities to order multicast messages and 
add a unique sequence number to every client request. 
NOPaxos uses these sequence number to serialize operations 
and to detect packet loss. Speculative Paxos and NOPaxos 

are optimized for operations that update the log but not for 
read operations. NetChain [61] and NetPaxos [62] imple-
ment replication protocols on a group of switches.  These 
protocols are suitable for systems that store only a few meg-
abytes of data (e.g., 8MB in the NetChain prototype). Unlike 
FLAIR, these efforts do not optimize for read operations. 
Reads are still served by the leader or a quorum of replicas. 

Consensus protocols optimized for the WAN. A number 
of consensus protocols are optimized for WAN deploy-
ments. Quorum leases [14] proposes giving a read lease to 
some of the followers; Unlike Megastore leases, when an ob-
ject is modified, only the followers that have the lease are 
contacted. Quorum leases has a better performance than 
Megastore leases in WAN setups, but do not bring benefits 
when deployed in a single cluster [14]. Mencius [63] is a 
multi-leader protocol in which each leader controls part of 
the log. EPaxos [64] is a leaderless protocol where clients 
can submit request to any replica. Non-conflicting write can 
commit in one round trip, while conflicting writes will be 
resolved using Paxos. 

CURP [65] optimizes the write operation through ex-
ploiting commutativity between concurrent writes. In data 
center deployments, CURP reads are served by the leader 
and hence are limited to a single node performance, in WAN 
deployment CURP applies a technique similar to FLeases. 

9. Conclusion 
We present FLAIR, a novel protocol that leverages the capa-
bilities of the new generation of programmable switches to 
accelerate read operations without affecting writes or using 
leases. FLAIR identifies, at line rate, which replicas can 
serve a read request consistently, and implements a set of 
load-balancing techniques to distribute the load across con-
sistent replicas. We detailed our experience building 
FlairKV and presented a number of techniques to cope with 
the restrictions of the current programmable switches. We 
hope our experience informs a new generation of systems 
that co-design network protocols with system operations. 
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Abstract
In this paper, we present the design and implementation of

CIRCA, a logically centralized architecture and system for in-
terdomain routing that enables operators to offload BGP-style
route computation to the cloud while preserving the confi-
dentiality of proprietary information. To this end, our work
presents the first provably safe, live, and fully distributed con-
vergence detection algorithm for decentralized policy routing
and, somewhat surprisingly, shows that long MRAI timers
can likely be completely eliminated while significantly im-
proving convergence delays with logical centralization. Our
experiments with a Quagga-based CIRCA prototype and the
Internet’s AS topologies suggest that CIRCA can improve
interdomain routing convergence delays and transient route
inconsistencies by over an order of magnitude and offers non-
trivial incremental deployability benefits with modest changes
to widely deployed routing infrastructure.

1 Introduction

Logical centralization of control and management for enter-
prise networks has proven successful in recent years. How-
ever, this trend has minimally, if at all, affected interdomain
routing in the Internet that has seen little fundamental change
in over two decades of operation and continues to suffer from
long convergence delays, lack of control-data separation, poor
management knobs, lack of evolvability, etc.

Logical centralization or cloud-assisted interdomain route
computation holds the promise of alleviating these longstand-
ing problems but is not easy to accomplish. Unlike enter-
prise networks, a key stumbling block is the need to main-
tain the confidentiality of proprietary routing policies. Re-
cent research [2, 17] has attempted to attack this problem by
employing secure multiparty computation, but its inherently
computationally-expensive nature poses a scaling challenge,
so it has been demonstrated only at small scales with restric-
tive assumptions on the expressiveness of routing policies.
Cloud-assisted interdomain route computation has therefore

Virtual	router
incarnatesPhase 2: distributed route computation

Phase 1: 
northward root 
cause dispatch

Phase 3: 
southbound 
forwarding rules

Figure 1: CIRCA: northward root cause dispatch, cloud-
driven route computation, and southbound forwarding rules.

been limited to narrower contexts such as software-defined
exchange points [15, 16], engineering traffic across multiple
ASes owned by a single enterprise [18, 53], or compromising
on either or both of scale and policy confidentiality [26].

In this paper, we present the design and implementation of
CIRCA, the first logically centralized interdomain routing
control architecture and system enabling operators to offload
BGP-style route computation as-is to the cloud while preserv-
ing the confidentiality of proprietary policies. The CIRCA
service makes the following assurances to network opera-
tors: (1) forwarding entries computed by CIRCA will be
equivalent (as formalized in §3.4.1) to what their routers are
computing today; (2) CIRCA will quickly return forwarding
entries reflecting a converged state of the network circumvent-
ing BGP’s long tail of convergence delays (tens of seconds to
minutes); and (3) CIRCA does not require an AS to disclose
proprietary policy information to any third party except to the
extent that it can already be inferred by its eBGP peers.

The high-level design of the baseline CIRCA system, as il-
lustrated in Figure 1, is simple: each router speaking BGP (or
ground router) has a virtual router incarnate (or avatar) in the
CIRCA cloud. Upon detecting a root cause event, a ground
router dispatches it cloudward to its avatar; the virtual routers
in the cloud thereafter simply replay the same BGP protocol
as ground routers but in a significantly “fast-forwarded" man-
ner; and upon convergence, cloud routers dispatch modified
forwarding entries to their ground incarnates.

A natural question is why this simple, perhaps even seem-
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ingly naive, high-level design can enable the cloud to compute
routes faster than the ground if it’s replaying the same proto-
col. The answer is threefold: (1) the cloud can easily afford
orders of magnitude more control bandwidth, e.g., tens or
even hundreds of Gbps of LAN bandwidth, compared to the
ground; (2) propagation delays in the cloud (< 1 ms or even
just a few microseconds [21, 33, 35, 55]) are several orders of
magnitude lower than the delay diameter of the Internet (≈
hundreds of ms); (3) the (cloud) control plane is physically
isolated from and can not interfere with the (ground) data
plane. Thus, the cloud has the luxury of doing away with
long route advertisement timers that in ground-BGP today are
believed necessary to mitigate the risk of super-exponential
message complexity [9, 28, 29, 36, 37] and conservatively set
to high values (e.g., 30s is a common vendor default).

The deceptively simple exposition above hides a number of
research questions that must be answered to translate the high-
level design to a deployable system in practice. Can the cloud
really compute stable routing outcomes an order of magni-
tude faster than the ground? Can (and how?) cloud routers
quickly detect that the distributed processing of a root event
has converged? Can CIRCA guarantee consistency of com-
puted routes and ensure that its computed routing outcomes
will match those of BGP despite component or network fail-
ures? Can CIRCA coexist with BGP and is it incrementally
deployable for incremental benefit?

Tackling the above questions and answering them in the
affirmative aided by an implemented prototype of CIRCA is
our primary contribution comprising the following parts:

1. Distributed convergence detection: Design and imple-
mentation of the first fully distributed BGP convergence
detector that is provably safe, i.e., no false positives, and
live, i.e., detection incurs a modest bounded delay (§3.3).

2. Quick end-to-end convergence: Large-scale prototype-
driven experiments showing that CIRCA can ensure
predictably quick convergence reducing BGP’s tail con-
vergence delays by over an order of magnitude, in part
by eliminating unnecessary long timers (§3.2, §4.1).

3. Route computation equivalence: A design that provably
ensures that its computed routing outcomes are equiv-
alent to those of any convergent (formalized in §3.4)
distributed policy-based ground routing protocol.

4. Incremental deployability: Design and evaluation of
mechanisms to deploy CIRCA co-existent (§3.5.1) with
BGP as well as in an incremental manner (§3.5.2).

2 Background and lineage

Logical centralization of network control and management,
including for interdomain routing, has a long scientific lineage.
We overview what prior work has accomplished on that front
to position how CIRCA builds upon that work.

In intradomain routing, a line of work seemingly starting
with calls for "routing as a service" [30] or "separating routing
from routers" followed by works such as RCP [4], 4D [52],
Ethane [5] etc. spurred what is now known as software-
defined networking (SDN), a term that commonly means
logical centralization of control and management for enter-
prise networks. Much follow-on SDN research as well as
widespread embrace by industry firmly attests to its benefits
such as cleaner control and data separation, ease of manage-
ment with a global view, hardware-software decoupling, etc.

Interdomain routing on the other hand, since BGP’s cre-
ation in the late 80s and progressive standardization through
the 90s, has remained largely untouched by the logical cen-
tralization trend as BGP4 continues to be the de facto interdo-
main routing protocol. Recent research however has begun to
explore extending SDN approaches to the interdomain con-
text [1, 41, 44, 54]. For example, SDX by Gupta et al. [16]
is a software-defined Internet exchange point (IXP) that en-
ables more sophisticated packet processing rules to engineer
interdomain traffic. Kotronis et al. [10, 24–27] also advocate
a logically centralized “multi-domain SDN" approach as an
alternative to BGP, introduce a publicly available (single-
node) Mininet-based emulation platform for experimenting
with hybrid BGP-SDN routing, and show modest improve-
ments in convergence delays because of centralization. Gupta
et al. [2, 17] advocate using secure multiparty computation
(SMPC) so as to combine the benefits of logical centralization
with confidentiality of proprietary routing policies, and argue
that SMPC may be computationally feasible for BGP with
some policy restrictions. Recent research has developed ap-
proaches for preserving the privacy of ISP policies at Internet
exchange points [6, 7, 14].

Consensus routing [20] advocates a consistency-first (in
contrast to the Internet’s longstanding allegiance to soft-state)
approach to interdomain routing. It works by periodically
capturing a consistent snapshot of global network state—e.g.,
by having a small number of say tier-1 ASes engage in a
consensus protocol to agree upon globally in-propagation
updates—so as to enable computation of so-called stable
forwarding tables that are guaranteed to be loop-free while
relying on transient routing heuristics in the forwarding plane
to re-route packets encountering blackholes. Consensus rout-
ing can be viewed as logically centralizing the snapshotting
of network state but continuing to rely on distributed BGP for
computation of the stable forwarding tables; the snapshots
simply slow down FIB changes making routers jump from
one set of consistent FIBs to another.

The above body of prior work informs the design of
CIRCA, a logically centralized, scalable, and fault-tolerant
architecture to offload interdomain route computation as-is
to the cloud without requiring ASes to reveal any additional
proprietary policy information while ensuring predictably
quick convergence delays, a combination of goals that to our
knowledge has not been achieved before.
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3 CIRCA design and implementation

CIRCA is driven by the following key design goals.

1. Limited disclosure: CIRCA should not require ASes to
disclose proprietary policies or topology to any entity.

2. Quick convergence: CIRCA should ensure quick con-
vergence unlike BGP’s high tail latencies (§3.2).

3. High availability: CIRCA should ensure high availabil-
ity despite component or network failures (§3.4.2).

4. Route computation equivalence: CIRCA’s computed
routes should match those computed by BGP or any
desired decentralized and safe routing protocol (§3.4.1).

5. BGP interoperability: CIRCA should gracefully co-
exist with BGP and be incrementally deployable (§3.5).

3.1 Design overview
BGP route computation, even given centralized global topol-
ogy and policy information, is a computationally hard prob-
lem [13] unless restrictive assumptions are made, e.g., under
Gao-Rexford (GR) conditions, the complexity is linear in
the size of the network. To our knowledge, in the absence
of more restrictive assumptions than safety of routing poli-
cies, previously proposed approaches for BGP route com-
putation are not qualitatively more efficient than simulating
BGP’s path exploration process, i.e., some sequence of re-
ceive/import/adopt/export activations until convergence. Even
logically centralized approaches based on SMPC [17], that
in addition to GR constraints restrict policies to be next-hop-
based and routes to be uniquely determined by the source-
destination pair, compute BGP routes by simulating BGP’s
path exploration. Algebraic formulations of the problem can
potentially compute BGP routing outcomes more efficiently
than asynchronously simulating path exploration, e.g., via a
generalized Dijkstra-like algorithm [46] or iterative matrix
methods that synchronously simulate generalized Bellman-
Ford’s [45, 46] path exploration, but only under restrictive
assumptions that BGP in practice is not known to satisfy,
e.g., non-neighbor-based policies like “prefer customer but
disprefer routes containing AS X” are neither left-distributive
nor monotonic (also known as strictly increasing [8]), each
of which is known to be a sufficient condition for computing
destination-based forwarding routes efficiently.

CIRCA’s high-level design based on virtual routers replay-
ing BGP in the cloud is naturally dictated by two premises:
(1) we need to limit disclosure of proprietary policy informa-
tion to no more than what is shared between ASes in today’s
BGP (also referred to as ground-BGP); (2) even with cen-
trally disclosed policy information, without more restrictive
assumptions than just safety, we don’t know of a qualitatively
more efficient way to compute BGP’s routing outcomes other
than to simulate its path exploration. Accordingly, CIRCA

maps virtual router incarnates (or avatars) in the cloud to each
ground router. In what follows, we first describe unreplicated
CIRCA (deferring CIRCA’s replication mechanisms for en-
suring high availability amidst failures to §3.4.2) wherein
each ground router is one-one mapped to a cloud avatar and
the cloud avatars execute a protocol derived from the underly-
ing distributed ground routing protocol.

CIRCA operates incrementally in response to root cause
events, i.e., external events such as a node or link up/down
event, link cost change, or an operator-induced policy or con-
figuration change. CIRCA operates in three phases— (1)
detection and cloudward dispatch of a root event by a ground
router; (2) route computation by cloud routers; (3) adop-
tion of forwarding outcomes dispatched by cloud routers
groundward—a high-level design also shared by several prior
works [2, 4, 17, 26, 41].

3.1.1 CIRCA north-south protocol

The CIRCA north-south protocol consists of three phases.
Phase I: Upon detecting a root event, a ground router R:

1. Assigns a unique label E = [seqn,R] to the event, where
seqn is a sequence number incremented by exactly one
for each locally detected root cause event;

2. Appends 〈E, iface,etype,eval〉 to a local persistent log,
where iface identifies the interface affected by the event
and etype and eval are respectively the event type and
value, e.g., etype may denote a link cost change and eval
the value of the new link cost;

3. Sends the ground root cause (GRC) message 〈GRC,E,
iface,etype,eval〉 to its cloud avatar(s) v(R).

Phase II: CIRCA cloud routers then take these steps:

1. Upon receiving 〈GRC,E = [seqn,R], iface,etype,eval〉,
the cloud avatar v(R) initiates a distributed route com-
putation algorithm (in §3.3) for that event after it has
sequentially completed the execution for all root events
〈[k,R]〉 for k < seqn;

2. When a cloud router v(Q) impacted by E eventually
receives the termination notification (as guaranteed by
the liveness property in §3.3.2) for E, it

(a) appends the FIB entries updated as a result of E to
a local persistent log;

(b) dispatches the FIB entries to ground incarnate Q;

Phase III: A ground router Q receiving FIB entries for E:
1. Appends the FIB entries to a local persistent log;
2. Applies the FIB entries for E = [seqn,R] iff it has applied

all FIB entries for root events [k,R] for k < seqn;
The high-level protocol above can be optimized as follows.
Garbage collection: A ground router Q informs its cloud

avatar v(Q) to garbage collect its log entries for any root cause
event E for which Q has already applied (in step III.2 above)
the updated FIB entries. The ground router only persists O(1)
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state per prefix. For each prefix p, it persistently maintains
only the FIB entries corresponding to the root event E that
it most recently applied in step III.2. §3.4 explains why this
preserves Route Computation Equivalence even amidst faults.

Concurrent execution: Step II.1 can be executed in parallel
for two or more root events while preserving key safety and
liveness properties (as explained in §3.3.3).

Virtual router consolidation: The one-one mapping of
ground to virtual routers in CIRCA can be optimized by
using a single, more complex route computation server per
AS that emulates the receipt/sending of eBGP updates from/to
adjacent ASes. Our focus on one-one router mapping in this
paper is driven by our goal to show a proof-of-concept design
and implementation that works at all and at scale, so we defer
approaches to optimize cloud resources to future work.

The rest of this section §3 describes how CIRCA achieves
its design goals starting with the first limited disclosure goal.

Limited disclosure: CIRCA’s threat model assumes that
ASes trust the cloud hosting provider to provide the physical
infrastructure in a non-curious manner, an assumption con-
sistent with standard IaaS cloud computing industry practice.
From a practical standpoint, there is a significant difference
between an AS trusting a cloud provider to not peek into its
virtual machines versus that AS explicitly submitting all of its
proprietary policy information to the cloud provider. Limiting
overt leakage of proprietary information further requires that
virtual routers belonging to a single AS be hosted within a
virtual LAN (VLAN) within the CIRCA cloud so that IGP,
iBGP, or other intradomain messages are physically confined
within the VLAN. §5 discusses state-of-the-art secure com-
puting techniques to extend CIRCA to work even with a
honest-but-curious cloud provider in the future.

3.2 MRAI: Unnecessary evil in the cloud
An important reason interdomain routing suffers from long
convergence delays is the presence of MRAI (min route ad-
vertisement interval) timers [3,28,31,36,43,49]. A nontrivial
body of prior work suggests that MRAI timers are a neces-
sary evil to tame BGP’s message complexity. Early work by
Labovitz et al. [28] suggests that without such timers, BGP’s
message complexity may be superexponential (or O(n!)). Al-
though the gadgets exemplifying the superexponential mes-
sage complexity in that work are somewhat contrived in that
their policy configuration does not satisfy Gao-Rexford (GR)
conditions that are believed to hold commonly in practice, sub-
sequent work [9] has shown that BGP’s message worst-case
complexity can be exponential even in GR topologies.

Our position is that MRAI timers even in ground-BGP to-
day are overly conservative and are set to high values (e.g., 30s
is a commonly recommended default value [31,50,51]) in part
because the relationship between MRAI timers, message com-
plexity, and overall convergence delay is poorly understood.
Classical work on this topic [12] suggests that convergence
delay exhibits a nonmonotonic relationship to MRAI timers,

i.e., there is a minima or a sweet spot setting for the timer
below which operators risk worsening convergence delay be-
cause of prohibitive message complexity and above which
the timers themselves are too conservative exacerbating delay.
There isn’t universal agreement on what value of the timer
is optimal; some have suggested that the common default of
30s is too high [12, 19, 31] while others have noted the risks
of heterogeneous timer values further exacerbating message
complexity [9], so conventional operational wisdom has been
to err on the conservative side.

3.2.1 Why the cloud is different

There are three critical differences between the cloud and
ground-BGP with implications for MRAI and other timers.

1. Control bandwidth: The CIRCA cloud can be easily
provisioned with 2-3 orders of magnitude more control
bandwidth (e.g., tens of Gbps) compared to typical con-
trol traffic provisioning in ground-BGP today.

2. Propagation delay: The propagation delay diameter of
the CIRCA cloud is 2-3 orders of magnitude less than
the hundreds of milliseconds in ground-BGP today.

3. Control-data isolation: Interference between control and
data is a non-concern in the CIRCA cloud, so it can
afford to be much more wasteful than ground-BGP.

Accordingly, we pick an aggressive point in the design
space for CIRCA, namely, no MRAI timers at all! The justifi-
cation for this design choice is as follows. First, MRAI timers,
when they help, intuitively work by limiting spurious path ex-
ploration by making each node wait long enough to hear from
its neighbors about their reaction to earlier routing messages.
However, these very timers can make nodes unnecessarily
wait for several MRAI rounds even when there is no possi-
bility of excessive spurious path exploration. Worse, some
(admittedly contrived) choices of heterogeneous timer values
even in GR settings can actually cause exponential message
complexity [9] even though overall convergence delay in GR
settings is determined by the speed of information propaga-
tion along the customer-provider chain and back. Eliminating
MRAI timers altogether propagates information as quickly as
possible while naturally slowing down node reaction times
because of message queuing delays in the rare cases that
message processing is indeed a bottleneck.

Second, message processing delays in commodity routers
as well as processing delays in well provisioned cloud envi-
ronments are an order of magnitude lower than the numbers
used in prior simulation-based work [12, 43]. Third, we hy-
pothesize that reasonable values of MRAI timer values when
useful are positively correlated with propagation delays, i.e.,
the higher the propagation delays, the higher the timer values
needed, all else being equal. This hypothesis is consistent
with (but not strictly implied by) the simple model in [37].

Our prototype-driven experiments in §4.1 validate the hy-
potheses above showing both that MRAI timers are unnec-
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essary in reasonably provisioned cloud settings and that our
results do not qualitatively contradict the nonmonotonic be-
havior reported in previous works when compute provisioning
is artificially limited to unrealistically low levels.

3.3 Distributed convergence detection
The description thus far has side-stepped a critical question:
How do CIRCA cloud routers replaying a distributed proto-
col like BGP know when the processing of a root cause event
has converged? A convergence detector is necessary for a
cloud router to initiate transmission of the corresponding up-
dated FIB entries to its ground incarnate. The distributed BGP
protocol as executed by Internet routers today does not have
any such indicator of convergence (other than, trivially, the
absence of any routing updates for a sufficiently long time).

To appreciate why detecting convergence in CIRCA is not
easy, consider the strawman strategy of each virtual router
periodically, say once every τ seconds, reporting the most
recent time when it processed a message for a root cause
event e to a centralized monitor that declares convergence
when no router has processed any message for e in its most
recent reporting interval. For τ = 5s and a total of say 106

routers, this reporting traffic alone for each root event is 200K
pkts/s. A hierarchical convergence detector that employs a
per-AS detector with 50K ASes will still incur a reporting
traffic of 10K pkts/s per root event, which is prohibitively
expensive especially given that many root events may have
only a localized impact affecting the forwarding behavior of a
small number of ASes if at all. More importantly, a centralized
monitor will incur a convergence delay of at least τ seconds
per root event, not to mention poor fault tolerance. Finally,
a centralized monitor by design observes more information
than can be observed or easily inferred by any AS in BGP
today, thwarting CIRCA’s limited disclosure goal (§3.0).

We present a completely distributed convergence detector
that is provably safe, i.e., no false positives, and live, i.e., it
will detect convergence provably within at most 3× the actual
convergence delay—and in practice within a much smaller
factor (§4.2)—and the number of BGP messages as observed
by a (theoretical) global monitor. The distributed convergence
detection algorithm works in three phases as explained below.
For ease of exposition, we first assume failure-free execution
(deferring fault tolerance to §3.4). The algorithm is boot-
strapped with a set of path updates generated by simulating
the root event at the “root” cloud router receiving the corre-
sponding ground root cause message.

Figure 2 illustrates the three phases of the convergence de-
tection algorithm. In the first exploration phase, for each root
event e processed by a virtual router, the router maintains state
about the event by adding it to a set of unconverged events.
When a virtual router R processes a BGP message m related
to e and it induces no change to R’s FIB (and consequently no
new announcements to its neighbors), we say that message m
"fizzled" at R. For each fizzled message, R back-propagates

(a) Exploration (b) Back-propagation (c) Dissemination

Figure 2: 3-phase distributed convergence detection.

a fizzle indicator to its peer that previously sent it m thereby
initiating the second back-propagation phase. Each router lo-
cally keeps track of each message pertaining to e that it sends
to each neighbor and waits for the corresponding fizzle ac-
knowledgment to be back-propagated. When the router that
initiated the root cause event has received fizzle acknowl-
edgements for all messages it originated, it determines e to
have converged, which initiates the third dissemination phase
wherein, starting with the root router, each router forwards the
convergence indicator along each link previously traversed in
the exploration phase, at which point it drops all state related
to e for convergence detection.

3.3.1 Formal event-action protocol

In order to formally reason about the safety and liveness
properties of the distributed convergence detector, we codify
it in event-action format in Algorithm 1. The key notation is
as shown in Table 1. Where there is little room for confusion,
we drop the argument R implicitly fixing it to self at a router.

Algorithm 1 shows how a router R handles three distinct
events: (1) receipt of a root cause message 〈GRC,E . . .〉 from
its ground incarnate v(R) that initiates path exploration; (2)
receipt of a CBGP message from a peer cloud router; and (3)
receipt of a FIZZLE message from a peer cloud router.

The first event handler processes the received root cause
message by “simulating" the corresponding ground event,
which produces a set of resulting update messages announcing
or withdrawing a set of paths to affected prefixes, a set denoted
as paths(E). If the root event E does not change R’s FIB, then
routing has trivially converged (line 7). Else, for each changed
entry in R’s FIB causing a new update subject to its export
policy, it creates a unique timestamp as a two-tuple consisting
of a strictly increasing logical clock returned by now() and the
router’s identity. (This logical clock does not need to reflect
the happens-before relationship between events like Lamport
clocks for reasons that should be clear from the formal proofs
in §A.) The router stores each resulting update to its peers in
a map sent[E] and remembers the cause of each sent update
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Algorithm 1 Distributed convergence detection (DCD) and
route computation at cloud router v(R)

1: event RECV(〈GRC,E, iface,etype,eval〉,R): . upon receipt of
root cause message from ground router R

2: paths(E)← sim(〈GRC,E, iface,etype,eval〉)
3: FIB0← FIB
4: for each prefix set p in paths(E) do
5: FIB← BGPImport(FIB,〈CBGP,E, p,paths(E)[p]〉)
6: if FIB = FIB0 then
7: converged(E)← true; exit
8: else
9: ts← [now(),R]

10: for each r: BGPExport(FIB0,FIB) do
11: ts1← [now(),R]
12: sent[E][ts] ∪= [r.peer,r.prefixes, ts1]
13: cause[ts1]← 〈GRC,E, ts,v(R)〉
14: send(〈CBGP,E,r.prefixes,r.asPath, ts1〉, r.peer)
15:
16: event RECV(〈CBGP,E, p,asPath, ts〉,N) . upon receipt of

CBGP message for prefixes p from cloud peer N
17: FIB0← FIB
18: FIB← BGPImport(FIB, [CBGP,E, p,asPath])
19: if FIB = FIB0 then
20: send(〈FIZZLE,E, ts〉,N)
21: else
22: for each r: BGPExport(FIB0,FIB) do
23: ts1← [now(),R]
24: sent[E][ts] ∪= [r.peer,r.prefixes, ts1]
25: cause[ts1]← 〈CBGP,E, ts,N〉
26: send(〈CBGP,E,r.prefixes,r.asPath, ts1〉, r.peer)
27:
28: event RECV(〈FIZZLE,E, ts〉,N) . upon receipt of a fizzle

message from cloud peer N
29: ts0 = cause−1(ts).ts
30: fizzled[E][ts0] ∪= sent[E][ts0][ts] . for dissemination phase
31: sent[E][ts0] −= sent[E][ts0][ts]
32: if sent[E] = {}∧ cause−1(ts) = 〈GRC,E, . . .〉 then
33: converged(E)← true; exit . begin dissemination phase
34: else if sent[E][ts0] = {} then
35: send(〈FIZZLE,E, ts0〉,cause−1(ts).peer]

CBGP Message type of BGP messages ex-
changed by cloud routers

GRC Message type of root cause messages
sent by a ground router

v(R) Cloud incarnate of ground router R
paths(E) Paths affected by E, a unique root cause

label, to one or more prefixes
FIB(R) Forwarding table of router R
send(m, N)/recv(m,N)) send/receive message m to/from peer N
BGPImport(F,m,R) New FIB resulting from processing

message m at router R with FIB F
BGPExport(F1,F2,R) Announce/withdraw messages by R, fil-

tered by its export policy, upon a FIB
change from F1 to F2

Table 1: Notation used by Algorithm 1.

as the original GRC message in a cause map indexed by the
timestamp ts of the sent update. By definition of now(), each
sent update has a unique timestamp.

The second event handler, the common-case action invoked
at a cloud router beyond the root router, is similar to the first
but with two important differences. First, if a received update
〈CBGP,E, p,asPath, ts〉 from a peer does not change its FIB,
it responds with the corresponding 〈FIZZLE,E, ts〉. Second,
if it does change its FIB, it remembers the cause of each
resulting export-policy-filtered update as the incoming update.

The third event handler purges entries from the sent[E] map
upon receipt of the corresponding fizzle messages (removing
the message with timestamp ts from the set sent[E][ts0] in line
31). If the sent set caused by an update is emptied at a non-
root router, it back-propagates a fizzle to the peer that sent the
incoming causal update (line 35). When an incoming fizzle
message empties the sent[E] map at the root router (line 33),
it declares the distributed processing of event E as converged,
and initiates the third dissemination phase (deferred to §A).

We need to formally prove the correctness property that
when a root router thinks routing has converged, that is indeed
the case; and the liveness property that the above protocol
will eventually terminate under realistic conditions.

3.3.2 Safety, liveness, and efficiency

The formal proofs of all claims herein are deferred to §A.

Theorem 3.1. SAFETY: If converged(E) is true at the root
cloud router that received the GRC, then no further CBGP
message for E will be received by any cloud router.

Theorem 3.2. LIVENESS: Algorithm 1 eventually terminates,
i.e., converged(E) is set at the root router, if BGP is safe1 and
all cloud routers are available for sufficiently long.

The safety and liveness proofs rely on a construction called
the directed message graph produced by any execution in-
stance of Algorithm 1, as illustrated in Figure 3, wherein each
vertex corresponds to a message—either the original GRC or a
CBGP message—and there is a directed edge from a message
m1 to another message m2 if m1 caused m2, i.e., m2 was sent
in lines 14 or 26 in response to the receipt of m1 in lines 1 or
16 respectively. We say that m1→ m2 (read as m1 happened
before m2) if there exists a directed path from m1 to m2 in
the graph. It is straightforward to show (Lemma A.1) that
the directed message graph is a directed tree, i.e., it is acyclic
and each vertex has exactly one incoming edge. The proof
of safety relies on showing that if m1→ m2, then m1 fizzles
only after m2 has previously fizzled (Lemma A.3) and when
converged(E) is true at the root router, no CBGP messages for
E are under propagation anywhere (Lemma A.4). The proof
of liveness relies on showing that, with safe BGP policies,
every CBGP message eventually receives a matching FIZZLE
(Lemma A.5) as well as on Lemma A.3 and on the assumption

1“BGP is safe" means that it is guaranteed to converge to a stable route
configuration [13] and is unrelated to safety in the theorem just above.
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Figure 3: (a) Routing topology: root cause is the failure of
link 4-6, arrows are from customer to provider, and no arrows
means a peer relationship. (b) Potential message DAG evolu-
tion: an execution instance of Algorithm 1 produces a prefix
of the shown directed tree where dashed-greyed (yellow) cir-
cles may or may not be a fizzling message, dashed (yellow)
ones are fizzling, and solid ones are non-fizzling messages.

that a router records all state changes in a local persistent log
before sending messages based on the changes.

For concision, we defer a codification of Algorithm 1’s
dissemination phase to §A.3. This phase does not impact
safety or liveness as defined above but is needed to show the
stronger liveness property that the algorithm terminates for
all impacted cloud routers (not just the root).

Theorem 3.3. EFFICIENCY: The root router (Any router) in
Algorithm 1 detects convergence within at most 2∆ (3∆) time
and 2M (3M) messages where ∆ and M are respectively the
actual convergence delay and number of messages incurred
by the distributed route computation in the cloud.

Although a 3× delay overhead may seem high and it may
cursorily appear possible to reduce that overhead with sim-
ple optimizations, our attempts at doing so while preserving
provable safety and liveness have been elusive. Fortunately,
our experiments (§4.1) show that (1) convergence delays in
the cloud are significantly smaller than those in the ground,
so a 3× overhead in the cloud is still a big net win; and (2)
the overhead is much smaller than 3× because messages in
the first exploration phase can contain a large number (even
thousands) of prefixes, but messages in the other two phases
are like small acknowledgments.

3.3.3 Concurrent event processing

The discussion above implicitly focused on sequentially pro-
cessing one root event at a time. However, we can not afford
the luxury of a centralized monitor or other mechanisms to en-
sure sequential processing of root events for the same reason
that convergence detection had to be distributed in the first

place. With multiple concurrent root events being processed
by different cloud routers, Algorithm 1 in conjunction with
the high-level end-to-end protocol in §3.1.1 has a problem:
the FIBs dispatched by a cloud router in step II.2.b may be
inconsistent as they may reflect the incomplete processing
of one or more root events being concurrently processed in
the system, which in turn could result in transient loops or
blackholes in the data plane at ground routers (as can hap-
pen in ground-BGP today even with just a single root event).
However, the safety and liveness properties above as well as
Route Computation Equivalence as formalized in the next
subsection still hold, so our CIRCA implementation simply
processes concurrent root cause events in parallel. A more
detailed discussion of the pros and cons of concurrent event
processing while preserving route consistency in the ground
data plane is deferred to a technical report [38].

3.4 Route Computation Equivalence despite
link or router failures

Informally, this section shows that any decentralized policy
routing (or “ground") protocol, including but not necessarily
limited to BGP, satisfying a naturally desirable consistency
property (ECC, as formalized below) can offload its route
computation to CIRCA with the guarantee that the CIRCA-
equipped system will eventually achieve the same routing
outcomes as the unmodified ground protocol despite failures,
a property referred to as Route Computation Equivalence.
Unlike the safety and liveness properties shown for CIRCA’s
cloud control plane, the results in this section subsume the
data plane or end-to-end forwarding behavior on the ground.

Network state model. We model the ground network as a
state machine with root cause events effecting state transitions.
The state of the network encompasses the (up/down) state of
all links and routers as well as any configuration information
(link costs, operator-specified policies at a router, etc.) that
potentially impacts routing outcomes. Let S0 denote the initial
state of a network and [e1, . . . ,ek] denote a sequence of root
cause events such that each event ei transitions the network
from state Si−1 to state Si. The state of the network after an
event or a sequence of events is denoted using the operator ’|’
as in S1 = S0|e1 or Sk = S0|[e1, . . . ,ek].

Definition 1. EVENTUALLY CONSISTENT CONVERGENCE
(ECC): If no root cause events occur for a sufficiently long
period, forwarding behavior should converge to reflect the
state of the network just after the most recent root cause event.

We posit eventually consistent convergence as defined
above as an intrinsically desirable property for any practi-
cal routing protocol. ECC as defined is rather weak because
“eventual" allows routes to be inconsistent with global net-
work state for arbitrarily long, but BGP today does satisfy
this property provided routing policies are safe (or conver-
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gent) and every event is eventually detected and acted upon
by incident routers immediately impacted by it.

3.4.1 Unreplicated CIRCA ensures RCE

We next formally define Route Computation Equivalence.
Let D(S) represent any distributed route computation func-

tion that, given network state S, returns a set of possible rout-
ing outcomes, i.e., a set {GFIB1,GFIB2, . . .} wherein each
element represents global forwarding behavior as captured
by the union of the FIBs of all routers in the network. The
reason D(S) is a set of size greater than one is to incorpo-
rate non-determinism as BGP even with safe policies in gen-
eral can have multiple stable routing configurations, e.g., the
DISAGREE gadget [13] converges to one of two possible
stable routing outcomes depending on node reaction times.
Let GFIB(t) denote the forwarding routes adopted by ground
routers at time t. We would like to show that if a distributed
route computation process satisfies ECC, CIRCA preserves
those ECC routing outcomes. Formally,

Definition 2. ROUTE COMPUTATION EQUIVALENCE (RCE):
Given an initial network state S0 and a finite sequence of
root case events [e1, . . . ,en], a cloud-assisted routing proto-
col is said to preserve equivalence with respect to a dis-
tributed route computation function D(S) if it ensures that
limt→∞ GFIB(t) ∈ D(Sn) where Sn = S0|[e1, . . . ,en].

Next, we show that a single-datacenter (or unreplicated)
pure CIRCA deployment ensures RCE despite intermittent
failures (proof deferred to Appendix B), where pure means all
ground routers have been upgraded to rely only on CIRCA.
Theorem 3.4. If for a sufficiently long period—(i) all ground
routers can reach a CIRCA cloud replica and vice versa; and
(ii) all cloud routers are available and can communicate in a
timely manner—a pure CIRCA system ensures Route Com-
putation Equivalence with any distributed route computation
function that satisfies Eventually Consistent Convergence.

3.4.2 Replicated CIRCA ensures RCE

To see why Theorem 3.4 holds even in a replicated CIRCA
deployment without any replica coordination protocol, we
simply observe that each CIRCA replica independently en-
sures RCE, i.e., the FIBs it computes reflect the most recent
state of the network provided it eventually receives all root
cause event reports (in any order). If each ground router is
responsible for relaying each root event to all of its cloud
avatars, no replica coordination protocol between CIRCA
replica sites is necessary. CIRCA cloud routers may option-
ally relay root events to its siblings on other replica sites as
an optimization, but this is not necessary for ensuring Route
Computation Equivalence. An analogous observation, namely
that no sophisticated replica coordination protocol is needed
for safety, has been long known for a single-domain route
computation service (e.g., RCP [4]), but not for interdomain
routing. Furthermore, the technical reasons why they hold

in the CIRCA architecture based on processing root cause
events consistently are very different from RCP that relied
on an assumption of consistent views of the ground network
despite partitions across replicated route servers.

Overhead of faults. CIRCA’s simple design maintains
RCE despite arbitrary failure patterns but failures, specifically
of cloud routers or link failures inducing ground-cloud un-
reachability, have two costs: (1) growing log of unprocessed
root events at ground routers, and (2) transient forwarding
loops or blackholes. As detailed in the techreport [38], the for-
mer is bounded by the size of the total configuration state at a
router and the latter can be alleviated (but not eliminated) by
replicating CIRCA datacenters in a pure CIRCA deployment
or by relying on BGP co-existence mechanisms below.

Conveniently, ground router failures are a non-issue be-
cause of the fate sharing property that it is the only router
stalled by its failure; neighboring ground routers will detect
and process its failure as a normal root cause event.

3.5 Co-existence & incremental deployability

Co-existence refers to the ability of ground routers to leverage
the CIRCA cloud while continuing to rely on ground-BGP as
a fallback or an optimization under the (possibly impractical)
assumption that all ground routers have been upgraded to
be CIRCA-capable. Incremental deployability refers to the
ability to gainfully deploy CIRCA despite upgrading only a
subset of ground routers to be CIRCA-capable. (As defined,
a deployment can not be both co-existent and incremental.)

3.5.1 Co-existence with ground-BGP

CIRCA’s support for co-existence enables ground routers to
get the best of both worlds, i.e., adopt forwarding outcomes
from whichever plane—ground or cloud—converges earlier,
thereby also implicitly relying on ground-BGP alone as a
fallback when the cloud is unreachable. To this end, ground-
BGP needs to be extended so as to tag each message with
the corresponding root cause event label, and ground-BGP
routers need to relay the tag in any incoming message by
inserting it into any outgoing messages caused by it.

A ground router R uses the root event label E = [seqn,R]
in a ground-BGP message as follows. If R has already re-
ceived ∆FIBEntries(E) for E from the cloud, it rejects any
further ground-BGP messages tagged with E from impacting
its FIB, otherwise it continues processing ground-BGP mes-
sages as usual through its decision engine with one difference:
it marks any changes to its FIB as a result of E as such and
keeps a copy of the original entry for the corresponding prefix,
which essentially allows R to undo the effect of any ground-
BGP messages tagged with E. When R eventually receives
∆FIBEntries(E) from the cloud, irrespective of whether or
not ground-BGP has already converged at R (necessarily un-
beknownst to it), it installs ∆FIBEntries(E) anyway undoing
the effect of any ground-BGP messages pertaining to E.
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Co-existence further requires ground routers to maintain a
route information base (RIB), or the set of available routes,
unlike universal CIRCA (wherein every router is CIRCA-
capable) that only required ground routers to maintain a FIB
(or the set of adopted routes). Maintaining a RIB plus a FIB
is no different from ground-BGP today, and requires ground
routers to continue processing messages tagged with E so as
to update its RIB (but not its FIB) even after it has received
the corresponding ∆FIBEntries(E) from its cloud incarnate.
Maintaining a RIB in co-existent CIRCA also enables ground
routers to employ fast reroute or backup routing options dur-
ing the ground or cloud convergence period.

3.5.2 Incremental deployability

Incremental deployment means that some ground routers may
be completely CIRCA-unaware, so such legacy routers can
not even parse BGP messages with root cause labels. In such
scenarios, the benefits of CIRCA would be limited to root
cause events that originate within and whose exploration fiz-
zles entirely within a contiguous island of routers all of which
have been upgraded to be CIRCA-capable. For events that
entirely fizzle within the contiguous upgraded island, the pro-
tocol is identical to the co-existent scenario (§3.5.1). If an
event spills out of this island, it is recognized as such by any
CIRCA cloud router at the island’s boundary. When a cloud
router detects a spill-over, it immediately aborts the explo-
ration by back-propagating an ABORT message (instead of a
FIZZLE), enabling the root router to conclude that the CIRCA
cloud can not compute the outcome of that event after all.

CIRCA needs an additional mechanism in order to pre-
serve RCE in incremental deployment scenarios, in partic-
ular, to ensure that cloud routers do not diverge from their
ground counterparts. To this end, each boundary router in the
CIRCA cloud, i.e., any router whose ground incarnate has at
least one neighbor that has not been upgraded to be CIRCA-
capable, establishes receive-only ground-BGP sessions with
those (ground) routers, wherein a receive-only session is one
that only receives, but never sends, any announcements. Note
that, notwithstanding this additional peering requirement, be-
cause of the non-deterministic nature of ground-BGP, it is
possible for some events to (not) fizzle within the upgraded
island in the cloud even though they might have not fizzled
(fizzled) within the corresponding island on the ground. §B
formally shows why RCE is nevertheless preserved under
incremental CIRCA deployment scenarios.

3.6 CIRCA implementation
We implemented a Quagga-based prototype of CIRCA in-
cluding the complete north-south protocol and the distributed
convergence detection algorithm as described in roughly
2,430 lines of code. We have not implemented co-existence
or incremental deployability mechanisms (§3.5) but evaluate
their benefits via simulations based on real AS topologies.

subtype version router ID
sequence number

timestamp
iface etype eval size

variable length for eval

BGP default update message body

length  type 

8	bytes

CIRCA	related	
fields

marker (16 bytes)
0 4 82 6

Figure 4: Header and body of a CIRCA BGP packet

Figure 4 shows the format of header and body of a CIRCA
packet. The header is just the BGP header as also implemented
in Quagga. The new fields are shown in gray background and
are as follows. The subtype identifies the internal type of
a CIRCA packet and include message types such as GRC,
FIZZLE, and CONVERGED used in the convergence detection
protocol. The router ID and sequence number two-tuple
uniquely identify a root cause event E in Alg.1; timestamp
is a unique ID for each message in Alg.1; and iface, etype,
and eval are as described in §3.1.1. The rest of the packet is
just the body of a BGP update packet with path attributes and
network layer reachability information.

4 Evaluation
In this section, we conduct a prototype- and measurement-
driven evaluation of these questions: (1) Does CIRCA help
significantly drive down convergence delays by being “care-
free" about message complexity? (2) Does CIRCA help im-
prove end-to-end convergence delays including (a) the over-
head of distributed convergence detection and (b) north-south
communication delays? (3) Does CIRCA yield incremental
benefit in incremental deployment scenarios?

All prototype-driven experiments are conducted on an Em-
ulab LAN testbed of 150 physical machines each with 8 cores.
All interfaces on used physical machines are connected to
gigabit ports on HP ProCurve switches 5412zl series. We use
three experimental-net switches (procurve3-procurve5), each
with approximately 240 ports. A fourth switch (procurve1)
acts as the center of a “hub and spoke" topology for the ex-
perimental network. The link speed between each pair of ma-
chines is 1Gbps and that of each virtual interface is 10Mbps.

4.1 Impact of MRAI timers

4.1.1 Single-router AS setup

In order to evaluate the convergence delay vs. message com-
plexity tradeoff in the CIRCA cloud, we conduct a prototype-
driven evaluation on the Emulab testbed using different realis-
tic Internet topologies extracted from 2018 CAIDA AS-level
topology gathered from RouteViews BGP tables [42] and
varying MRAI timer values. Our topology includes 60,006
ASes and 261,340 links with inferred relationships between
linked ASes [11]. Because of our limited physical resources
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Number of routers in topology 20 60 180 540 1200

Average degree of routers 4 8 13 19 29

Average number of prefixes 225 296 180 155 106

All unique prefixes 4.5k 17.8k 32k 82.7k 125.3k

Table 2: Properties of used topologies.

(150 physical machines with 1200 cores), we extract contigu-
ous subgraphs of the AS topology of varying sizes from 20
to a maximum of 1200 ASes. For extracting a subgraph of
n ASes from the CAIDA data set, we first randomly pick an
AS and perform a breadth-first search until the number of
selected nodes reaches n. We increase the network size by
only adding new nodes to the smaller subgraphs. The average
degree of nodes and the number of prefixes belonging to each
AS in our extracted topologies are shown in Table 2.

Our experiments retain Quagga’s so-called “burst" MRAI
timer implementation where all updates to a given peer are
held until the timer expires, at which time all queued updates
are announced. Quagga applies the MRAI timer only on up-
dates, not on withdrawals, a behavior we retain. The published
official BGP4 protocol specification RFC 4271 [39] suggests
that route withdrawal messages are also to be limited by the
MRAI timer; a change from earlier version (RFC 4098) where
withdrawals could be sent immediately [40].

We emulate four different root cause events in our experi-
ment; node up, node down, link up and link down. For each
network size and MRAI value, we first assign the routers in
the network to physical machines randomly and set the same
MRAI timer on all routers and then wait for a long enough
duration until routes to all prefixes at all routers stabilize. At
this point, we randomly pick a router in the topology and
trigger a random root cause event, and repeat this process 30
times for each topology size and MRAI value. We log each
BGP message and post-process log files from all routers at
the end of each run to compute the convergence delay.

Figure 5 shows the average convergence delay of 30 simu-
lated root cause events using different MRAI values. In com-
puting the convergence delay of each root event, we do not
count the time it takes for the root router to detect the event
because this delay (≈ one to few seconds) will be incurred
by ground routers but not CIRCA cloud routers. We consider
the time when the last immediately impacted incident router
detects the event as the beginning of the convergence period.

A couple observations are noteworthy. First, the absolute
values of the convergence delay with zero MRAI timers are
small. Convergence delay increases as expected with the topol-
ogy size and number of affected prefixes of root router and
the highest (average) value observed is 2.3 seconds with 1200
ASes. We conduct a smaller-scale experiment with multiple
routers per AS using realistic intradomain topologies (de-
ferred to a techreport [38]). Unsurprisingly, the qualitative
trend of increasing convergence delays with increasing iBGP
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Figure 5: Average convergence delay of BGP across all root
events with different MRAI timers on Emulab.

MRAI values persists. Second, convergence delay monotoni-
cally increases with the MRAI timer value and a zero timer
yields the lowest convergence delay. This observation is in
contrast to an established body of prior research [9,12,28,43]
suggesting a non-monotonic relationship between MRAI
timer values and convergence delays and the existence of a
minima for convergence delay at an MRAI value greater than
zero, and that lower or zero MRAI values can significantly
exacerbate convergence delays.

There is no contradiction however with prior findings. Pre-
vious work has been largely based on simulations and toy
topologies (e.g., [12, 43]) and assumed unrealistically high
values of message processing delays, e.g., random delay from
zero to 1 second for each message in [12] and a uniformly
distributed delay between 1 and 30 milliseconds for message
processing [43]. There is no fundamental reason for message
processing delays to be that high on modern processors and
we find that they are at best tens of microseconds in Quagga
(after we systematically disabled unnecessary timers).

4.1.2 Reconciling prior findings

As a sanity check, to verify that with artificially inflated mes-
sage processing delays, we can reproduce the nonmonotonic-
ity observed in prior work, we reduce the number of physical
machines in our Emulab setup from 150 to 50 machines and re-
run the experiment with the largest topology size (1200). With
this setup, each 8-core machine now has almost 24 Quagga
instances running on it compared to roughly eighth Quagga
instances per machine (or one Quagga instance per core) in
the earlier setup. Quagga is single-threaded software, so a
Quagga instance can not leverage other cores on a physical
machine even if they are idle.

Figure 6 shows that the nonmonotonic behavior is repro-
ducible with more compute stress. However, it is important to
clarify that this behavior is not solely because of the modest
3× decrease in resource provisioning. Because Quagga is a
single-threaded software, an MRAI timer of 0 causes it to
spin in a busy wait consuming 100% CPU utilization on each
core even with one core per Quagga instance, a problem that
exacerbates with 3-4 Quagga instances per core. Without this
implementation artifact of wasteful busy waiting, we were
unable to reproduce the nonmonotonic behavior observed in
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Figure 6: Non-monotonic trend of convergence delay vs.
MRAI timer value with the 1200-AS topology.

prior work. Our observations therefore suggest that, with mod-
ern processing fabrics in routers, it may be worth revisiting
whether conservatively set high MRAI values are appropriate
even in ground-BGP today.

4.1.3 Extrapolating our findings to 60K ASes

Can even larger topologies going all the way up to 60K ASes
result in prohibitively high message complexity exacerbating
convergence delays? We think it unlikely for several reasons.

First, most root events are unlikely to impact a very large
number of ASes unless a prefix is rendered altogether unreach-
able [36]. Second, even if an event impacts all ASes, with
realistic Gao-Rexford policies, although pathological cases
of exponential message complexity are theoretically possible,
they require contrived topologies and unrealistic assumptions
about relative speeds of routers to manifest in practice [22].
Even so, it may be possible to manage resource more effec-
tively, e.g., we show in an experiment (deferred to a techre-
port [38]) that there is room to improve the core utilization
by 30× in our testbed with multi-threading and careful map-
ping of virtual routers to cores. Third, even if many routers
get affected by some root cause events, it is unlikely that the
FIB entries (as opposed to just RIB entries) on most of the
routers will change. Fourth, if message complexity does be-
come prohibitive, with ultra-low LAN propagation delays in
the CIRCA cloud, queued messages can be batch-processed
(with no intervening exports) so as to provide a self-clocking
mechanism to slow down announcements similar in spirit
to MRAI timers but without relying on conservative, static
values. This idea is similar to the proposed adaptive or dy-
namic MRAI values wherein the MRAI value is increased if
there is more "unfinished work" in the queue and decreased if
not [32, 43].

4.2 End-to-end convergence delay

In this section, we evaluate end-to-end convergence delay
including the overhead of distributed convergence detection
and north-south communication delays for a root cause event.
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Figure 7: Difference between actual convergence delay in
cloud, convergence detection delay using our algorithm, and
ground convergence delay.

4.2.1 Convergence detection overhead

First, we evaluate the overhead introduced by the distributed
convergence detection algorithm (Algorithm 1) to detect con-
vergence after the protocol actually converges in cloud. As
before, we estimate the ground-truth convergence delay by
processing router logs and compare it to the time reported by
our algorithm and repeat each root event injection 20 times.

We conduct this experiment with 20, 60, 180, and 540 ASes
respectively in the ground and cloud setups with 20 randomly
simulated root cause events in the ground setup in isolation.
On ground, we set MRAI 2 and 4 seconds. Each ground router
has a connection with its avatar in the cloud and both advertise
the same list of prefixes in the network. We consider three
different root cause event types in the ground network; node
down, link up and link down. We have a single router AS
setup for this experiment. The average degree of nodes in our
topology and the number of prefixes belonging to each AS
are shown in Table 2.

Figure 7 shows the average of the detected convergence
time and the ground-truth convergence delay in cloud and also
on ground for all root cause events for different topology sizes.
Per design, we might expect the root router to take roughly 2×
the time to detect and for the last router to take up to 3× time,
but the observed overhead is much smaller. The reason for this
fortuitous discrepancy is that messages in the first exploration
phase usually contain a large number (even thousands) of
prefixes, which increases processing and transmission times
in that phase, but not in the other two phases.

4.2.2 End-to-end delay in getting new FIB entries

In this experiment, we evaluate the end-to-end delay for ob-
taining new FIB entries from the cloud.

We assume the ground routers in an island with different
sizes have been upgraded to CIRCA. We run the ground
instance of the routers and their avatars in a LAN (our Em-
ulab CIRCA testbed). While we can find the convergence
detection time of each router using our implemented CIRCA
system, for measuring ground and cloud communication de-
lay, we can not use the delay between ground routers and their
avatars in the LAN as real Internet delay. We can estimate the
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Figure 8: CDF on the end-to-end convergence delay for
routers in different topology sizes

delay from Internet routers to their avatars by pinging routers
in target ASes at the ground from their avatars at the cloud.
The prefixes of each AS on the Internet are identifiable from
the Routeviews data set [42]. For five original prefixes of our
target ASes, we generate an IP address for each prefix by
adding 100 to the end of the prefix, e.g., 10.10.8.100 for the
prefix 10.10.8.0/24. We ping target IP addresses three times
and get the average ping delay from that AS to our data center.
For the roughly 20% of IP addresses for which we do not get
any result, we assume 100 ms as the one-way delay.

We conduct this experiment for varying topology sizes
with 20 randomly simulated root cause events on the ground
in isolation. We consider 20, 60,180, and 540 ASes on the
ground and in the cloud.

Figure 8 shows the end-to-end delay of getting the first
entry in the FIB table to ground routers in an island with
different sizes after simulating the root cause event on the
ground. The end-to-end delay is the sum of the delay in send-
ing event data to the cloud (approximated crudely as the ping
delay), detecting the stable state of the network by each router,
and receiving the new FIB entries from the cloud (ping delay)
across all root cause events and routers affected by our root
cause events. In small topologies, most of the routers (80%)
get the FIB entry across all root cause events in less than 400
ms. However, for our biggest topology size, 540 nodes, we
have 1.5 seconds for around 80% of routers. As explained in
section 4.1.3, most of the delay is because of the delay in the
first phase of our convergence detection algorithm and could
be further optimized.

4.3 Incremental deployment of CIRCA
We evaluate the fraction of root cause events that fizzle en-
tirely within an island of upgraded single-router ASes chosen
as a subset of the Internet’s AS topology. We sequentially sim-
ulate 20 randomly chosen root cause events originating within
each upgraded island. We consider different approaches for
selecting the upgraded routers: (1) tier-1 that first “upgrades"
the contiguous ASes that do not have any provider and then
their customers, and so on; (2) random that picks ASes in
the network randomly (possibly in a non-contiguous man-
ner); and (3) chain that picks a random contiguous chain of
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Figure 9: CDF on fraction of root cause events fizzled inside
the island of upgraded routers using different approach in an
island of 1,000 (1k) and 2,000 (2k) ASes

customer-provider ASes. We do not consider stub ASes in
our experiment as candidate ASes for upgrading.

Figure 9 shows the fraction of root cause events that fiz-
zle entirely within upgraded islands of different sizes with
different approaches. For example, for covering 40% of all
root cause events, we need to upgrade roughly 80% of routers
with the chain or tier-1 approaches.

5 Discussion: Security, privacy, open issues

Our first stab at a practical interdomain-routing-as-a-service
system leaves open questions that merit further discussion.

Any new system inevitably introduces new vulnerabilities.
Our high-level goal in this work was to limit misbehavior
to what is already possible in BGP’s control plane, and to
limit information disclosure explicitly by design, however
CIRCA itself introduces new security vulnerabilities as well
as side-channel information leakage as discussed below.

Side channel leakage. First, CIRCA allows a rogue AS to
exploit rapid convergence as a probing mechanism to infer
policies of other ASes by willfully tampering its announce-
ments and observing how others react, an attack also possible
in “slow motion" in ground-BGP, and mechanisms similar to
route flap damping may be necessary in the CIRCA cloud
if such “fast-forwarded" probing attacks were to become a
credible threat. FIZZLE messages expose a new side channel
allowing an attacker to use the time between a CBGP message
and its corresponding FIZZLE to infer more information than
is explicitly revealed by ground-BGP. Note that, given that
every CBGP is guaranteed to eventually elicit a corresponding
FIZZLE, the information leaked by this side channel is limited
to the convergence delay. Third, if a single provider owns
the entire network infrastructure in the CIRCA cloud, it can
monitor control traffic patterns (despite encryption) to derive
more information than is realistically possible in ground-BGP
today. We defer further analyses of and defenses against these
and other information leakage attacks to future work.

Security vulnerabilities. CIRCA’s design allows BGP in
the distributed cloud protocol to be drop-in replaced by S-
BGP [23] (or other related security extensions like soBGP,
BGPSec, etc.) while qualitatively preserving its convergence
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delay benefits as well as safety, liveness, and route computa-
tion equivalence guarantees provided the secured variant of
BGP is guaranteed to produce routing outcomes equivalent
to its unsecured version. CIRCA largely continues to be vul-
nerable to protocol manipulation attacks [47] against which
cryptographic mechanisms as in S-BGP alone cannot pro-
tect, however known manipulation attacks based on abusing
MRAI timers allowing an off-path adversary to potentially
permanently disconnect good ASes despite the existence of
good policy-compliant paths between them are ineffective in
CIRCA because of its avoidance of MRAI timers.

CIRCA’s liveness guarantee (§3.3.2) relies on the safety
of BGP policies, which potentially allows a rogue AS to
change its policies (in a possibly self-defeating manner) sim-
ply to stall the CIRCA control plane. Although the rogue
AS could mount this attack even in ground-BGP today, an
ameliorating factor on the ground is that routers will con-
tinue to update their FIBs and forward traffic throughout the
never-ending convergence period, potentially over loops or
blackholes. In the CIRCA cloud in contrast, any root cause
event—necessarily a policy change event (as opposed to a
link/node down/up event)—that results in a safety violation
will never converge, so ground routers will never receive the
updated FIBs corresponding to that particular event. How-
ever, there are two alleviating factors in CIRCA. First, ground
routers can fall back on ground BGP with CIRCA’s support
for BGP co-existence for that root event. Second, other root
events can proceed unaffected with CIRCA’s default “care-
less" concurrent event processing approach. These factors
suggest that CIRCA-enabled BGP will be no worse than BGP
in the presence of safety-violating policy attacks.

Non-convergent path exploration can be cleanly limited by
augmenting the CIRCA cloud protocol with a TTL (time-to-
live) mechanism that aborts (or force-fizzles) path exploration
along any path in the directed message tree after a predefined
maximum number of hops. A second design choice is to
augment the cloud protocol with a TTL that upon expiration
causes a cloud router to dispatch its current FIB to its ground
avatar, reset the TTL to its maximum value, and resume the
(never-ending) path exploration phase for that root event, a
design that in effect induces ground routers to jump from
one set of potentially inconsistent FIBs to another in a never-
ending manner (similar to BGP). Such adaptations will not
preserve RCE as defined because RCE is not well defined in
the absence of ECC that will not hold under unsafe or non-
convergent BGP policies, however the second design choice
in practice comes close to emulating BGP behavior in non-
convergent scenarios. We defer a more detailed design and
analysis of CIRCA with unsafe BGP policies to future work.

Honest-but-curious threat model. CIRCA as described
herein trusts each (replicated) cloud provider to provide and
maintain the physical infrastructure in a non-curious manner,
but its design can be extended to support a honest-but-curious
cloud provider. One option is to employ emerging secure

computing platforms [34] to prevent the entity controlling the
physical machine from snooping on protected customer data
within the machine, an approach that does however implicitly
involve the manufacturer of the secure computing processor
(e.g, Intel with SGX). To prevent a cloud provider controlling
the OS on the machine from using the pattern of memory
accesses from leaking information, further techniques such as
Oblivious RAM [48] will be required. A quirkier alternative is
to organize each replicated CIRCA location similar in spirit
to a global exchange point with a “bring-your-own-hardware"
model in conjunction with physical security mechanisms, a
design wherein the CIRCA cloud itself is federated obviating
a trusted infrastructure provider.

Security and robustness benefits. Our hypothesis is that
the long-term potential benefits of CIRCA are likely to out-
weigh the impact of new vulnerabilities it introduces. First,
CIRCA provides a clean slate enabling early adopters to em-
ploy from the get go secure BGP mechanisms that have seen
two decades of research and standardization work but little
deployment in practice. Second, with willing AS participants,
it is intrinsically easier to monitor select portions of control
traffic in the CIRCA cloud compared to ground-BGP today
in order to detect misbehavior such as protocol manipulation
attacks. Third, CIRCA enables new opportunities such as
augmenting the CIRCA cloud with mechanisms for “what-
if" analysis allowing operators to ascertain whether an action
will have the intended effect before performing that action.

6 Conclusions

In this paper, we presented the design, formal analysis, im-
plementation, and prototype-driven evaluation of CIRCA,
a logically centralized architecture for interdomain routing
control. Although logical centralization of network control is
a widely embraced direction in recent years in intradomain
networks, attempts to extend that vision to Internet-wide in-
terdomain routing have been limited to on-paper designs or
small-scale evaluations. To our knowledge, this is the first
work to present a full-fledged design and implementation of
an interdomain routing control platform. Our underlying tech-
nical contributions include a novel distributed convergence
detection algorithm; demonstrating the potential for signifi-
cantly reducing BGP’s tail latencies; formally ensuring route
computation equivalence with a broad class of BGP-like pro-
tocols, and designing mechanisms for enabling incremental
deployment and coexistence with BGP.
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A Algorithm 1: Safety and liveness proofs

In this section, we formally prove the safety and liveness
properties satisfied by Algorithm 1. The proofs rely on a
construction called the directed message graph produced by
any execution instance of Algorithm 1 and defined as follows.

Definition 3. DIRECTED MESSAGE GRAPH: The directed
message graph of an instance of Algorithm 1 is a directed
graph G = (V ,E) such that each vertex in V denotes a sent
message (either the original GRC or a CBGP message) and E
has a directed edge from a message m1 to another message m2
if m1 caused m2, i.e., m2 was sent in lines 14 or 26 respectively
in response to the receipt of m1 in lines 16 or 1.

We say that m1→ m2 (or m1 happened before m2) if there
is a directed path from message m1 to m2 in the graph.

Lemma A.1. The directed message graph produced by any
execution of Algorithm 1 is a directed tree.

Proof. Acyclicity follows from the observation that each mes-
sage sent by Algorithm 1 is unique, as identified by the unique
two-tuple timestamp assigned in lines 11 or 23, thus the di-
rected message graph is a directed acyclic graph (DAG). That
DAG is also a tree because each message is caused by at most
one other message: a CBGP message is caused by either a
unique CBGP message (line 13) or the original GRC (line 25)
and the original GRC being the root of the DAG is not caused
by any other message.

In the proofs below, we will use tree(m) denote the sub-
tree rooted at m in the directed message tree produced by an
instance of Algorithm 1 (which is well-defined because of
Lemma A.1 just above).

A.1 Proof of safety
We introduce the following lemmas in order to prove safety
(Theorem 3.1).

Lemma A.2. If a router receives a FIZZLE for a CBGP mes-
sage m1 that it sent, then tree(m1) is finite.

Proof. Suppose the execution of Algorithm 1 started at time 0
and the router in the lemma’s premise received the FIZZLE for
m1 at some (finite) time t1. Further assume that the time since

a router sends a FIZZLE until the corresponding neighboring
router receives it is lower bounded by a constant time c > 0
(as would be the case in any real implementation of Algorithm
1). To show that tree(m1) is finite, we show that every path
rooted at m1 is finite as follows.

Consider the set caused(m1) of the immediate children
of m1, which is the set of messages sent by the recipient
of m1 in either the for loop on either line 10 (if m1 were
a GRC message) or line 22 (if m1 were a CBGP message).
By inspection of Algorithm 1, a FIZZLE is sent only at two
places, line 20 and line 35. In the former case (line 20), the
causal message m1 did not spawn any further child messages
at the recipient of m1, so caused(m1) is empty implying that
tree(m1) is of unit size.

In the latter case (line 35), the recipient of m1 must have pre-
viously remembered the set of caused messages caused(m1)
in its local map (the sent[E][ts(m1)] map in lines 12 or 24)
and subsequently sent a FIZZLE for m1 back to its sender
when the sent map got emptied at the recipient (line 34), i.e.,
the recipient of m1 received a FIZZLE for every message in
caused(m1). By assumption, the recipient of m1 must have
received a FIZZLE for every message in caused(m1) by time
no later than t− c.

Let causedk(m1) recursively denote the set of messages
caused by causedk−1(m1) for k > 1. By repeating the above
argument, all messages in causedk(m1) must have received
a corresponding FIZZLE from their respective recipients by
time t− kc. By assumption, the algorithm began execution at
time 0, so the depth of tree(m1) is at most t/c.

Lemma A.3. A router receives a FIZZLE for a CBGP mes-
sage m1 it sent only if for every message m2 (sent by any
router) such that m1→ m2, the sender of m2 had previously
received a matching FIZZLE from the recipient of m2.

Proof. The proof is by induction on the depth of the subtree
tree(m1) rooted at m1, which by Lemma A.2 is finite.

Consider a topological sort of tree(m1) with the root m1 at
level 0 and all the messages in causedk(m1) at level k > 0. Let
the depth or maximum level be d (that is well defined because
of Lemma A.2). The lemma’s claim is trivially true for a level
d message as it did not cause any further messages. Suppose
that the claim is true for messages at all levels in [i,d] (both
inclusive) for some 1 < i < d. Consider a non-leaf message
m at level i− 1 sent by a router for some root event E. By
line 35, the recipient router can issue a FIZZLE for m only if
its sent[E] is empty, i.e., only if it has received a matching
FIZZLE for every message in caused(m), which completes
the inductive step for level i, proving the lemma.

Lemma A.4. When converged(E) is set to true at the root
router, sent[E] is empty at every router.

Proof. There are two cases to consider.
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Case 1: converged(E) is set upon receipt of a GRC message
In this case, the root router will terminate before sending

any CBGP message. No router will send any further CBGP
messages because a CBGP message can only be sent in re-
sponse to the receipt of a CBGP or GRC message.

Case 2: converged(E) is set upon receipt of a FIZZLE.
By inspection of code, this case can happen only if the

router receiving the FIZZLE is the router that received the root
cause GRC message. converged(E) is set at the root router only
when its sent[E] map is empty (line 7). By inspection (line 31),
an entry in sent[E] is removed only if the matching FIZZLE is
received. Thus, the root router must have received a matching
FIZZLE for each message it sent including all the level 1
messages immediately caused by the root GRC message. By
Lemma A.3, every sent message for E (at any router) must
have received a matching FIZZLE. By line 31, an entry in
sent[E] is removed if the matching FIZZLE is received. So, if
every sent message for E has received a matching FIZZLE,
sent[E] must be empty at all routers, proving the claim.

We complete the proof of safety as follows.
Theorem 3.1. SAFETY: If converged(E) is true at the root

cloud router that received the GRC, then no further CBGP
message for E will be received by any cloud router.

Proof. By Lemma A.4 above, sent[E] is empty at every router
at this point, so there is no in-propagation CBGP message for
E as every sent message at any router has already received the
corresponding FIZZLE. The root router that received the GRC
message terminates immediately after setting converged(E),
so it will not send any further CBGP messages for E. A CBGP
message can be sent by a non-root router (line 26) only upon
receiving an in-propagation CBGP message, so no non-root
router will send any further CBGP messages either.

Technical note. If we assume safe BGP policies, the oner-
ousness in Lemma A.2 would be unnecessary as the directed
message tree would be bounded by definition. However, the
proof of CIRCA’s safety (unlike the proof of its liveness im-
mediately below) does not require the safety of the underlying
BGP policies, so we chose the more onerous formal route to
make that independence clear.

A.2 Proof of liveness
The liveness proofs below implicitly assume that routers in the
CIRCA cloud either do not fail or employ a persistent write-
ahead log to record all local state changes before sending
messages based on those changes. (Unlike liveness, neither
failures nor the availability of a persistent log impacts safety.)

Lemma A.5. If BGP policies are safe, every sent CBGP
message eventually receives a matching FIZZLE if all cloud
routers are available for a sufficiently long duration.

Proof. The proof of this claim is by induction and is similar
in spirit to Lemma A.3. The assumed safety of BGP policies
by definition bounds the size of the directed message tree.
Consider a topological sort as before partitioning the tree into
levels where level k nodes are the messages in causedk(GRC)
where we have used GRC as a shorthand for the original GRC
message that initiated Algorithm 1 at the root router. Let d
denote the depth of the tree.

The claim is true for level d messages because of lines 19–
26: a router receiving a CBGP message must either cause a
new CBGP (the else block starting line 21) or issue a FIZZLE
for the received CBGP (line 20). Level d messages do not
cause any further CBGP messages, so routers receiving them
will issue a corresponding FIZZLE.

The inductive step is as follows. Suppose the claim holds
for levels i to d for 1 < i < d. Consider a level i−1 message
m with timestamp ts received by a router that causes it to
send the set caused(m) of level i messages. By the inductive
assumption, each level i message m1 eventually receives a
matching FIZZLE, and each such FIZZLE removes the corre-
sponding entry from sent[E][ts1] at the router that received m1
where ts1 is the timestamp of m1. Thus, when the recipient
of m has received matching FIZZLEs for all level i messages
caused by the incoming level i−1 message m, its sent[E][ts]
map becomes empty triggering the matching FIZZLE for m,
which completes the inductive step, proving the lemma.

Theorem 3.2. LIVENESS: Algorithm 1 eventually termi-
nates if the underlying BGP policies are safe2 and all cloud
routers are available for a sufficiently long duration.
Proof. To prove that Algorithm 1 terminates, i.e.,
converged(E) is set at the root router, we consider
two cases, the first of which as in the safety proof is trivial.

Case 1: No CBGP messages are sent.
In this case, the algorithm trivially terminates in line 7.
Case 1: CBGP messages are sent.
The proof of the theorem follows by observing that, by

Lemma A.5, the root router must eventually receive a match-
ing FIZZLE for all (level 1) CBGP messages caused by the
root GRC (in line 26). At this point, its sent[E] map must be
empty for the following reason: Lemma A.3 implies that any
level 2 or higher CBGP message sent by any router must have
already fizzled, so any level 2 or higher CBGP sent by the
root router must have also already fizzled and consequently
already removed from its sent[E] map. By line 32, an empty
sent[E] map causes Algorithm 1 to terminate.

Note that although the proofs above did not explicitly in-
voke the “all cloud routers are available for a sufficiently
long duration” assumption, they implicitly relied on that in
conjunction with a persistent write-ahead log in all claims
with the word “eventually” in the proofs above.

2A reminder that “safe" here means that a stable route configuration
exists [13] and is unrelated to safety in Theorem 3.1
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A.3 Proof of efficiency
Algorithm 1 omitted a formal description of the third dissem-
ination phase for a concise exposition of the key safety and
liveness properties. For completeness, we codify the dissemi-
nation phase in event-action format as well. The root router
that received the GRC message for event E, instead of exit-
ing when converged(E) becomes true (on line 33), initiates
the dissemination phase by sending to itself the COMMIT
message 〈COMMIT,E, ts〉 where ts is the timestamp of the
original GRC message as assigned on line 9 in Algorithm 1.
The event handler for a received commit message is below.

Dissemination phase of Algorithm 1

1: event RECV(〈COMMIT,E, ts〉,N) . upon receipt of a commit
message from cloud router N at cloud router v(R)

2: p← all affected prefixes in fizzled[E][ts]
3: send(〈FBGP,E, p,FIB(p)〉, R) . southbound FIB dispatch
4: for each [N1, p1, ts1] : fizzled[E][ts] do
5: send(〈COMMIT,E, ts1〉,N1)

6: fizzled[E][ts]← /0

7: if fizzled[E] = /0 then exit

THEOREM 3.3. EFFICIENCY: The root router (Any router) in
Algorithm 1 detects convergence within at most 2∆ (3∆) time
and 2M (3M) messages where ∆ and M are respectively the
actual convergence delay and number of messages incurred
by the underlying distributed route computation protocol.

Proof. The convergence indicating COMMIT messages dis-
seminated in Algorithm 1’s third phase by design follow the
exact same paths as the CBGP messages in the directed mes-
sage tree in the first (exploration) phase. This claim follows
from the observation that when converged(E) is set at the root
router, Lemma A.4 implies that every entry ever previously
added to the sent[E] map (in lines 12 or 24) has already been
removed, and by inspection of lines 31 and 30, every entry
removed from the sent[E] map is added to the fizzled[E] map.

Assuming safety of the underlying BGP policies, every
CBGP message eventually begets a matching FIZZLE in the
reverse direction in the second (back-propagation) phase and
a matching COMMIT in the same direction in the third (dis-
semination) phase, thus the number of messages in each phase
is identical. The “actual convergence delay and number of
messages incurred by the underlying distributed route compu-
tation protocol” are defined as those of the first phase alone.
The root router detects convergence at the end of the second
phase when converged(E) becomes true. Each router detects
convergence when its fizzled[E] map gets emptied, which nec-
essarily happens for every router in the third phase by an
inductive argument similar to that used in Lemma A.5.

Technical notes. The efficiency proof conservatively as-
sumes that the second and third phases incur at most as much
delay as the first phase. In a practical implementation, this

assumption is more than true in that the first phase is likely
to incur much more delay than the other two phases. The
reason is that the first phase CBGP messages may carry a
large number (hundreds or thousands) of prefixes resulting
in large transfer sizes at each hop but the second and third
phase messages are small control messages as they just need
to convey the root cause event identifier and timestamp.

The dissemination phase as strictly codified above may re-
sult in any given router dispatching southward portions of the
modified FIB entries for a single root cause event in multiple
bursts (via line 3) in the third phase. It is straightforward to
modify the protocol so as to either dispatch the entire set of
modified FIB entries as a single message just before exit (on
line 7) instead or send a termination marker southward just
before exiting so that the ground incarnate can apply all mod-
ified FIB entries atomically. This modification may reduce
transient inconsistencies in the ground forwarding plane, es-
pecially if cloud routers intermittently fail and pre-computed
backup routing options are available to ground routers.

B Route computation equivalence

THEOREM 3.4. ROUTE COMPUTATION EQUIVALENCE:
If for a sufficiently long period—(i) all ground routers can
reach a CIRCA cloud datacenter and vice versa; and (ii) all
cloud routers are available and can communicate in a timely
manner—a pure CIRCA system ensures Route Computation
Equivalence with any distributed route computation function
that satisfies Eventually Consistent Convergence.

Proof. Let D(S) denote any distributed route computation
function. Suppose the initial network state is S0 and a
sequence of root cause events [e1, . . . ,en] (but no further
events) occurs. Consider the following mutually exclu-
sive and exhaustive set of event sequences: {[e11,e12, . . .],
[e21,e22, . . .], . . . , [em1,em2, . . .]} where ei j denotes an event at
router i with (local) sequence number j and m denotes the
total number of routers, i.e., each sequence in this set is an
ordered subset of events in the original event sequence all of
which were detected by the same router in that local order.

The theorem follows from the following claims: (1)
CIRCA eventually processes all root events; (2) CIRCA
processes root events in an order consistent with the local
order at ground routers; (3) processing the root events in any
global order consistent with local orders results in the same fi-
nal routing outcomes. The first two claims are straightforward:
the first follows from the assumption of sufficiently long peri-
ods of cloud-ground reachability and cloud router availability;
the second follows from line II.1 in the north-south protocol.

The last of the above claims is the non-intuitive one and
needs a proof. The proof surprisingly follows from the as-
sumption that the ground routing protocol ensures Eventually
Consistent Convergence. Consider any reordering of the F =
[ f1, . . . , fn] of the original event sequence E = [e1, . . . ,en] that
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preserves local order. We claim that S0|F = S0|E , i.e., the
network arrives at the same final state given any local-order-
preserving reordering3 of an event sequence.

To see why, suppose events only consisted of link up and
link down events for a given link. A link event will be detected
and reported by one or both of the incident ground routers, say
A and B. No matter how many times the link goes up or down
in a given sequence of events, in any local-order-preserving
reordering of that sequence, both A and B will agree on the
final state of the link. Note that the claim is not true in general
for a non-local-order-preserving reordering, for example, if
link A−B went down and then came back up, but the last
event was reported by A and reported as a link down event,
the final state of the network (and by consequence routing
outcomes) will be different.

The complete proof follows from showing the third claim,
namely that any sequentially consistent reordering of events
produces the same final outcome, in a manner similar to above
for other root cause events including node up/down events,
link cost changes, as well as combinations of such events.

We conjecture that RCE given ECC as above holds for more
general policy or other configuration changes at routers. It is
straightforward to see that any set of configuration changes
across distributed routers will preserve RCE if the final state is
the same given any sequentially consistent reordering of those
changes. However, it is unclear to us if this property always
holds or to what extent it holds in practice. For example, if the
value of a router configuration parameter is determined based
on the value of another parameter at a different router, the final
network configuration state may depend on the precise total
order of all events, i.e., it is sensitive to different reorderings
even if they are sequentially consistent.

B.1 Practical considerations for RCE
The high-level CIRCA design may require or benefit from
some adaptations in practice as summarized below in order
to preserve route computation equivalence. A more detailed
investigation of these is deferred to future work.

IGP-awareness: A root event such as a link cost change or,
more generally, any intradomain root event that potentially
affects interdomain routes at any router needs to be conveyed

3Or a sequentially consistent ordering in distributed computing parlance.

somehow to that router. In an intradomain routing protocol
such as OSPF, link-state advertisements (LSA) accomplish
that purpose. There are two natural design alternatives in
CIRCA to accomplish the same: (1) piggypack the root cause
event label in LSAs similar to CIRCA’s CBGP messages;
(2) use iBGP to disseminate the root event network-wide
within the domain. The latter approach has the benefit of be-
ing largely decoupled from the intradomain routing protocol
and works well for intradomain routing protocols that are
global by design like link-state routing, but not so well for
decentralized protocols like distance-vector routing wherein a
router by design does not know the final outcome of the route
computation until the decentralized computation completes.
In practice, “full-mesh-iBGP-as-LSA” suffices to maintain
route computation equivalence for any shortest path routing
protocol or, more generally, any intradomain routing protocol
that lends itself to a global implementation, i.e., one where
an individual router can immediately compute its final in-
tradomain routing outcome for any given change to global
(intradomain) network state.

Root cause event grammar: Although the variable-length
description 〈etype,eval〉 (refer §3.1.1 and Figure 4) is in prin-
ciple sufficiently general to allow CIRCA to represent arbi-
trary changes to router configuration state, and parsing it is
a purely intradomain concern, there may be value in mini-
mally standardizing this representation across different router
vendors for the sake of a reusable implementation. For exam-
ple, the unix utility diff is a naive way to represent changes
to router configuration files in a platform-agnostic manner.
A more systematic vendor-specific or -neutral grammar for
representing root cause events is conceivable.

Domain consolidation: Consolidating route computation
for routers in the same domain by employing a single well-
provisioned router server (similar in spirit to RCP [4]) instead
of one-one mapping ground routers to virtual routers is likely
to improve resource efficiency and thereby reduce the pro-
visioning cost of route servers. The consolidated approach
blurs the distinction between the abstract “single-router-AS”
model and ASes in practice, arguably making it easier for
operators to monitor and understand routing dynamics within
their networks. Maintaining route computation equivalence
requires that the consolidated server is guaranteed to com-
putes a routing outcome that could have been computed by
the correspondning ground protocol.
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Abstract

Even as end-to-end encrypted communication becomes
more popular, private messaging remains a challenging prob-
lem due to metadata leakages, such as who is communicat-
ing with whom. Most existing systems that hide commu-
nication metadata either (1) do not scale easily, (2) incur
significant overheads, or (3) provide weaker guarantees than
cryptographic privacy, such as differential privacy or heuris-
tic privacy. This paper presents XRD (short for Crossroads),
a metadata private messaging system that provides crypto-
graphic privacy, while scaling easily to support more users
by adding more servers. At a high level, XRD uses multiple
mix networks in parallel with several techniques, including
a novel technique we call aggregate hybrid shuffle. As a re-
sult, XRD can support 2 million users with 228 seconds of
latency with 100 servers. This is 13.3× and 4× faster than
Atom and Pung, respectively, which are prior scalable mes-
saging systems with cryptographic privacy.

1 Introduction

Many Internet users today have turned to end-to-end en-
crypted communication like TLS [18] and Signal [40], to
protect the content of their communication in the face of
widespread surveillance. While these techniques are starting
to see wide adoption, they unfortunately do not protect the
metadata of communication, such as the timing, the size, and
the identities of the end-points. In scenarios where the meta-
data are sensitive (e.g., a government officer talking with a
journalist for whistleblowing), encryption alone is not suffi-
cient to protect users’ privacy.

Given its importance, there is a rich history of works
that aim to hide the communication metadata, starting with
mix networks (mix-nets) [10] and dining-cryptographers net-
works (DC-Nets) [11] in the 80s. Both works provide for-
mal privacy guarantees against global adversaries, which
has inspired many systems with strong security guaran-
tees [14, 55, 35, 53]. However, mix-nets and DC-nets re-
quire the users’ messages to be processed by either central-
ized servers or every user in the system, making them dif-
ficult to scale to millions of users. Systems that build on
them typically inherit the scalability limitation as well, with
overheads increasing (often superlinearly) with the number
of users or servers [14, 55, 35, 53]. For private communi-
cation systems, however, supporting a large user base is im-
perative to providing strong security; as aptly stated by prior
works, “anonymity loves company” [20, 49]. Intuitively, the
adversary’s goal of learning information about a user natu-
rally becomes harder as the number of users increases.

As such, many recent messaging systems have been tar-
geting scalability as well as formal security guarantees. Sys-
tems like Stadium [52] and Karaoke [37], for instance, use
differential privacy [22] to bound the information leakage
on the metadata. Though this has allowed the systems to
scale to more users with better performance, both systems
leak a small bounded amount of metadata for each message,
and thus have a notion of “privacy budget”. A user in these
systems then spends a small amount of privacy budget ev-
ery time she sends a sensitive message, and eventually is not
guaranteed strong privacy. Users with high volumes of com-
munication could quickly exhaust this budget, and there is no
clear mechanism to increase the privacy budget once it runs
out. Scalable systems that provide stronger cryptographic
privacy like Atom [34] or Pung [5], on the other hand, do
not have such a privacy budget. However, they rely heav-
ily on expensive cryptographic primitives such as public key
encryption and private information retrieval [3]. As a result,
they suffer from high latency, in the order of ten minutes or
longer for a few million users, which impedes their adoption.

This paper presents a point-to-point metadata private mes-
saging system called XRD that aims to marry the best aspects
of prior systems. Similar to several recent works [5, 34, 52],
XRD scales with the number of servers. At the same time,
the system cryptographically hides all communication meta-
data from an adversary who controls the entire network, a
constant fraction of the servers, and any number of users.
Consequently, it can support virtually unlimited amount of
communication without leaking privacy against such an ad-
versary. Moreover, XRD only uses cryptographic primitives
that are significantly faster than the ones used by prior works,
and can thus provide lower latency and higher throughput
than prior systems with cryptographic security.

A XRD deployment consists of many servers. These
servers are organized into many small chains, each of which
acts as a local mix-net. Before any communication, each user
creates a mailbox that is uniquely associated with her, akin
to an e-mail address. In order for two users Alice and Bob to
have a conversation in the system, they first pick a number
of chains using a specific algorithm that XRD provides. The
algorithm guarantees that every pair of users intersects at one
of the chains. Then, Alice and Bob send messages addressed
to their own mailboxes to all chosen chains, except to the
chain where their choices of chains align, where they send
their messages for each other. Once all users submit their
messages, each chain shuffles and decrypts the messages,
and forwards the shuffled messages to the appropriate mail-
boxes. Intuitively, XRD protects the communication meta-
data because (1) every pair of users is guaranteed to meet at
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a chain which makes it equally likely for any pair of users to
be communicating, and (2) the mix-net chains hide whether
a user sent a message to another user or herself.

One of the main challenges of XRD is addressing active at-
tacks by malicious servers, where they tamper with some of
the users’ messages. This challenge is not new to our system,
and several prior works have employed expensive crypto-
graphic primitives like verifiable shuffle [14, 55, 35, 52, 34]
or incurred significant bandwidth overheads [34] to prevent
such attacks. In XRD, we instead propose a new technique
called aggregate hybrid shuffle that can verify the correctness
of shuffling more efficiently than traditional techniques.

XRD has two significant drawbacks compared to prior sys-
tems. First, with N servers, each user must send O(

√
N)

messages in order to ensure that every pair of users inter-
sects. Second, because each user sends O(

√
N) messages,

the workload of each XRD server is O(M/
√

N) for M users,
rather than O(M/N) like many prior scalable messaging sys-
tems [34, 52, 37]. Thus, prior systems could outperform
XRD in deployment scenarios with large numbers of servers
and users, since the cost of adding a single user is higher and
adding servers is not as beneficial in XRD.

Nevertheless, our evaluation suggests that XRD outper-
forms prior systems with cryptographic guarantees if there
are less than a few thousand servers in the network. XRD
can handle 2 million users (comparable to the number of
daily Tor users [1]) in 228 seconds with 100 servers. For
Atom [34] and Pung [5, 4], two prior scalable messaging
systems with cryptographic privacy, it would take over 50
minutes and 15 minutes, respectively. (These systems, how-
ever, can defend against stronger adversaries, as we detail in
§2 and §7.) Moreover, the performance gap grows with more
users, and we estimate that Atom and Pung require at least
1,000 servers in the network to achieve comparable latency
with 2 million or more users. While promising, we find that
XRD is not as fast as systems with weaker security guaran-
tees: Stadium [52] and Karaoke [37], for example, would
be 3× and 23× faster than XRD, respectively, in the same
deployment scenario. In terms of user costs, we estimate
that 40 Kbps of bandwidth is sufficient for users in a XRD
network with 2,000 servers, and the bandwidth requirement
scales down to 1 Kbps with 100 servers.

In summary, we make the following contributions:

• Design and analyze XRD, a metadata private messaging
system that can scale by distributing the workload across
many servers while providing cryptographic privacy.

• Design a technique called aggregate hybrid shuffle that
can efficiently protect users’ privacy under active attacks.

• Implement and evaluate a prototype of XRD on a net-
work of commodity servers, and show that XRD outper-
forms existing cryptographically secure designs.

2 Related work
In this section, we discuss related work by categorizing

the prior systems primarily by their privacy properties, and
also discuss the scalability and performance of each system.

Systems with cryptographic privacy. Mix-nets [10] and
DC-Nets [11] are the earliest examples of works that provide
cryptographic (or even information theoretic) privacy guar-
antees against global adversaries. Unfortunately, they have
two major issues. First, they are weak against active attack-
ers: adversaries can deanonymize users in mix-nets by tam-
pering with messages, and can anonymously deny service in
DC-Nets. Second, they do not scale to large numbers of users
because all messages must be processed by either a small
number of servers or every user in the system. Many systems
that improved on the security of these systems against active
attacks [14, 55, 35, 53] suffer from similar scalability bottle-
necks. Riposte [13], a system that uses “private information
storage” to provide anonymous broadcast, also requires all
servers to handle a number of messages proportional to the
number of users, and thus faces similar scalability issues.

A recent system Atom [34] targets both scalability and
strong anonymity. Specifically, Atom can scale horizon-
tally, allowing it to scale to larger numbers of users simply
by adding more servers to the network. At the same time,
it provides sender anonymity [46] (i.e., no one, including
the recipients, learns who sent which message) against an
adversary that can compromise any fraction of the servers
and users. However, Atom employs expensive cryptography,
and requires the message to be routed through hundreds of
servers in series. Thus, Atom incurs high latency, in the or-
der of tens of minutes for a few million users.

Pung [5, 4] is a system that aims to provide metadata pri-
vate messaging between honest users with cryptographic pri-
vacy. This is a weaker notion of privacy than that of Atom,
as the recipients (who are assumed to be honest) learn the
senders of the messages. However, unlike most prior works,
Pung can provide private communication even if all servers
are malicious by using a cryptographic primitive called com-
putational private information retrieval (CPIR) [12, 3]. Its
powerful threat model comes unfortunately at the cost of per-
formance: Though Pung scales horizontally, the amount of
work required per user is proportional to the total number of
users, resulting in the total work growing superlinearly with
the number of users. Moreover, PIR is computationally ex-
pensive, resulting in throughput of only a few hundred or
thousand messages per minute per server.

Systems with differential privacy. Vuvuzela [53] and its
horizontally scalable siblings Stadium [52] and Karaoke [37]
aim to provide differentially private (rather than crypto-
graphically private) messaging. At a high level, they hide the
communication patterns of honest users by inserting dummy
messages that are indistinguishable from real messages, and
reason carefully about how much information is leaked at
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each round. They then set the system parameters such that
they could support a number of sensitive messages; for in-
stance, Stadium and Karaoke target 104 and 106 messages,
respectively. Up to that number of messages, the systems al-
low users to provide a plausible cover story to “deny” their
actual actions. Specifically, the system ensures that the prob-
ability of Alice conversing with Bob from the adversary’s
perspective is within eε (typically, eε ∈ [3,10]) of the prob-
ability of Alice conversing with any other user with only
a small failure probability δ (typically, δ = 0.0001). This
paradigm shift has allowed the systems to support larger
numbers of users with lower latency than prior works.

Unfortunately, systems with differential privacy suffer
from two drawbacks. First, the probability gap between two
events may be sufficient for strong adversaries to act on. For
instance, if Alice is ten times as likely to talk to Bob than
Charlie, the adversary may act assuming that Alice is talking
to Bob, despite the plausible deniability. Second, there is a
“privacy budget” (e.g., 104 to 106 messages), meaning that
a user can deny a limited number of messages with strong
guarantees. Moreover, for best possible security, users must
constantly send messages, and deny every message. For in-
stance, Alice may admit that she is not in any conversation
(thinking this information is not sensitive), but this could
have unintended consequences on the privacy of another user
who uses the cover story that she is talking with Alice. The
budget could then run out quickly if users want the strongest
privacy possible: If a user sends a message every minute, she
would run out of her budget in a few days or years with 104

to 106 messages. Although the privacy guarantee weakens
gradually after the privacy budget is exhausted, it is unclear
how to raise the privacy levels once they have been lowered.

These shortcomings can particularly affect journalists and
their sources. Many journalists mention the importance of
long-term relationships with their sources for their journalis-
tic process [41, 43], and the difficulty of maintaining private
relationships with them. In a differentially private system,
if the journalist and the source are ten times as likely to be
talking as two other users, then the adversary might simply
assume the journalist and the source’s relationship. Further-
more, these relationships often last many years [43], which
could cause the privacy budget to run out. This may put the
journalist and the source in jeopardy.

Scalable systems with other privacy guarantees. The only
private communication system in wide-deployment today is
Tor [21]. Tor currently supports over 2 million daily users
using over 6,000 servers [1], and can scale to more users
easily by adding more servers. However, Tor does not pro-
vide privacy against an adversary that monitors significant
portions of the network, and is susceptible to traffic analy-
sis attacks [19, 30]. Its privacy guarantee weakens further if
the adversary can control some servers, and if the adversary
launches active attacks [29]. Similar to Tor, most free-route

mix-nets [44, 24, 49, 15, 39] (distributed mix-nets where
each messages is routed through a small subset of servers)
cannot provide strong privacy against powerful adversaries
due to traffic analysis and active attacks.

Loopix [47] is a recent iteration on free-route mix-nets,
and can provide fast asynchronous messaging. To do so, each
user interacts with a semi-trusted server (called “provider” in
the paper), and routes her messages through a small number
of servers (e.g., 3 servers). Each server inserts small amounts
of random delays before routing the messages. Loopix then
reasons about privacy using entropy. Unfortunately, the pri-
vacy guarantee of Loopix weakens quickly as the adversary
compromises more servers. Moreover, Loopix requires the
recipients to trust the provider to protect themselves.

3 System model and goals
XRD aims to achieve the best of all worlds by providing

cryptographic metadata privacy while scaling horizontally
without relying on expensive cryptographic primitives. In
this section, we present our threat model and system goals.

3.1 Threat model and assumptions
A deployment of XRD would consist of hundreds to thou-

sands of servers and a large number of users, in the order
of millions. Similar to several prior works on distributed
private communication systems [34, 52], XRD assumes an
adversary that can monitor the entire network, control a frac-
tion f of the servers, and control up to all but two honest
users. We assume, however, that there exists a public key
infrastructure that can be used to securely share public keys
of online servers and users with all participants at any given
time. These keys, for example, could be maintained by key
transparency schemes [36, 42, 51].

XRD does not hide the fact that users are using XRD.
Thus, for best possible security, users should stay online to
avoid intersection attacks [31, 16]. XRD also does not pro-
tect against large scale denial-of-service (DoS) attacks. It
can, however, recover from a small number of benign server
failures or disruptions from malicious users. In addition,
XRD provides privacy even under DoS, server churn, and
user churn (e.g., Alice goes offline unexpectedly without her
conversation partner knowing). We discuss the availability
properties further in §5 and §7.3.

Finally, XRD assumes that the users can agree to start talk-
ing at a certain time out-of-band. This could be done, for ex-
ample, via two users exchanging this information offline, or
by using systems like Alpenhorn [38] that can initiate con-
versations privately.

Cryptographic primitives. XRD assumes existence of a
group of prime order p with a generator g in which dis-
crete log is hard and the decisional Diffie-Hellman assump-
tion holds. We will write DH(ga,b) = gab to denote Diffie-
Hellman key exchange. In addition, XRD makes use of au-
thenticated encryption.
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Authenticated encryption [6]: XRD relies on an authen-
ticated encryption scheme for confidentiality and integrity,
which consists of the following algorithms:
• c← AEnc(s,nonce,m). Encrypt message m and authen-

ticate the ciphertext c using a symmetric key s and a
nonce nonce. Typically, s is used to derive two other
keys for encryption and authentication.

• (b,m)← ADec(s,nonce,c). Check the integrity of and
decrypt ciphertext c using the key s and a nonce nonce.
If the check fails, then b = 0 and m = ⊥. Otherwise,
b = 1 and m is the underlying plaintext.

In general, the adversary cannot generate a correctly authen-
ticated ciphertext without knowing the secret key used for
ADec. We use Encrypt-then-HMAC for authenticated en-
cryption, which has the additional property that the cipher-
text serves as a commitment to the underlying plaintext with
the secret key being the opening to the commitment [28].

3.2 Goals
XRD has three main goals.

Correctness. Informally, the system is correct if every hon-
est user successfully communicates with her conversation
partner after a successful execution of the system protocol.

Privacy. Similar to prior messaging systems [53, 5, 52,
37], XRD aims to provide relationship unobservability [46],
meaning that the adversary cannot learn anything about the
communication between two honest users. Informally, con-
sider any honest users Alice, Bob, and Charlie. The system
provides privacy if the adversary cannot distinguish whether
Alice is communicating with Bob, Charlie, or neither. XRD
only guarantees this property among the honest users, as ma-
licious conversation partners can trivially learn the metadata
of their communication. We provide a more formal defini-
tion in Appendix B. (This is a weaker privacy goal than that
of Atom [34], which aims for sender anonymity.)

Scalability. Similar to prior work [34], we require that the
system can handle more users with more servers. If the
number of messages processed by a server is C(M,N) for M
users and N servers, we require that C(M,N)→ 0 as N→∞.
C(M,N) should approach zero polynomially in N so that
adding a server introduces significant performance benefits.

4 XRD overview
Figure 1 presents the overview of a XRD network. At a

high level, XRD consists of three different entities: users,
mix servers, and mailbox servers. Every user in XRD has
a unique mailbox associated with her, similar to an e-mail
address. The mailbox servers maintain the mailboxes, and
are only trusted for availability and not privacy.

To set up the network, XRD organizes the mix servers into
many chains of servers such that there exists at least one hon-
est server in each chain with overwhelming probability (i.e.,
an anytrust group [55]). Communication in XRD is carried

Users Servers (mix-chains) Mailboxes

(1) Users send 
messages to 
chosen mix-chains.

(2) Servers shuffle 
and decrypt users’ 
messages.

(3) Servers deliver 
messages to 
users’ mailboxes.

(4) Users fetch 
messages from 
mailboxes.

...

...

...

(1) (2) (3) (4)

Figure 1: Overview of XRD operation.

out in discrete rounds. In each round, each user selects a
fixed set of ` chains, where the set is determined by the user’s
public key. She then sends a fixed size message to each of
the selected chains. (If the message is too small or large, then
the user pads the message or breaks it into multiple pieces.)
Each message contains a destination mailbox, and is onion-
encrypted for all servers in the chain.

Once all users submit their messages, each chain acts as a
local mix-net [10], decrypting and shuffling messages. Dur-
ing shuffling, each server also generates a short proof that
allows other servers to check that it behaved correctly. If the
proof does not verify, then the servers can identify who mis-
behaved. If all verification succeeds, then the last server in
each chain forwards the messages to the appropriate mailbox
servers. (The protocol for proving and verifying the shuffle
is described in §6.) Finally, the mailbox servers put the mes-
sages into the appropriate mailboxes, and each user down-
loads all messages in her mailbox at the end of a round.

The correctness and security of XRD is in large part due
to how each user selects the chains. As we will see in §5,
the users are required to follow a specific algorithm to se-
lect the chains. The algorithm guarantees that every pair of
users have at least one chain in common and the choices of
the chains are publicly computable. For example, every user
selecting the same chain will achieve this property, and thus
correctness and security. In XRD, we achieve this property
while distributing the load evenly.

Let us now consider two scenarios: (1) a user Alice is not
in a conversation with anyone, or (2) Alice is in a conver-
sation with another user Bob. In the first case, she sends a
dummy message encrypted for herself to each chain that will
come back to her own mailbox. We call these messages loop-
back messages. In the second case, Alice and Bob compute
each other’s choices of chains, and discover at which chain
they will intersect. If there are multiple such chains, they
break ties in a deterministic fashion. Then, Alice and Bob
send the messages encrypted for the other person, which we
call conversation messages, to their intersecting chain. They
also send loopback messages on all other chains.

Security properties. We now argue the security informally.
We present a more formal definition and arguments of pri-
vacy in Appendix B. Since both types of messages are en-
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crypted for owners of mailboxes and the mix-net hides the
origin of a message, the adversary cannot tell if a message
going to Alice’s mailbox is a loopback message or a con-
versation message sent by a different user. This means that
the network pattern of all users is the same from the adver-
sary’s perspective: each user sends and receives exactly `
messages, each of which could be a loopback or a conversa-
tion message. As a result, the adversary cannot tell if a user
is in a conversation or not. Moreover, we choose the chains
such that every pair of users intersects at some chain (§5),
meaning the probability that Alice is talking to a particular
honest user is the same for all honest users. This hides the
conversation metadata.

The analysis above, however, only holds if the adversary
does not tamper with the messages. For instance, if the ad-
versary drops Alice’s message in a chain, then there are two
possible observable outcomes in this chain: Alice receives
(1) no message, meaning Alice is not in a conversation in
this chain, or (2) one message, meaning someone intersect-
ing with Alice at this chain is chatting with Alice. This in-
formation leakage breaks the security of XRD. We propose
a new protocol called aggregate hybrid shuffle (§6) that effi-
ciently defends against such an attack.

Scalability properties. Let n and N be the number of chains
and servers in the network, respectively. Each user must
send at least

√
n messages to guarantee every pair of users

intersect. To see why, fix `, the number of chains a user
selects. Those chains must connect a user Alice to all M
users. Since the total number of messages sent by users is
M ·`, each chain should handle M·`

n messages if we distribute
the load evenly. We then need M·`

n · `≥M because the left
hand side is the maximum number of users connected to the
chains that Alice chose. Thus, ` ≥

√
n. In §5, we present

an approximation algorithm that uses ` ≈
√

2n to ensure all
users intersect with each other while evenly distributing the
work. This means that each chain handles ≈

√
2M√
n messages,

and thus XRD scales with the number of chains. If we set
n = N and each server appears in k chains for k <<

√
N,

which means C(M,N) = k
√

2M√
N
→ 0 polynomially as N→ ∞

(§3.2). We show that k is logarithmic in N in §5.2.1.

5 XRD design
We now present the details of a XRD design that protects

against an adversary that does not launch active attacks. We
then describe modifications to this design that allows XRD
to protect against active attacks in §6.

5.1 Mailboxes and mailbox servers
Every user in XRD has a mailbox that is publicly associ-

ated with her. In our design, we use the public key of a user
as the identifier for the mailbox, though different public iden-
tifiers like e-mail addresses can work as well. The mailboxes
are maintained by the mailbox servers, with simple put and
get functionalities to add and fetch messages to a mailbox.

Algorithm 1 Mix server routing protocol
Server i is in chain x which contains k servers
with its mixing key pair (mpki = gmski ,mski).
In each round r, it receives a set of ciphertexts
{c j

i = (gx j ,AEnc(DH(mpki,x j),r||x,c j
i+1)} j∈[M]

, either
from an upstream server if i 6= 1, or from the users if i = 1.
1. Decrypt and shuffle: Compute

c j
i+1 = ADec(DH(gx j ,mski),r||x,c j

i ) for each j, and
randomly shuffle {c j

i+1}.

2a. Relay messages: If i < k, then send the shuffled {c j
i+1}

to server i+1.

2b. Forward messages to mailbox: If i = k, then each de-
crypted message is of the form (pku,AEnc(s,r||x,mu)),
where pku is the public key of a user u, s is a secret key,
and mu is a message for the user. Send the message to
the mailbox server that manages mailbox pku.

5.2 Mix chains
XRD uses many parallel mix-nets to process the messages.

We now describe their formation and operations.
5.2.1 Forming mix chains

We require the existence of an honest server in every chain
to guarantee privacy. To ensure this property, we use public
randomness sources [7, 50] that are unbiased and publicly
available to randomly sample k servers to form a chain, sim-
ilar to prior works [34, 52]. We set k large enough such that
the probability that all servers are malicious is negligible.
Concretely, the probability that a chain of length k consists
only of malicious servers is f k. Then, if we have n chains in
total, the probability there exists a group of only malicious
servers is less than n · f k via a union bound. Finally, we can
upper bound this to be negligible. For example, if we want
this probability to be less than 2−64 for f = 20%, then we
need k = 32 for n < 2000. This makes k depend logarithmi-
cally on N. In XRD, we set n = N for N servers, meaning
each server appears in k chains on average.

We “stagger” the position of a server in the chains to en-
sure maximal server utilization. For instance, if a server is
part of two chains, then it could be the first server in one
chain and the second server in the other chain. This opti-
mization has no impact on the security, as we only require
the existence of an honest server in each group. This helps
minimize the idle time of each server.
5.2.2 Processing user messages

After the chains form, each mix server i generates a mixing
key pair (mpki = gmski ,mski), where mski is a random value
in Zp. The public mixing keys {mpki} are made available
to all participants in the network, along with the ordering of
the keys in each chain. Now, each chain behaves as a mix-
net [10]: users submit some messages onion-encrypted using
the mixing keys (§5.3), and the servers decrypt and shuffle
the messages in order. Algorithm 1 describes this protocol.
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5.2.3 Server churn
Some servers may go offline in the middle of a round.

Though XRD does not provide additional fault tolerance
mechanisms, only the chains that contain failing servers are
affected. Furthermore, the failing chains do not affect the se-
curity since they do not disturb the operations of other chains
and the destination of the messages at the failing chain re-
mains hidden to the adversary. Thus, conversations that use
chains with no failing servers are unaffected. We analyze the
empirical effects of server failures in §7.3.

5.3 Users
We now describe how users operate in XRD.

5.3.1 Selecting chains
XRD needs to ensure that all users’ choices of chains in-

tersect at least once, and that the choices are publicly com-
putable. We present a scheme that achieves this property.
Upon joining the network, every user is placed into one of
`+1 groups such that each group contains roughly the same
number of users, and such that the group of any user is pub-
licly computable. This could be done, for example, by as-
signing each user to a pseudo-random group based on the
hash of the user’s public key. Every user in a group is con-
nected to the same ` servers specified as follows. Let Ci
be the ordered set of chains that users in group i are con-
nected to. We start with C1 = {1, . . . , `}, and build the other
sets inductively: For i = 1, . . . , `, group i+ 1 is connected
to Ci+1 = {C1[i],C2[i], . . . ,Ci[i],Ci[`]+1, . . . ,Ci[`]+ (`− i)},
where Cx[y] is the yth entry in Cx.

By construction, every group is connected to every other
group: Group i is connected to group j via Ci[ j] for all i < j.
As a result, every user in group i is connected to all others
in the same group (they meet at all chains in Ci), and is con-
nected to users in group j via chain Ci[ j].

To find the concrete value of `, let us consider C`. The
last chain of C`, which is the chain with the largest index, is
C`[`] = `2−∑

`−1
i=1 i = `2+`

2 . This value should be as close as
possible to n, the number of chains, to maximize utilization.
Thus, `= d

√
2n+0.25−0.5e ≈ d

√
2ne. Given that ` ≥

√
n

(§4), this is a
√

2-approximation.

5.3.2 Sending messages
After choosing the ` mix chains, the users send one mes-

sage to each of the chosen chains as described in Algo-
rithm 2. At a high level, if Alice is not talking with anyone,
Alice generates ` loopback messages by encrypting dummy
messages (e.g., messages with all zeroes) using a secret key
known only to her, and submits them to the chosen chains.
If she is talking with another user Bob, then she first finds
where they intersect by computing the intersection of Bob’s
group and her group (§5.3.1). If there is more than one such
chain, then she breaks the tie by selecting the chain with the
smallest index. Alice then generates `− 1 loopback mes-
sages and one encrypted message using a secret key that Al-

Algorithm 2 User conversation protocol
Consider two users Alice and Bob with key pairs
(pkA = gskA ,skA) and (pkB = gskB ,skB) who are connected
to sets of ` chains CA and CB (§5.3.1). The network consists
of chains 1, . . . ,n, each with k servers. Alice and Bob pos-
sess the set of mixing keys for each chain. Alice performs
the following in round r.
1a. Generate loopback messages: If Alice is not in a con-

versation, then Alice generates ` loopback messages:
mx = (pkA,AEnc(s

x
A,r||x,0)) for x ∈ CA, where sxA is a

chain-specific symmetric key known only to Alice.

1b. Generate conversation message: If Alice is in a
conversation with Bob, then she first computes the
shared key sAB = DH(pkB,skA), and the symmet-
ric encryption key for Bob sB = KDF(sAB,pkB,r)
where KDF is a secure key derivation function (e.g.,
HKDF [33]). Alice then generates the conversation mes-
sage: mxAB = (pkB,AEnc(sB,r||x,msg)), where msg is
the plaintext message for Bob and xAB ∈ CA ∩CB is the
first chain in the intersection. She also generates `− 1
loopback messages mx for x ∈CA,x 6= xAB.

2. Onion-encrypt messages: For each message mx, let
ck+1 = mx, and let {mpki} be the mixing keys for chain
x ∈CA. For i = k to 1, generate a random value xi ∈ Zp,
and compute ci = (gxi ,AEnc(DH(mpki,xi),r||x,ci+1)).
Send c1 to chain x.

3. Fetch messages: At the end of the round, fetch and
decrypt the messages in her mailbox, using ADec with
matching sxA or sA = KDF(sAB,pkA,r).

ice and Bob shares. Finally, Alice sends the message for Bob
to the intersecting chain, and sends the loopback messages to
the other chains. Bob mirrors Alice’s actions.
5.3.3 User churn

Like servers, users might go offline in the middle of a
round, and XRD aims to provide privacy in such situations.
However, the protocol presented thus far does not achieve
this goal. If Alice and Bob are conversing and Alice goes of-
fline without Bob knowing, then Alice’s mailbox will receive
Bob’s message while Bob’s mailbox will get one fewer mes-
sage. Thus, by observing mailbox access counts and Alice’s
availability, the adversary can infer their communication.

To solve this issue, we require Alice to submit two sets of
messages in round r: the messages for the current round r,
and cover messages for round r+1. If Alice is not commu-
nicating with anyone, then the cover messages will be loop-
back messages. If Alice is communicating with another user,
then one of the cover messages will be a conversation mes-
sage indicating that Alice has gone offline.

If Alice goes offline in round τ , then the servers use the
cover messages submitted in τ−1 to carry out round τ . Now,
there are two possibilities. If Alice is not in a conversation,
then Alice’s cover loopback messages are routed in round τ ,
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and nothing needs to happen afterwards. If Alice is convers-
ing with Bob, then at the end of round τ , Bob will get the
message that Alice is offline via one of the cover messages.
Starting from round τ + 1, Bob now sends loopback mes-
sages instead of conversation messages to hide the fact that
Bob was talking with Alice in previous rounds. This could be
used to end conversations as well. Malicious servers cannot
fool Bob into thinking Alice has gone offline by replacing
Alice’s messages with her cover messages because the hon-
est servers will ensure Alice’s real messages are accounted
for using our defenses described in §6.

6 Aggregate hybrid shuffle
Adversarial servers can tamper with the messages to leak

privacy in XRD. For example, consider a mix-net chain
where the first server is malicious. This malicious server
can replace Alice’s message with a message directed at Al-
ice. Then, at the end of the mixing, the adversary will make
one of two observations. If Alice was talking to another user
Bob, Bob will receive one fewer message while Alice would
receive two messages. The adversary would then learn that
Alice was talking to Bob. If Alice is not talking to anyone on
the tampered chain, then Alice would receive one message,
revealing the lack of conversation on that chain.

Prior works [14, 55, 35, 52, 34] have used traditional ver-
ifiable shuffles [45, 25, 8, 27] to prevent these attacks. At a
high level, verifiable shuffles allow the servers in the chain
(one of which is honest) to verify the correctness of a shuffle
of another server; namely, that the plaintexts underlying the
outputs of a server is a valid permutation of the plaintexts
underlying the inputs. Unfortunately, these techniques are
computationally expensive, requiring many exponentiations.

In XRD, we make an observation that help us avoid tra-
ditional verifiable shuffles. For a meaningful tampering, the
adversary necessarily has to tamper with the messages be-
fore they are shuffled by the honest server. Otherwise, the
adversary does not learn the origins of messages. For exam-
ple, after dropping a message in a server downstream from
the honest server, the adversary might observe that Alice did
not receive a message. The adversary cannot tell, however,
whether the dropped message was sent by Alice or another
user, and does not learn anything about Alice’s communica-
tion pattern. (Intuitively, the adversarial downstream servers
do not add any privacy in any case.) In this section, we de-
scribe a new form of verifiable shuffle we call aggregate hy-
brid shuffle (AHS) that allows us to take advantage of this
fact. In particular, the protocol guarantees that the honest
server will receive and shuffle all honest users’ messages, or
the honest server will detect that someone upstream (mali-
cious servers or users) misbehaved. We will then describe
how the honest server can efficiently identify all malicious
participants who deviated from the protocol, without affect-
ing the privacy of honest users. Table A in Appendix A sum-
marizes the notations used in AHS.

6.1 Key generation with AHS
When the chain is created, the servers generate three key

pairs: blinding, mixing, and inner key pairs. The inner
keys are per-round keys, and each server i generates its
own inner key pair (ipki = giski , iski). The other two keys
are long-term keys, and are generated in order starting with
the first server in the chain. Let bpk0 = g. Starting with
server 1, server i = 1, . . . ,k generates (bpki = bpkbski

i−1 ,bski)

and (mpki = bpkmski
i−1 ,mski) in order. In other words, the base

of the public keys of the server i is bpki−1 = g∏a<i bska . The
public mixing key of the last server, for example, would be
mpkk = bpk

mskk
k−1 = gmskk·∏a<k bska . Each server also has to

prove to all other servers that it knows the private keys that
match the public keys in zero-knowledge [9]. All public keys
are made available to all servers and users.

6.2 Sending messages with AHS
Once the servers generate the keys, user Alice can sub-

mit a message to a chain. To do so, Alice now employs a
double-enveloping technique to encrypt her message [26]:
she first onion-encrypts her message for all servers using
the inner keys, and then onion-encrypts the result with the
mixing keys. Let inner ciphertext be the result of the first
onion-encryption, and outer ciphertext be the final cipher-
text. The inner ciphertexts are encrypted using ∏i ipki as
the public key, which allows users to onion-encrypt in “one-
shot”: i.e., e = (gy,AEnc(DH(∏i ipki,y),r,m)) in round r
with message m and a random y. Without y, one must know
all {iski} to compute DH(∏i ipki,y), which makes this a
“one-shot” onion-encryption. To generate the outer cipher-
text for chain x, Alice performs the following.
1. Generate her outer Diffie-Hellman key: a random x∈Zp

and (gx,x).

2. Generate a NIZK that proves she knows x that matches
gx (using knowledge of discrete log proof [9]).

3. Let ck+1 = e, and let {mpki} for i ∈ [k] be the mixing
keys of the servers in the chain. For i = k to 1, compute
ci = AEnc(DH(mpki,x),r||x,ci+1).

c = (gx,c1) is the final outer ciphertext. This is nearly iden-
tical to Algorithm 2, except that the user does not generate
a fresh pair of Diffie-Hellman keys for each layer of encryp-
tion. To submit the message, Alice sends c and the NIZK to
all servers in the chain.

6.3 Mixing with AHS
Before mixing begins in round r, the servers in chain x

have c j = (X j
1 = gx j ,c1 = AEnc(DH(mpk1,x j),r||x,c j

2)) for
user j. The servers first verify all NIZKs the users submit,
and agree on the inputs for this round. This can be done,
for example, by sorting the users’ ciphertexts, hashing them
using a cryptographic hash function, and then comparing the
hashes. Then, starting with server 1, server i = 1, . . . ,k per-
form the following:
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1. Decrypt and shuffle: Similar to Algorithm 1, de-
crypt each message. Each message is of the
form (X j

i ,c
j
i = AEnc(DH(mpki,x j),r||x,c j

i+1). Thus,
(b j,c j

i+1) = ADec(DH(X j
i ,mski),r||x,c j

i ). If any de-
cryption fails (i.e., b j = 0 for some j), then mixing halts
and the server can start the blame protocol described in
§6.4. Randomly shuffle {c j

i+1}.
2. Blind and shuffle: Blind the users’ Diffie-Hellman keys
{X j

i } using the blinding key: X j
i+1 = (X j

i )
bski for each j.

Then, shuffle the keys using the same permutation as the
one used to shuffle the ciphertexts.

3. Generate zero-knowledge proof: Generate a proof that
(∏ j X j

i )
bski = ∏ j X j

i+1 by generating a NIZK that shows
log

∏ j(X
j

i )
(∏ j X j

i+1) = logbpki−1
bpki(= bski). Send the

NIZK with the shuffled {X j
i+1} to all other servers in the

chain. All other servers verify this proof using {X j
i } they

received previously, {X j
i+1}, bpki−1, and bpki.

4. Forward messages: If i < k, then send the shuffled
{(X j

i+1,c
j
i+1)} to server i+1.

When the last server finishes shuffling and no server reports
any errors during mixing, our protocol guarantees that the
honest server mixed all the honest users’ messages success-
fully. At this point, the servers reveal their private per-round
inner keys {iski}. With this, the last server can decrypt the
inner ciphertexts to recover the users’ messages.

Analysis. We first argue correctness of AHS (i.e., every
message is successfully delivered if every participant fol-
lowed the protocol) by showing that the encryption and de-
cryption keys match at all layers. Consider the key user
j used to encrypt the message for server i and the Diffie-
Hellman key server i receives. User j encrypts the message
using the key DH(mpki,x j) = gx j ·mski ∏a<i bska . The Diffie-
Hellman key server i receives is X j

i = gx j ·∏a<i bska . The key
exchange then results in DH(X j

i ,mski) = gmski·x j ∏a<i bska ,
which is the same as the one the user used.

The scheme protects against honest-but-curious adver-
saries (i.e., does not reveal anything about the permutation
used to shuffle the messages), as the inputs and outputs of
a server look random: If decisional Diffie-Hellman is hard,
then gx·bski is indistinguishable from a random value given
gx and gbski for random x and bski. Thus, by observing {gx j}
(input) and {gxπ( j)·bski} (output) of an honest server where π

is a random permutation, the adversary cannot learn anything
about the relationships between the inputs and outputs.

We now provide a high level analysis that the honest server
will always detect upstream servers tampering with honest
users’ messages. The detailed proof is in Appendix A. Let
server h be the honest server. First, since we only need to
consider upstream adversaries, we will simplify the problem,
and view all upstream malicious servers as one collective
server with private blinding key bskA = ∑i<h bski. For the

adversary to successfully tamper, it must generate {X j
h} such

that (∏X j
1 )

bskA = ∏X j
h ; otherwise it would fail the NIZK

verification in step 3 of §6.3. Let XT 6= /0 be the set of honest
users whose messages were tampered. The adversary needs
to know the keys used for authenticated decryption to gen-
erate valid ciphertexts that differ from the users’ ciphertexts.
However, the adversary cannot compute ((gx j)bskA)mskh for
j ∈ XT (the keys used for authenticated encryption), since x j
and mskh are unknown random values and Diffie-Hellman
is hard. Thus, to tamper with messages undetected, the ad-
versary needs to change the users’ Diffie-Hellman keys (i.e.,
X j

h 6= (X j
1 )

bskA for j ∈ XT ), such that it can compute the keys
used for authenticated decryption (i.e., (X j

h )
mskh for j ∈ XT ).

In the beginning of a round, the adversary controlled
users have to prove their knowledge of discrete logs of
their Diffie-Hellman keys after seeing the honest users’
keys. The adversarial user are thus forced to generate
keys independently of the honest users’ input. Then,
the adversary’s goal is essentially to find {X j

h} j∈XT such
that (∏ j∈XT X j

1 )
bskA = ∏ j∈XT X j

h , with (X j
1 )

bskA 6= X j
h . As-

sume the adversary is successful. Then, it could
compute ((∏ j∈XT X j

1 )
bskA)mskh = ∏ j∈XT (X

j
h )

mskh , since it
knows (X j

h )
mskh for j ∈ XT (recall that these are the

keys used for authenticated decryption, which the adver-
sary must know). This means that the adversary com-
puted ((∏ j∈XT X j

1 )
bskA)mskh = gmskh·bskA·∑ j∈XT x j only given

{gx j} j∈XT , bskA, and (gbskA)mskh , where {x j} j∈XT and mskh
are random values independent of bskA. This breaks the
Diffie-Hellman assumption, and thus the adversary must not
be able to tamper with messages undetected.

6.4 Blame protocol
There are two ways an honest server can detect misbehav-

ior: a NIZK fails to verify or an authenticated decryption
fails. If a malicious user cannot generate a correct NIZK in
step 2 in §6.2 or if a malicious server misbehaves and cannot
generate a correct NIZK in step 3 in §6.3, then the misbe-
havior is detected and the adversary is immediately identi-
fied. In the case where a server finds some misauthenticated
ciphertexts, the server can start a blame protocol that allows
the server to identify who misbehaved. The protocol guaran-
tees that users are identified if and only if they purposefully
sent misauthenticated ciphertexts. In addition, the protocol
ensures that honest users remain private in all cases, even if
malicious servers try to falsely accuse honest users.

Once server h identifies an misauthenticated ciphertext, it
starts the blame protocol by revealing the problem ciphertext
(X j

h ,c
j
h). Then, the servers execute the following:

1. For i = h− 1, . . . ,1, the servers reveal X j
i that matches

X j
i+1 (i.e., (X j

i )
bski = X j

i+1). Each server proves to all
other servers it calculated X j

i+1 correctly by showing that
logX j

i
(X j

i+1) = logbpki−1
(bpki)(= bski) with a NIZK [9].

766    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



2. For i = h− 1, . . . ,1, the servers reveal c j
i that matches

c j
i+1 (i.e., c j

i = AEnc(DH(X j
i ,mski),r||x,c j

i+1). Each
server proves it correctly decrypted the ciphertext by re-
vealing the key used for decryption k j

i = (X j
i )

mski , and
showing that logX j

i
(k j

i ) = logbpki−1
(mpki) with a NIZK.

The other servers can verify the correctness of the de-
cryption operation by checking the NIZKs and decrypt-
ing the ciphertext themselves.

3. All servers check that c j
1 revealed by the first server

matches the user submitted ciphertext (§6.2).

4. Similar to step 2, server h (the accusing server) reveals its
Diffie-Hellman exchanged key kh = (X j

h )
mskh , and shows

that logX j
h
(kh) = logbpkh−1

(mpkh). All servers verify that

ADec(kh,r||x,c j
h) fails.

If there are multiple problem ciphertexts, the blame proto-
col can be carried out in parallel for each ciphertext. Steps 1
and 2 can be done simultaneously as well. If the servers suc-
cessfully carry out the blame protocol, then they have identi-
fied actively malicious users. At this point, those ciphertexts
are removed from the set, and the upstream servers are re-
quired to repeat the AHS protocol; since the accusing servers
have already removed all bad ciphertexts, the servers just
have to repeat step 3 of §6.3 to show the keys were correctly
computed. If any of the above steps fail, then the servers
delete their private inner keys.

Analysis. The accusing server and the upstream servers are
required to reveal the exchanged key used to decrypt the ci-
phertexts, and the correctness of the key exchange is proven
through the two NIZKs in step 1 and step 2. All servers
can use the revealed keys to ensure that the submitted origi-
nal ciphertext decrypts to the problem ciphertext. Since the
outer ciphertext behaves as a commitment to all layers of en-
cryption (§3), the servers get a verifiable chain of decryption
starting with the outer ciphertext to the problem ciphertext
if a user submits misauthenticated ciphertext. Moreover, if
an honest user submits a correctly authenticated ciphertext,
she will never be accused successfully, since an honest user’s
ciphertext will authenticate at all layers. Thus, a user is iden-
tified if and only if she is malicious.

Importantly, the users’ privacy is protected even after a
false accusation. After a malicious server accuses an honest
user, the malicious server learns either the outer ciphertext (if
the server is upstream of server h) or the inner ciphertext (if
the server is downstream of server h) the user sent. In either
case, the message remains encrypted for the honest server, by
the mixing key in the former case or by the inner key in the
latter case. The blame protocol will fail when the malicious
server fails to prove that the honest user’s ciphertext is mis-
authenticated, and the ciphertext will never be decrypted. As
such, the adversary never learns the final destination of the
user’s message, and XRD protects the honest users’ privacy.

7 Implementation and evaluation
To evaluate XRD, we wrote a prototype in approximately

4,000 lines of Go. We used the NIST P-256 elliptic curve [2]
for our cryptographic group, and used AES with SHA-256-
based key derivation function [33] and HMAC [32] for our
authenticated encryption scheme. The servers communi-
cated using streaming gRPC over TLS. Our prototype as-
sumes that the servers’ and users’ public keys, and the public
randomness for creating the chains are provided by a higher
level functionality. Finally, we set the number of chains n
equal to the number of servers N (§5.2.1).

In this section, we investigate the cost of users and the per-
formance of XRD for different network configurations. For
majority of our experiments, we assumed f = 0.2 (i.e., 80%
of the servers are honest) unless indicated otherwise. We
used 256 byte messages, similar to evaluations of prior sys-
tems [53, 52, 5]; this is about the size of a standard SMS mes-
sage or a Tweet. We used c4.8xlarge instances on Amazon
EC2 for our experiments, which has 36 Intel Xeon E5-2666
CPUs with 60 GB of memory and 10 Gbps links.

We compare the results against four prior systems: Sta-
dium [52], Karaoke [37], Atom [34], and Pung [5, 4]. For
Stadium and Karaoke, we report the performance for eε = 10
and eε = 4, respectively, (meaning the probability of Alice
talking with Bob is within 10× and 4× the probability of Al-
ice talking with any other user) and allow up to 108 rounds of
communication with strong security guarantees (δ < 10−4),
which are the parameters the used for evaluation in their
papers. We show results for Pung with XPIR (used in the
original paper [5]) and with SealPIR (used in the follow-up
work [4]) when measuring user overheads, and only with
XPIR when measuring end-to-end latency. We do this be-
cause SealPIR significantly improves the client performance
and enables more efficient batch messaging, but introduces
extra server overheads in the case of one-to-one messaging.

As mentioned in §2, the four systems scale horizontally,
but offer different security properties. To summarize, Sta-
dium and Karaoke provide differential privacy guarantees
against the same adversary assumed by XRD. Thus, their
users can send a limited number of sensitive messages with
strong privacy, while XRD users can do so for unlimited mes-
sages. Atom provides cryptographic sender anonymity [46]
under the same threat model. Finally, Pung provides mes-
saging with cryptographic privacy against an adversary who
can compromise all servers rather than a fraction of servers.
To the best of our knowledge, we are not aware of any scal-
able private messaging systems that offer the same security
guarantee under a similar threat model to XRD.

7.1 User costs
We first characterize computation and bandwidth over-

heads of XRD users using a single core of a c4.8xlarge in-
stance. In order to ensure that every pair of users intersects,
each user sends

√
2N messages (§5.3.1). This means that
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Figure 2: Required user bandwidth per round as a function
of number of servers in the network.
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Figure 3: Required user computation as a function of number
of servers with a single core. The computation could easily
be parallelized with more cores for XRD.

the overheads for users increase as we add more servers to
the network, as shown in Figure 2 and 3. This is a primary
weakness of XRD, since our horizontal scalability comes at
a higher cost for users. Still, the cost remains reasonable
even for large numbers of servers. With 2,000 servers, each
user must submit about 238 KB of data. For 1 minute rounds,
this translates to about 40 Kbps of bandwidth requirement. A
similar trend exists for computation overhead as well, though
it remains relatively small: it takes less than 0.5s with fewer
than 2,000 servers in the network. Computation could also
be easily parallelized with more cores, since users can gen-
erate the messages for different chains independently. The
cover messages make up half of the client overhead (§5.3.3).

User costs in prior works do not increase with the number
of servers. Still, Pung with XPIR incurs heavy user band-
width overheads due to the cost of PIR. With 1 million users,
Pung users transmit about 5.8 MB, which is about 25×worse
than XRD when there are fewer than 2,000 servers. More-
over, per user cost of XPIR is proportional to the total num-
ber of users: the bandwidth cost increases to 11 MB of band-
width for 4 million users. The SealPIR variant, however, is
comparable to that of XRD, as the users can compress the
communication using cryptographic techniques. Stadium,
Karaoke, and Atom incur minimal user bandwidth cost, with
less than a kilobyte of bandwidth overhead (only Stadium is
shown Figure 2). Thus, for users with heavily limited re-
sources, prior works can be more desirable than XRD.
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Figure 4: End-to-end latency of XRD and prior systems with
varying numbers of users with 100 servers.

7.2 End-to-end latency
Experiment setup. To evaluate the end-to-end perfor-
mance, we created a testbed consisting of up to 200
c4.8xlarge instances. We ran the instances within the same
data center to avoid bandwidth costs, but added 40-100ms of
round trip latency between servers using the Linux tc com-
mand to simulate a more realistic distributed network. Our
evaluations consider all parts of the AHS protocol (§6), but
assume all users are following the protocol. We then evaluate
the blame protocol (§6.4) separately.

We used many c4.8xlarge instances to simulate millions
of users, and also used ten more c4.8xlarge instances to sim-
ulate the mailboxes. We generate all users’ messages before
the round starts, and measure the critical path of our system
by measuring the time between the last user submitting her
message and the last user downloading her message.

We estimate the latency of Pung with M users and N
servers by evaluating it on a single c4.8xlarge instance with
M/N users. This is the best possible latency Pung can
achieve because (1) Pung is embarrassingly parallel, so
evenly dividing users across all the servers should be ideal [5,
§7.3], and (2) we are ignoring the extra work needed for
coordination between the servers (e.g., for message replica-
tion). For Stadium, we report the latency when the length of
each mix chain is nine servers. For Karaoke, we report the
numbers reported in their paper.

We focus on the following questions in this section, and
compare against prior work:
• What is the end-to-end latency of XRD, and how does it

change with the number of users?

• How does XRD scale with more servers?

• What is the effect of f , the fraction of malicious servers,
on latency?

• How fast is the blame protocol?

Number of users. Figure 4 shows the end-to-end latency
of XRD and prior works with 100 servers. XRD was able to
handle 2 million users in 228s, and the latency scales linearly
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Figure 5: End-to-end latency of XRD for varying numbers
of servers with 2 million users. We show Pung and Atom on
a different time scale.

with the number of users. This is 13.3× and 4× faster than
Atom and Pung, and 3× and 22.8× worse than Stadium and
Karaoke for the same deployment scenario. Though process-
ing a single message in XRD is faster than doing so in Sta-
dium (since Stadium relies on verifiable shuffle, while XRD
uses AHS), the overall system is still slower. This is because
each XRD user submits many messages. For example, each
user submits 15 messages with 100 servers, which is almost
equivalent to adding 15 users who each submit one mes-
sage. Unfortunately, the performance gap would grow with
more servers due to each user submitting more messages (the
rate at which the gap grows would be proportional to

√
2N).

While XRD cannot provide the same performance as Sta-
dium or Karaoke with large numbers of users and servers,
XRD can provide stronger cryptographic privacy.

When compared to Pung, the speed-up increases further
with the number of users since the latency of Pung grows su-
perlinearly. This is because the server computation per user
increases with the number of users. With 4 million users, for
example, XRD is 8× faster. For Atom, the latency increases
linearly, but with higher slope. This is due to its heavy re-
liance on expensive public key cryptography and long routes
for the messages (over 300 servers).

Scalability. Figure 5 shows how the latency decreases with
the number of servers with 2 million users.We experimented
with up to 200 servers, and observed the expected scaling
pattern: the latency of XRD reduces as

√
2/N with N servers

(§4). In contrast, prior works scale as 1/N, and thus will out-
perform XRD with enough servers. Still, because XRD em-
ploys more efficient cryptography, XRD outperforms Atom
and Pung with less than 200 servers.

To estimate the performance of larger deployments, we ex-
trapolated our results to more servers. We estimate that XRD
can support 2 million users with 1,000 servers in about 84s,
while Stadium and Karaoke can do so in about 8s and 2s, re-
spectively. (At this point, the latency between servers would
be the dominating factor for Stadium and Karaoke.) This
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Figure 7: Latency of blame protocol.

gap increases with more users, as described previously. For
Atom and Pung, we estimate that the latency would be com-
parable to XRD with about 3,000 servers and 1,000 servers
in the network, respectively, for 2 million users. Pung would
need more servers with more users to catch up to XRD due to
the superlinear increase in latency with the number of users.

Impact of f . During setup, the system administrator should
make a conservative estimate of f to form the chains. Larger
f affects latency because it increases in the length of the
chains k (§5.2.1). Concretely, with n = 100, k must satisfy
100 · f k < 2−64. Thus, k > log(2−64/100)

log( f ) , which means that
the length of a chain (and the latency) grows as a function of
−1

log( f ) . Figure 6 demonstrates this effect. The latency grows
slowly for f < 0.5. This function, however, grows rapidly
when f >> 0.5, and thus the latency would be significantly
worse when considering larger values of f .

Atom would experience the same effect since its mix
chains are created using the same strategy as XRD. Karaoke
also experiences similar increase in latency with f , as every
message must be routed through a number of servers propor-
tional to | 1

log f | as well. Stadium would face more signifi-
cant increase in latency with f as its mix chains similarly get
longer with f , and the length of the chains has a superlinear
effect on the latency due to zero-knowledge proof verifica-
tion [52, §10.3]. The latency of Pung does not increase with
f since it already assumes f = 1.

Blame protocol. Malicious users could send misauthenti-
cated ciphertexts to trigger the blame protocol, and slow
down the system. Since malicious users’ messages are re-
moved as soon as servers find them, the users cause the most
slowdown when the misauthenticated ciphertexts are discov-
ered at the last server. The performance of the blame proto-
col also depends on the number of malicious users. In Fig-
ure 7, we therefore show the latency of the blame protocol
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Figure 8: Fraction of conversations that fail in a given round
due to server failures for different server churn rates.

as a function of the number of malicious users in a chain
of 32 servers when the last server detects misbehavior. The
blame protocol requires two discrete log equivalence proofs
and decryption per user for each layer of encryption (§6.4).

Concretely, if 5,000 users misbehave in a chain, the blame
protocol takes about 13s. This cost increases linearly with
the number of users: if 100,000 users misbehave in a chain
(which corresponds to approximately a third of all users be-
ing malicious with 100 servers and 2 million users in the net-
work), the protocol takes about 150s. As a result, the overall
round would take 378s, instead of 228s, for 2 million users.
Still, this is 8× and 2.4× faster than Atom and Pung. In
practice, the blame protocol could be faster since the hon-
est server is likely to be not the last server. For example, if
the honest server is the 16th server, then the blame protocol
would take half the time. The overall round would then take
around 303s.

While this is a significant increase in latency, malicious
users are removed from the network once servers identify
them. To cause serious slowdowns across many rounds, the
adversary needs to constantly create new malicious users.
Then, by employing defenses against Sybil attacks (e.g., im-
posing a small cost for user registration such as proof-of-
work [23] or CAPTCHA [54]), we could limit the effective-
ness of an adversary.

Malicious users can have varying degree of impact in prior
systems. Pung and Karaoke are not affected by malicious
users, and Stadium has a blame protocol similar to XRD to
handle malicious users. Atom, however, is the significantly
affected: a single malicious user can launch a DoS attack in
the faster variant used for comparison in this paper [34, §4.4].
The slower variant of Atom that can handle adversarial users
is at least 4× slower [34, §6], meaning it would be at least
30× slower than XRD overall.

7.3 Availability
To estimate the effect of server churn on a XRD network,

we simulated deployment scenarios with 2 million users and
different numbers of servers. We assumed that all users were
in a conversation, and show the fraction of the users whose
conversation messages did not reach their partner in Fig-
ure 8. For example, if 1% of the servers fail in a given round
(comparable to server churn rate in Tor [1]), then we expect

about 27% of the conversations to experience failure, and
the end-points would have to resend their conversation mes-
sages. Unfortunately, the failure rate quickly increases with
the server churn rates, reaching 70% with 4% server fail-
ures, as more chains contain at least one failing server. Thus,
it would be easy for the adversary who controls a non-trivial
fraction of the servers to launch a denial-of-service attack.
Addressing this concern remains important future work.

When compared to Pung, the availability guarantees can
be significantly worse, assuming Pung replicates all users’
messages across all servers. In this case, the conversation
failure rate would be equal to the server churn rate with users
evenly distributed across all Pung servers, and the users con-
nected to the failing servers could be rerouted to other servers
to continue communication. Atom can tolerate any fraction γ

of the servers failing using threshold cryptography [17], but
the latency grows with γ . For example, to tolerate γ = 1%
servers failing, we estimate that Atom would be about 10%
slower [34, Appendix B]. Stadium and Karaoke, however,
are more affected by server churn. Stadium uses two lay-
ers of parallel mix-nets, and fully connects the chains across
the two layers. As a result, even one server failure would
cause the whole system to come to a halt. (Stadium does not
provide a fault recovery mechanism, and the security impli-
cations of continuing the protocol without the failing chains
are not analyzed [52].) Similarly, Karaoke uses layers of
interconnected mixing servers, and a single server failure re-
sults in the failure of the whole network.

8 Conclusion
XRD provides a unique design point in the space of meta-

data private communication systems by achieving crypto-
graphic privacy and horizontal scalability using efficient
cryptographic primitives. XRD organizes the servers into
multiple small chains that process messages in parallel, and
can scale easily with the number of servers by adding more
chains. We hide users’ communication patterns by ensuring
every user is equally likely to be talking to any other user, and
hiding the origins of users’ messages through mix-nets. We
then efficiently protect against active attacks using a novel
technique called aggregate hybrid shuffle. Our evaluation on
a network of 100 servers demonstrates that XRD can support
2 million users in 228 seconds, which is 13× and 4× faster
than Atom and Pung, two prior systems with cryptographic
privacy guarantees.
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A Security of aggregate hybrid shuffle
The adversary’s goal is to have an upstream server suc-

cessfully tamper with some messages without getting de-
tected by the honest server. To model this, we consider the
following security game between three parties: the client,
the adversary, and the verifier. All parties are given the total
number of users M. The client controls users in set XH ⊂ [M]
(this models the honest users), and the adversary controls
users in set XA = [M]\XH . In addition, the adversary controls
servers 1, . . . ,h−1, and the verifier controls server h (i.e., the
honest server). To simplify the presentation, we assume the
adversary uses the identity permutation for all servers, but it
is easy to adapt this proof to any arbitrary permutation. Ta-
ble A lists the notation used in aggregate hybrid shuffle, and
summarizes their purposes.
1. The adversary sends the client and the verifier the pub-

lic keys bpki and mpki and ipki for i = 1, . . . ,h− 1. It
also generates NIZKs to prove that it knows the val-
ues bski = logbpki−1

(bpki) and mski = logbpki−1
(mpki)

for i = 1, . . . ,h− 1, where bpk0 = g. It sends the pub-
lic keys and NIZKs to the verifier.

2. The verifier verifies the NIZKs. The verifier
then generates the key pairs (bpkh = bpk

bskh
i−1 ,bskh),

(mpkh = bpk
mskh
i−1 ,mskh), and (ipkh, iskh), and sends the

public keys to the client and the adversary.

3. The client generates random {x j} j∈XH , and
{c j = (X j

1 = gx j ,c j
1)} j∈XH using the protocol de-

scribed in §6.2. It also generates a NIZK that it knows x j

that corresponds to X j
1 for each j, and sends both {c j}

and the NIZKs to the adversary and the verifier.

4. The adversary generates its input messages
{c j = (X j

1 ,c
j
1)} j∈XA (not necessarily by following

the protocol in §6.2). It generates a NIZK that shows it
knows the discrete log of X j

1 and sends {c j} j∈XA and the
NIZKs to the client and the verifier.

5. The verifier verifies all NIZKs.

6. For i = 1, . . . ,h− 1, the adversary sends the verifier
{X j

i+1} j∈[M], and a NIZK that shows(
M

∏
j=1

X j
i

)bski

=
M

∏
j=1

X j
i+1

by proving that

log
∏

M
j=1 X j

i

(
M

∏
j=1

X j
i+1

)
= logbpki−1

(bpki) .

It also sends the ciphertexts {c j
h
′
} to the verifier.

7. The verifier verifies all NIZKs, and checks that
ADec((X j

h )
mskh ,c j

h
′
) = (1, ·) for all j ∈ [M].

The game halts if the verifier fails to verify any NIZKs or
authenticated decryption ever fails (i.e., returns (0, ·)). The
adversary wins the game if the game does not halt and it has
successfully tampered with some messages. In other words,
the adversary wins if

1.
(

∏
M
j=1 X j

i

)bski
= ∏

M
j=1 X j

i+1 for all i = 1, . . . ,h−1,

2. there exists XT ⊂XH such that |XT |> 0 and for all j ∈XT

one of the two properties is true: (1) (X j
1 )

∏i<h bski 6= X j
h ,

or (2) (X j
1 )

∏i<h bski = X j
h and c j

h 6= c j
h
′

(i.e., the adversary
tampered with some messages),

3. and ADec((X j
h )

mskh ,c j
h
′
) = (1, ·) for all j ∈ [M].

We will now show that if the adversary can win this
game, then it can also break Diffie-Hellman. Assume
the adversary won the game. Let bskA = ∏i<h bski be
the product of the private blinding key of the adver-
sary. If the adversary won, then the first condition im-
plies that (∏M

j=1 X j
1 )

bskA = ∏
M
j=1 X j

h . Now, consider three

boolean predicates for j: c j
h

?
= c j

h
′
, (X j

1 )
bskA ?

= X j
h , and

KNOW((X j
h )

mskh), where KNOW(x) = 1 if the adversary
knows (or can compute) x, and 0 otherwise. There are eight
possible combinations of the predicates, and we consider
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Table 1: Summary of notation used in aggregate hybrid shuffle.
Notation Description

M The total number of users.
N The total number of servers.
n The total number of chains.

(iski, ipki = giski) Per-server private-public key pair used to encrypt and decrypt the inner most layer of cipher-
texts. Used to protect the messages under active attacks by malicious servers or users.

(bski,bpki) Per-server private-public key pair used to blind the users’ Diffie-Hellman keys. After shuffling
and decrypting the messages, each server blinds the Diffie-Hellman keys by raising them to
the private key bski. This hides which output message is associated with which input while
preserving some structures of the Diffie-Hellman keys, which allows us to generate efficient
zero-knowledge proofs to prove the correctness of the shuffle. The public component is used
to derive the public keys used to encrypt messages for the mix chain (i.e., {mpki}). bpki is
g∏k≤i bskk for server i in a mix chain.

(mski,mpki) Per-server private-public key pair used to encrypt and decrypt messages for shuffling. mpki is
(g∏k<i bskk)mski for server i in a mix chain.

x j The private Diffie-Hellman key of user j used to encrypt the messages for a mix chain. The
user uses the same x j for all layers of encryption, but the effective private Diffie-Hellman key
of a layer changes after a server processes the messages due to blinding.

X j
i The public Diffie-Hellman key of user j used to encrypt her message for server i. If everyone is

behaving correctly, then this should be (g∏k<i bskk)x j
.

c j
i The actual ciphertext component that encrypts the message. User j will derive the encryption

key using its private key x j and the public mixing key mpki. Server i will derive the decryption
key using its private mixing key mski and X j

i .

each combination for j ∈ XH . We indicate which combina-
tions are possible for the adversary to satisfy, given that all
authenticated decryptions were successful.
1. c j

h 6= c j
h
′
, (X j

1 )
bskA 6= X j

h , KNOW((X j
h )

mskh) = 0: IM-
POSSIBLE. Since the adversary does not know the key
used to decrypt (i.e., (X j

h )
mskh ), it cannot generate a valid

ciphertext.

2. c j
h 6= c j

h
′
, (X j

1 )
bskA 6=X j

h , KNOW((X j
h )

mskh) = 1: POSSI-
BLE. Since the adversary knows the key used to decrypt
it could generate a valid ciphertext.

3. c j
h 6= c j

h
′
, (X j

1 )
bskA = X j

h , KNOW((X j
h )

mskh) = 0: IM-
POSSIBLE. Same argument as case 1.

4. c j
h 6= c j

h
′
, (X j

1 )
bskA = X j

h , KNOW((X j
h )

mskh) = 1: IM-
POSSIBLE. If possible, then the adversary can break
the Diffie-Hellman assumption. Namely, given only
X j

1 = gx j , bskA, and (gbskA)mskh for random x j and mskh
and an independently generated bskA, it can compute
(X j

h )
mskh = gx j ·bskA·mskh . If this were possible, then given

ga and gb for random a and b, the adversary could gen-
erate an bskA, compute (gb)bskA , and compute ga·b·bskA .
It could then break the Diffie-Hellman assumption and
compute gab by raising ga·b·bskA to bsk−1

A .

5. c j
h = c j

h
′
, (X j

1 )
bskA 6= X j

h , KNOW((X j
h )

mskh) = 0: IM-
POSSIBLE. If possible, then c j

h authenticates under two

different keys (X j
1 )

bskA·mskh and (X j
h )

mskh . However, if
we model the underlying hash function of HMAC as a
random oracle, then the HMAC instantiated with a ran-
dom key is a random function. This implies that the
probability that the same ciphertext authenticates under
two different keys (i.e., collision of two random func-
tions) is negligible when using Encrypt-then-HMAC.

6. c j
h = c j

h
′
, (X j

1 )
bskA 6= X j

h , KNOW((X j
h )

mskh) = 1: POS-
SIBLE. Since the adversary knows and controls the key
used for decryption (in particular, the HMAC), it may be
able to find a key that is different from the key used to
encrypt that results in valid decryption.

7. c j
h = c j

h
′
, (X j

1 )
bskA = X j

h , KNOW((X j
h )

mskh) = 0: POS-
SIBLE. This corresponds to an untampered message.

8. c j
h = c j

h
′
, (X j

1 )
bskA = X j

h , KNOW((X j
h )

mskh) = 1: IM-
POSSIBLE. Same argument as case 4.

Thus, there are three possible combinations of predicates:
(c j

h 6= c j
h
′
, (X j

1 )
bskA 6= X j

h , KNOW((X j
h )

mskh) = 1), (c j
h =

c j
h
′
, (X j

1 )
bskA 6= X j

h , KNOW((X j
h )

mskh) = 1), and (c j
h = c j

h
′
,

(X j
1 )

bskA = X j
h , KNOW((X j

h )
mskh) = 0). The first two cases

correspond to XT (tampered messages), and the second cor-
responds exactly to XH \XT (untampered messages).

Similarly, consider j ∈ XA. The adversary generates the
ciphertexts {c j

h
′
} for the verifier. Thus, the adversary must
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know (X j
h )

mskh , the key used to authenticate the ciphertext,
for j ∈ XA.

Now, we consider the product of the users’ Diffie-Hellman
keys. Because all NIZKs have to be verified, we have that(

M

∏
j=1

X j
1

)bskA

=

(
M

∏
j=1

X j
h

)
.

Consider XU = XH \ XT , i.e., the set of messages that did
not change. Then, we can divide both sides by the values
associated with XU since (X j

1 )
bskA = X j

h for j ∈ XU :(
∏

j∈XT∪XA

X j
1

)bskA

=

(
∏

j∈XT∪XA

X j
h

)
,

since XT ∪XA = [M]\XU . We can rewrite this as(
∏
j∈XT

X j
1

)bskA

=

(
∏

j∈XT∪XA

X j
h

)
/

(
∏
j∈XA

X j
1

)bskA

. (1)

Based on our analysis of the possible predicates for XT
and XA, the adversary must know (X j

h )
mskh for j ∈ XT ∪XA.

Moreover, the adversary knows logg(X
j

1 ) for j ∈ XA (it
was required to prove the knowledge in step 4 of the
game). Thus, the adversary can compute ((X j

1 )
bskA)mskh

by computing ((gbskA)mskh)logg(X
j

1 ) for j ∈ XA (it knows
mpkh = (gbskA)mskh ). As a result, it can compute(

∏
j∈XT∪XA

(
X j

h

)mskh

)
/ ∏

j∈XA

((
X j

1

)bskA
)mskh

.

This, however, is(
∏

j∈XT∪XA

(
X j

h

)mskh

)
/ ∏

j∈XA

((
X j

1

)bskA
)mskh

=

( ∏
j∈XT∪XA

X j
h

)
/

(
∏
j∈XA

X j
1

)bskA
mskh

=

(∏
j∈XT

X j
1

)bskA
mskh

,

where the last step uses the equality from equation 1. This
means that given {X j

1 = gx j}, bskA, and (gbskA)mskh for un-
known random {x j} and mskh, and bskA that was generated
independently of {x j} and mskh, the adversary was able to
compute gbskA·mskh·∑ j∈XT x j . This essentially breaks Diffie-
Hellman.

In more detail, consider the following adversary ADH that
tries to break Diffie-Hellman. ADH is given ga and gb for
random a and b, and is asked to compute gab. To compute
this, ADH simulates the above game by simulating the clients

and the honest server. To do so, ADH chooses the blinding
keys {bski}, and sets mpkh = (∏i gbski)b = (gb)bskA ; i.e., the
private mixing key of the honest server is b. Then, it gener-
ates the inputs from the client by generating a random r j for
j ∈ XH and setting gx j = ga+r j . It also generates the inputs
associated with each message. The adversary (a simulator)
can generate valid NIZKs of knowledge of discrete logs in
the random oracle model [48]. For the first layer of encryp-
tion (which is for the “honest server” whose secret key is
the unknown b), generate random values for c j

h, since cipher-
texts are indistinguishable from random values. For the other
layers of encryption, it can generate correctly authenticated
ciphertexts by using gx j , {bski}i<h, and {mski}i<h without
knowing the value of a.

At the end of the game, the adversary can compute
gbskA·b·(∑ j∈XT x j), as described previously. From this, the ad-
versary can compute the following:

gbskA·b·(∑ j∈XT x j) = gbskA·b·(∑ j∈XT (a+r j))

= gbskA·b·(|XT |a+∑ j∈XT r j) .

Since the adversary knows bskA and r j for j ∈ XT , it can
compute

g|XT |ab = (gbskA·b·(|XT |a+∑ j∈XT r j)/(gb)bskA ∑ j∈XT r j)bsk
−1
A .

From this, it can recover gab, and break Diffie-Hellman.
Therefore, the adversary cannot win the above game if
Diffie-Hellman is hard, meaning that it could satisfy at most
two out of the three conditions to win the game. In turn, this
implies that the honest server will always catch an upstream
malicious server misbehaving.

B Security game and proof sketches
We define the security of our system using the following

security game played between a challenger and an adversary.
Both the challenger and the adversary are given the set of
users [M] = {1,2, . . . ,M}, the set of servers [N], the fraction
f of servers the adversary can compromise, and the number
of chains n.
1. The adversary selects the set of malicious servers

As ⊂ [N] such that |As| ≤ f ·N, and the set of malicious
users Ac ⊂ [M] such that |Ac| ≤ M− 2. The adversary
sends As and Ac to the challenger. Let Hs = [M]\As and
Hc = [N]\Ac denote the set of honest servers and users.

2. The challenger computes the size of each chain k as a
function of f and n, as described in §5.2. Then, it cre-
ates n mix chains by repeatedly sampling k servers per
group at random. The challenger sends the chain config-
urations to the adversary.

3. The adversary and the challenger generate blinding keys,
mixing keys, and inner keys as described in §6.1 and Ap-
pendix A.
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4. The adversary picks some honest users Ht ⊂Hc such that
|Ht | ≥ 2. It generates sets of chains {Cx} for x ∈ Ht
such that Cx ∩Cy 6= /0 for all x,y ∈ Ht . For c ∈ [n], let
Uc = {x ∈ Ht : c ∈Cx}. For each chain c, it also gener-
ates the potential messages {mc

xy} for x,y∈Uc where mc
xy

is the message that may be sent from user x to user y in
chain c. The adversary sends Ht , {{mc

xy}}, and {Cx} to
the challenger.

5. The challenger first verifies that every pair of Cx and Cy
intersects at least once. If this is not the case, the game
halts. The challenger then performs the following for
each chain c ∈ [n]. First, it creates conversation pairs for
each chain c {(Xi,Yi)c} ⊂ Uc×Uc at random such that
every x ∈Uc appears in exactly one of the pairs. In other
words, every user has a unique conversation partner per
chain. (If Xi = Yi, then that user is talking with her-
self.) For each (x,y) ∈ {(Xi,Yi)c}, the challenger onion-
encrypts the messages mc

xy from x to y and mc
yx from y to

x with the keys of servers in chain c. Then, it uses the
protocol described in §6.2 to submit the ciphertexts and
the necessary NIZKs.

6. The adversary generates inputs to the chains for the users
in Ac, and sends them to the chains.

7. The challenger and the adversary take turns processing
the messages in each chain. Within a chain, they perform
the following for i = 1, . . . ,k:

(a) If server i∈Hs, the challenger performs protocol de-
scribed in §6.3 to shuffle and decrypt the messages,
and also generate an AHS proof. The challenger then
sends the proof to the adversary, and the resulting
messages to the owner of server i+1.

(b) If server i ∈ As, the adversary generates some mes-
sages along with an AHS proof. Then, sends the
AHS proof to the challenger, and sends the messages
to the owner of server i+1.

The challenger verifies all AHS proofs.

8. The challenger and the adversary decrypt the final result
of the shuffle (i.e., the inner ciphertexts).

9. The challenger samples a random bit b ← 0,1. If
b = 0, then send the adversary {(Xi,Yi)c} for c ∈ [n].
If b = 1, then sample random conversation pairs
{(X ′i ,Y ′i )c} ⊂Uc×Uc for each chain with the same con-
straint as in step 5, and send the adversary the newly
sampled pairs.

10. The adversary makes a guess b′ for b.
The adversary wins the game if the game does not come to a
halt before the last step and b′ = b. The adversary need not
follow the protocol described in this paper. The advantage
of the adversary in this game is |Pr[b′ = b]− 1

2 |. We say
that the system provides metadata private communication if
the advantage is negligible in the implicit security parameter.

Note that this game models a stronger version of XRD, which
allows users to communicate with multiple users on different
chains rather than only one user. We could change the game
slightly to force the challenger to send loopback messages in
step 5 to model having just one conversation.

Proof sketches. First, we argue that the adversary needs to
tamper with messages prior to the last honest server shuf-
fling, as stated in §6. To see why, consider an adversary that
only tampers with the messages after the last honest server.
The adversary can learn the recipients of all messages, but
not the senders. As a result, the adversary does not learn
anything about whether two users x,y ∈ Uc received mes-
sages because there exists a conversation pair (x,y)c, or be-
cause there were two conversation pairs (x,x)c and (y,y)c.
This means that any set of conversation pairs is equally likely
to be sampled by the challenger from the adversary’s view,
meaning that the adversary does not gain any advantage.
Thus, we consider an adversary who tampers with messages
prior to the honest server processing the messages.

In this scenario, the adversary in step 7 must follow the
protocol (e.g., no tampering with the messages), as analyzed
in Appendix A. Given this restriction, we now argue that the
adversary does not learn anything after playing the security
game by describing how a simulator of an adversary could
simulate the whole game with only the public inputs and the
private values of the adversary.

The simulator can simulate step 3 by generating random
public keys. It can simulate step 5 by generating random
values in place of the ciphertexts that encrypt the users’ mes-
sages {{mc

xy}}, since the ciphertexts are indistinguishable
from random. It then randomly matches a user in Uc to
one of the generated random values for each chain c, and
sets the destination of each message as the matched user. It
onion-encrypts the final message using the randomly gener-
ated public keys and the adversary’s public keys. In step 7,
the adversary simulates the challenger by randomly permut-
ing the messages, and removing a layer of the encryption
from the messages. (It can remove a layer of encryption
since it knows all layers of onion-encryption.) Finally, it
could simulate the challenger’s last challenge by picking sets
of randomly generated conversation pairs, subject to the con-
straints in step 5. The distribution of the messages generated
and exchanged in the security game and in the simulator are
indistinguishable for a computationally limited adversary.
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Abstract
Despite growing adoption of cryptocurrencies, making fast

payments at scale remains a challenge. Payment channel

networks (PCNs) such as the Lightning Network have emerged

as a viable scaling solution. However, completing payments on

PCNs is challenging: payments must be routed on paths with

sufficient funds. As payments flow over a single channel (link)

in the same direction, the channel eventually becomes depleted

and cannot support further payments in that direction; hence,

naive routing schemes like shortest-path routing can deplete

key payment channels and paralyze the system. Today’s PCNs

also route payments atomically, worsening the problem. In this

paper, we present Spider, a routing solution that “packetizes”

transactions and uses a multi-path transport protocol to achieve

high-throughput routing in PCNs. Packetization allows Spider

to complete even large transactions on low-capacity payment

channels over time, while the multi-path congestion control

protocol ensures balanced utilization of channels and fairness

across flows. Extensive simulations comparing Spider with

state-of-the-art approaches shows that Spider requires less

than 25% of the funds to successfully route over 95% of

transactions on balanced traffic demands, and offloads 4x

more transactions onto the PCN on imbalanced demands.

1 Introduction

Despite their growing adoption, cryptocurrencies suffer

from poor scalability. For example, the Bitcoin [5] network

processes 7 transactions per second, and Ethereum [14] 15

transactions/second, which pales in comparison to the 1,700

transactions per second achieved by the VISA network [56].

Scalability thus remains a major hurdle to the adoption of

cryptocurrencies for retail and other large-scale applications.

The root of the scalability challenge is the inefficiency of

the underlying consensus protocol: every transaction must

go through full consensus to be confirmed, which can take

anywhere from several minutes to hours [43].

A leading proposal among many solutions to improve

cryptocurrency scalability [23, 32, 40] relies on so-called

payment channels. A payment channel is a cryptocurrency

transaction that escrows or dedicates money on the blockchain

for exchange with a prespecified user for a predetermined

duration. For example, Alice can set up a payment channel

with Bob in which she escrows 10 tokens for a month. Now

Alice can send Bob (and only Bob) signed transactions from

the escrow account, and Bob can validate them privately in

a secure manner without mediation on the blockchain (§2).

If Bob or Alice want to close the payment channel at any point,

they can broadcast the most recent signed transaction message

to the blockchain to finalize the transfer of funds.

The versatility of payment channels stems from payment

channel networks (PCNs), in which users who do not share

direct payment channels can route transactions through

intermediaries for a nominal fee. PCNs enable fast, secure

transactions without requiring consensus on the blockchain

for every transaction. PCNs have received a great deal of

attention in recent years, and many blockchains are looking to

PCNs to scale throughput without overhauling the underlying

consensus protocol. For example, Bitcoin has deployed the

Lightning network [10, 15], and Ethereum uses Raiden [18].

For PCNs to be economically viable, the network must be

able to support high transaction throughput. This is necessary

for intermediary nodes (routers) to profitably offset the

opportunity cost of escrowing funds in payment channels, and

for encouraging end-user adoption by providing an appealing

quality of payment service. But, a transaction is successful

only if all channels along its route have sufficient funds. This

makes payment channel routing, the protocol by which a path

is chosen for a transaction, of paramount importance.

Existing payment channel routing protocols achieve poor

throughput, for two main reasons. First, they attempt to route

each incoming transaction atomically and instantaneously, in

full. This approach is harmful, particularly for larger transac-

tions, because a transaction fails completely if there is no path

to the destination with enough funds. Second, existing routing

protocols fail to keep payment channels balanced. A payment

channel becomes imbalanced when the transaction rate across

it is higher in one direction than the other; the party making

more transactions eventually runs out of funds and cannot send

further payments without “refilling” the channel via either

an on-chain transaction (i.e., committing a new transaction

to the blockchain) or coordinated cyclic payments between a

series of PCN nodes [39]. Most PCNs today route transactions

naively on shortest paths with no consideration for channel

balance; this can leave many channels depleted, reducing

throughput for everyone in the network. We describe a third

problem, the creation of deadlocks in certain scenarios, in §3.

In this paper we present Spider, a multi-path transport

protocol that achieves balanced, high-throughput routing in

PCNs, building on concepts in an earlier position paper [51].

Spider’s design centers on two ideas that distinguish it

from existing approaches. First, Spider senders “packetize”

transactions, splitting them into transaction-units that can
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be sent across different paths at different rates. By enabling

congestion-control-like mechanisms for PCNs, this packet-

switched approach makes it possible to send large payments on

low-capacity payment channels over a period of time. Second,

Spider develops a simple multi-path congestion control

algorithm that promotes balanced channels while maximizing

throughput. Spider’s senders use a simple one-bit congestion

signal from the routers to adjust window sizes, or the number

of outstanding transaction-units, on each of their paths.

Spider’s congestion control algorithm is similar to multi-

path congestion control protocols like MPTCP [59] developed

for Internet congestion control. But the routing problem it

solves in PCNs differs from standard networks in crucial ways.

Payment channels can only route transactions by moving a

finite amount of funds from one end of the channel to the other.

Because of this, the capacity of a payment channel — the

transaction rate that it can support — varies depending on

how it is used; a channel with balanced demand for routing

transactions in both directions can support a higher rate than an

imbalanced one. Surprisingly, we find that a simple congestion

control protocol can achieve such balanced routing, despite

not being designed for that purpose explicitly.

We make the following contributions:

1. We articulate challenges for high-throughput routing

in payment channel networks (§3), and we formalize

the balanced routing problem (§5). We show that the

maximum throughput achievable in a PCN depends

on the nature of the transaction pattern: circulation

demands (participants send on average as much as they

receive) can be routed entirely with sufficient network

capacity, while demands that form Directed Acyclic

Graphs (DAGs) where some participants send more

than they receive cannot be routed entirely in a balanced

manner. We also show that introducing DAG demands

can create deadlocks that stall all payments.

2. We propose a packet-switched architecture for PCNs

(§4) that splits transactions into transaction-units and

multiplexes them across paths and time.

3. We design Spider (§6), a multi-path transport protocol

that (i) maintains balanced channels in the PCN, (ii) uses

the funds escrowed in a PCN efficiently to achieve high

throughput, and (iii) is fair to different payments.

4. We build a packet-level simulator for PCNs and validate

it with a small-scale implementation of Spider on the

LND Lightning Network codebase [15]. Our evaluations

(§7) show that (i) on circulation demands where 100%

throughput is achievable, compared to the state-of-the-art,

Spider requires 25% of the funds to route over 95% of the

transactions and completes 1.3-1.8x more of the largest

25% of transactions based on a credit card transactions

dataset [34]; (ii) on DAG demands where 100% through-

put is not achievable, Spider offloads 7-8x as many

transactions onto the PCN for every transaction on the

blockchain, a 4x improvement over current approaches.

2 Background

Bidirectional payment channels are the building blocks of a

payment channel network. A bidirectional payment channel

allows a sender (Alice) to send funds to a receiver (Bob) and

vice versa. To open a payment channel, Alice and Bob jointly

create a transaction that escrows money for a fixed amount

of time [46]. Suppose Alice puts 3 units in the channel, and

Bob puts 4 (Fig. 1). Now, if Bob wants to transfer one token

to Alice, he sends her a cryptographically-signed message

asserting that he approves the new balance. This message is

not committed to the blockchain; Alice simply holds on to it.

Later, if Alice wants to send two tokens to Bob, she sends a

signed message to Bob approving the new balance (bottom

left, Fig. 1). This continues until one party decides to close

the channel, at which point they publish the latest message

to the blockchain asserting the channel balance. If one party

tries to cheat by publishing an earlier balance, the cheating

party loses all the money they escrowed to the other party [46].

Alice Bob

Txn 2

- Alice

(3)

Alice Bob

Open

Channel

(1)

Alice Bob

Txn 1

- Bob

ç

(2)

Alice Bob

Close

Channel

(4)

Figure 1: Bidirectional payment channel between Alice and Bob.

A blue shaded block indicates a transaction that is committed to the

blockchain.

Figure 2: In a payment channel network, Alice can transfer money

to Bob by using intermediate nodes’ channels as relays. There are

two paths from Alice to Bob, but only the path (Alice, Charlie, Bob)

can support 3 tokens.

A payment channel network is a collection of bidirectional

payment channels (Fig. 2). If Alice wants to send three tokens

to Bob, she first finds a path to Bob that can support three

tokens of payment. Intermediate nodes on the path (Charlie)

will relay payments to their destination. Hence in Fig. 2, two

transactions occur: Alice to Charlie, and Charlie to Bob. To

incentivize Charlie to participate, he receives a routing fee.

To prevent him from stealing funds, a cryptographic hash

lock ensures that all intermediate transactions are only valid

after a transaction recipient knows a private key generated by

Alice [18]. 1 Once Alice is ready to pay, she gives that key to

1The protocol called Hashed Timelock Contracts (HTLCs) can be

implemented in two ways: the sender generates the key, as in Raiden [18] or

the receiver generates the key, as in Lightning [46]. Spider assumes that the

sender generates the key.
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Bob out-of-band; he can either broadcast it (if he decides to

close the channel) or pass it to Charlie. Charlie is incentivized

to relay the key upstream to Alice so that he can also get paid.

Note that Charlie’s payment channels with Alice and Bob

are independent: Charlie cannot move funds between them

without going through the blockchain.

3 Challenges in Payment Channel Networks

A major cost of running PCNs is the collateral needed to set up

payment channels. As long as a channel is open, that collateral

is locked up, incurring an opportunity cost for the owner. For

PCNs to be financially viable, this opportunity cost should be

offset by routing fees, which are charged on each transaction

that passes through a router. To collect more routing fees,

routers try to process as many transactions as possible for

a given amount of collateral. A key performance metric is

therefore the transaction throughput per unit collateral where

throughput itself is measured either in number of transactions

per second or transaction value per second.

Current PCN designs exhibit poor throughput due to

naive design choices in three main areas: (1) how to route

transactions,(2) when to send them and, (3) deadlocks.

Challenge #1: How to route transactions? A central ques-

tion in PCNs is what route(s) to use for sending a transaction

from sender to destination. PCNs like the Lightning and

Raiden networks are source-routed. 2 Most clients by default

pick the shortest path from the source to the destination.

However, shortest-path routing degrades throughput in two

key ways. The first is to cause underutilization of the network.

To see this, consider the PCN shown in Fig. 3a. Suppose we

have two clusters of nodes that seek to transact with each

other at roughly the same rate on average, and the clusters are

connected by two paths, one consisting of channels a−b, and

the other channel c. If the nodes in cluster A try to reach cluster

B via the shortest path, they would all take channel c, as would

the traffic in the opposite direction. This leads to congestion

on channel c, while channels a and b are under-utilized.

A second problem is more unique to PCNs. Consider a

similar topology in Figure 3b, and suppose we fully utilize

the network by sending all traffic from cluster A→B on edge

a and all traffic from cluster B→A on edge b. While the rate

on both edges is the same, as funds flow in one direction over a

channel, the channel becomes imbalanced: all of the funds end

up on one side of the channel. Cluster A can no longer send

payments until it receives funds from cluster B on the edge

a or it deposits new funds into the channel a via an on-chain

transaction. The same applies to cluster B on edge b. Since

on-chain transactions are expensive and slow, it is desirable to

avoid them. Routing schemes like shortest-path routing do not

account for this problem, thereby leading to reduced through-

put (§7). In contrast, it is important to choose routes that

2This was done in part for privacy reasons: transactions in the Lightning net-

work use onion-routing, which is easy to implement with source routing [33].

actively prevent channel imbalance. For example, in Figure

3b, we could send half of the A→B traffic on edge a, and half

on edge b, and the same for the B→A traffic. The challenge

is making these decisions in a fully decentralized way.

Challenge #2: When to send transactions? Another

problem is when to send transactions. Most existing PCNs are

circuit-switched: transactions are processed instantaneously

and atomically upon arrival [18, 46]. This causes a number of

problems. If a transaction’s value exceeds the available balance

on each path from the source to the destination, the transaction

fails. Since transaction values in the wild tend to be heavy-

tailed [29, 34], either a substantial fraction of real transactions

will fail as PCN usage grows, or payment channel operators

will need to provision higher collateral to satisfy demand.

Even when transactions do not fail outright, sending

transactions instantaneously and atomically exacerbates the

imbalance problem by transferring the full transaction value

to one side of the channel. A natural idea to alleviate these

problems is to “packetize” transactions: transactions can be

split into smaller transaction-units that can be multiplexed over

space (by traversing different paths) and in time (by being sent

at different rates). Versions of this idea have been proposed be-

fore; atomic multi-path payments (AMP) enable transactions

to traverse different paths in the Lightning network [3], and the

Interledger protocol uses a similar packetization to conduct

cross-ledger payments [54]. However, a key observation is that

it is not enough to subdivide transactions into smaller units:

to achieve good throughput, it is also important to multiplex

in time as well, by performing congestion control. If there is a

large transaction in one direction on a channel, simply sending

it out in smaller units that must all complete together doesn’t

improve the likelihood of success. Instead, in our design, we

allow each transaction-unit to complete independently, and a

congestion control algorithm at the sender throttles the rate of

these units to match the rate of units in the opposite direction

at the bottlenecked payment channel. This effectively allows

the tokens at that bottleneck to be replenished and reused

multiple times as part of the same transaction, achieving a

multiplicative increase in throughput for the same collateral.

Challenge #3: Deadlocks. The third challenge in PCNs is the

idea that the introduction of certain flows can actively harm the

throughput achieved by other flows in the network. To see this,

consider the topology and demand rates in Figure 3c. Suppose

nodes 1 and 2 want to transmit 1-unit transactions to node 3 at

rates of 1 and 2 units/second, respectively, and node 3 wants

to transact 2 units/sec with node 1.3 Notice that the specified

transaction rates are imbalanced: there is a net flow of funds out

of node 2 and into nodes 1 and 3. Suppose the payment channels

are initially balanced, with 10 units on each side and we only

start out with flows between nodes 1 and 3. For this demand

and topology, the system can sustain 2 units/sec by only having

nodes 1 and 3 to send to each other at a rate of 1 unit/second.

3For simplicity,we show three nodes,but a node in this example could repre-

sent a cluster of many users who wish to transact at the rates shown in aggregate.
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(a) Underutilized channels (b) Imbalanced channels (c) Deadlock

Figure 3: Example illustrating the problems with state-of-the-art PCN routing schemes.

However, once transactions from node 2 are introduced, this

example achieves zero throughput at steady-state. The reason

is that node 2 sends transactions to node 3 faster than its funds

are being replenished, which reduces its funds to 0. Slowing

down 2’s transactions would only delay this outcome. Since

node 2 needs a positive balance to route transactions between

nodes 1 and 3, the transactions between 1 and 3 cannot be

processed, despite the endpoints having sufficient balance. The

network finds itself in a deadlock that can only be resolved by

node 2 replenishing its balance with an on-chain transaction.

Why these problems are difficult to solve. The above

problems are challenging because their effects are closely

intertwined. For example, because poor routing and rate-

control algorithms can cause channel imbalance, which

in turn degrades throughput, it is difficult to isolate the

effects of each. Similarly, simply replacing circuit switching

with packet-switching gives limited benefits without a

corresponding rate control and routing mechanism.

From a networking standpoint, PCNs are very different

from traditional communication networks: payment channels

do not behave like a standard communication link with a

certain capacity, say in transactions per second. Instead, the

capacity of a channel in a certain direction depends on two

factors normally not seen in communication networks: (a) the

rate that transactions are received in the reverse direction on

that channel, because tokens cannot be sent faster on average

in one direction than they arrive in the other, (b) the delay it

takes for the destination of a transaction to receive it and send

back the secret key unlocking the funds at routers (§2). Tokens

that are “in flight”, i.e. for which a router is waiting for the

key, cannot be used to service new transactions. Therefore

the network’s capacity depends on its delay, and queued up

transactions at a depleted link can hold up funds from channels

in other parts of the network. This leads to cascading effects

that make congestion control particularly critical.

4 Packet-Switched PCN

Spider uses a packet-switched architecture that splits trans-

actions into a series of independently routed transaction-units.

Each transaction-unit transfers a small amount of money

bounded by a maximum-transaction-unit (MTU) value.

Packetizing transactions is inspired by packet switching for the

Internet, which is more effective than circuit switching [41].

Note that splitting transactions does not compromise the

security of payments; each transaction-unit can be created

with an independent secret key. As receivers receive and

acknowledge transaction-units, senders can selectively reveal

secret keys only for acknowledged transaction-units (§2).

Senders can also use proposals like Atomic Multi-Path

Payments (AMP) [3] if they desire atomicity of transactions.

In Spider, payments transmitted by source end-hosts are

forwarded to their destination end-hosts by routers within the

PCN. Spider routers queue up transaction-units at a payment

channel whenever the channel lacks the funds to forward them

immediately. As a router receives funds from the other side of

its payment channel, it uses these funds to forward transaction-

units waiting in its queue. Current PCN implementations [15]

do not queue transactions at routers—a transaction fails imme-

diately if it encounters a channel with insufficient balance on

its route. Thus, currently, even a temporary lack of channel bal-

ance can cause many transactions to fail, which Spider avoids.

5 Modeling Routing

A good routing protocol must satisfy the following objectives:

1. Efficiency. For a PCN with a fixed amount of escrowed

capital, the aggregate transaction throughput achieved

must be as high as possible.

2. Fairness. The throughput allocations to different users

must be fair. Specifically, the system should not starve

transactions of some users if there is capacity.

Low latency, a common goal in communication networks,

is desirable but not a first order concern, as long as transaction

latency on the PCN is significantly less than an on-chain

transaction (which can take minutes to hours today). However,

as mentioned previously (§3), very high latency could hurt

the throughput of a PCN, and must therefore be avoided.

We assume that the underlying communication network is

not a bottleneck and PCN users can communicate payment

attempts, success and failures with one another easily since

these messages do not require much bandwidth.

To formalize the routing problem, we consider a fluid

model of the system in which payments are modeled as

continuous “fluid flows” between users. This allows us to cast

routing as an optimization problem and derive decentralized
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algorithms from it, analogous to the classical Network Utility

Maximization (NUM) framework for data networks [45].

More specifically, for the fluid model we consider a PCN

modeled as a graph G(V,E) in which V denotes the set of

nodes (i.e., end-hosts or routers), and E denotes the set of

payment channels between them. For a path p, let xp denote

the (fluid) rate at which payments are sent along p from a

source to a destination. The fluid rate captures the long-term

average rate at which payments are made on the path.

For maximizing throughput efficiency, routing has to be

done such that the total payment flow through each channel

is as high as possible. However, routers have limited capital

on their payment channels, which restricts the maximum

rate at which funds can be routed (Fig. 3a). In particular,

when transaction units are sent at a rate xu,v across a payment

channel between u and v with cu,v funds in total and it takes

∆ time units on average to receive the secret key from a

destination once a payment is forwarded, then xu,v∆ credits

are locked (i.e., unavailable for use) at any point in time in

the channel. This implies that the average rate of transactions

(across both directions) on a payment channel cannot exceed

cu,v/∆. This leads to capacity constraints on channels.

Sustaining a flow in one direction through a payment

channel requires funds to be regularly replenished from the

other direction. This requirement is a key difference between

PCNs and traditional data networks. In PCNs if the long-term

rates xu,v and xv,u are mismatched on a channel (u, v), say

xu,v>xv,u, then over time all the funds cu,v will accumulate at v

deeming the channel unusable in the direction u to v (Fig. 3b).

This leads to balance constraints which stipulate that the total

rate at which transaction units are sent in one direction along a

payment channel matches the total rate in the reverse direction.

Lastly, for enforcing fairness across flows we assume

sources have an intrinsic utility for making payments, which

they seek to maximize. A common model for utility at a source

is the logarithm of the total rate at which payments are sent

from the source [31, 37, 38]. A logarithmic utility ensures that

the rate allocations are proportionally fair [38]—no individual

sender’s payments can be completely throttled. Maximizing

the overall utility across all source-destination pairs subject

to the capacity and balance constraints discussed above, can

then be computed as

maximize ∑
i, j∈V

log
(

∑
p∈Pi, j

xp

)
(1)

s.t. ∑
p∈Pi, j

xp≤di, j ∀i, j∈V (2)

xu,v+xv,u≤
cu,v

∆
∀(u,v)∈E (3)

xu,v=xv,u ∀(u,v)∈E (4)

xp≥0 ∀p∈P , (5)

where for a source i and destination j, Pi, j is the set of all paths

from i to j, di, j is the demand from i to j, xu,v is the total flow
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Figure 4: Payment graph (denoted by blue lines) for a 3 node

network (left). It decomposes into a maximum circulation and DAG

components as shown in (b) and (c).

going from u to v for a channel (u,v), cu,v is the total amount

of funds escrowed into (u,v), ∆ is the average round-trip time

of the network taken for a payment to be completed, and P is

the set of all paths. Equation (2) specifies demand constraints

which ensures that the total flow for each sender-receiver pair

across all of their paths, is no more than their demand.

5.1 Implications for Throughput

A consequence of the balance constraints is that certain traffic

demands are more efficient to route than certain others. In

particular, demands that have a circulation structure (total

outgoing demand matches total incoming demand at a router)

can be routed efficiently. The cyclic structure of such demands

enables routing along paths such that the rates are naturally

balanced in channels. However, for demands without a

circulation structure, i.e., if the demand graph is a directed

acyclic graph (DAG), balanced routing is impossible to

achieve in the absence of periodic replenishment of channel

credits, regardless of how large the channel capacities are.

For instance, Fig. 4a shows the traffic demand graph for

a PCN with nodes {1,2,3} and payment channels between

nodes 1−2 and 2−3. The weight on each blue edge denotes

the demand in transaction-units per second between a pair

of users. The underlying black lines denote the topology and

channel sizes. Fig. 4b shows the circulation component of

the demand in Fig. 4a. The entire demand contained in this

circulation can be routed successfully as long as the network

has sufficient capacity. In this case, if the confirmation latency

for transaction-units between 1 and 3 is less than 10s, then

the circulation demand can be satisfied indefinitely. The

remaining component of the demand graph, which represents

the DAG, is shown in Fig. 4c. This portion cannot be routed

indefinitely since it shifts all tokens onto node 3 after which

the 2−3 channel becomes unusable.

App. A formalizes the notion of circulation and shows

that the maximum throughput achievable by any balanced

routing scheme is at most the total demand contained within

the circulation.

6 Design

6.1 Intuition

Spider routers queue up transactions at a payment channel

whenever the channel lacks funds to forward them immediately

(§5). Thus, queue buildup is a sign that either transaction-units
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(b) An imbalance limited payment channel.

Figure 5: Example of queue growth in a payment channel between

routers u and v, under different scenarios of transaction arrival rates

at u and v. (a) If the rate of arrival at v, xv, and the rate of arrival at

u, xu, are such that their sum exceeds the channel capacity, neither

router has available funds and queues build up at both u and v. (b)

If the arrival rates are imbalanced, e.g., if xv >xu, then u has excess

funds while v has none, causing queue build-up at v.

are arriving faster (in both directions) than the channel can

process (Fig. 5a) or that one end of the payment channel

lacks sufficient funds(Fig. 5b). It indicates that the capacity

constraint (Equation 3) or the balance constraint (Equation 4)

is being violated and the sender should adjust its sending rate.

Therefore, if senders use a congestion control protocol that

controls queues, they could detect both capacity and imbalance

violations and react to them. For example, in Fig. 5a, the proto-

col would throttle both xu and xv. In Fig. 5b, it would decrease

xv to match the rate at which queue qv drains, which is precisely

xu, the rate at which new funds become available at router v.

This illustrates that a congestion controller that satisfies two

basic properties can achieve both efficiency and balanced rates:

1. Keeping queues non-empty, which ensures that any avail-

able capacity is being utilized, i.e., there are no unused

tokens at any router.

2. Keeping queues stable (bounded), which ensures that (a)

the flow rates do not exceed a channel’s capacity, (b) the

flow rates are balanced. If either condition is violated,

then at least one of the channel’s queues would grow.

Congestion control algorithms that satisfy these properties

abound (e.g., Reno [19], Cubic [35], DCTCP [22], Vegas [27],

etc.) and could be adapted for PCNs.

In PCNs, it is desirable to transmit transaction-units along

multiple paths to better utilize available capacity. Conse-

quently, Spider’s design is inspired by multi-path transport pro-

tocols like MPTCP [59]. These protocols couple rate control de-

cisions for multiple paths to achieve both high throughput and

fairness among competing flows [58]. We describe an MPTCP-

like protocol for PCNs in §6.2–6.3. In §6.4 we show that the

rates found by Spider’s protocol for parallel network topolo-

gies, match the solution to the optimization problem in §5.

6.2 Spider Router Design

Fig. 6 shows a schematic diagram of the various components

in the Spider PCN. Spider routers monitor the time that each

Figure 6: Routers queue up transaction-units and schedule them

based on priorities when funds become available. and transaction

priorities. If the delay through the queue for a packet exceeds a

threshold, they mark the packet. End-hosts maintain and adjust

windows for each path to a receiver based on the marks they observe.

packet spends in their queue and mark the packet if the time

spent exceeds a pre-determined threshold T . If the transaction-

unit is already marked, routers leave the field unchanged

and merely forward the transaction-unit. Routers forward

acknowledgments from the receiving end-host back to the

sender which interprets the marked bit in the ack accordingly.

Spider routers schedule transaction-units from their queues

according to a scheduling policy, like Smallest-Payment-First

or Last-In-First-Out (LIFO). Our evaluations (§7.5) shows

that LIFO provides the highest transaction success rate. The

idea behind LIFO is to prioritize transaction units from new

payments, which are likely to complete within their deadline.

6.3 Spider Transport Layer at End-Hosts

Spider senders send and receive payments on a PCN by

interfacing with their transport layer. This layer is configured

to support both atomic and non-atomic payments depending

on user preferences. Non-atomic payments utilize Spider’s

packet-switching which breaks up large payments into

transaction-units that are delivered to the receiver indepen-

dently. In this case, senders are notified of how much of the pay-

ment was completed allowing them to cancel the rest or retry it

on the blockchain. While this approach crucially allows token

reuse at bottleneck payment channels for the same transaction

(§3), senders also have the option of requesting atomic pay-

ments (likely for a higher fee). Our results (§7) show that even

with packetization, more than 95% payments complete in full

The transport layer also involves a multi-path protocol

which controls the rates at which payments are transferred,

based on congestion in the network. For each destination host,

a sender chooses a set of k paths to route transaction-units

along. The route for a transaction-unit is decided at the

sender before transmitting the unit. It is written into the

transaction-unit using onion encryption, to hide the full route

from intermediate routers [17, 33]. In §7.5, we evaluate the

impact of different path choices on Spider’s performance and

propose using edge-disjoint widest paths [21] between each

sender and receiver in Spider.

To control the rate at which payments are sent on a path,

end-hosts maintain a window size wp for every candidate

782    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



path to a destination. This window size denotes the maximum

number of transaction-units that can be outstanding on path p

at any point in time. End-hosts track the transaction-units that

have been sent out on each path but have not yet been acked

or canceled. A new transaction-unit is transmitted on a path

p only if the total amount pending does not exceed wp.

End-hosts adjust wp based on router feedback on congestion

and imbalance. In particular, on a path p between source i and

receiver j the window changes as

wp←wp−β, on every marked packet and, (6)

wp←wp+
α

∑
p′:p′∈Pi, j

wp′
, on every unmarked packet. (7)

Here, α and β are both positive constants that denote the

aggressiveness with which the window size is increased and

decreased respectively. Eq. (6)–(7) are similar to MPTCP,

but with a multiplicative decrease factor that depends on the

fraction of packets marked on a path (similar to DCTCP [22]).

We expect the application to specify a deadline for every

transaction. If the transport layer fails to complete the payment

within the deadline, the sender cancels the payment, clearing

all of its state from the PCN. In particular, it sends a cancella-

tion message to remove any transaction-units queued at routers

on each path to the receiver. Notice that transaction-units that

arrive at the receiver in the meantime cannot be unlocked be-

cause we assume the sender holds the secret key (§2). Senders

can then choose to retry the failed portion of the transaction

again on the PCN or on the blockchain; such retries would be

treated as new transactions. Canceled packets are considered

marked and Spider decreases its window in response to them.

6.4 Optimality of Spider

Under a fluid approximation model for Spider’s dynamics,

we can show that the rates computed by Spider are an optimal

solution to the routing problem in Equations (1)–(5) for

parallel networks (such as Fig. 20 in App. B). In the fluid

model, we let xp(t) denote the rate of flow on a path p at time t;

for a channel (u,v), fu,v(t) denotes the fraction of packets that

are marked at router u as a result of excessive queuing. The

dynamics of the flow rates xp(t) and marking fractions fu,v(t)
can be specified using differential equations to approximate

the window update dynamics in Equations (6) and (7). We

elaborate more on this fluid model, including specifying how

the queue sizes and marking fractions evolve, in App. B.

Now, consider the routing optimization problem (Equa-

tions (1)–(5)) written in the context of a parallel network. If

Spider is used on this network, we can show that there is a map-

ping from the rates {xp} and marking fractions { fu,v} values

after convergence, to the primal and dual variables of the op-

timization problem, such that the Karush-Kuhn-Tucker (KKT)

conditions for the optimization problem are satisfied. This

proves that the set of rates found by Spider is an optimal solu-

tion to the optimization problem [26]. The complete and formal

mathematical proof showing the above is presented in App. B.

7 Evaluation

We develop an event-based simulator for PCNs, and use it to

extensively evaluate Spider across a wide range of scenarios.

We describe our simulation setup (§7.1), validate it via a

prototype implementation (§7.2), and present detailed results

for circulation demands (§7.3). We then show the effect of

adding DAG components to circulations (§7.4), and study

Spider’s design choices (§7.5).

7.1 Experimental Setup

Simulator. We extend the OMNET++ simulator (v5.4.1) [1]

to model a PCN. Our simulator accurately models the network-

wide effects of transaction processing, by explicitly passing

messages between PCN nodes (endhosts and routers).4 Each

endhost (i) generates transactions destined for other endhosts

as per the specified workload, and (ii) determines when to send

a transaction and along which path, as per the specified routing

scheme. All endhosts maintain a view of the entire PCN topol-

ogy, to compute suitable source-routes. The endhosts can’t

view channel balances, but they do know each channel’s size

or total number of tokens (e). Endhosts also split generated

transactions into MTU-sized segments (or transaction-units)

before routing, if required by the routing scheme (e.g. by

Spider). Each generated transaction has a timeout value and

is marked as a failure if it fails to reach its destination by

then. Upon receiving a transaction, an endhost generates an

acknowledgment that is source-routed along its reverse path.

A router forwards incoming transactions and acknowledg-

ments along the payment channels specified in their route,

while correspondingly decrementing or incrementing the chan-

nel balances. Funds consumed by a transaction in a channel are

inflight and unavailable until its acknowledgment is received.

A transaction is forwarded on a payment channel only if the

channel has sufficient balance; otherwise the transaction is

stored in a per-channel queue that is serviced in a last in first

out (LIFO) order §7.5. If the queue is full, an incoming trans-

action is dropped, and a failure message is sent to the sender.

Routing Schemes. We implement and evaluate five different

routing schemes in our simulator.

(1) Spider: Every Spider sender maintains a set of up to k edge-

disjoint widest paths to each destination and a window size per

path. The sender splits transactions into transaction-units and

sends a transaction-unit on a path if the path’s window is larger

than amount inflight on the path. If a transaction-unit cannot

be sent, it is placed in a per-destination queue at the sender that

is served in LIFO order. Spider routers mark transaction-units

experiencing queuing delays higher than a pre-determined

threshold. Spider receivers echo the mark back to senders who

adjust the window size according to the equations in §6.3.

4https://github.com/spider-pcn/spider-omnet
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(2) Waterfilling: Waterfilling uses balance information explic-

itly in contrast to Spider’s 1-bit feedback. As with Spider, a

sender splits transactions into transaction-units and picks up

to k edge-disjoint widest paths per destination. It maintains

one outstanding probe per path that computes the bottleneck

(minimum) channel balance along it. When a path’s probe is

received, the sender computes the available balance based on

its bottleneck and the in-flight transaction-units. A transaction-

unit is sent along the path with the highest available balance.

If the available balance for all of the k paths is zero (or less),

the transaction-unit is queued and retried after the next probe.

(3) Shortest Path: This baseline sends transactions along the

shortest path to the destination without transaction splitting.

(4) Landmark Routing: Landmark routing, as used in prior

PCN routing schemes [42, 47, 50], chooses k well-connected

landmark nodes in the topology. For every transaction, the

sender computes its shortest path to each landmark and

concatenates it with the shortest path from that landmark to the

destination to obtain k distinct paths. Then, the sender probes

each path to obtain its bottleneck balance, and partitions the

transaction such that each path can support its share of the

total transaction. If such a partition does not exist or if any of

the partitions fail, the transaction fails.

(5) LND: The PCN scheme currently deployed in the Lightning

Network Daemon (LND) [15] attempts first send a transaction

along the shortest path to its destination. If the transaction fails

due to insufficient balance at a channel, the sender removes

that channel from its local view, recomputes the shortest path,

and retries the transaction on the new path until the destination

becomes unreachable or the transaction times out. A channel

is added back to the local view 5 seconds after its removal.

(6) Celer: App. C.1 compares Spider to Celer’s cRoute as

proposed in a white-paper [11]. Celer is a back-pressure

routing algorithm that routes transactions based on queue and

imbalance gradients. Due to computation overheads associated

with Celer’s large queues, we evaluate it on a smaller topology.

Workload. We generate two forms of payment graphs to

specify the rate at which a sender transacts with every other re-

ceiver: (i) pure circulations, with a fixed total sending rate x per

sender generated by adding x random permutation matrices;

(ii) circulations with a DAG component, having a total rate y

generated by sampling y different sender-receiver pairs where

senders and receivers are chosen from two separate exponen-

tial distributions. The distribution’s skew is set proportional

to the desired DAG component in the total traffic matrix.

We translate the rates from the payment graph to discrete

transactions with a Poisson arrival process The transaction

size distribution (Fig. 7a) is drawn from credit card transaction

data [34], and has a mean of 88e and median 25e with the

largest transaction being 3930e. Each sender sends 30 tx/sec

on average shared across 10 destinations. Note that a sender

represents a router in our setup, sending transactions to other

routers on behalf of many users.

Topology. We set up an LND node [15] to retrieve the Light-

(a) Transaction Size Distribution (b) LN Channel Size Distribution

Figure 7: Transaction dataset and channel size distribution used for

real-world evaluations.

ning Network topology on July 15, 2019. We snowball sam-

ple [36] the full topology (which has over 5000 nodes and

34000 edges), resulting in a PCN with 106 nodes and 265 pay-

ment channels. For compatibility with our transaction dataset,

we convert LND payment channel sizes from Satoshis toe, and

set the minimum channel size to the median transaction size of

25e. The distribution of channel sizes for this topology has a

mean and median size of 421e and 163e respectively (Fig. 7b).

This distribution is highly skewed, resulting in a mean that is

much larger than the median or the smallest payment channels.

We refer to this distribution as the Lightning Channel Size

Distribution (LCSD). We draw channel propagation delays

based on ping times from our LND node to all reachable nodes

in the Lightning Network, resulting in RTTs of about a second.

We additionally simulate two synthetic topologies: a

Watts-Strogatz small world topology [20] with 50 nodes

and 200 edges, and a scale-free Barabasi-Albert graph [4]

with 50 nodes and 336 edges. We set the per-hop delay to

30ms in both cases, resulting in RTTs of 200-300ms. For

payment channel sizes, we use real capacities in the Lightning

topology and sample capacities from LCSD for synthetic

topologies. We vary the mean channel size across experiments

by proportionally scaling up the size of each payment channel.

All payment channels are initialized with perfect balance.

Parameters. We set the MTU as 1e. Every transaction has

a timeout of 5 seconds. Schemes with router queues enabled

have a per-channel queue size of 12000e. The number of path

choices is set to k=4 for schemes that use multiple paths. We

vary both the number of paths and the nature of paths in §7.5.

For Spider, we set α (window increase factor) to 10, β (mul-

tiplicative decrease factor) to 0.1, and the marking threshold

for the queue delay to 300ms. For the experiments in §7.4, we

set this threshold to 75ms to for faster response to congestion.

Metrics. We use the following evaluation metrics: (i) transac-

tion success ratio: the number of completed transactions over

the number of generated transactions. A packetized transaction

is complete when all of its transaction-units are successful,

(ii) normalized throughput: the total amount of payments (in

e) completed over the total amount of payments generated,

(iii) transaction latency: time between arrival and completion

for successful transactions, and (iv) offload factor: number

of transactions offloaded to the PCN for every on-chain trans-

action. All of these metrics are computed over a measurement
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Figure 8: Comparison of performance on simulator and implemen-

tation for LND and Spider on a 10 node scale-free topology with 1e

transactions. Spider outperforms LND in both settings. Further, the

average success ratio on the simulator and implementation for both

schemes are within 5% of each other.

interval when all schemes are in steady-state. Unless specified

otherwise, we use a measurement interval of 800-1000s,

run experiments for 1010s, and denote the maximum and

minimum statistic across five runs using error-bars.

7.2 Prototype Implementation

To support Spider, we modify the Lightning Network Daemon

(LND) [15] which is currently deployed on the live Bitcoin

Network. We repurpose the router queues to queue up

transactions (or HTLCs) that cannot be immediately serviced.

When a transaction spends more than 75ms in the queue,

Spider marks it. The marking is echoed back via an additional

field in the transaction acknowledgement (FulfillHTLC) to

the sender. We maintain a per-receiver state at the sender to

capture the window and number inflight on each path, as well

as the queue of unattempted transactions. Each sender finds

4 edge-disjoint shortest paths to every destination. We do not

implement transaction-splitting.

We deploy our modified LND implementation [15] on

Amazon EC2’s c5d.4xlarge instances with 16 CPU cores, 16

GB of RAM, 400 GB of NVMe SSD, and a 10 Gbps network in-

terface. Each instance hosts one end-host and one router. Every

LND node is run within a docker container with a dedicated bit-

coin daemon [6]. We create our own regtest [8] blockchain for

the nodes. Channels are created corresponding to a scale-free

graph with 10 nodes and 25 edges. We vary the mean channel

size from 25e to 400e. Five circulation payment graphs are

generated with each sender sending 100 tx/s (each 1e). Re-

ceiving nodes communicate invoices via etcd [13] to sending

nodes who then complete them using the appropriate scheme.

We run LND and Spider on the implementation and measure

the transaction RTTs to inform propagation delays on the

simulator. We then run the same experiments on the simulator.

Fig. 8 shows the average success ratio that Spider and LND

achieve on the implementation and the simulator. There are

two takeaways: (i) Spider outperforms LND in both settings

and, (ii) the average success ratio on the simulator is within

5% of the implementation for both schemes. Our attempts

at running experiments at larger scale showed that the LND

codebase is not optimized for high throughput. For example,

persisting HTLC state on disk causes IO bottlenecks and

variations of tens of seconds in transaction latencies even

on small topologies. Given the fidelity and flexibility of the

simulator, we chose to use it for the remaining evaluations.

7.3 Circulation Payment Graph Performance

Recall that on circulation payment graphs, all the demand

can theoretically be routed if there is sufficient capacity (§5.1

and App. A). However, the capacity at which a routing scheme

attains 100% throughput depends on the scheme’s ability to

balance channels: the more balanced a scheme is, the less

capacity it needs for high throughput.

Efficiency of Routing Schemes. We run five circulation traffic

matrices on our three topologies (§7.1). Notice that the channel

sizes are much larger on the Lightning Topology compared

to the other two due to the highly skewed nature of capacities

(Fig. 7b). We measure success ratio for the transactions across

different channel sizes. Fig. 9 shows that on all topologies,

Spider outperforms the state-of-the-art schemes. Spider suc-

cessfully routes more than 95% of the transactions with less

than 25% of the capacity required by LND. At lower capacities,

Spider completes 2-3×more transactions than LND. This is be-

cause Spider maintains balance in the network by responding

quickly to queue buildup at payment channels, thus making bet-

ter use of network capacity. The explicit balance-aware scheme,

Waterfilling, also routes more transactions than LND. However,

when operating in low capacity regimes, where many paths are

congested and have near-zero available balance, senders are

unable to use just balance information to differentiate paths. As

a result, Waterfilling’s performance degrades at low capacity

compared to Spider which takes into account queuing delays.

Size of Successful Payments. Spider’s benefits are most

pronounced at larger transaction sizes, where packetization

and congestion control helps more transactions complete.

Fig. 10 shows success ratio as a function of transaction size.

We use mean channel sizes of 4000e and 16880 e for the

synthetic and real topologies, respectively. Each shaded

region denotes a different range of transaction sizes, each

corresponding to about 12.5% of the transactions in the

workload. A point within a range represents the average

success ratio for transactions in that interval across 5 runs.

Spider outperforms LND across all sizes, and is able to route

5-30% more of the largest transactions compared to LND.

Impact on Latency. We anticipate Spider’s rate control

mechanism to increase latency. Fig. 11 shows the average

and 99th percentile latency for successful transactions on the

Lightning topology as a function of transaction size. Spider’s

average and tail latency increase with transaction size because

larger transactions are multiplexed over longer periods of

time. However, the tail latency increases much more than the

average because of the skew in channel sizes in the Lightning

topology: most transactions use large channels while a few

unfortunate large transactions need more time to reuse tokens

from smaller channels. Yet, the largest Spider transactions

experience at most 2 seconds of additional delay when
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Figure 9: Performance of different algorithms on small-world, scale-free and Lightning Network topologies, for different per sender transaction

arrival rates. Spider consistently outperforms all other schemes achieving near 100% average success ratio. Note the log scale of the x-axes.

Figure 10: Breakdown of performance of different schemes by size of transactions completed. Each point reports the success ratio for

transactions whose size belongs to the interval denoted by the shaded region. Each interval corresponds roughly to a 12.5% weight in the

transaction size CDF shown in Fig. 7a. The graphs correspond to the midpoints of the corresponding Lightning sampled channel sizes in Fig. 9.

compared to LND, a small hit relative to the 20% increase in

overall success ratio at a mean channel size of 16880e. LND’s

latency also increases with size since it retries transactions,

often upto 10 times until it finds a single path with enough

capacity. In contrast, Landmark Routing and Shortest path are

size-agnostic in their path-choice for transactions.

Waterfilling pauses transactions when there is no available

balance and resumes sending when balance becomes available.

Small transactions are unlikely to be paused in their lifetime

while mid-size transactions are paused a few times before

they complete. In contrast, large transactions are likely to be

paused many times, eventually getting canceled if paused too

much. This has two implications: (i) the few large transactions

that are successful with Waterfilling are not paused much and

contribute smaller latencies than mid-size transactions, and

(ii) Waterfilling’s conservative pause and send mechanism

implies there is less contention for the large transactions that

are actually sent into the network, leading to smaller latencies

than what they experience with Spider.

7.4 Effect of DAGs

Real transaction demands are often not pure circulations:

consumer nodes spend more, and merchant nodes receive

●Shortest Path Landmark Routing Waterfilling LND Spider
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Figure 11: Average and 99%ile transaction latency for different

routing schemes on the Lightning topology. Transactions experience

1-2s of additional latency with Spider relative to LND for a 20%

improvement in throughput.

more. To simulate this, we add 5 DAG payment graphs (§7.1)

to circulation payment graphs, varying the relative weight

to generate effectively 5%, 20% and 40% DAG in the total

demand matrix. We run all schemes on the Lightning topology

with a mean channel size of 16880e; results on the synthetic

topologies are in App. C.4.

Fig. 12 shows the success ratio and normalized throughput.

We immediately notice that no scheme achieves the theoretical

upper bound on throughput (i.e., the % circulation demand).

However, throughput is closer to the bound when there is a

smaller DAG component in the demand matrix. This suggests
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Figure 12: Performance of different algorithms on the Lightning

topology as the DAG component in the transaction demand matrix is

varied. As the DAG amount is increased, the normalized throughput

achieved is further away from the expected optimal circulation

throughput.

that not only is the DAG itself unroutable, it also alters the PCN

balances in a way that prevents the circulation from being fully

routed. Further, the more DAG there is, the more affected the

circulation is. This is because the DAG causes a deadlock (§3).

To illustrate this, we run two scenarios: (i) a pure circulation

demand X for 3000s, and (ii) a traffic demand (X +Y ) con-

taining 20% DAG for 2000s followed by the circulation X for

1000s after that. Here, each sender sends 200e/s of unit-sized

transactions in X . We observe a time series of the normalized

throughput over the 3000s. The mean channel size is 4000e

and 16990e for the synthetic and real topologies respectively.

Fig. 13 shows that Spider achieves 100% throughput

(normalized by the circulation demand) at steady state for the

pure circulation demand on all topologies. However, when

the DAG component is introduced to the demand, it affects the

topologies differently. Firstly, we do not observe the expected

80% throughput for the circulation in the presence of the DAG

workload suggesting that the DAG affects the circulation.

Further, even once the circulation demand is restored for the

last 1000s, in the scale free and Lightning Network topology,

the throughput achieved is no longer 100%. In other words, in

these two topologies, the DAG causes a deadlock that affects

the circulation even after the DAG is removed.

As described in §3, the solution to this problem involves

replenishing funds via on-chain rebalancing, since DAG

demands continuously move money from sources to sinks. We

therefore implement a simple rebalancing scheme where every

router periodically reallocates funds between its payment

channels to equalize their available balance. The frequency of

rebalancing for a router, is defined by the number of successful

transaction-units (in e) between consecutive rebalancing

events. In this model, the frequency captures the on-chain

rebalancing cost vs. routing fee trade-off for the router.

Fig. 14 shows the success ratio and normalized throughput

achieved by different schemes when rebalancing is enabled

for the traffic demand with 20% DAG from Fig. 12, or Fig. 13.

Spider is able to achieve 90% success ratio even when its

routers rebalance only every 10,000e routed while LND is

never able to sustain more than 85% success ratio even when

rebalancing for every 10e routed. This is because LND deems
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Figure 13: Comparing throughput when a pure circulation demand

is run for 3000s to a scenario where a circulation demand is restored

for 1000s after 2000s of a demand with 20% DAG. The throughput

achieved on the last 1000s of circulation is not always the expected

100% even after the DAG is removed.

Figure 14: Performance of different algorithms on the Lightning

topology when augmented with on-chain rebalancing. Spider needs

less frequent rebalancing to sustain high throughput. Spider offloads

3-4x more transactions onto a PCN per blockchain transaction than

LND.

a channel unusable for 5 seconds every time a transaction

fails on it due to lack of funds and this is further worsened by

its lack of transaction splitting. This implies that when using

Spider, routers need to pay for only one on-chain transaction

typically costing under 1e [7] for every 10,000e routed. Thus,

for a router to break even, it would have to charge 1e for every

10000e routed. This translates into significantly lower routing

fees for end-users than today’s payment systems [12]. Fig. 14

also captures the same result in the form of the best offloading

or number of off-chain PCN transactions per blockchain trans-

action achieved by each algorithm. Transactions that fail on the

PCN as well as rebalancing transactions are counted towards

the transactions on the blockchain. Spider is able to route 7-8

times as many transactions off-chain for every blockchain

transaction, a 4x improvement from the state-of-the-art LND.

7.5 Spider’s Design Choices

In this section, we investigate Spider’s design choices with re-

spect to the number of paths, type of paths, and the scheduling

algorithm that services transaction-units at Spider’s queues.

We evaluate these on both the real and synthetic topologies

with channel sizes sampled from the LCSD, and scaled to have

mean of 16880e and 4000e respectively .

Choice of Paths. We vary the type of paths that Spider uses by

replacing edge-disjoint widest paths with edge-disjoint short-

est paths, Yen’s shortest paths [60], oblivious paths [48] and
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Figure 16: Performance of Spider as the number of edge-disjoint

widest paths considered per sender-receiver pair is varied on different

topologies. Increasing the number of paths increases success ratio,

but the gains are low in going from 4 to 8 paths.

a heuristic approach. For the widest and oblivious path com-

putations, the channel size acts as the edge weight. The heuris-

tic picks 4 paths for each flow with the highest bottleneck

balance/RTT value. Fig. 15 shows that edge-disjoint widest

paths outperforms other approaches by 1-10% on the Lightning

Topology while being only 1-2% worse that edge-disjoint short-

est paths on the synthetic topologies. This is because widest

paths are able to utilize the capacity of the network better when

there is a large skew (Fig. 7b) in payment channel sizes.

Number of Paths. We vary the maximum number of edge-

disjoint widest paths Spider allows from 1 to 8. Fig. 16 shows

that, as expected, the success ratio increases with an increase

in number of paths, as more paths allow Spider to better utilize

the capacity of the PCN. While moving from 1 to 2 paths

results in 30-50% improvement in success ratio, moving from

4 to 8 paths has negligible benefits (<5%). This is because the

sparseness of the three PCN topologies causes most flows to

have at most 5-6 edge-disjoint widest paths. Further, Spider

prefers paths with smaller RTTs since they receive feedback

faster resulting in the shortest paths contributing most to the

overall rate for the flow. As a result, we use 4 paths for Spider.

Scheduling Algorithms. We modify the scheduling algo-

rithm at the per-destination queues at the sender as well as

the router queues in Spider to process transactions as per

First-In-First-Out (FIFO), Earliest-Deadline-First (EDF)

and Smallest-Payment-First (SPF) in addition to the LIFO

baseline. Fig. 17 shows that LIFO achieves a success ratio

that is 10-28% higher than its counterparts. This is because
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Figure 17: Performance of Spider as the scheduling algorithm at

the sender and router queues is varied. Last in first out outperforms

all other approaches by over 10% on all topologies.

LIFO prioritizes transactions that are newest or furthest from

their deadlines and thus, most likely complete especially when

the PCNs is overloaded. Spider’s rate control results in long

wait times in the sender queues themselves. This causes FIFO

and EDF that send out transactions closest to their deadlines

to time out immediately in the network resulting in poor

throughput. When SPF deprioritizes large payments at router

queues, they consume funds from other payment channels for

longer, reducing the effective capacity of the network.

7.6 Additional Results

In addition to the results described so far, we run additional

experiments that are described in the Appendices.

1. We compare Spider to Celer, as proposed in a white-

paper [11], and show that Spider outperforms Celer’s

success ratio by 2x on a scale free topology with 10 nodes

and 25 edges (App. C.1).

2. We evaluate the schemes on the synthetic and real

topologies with a simpler channel size distribution where

all channels have equal numbers of tokens. Even in

this scenario, Spider is able to successfully route more

than 95% of the transactions with less than 25% of the

capacity required by LND (App. C.2).

3. We evaluate the schemes for their fairness across multiple

payments and show that Spider does not hurt small

payments to gain on throughput (App. C.3).

4. We show the effect of DAG workloads on synthetic

topologies. In particular, we identify deadlocks with those

topologies too and show that Spider requires rebalancing

only every 10,000e successfully routed to sustain high

success ratio and normalized throughput (App. C.4).

8 Related Work

PCN Improvements. Nodes in current Lightning Network

implementations, maintain a local view of the network

topology and source-route transactions along the shortest

path [2, 15]. Classical max-flow-based alternatives are

impractical for the Lightning Network that has over 5000

nodes and 30,000 channels [9, 16] due to their computational

complexity. Recent proposals have used a modified version

of max-flow that differentiates based on the size of transac-

tions [57]. However, inferring the size of payments is hard in
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an onion-routed network like Lightning.

Two main alternatives to max-flow routing have been

proposed: landmark routing and embedding-based routing.

In landmark routing, select routers (landmarks) store routing

tables for the rest of the network, and nodes only route trans-

actions to a landmark [55]. This approach is used in Flare [47]

and SilentWhispers [42, 44]. Embedding-based or distance-

based routing learns a vector embedding for each node, such

that nodes that are close in network hop distance are also

close in embedded space. Each node relays each transaction to

the neighbor whose embedding is closest to the destination’s

embedding. VOUTE [49] and SpeedyMurmurs [50] use

embedding-based routing. Computing and updating the embed-

ding dynamically as the topology and link balances change is

a primary challenge of these approaches. Our experiments and

prior work [51] show that Spider outperforms both approaches.

PCN improvements outside of the routing layer focus on

rebalancing existing payment channels more easily [28, 39].

Revive [39] leverages cycles within channels wanting to

rebalance and initiates balancing off-chain payments between

them. These techniques are complementary to Spider and can

be used to enhance overall performance. However, §7.4 shows

that a more general rebalancing scheme that moves funds at

each router independently fails to achieve high throughput

without a balanced routing scheme.

Utility Maximization and Congestion Control. Network

Utility Maximization (NUM) is a popular framework for de-

veloping decentralized transport protocols in data networks to

optimize a fairness objective [37]. NUM uses link “prices” de-

rived from the solution to the utility maximization problem,and

senders compute rates based on these router prices. Congestion

control algorithms that use buffer sizes or queuing delays as

router signals [22,30,53] are closely related. While the Internet

congestion control literature has focused on links with fairly

stable capacities, this paper shows that they can be effective

even in networks with capacities dependent on the input rates

themselves. Such problems have also been explored in the

context of ride-sharing, for instance [24, 25], and require new

innovation in both formulating and solving routing problems.

9 Conclusion

We motivate the need for efficient routing on PCNs and

propose Spider, a protocol for balanced, high-throughput

routing in PCNs. Spider uses a packet-switched architecture,

multi-path congestion control, and and in-network scheduling.

Spider achieves nearly 100% throughput on circulation

payment demands across both synthetic and real topologies.

We show how the presence of DAG payments causes deadlocks

that degrades circulation throughput, necessitating on-chain

intervention. In such scenarios, Spider is able to support 4x

more transactions than the state-of-the-art on the PCN itself.

This work shows that Spider needs less on-chain rebalanc-

ing to relieve deadlocked PCNs. However, it remains to be

seen if deadlocks can be prevented altogether. Spider relies on

routers signaling queue buildup correctly to the senders, but

this work does not analyze incentive compatibility for rogue

routers aiming to maximize fees. A more rigorous treatment

of the privacy implications of Spider routers relaying queuing

delay is left to future work.
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Figure 18: Example payment graph (denoted by blue lines) for a

five node network (left). It decomposes into a maximum circulation

and DAG components as shown in (b) and (c).

Appendices

A Circulations and Throughput Bounds

For a network G(V, E) with set of routers V , we define a

payment graph H(V,EH) as a graph that specifies the payment

demands between different users. The weight of any edge (i, j)
in the payment graph is the average rate at which user i seeks

to transfer funds to user j. A circulation graph C(V,EC) of a

payment graph is any subgraph of the payment graph in which

the weight of an edge (i, j) is at most the weight of (i, j) in the

payment graph, and moreover the total weight of incoming

edges is equal to the total weight of outgoing edges for each

node. Of particular interest are maximum circulation graphs

which are circulation graphs that have the highest total demand

(i.e., sum of edge weights), among all possible circulation

graphs. A maximum circulation graph is not necessarily

unique for a given payment graph.

Proposition 1. Consider a payment graph H with a maximum

circulation graph C∗. Let ν(C∗) denote the total demand in C∗.

Then, on a network in which each payment channel has at least

ν(C∗) units of escrowed funds, there exists a balanced routing

scheme that can achieve a total throughput of ν(C∗). However,

no balanced routing scheme can achieve a throughput greater

than ν(C∗) on any network.

Proof. Let wC∗(i, j) denote the payment demand from any

user i to user j in the maximum circulation graph C∗. To see

that a throughput of ν(C∗) is achievable, consider routing the

circulation demand along the shortest paths of any spanning

tree T of the payment network G. In this routing, for any pair of

nodes i, j∈V there exists a unique path from i to j in T through

which wC∗(i, j) amount of flow is routed. We claim that such

a routing scheme is perfectly balanced on all the links. This

is because for any partition S,V\S of C∗, the net flow going

from S to V\S is equal to the net flow going from V\S to S in

C∗. Since the flows along an edge e of T correspond precisely

to the net flows across the partitions obtained by removing e in

T , it follows that the flows on e are balanced as well. Also, for

any flow (i, j) in the demand graph C∗, the shortest path route

from i to j in T can cross an edge e at most once. Therefore

the total amount of flow going through an edge is at most the

total amount of flow in C∗, which is ν(C∗).
Next, to see that no balanced routing scheme can achieve

a throughput greater than ν(C∗), assume the contrary and

Figure 19: Model of queues at a payment channel between nodes

u and v. xuv and yuv denote the rates at which transaction-units for

v arrive into and get serviced at the queue at u respectively. cuv is the

capacity of the payment channel and quv denotes the total number

of transaction-units waiting in u’s queue to be serviced.

suppose there exists a balanced routing scheme SCH with a

throughput greater than ν(C∗). Let HSCH ⊆ H be a payment

graph where the edges represent the portion of demand that

is actually routed in SCH. Since ν(HSCH)>ν(C∗), HSCH is not

a circulation and there exists a partition S,V\S such that the

net flow from S to V\S is strictly greater than the net flow from

V\S to S in HSCH. However, the net flows routed by SCH across

the same partition S,V\S in G are balanced (by assumption)

resulting in a contradiction. Thus we conclude there does

not exist any balanced routing scheme that can achieve a

throughput greater than ν(C∗).

B Optimality of Spider

B.1 Fluid Model

In this section we describe a fluid model approximation of the

system dynamics under Spider’s protocol. Following a similar

notation as in §5, for a path p we let xp(t) denote the rate of

flow on it at time t. For a channel (u,v) and time t, let qu,v(t)
be the size of the queue at router u, fu,v(t) be the fraction of

incoming packets that are marked at u, xu,v(t) be the total

rate of incoming flow at u, and yu,v(t) be the rate at which

transactions are serviced (i.e., forwarded to router v) at u. All

variables are real-valued. We approximate Spider’s dynamics

via the following system of equations

ẋp(t)=

[
xp(t)

∑p′∈Pip , jp
xp′(t)

− ∑
(u,v)∈p

fu,v(t)xp(t)

]+

xp(t)

∀p∈P

(8)

q̇u,v(t)=[xu,v(t)−yu,v(t)]
+
qu,v(t)

∀(u,v)∈E (9)

ḟu,v(t)=[qu,v(t)−qthresh]
+
fu,v(t)

∀(u,v)∈E, (10)

where yu,v(t)=yv,u(t)=




cu,v

2∆ if qu,v(t)>0 & qv,u(t)>0

min{
cu,v

2∆ ,xv,u(t)} if qu,v(t)>0 & qv,u(t)=0

min{
cu,v

2∆ ,xu,v(t)} if qu,v(t)=0 & qv,u(t)>0

min{
cu,v

2∆ ,xu,v(t),xv,u(t)} if qu,v(t)=0 & qv,u(t)=0

(11)

for each (u, v) ∈ E. Let ip and jp denote the source and

destination nodes for path p respectively. Then, Pip, jp denotes
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the set of all paths ip uses to route to jp. Equation (8) models

how the rate on a path p increases upon receiving successful

acknowledgements or decreases if the packets are marked,

per Equations (6) and (7) in §6.3. If the fraction of packets

marked at each router is small, then the aggregate fraction of

packets that return marked on a path p can be approximated

by the sum ∑(u,v)∈p fu,v [52]. Hence the rate which marked

packets arrive for a path p is ∑(u,v)∈p fu,vxp. Similarly, the

rate which successful acknowledgements are received on a

path p is xp(1 − ∑(u,v)∈p fu,v), which can be approximated

as simply xp if the marking fractions are small. Since Spider

increases the window by 1/(∑p′∈Pip , jp
wp′) for each successful

acknowledgement received, the average rate at which xp

increases is xp/(∑p′∈Pip , jp
xp′). Lastly, the rate xp cannot

become negative; so if xp = 0 we disallow ẋp from being

negative. The notation (x)+y means x if y>0 and 0 if y=0.

Equations (9) and (10) model how the queue sizes and

fraction of packets marked, respectively, evolve at the routers.

For a router u in payment channel (u, v), by definition yu,v

is the rate at which transactions are serviced from the queue

qu,v, while transactions arrive at the queue at a rate of xu,v

(Figure 19). Hence the net rate at which qu,v grows is given by

the difference xu,v−yu,v. The fraction of packets marked at a

queue grows if the queue size is larger than a threshold qthresh,

and drops otherwise, as in Equation (10). This approximates

the marking model of Spider (§6.2) in which packets are

marked at a router if their queuing delay exceeds a threshold.

To understand how the service rate yu,v evolves (Equa-

tion (11)), we first make the approximation that the rate at

which transactions are serviced from the queue at a router u is

equal to the rate at which tokens are replenished at the router,

i.e., yu,v=yv,u for all (u,v)∈E. The precise value for yu,v at any

time, depends on both the arrival rates and current occupancy of

the queues at routers u and v. If both qu,v and qv,u are non-empty,

then there are no surplus of tokens available within the chan-

nel. A token when forwarded by a router is unavailable for ∆
time units, until its acknowledgement is received. Therefore the

maximum rate at which tokens on the channel can be forwarded

is cu,v/∆, implying yu,v+yv,u=cu,v or yu,v=yv,u=cu,v/(2∆) in

this case. If qu,v is non-empty and qv,u is empty, then there are

no surplus tokens available at u’s end. Router v however may

have tokens available, and service transactions at the same rate

at which they are arriving, i.e., yv,u=xv,u. This implies tokens

become available at router u at a rate of xv,u and hence yu,v=xv,u.

However, if the transaction arrival rate xv,u is too large at v, it

cannot service them at a rate more than cu,v/(2∆) and a queue

would start building up at qv,u. The case where qu,v is empty

and qv,u is non-empty follows by interchanging the variables u

and v in the description above. Lastly, if both qu,v and qv,u are

empty, then the service rate yu,v can at most be equal to the ar-

rival rate xv,u. Similarly yv,u can be at most xu,v. Since yu,v=yv,u

by our approximation, we get the expression in Equation (11).

We have not explicitly modeled delays, and have made

simplifying approximations in the fluid model above. Nev-
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Figure 20: Example of a parallel network topology with bidirectional

flows on each payment channel.

ertheless this model is useful for gaining intuition about the

first-order behavior of the Spider protocol. In the following

section, we use this model to show that Spider finds optimal

rate allocations for a parallel network topology.

B.2 Proof of Optimality

Consider a PCN comprising of two sets of end-hosts

{e1,...,em} and {e′1,...,e
′
n} that are connected via k parallel

payment channels (r1,r
′
1),...,(rk,r

′
k) as shown in Figure 20.

The end-hosts from each set have demands to end-hosts on

the other set. The end-hosts within a set, however, do not have

any demands between them. Let the paths for different source-

destination pairs be such that for each path p, if p contains

a directed edge (ri, r
′
i) for some i then there exists another

path (for a different source-destination pair) that contains the

edge (r′i,ri). We will show that running Spider on this network

results in rate allocations that are an optimal solution to the op-

timization problem in Equations (1)–(5). Under a fluid model

for Spider as discussed in §B.1, assuming convergence, we

observe that in the steady-state the time derivatives of the rate

of flow of each path (Equation (8)) must be non-positive, i.e.,

1

∑p′∈Pip , jp
x∗

p′
− ∑

(u,v)∈p

f ∗u,v

{
=0 if x∗p>0

≤0 if x∗p=0
∀p∈P , (12)

where the superscript ∗ denotes values at convergence (e.g.,

x∗p is the rate of flow on path p at convergence). Similarly, the

rate of growth of the queues must be non-positive, or

x∗u,v

{
=y∗u,v if q∗u,v>0

≤y∗u,v if q∗u,v=0
∀(u,v)∈E. (13)

Now, consider the optimization problem in Equations (1)–(5)

for this parallel network. For simplicity we will assume

the sender-receiver demands are not constrained. From

Equation (13) above, the transaction arrival rates x∗u,v and

x∗v,u for a channel (u, v) satisfy the capacity constraints in

Equation (3). This is because x∗u,v ≤ y∗u,v from Equation (13)

and yu,v(t) is at most
cu,v

2∆ from Equation (11). Similarly the
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transaction arrival rates also satisfy the balance constraints

in Equation (4). To see this, we first note the that the queues

on all payment channels through which a path (corresponding

to a sender-receiver pair) passes must be non-empty. For

otherwise, if a queue q∗u,v is empty then the fraction of marked

packets on a path p through (u,v) goes to 0, and the rate of

flow x∗p would increase as per Equation (8). Therefore we have

x∗u,v=y∗u,v (from Equation (13)) for every channel. Combining

this with yu,v(t)=yv,u(t) (Equation (11)), we conclude that the

arrival rates are balanced on all channels. Thus the equilibrium

rates {x∗p : p∈P} resulting from Spider are in the feasible set

for the routing optimization problem.

Next, let λu,v ≥ 0 and µu,v ∈ R be the dual variables

corresponding to the capacity and balance constraints,

respectively, for a channel (u, v). Consider the following

mapping from f ∗u,v to λu,v and µu,v

λ∗u,v←( f ∗u,v+ f ∗v,u)/2 ∀(u,v)∈E (14)

µ∗u,v← f ∗u,v/2 ∀(u,v)∈E, (15)

where the superscript ∗ on the dual variables indicate that they

have been derived from the equilibrium states of the Spider

protocol. Since fu,v(t) is always non-negative (Equation (10)),

we see that λ∗u,v≥ 0 for all (u,v). Therefore {λ∗u,v : (u,v)∈E}
and {µ∗u,v : (u,v)∈E} are in the feasible set of the dual of the

routing optimization problem.

Next, we have argued previously that the queues on all pay-

ment channels through which a path (corresponding to a sender-

received pair) passes must be non-empty. While we used this

observation to show that the channel rates x∗u,v are balanced, it

also implies that the rates are at capacity, i.e., x∗u,v=cu,v/(2∆),
or x∗u,v+x∗v,u =cu,v/∆ for all (u,v). This directly follows from

Equation (13) and the first sub-case in Equation (11). It follows

that the primal variables {x∗p : p∈ P} and the dual variables

{λ∗u,v :(u,v)∈E},{µ∗u,v :(u,v)∈E} satisfy the complementary

slackness conditions of the optimization problem.

Last, the optimality condition for the primal variables on

the Lagrangian defined with dual variables {λ∗u,v : (u,v)∈E}
and {µ∗u,v :(u,v)∈E} stipulates that

1

∑p′∈Pip , jp
xp′
− ∑

(u,v)∈p

(λ∗u,v+µ∗u,v−µ∗v,u)

{
=0 if xp>0

≤0 if xp=0
,

(16)

for all p∈P . However, note that for any path p

∑
(u,v)∈p

(λ∗u,v+µ∗u,v−µ∗v,u)= ∑
(u,v)∈p

f ∗u,v+ f ∗v,u

2
+

f ∗u,v

2
−

f ∗v,u

2

= ∑
(u,v)∈p

f ∗u,v, (17)

where the first equation above follows from our mapping

for λ∗u,v and µ∗u,v in Equations (14), (15). Combining this

with Equation (12), we see that xp ← x∗p for all p ∈ P is
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Figure 21: Spider’s performance relative to Celer on a 10 node scale

free topology. Spider achieves a 2x improvement in success ratio

even at Celer’s peak performance. Celer’s performance dips after a

peak since it maintains larger queues at higher capacities, eventually

causing timeouts.

a valid solution to the Equation (16). Hence we conclude

that {x∗p : p ∈ P} and {λ∗u,v : (u,v) ∈ E}, {µ∗u,v : (u,v) ∈ E}
are optimal primal and dual variables, respectively, for the

optimization problem. The equilibrium rates found by Spider

for the parallel network topology are optimal.

C Additional Results

C.1 Comparison with Celer

We run five circulation traffic matrices for 610s on a scale free

topology with 10 nodes and 25 edges to compare Spider to

Celer [11], a back-pressure based routing scheme. Each node

sends 30 txns/s and we vary the mean channel size from 200e

to 6400e. We measure the average success ratio and success

volume for transactions in the 400-600s interval and observe

that Spider outperforms Celer at all channel sizes. Celer splits

transactions into transaction-units at the source but does not

source-route individual transaction-units. Instead, transaction-

units for a destination are queued at individual routers and

forwarded on the link with the maximum queue and imbalance

gradient for that destination. This approach tries to maximize

transaction-units in queues to improve network utilization.

However, queued-up and in-flight units in PCNs hold up tokens

in other parts of the network while they are in-flight waiting

for acknowledgements, reducing its capacity. Celer transac-

tions also use long paths, sometimes upto 18 edges in this

network with 25 edges. Consequently, tokens in Celer spend

few seconds in-flight in contrast to the hundreds of millisec-

onds with Spider. The time tokens spent in-flight also increases

with channel size since Celer tries to maintain larger queues.

Celer’s performance dips once the in-flight time has increased

to the point where transactions start timing out before they can

be completed. Due to computational constraints associated

with large queues, we do not run Celer on larger topologies.

C.2 Circulations on Synthetic Topologies

We run five circulation traffic matrices for 1010s on our three

topologies with all channels having exactly the tokens denoted

by the channel size. Fig. 22 shows that across all topologies,
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Figure 22: Performance of different algorithms on different topologies with equal channel sizes with different per sender transaction arrival

rates. Spider consistently outperforms all other schems achieving near 100% average success ratio. Error-bars denote the maximum and minimum

success ratio across five runs. Note the log scale of the x-axes.

Figure 23: Breakdown of performance of different schemes by size of transactions completed. Each point reports the success ratio for

transactions whose size belongs to the interval denoted by the shaded region. Each interval corresponds roughly to 12.5% of the CDF denoted

in Fig. 7a. The graphs correspond to the (right) midpoints of the corresponding Lightning sampled channel sizes in Fig. 9.

Figure 24: CDF of normalized throughput achieved by different flows

under different schemes across topologies. Spider achieves close to

100% throughput given its proximity to the black demand line. Spider

is more vertical line than LND because it is fairer: it doesn’t hurt the

throughput of smaller flows to attain good overall throughput.

Spider outperforms the state-of-the-art schemes on success

ratio. Spider is able to successfully route more than 95% of

the transactions with less than 25% of the capacity required by

LND. Further Fig. 23 shows that Spider completes nearly 50%

more of the largest 12.5% of the transactions attempted in the

PCN across all three topologies. Even the waterfilling heuristic

outperforms LND by 15-20% depending on the topology.

C.3 Fairness of Schemes

In §7.3, we show that Spider outperforms state-of-the art

schemes on the success ratio achieved for a given channel

capacity. Here, we break down the success volume by flows

(sender-receiver pairs) to understand the fairness of the scheme

to different pairs of nodes transacting on the PCN. Fig. 24

shows a CDF of the absolute throughput in e/s achieved by

different protocols on a single circulation demand matrix when

each sender sends an average of 30 tx/s. The mean channel

sizes for the synthetic topologies and the real topologies with

LCSD channel sizes are 4000e and 16880e respectively. We

run each protocol for 1010s and measure the success volume

for transactions arriving between 800-1000s. We make two

observations: (a) Spider achieves close to 100% throughput

in all three scenarios, (b)Spider is fairer to small flows (most

vertical line) and doesn’t hurt the smallest flows just to benefit

on throughput. This is not as true for LND.

C.4 DAG Workload on Synthetic Topologies

Fig. 25 shows the effect of adding a DAG component to

the transaction demand matrix on the synthetic small world

and scale free topologies. We observe the success ratio and
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Figure 25: Performance of different algorithms across all topologies

as the DAG component in the transaction demand matrix is varied. As

the DAG amount is increased, the normalized throughput achieved

is further away from the expected optimal circulation throughput.

The gap is more pronounced on the real topology.

Figure 26: Performance of different algorithms across all topologies

as the DAG component in the transaction demand matrix is varied. As

the DAG amount is increased, the normalized throughput achieved

is further away from the expected optimal circulation throughput.

The gap is more pronounced on the real topology.

normalized throughput of different schemes with five different

traffic matrices with 30 transactions per second per sender

under 5%, 20%, 40% DAG components respectively. No

scheme is able to achieve the maximum throughput. However,

the achieved throughput is closer to the maximum when there

is a smaller component of DAG in the demand matrix. This

suggests again that the DAG affect PCN balances in a way

that also prevents the circulation from going through. We

investigate what could have caused this and how pro-active

on-chain rebalancing could alleviate this in §7.4.

Fig. 26 shows the success ratio and normalized throughput

achieved by different schemes when rebalancing is enabled

for the 20% DAG traffic demand from Fig. 25. Spider is

able to achieve over 95% success ratio and 90% normalized

throughput even when its routers balance only every 10,000e

while LND is never able to sustain more than 75% success ratio

even when rebalancing for every 10e routed. This implies that

Spider makes PCNs more economically viable for both routers

locking up funds in payment channels and end-users routing

via them since they need far fewer on-chain rebalancing events

to sustain high throughput and earn routing fees.
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Abstract – Today, it is difficult for operators to detect com-
promised VMs in their data centers (DCs). Despite their
benefits, the compromise detection systems operators offer
are mostly unused. Operators are faced with a dilemma: allow
VMs to remain unprotected, or mandate all customers use
the compromise detection systems they provide. Neither is
appealing: unprotected VMs can be used to attack other VMs.
Many customers would view a mandate to use these detection
systems as unacceptable due to privacy and performance con-
cerns. Data from a production cloud show their compromise
detection systems protect less than 5% of VMs.

PrivateEye is a scalable and privacy-preserving solution.
It uses summaries of network traffic patterns obtained from
the vSwitch, rather than installing binaries in customer VMs,
introspection at the hypervisor, or packet captures. It ad-
dresses the challenge of protecting all VMs at DC-scale while
preserving customer privacy and using low-signal data. We
developed PrivateEye to meet the needs of production DCs.
Evaluation on VMs of both internal and customer VM’s shows
it has an area under the ROC curve – the graph showing the
model’s true positive rate vs its false positive rate – of 0.96.

1 Introduction
Data center (DC) VMs today are largely unprotected – cus-
tomers often don’t use the compromise detection systems
operators offer [1–3]. These systems monitor processes, net-
work traffic, and CPU and disk usage from inside the VM or
through introspection at the hypervisor to detect if the VM is
compromised. We refer to them as OBDs (operator-provided
and introspection-based detectors). Customers are reluctant
to use OBDs due to privacy and performance concerns. Op-
erators can mandate all 1st-party VMs (those running the
provider’s workloads) use OBDs but can’t require the same of
their customers: our measurements of Azure reveal over 95%
of VMs don’t use OBDs! Operators are thus limited to using
non-intrusive methods that prevent VMs from being compro-
mised (e.g., firewalls, ACLs, [4, 5]). But these techniques do
not always detect attacks before they succeed (see §2) and
without additional protections, VMs in the DC can become
and remain compromised for a long time.

It is important to close this gap and protect all VMs. Com-
promised VMs can be used to attack the DC infrastructure, or
another customer’s co-located VMs [6]. Operators need to be
able to detect compromised VMs and protect all customers
without needing their explicit permission or cooperation to
do so. Our goal is to provide protection at DC scale while
preserving customer privacy, without visibility into customer
VMs and without extensive and expensive monitoring.
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Figure 1: A VM’s flows before and after compromise. The
numbers on the edges are port numbers.

Here lies an interesting challenge: OBDs monitor process
execution, check binaries and VM logins [1–3, 7–12], but
without such detailed information, what hope do we have?
Two observations help tackle this problem. First, we can
learn the behavior of common attackers using information
collected from VMs where OBDs are deployed. Second, a
VM’s flow patterns often change once it is compromised [13]
e.g., the VM starts communicating with a command and
control server (C&C), attempts to find and compromise other
vulnerable VMs, or tries to attack the DC infrastructure. For
example, Figure 1 shows a compromised VM discovered in
Azure and its flow pattern before and after compromise. Our
analysis of compromised VMs in Azure shows it is common
to observe changes in network flow patterns when VMs are
compromised. We expect our observations to be applicable
to other providers’ DCs as well.

Others have tried using network data to detect compro-
mised machines but their work doesn’t satisfy our scalabil-
ity and privacy needs. Many studies [14–23] route traffic
through middleboxes, rely on packet captures, or deep packet
inspection (DPI) to extract features which are difficult, if
not impossible, to gather through other means (e.g., packet
payload). Continuous packet captures at scale come with
prohibitive performance overheads and violate privacy by
capturing application payloads. Packet captures contain per-
sonally identifiable information (PII), e.g. users’ IP addresses,
with stringent usage requirements [24]. Routing through mid-
dleboxes limits scalability, results in single points of failure,
adds latency, and reduces throughput [25].

We present PrivateEye, a compromise detection system that
runs at DC scale. PrivateEye is tailored to detect common
attackers targeting the cloud, runs continuously, and complies
with GDPR mandates [24]. It avoids expensive data collec-
tion by using flow pattern summaries to detect compromised
VMs. It uses OBDs’ detections on the VMs the operator
can protect to learn the change in flow patterns of compro-
mised VMs. Most OBD detections, which we use to train the
model, are customer VMs (see §9), and so the learned model
is expected to generalize to non-1st-party VMs: PrivateEye
applies this model to all VMs in the DC. PrivateEye uses
random forests (RFs), an interpretable, supervised, machine
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learning (ML) model. These models generalize well and can
infer, potentially complex, relationships in the input and are
interpretable [26]. They often have higher accuracy compared
to deployed heuristics (§4) while having similar performance
overhead. PrivateEye leverages these properties to offer a
practical solution for compromise detection at scale.

PrivateEye’s role is to monitor all VMs in the DC and nar-
row the search space of VMs that need to be investigated. It
is designed to have accuracy comparable to OBDs. Once Pri-
vateEye identifies a suspicious VM, operators can use other,
more invasive, methods which require customer permission
to confirm its detections before shutting down the VM or
moving them into a sandbox (see §5).

PrivateEye uses detections from OBDs inside VMs running
real workloads to learn the change in the network behavior
of compromised VMs. Deployed OBDs (only 5% of VMs)
provide PrivateEye with a continuous feed of detections: Pri-
vateEye can identify changes in the attacker’s behavior as
well as new attacks as it can be continuously retrained in the
background. PrivateEye is one of the few systems that can
leverage a continuous stream of detections. Attackers may
attempt to avoid detection. Retraining may not be sufficient
to detect all such attempts, but PrivateEye is still beneficial
as it makes it harder for attackers to damage other VMs and
the DC infrastructure: they would need to constantly modify
their malware to avoid detection. Our contributions are:
1) Creating a scalable, privacy-preserving, compromise detec-
tion system that runs without needing customer permission.
It operates without packet captures, without DPI, without
fine-grained per-packet data, without using IP addresses, and
without visibility into the VM.
2) Reporting on a deployment of PrivateEye’s collection agent
(CA) that has been running on every host across all DCs of
our cloud for two years. It collects network-level data by
querying the vSwitch [27] co-located on the same host.
3) Addressing the practical challenges of extracting features
from coarse-grained flow summaries [28]. We use a novel
feature construction approach that allows the ML model to
detect changes in a VM’s flow pattern while protecting cus-
tomer privacy and keeping the feature vector small.
4) Evaluating PrivateEye using data from our public cloud as
well as analyzing the model’s false and true positives, feature
importance, and design tradeoffs using the same dataset.

Our evaluations on a mix of both our internal and customer
VMs, running real workloads, and set aside for testing, shows
PrivateEye detects ∼ 96% of the compromised VMs detected
by OBDs with only a modest 1% false positive rate. This
true/false positive rate is acceptable for our needs.
2 We need DC-scale compromise detection
We first show the need for DC-scale compromise detection:
Cloud VMs are constantly under attack. Brute-force at-
tacks continue to pose a threat to DCs. We show the distribu-
tion of the arrival rate of SSH login attempts by unauthorized
users to VMs located in 3 major cloud providers and 4 dif-
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Figure 2: CDF of Rate of SSH login attempts for each
provider (left) and for each region (right).

ferent regions across the globe (Figure 2). We deployed 120
VMs in each provider’s DCs. We see VMs are subject to
repeated login attempts and at least 3 VMs in each region
experience at least one SSH login attempt per second (VMs
in these experiments were monitored to ensure none of them
are compromised). The time to discovery of a VM – the time
from when it is deployed to the first SSH login attempt – is
also short: many VMs are discovered in less than 15 minutes
(Figure 3). VMs are under constant threat. This is not sur-
prising but it serves to show we need constant monitoring of
VMs in case any of these attempts succeed.
VMs do get compromised when customers are careless.
Customers may fail to use strong passwords – providers en-
force them, but many users change these passwords after-
wards. Such VMs are susceptible to brute-forcers. We created
100 of them in our DCs – we ensured they were not co-located
with other VMs and monitored them to ensure they did not
harm other VMs. We chose passwords from the top 30 of
the 1000 most used passwords [29]. The minimum time to
compromise – the time from when it was instantiated to when
the first successful login occurred – was 5 minutes (password
12345678) with a maximum of 47 hours (password: base-
ball). These VMs did not have OBDs, and none of them were
flagged by any other intrusion detection service.
Compromised VMs are used to attack other VMs. Many
exploits require code to be co-located with the victim. Ac-
cess to a VM in the cloud allows attackers to bypass ACLs
and firewalls that only protect VMs from external attackers.
Compromised VMs may attempt to compromise other VMs:
in one day, our OBDs found 1637 VMs attempting SQL-
injection attacks and 74 attempting brute-force login. While
small compared to the massive scale of the DC, these numbers
only describe those VMs with OBDs. The magnitude of the
problem is much greater when scaled up to all VMs.

OBDs (during Jan-June 2018) showed 14% of alerts were
VMs brute-forcing other VMs and 13.87% were VMs scan-
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Figure 3: CDF of time between VM deployment and the 1st
login attempt per provider (left) and region (right).
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PrivateEye Heuristic
AUC 0.96 0.5

Table 1: Comparison of PrivateEye to deployed heuristic.
ning for vulnerable ports. Furthermore, 7.7% of compromised
VMs were compromised through brute-force attacks.

3 PrivateEye’s threat model
Our threat model is similar to other infrastructure services.
We do not trust any VM (they can run arbitrary code). We
assume we can trust the hypervisors, network, and hardware.

PrivateEye relies on detections from OBDs deployed on
a subset of VMs. We use this data as labels during training
for the ML model. We assume this data cannot be faked,
manipulated, or altered. We also assume OBDs can accurately
detect when a VM is compromised. Specifically, we assume
false positive/negatives rate of OBDs is sufficiently small –
after all, they are accurate enough to be used to protect the
provider’s 1st-party VMs which are critical to its business.

Malware can adapt its behavior in order to conceal ma-
licious behavior. We assume OBDs adapt to such changes
and re-training PrivateEye with their more recent detections
can help it adapt to them as well (see §9). We assume many
attackers do not discriminate between VMs that are protected
by OBDs and those that are not: the same attackers that suc-
cessfully compromise protected VMs can also (one can argue
more easily) compromise others and by learning their behav-
ior, through OBD detections, PrivateEye can protect other
(unprotected) VMs in the DC from these attackers.

4 Simple heuristics are ineffective
Our operators have used insights from past OBD detections to
build a rule-based solution. To motivate using ML, we com-
pare PrivateEye to this strawman which was used to protect
VMs without OBDs in our DCs. It encodes learnings from
honeypots and past OBD detections to a per-VM score which
measures the similarity of a VM’s flows to those attacking
honeypots or past OBD detections. Metrics such as having
more than 500 flows/sec to a port/IP, changing DNS servers,
or too many DNS flows increase the score. The increase is
weighted by the operators’ confidence in the signature.

This (strawman) heuristic identifies VMs engaged in brute-
force or port-sweeping attacks accurately but rarely detects
other compromises. We use the area under the receiver op-
erating characteristic curve (ROC) – the graph that plots the
true positive rate vs false positive rate of an algorithm – or
AUC to measure accuracy. Higher AUCs indicate better accu-
racy. The heuristic has an AUC of 0.5 (PrivateEye’s is 0.96).
Indeed, by only testing on port-sweeping VMs, the heuris-
tic’s AUC increases to 0.69. Looking at its false positives,
10 legitimate VMs, spanning 3 Virtual Networks (VNets),
had scores above 10 (A VNet is a virtual network set up by
a user to connect its VMs). Three of the VMs were in our
canary VNet. Canaries continuously ping on port 10000 to
check network connectivity: all of the VNet’s VMs had many
flows to port 10000 which is why they all had high scores

(c) Temporal behavior 
(comparison to VNet distribution)  

Figure 4: Comparing compromised VMs to VMs in their
VNET. µ: average Bps of a VNet to each destination; σ:
standard deviation. (a) Distribution of flows to VMs in the
VNET. (b) Distribution of flows to IPs outside of the DC. (c)
Temporal behavior.

(≥ 2). PrivateEye’s high AUC shows using ML with the right
features helps avoid such false positives.
5 PrivateEye’s design requirements
Our design requirements for PrivateEye are:
GDPR compliance. The European law on data privacy
(GDPR [24]) mandates any personally identifiable informa-
tion (PII) should be tracked in case the customer wishes to
inspect (or delete) it. Operators are required to answer cus-
tomer requests within 48 hours and have two choices: join
and tag data with meta-data to be able to identify which cus-
tomer it relates to or avoid storing any and all PII data. For
example, a VM’s public IP (and the IPs it communicates with)
has to be mapped to the customer’s account and stored with
all network telemetry from their VM. Public IPs are dynami-
cally allocated and would need to be tracked in time which
can result in significant and unnecessary overhead.

Even without such customer requests, this data has to be
deleted from all company data-stores after 30 days to avoid
violations. GDPR makes it expensive to sustain solutions
relying on PII data. PrivateEye relies on 10-minute flow
pattern summaries and ignores specific IP addresses.
Low runtime overhead. PrivateEye should have low per-
formance overhead, should be able to run at DC-scale, and
shouldn’t interfere with ongoing traffic. Many, state-of-the-
art, compromise detection systems have high performance
overhead and cannot be used extensively in the cloud. For
example, DPI (e.g., [15]) adds additional per-packet delays
which prohibits serving traffic at line-rate (40− 100 Gbps).
Packets may be mirrored to dedicated middleboxes that can
run DPI off the critical path but our experience with simi-
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Figure 5: An example of a VM’s flow pattern before and after
it was compromised.

lar systems (e.g., EverFlow [30]) show they put significant
load on the network and that they are hard to scale. We can
re-implement DPI based solutions using new programmable
switches [31] to improve performance, however, these solu-
tions are not yet ready for production as packets need to be
re-circulated [32] which prevents serving packets at line-rate.
Detect malware in the wild. Many past approaches observed
malware in a sandbox to build behavioral signatures (e.g., [7]).
Malware may change its behavior if it detects it is in a sandbox
(e.g, [33]). OBD detections from production VMs provide a
rich dataset about malware behavior in the wild which Priva-
teEye can learn from. PrivateEye uses this learned behavior
to detect other instances of compromise.
Ability to generalize. Customers constantly bring up new
VMs and shut-down old ones. We should not rely on learning
from specific VMs or even customers. PrivateEye can gen-
eralize to VMs (and even customers) not in its training set:
our evelauation test sets (see 8) comprises of customer and
internal VMs and VNets that are never in the training set.
Operate as a first line of defense. OBDs use extensive mon-
itoring. PrivateEye has a more restricted view of the VMs. It
is used as a preliminary detector to avoid unnecessary penalty
(OBD mandate) on a large number of customers. Its goal is
to reduce monitoring overhead and operational complexity
and to protect all VMs without needing customer permission
until further investigation is necessary. Once it flags a VM
as suspect, it can raise an alert to the customer to ask for
permission to investigate the VMs further through other more
invasive and expensive techniques at the operator’s disposal.

CA

Analysis agent

HDFS

VM VM VM

CA

VM VM VM

VM

VM

VM

Run-time workflow
Offline training workflow
Both online and offlineData center network

Unprotected VMs

VMs with OBDs

Honeypots
Predict Train

vSwitch vSwitch

Distributed
Store

Figure 6: System overview of PrivateEye.
For example, our operators have access to VHD-scanners and
can also use DPI-based systems on one-time packet captures
of the VM’s traffic1. PrivateEye provides “just-cause” for
operators to use these tools when it flags a VM as suspect.
These approaches are automated and can be run without oper-
ator intervention. PrivateEye assigns scores to each detection
allowing operators to pick the right tradeoff between the true
and false positive rates for their needs. PrivateEye is not
meant to fully replace OBDs, we encourage customers who
require stronger protections to opt-in to OBDs providers offer.
6 System Design
PrivateEye runs continuously and scales to large clouds with
low overhead. The privacy sensitive fields it collects are
anonymized using a keyed hash message authentication code
(HMAC) during data collection and deleted once we construct
the features. Figure 6 shows PrivateEye’s design. We use two
arrow types to differentiate training and run-time workflows.
PrivateEye has two parts: the collection agent (CA) and the
analysis agent (AA). The CA is responsible for data collection
and the AA for analysis and detection. We next describe the
key ideas behind its design:
A VM’s flow pattern changes when it is compromised. We
have observed a VM’s flow patterns change once compro-
mised. Almost all malware we studied (using our honeypots)
changed the machine’s DNS, few connected to the same set
of external IPs, some connected on the reserved port for NTP
to non-NTP servers, and those mining for digital currency
had flows on port 30303. We ask whether these changes are
visible on VMs running real workloads (as opposed to idle
honeypots)? We leverage 1-month of our OBD detections to
answer this question and compare the flow pattern of com-
promised VMs to others in their VNet. Within each VNet,
we see similar behavior for all VMs. But when the VM is
compromised, it starts to deviate from the typical behavior of
other VMs in its VNet (Figure 4).

Figure 4 a-b compares the spatial distribution – the fraction
of flows going to other VMs belonging to the same customer
vs. to other VMs in the DC vs. machines outside of the
DC – of flows originating from VMs sharing a VNet. We
observe only 30% of the non-compromised VMs have flows
destined to IPs outside of their VNet whereas this number is
as high as 50% as we get closer to when the compromise was
detected and roughly 80% around the time of detection. It

1These are only collected if the VM is suspected.
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seems, at least in these instances, after the VMs were com-
promised they tended to communicate more with destinations
outside their VNet. The VM’s temporal behavior also shows
changes in behavior around the time of compromise (Figure 4-
c). The volume of traffic each VM sends to individual IPs is
often close to the VNet average but when compromised, VMs
exhibit increased deviations from this mean. Our manual
analysis of their flow patterns showed noticable changes in
behavior after compromise. We omit most of this analysis
due to space restrictions but show one example. We show
(Figure 5) the flow pattern of a 1st-party VM before it was de-
tected as being compromised (11:30 AM). We see the VM’s
flow pattern change drastically from its, previously stable,
normal behavior when we get closer to the time of detection.
We use these insights when constructing features.
We can get accurate flow-summaries from the vSwitch
with low overhead. The vSwitch [27] processes all packets
of all flows to/from the VM and keeps simple, per-flow state
(Table 2) for all active flows. PrivateEye leverages this feature
to obtain accurate per-VM flow summaries (see §7.1).
Using OBDs to create labeled data for training. Private-
Eye is trained on data from VMs running OBDs. Our DCs run
two types of OBDs: (a) Those running on our 1st-party VMs:
these VMs often have in-kernel instrumentation for detecting
compromise. (b) Those running on customer VMs: customers
can opt-in and use OBDs and if they do so, they can deploy
and run them inside their VMs. All of the OBDs we use are
built on top of Defender [34] (Windows) and ClamAV [35]
(Linux) but also monitor irregular login behavior, system calls,
and many other parameters. Although OBDs are intrusive
the system as a whole meets our privacy requrements: Azure
owns all 1st-party VMs, and the only 3rd-party VMs where we
use OBDs are those where the customer has explicitly given
permission. Note, customer OBDs are less common but, in-
terestingly, despite their lower popularity most compromise
detections are from these OBDs (see §9).

We hypothesize many compromised VMs exhibit similar
flow-pattern changes to those compromised VMs that were
detected by OBDs; because often attackers run attacks against
IPs in the cloud irrespective of the services deployed behind
those IPs or who owns them (non-targetted attacks §2). Our
evaluations confirm this hypothesis as PrivateEye is tested on
internal and customer VMs and workloads that are not in the
training set and achieves an AUC of 0.96.
Using supervised-learning to learn flow-pattern changes.
Anomaly detection and clustering approaches seem natural
approaches for solving our problem. We have tried anomaly
detection [36], cross entropy [37], ECP [38], TSNE [39], and
k-means [40], and also AutoEncoders [41] but anomalies
were routinely observed in many VM’s lifetimes and it was
hard for operators to distinguish between anomalies that were
caused by malware and those which were intended VM behav-
ior. Even a tainting + clustering approach i.e., marking points
in the clusters with compromised examples as compromised,

Metric Description
Time Timestamp of data collected
Direction Incoming to/Outgoing from VM
Anonymized Source IP Source IP in first SYN packet*
Anonymized Source VNetId VNetId of source IP if any*
Anonymized Dest IP Destination IP in first SYN packet*
Anonymized Dest VNetId VNetId of destination IP if any*
Protocol Protocol if known
Dest Port Destination port in first SYN packet
BPS In # of bytes/sec incoming to VM
BPS Out # of bytes/sec outgoing from VM
PPS In # of packets/sec incoming to VM
PPS Out # of packets/sec outgoing to VM
Unique Flows # of unique 5-tuples collected
Total Flows # of unique 5-tuples

(both collected and missed flows)

Table 2: Data collected by the CA (not the features). *These
fields are removed entirely after feature creation.

resulted in higher false positives compared to PrivateEye.
We need to detect specific changes that point to the VM

becoming compromised (as opposed to finding all anoma-
lies). We chose supervised learning and specifically random
forests as they have low overhead. They are debug-able, ex-
plainable, highly accurate, and resilient to overfitting [42].
They construct multiple decision trees over a random subset
of features during training. Each decision tree uses a greedy
algorithm to (1) iteratively pick features with the most infor-
mation gain [43], (2) makes a decision using values of each
feature, and (3) iterates until it reaches a “leaf”. Leaves either
consist of samples with a single label, or have samples where
one label is the majority. At run-time, the algorithm traverses
the tree for each test case and returns the majority label (from
training) at the leaf. Random forests output the mean predic-
tion across trees and the fraction of trees that predicted each
label. We use this fraction as a score to measure confidence
and to control PrivateEye’s false positives. Operators use it to
decide what to do. We set the model’s hyperparameters (e.g.,
max-depth) using Bayesian optimization [44].
Using informative features. In section §7.1 we will describe
PrivateEye’s CA and how it collects the raw data in Table 2.
Privacy-sensitive fields, such as the IPs and VNet ID, are
anonymized. Here, we describe the raw data itself, the chal-
lenges in extracting privacy-preserving features from this raw
data, and how we create these features.

PrivateEye uses three sets of features: graph-based,
protocol-based, and aggregate features:
(1) Graph-based features. We want to detect the changes in a
VM’s flow pattern that indicate it is compromised. The IPs
the VM connects to are a crucial part of these flow patterns
but using them as features is not possible for two reasons:

Privacy – IPs are anonymized and removed once the fea-
tures are created. We cannot map IPs geographically nor can
we classify them according to the AS that owns them.

Data-sparsity – using IPs as features results in a large fea-
ture vector (232) and by extension an extremely sparse train-
ing set. The curse of dimensionality dictates: to maintain
accuracy, as the number of features increase, the number of
training samples must also increase [45]. This is especially
problematic for training supervised models as compromised
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Figure 7: Variance captured by the first n PCs.

VMs are rare – our datasets are imbalanced and have more
non-compromised examples and far fewer compromised ex-
amples. Using IP-prefixes is not possible: the smallest usable
prefix size (to avoid spanning multiple ASes) is \24 but this
results in a 224 feature vector which is, again, too large.

Proior work [20, 28, 46, 47] have acknowledged this prob-
lem and attempted to solve it by operating at the granularity
of flows instead of VMs – classifying individual flows as ma-
licious to avoid using IPs as features. While finding malicous
flows is useful when implementing ACLs or firewalls it is
hard to identify compromised VMs without viewing their flow
patterns as a whole and, in some cases, comparing the VM’s
flow patterns to that of others. Other works in networking
(e.g., [42, 48, 49]) have also used ML. But IPs are not relevant
to the problems they tackle and are not used as features. But
in the context of compromise detection, IPs play an impor-
tant part. We present a novel feature construction approach
which allows us to summarize graph evolutions, including
IP-related changes, using temporal and spatial features. We
do not need access to the specific IPs for constructing these
features (avoiding privacy problems) nor do we need to use
232 feature-vectors (avoiding data-sparsity problems). Our
intuition, based on the observations we presented earlier, is
that to detect changes in a VM’s flow pattern, features should
describe its change both in time and space and compare it not
just to its own past behavior but also to others.

Temporal graph-features: capture how a VM’s flow pat-
terns change over time compared to itself and other VMs.
We will first describe the intuition behind our solution in the
context of an example:

Suppose a compromised VM connects to a C&C server
with IP a.b.c.d. We can, for all VMs in the DC, build the CDF
of bytes sent to IP a.b.c.d over time. If only a few of the other
VMs in its DC have been compromised, flows to IP a.b.c.d
from the compromised VM would fall in the top portion of
this CDF, e.g. the top 10%. The flow to IP a.b.c.d falls
into this top 10% interval because such flows were unique
to compromised VMs – by mapping the flow to this interval
we capture the relevant information for detecting whether the
VM is compromised. Other, similar changes are also possible.
This is why we use a combination of four such CDFs:

• For each VM, the distribution of each flow according to
its “Bps out” over the course of one hour.

• For each VM, the distribution of all flow according to
their “Bps out” over the course of 10 minutes.

• For each remote IP, the distribution of all flows to that

IP address across all VMs in the DC according to their
“Bps out” over 10 minutes.

• For each remote IP, the distribution of all flows connect-
ing to that IP address across all VMs in the DC according
to their “Bps out” in 1 hour.

We divide each CDF into five buckets: top 1%, top 1-
10%, middle, bottom 1-10%, and bottom 1%. Flows are then
projected to a lower dimension based on the bucket they fall
into on each of these CDFs . The results are then combined
with other features for each VM in each 10 minute period.

These CDFs describe a VM’s flows through time as com-
pared to itself and other VMs in the same region. There
are other possible CDFs we could use. Finding the optimal
selection is the subject of future work.

Spatial graph-features: We classify each flow in one of
three categories based on its endpoints: (a) both are in the
same VNet (b) both belong to the cloud provider (different
VNets) (c) one is an external IP. We aggregate each metric
in Table 2 for each group. We can build these groups using
the anonymized VNetIds (which we remove after feature
construction). Specifically, the same anonymized VNetIds
point to VMs in the same VNet, different ones point to VMs
in different VNets, and absent Ids point to external IPs.
(2) Protocol Features. A flow’s destination port can help
identify the application protocol being used. Often attack-
ers/malware use specific protocols for communication. There
are numerous examples we found when deploying PrivateEye
where the set of protocols used by the VM changed once it
was compromised. We created a list of 32 ports of interest
including 22 (SSH), 53 (DNS), 80 (HTTP), 123 (NTP), 443
(TLS), 30303 (mining digital currency), and 3389 (RDP). For
each of these ports, we aggregated five of the metrics shown
in Table 2 to construct six features: “Direction” (incoming vs.
outgoing), “PPS In”, “PPS Out”, “BPS In”, “Unique Flows”.
(3) Aggregate Features. Finally, we also use the total num-
ber of bytes sent/received and the total number of incom-
ing/outgoing connections as additional features.
There is no good linear summary of the feature-set. We
have constructed k = 2116 features. We next check whether
there is a more compact representation of the data using
Principle Component Analysis (PCA) [50]. Each principal
component (PC) corresponds to an Eigenvalue of the data,
and the sum of these Eigenvalues equals its variance. We
find we need to keep 75% of the PCs to keep 99% of the
variance (Figure 7). Therefore, PCA is not a good candidate
for dimensionality reduction in this problem.

Interestingly, if we only focus on compromised VMs, we
see 99% of the variance in the dataset can be captured with
only 16% of the PCs: the space of compromised VMs (as
described by these features) is more compact. But, there is
little overall linear dependence across features. This is yet
another motivation for using information theoretic and/or ML-
based techniques as the number of features is large and it is
hard to build human-tuned heuristics using these features.
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7 System Implementation
We next discuss each of PrivateEye’s building blocks in more
detail and describe how they are implemented in practice.
7.1 The collection agent
A highly performant CA is crucial in achieving our perfor-
mance and scalability requirements. We have deployed our
CA on all hosts across all our DCs. It runs continuously and
polls the vSwitch for the data in Table 2 every 10 seconds.
The vSwitch records this data for each flow and for each VM
within this period: the choice of polling period does not result
in data loss but only impacts CPU usage.

The interface to the vSwitch uses read locks2. Although
the vSwitch has higher priority to obtain the lock, the CA
limits its query to 5000, randomly selected, flows per 10s
and per VM to reduce the impact of contention. If the total
flows within the polling period exceed this limit for a VM, the
vSwitch reports the total. To reduce the overhead of saving
data, the CA aggregates some of the fields in Table 2 over
10-minute epochs. This aggregation is on the fields that store
bytes, packets, and flows, and we also aggregate flows based
on their destination port. As a result, a 10-minute dataset
from a region, with over 300,000 servers, is 109 MB.

To choose the 5,000 limit we looked at the 10s epochs with
more flows than any given limit, for one hour, in one DC
(Figure 8). Only 4% of samples have more than 5,000 flows.
Thus, using this limit results in data-loss for only 4% of the
samples. Our data shows on average VMs have 1843.9 ± 9.5
flows in each epoch. The distribution has a long tail; when
the number of flows exceeds 5,000 the number of flows is
18890.6 ± 104.0. We accept this loss and show in §8 that we
can detect compromised VMs despite this limit. The vSwitch
team confirmed the vSwitch continued to process packets at
line-rate when using this limit.

We designed the CA from scratch despite systems such
as NetFlow [51] and IPFix [52], which are already deployed
in our DCs. These systems are used for traffic engineering,
DDOS protection, and other tasks. They run on our core
routers and sample 1 out of 4096 packets traversing the net-
work core. Because of this sampling, they are biased towards
monitoring “chatty” VMs and “elephant” flows. Also, they do
not capture flows that do not traverse the network core. There-
fore, IpFix/NetFlow are not adequate for PrivateEye which
requires more complete knowledge of per-VM flow patterns.
Work such as [53] show the shortcomings of such monitoring

2The table is also used by other systems that need a consistent view.
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Figure 9: (a) Fraction of VMs captured by the CA also cap-
tured by IpFix. (b) CDF of number of flows captured per
(VM,10 min) for IpFix vs. the CA (x-axis log scale).

systems even when used in heavy-hitter detection systems.
Other in-network monitoring systems such as [4, 54] are also
inadequate as they require a specific type of sampling unsuit-
able for PrivateEye [4] or require hardware upgrades currently
not possible [54]. PrivateEye limits the number of records
it extracts in each 10s. This limit also results in occasional
data-loss but does not suffer from the same problems. The
limit is applied to each VM separately and doesn’t bias the
dataset towards chatty VMs. We capture data from the host’s
vSwitch which has all records for the VM’s flows irrespective
of where they are routed. The CA is a software component
on the host and requires no hardware changes. IPFix captures
fewer flows per VM than our CA and also misses capturing
traffic from a large number of VMs (Figure 9).

The CA has low overhead – typical usage of only 0.1% of
the host CPU and a maximum of 15 MB of RAM.

Finally, we note the CA can also be implemented using
programmable switches. We use vSwitches as they are more
widely deployed in our networks (and those of others).

7.2 The Analysis Agent
The AA has two roles: (1) train a classifier using past detec-
tions of OBDs (offline), (2) to run the classifier and predict
which VMs are compromised (online). It is alerted when
there is a new detection from any of the OBDs on any of
the VMs and tags the data from those VMs with a "compro-
mised" label. This data is then added to the training set. This
training set is persisted in a distributed data store. The AA
is periodically retrained using this data to keep up with any
changes in the set of malware or the OBDs themselves.

Data collected by the CA for all other VMs (those without
OBDs) is sent through a stream processing pipeline where we
create the features. These features are then passed through the
RF model which determines whether the VM is compromised.
We are in the process of deploying the AA in our DCs. We
describe this deployment in more detail in §9.

8 Evaluation
We evaluate PrivateEye using data from Microsoft’s cloud.
We have shown parts of the evaluation – which helped justify
our design choices – in earlier sections (e.g.,§7.1). In this
section, our goal is to answer questions about PrivateEye’s
accuracy (§8.2), the features that help it achieve this accuracy
(§8.2), the causes behind its mis-classifications (§8.2), and its
performance overhead (§8.3). We also looked into how it can
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Figure 10: (a) PrivateEye’s ROC. (b) PrivateEye’s scores
(CDF).
be used in the context of an example use-case (Appendix §A).

8.1 Methodology
Data. Each point, (xi,yi), in our data corresponds to a VM
in a 10 minute period, where xi is the 2116×1 feature vector
described in §6 and yi is a label: compromised or legitimate.
Labeling. We use OBDs from over 1,000,000 internal and
customer VMs to create labeled data for evaluation. These
VMs run diverse workloads and use both Windows and Linux
OSes. A direct implication of this labeling is that PrivateEye’s
accuracy can only be as high as OBDs. OBDs can have false
positives (negatives), but because operators use them to pro-
tect their own 1st-party VMs, we assume these are negligible.
OBDs with higher accuracy only improve PrivateEye.

We train and test PrivateEye on all detections from these
OBDs – we do not restrict PrivateEye to detecting a particular
type of compromise: its goal is to detect any compromise
OBDs can detect. Most OBD detections were from (different)
customer VMs (0.87 of the total compromises) – see §9 for
further discussion on this. For most OBD detections we
also saw external, network-level, signs of malicious behavior.
When available, we also report on results from the operator’s
manual investigations to confirm their detections.
Train-test split. We need to split the data into a train and
test set. It is important to do so correctly: if there is informa-
tion leakage between the train and test set we may artificially
boost accuracy. For example, we cannot split the data by time
because some VMs will have lifetimes spanning both the train
and test set. In training, the model may learn the behavior of
the VM itself as opposed to whether it is compromised, and
when used in practice, it would have much lower accuracy
than what we see in testing. The test set should be representa-
tive of how the system is used in practice – it is tested on VMs
it has never seen before (VMs that are not in the training set).
These constraints imply the VMs in the training set cannot be
in the test set. We take an even more conservative approach:
We split the data by VNet. This ensures each VM, and those
in its VNet that have similar workloads (§2), only appear in
either the training or the test set but not in both.
Addressing class-imbalance. RFs need a similar number
of training samples for each label to achieve high accuracy.
Unfortunately, our data suffers from class-imbalance: a small
fraction of our data is labeled compromised (only 0.1%).
This can lead to an RF that classifies everything as legitimate
while achieving (artificial) high accuracy. We use a standard
technique to solve this issue: down-sampling [55]. Down-
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Figure 11: ROC for per VM classification.

sampling randomly chooses a subset of the more popular
label for training. But too much down-sampling can reduce
the volume of data available for training which can also hurt
accuracy. We use Bayesian Optimization to find the right
trade-off. To improve accuracy, we use the ‘balanced’ option
in SKLearn’s RF function which weights the samples for each
label to make up for the lower number of samples.
Performance metrics. PrivateEye’s output for each sample
xi at time ti is a score and a decision on whether the VM was
compromised in the 10 minute epoch prior to ti. The score
measures the level of suspicion towards that VM. Operators
can use it to decide whether to investigate the VM further.

We use an ROC to measure accuracy – we vary the thresh-
old applied to the scores to decide whether the VM is compro-
mised: ROC shows the true positive rate (TPR) vs the false
positive rate (FPR). The area under the ROC (AUC) summa-
rizes the significance of the ROC: an AUC of 1 indicates a
perfect test, and an AUC of 0.5 indicates a random test [56].

8.2 Classifier Evaluation
Our goal in this section is to answer questions such as:

• What is PrivateEye’s accuracy?
• What causes PrivateEye’s false positives/negatives?
• How does PrivateEye’s RF compare to other models?
• Are the features we created effective?
• How does PrivateEye’s sampling limit affect accuracy?
We next describe the answer to these questions in detail.

Accuracy: PrivateEye has a high AUC (0.96). We use 20-
fold cross validation and show the mean of the 20 outputs and
the 95th percentile confidence interval (Figure 10-a). Priva-
teEye can detect 95.77% of compromised samples with 1%
FPR. The scores are correlated with the labels (Figure 10-b):
the gap between the distribution of scores for compromised
and legitimate VMs confirms the accuracy of the model.
PrivateEye’s long-term accuracy is also high. PrivateEye
checks each VM every 10 minutes to see if any are compro-
mised. But what if operators want to do so less-often e.g.,
before the VM is shut-down (once over the VM’s life-time)?
They can aggregate the scores across consecutive samples to
do so. Many aggregators are possible: we use the sum of all
scores over the lifetime of the VM (other aggregators achieved
similar results). The ROC is produced using this new score
(Figure 11). PrivateEye’s accuracy remains high (90.75%
TPR for 1% FPR) albeit slightly lower than before – possibly
due to the longer lifespan of legitimate VMs: compromised
VMs are typically shut-down more quickly resulting in a
lower aggregated score. This result also confirms the ROC in
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Figure 10-a is not dominated by samples from a single VM.
We further experimented with different choices of n, where

n is the number of 10-minute intervals that need to pass before
we make a prediction. The ROC curves were bounded by
those of Figure 10-a and b but do not show an explicit trend.
PrivateEye’s FNs were mostly OBD false positives. Priva-
teEye’s FNR (average) is 5%. This implies (on average) 5%
of samples were reported incorrectly as legitimate. But most
(70%) of these samples were actually false positives (FPs)
of the OBDs (remember OBDs tend to be conservative as
they protect internal VMs) – operators investigating the alerts
identified them as FPs e.g, in one case the investigation re-
port mentioned: “This was a FP detection as the vulnerability
scanner contains data to scan for CVE-2006-3439”.

Our investigations of PrivateEye’s FNs revealed other in-
teresting information. For example, we grouped FN samples
based on which VM they describe and found 86% were cases
where all samples for the VM were labeled legitimate. These
VMs are part of the training set for other folds during cross
validation: it appears PrivateEye is resilient to errors in the
labels it uses for training (given the 95% TPR). We need to
investigate this point further to confirm this hypothesis.

Some VMs had a mix of compromised and legitimate de-
tections (14% of FN samples). These VMs were involved in
port-sweeping attacks but we found no correlation with the
number of active flows or the volume of traffic. OBDs assign
a “severity” to their detections to report their confidence in
the detection. All of PrivateEye’s FNs were low severity.
PrivateEye’s FPs have similar flow-patterns to compro-
mised VMs. We manually inspect the flow patterns of VMs
PrivateEye mistakenly reported as compromised. Most such
VMs had a small number of flows to non-reserved ports. In a
few cases, the VM had only a small number of flows on the
DNS port (53) to another VM in its VNet (VMs in the same
VNet belong to the same customer). In another instance, the
VM had no outgoing flows, but multiple VMs from the DC
were attempting RDP connections to it. None of the VMs in
these VMs’ VNets had similar flow patterns. These behaviors
are similar to compromised VMs which explains why these
VMs were mistakenly flagged by PrivateEye.
PrivateEye detected attacks OBDs missed. We observed
two separate instances where SQL servers were conducting
port-sweeping attacks on another VM. In both cases the attack
lasted for one 10 minute epoch but PrivateEye detected it.
OBDs did not. These VMs were only active for a short
duration (less than a few hours). The short period of the
attack and the short life-span of the VM may explain why the
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Figure 13: Performance of other ML algorithms.

OBDs did not detect these attacks.
Consecutive detections can help reduce FPs. We ran sam-
ples for legitimate VMs in the test set through PrivateEye
and grouped the results by VM. For over 60% of these VMs
PrivateEye had only a single FP (Figure 12-a): we could use
consecutive detections as a potential means of reducing FPs.
For example, we can change the detection granularity to every
20 minutes instead of 10 where we require two consecutive
detections to declare a VM compromised. This approach can
result in reduced true positives – as seen earlier in the more
extreme example where we make one decision in the entire
lifetime of the VM. Further understanding of PrivateEye’s FPs
requires manual inspection from within the VM but, sadly,
we are unable to report on the results of such analysis.
Random forests (RFs) are a good first choice [14, 48, 57].
We compared RFs with many other ML algorithms and show
RoCs for a subset (Figure 13). RFs outperformed all other
models we tried. The closest algorithm to the RF were neural
networks3 (NN) which have an 81% TPR for a 1% FPR.
All features contribute to the detection. We have seen there
is no compact, linear, representation of the features that would
capture all the information in the data §6. We dig deeper to
see which class of features are most helpful. To do so: (1) we
use each class individually (Figure 14-a), and (2) we remove
each class altogether (Figure 14-b). Removing graph fea-
tures individually (spatial, temporal) has little impact on TPR
(0.2%) but removing both can drastically reduce it (18%).
Most classes (except spatial features) can find compromised
VMs with a TPR ≥ 70% and an FPR ≤ 5%. We conclude
all features significantly contribute to detection (though they
are not equally important). To validate these observations,
we experimented with various feature selection techniques
(Figure 15). We refer the reader to [58] for the description of
these techniques due to space restrictions.

Aggregate features have good predictive power: a TPR
of 77.7% for 5% FPR when used as the only features and
resulting in 7% drop in TPR when removed: were most com-
promised VMs engaging in volumetric attacks? We found this
not to be the case – the maximum traffic sent by compromised
VMs across all samples was 2.6 MBps (median 0.0 Bps) vs.
10.3 GBps (meidan 189.62 Bps) for legitimate VMs.
Comparison to other VMs helps detection. Graph features
compare the VM to others by mapping flows onto intervals on
various CDFs (see §7.2). What happens if we use CDFs that

3We used a single hidden layer with 1000 neurons. Experiments with ad-
ditional hidden layers in the NN and different numbers of hidden dimensions
produced similar results.
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Figure 14: (a) Contribution of each feature class to the overall
accuracy. (b) ROC without each feature class.

compare a VM with its own history instead of that of all VMs
in the DC? The TPR drops to 80% for 1% FPR (Figure 16)
indicating the comparison to other VMs is indeed useful.

The choice of sampling limit is important. The CA rate-
limits the number of flow entries it queries from the vSwitch
to 5,000 every 10 seconds. This rate-limit allows us to capture
over 97% of each VM’s flows (§7.1). We next measure the
impact of this rate-limit on the TPR by lowering it. We cannot
simulate this behavior accurately by “down-sampling” our
data as we have aggregated the flows to remove the source port
and IP addresses. Instead, we change the rate-limit threshold
across all US regions for two months and collect a new dataset.
We cannot do a complete sensitivity analysis with multiple
rate-limits as this would be costly – we need to capture at
least a month’s worth of data for training. Therefore, we limit
our experiment to just one threshold: 900 flows per 10 second
interval. Such a rate limit will result in data loss for over
30% of our training samples (Figure 8). The results show a
significant decrease in accuracy (Figure 17-a): 80% TPR for
40% FPR. We conclude PrivateEye needs to capture as many
flows as possible to maintain high accuracy.

More training data helps compensate for lower rate-
limits (Figure 17-b). We start with 92% TPR for 59.6%
FPR, and by just adding 8 more days worth of data to the
training set it can reach the same TPR for 23.23% FPR.

PrivateEye is unable to detect the type of compromise.
PrivateEye cannot specify the type of malware installed on
the VM. Our dataset contains additional information about a
fraction of the compromised VMs e.g., compromised through
SSH or RDP brute-force, malware found, port-scanner, port-
sweeper, SQL-injection, RDP/SSH brute-forcer, spammer, or
others. However, PrivateEye has low accuracy when identi-
fying the type of compromise (70% TPR for 1% FPR) – it
is known that multi-class classifiers tend to have lower ac-
curacy [42]. Besides, not all detections have this additional
information.

0 5 10
0

50

100

Variance threshold
Variance percentil
Select FPR, using chi2
RFE
Per feature class, RFE
Per feature class, select FPR

False positive rate (%)

T
ru

e 
p

os
it

iv
e 

ra
te

 (
%

)

Figure 15: ROC for different feature selection methods.

0 2 4 6 8 10
0

20

40

60

80

100

False positive rate (%)

T
ru

e 
po

si
ti

ve
 r

at
e 

(%
)

Figure 16: ROC: Impact of the choice of CDFs.

8.3 Performance overhead
One motivation for designing PrivateEye was the need to scale
intrusion detection systems to the entire DC. Here we evaluate
whether PrivateEye meets this scalability requirement:

• What is the memory and CPU usage of the CA?
• What is the impact of the CA on ongoing traffic?
• What is the expected load on the AA?
• What is the overhead of training the AA?

The CA has low CPU and memory overhead. The CA is
deployed across all production hosts of a large cloud provider
for over 2 years and includes data for over 15,000,000 VMs
and 300,000 VNets in the US alone. We chose 100 hosts ran-
domly from DCs across the globe and recorded the CA’s CPU
and disk usage both in the morning and afternoon. Figure 18
shows its memory usage. Its CPU usage remained bellow
0.1% across all hosts at all times.
The CA does not impact ongoing traffic. Our experience
with the CA is that it causes no impact on ongoing traffic. This
is in part because the CA has lower priority when obtaining
the lock on the vSwitch table. We instrumented the CA on
one host to record the time spent, from user space, in each
query to the vSwitch. The time captures the time spent in
contention on the vSwitch table’s read-lock and the time it
takes to read x entries (where x is the CA rate-limit). There
are 8 VMs on the host. We run a SYN flood attack against one
of them to simulate different levels of load. We show the time
for attacked and non-attacked VMs (Table 3). The results
show both the rate-limit and the load (volume of traffic) on
a given VM affect the time spent querying the vSwitch for
data about that VM but not for data about other VMs. The
CPU usage of the CA remained below 0.1% throughout this
experiment.
The load on the AA is acceptable. PrivateEye’s AA is
trained offline using data from the 5% of VMs monitored
by the OBDs. The trained model is distributed across each
DC region to serve detections every 10 minutes. To quantify
the load the AA will have to handle, we looked at the number
of flow records per second the CA captured in three regions
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Figure 17: (a) ROC with a rate-limit of 900 flows per 10
seconds. (b) ROC when more data is added.
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Figure 18: CDF of the memory usage of the CA.

both in the morning and afternoon (Figure 19). The high-
est rate is around 900,000 flows per second. We expect this
volume of data can be easily processed in 10 minute periods.
Training overhead is low. We use Bayesian Optimization
to configure our RFs which resulted in an ensemble of 158
trees with a maximum depth of 4. The average training time
for such an RF is 5 minutes and 56s± 3.76s with our two
month training set and using 172.87 GB of RAM (peak). The
high memory usage is because of the SKlearn implementation
which holds the entire dataset in memory.

9 Discussion
This section presents a discussion of the challenges and limi-
tations of a detection system like PrivateEye.
PrivateEye’s accuracy. PrivateEye is only as accurate as the
OBDs it uses. Thus, our evaluation focuses on comparing
PrivateEye to OBDs. OBDs tend to be highly accurate as
they are the only systems protecting 1st-party VMs. But, it
is challenging to guarantee a VM is legitimate. In reality, a
legitimate VM is one that passes all detectors deployed in the
DC. Should some of these VMs, in fact, be compromised it
may cause PrivateEye to have mispredictions (§8). Similarly,
we do not know precisely when a VM was compromised but
only when it was detected and some of our compromised data
may be from when the VM was not yet compromised. Our
results in §8 show PrivateEye to be resilient to mislabels.
Generalizing PrivateEye to the entire DC. In our evalu-
ations we partitioned the set of labeled VNets to create a
train/test set to emulate how PrivateEye will be used in prac-
tice. The VMs we tested PrivateEye on were those which
were absent from the training set. These VMs run both Win-
dows and Linux and span a variety of workloads including
those of customers who have subscribed to OBDs. We are rea-
sonably confident PrivateEye can detect most compromised
VMs. We would have liked to show a small-scale evaluation
of PrivateEye where we manually investigated VMs that are

rate-limit SYN flood
flows per second

Query time (µs) for
non attacked VMs

Query time (µs) for
attacked VM

900 0 585.3 ± 34.1 -
5000 0 2707.27 ± 105.4 -

10000 0 5097.56 ± 261.0 -
900 10000 780.9 ± 110.4 75276.6 ± 6387.5

5000 10000 2933.3 ± 251.7 71961.0 ± 15607.0
10000 10000 5690.1 ± 430.2 75115.5 ± 18360.8

900 50000 504.6 ± 29.2 70760.4 ± 4611.2
5000 50000 2713.4 ± 272.4 75180.8 ± 1639.3

10000 50000 5699.0 ± 289.4 46922.6 ± 9214.63
Table 3: Profiling the impact on vSwitch read-lock. The times
are mean across all samples collected over a 1 minute interval.
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Figure 19: Flows/s captured by the CA. (a) Morning (9 AM-
11AM UDT) (b) Afternoon (7PM - 9 PM UDT).

not protected by OBDs. However, we were not able to obtain
permission to do so.
Need for retraining. We can retrain PrivateEye to adapt to
changes in malware behavior. Retraining may not be enough
to allow PrivateEye to detect all such changes, but the change
in malware should increase the time to compromise of VMs
due to the attackers needing to avoid conspicuous network
flows.
The use of ML. Our work on PrivateEye is the first privacy
preserving compromise detection system that can run at scale.
Other, for example graph theoretic approaches, could be
used as well. It is unclear how such algorithms can adapt
to changes in malware behavior. This is clearer for ML mod-
els where the re-training of the model can update the system.
Graph-based NNs are also applicable [59, 60]. It may be
possible to improve the accuracy of PrivateEye even further
by using these models. This is a subject of future work.
Deploying the AA. We are currently in the process of deploy-
ing the AA using Resource Central [61]. Resource Central
allows us to store our model in Azure and serves predictions
using that model at run-time. It is highly scalable, and we
have already used it to deploy several other ML models in
production. However, there are still other questions that we
still need to answer, for example, who should build the CDFs
and what CDFs are best?
Attacks against PrivateEye. PrivateEye itself may be tar-
geted by attackers to reduce the operator’s detection capa-
bilities. Adversarial learning [62] is a sub-field of machine
learning that studies such attacks. A study of how to guard
against such attacks is beyond the scope of this work.
Higher number of 3rd-party compromises. 87% of our
compromised data were 3rd-party VMs, however, the major-
ity of monitored VMs in our data are 1st-party VMs. The
higher number of 3rd-party compromises is likely due to the
tighter protections on 1st-party VMs. We looked at how this
could influence our results and conducted preliminary experi-
ments where we eliminated all 1st-party VMs from the data.
On average we achieved 86.71% TPR for 3% FPR (83% FPR
for 2.5% TPR). We expect accuracy to improve by increasing
the number of samples (the dataset has far fewer datapoints
than the original) and by re-tuning the model.
Prior work. We have extensively evaluated the performance
of PrivateEye and have also compared it to systems currently
deployed across the provider’s production DCs. Most prior
work are not comparable to PrivateEye as they require packet
captures (or introspection) we cannot collect because we need
customer permission. PrivateEye is not a replacement for
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these systems but is designed for DC operators (as opposed
to customers). Customers can continue using alternative so-
lutions to protect their VMs. In §7.1 we compared the CA
to NetFlow and showed it captures more information. The
aggregations and anonymizations applied by the CA prohibit
direct comparisons of our AA to NetFlow-based approaches.
Ethical considerations. We annonymized all privacy sen-
sitive information during data collection and removed them
after feature construction. We conducted all experiments us-
ing data from a large cloud provider. The data was either
collected from 1st-party VMs under the operator’s control or
from 3rd-party VMs where the operator had customer permis-
sion to monitor the VM. We had explicitly asked permission
for deploying the honeypots described in §2 and monitored
them closely to ensure they did not cause harm to other VMs.
These VMs were not co-located with other VMs.
10 Related Work
We discussed a number of prior works in §1,§7.1, and §7.2.
Most do not provide the scalability and privacy characteristics
we need [14–20].

Two lines of previous work relate to PrivateEye. One
shows the multitude of today’s security problems and chal-
lenges providers face [6, 63–65]. The other identify malware,
compromises, and other types of bad behavior [66–75]. These
works can further be divided into two categories:
Network traffic-based Compromise Detection. PrivateEye
does not focus on a specific type of attack – it detects any com-
promise the OBDs can detect. Many prior works identify spe-
cific types of bad behavior [5, 5, 9, 12, 19, 21, 22, 47, 57, 76–
98]. Some focus on anomaly detection ([99] is a survey of
such approaches). Nemean [100] builds intrusion signatures
from honeypot packet traces. SNARE finds spammers using
packet headers [21]. The work in [18] uses event ordering to
identify malware families. VMWall constructs application-
aware firewalls aimed at stopping attacks [11]. [90] uses do-
main knowledge about worms to construct informative fea-
tures, thus avoiding using IPs (our features capture most of
the same information). These works focus on a specific at-
tack which prevents them from comprehensive protection
of VMs. Works such as [14–16] rely on packet captures or
DPI [101] to identify malicious flows. Packet captures and
DPI at DC-scale across all hosts are not possible due to the
prohibitive performance overhead. The work of [102] relies
on malware propagation to detect the source of attack through
analyzing network traffic at key vantage points. However,
it does not target identifying the infected nodes. The work
of [83] encodes IP addresses through per-source entropies
to detect worm attacks; such an approach removes most of
the informative properties of individual destination IPs. Such
an approach is typically useful when detecting worms and
volumetric attacks. The work of [103, 104] discuss other
limitations of this approach. Perhaps the closest work to ours
is [105] which uses IPFix data from core routers to detect ma-
chines that are compromised through SSH brute force attacks.

Aside from targeting a specific form of compromise, [105]
is based on a fixed set of rules derived through observing a
limited set of malware. It is difficult for the approach to adapt
to changes in malware behavior. Finally, [47] uses external
IP reputation sources to reduce its false positives. This vio-
lates our privacy requirements. In addition, we have observed
the intersection of malicious IPs reported by commercial IP
reputation services and IPs attacking our VMs to be relatively
small (< 10%).

Many such works [9, 19, 21, 22, 57] are trained using
labels from commercial anti-virus software. Our approach
enables us to build a detector that is customized to the cloud
because our OBDs detect malicious behavior that occurs in
real cloud VMs that are running real workloads. Using OBDs
deployed on production VMs running real workloads for
labeling allows PrivateEye to avoid problems faced by works
such as [106–108] which run malware in emulation mode
or in a sandbox to obtain signatures for detection. Many
malware can detect when in emulation mode and therefore
change their behavior in such situations [18].
Binary-based Compromise Detection. One approach col-
lects malware binaries from honeypots, constructs features
from them and then uses Support Vector Machines [7]. An-
other, clusters binaries found on compromised machines
based on their structure, runtime behavior, and the context
of the host [8]. Netbait [9] crowd-sources probes gathered
from (distributed) infected machines to detect worms. An-
other approach analyzes memory dumps to construct signa-
tures of the in-memory behavior of malware [10]. Unlike
these approaches, PrivateEye performs its classification using
networking data alone. Today’s privacy requirements, perfor-
mance constraints, and the new mandates from GDPR make
the use of binary and memory inspection techniques in DCs
difficult.

Other works also exist [90, 109–113]. Many of these in-
spired PrivateEye, however, in contrast to these works, Pri-
vateEye’s design is aimed at running at scale, having strong
privacy requirements, and compliance with GDPR mandates.
11 Conclusion
PrivateEye is a privacy preserving compromise detection sys-
tem that runs at DC-scale without requiring customer permis-
sion. It achieves a true positive rate of 95.77% for a 1% false
positive rate.
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A Using PrivateEye
PrivateEye is designed as a preliminary detector and its detec-
tions should be followed up with more expensive techniques
(e.g., [15]). These techniques are computationally expensive
and require customer permission. PrivateEye’s role is to re-
duce the number of VMs that need to be investigated and to
protect all VMs at all times with low overhead.

Sometimes, obtaining customer permissions takes too long
e.g., if a new vulnerability is discovered that could be ex-
ploited by compromised machines (e.g., Heartbleed [114])
the provider may not have time to obtain permission. The op-
erator may choose to move suspect VMs to a sandbox4 until
the appropriate patch is applied to all VMs and devices. If
obtaining customer permission in time is not possible, Priva-
teEye can be used to decide whether a VM should be moved
or not. But what are the implications of using PrivateEye as
the only compromise detection system in the DC?
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Figure 20: (a) Fraction of the sandbox occupied by com-
promised VMs. (b) Sandbox size needed to isolate x% of
compromised VMs.

For a sandbox size k the operator needs to decide which
VMs to put in the sandbox. Using PrivateEye’s scores, one
choice is to move the top k most suspicious VMs. Figure 20-a
illustrates what fraction of the sandbox would be occupied
by compromised VMs for different values of k. As the sand-
box size increases the utility of the sandbox diminishes–an
increasing number of legitimate VMs end up in the sandbox.
The choice of k is a tradeoff between the number of VMs
that need to be migrated and the number of compromised
VMs captured. Figure 20-b examines this tradeoff in our
dataset. The operator needs to consider the combination of
these graphs when choosing an appropriate k. The larger the
sandbox, the more effective it is in reducing the number of
compromised VMs outside the sandbox. However, larger k
means that it is more likely to place legitimate VMs in the
sandbox impacting their performance. To avoid penalizing
legitimate VMs, the operator can choose not to migrate a VM
if its score is below a threshold. Finding the optimal threshold
depends on the operator’s needs.

4A sandbox could be a host that only runs suspect VMs (limit damage of
side-channels) or where more stringent ACLs are imposed.
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Abstract

GPUs have become ubiquitous in the cloud due to the dramatic
performance gains they enable in domains such as machine
learning and computer vision. However, offloading GPU
computation to the cloud requires placing enormous trust
in providers and administrators. Recent proposals for GPU
trusted execution environments (TEEs) are promising but
fail to address very real side-channel concerns. To illustrate
the severity of the problem, we demonstrate a novel attack
that enables an attacker to correctly classify images from
ImageNet [17] by observing only the timing of GPU kernel
execution, rather than the images themselves.

Telekine enables applications to use GPU acceleration in
the cloud securely, based on a novel GPU stream abstraction
that ensures execution and interaction through untrusted com-
ponents are independent of any secret data. Given a GPU
with support for a TEE, Telekine employs a novel variant
of API remoting to partition application-level software into
components to ensure secret-dependent behaviors occur only
on trusted components. Telekine can securely train modern
image recognition models on MXNet [10] with 10%–22% per-
formance penalty relative to an insecure baseline with a locally
attached GPU. It runs graph algorithms using Galois [75] on
one and two GPUs with 18%–41% overhead.

1 Introduction

GPUs have become popular computational accelerators in
public clouds. Accuracy improvements enabled by GPU-
accelerated computation are driving the success of machine
learning and computer vision in application domains such
as medicine [38, 88] transportation [67], finance [32], insur-
ance [69], gaming [89], and communication [70].

Unfortunately, it is currently impossible to run GPU work-
loads in the cloud without trusting the provider, eliminating
cloud GPUs as an option for security-conscious users. Users
must trust the provider because the provider controls the
layer of privileged software responsible for management and
provisioning. Even dedicated cloud instances (e.g., Amazon’s
EC2 dedicated hosts [1]) run the provider’s virtualization
software, making GPUs vulnerable to malicious or curious
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Figure 1. Telekine components and their organization.

cloud administrators. Virtualization software runs at a host ma-
chine’s highest privilege level, exposing a wide attack surface
that includes GPU memory, execution context, and firmware.
Finally, unfettered visibility into host/device communication
exposes both data and timing channels.

Trusted execution environments (TEEs) should, in principle,
make the cloud an option for users who refuse to trust the
provider. TEEs provide a hardware root of trust, allowing
users to access cloud compute resources without trusting
provider software–including the privileged software of the
hypervisor and operating system. TEE hardware protects the
privacy and integrity of user code and data from administrators
and from attackers who control privileged software. TEEs
exist currently on Intel CPUs via software guard extensions
(SGX) [44], ARM CPUs via TrustZone [59], and RISC-V
CPUs via Keystone [55]. Researchers have proposed GPU-
based TEEs [100] and TEE extensions for GPUs [45], though
none have been built or deployed. However, as we argue
below, a design that simply composes components that run in
hardware-supported CPU and GPU TEEs will fail to provide
strong security due to side channels.

GPU-accelerated applications have three main software
components: (1) an API and a user library (e.g., CUDA [66] or
HIP [39]) that provides high-level programming functionality
and executes on a CPU; (2) CPU-side control code at the user
and the system level that manages communication with the
GPU, and (3) GPU kernels (programs) that execute on the
GPU device itself. It is the data and code that moves between
the CPU and GPU that potentially creates side channels visible
to CPU-side code.
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An attacker can extract meaningful information from the
execution time of code on the GPU, which privileged soft-
ware can compute on the CPU by observing communication
with the GPU. For example, we demonstrate a novel attack
on image recognition machine learning models that allows
malicious system software to correctly classify images from
ImageNet [17] used as input to the model. By observing only
the timing of a model trained to classify images (the image
model), we build a new model (the timing model) that can
classify images based on the execution timing of layers in the
image model. Even if a security-conscious user encrypts their
input data (and decrypts it on the GPU), a cloud provider’s
system administrator can use the timing information of GPU
kernels (measured on the CPU) in the image model to classify
its input images. We train the timing model to distinguish
images of two classes with 78% accuracy. For more classes,
accuracy decreases but stays above random guessing.

We propose Telekine, a system that enables the secure use
of cloud GPUs without trusting the platform provider. GPU
TEEs provide a secure execution environment but leave the
user open to side channels when communication depends on
secret data. Telekine makes communication with the GPU
TEE data oblivious, that is, completely independent of secrets
contained in the input data. Data obliviousness is a strong
property that excludes the existence of side-channel attacks
against CPU-side code and host/device communication whose
observable behavior (e.g., timing, memory accesses, DMA
sizes, etc.) depends on secret input data.

Telekine has three components (shown in Figure 1):
libTelekine that runs on a trusted user machine (a client),
GPUs physically attached to a cloud machine (a server)
that supports GPU TEEs with specific security requirements
(§3.1), and the relay which facilitates communication between
libTelekine and the GPU. Telekine uses a GPU TEE because
it needs a mechanism to protect GPU computation from the
cloud provider; a GPU TEE is tailored to that task.

Telekine protects the application and GPU runtime by
moving it from the cloud to the client. The advantage of this
approach is that the user must already trust their client machine,
and the application and user libraries are large and complex and
therefore prone to side-channel attacks, making them difficult
to secure if they execute in the cloud. The disadvantage is that
GPU libraries assume a local GPU with a fast, high-bandwidth
connection to the CPU. Telekine decouples the user library
from low-level GPU control by interposing on the GPU API
and efficiently forwarding these calls to the server (a technique
known as API remoting) which has been used to virtualize
GPUs [6, 8, 22, 23, 30, 33, 50, 57, 58, 85, 101, 107], but to our
knowledge has never been used for security. A client using
Telekine does not need to have a GPU installed.

Telekine treats the CPU-side control code on the cloud
server (“Relay” in Figure 1) as completely untrusted, almost
as if it were part of the network. The client machine establishes
a cryptographically secure channel directly with the code

executing on the cloud GPU. The network and the CPU-based
code on the server can delay the computation, but cannot
compromise its privacy or integrity.

Telekine secures the communication between the client
machine and the cloud GPU by transforming the user’s GPU
API calls into data-oblivious streams. Data-oblivious streams
are similar to constant time defenses [3] in that they aim to
remove timing channels by ensuring that observable events
are deterministic regardless of secrets. Telekine constructs
data-oblivious streams by reducing all API calls to a sequence
of code execution (launchKernel) and data movement
(memcpy) commands. It then schedules these commands
at a fixed rate, possibly creating new commands, or split-
ting memcpy commands into fixed-size pieces. Fixed-sized,
fixed-rate communication is data oblivious; it ensures that
any observable patterns are independent of the input data
and therefore devoid of side-channel information. Fixed-rate
communication is not a novel way to eliminate side channels,
but Telekine’s design shows how to apply it efficiently to
modern GPU-based computing.

Given that Telekine requires a GPU TEE, it is logical to
wonder why it does not use a CPU TEE. After all, putting the
application and programming libraries into a CPU TEE would
reduce the latency and increases the bandwidth for communi-
cation between libTelekine and the GPU. Unfortunately, Intel
and ARM TEEs do not prevent side channels as part of their
threat model [48, 78]. Keystone [55] and Komodo [25] intend
to address side channels for RISC-V and ARM respectively,
but work is ongoing. Also, making existing applications data
oblivious is difficult for programmers, requires access to
source code (not needed by Telekine), and often slows down a
program greatly (e.g., Opaque [109] slows down data analytics
by 1.6–46×). Should future CPU TEEs evolve to address side
channels, Telekine can use them. Much of Telekine focuses
on securing the communication between trusted components,
which can be an improved CPU TEE and a GPU TEE or they
can be the client machine and server GPU TEE, as they are in
our prototype.

Telekine is the first system to offer efficient, secure exe-
cution of GPU-accelerated applications on cloud machines
under a strong and realistic threat model. We use Telekine to
secure several GPU-accelerated applications via two frame-
works: the MXNet [10] machine learning framework and the
Galois graph processing system [75]. On a realistic testbed
Telekine provides strong secrecy and integrity guarantees,
including side-channel protection. MXNet [10] training for
three different, modern image recognition models incur a
10–22% performance penalty relative to a baseline with a
locally attached GPU. MXNet inference for the same models
over a connection from Austin, TX to the Vultur’s Dallas, TX
datacenter [102] incurs a penalties of 0-8% for batch sizes of
64 images. Telekine runs graph algorithms using Galois [75]
on one and two GPUs with 18%–41% overhead.

This paper makes the following contributions.
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∙ We demonstrate a CPU-side timing attack on deep neu-
ral networks that allows a compromised OS to correctly
classify images in encrypted input (§4).
∙ We provide a design and prototype for Telekine, a sys-

tem that eliminates CPU-based side-channel attacks
against a GPU TEE with a novel variant of API remoting
to execute secret-dependent code on the GPU TEE and
a trusted client (§5).
∙ We thoroughly evaluate the performance, robustness,

and security of Telekine protecting a variety of impor-
tant workloads on one and two GPUs: machine learning
and graph processing (§7).

2 Threat model

In all current cloud GPU platforms, the cloud provider’s privi-
leged software, and hence administrators, can gain easy access
to GPU state, creating a significant attack surface including
explicit channels such as GPU memory, firmware, and execu-
tion context. Work in this area agrees on the vulnerability of
GPU state to privileged software [45, 100].

Telekine assumes a powerful adversary who controls all
software on the platform, including privileged software such
as device drivers, the host operating system and hypervisor.
This captures typical cloud platforms, where the platform
provider has full control over all software, and attackers can
run malicious code on the same physical device as a target
cloud application [81]. A malicious provider, a malicious
administrator, or an OS-level attacker can use their control of
privileged software to steal the secrets of tenants. We assume
that the adversary cannot, however, compromise hardware–the
physical GPU package.

Telekine assumes a GPU TEE, with capabilities similar to
current research proposals like Graviton [100]. The details can
vary, but a GPU TEE establishes secure memory on the GPU
device and provides a protocol to initiate a computation that
can be remotely attested to start from the correct state (code
and initial data) and execute privately and without interference
from the CPU side. We provide additional detail on Telekine’s
TEE requirements in Section 3.1.

GPU TEEs do not, by themselves, secure communication
with the CPU and our attack (§4) shows how much information
there is in the precise timing of CPU/GPU communication.
Telekine protects communication with the GPU, guaranteeing
that the adversary cannot learn about input data directly or
through side channels, including timing channels.

While secure control of a GPU has been proposed [45, 100],
there has been little work securing side channels. These side
channels undercut the security of the TEE. In addition to the
timing attack we developed (§4), AES key extraction using
shared GPU hardware [31, 46, 47] has been demonstrated.
And recent side-channel attacks [64] have shown practical
methods to fingerprint websites using performance counters
observed during GPU rendering in the browser.

2.1 Guarantees

Telekine provides the following secrecy properties which
prevent any explicit or implicit data flow from input data to an
external observer.
S1 (content): Messages are encrypted to ensure their content

cannot be directly read by an observer.
S2 (timing): The transmit schedule for messages is fixed. Any

transmission delays are independent of input data.
S3 (size): The size of each message is fixed. Telekine pads

and/or splits messages to achieve fixed-sized messages.
Telekine also provides the following integrity properties to

ensure that any result the user receives is either a result that
could have been generated by a GPU hosted by a completely
benign cloud provider, or an error.
I1 (content): The content of all communication is protected

by an end-to-end integrity check; a message authenti-
cation code (MAC) allows Telekine to detect modifica-
tions, returning an error if any are detected.

I2 (order): Each message carries a sequence number which
allows Telekine to detect out of order messages. The
sequence numbers also prevent replay attacks.

I3 (API-preserving): Commands issued by the application
should affect GPU state in the same way they would
on a local GPU, regardless of any transformations that
Telekine applies.

GPU commands have semantics that Telekine must main-
tain for correctness. For example, GPU runtimes expose a
stream [71] abstraction to application code. API calls issued
by the application on the same stream are executed serially in
the order they were issued. A kernel launched from a particular
stream will block the completion of subsequent API calls
on that stream until that kernel terminates. Applications can
have many streams which map to different command queues
exposed by hardware. API calls made on separate streams
can be executed in parallel. Telekine must respect the data
dependence semantics of streams.

2.2 Limitations.

Physical side channels and denial of service attacks are out of
scope. In situations where an adversary monitoring physical
side channels like temperature [62], power [54], or acoustical
emanations [11] is a concern, Telekine would need to be
augmented with other techniques to maintain security. In our
threat model, a cloud provider wishing to deny service can
always do so, e.g., by interrupting the network or refusing to
run user processes.

Telekine provides clients a mechanism to disguise their
end-to-end runtime but does not impose policy. Applications
can choose the most efficient policy for their security needs.
We believe end-to-end runtime is a poor predictor of input
data (and our experiments in Section 4 bear this out), further
justifying the clients setting policy.
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3 GPU background

Applications use GPUs through high-level, vendor-provided
APIs such as CUDA [66] and HIP [39]; they include a user-
level runtime and OS-level driver that communicate through
a combination of ioctl system calls and memory-mapped
command queues. The driver is responsible for creating map-
pings from virtual memory to physical MMIO regions. After
these privileged operations are complete, any software that has
a mapping (user or OS) may communicate directly with the
device using registers or command queues exposed through
the MMIO regions.

While memory management, synchronization, and other
features (e.g., IPC, power management, etc.) require interac-
tion with the driver state (e.g., creating and managing memory
mappings), a workload that pre-allocates all of its required
GPU memory and uses only data transfer and kernel launch
primitives can function completely by writing commands into
the GPU’s command queue. It is possible to construct and sub-
mit these commands without referring to any state maintained
by either the runtime or the driver. As we show in Section 5, this
property enables Telekine’s relay to be effectively stateless.

3.1 GPU TEE

Telekine requires a TEE on the GPU and Graviton [100] is a
detailed proposal from the literature that provides the basic
functionality that any GPU TEE (or indeed any TEE) should
provide: secrecy for GPU code and input data, integrity for
the GPU computation, and remote attestation for the computa-
tion’s initial state. Graviton achieves most of its functionality
by changing the GPU firmware, so it does not require extensive
changes to the GPU hardware itself (neither does Telekine).
This is achievable because the modern GPU firmware runs
on a fully programmable control processor [68]. We explain
GPU TEE functionality by saying what the GPU does, but the
implementation could be firmware, hardware, or both.

The integrity, secrecy, and ordering of the commands sent to
the GPU are ensured by a secure channel. Before computation
begins, the client machine and the GPU agree on a shared sym-
metric key via a key exchange protocol (e.g., Diffie-Hellman).
The client uses this key to send commands using a protocol
like transport layer security (TLS) which provides a secure
channel ([100] §5.2).

The integrity of the computation is assured by the GPU,
which checks the initial execution conditions and attests these
conditions to the remote user, who can verify that the expected
code has been loaded into the expected address range with the
expected permissions, and that the hardware generating the
attestation is genuine. There are many variations on remote
attestation, but it is a common feature for modern enclaves
like SGX [14] and Keystone [55]. Telekine expects the GPU
to have been initialized with all of the GPU kernels the appli-
cation intends to launch and any initial data when attestation
has completed.

Telekine and Graviton split GPU memory into untrusted and
trusted regions so the untrusted host OS/Hypervisor can DMA
into untrusted GPU memory, enabling efficient data transfers;
the GPU can then copy data between untrusted GPU memory
and trusted memory. This mechanism provides GPU memory
protection even though the IOMMU is under control of the un-
trusted kernel. Telekine and Graviton disable unified memory,
which allows privileged CPU code to demand page GPU mem-
ory and exposes side-channel memory access information.

The GPU TEE should turn off or refuse to report the state
of any performance counters. Recent GPU side-channel at-
tacks [28, 64] have successfully used timing data from GPU
performance counters.

Due to Telekine’s focus on side channels, it has require-
ments beyond the previously proposed GPU TEEs. These
requirements are more straightforward to provide than the core
TEE functionality.

Eliminate GPU side channels. Some TEE designs allow dif-
ferent tenants/principals to execute concurrently (e.g., SGX,
Keystone), sharing the underlying hardware. Concurrent exe-
cution is attractive from a utilization perspective but it provides
a rich side-channel attack surface which has plagued the secu-
rity of CPU TEE designs. Telekine assumes side channels from
concurrent principals (e.g., memory access timing and band-
width) do not exist on the GPU TEE. A conservative design
which prevents hardware side channels is to disallow concur-
rent execution. Graviton TEEs scrub their state (e.g., registers,
memory, caches) after resources are freed so there is no danger
of tenants observing transient state from previous computation.

Conceal kernel completions. GPUs signal the CPU via an
interrupt when a kernel has completed its execution. Interrupt
timing leaks information about the kernel’s runtime. Rather
than rely on interrupts, Telekine uses data-oblivious streams
(§5.1) that include tagged buffers that allow the GPU to
communicate computational results back to the client. The
platform only sees DMA from the GPU to untrusted CPU
memory at a fixed rate.

Support no-op kernel launches. Dependences between GPU
kernels often cause the launch of one kernel to wait for
another’s completion, which provides indirect timing infor-
mation. The GPU TEE must support a no-op kernel launch
command so that Telekine can generate cover traffic ensure
the adversary sees kernel launches at a fixed rate.

Timely command consumption. The GPU TEE should con-
sume its command queue independently of how long kernels
take to execute on the GPU. If the GPU waits until each kernel
completes before dequeueing the next launch command, it can
fall behind the input queue fill rate, allowing the input queue to
fill. The adversary can detect this situation by observing how
often the encrypted queue content changes, creating a proxy
for kernel execution time. The GPU should consume command
queue entries at a fixed rate, discard the no-ops, and store the
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real commands internally until they can be executed. Telekine
can hold back real kernel launches and send no-op launches in
their places to ensure these internal GPU queues do not fill up.

3.2 Communicating with GPUs

GPUs can be connected to the CPU memory interconnect
(integrated) or to the PCIe bus (discrete). We focus on PCIe-
attached GPUs because they are preferred in performance-
focused settings like the cloud due to their higher memory
bandwidth and better performance.

The PCIe interfaces provide two forms of communication:
memory-mapped I/O (MMIO) and direct memory access
(DMA). MMIO re-purposes regions of the physical memory
address space for device communication. Contiguous physical
ranges, or BARs (base-address-regions) are reserved by the
hardware, and the hardware redirects loads/stores targeting
those regions to the device. Modern GPUs use MMIO BARs
to expose registers for configuring the device, and frequently
accessed device memory (e.g., command queues).

Any software that can obtain a mapping to MMIO can
potentially communicate with the GPU to control it (through a
register or command queue interface) or read/write its memory
(through an MMIO memory BAR or by configuring DMA
transfers to/from it). Telekine assumes GPU TEE support
similar to Graviton [100] to prevent MMIO access to GPU
status and configuration registers during secure execution.

The hypervisor and/or host operating system controls the
PCIe bus, which routes packets to multiple devices connected
to the PCIe root complex in a tree topology. Packets in transit
to/from the GPU may be visible to other devices. Privileged
host software may change the routing topology dynamically
and can install pseudo-devices that allow it to sniff traffic.
Securing communication with the GPU must defend against
these passive and active PCIe attacks.

4 Example side-channel attack

Telekine addresses software attacks launched by an adverary
resident on a cloud host, such as those launched by a malicious
system administrator or a network-based attacker who has com-
promised the platform’s privileged software. These attacks use
privileged software to compromise the privacy or integrity of
user code and data. Telekine is particularly focused on protect-
ing against timing channels because effective, general-purpose
attacks using timing channels have recently been demonstrated
at the architecture level [53, 60, 84, 96], the OS level [97, 105],
and the GPU programming level [46, 47]. Modern CPU TEEs
exclude side channels from their threat model [31, 48, 78], leav-
ing current hardware-supported security primitives vulnerable
to side-channel attack. Telekine offers a unique and efficient
security solution for cloud resident, GPU-based computation.

We demonstrate a proof-of-concept attack on machine learn-
ing inference in which the adversary uses the execution timing
of individual GPU kernels to learn information about encrypted
input data. Our attack allows privileged software on the cloud
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Figure 2. Accuracy of multiclass classification for side-channel at-
tacks. (a) shows the accuracy for a baches of size 1 with an increasing
number of classes. (b) shows the accuracy for batches of size 32, 4
classes, and varies how much of the batch contains the target image
(purity)

host to correctly classify images using only the timing of GPU
kernel execution obtained on the CPU. The attacker can train
their timing model on their own input, they do not need the vic-
tim’s training data. The image data remains encrypted while on
the CPU and the attack does not require any access to GPU ar-
chitectural or microarchitectural state (including GPU timers).

Attack basics. Convolutional neural networks (CNNs) are
a popular neural network architecture for analyzing im-
ages [37, 40, 91]. Each network consists of multiple layers,
including convolutions, which are good at detecting features
of the input image that the remainder of the network can use
to classify the image. When CNNs are executed on a GPU, the
computation for each layer roughly corresponds to the execu-
tion of a single GPU kernel. While the actual mapping between
layers and kernels is often more complex, the intuition behind
our attack is that the timing of the execution of certain CNN
layers (and hence their GPU kernels) indicates the presence or
absence of certain features within the input image. This makes
the per-layer execution time itself a rich feature.

Telekine defeats the attack by removing the adversary’s
ability to infer the timing of individual kernels. The adversary
retains only the ability to measure the end-to-end runtime of
the inference task. However, our data shows that end-to-end
runtime provides very little predictive value, making the
attack not much more accurate than randomly guessing (Fig-
ure 2a). Telekine gives users the mechanism to disguise their
end-to-end execution time, should they decide to do so (§2.2).

Attack details. We demonstrate this attack on ResNet50 [37],
a CNN widely used for image recognition, using the timing
of GPU kernel completion events as detected by the operating
system on the CPU (though we monitor a function in the GPU’s
user-level runtime for ease of implementation). We evaluate
the accuracy of our attack using 5-fold cross validation.

We start with a pre-trained model for the standard Im-
ageNet [17] dataset which contains 1,000 different image
classes. Figure 2a shows the accuracy of distinguishing image
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classes based on the timing of the pre-trained model’s lay-
ers (Per-kernel: Trained), versus the same attack using only
end-to-end timing information (End-to-end: Trained). The
accuracy of the per-kernel classifier is startlingly good for
small numbers of classes: 78% for two classes, 55% for three
and 42% for four. As the number of classes of input images
increases, the accuracy of our classification declines, but it
remains much better than random guessing, outperforming
guessing by over 1.9× even among 30 input image classes.

We believe the root cause of the attack is timing dependent
GPU operations, probably multiplication by zero. We compare
a pre-trained model (Per-kernel: Trained with no zero-valued
weights), a randomly initialized model (Per-kernel: Random
with 0.2% zero-valued weights), and a model whose weights
are all zero (Per-kernel: Zero with 100% zero-valued weights).
The zero model has bad accuracy that is close to random
guessing. A randomly initialized model is best, followed by
the pre-trained model.

These results were generated using MXNet [10] ported to
HIP on the ROCm version 1.8 stack for AMD GPUs which is
used in the prototype; we saw similar results on the 2.9 version.
Preliminary tests showed that this specific attack is much less
powerful on NVIDIA GPUs.

Batched classification. Because inference is often done in
batches, we examine the accuracy of a batched attack. We
construct batches by splitting each ImageNet class into disjoint
training and test sets. Images are then randomly sampled from
each of these sets to form the batches.

We present the accuracy of our attack when distinguishing
four ImageNet classes in batches of size 32 (Figure 2b.) Each
batch is made up of the given fraction of images from a pri-
mary class (Purity), and randomly selected images from the
remaining three classes. Our objective is to correctly identify
the primary class.

Batches help, with the accuracy of our attack improving
with larger batch sizes. Larger batches execute more oper-
ations, effectively amplifying the timing signal our attack
relies on. Moreover, larger batches smooth out execution
timings for outlier images which would otherwise be less
recognizable to our attack model. When distinguishing four
classes (Figure 2b), the batched attack is better than random
guessing even when only 25% of the input images come from
the target class. The accuracy increases with higher batch
purity, outperforming single images by up to 64%.

5 Design

Telekine secures GPU-based computation from active attack-
ers, including side-channel threats. Side channels include
the execution timing of individual GPU kernels as well as
data movement to and from the GPU. Telekine achieves its
security by transforming an application’s computation so
that all communication—including data movement—among
trusted components is data oblivious. Telekine only trusts the
client machine and the in-cloud GPU TEE and must, therefore,
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Figure 3. Detailed Telekine overview.

efficiently coordinate the computation between these entities,
even though communication occurs over a wide area network,
rather than over higher-bandwidth, lower-latency fabric like
a data center network or a PCIe bus.

Telekine consists of three components (depicted in Figure 1
with detail in Figure 3).
∙ LibTelekine: a library that intercepts GPU API calls

from the application and transparently transforms the
calls into a data-oblivious command stream.
∙ Relay: an untrusted process that runs in the cloud and

directs the client’s command stream to the GPU.
∙ GPU: a GPU (or multiple GPUs) with TEE support that

meets Telekine’s requirements (see §3.1 for details).
LibTelekine is linked into the application running on the client.
During its execution, the application issues a stream of GPU
commands through the normal GPU API. Similar to normal
API remoting [8, 21, 101], libTelekine redirects API calls
made by the client to a server process with a GPU runtime–the
relay on the cloud machine. Telekine treats the relay almost
as if it were part of the network, relying on it to communicate
with the GPU but protecting that communication with end-
to-end techniques. The relay is not part of Telekine’s trusted
computing base.

All communication between libTelekine and the GPU is
protected with authenticated encryption (AES-GCM [24] in
our prototype) and sequence numbers. This creates a secure
channel satisfying the secrecy property S1 (content) and the
integrity properties I1 (content) and I2 (order) (described in
§2.1), ensuring that the GPU commands issued by libTelekine
can only be read by the GPU, and any tampering or reordering
is detectable. However, by observing when messages are
exchanged with the GPU (regardless of whether they are
encrypted), the adversary can get timing information about the
computation on the GPU.

Telekine’s goal is to remove all timing information from the
encrypted stream of GPU commands. It removes timing infor-
mation by sending commands (GPU runtime API calls like
launchKernel andmemcpy) at a fixed rate, independent of
input data. Fixed rating is a simple idea, but Telekine must over-
come two major challenges to fix-rate GPU communication.

1. Different GPU command types are distinguishable
because they have different sizes and they result in
different communication patterns with the GPU. (e.g.,
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launchKernel commands interact with MMIO ring
buffers and memcpy commands are handled using
DMA). Telekine must ensure that the attacker’s ability
to distinguish between these commands conveys no
information about the input data.

2. Conventional GPU command streams (§2.1) exhibit
a variety of data-dependent behavior whose timing is
externally visible (e.g., a kernel launch after a data
transfer will wait for the data transfer to finish). Telekine
must maintain the ordering semantics induced by such
data dependencies.

Telekine introduces a new primitive to overcome these
challenges: data-oblivious streams. Data-oblivious streams
transparently replace conventional GPU streams (and appli-
cations may have more than one), maintaining their semantics
while making their communication with the GPU data obliv-
ious. First, they separate commands by type, and schedule
each type independently. Second, they split, pad, and batch
commands of each type so that the encrypted payload is al-
ways the same size for messages of that type, satisfying S3
(size). Third, they inject management commands as needed to
maintain data-dependencies across message types, satisfying
I3 (API-preserving). Finally, data-oblivious streams send
the transformed commands according to a fixed schedule,
satisfying S2 (timing).

The relay, privileged software on the cloud machine, and
the network stack can delay commands since they are under
complete control of the (possibly adversarial) cloud provider.
However, they cannot delay commands in a way that leaks
input data because all observable behavior of the trusted com-
puting base (including its timing) is independent of input data.

5.1 Data-oblivious stream construction

Constructing data-oblivious streams only requires reasoning
about memcpy and launchKernel commands. The TEE
takes care of initialization (§3.1). The only other runtime com-
mands deal with stream synchronization, and Telekine trans-
forms those commands into memcpy and launchKernel
commands as well (discussed fully in §5.4). memcpy com-
mands are visible to the untrusted host’s privileged software
because GPU drivers use DMA for efficient data transfers. In
Telekine, the data itself is protected and copied to/from a fixed
staging area in untrusted GPU memory so the destination/-
source of the memcpy does not leak information.

Conventional GPU streams can create timing channels
from memcpy and launchKernel commands because a
memcpy command waits for all previous launchKernel
commands on the same stream. To eliminate this channel,
Telekine uses two GPU streams to construct a single data-
oblivious stream. Telekine uses one GPU stream to launch
the application’s kernels; this stream is called the ExecStream.
Telekine uses the other stream—called the XferStream—
to move data to and from the GPU. Telekine ensures that
commands on the XferStream never leak information about

the kernel execution time by waiting for commands on the
ExecStream.

The ExecStream. Application kernels are all launched
on the ExecStream. LibTelekine maintains a queue of the
launchKernel commands requested by the application
and releases the commands in order according to the fixed-rate
schedule. The GPU consumes these commands independently
of any ongoing kernel execution and buffers them internally
since their execution must be serialized according to GPU
stream semantics. Telekine honors data dependences between
memcpy and launchKernel commands by inserting data
management kernels that block the progress of the ExecStream
by spinning until the data is in place.

The XferStream. Data transfers requested by the application
are launched on the XferStream. Unlike launchKernel
commands, memcpy commands are directional (i.e., client-
to-GPU and GPU-to-client), and directions are detectable.
For example, because the adversary can observe interaction
with the network, it can differentiate between messages that
came over the network in transit to the GPU, and messages
copied from the GPU that are being sent over the network.
LibTelekine maintains separate queues for each direction and
schedules them independently to avoid leaking information.
Data for client-to-GPU transfers starts on the client, flows
through the relay and into untrusted memory on the GPU.
LibTelekine then enqueues a kernel, which moves the data
from the untrusted staging memory into trusted GPU mem-
ory. Similarly, in the GPU-to-client direction, Telekine first
enqueues a launchKernel on the XferStream to move the
data into untrusted GPU memory, then issues a memcpy to
copy it to the relay where it can be transferred over the network
back to the client.

Fixed-size commands. Telekine ensures that all memcpy
commands are the same size by splitting and padding the
memcpy commands issued by the application to a standard
size. When there are no pendingmemcpy commands, Telekine
maintains the same rate of data flow by scheduling dummy,
standard-sized memcpys to/from a staging buffer. Similarly,
all launchKernel commands are padded to the same size
(320 bytes in our prototype). When no launchKernel com-
mand is available, Telekine schedules no-oplaunchKernel
commands.

Schedules. Any schedule Telekine uses for GPU communi-
cation is secure so long as it does not depend on the data being
protected. Our prototype uses simple schedules which send
a fixed number of fixed-sized commands after each fixed-time
interval. For instance, Telekine might launch 16 kernels on the
ExecStream every 3 milliseconds, and send then receive 4MB
of data every 6 milliseconds on the XferStream.

Schedules can leak the category. While scheduling work at
a fixed rate is a well-known technique to avoid side-channel
leakage, the exact schedule is relevant to performance. We
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Algorithm 1 Telekine’s replacement functions for memcpy
andlaunchKernel. Splitting and padding steps are omitted
for brevity.

1: function LAUNCHKERNEL(𝑘𝑒𝑟𝑛,𝑎𝑟𝑔𝑠...)
2: ENQUEUE(𝑘𝑒𝑟𝑛𝑒𝑙𝑄𝑢𝑒𝑢𝑒,{𝑘𝑒𝑟𝑛,𝑎𝑟𝑔𝑠})
3: end function
4:
5: function MEMCPYH2D(𝑠𝑟𝑐,𝑑𝑠𝑡)
6: buf ←CHOOSETAGGEDBUFFER()
7: LAUNCHKERNEL(copy in, buf, dst)
8: ENQUEUE(dataQueueH2D, {src, buf})
9: end function

10:
11: function MEMCPYD2H(src, dst)
12: buf ←CHOOSETAGGEDBUFFER()
13: LAUNCHKERNEL(copy out, src, buf )
14: ENQUEUE(dataQueueD2H, {buf, dst})
15: end function

report our schedules in Table 1, and they are the same for
all tasks of a given category, e.g., training different machine
learning models with MXNet. However, they can differ across
categories, e.g., Galois has a different ExecStream schedule
from MXNet (§7). Under our threat model, the adversary
would be able to differentiate these workloads from their
network traffic. A user can always choose a more generic, but
lower performing schedule if this is a concern.

5.2 Telekine operation

Algorithm 1 and Algorithm 2 provide a high-level description
of Telekine’s data-oblivious streams. In Algorithm 1, Telekine
intercepts the application’s calls to launchKernel and
memcpy and transforms them into interactions with queues:
kernelQueue, dataQueueH2D, and dataQueueD2H (splitting,
padding, and encryption steps are omitted for brevity). The
Telekine threads shown in Algorithm 2 dequeue the com-
mands and release them to the GPU according to the schedule.
Telekine waits at lines 7, 18, and 29 for the next available time
slot ensuring that interactions with the queues do not influence
the timing of messages.

Mostmemcpy commands have strict ordering requirements
with respect to kernels that operate on their data. The memcpy
then launchKernel idiom ensures that the launched kernel
has fresh data to process. While Telekine decouples memcpy
commands by scheduling them on their own stream for se-
curity, it needs to preserve the original ordering semantics
expected by the application. Telekine maintains these seman-
tics by injecting its own data management kernels into the
ExecStream (shown on lines 7 and 13 of Algorithm 1) to
enforce the ordering expected by the application. These data
management kernels operate on tagged buffers which Telekine
uses to synchronize data access.

Algorithm 2 Periodic tasks performed by Telekine according
to the schedule. Encryption and decryption steps are omitted
for brevity.

1: loop ◁ ExecStream Thread
2: if EMPTY(𝑘𝑒𝑟𝑛𝑒𝑙𝑄𝑢𝑒𝑢𝑒) then
3: op←no op
4: else
5: op←DEQUEUE(kernelQueue)
6: end if
7: WAITFORSCHEDULEDTIME()
8: REMOTELAUNCHKERNEL(op)
9: end loop

10:
11: loop ◁ XferStream Client-to-GPU (H2D) Thread
12: if EMPTY(DataQueueH2D) then
13: src←dummy CPU
14: dst←CHOOSETAGGEDBUFFER()
15: else
16: {src, dst}←DEQUEUE(dataQueueH2D)
17: end if
18: WAITFORSCHEDULEDTIME()
19: REMOTEMEMCPY(src, dst)
20: end loop
21:
22: loop ◁ XferStream GPU-to-Client (D2H) Thread
23: if EMPTY(DataQueueD2H) then
24: src←CHOOSETAGGEDBUFFER()
25: dst←dummy CPU
26: else
27: {src, dst}←PEEK(dataQueueD2H)
28: end if
29: WAITFORSCHEDULEDTIME()
30: REMOTEMEMCPY(src, dst)
31: if dst ̸= dummy CPU then
32: if TAGMATCHES(dst) then
33: DEQUEUE(dataQueueD2H)
34: end if
35: end if
36: end loop

Tagged buffers. Tagged buffers are pre-allocated staging
buffers on the GPU, each with an associated tag slot. Telekine
assigns every memcpy operation a tagged buffer and a unique
tag, represented by “ChooseTaggedBuffer” in Algorithm 1 and
Algorithm 2. Data management kernels producing data (e.g.,
copying out the result of a kernel computation) write the tag
into the tag slot of the chosen tagged buffer after the operation
has completed and a memory barrier completes. Data manage-
ment kernels that consume data (e.g., waiting for data a kernel
expects to use as input) wait until the tag slot of the assigned
buffer contains the expected value since they cannot be sure the
buffer data is valid until the tag value matches its expectation.
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/* copy data to GPU */

memcpy(GPUbuf_0, CPUbuf_0);

/* compute result */

launchKernel(AppKern, GPUbuf_1,

GPUbuf_0);

/* copy result from GPU */

memcpy(CPUbuf_1, GPUbuf_1);

/* wait for memcpy */

launchKernel(copy_in, GPUbuf_0,

TAGbuf_0, t0);

/* do App’s work */

launchKernel(AppKern, GPUbuf_1,

GPUbuf_0);

/* notify result ready */

launchKernel(copy_out, TAGbuf_1,

GPUbuf_1, t1);

/* encrypt data */

CPU_encrypt(out_buf, CPUbuf_1, key);

/* copy encrypted data to GPU */

memcpy(STGbuf_0, out_buf);

/* decrypt and notify */

launchKernel(decrypt, TAGbuf_0,

STGbuf_0, key, t0);

do{

/* encrypt on GPU */

launchKernel(encrypt, STGbuf_1,

TAGbuf_1, key);

/* copy to client */

memcpy(in_buf, STGbuf_1);

/* decrypt */

CPU_decrypt(in_buf, in_buf, key);

} while (TAG(in_buf) != t1);

CPU_memcpy(CPUbuf_1, in_buf); 

Application Commands Telekine Commands

ExecStream XferStream

1

2

3

Figure 4. API calls made by the application and their mapping to underlying commands performed by Telekine.

Data management kernels. Telekine inserts its own data
management kernels into the ExecStream which either pro-
duce or consume tagged buffers depending on the direction of
the transfer. There are two kernels: copy in and copy out.
Both kernels take an application-defined memory location,
a tagged buffer, and a tag as arguments. For CPU-to-GPU
memcpys, libTelekine inserts a copy in launch into the
ExecStream. The copy inwill repeatedly check the tag slot
of the buffer, completing the copy to the application’s buffer
only after verifying the tag slot matches the tag it was given
as an argument. To service GPU-to-CPU memcpys, Telekine
inserts a copy out into the ExecStream after the application
kernel which generates the data. The copy out writes the
data to the assigned tagged buffer, followed by the tag to signal
to Telekine that the data is ready. Since libTelekine runs on
the client it has no way of knowing when the copy out has
completed until the tagged buffer has been copied back, so it
will retry the same GPU-to-CPU copy until the tag is correct
corresponding to a complete copy. This is represented by the
PEEK operation on line 27 of Algorithm 2, the operation is
only dequeued after libTelekine verifies that the copy out
kernel did its work on line 32.

GPU-to-GPU data copies. Emerging hardware supports ded-
icated, high-bandwidth, cross-GPU communication links such
as NVLink [26]. NVLink improves cross-GPU data copy
efficiency but does not change the fundamental communi-
cation mechanisms used in a GPU stack. Telekine currently
implements GPU-to-GPU copies as two copies: one from the
first GPU back to the client and the second from the client to
the second GPU. Direct GPU-to-GPU copies using NVLink
would be far more efficient, but to be data oblivious they would
have to occur at a fixed rate. We leave this task for future work.

Discussion. The XferStream is carefully constructed so that
it never synchronizes with the ExecStream. The XferStream
contains DMA operations which the OS can detect; if appli-
cation kernels on the ExecStream occupy the GPU causing the
encryption kernels on the XferStream—and transitively the
DMAs—to wait, then the platform can learn some information
about kernel execution times. There may still be leakage be-
tween the XferStream and the ExecStream because we cannot
guarantee that kernels of the former will not interfere with the
latter. However, we believe this leakage to be hard to exploit
in practice, we have not seen it in any of our benchmarks, and
we expect that future GPU features like strict priority [72] or
preemption [92] will allow Telekine to seal the leak.

5.3 Data movement example.

Figure 4 shows an example of how Telekine transforms appli-
cation commands into equivalent, data-oblivious commands
on the ExecStream and XferStream. The application issues 3
commands: 1 copy data to the GPU, 2 launch a kernel to
process that data, and 3 copy the results of the computation
out of the GPU back to the CPU.

1 : The application requests a memcpy from CPUbuf 0
to GPUbuf 0. In response, Telekine chooses a tag, t0, and
tagged buffer, TAGbuf 0, for this operation, then enqueues a
kernel, copy in, on the ExecStream. The copy in kernel
will spin on the GPU, using atomic operations to check the
end of TAGbuf 0 until it sees t0, then copy the contents
of TAGbuf 0 into GPUbuf 0. On the XferStream, Telekine
encrypts the data, then copies the encrypted data to a staging
buffer in untrusted GPU memorySTGbuf 0. Finally, Telekine
launches a kernel, decrypt, on the XferStream which reads
the encrypted data out of untrusted memory and decrypts it into
TAGbuf 0. After the data is written, the tag t0 is appended
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Figure 5. A microbenchmark which shows how Telekine overheads
decrease as the running time of the GPU computation increases.

after a memory barrier, signaling to copy in that the data is
ready.

2 : The application launches its kernel, AppKern, which
processes the data in GPUbuf 0 and writes its result into
GPUbuf 1. Since AppKern is launched on the ExecStream
aftercopy in it will wait forcopy in to complete, ensuring
that the data will be inGPUbuf 0 beforeAppKern starts. The
platform cannot detect that AppKern has started.

3 : The application issues a request to copy the re-
sults of AppKern from GPUbuf 1 to CPU buf1. In re-
sponse, Telekine again chooses a tag and tagged buffer, t1
and TAGbuf 1 respectively, and immediately enqueues a
copy out kernel on the ExecStream. After the applica-
tion’s kernel, AppKern, has completed, copy out moves
the result of its computation in GPUbuf 1 into TAGbuf 1
then atomically appends t1. While waiting for copy out
to finish, Telekine periodically encrypts TAGbuf 1 into a
staging buffer in untrusted memory, STGbuf 1, then issues
a memcpy operation to copy the contents of STGbuf 1
to a client-side buffer, in buf. Telekine decrypts in buf
and checks the tag. If the tag matches t1, copy out and
AppKern must have completed and the data can be copied
into CPUbuf 1. If not, this process will be repeated during
the next scheduled GPU to client transfer.

5.4 Synchronizing data-oblivious streams

Applications sometimes wish to synchronize with their GPU
streams (i.e., wait for all outstanding commands to complete),
or synchronize one GPU stream with another (i.e., ensure
another stream has completed some operation, 𝑛, before this
stream starts operation, 𝑚). Telekine handles both of these
cases by injecting kernels that increment a counter in GPU
memory between kernels in the ExecStream. Because of
stream semantics, the increment kernel only runs after all
previous kernels in the stream, providing an accurate count of
how many application kernels have executed. Telekine copies
that counter back to the client periodically and can block the
application thread until all submitted work has completed.

ExecStream XferStream
Benchmark Quantum Size Quantum Size Bandwidth
Microbench 15ms 32kerns 30ms 1MB 533 Mb/s
MXNet 15ms 512kerns 30ms 1MB 533 Mb/s
Galois1 15ms 32kerns 30ms 1MB 533 Mb/s
Galois2 15ms 32kerns 30ms 1MB 533 Mb/s

Table 1. Data-oblivious schedule parameters and the network band-
width required. MicroBench from §7.1; MXNet from §7.2; Galois1
executes on one GPU, Galois2 on two from §7.3. ExecStream sizes
are number of kernel launches, each of which is 320 bytes. Xfer-
Stream streams contribute twice their size to bandwidth consumption
because Telekine copies data in both directions at every quantum.

6 Implementation

The Telekine prototype is based on AMD’s ROCm 1.8 [2], an
open-source software stack for AMD GPUs. Telekine requires
an open-source stack because we split its functionality between
user and cloud machines. NVIDIA is generally thought to have
higher hardware and software performance as well as better
third-party software support. But NVIDIA only officially
supports closed-source drivers and runtimes.

LibTelekine and the relay. All applications were ported to
use HIP [39], the ROCm CUDA replacement. LibTelekine
marshals the arguments of HIP API calls to be sent over a TLS
protected TCP connection to the relay to support initializa-
tion. The libTelekine and relay prototype are based on code
generated by AvA [107]; they total 8,843 and 5,650 lines of
C/C++/HIP code respectively (measured by cloc [12]).

GPU TEE. GPU TEE requirements are made explicit in Sec-
tion 3.1, and most of those requirements are safety properties
that do not impact performance. A notable exception is the
cryptography required to secure the secrecy and integrity
of kernel launch commands. We model the timing of these
features by decrypting kernel launch commands in the relay.

7 Evaluation

We quantify the overheads of the security Telekine provides
by comparing it to an insecure baseline: applications run on
cloud provider machines that offload computation to GPUs
directly through the GPU runtime.

We measure Telekine across two testbeds. The first is the
simulated testbed which simulates wide-area network (WAN)
latency and bandwidth, providing a controlled environment for
measurement. The second is the geodist testbed in which the
server and client are geodistributed and connected by the Inter-
net. Both testbeds use the same “cloud machine” (the server),
which has an Intel i9-9900K CPU with 8 cores @3.60GHz,
32GB of RAM and two Radeon RX VEGA 64 GPUs each
with 8GB of RAM. All machines are running Ubuntu 16.04.6
LTS with Linux kernel version 4.13.0, and AMD’s ROCm-1.8
runtime and HIP-1.5 compiler.

In the simulated testbed, the client has an Intel Xeon E3-
1270 v6 processor with 4 cores @3.8GHz and 32GB of RAM.
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ResNet InceptionV3 DenseNet
Model size 97.5 MB 90.9 MB 30.4 MB

Input size
Input image 224x224x3 299x299x3 224x224x3
Batch size 64 64 48
Data size per batch 9.2 MB 16.4 MB 6.9 MB

Single-GPU training baseline
T-put 20.27 MB/s 11.05 MB/s 13.57 MB/s
T-put (less sync) 22.69 MB/s 11.66 MB/s 17.46 MB/s

Table 2. Overview of machine learning training on MXNet. Input
size is given in pixel dimensions, batch size in images per GPU. T-put
is throughput.

Both this client and the server are equipped with a Gtek X540
10Gb NIC, which we connect directly. We simulate a client-to-
cloud network connection in a controlled environment using
netem [65], which allows us to add network delays and limit
bandwidth. We always limit the bandwidth of the connection
to 1Gbps and unless otherwise mentioned we add delays in
both directions so that the total round trip time (RTT) is 10ms.
These parameters are conservative for a network connection
to an edge cloud server [16, 106].

In the geodist testbed, the client is a VM hosted by
vultr [102] in their Dallas, TX datacenter (the server is in
Austin, TX). The VM has 8 vCPUs and 32GB of RAM. We
measured the RTT between the server and this client at 12ms,
and the average bandwidth at 877Mbps.

Different applications use different schedules to get good
performance, though Table 1 shows strong similarity among
the data-oblivious schedules we use for evaluation.

7.1 Telekine performance tradeoff

Figure 5 shows the performance tradeoff for a microbenchmark
with 16MB of input and output and a GPU kernel with a con-
figurable running time on the simulated testbed. The different
lines show the costs of specific sources of overhead. The “API
remoting” line uses the XferStream and the ExecStream over
the network. The “+Encryption” line adds encryption to API
remoting. Finally, the “Data-oblivious scheduling” line adds
the data-oblivious schedule described in Table 1 to encryption.
When the GPU kernel executes for only 0.14 seconds, the
overhead of Telekine is nearly 8×. Once the computation takes
4.4s the overhead is only 22%. Telekine is a remote execution
system; it makes communication more expensive because of
its oblivious scheduling as well as network delay and limited
bandwidth. It is most efficient when computation dominates
communication, which is the case for our benchmarks.

7.2 Machine learning algorithms

We port MXNet [10], a state-of-the-art machine learning
library, to run on the HIP runtime. Our port is based on MXNet
v1.1.0 (git commit 07a83a03). We also use AMD’s MIOpen
library for efficient neural network operators. Some parts of
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Figure 6. Performance of machine learning training algorithms using
a single GPU with Telekine on the simulated testbed.

ResNet InceptionV3 DenseNet
1.23× 1.08× 1.20×

Table 3. Performance of machine learning training algorithms on
Telekine, measured on the geodist testbed.

MXNet adaptively choose from different GPU kernel imple-
mentations by measuring execution times on the available
hardware and choosing the most performant option. To ensure
the baseline and Telekine are running the same kernels for
measurement purposes, we record the kernels chosen by the
baseline, and hard-code those kernel choices for all runs.

Optimizing MXNet. We applied several optimizations to
MXNet which help to mitigate the fact that Telekine is com-
municating with the GPU over a WAN:
∙ The models we evaluate represent the pixel channels of

the input bitmaps using 4-byte floating point quantities, even
though they range in integer values from 0 to 255. To save
network bandwidth, we send bytes instead of floats, reducing
bandwidth by 4×. Bytes are changed back floats on the GPU.
∙ We determined that MXNet was overly conservative in

its GPU synchronization strategy and were able to reduce
the number of synchronizations it performs by removing
unnecessary calls to hipStreamSyncronize (“less sync”
in Table 2). Telekine also optimizes synchronization calls by
using tagged buffers (§5.1) to coordinate data transfers.

Machine learning training. We evaluate the training per-
formance of deep neural networks on Telekine using three
state-of-the-art convolutional neural network architectures:
ResNet [37], InceptionV3 [91], and DenseNet [40]. All models
are trained using the ImageNet dataset (a substantial data set
consisting of 1.4 million training images). For ResNet, we
use the 50-layer variant. For DenseNet, we use the 121-layer
variant. We evaluated all networks using batches size of 64.
Table 2 summarizes the input sizes that were used to evaluate
the three network architectures.

Figure 6 shows the performance of training three neural nets
on Telekine using the simulated tesdbed, normalized to the
insecure baseline. The bars break down Telekine’s overheads
and match the descriptions from Section 7.1. Both Telekine
and the baseline use a single GPU. Table 3 shows the same
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Batch ResNet InceptionV3 DenseNet
size Base Telekine Base Telekine Base Telekine

Simulated testbed
1 20 273 (13.7x) 29 259 (8.93x) 26 248 (9.54x)
8 42 270 (6.43x) 65 264 (4.06x) 47 241 (5.13x)

64 233 389 (1.67x) 368 559 (1.52x) 246 405 (1.65x)
256 988 1195 (1.21x) 1520 1806 (1.19x) 946 1163 (1.23x)

Geodist testbed
1 20 200 (10.0x) 31 205 (6.61x) 26 201 (7.73x)
8 69 241 (3.49x) 111 247 (2.23x) 84 209 (2.49x)

64 462 481 (1.04x) 637 685 (1.08x) 484 483 (1.00x)

Table 4. Latencies (in ms) of machine learning inference workloads
with the baseline system (Base in the table) and Telekine.

experiment on the geodist testbed; the results are similar to the
simulated testbed.

Machine learning inference. We evaluate neural network
inference workloads for ResNet, InceptionV3, and DenseNet
with Telekine. For inference, latency is the priority for users,
but throughput is still a priority for providers. Batching infer-
ence can substantially improve throughput by fully utilizing
hardware capabilities and amortizing the overheads from other
system components [15]. We evaluate the latency of inference
with different batch sizes, ranging from 1 to 256. Our baseline
is an insecure server with one local GPU, communicating with
the over the network. Table 4 shows the inference latency of
three neural networks with different batch sizes. The overheads
with on the simulated testbed for batches of size of 256 are
21%, 19%, and 23% for ResNet, InceptionV3, and DenseNet,
respectively which are slightly improved compared to the
overheads we report for training (§7.2), although the training
batch size was 64. With a batch size of 64, the overheads on
the simulated testbed inflate to 67%, 52%, and 65%. When we
move to the geodist testbed, the performance of the baseline
suffers more that Telekine; at batches of size 64, the standard
deviation of our measurements exceed the differences between
the mean Telekine and baseline runs. Clipper [15] uses an
adaptive batch size to meet the latency requirement of the
application, which Telekine could adopt.

7.3 Graph algorithms

Galois is a framework designed to accelerate parallel appli-
cations with irregular data access patterns, such as graph
algorithms [75]. We port Galois’s GPU computation to use the
HIP runtime instead of CUDA and evaluate it on three graph
algorithms: breadth-first search (BFS), PageRank, and single
source shortest paths (SSSP). All measurements use the USA
roads graph dataset [18]. Figure 5 shows the performance of
these applications on Telekine with one and two GPUs. The
baseline is an unmodified system with local GPU(s). Baseline
performance for single GPU applications is: BFS 54.1s, SSSP
74.6s, Pagerank 60.9s; for two GPUs: BFS 36.4s, SSSP 42.8s.
For the input distributed with Galois, two GPU Pagerank slows
down, so we do not evaluate it.

Application Normalized runtime
BFS (1 GPU) 1.18x
SSSP (1 GPU) 1.21x
Pagerank (1 GPU) 1.29x
BFS (2 GPUs) 1.38x
SSSP (2 GPUs) 1.41x

Table 5. Performance of Galois applications with Telekine.

RTT (ms) ResNet InceptionV3 DenseNet
10 1.19x 1.10x 1.22x
20 1.29x 1.13x 1.37x
30 1.44x 1.16x 1.49x
40 1.53x 1.18x 1.66x
50 1.62x 1.30x 2.09x

Table 6. Normalized runtime of machine learning workloads with
respect to network round trip time (RTT).

Telekine imposes moderate overheads on single-GPU Ga-
lois applications, adding latency to data transfer times. Galois
implements each graph algorithm as a single GPU kernel
that is iteratively called until the algorithm reaches termina-
tion. Multi-GPU applications exchange data between GPUs
through the host after each iteration. Telekine imposes higher
overheads for multi-GPU workloads because of increased data
movement over the network.

7.4 WAN latency sensitivity

Telekine assumes that the client communicates with the server
over a WAN. The greater distances crossed by WANs result
in longer round trip times (RTTs). The batching of commands
that Telekine does for security also makes it resilient to these
increased RTTs, especially when the ratio of GPU computation
to communication is high. To demonstrate this we increased
the RTT between our machines using netem [65] and ran
the machine learning training benchmarks for different RTTs
(Table 6). Overheads increase with RTT. At 30ms which we
measured to be the RTT between the client and an Amazon
EC2 instance, the overhead for InceptionV3 is still only 16%.

8 Related Work

Enclave-based security. Several recently proposed systems
aim to protect applications from an untrusted platform.
Haven [7], SCONE [4], and Graphene-SGX [95] provide
an environment to support unmodified legacy applications.
Ryoan [43] protects user data from untrusted code and an
untrusted platform. VC3 [83] and Opaque [109] provide SGX-
protected data processing platforms. None of these systems
allow for GPU computation and none of them focus on the
communication issues that then arise.

Trusted execution environments on GPUs. HIX [45] extends
an SGX-like design with duplicate versions of the enclave
memory protection hardware to enable MMIO access from
code running in an SGX enclave. This enables HIX to guar-
antee that a single enclave has exclusive access to the MMIO
regions exported by a GPU, in principle, defeating a malicious
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OS that wants to interpose or create its own mappings to them.
While this design provides stronger GPU isolation than current
enclaves, it remains vulnerable to side-channel attacks because
communication is not data oblivious.

Graviton [100] supports GPU TEEs based on secure con-
texts that use the GPU command processor to protect mem-
ory from other concurrently executing contexts. Similar to
Telekine, Graviton secures communication using crypto-
graphic techniques. Telekine can adopt many of Graviton’s
clever mechanisms for its TEE functionality (§3.1), such as
restricting access to GPU page tables without trusting the ker-
nel driver. But Graviton does not protect against side channels,
which is Telekine’s primary mission.

The opportunity to provide stronger security for GPU-
accelerated applications using TEEs and oblivious communi-
cation has been observed by others [41].

Securing accelerators. SUD emulates a kernel environment
in user space to isolate malicious device drivers [9]. Previous
work has explored techniques to support trusted I/O paths,
leveraging hypervisor support [103, 110] or system man-
agement mode [52]. Our work focuses on the secure use of
GPUs with untrusted system software and does not rely on
support from the software at lower privilege layers. Border
Control [74] addresses security challenges for accelerator-
based systems but focuses on protecting the system from a
malicious accelerator, rather than Telekine which protects
CPU and GPU code from an untrusted platform.

GPU security and protection. Studies have analyzed GPU
security properties and vulnerabilities [112]. Frigo et al. [28]
demonstrate techniques that leverage integrated GPUs to accel-
erate side-channel attacks from browser codes using JavaScript
and WebGL. PixelVault [98] exploits physical isolation be-
tween CPUs and GPUs to implement secure storage for keys,
though it was shown to be insecure [112]. CUDA Leaks [77]
shows techniques to exfiltrate data from the GPU to a malicious
user. Attacks that take advantage of GPU memory reuse with-
out re-initialization are a common theme [36, 56, 111]. Several
systems have proposed mechanisms that bring the GPU under
tighter control of system software, exploring OS support [34,
49, 63, 82], access to OS-managed resources [51, 86, 87],
hypervisor support [20, 30, 33, 85, 90, 93, 101] and GPU archi-
tectural support for cross-domain protection [5, 13, 76, 79, 99].

Secure machine learning. Ohrimenko et al. describe an
SGX-based system for multi-party machine learning on an
untrusted platform [73]. Their data-oblivious algorithm for
convolutional neural networks explicitly does not support
state-of-the-art operations that are data dependent (e.g., max
pooling). Telekine can support any data-dependent operations
but requires a GPU TEE. Chiron [42] provides a framework
for untrusted code to design and train machine learning models
in SGX. Telekine does not support untrusted code, but does
allow the use of GPUs which Chiron excludes. CQSTR [108]
lets a trusted platform operator confine untrusted machine

learning code so that it can be securely applied to user data.
By contrast, Telekine protects user data from an untrusted
platform operator. MLcapsule [35] protects service provider
secrets (machine learning model) and client data by running
machine learning algorithms in an SGX enclave but does not
suggest extensions to allow secure GPU acceleration.

Slalom [94] secures training of DNNs using a combination
of TEEs and local GPUs. Slalom’s guarantees are achieved
by partitioning DNN training into linear layers using matrix
multiplication, which are offloaded to a GPU, the remaining
operators, which execute on the CPU in a TEE such as SGX.
Matrix multiplication is verified and turned private using al-
gorithmic techniques [27], which enables secure GPU offload
without requiring GPU TEE support.

Recent work [19, 61] demonstrates how to efficiently apply
neural networks to encrypted data. As far as we know, today
there are no practical techniques for training deep neural
networks on encrypted data.

API remoting. API remoting [6, 22, 23, 50, 57, 58, 80, 104]
is an I/O virtualization technique that interposes a high-level
user-mode API. API calls are forwarded to a user-level com-
puting framework [85] on a dedicated appliance VM [101], or
on a remote server [23, 50]. To our knowledge, Telekine is the
first system to use API remoting as a security technique.

OS-level time protection. Recent extensions to seL4 [29]
suggest general OS-level techniques that prevent timing-based
covert channels by eliminating sharing of hardware resources
that can form the basis of covert channels. The techniques do
not yet generalize to I/O-attached accelerators.

9 Conclusion

Telekine enables secure GPU acceleration in the cloud.
Telekine protects in-cloud computation with a GPU TEE
and application/library computation by placing it on a client
machine. It secures their communication with a novel GPU
stream abstraction that ensures the execution is independent of
input data. Telekine allows GPU-accelerated workloads such
as training machine learning models to leverage cloud GPUs
while providing strong secrecy and integrity guarantees that
protect the user from the platform’s privileged software and
its administrators.
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[94] Florian Tramè and Dan Boneh. Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware. In International
Conference on Learning Representations, ICLR ’19, 2019.

[95] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX:
A Practical Library OS for Unmodified Applications on SGX. In
Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, pages 645–658. USENIX
Association, 2017.

[96] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security Symposium, 2018.

[97] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Malicious Management Unit: Why Stopping Cache Attacks in
Software is Harder Than You Think. In USENIX Security, August 2018.

[98] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and
Sotiris Ioannidis. PixelVault: Using GPUs for Securing Cryptographic
Operations. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 1131–1142,
New York, NY, USA, 2014. ACM.

[99] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Ab-
hishek Bhattacharjee. Observations and Opportunities in Architecting
Shared Virtual Memory for Heterogeneous Systems. In ISPASS, 2016.

[100] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
Execution Environments on GPUs. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[101] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. GPU virtualization for
high performance general purpose computing on the ESX hypervisor.
In Proceedings of the High Performance Computing Symposium,
page 2. Society for Computer Simulation International, 2014.

[102] Vultr.com. https://www.vultr.com/products/cloud-compute/.
(Accessed: November 2019).

[103] Samuel Weiser and Mario Werner. SGXIO: Generic Trusted I/O Path
for Intel SGX. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, CODASPY ’17, pages
261–268, New York, NY, USA, 2017. ACM.

[104] Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Rajeev Thakur, Su-
san Coghlan, Heshan Lin, Gaojin Wen, Jue Hong, and Wu-chun Feng.
Transparent accelerator migration in a virtualized GPU environment.
In Proceedings of the 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid, pages 124–131, 2012.

[105] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
systems. In Proceedings of the IEEE Symposium on Security and
Privacy, 2015.

[106] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Computing:
Platform and Applications. In ACM/IEEE Workshop on Hot Topics
in Web Systems and Technologies, HotWeb, 2015.

832    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://news.developer.nvidia.com/using-ai-to-solve-collaborative-challenges-by-playing-starcraft/
https://news.developer.nvidia.com/using-ai-to-solve-collaborative-challenges-by-playing-starcraft/
https://news.developer.nvidia.com/using-ai-to-solve-collaborative-challenges-by-playing-starcraft/
https://www.vultr.com/products/cloud-compute/


[107] Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christopher J.
Rossbach. AvA: Accelerated Virtualization of Accelerators. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[108] Yan Zhai, Lichao Yin, Jeffrey S Chase, Thomas Ristenpart, and
Michael M Swift. CQSTR: Securing Cross-Tenant Applications with
Cloud Containers. In ACM Symposium on Cloud Computing, 2016.

[109] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In USENIX Symposium
on Networked Systems Design and Implementation, NSDI, 2017.

[110] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building
Verifiable Trusted Path on Commodity x86 Computers. In 2012 IEEE
Symposium on Security and Privacy, May 2012.

[111] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and
Rui Liu. Vulnerable GPU Memory Management: Towards Recovering
Raw Data from GPU. PoPETs, 2017(2):57–73, 2017.

[112] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett
Witchel, and Mark Silberstein. Understanding The Security of Discrete
GPUs. In Proceedings of the General Purpose GPUs, GPGPU-10,
pages 1–11, New York, NY, USA, 2017. ACM.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    833





TimeCrypt: Encrypted Data Stream Processing at Scale with Cryptographic
Access Control

Lukas Burkhalter1, Anwar Hithnawi1,2, Alexander Viand1, Hossein Shafagh1, Sylvia Ratnasamy2

1ETH Zürich 2UC Berkeley

Abstract
A growing number of devices and services collect detailed

time series data that is stored in the cloud. Protecting the
confidentiality of this vast and continuously generated data is
an acute need for many applications in this space. At the same
time, we must preserve the utility of this data by enabling
authorized services to securely and selectively access and run
analytics. This paper presents TimeCrypt, a system that pro-
vides scalable and real-time analytics over large volumes of
encrypted time series data. TimeCrypt allows users to define
expressive data access and privacy policies and enforces it
cryptographically via encryption. In TimeCrypt, data is en-
crypted end-to-end, and authorized parties can only decrypt
and verify queries within their authorized access scope. Our
evaluation of TimeCrypt shows that its memory overhead and
performance are competitive and close to operating on data
in the clear.

1 Introduction
Recent years have seen explosive growth in systems and de-
vices that collect time series data and relay it to cloud-based
services for analysis. This growth is only expected to ac-
celerate with the proliferation of IoT devices, telemetry ser-
vices, and improvements in data analytics. However, with this
growth has come mounting concerns over data protection and
data privacy [66]. Today, the public concern over data privacy
and confidentiality is reaching new heights in light of the
growing scale and scope of data breaches [17, 29, 56]. To
grasp the extent of this issue, one can look at the number of
data breaches reported under the new GDPR obligation to no-
tify, which has already exceeded 65,000 in the first year [73].

Over the last decade, encrypted databases [60, 61, 63, 75,
81] have emerged as a promising solution to tackle the prob-
lem of data breaches. The approach of keeping data encrypted
while in-use allows users to query encrypted data while pre-
serving both confidentiality and functionality. Research in
this domain has led to various encrypted database designs, in-
cluding designs for key-value stores [25], batch analytics [60],
graph databases [53], and relational databases [63, 81]. This
motivates the following natural question: can we enable en-
crypted data processing for time series workloads?

Time series workloads come with unique performance and
security requirements that existing encrypted data processing
systems fail to meet:
(i) Scalability and Interactivity. Query processing over
time series data must simultaneously scale to large volumes
of data, support low-latency interactive queries, and sustain
high write throughput. To meet these challenges several ded-
icated databases have been designed for time series work-
loads [12, 33, 42, 45, 50, 62, 78]. A key aspect of these sys-
tems is their use of in-memory indices that store aggregate
statistics, enabling faster query response times and data sum-
marization. As we discuss in §6/§7, prior work on encrypted
data processing does not easily lend itself to maintaining these
in-memory indices. The overhead of the crypto primitives in
encrypted data processing needs to be negligible to meet the
scaling, latency, and performance requirements associated
with time series workloads.
(ii) Secure Sharing. A key challenge in modern systems is
that privacy must co-exist with the desire to extract value from
the data, which typically implies sharing data to be analyzed
by third-party services [54]. Hence, a truly comprehensive
approach to data protection must also comprise mechanisms
for secure sharing of encrypted data. Sharing should also be
fine-grained since it is undesirable and often unnecessary to
give parties unfettered access to the data. Instead, users may
want to (1) share only aggregated statistics about the data (e.g.,
avg/min/max), (2) limit the resolution at which such statistics
are reported (e.g., hourly vs. per-minute), (3) limit the time
interval over which queries are issued (e.g., only June 2019),
(4) or a combination of the above. Moreover, the desired gran-
ularity and scope of sharing can vary greatly across users and
applications. Hence, support for encrypted query processing
must go hand-in-hand with access control that limits the scope
of data that users might query. The sharing paradigm in data-
stream systems is distinctly different than in conventional
databases. Data-stream settings feature a multitude of data
sources continuously pushing data to the cloud, where various
services that are often not known in advance can subscribe to
consume and analyze data streams. Therefore, such systems
require flexible access policies. Frequently, there is a need
to fuse and analyze data from different sources collectively;
this implies that we need to devise an end-to-end encryption
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scheme that is compatible with this sharing paradigm.
TimeCrypt. In this paper, we present TimeCrypt, a system
that augments time series databases with efficient encrypted
data processing. TimeCrypt provides cryptographic means
to restrict the query scope based on data owners’ defined
policies. With TimeCrypt, data owners can cryptographically
restrict user A to query encrypted data at a defined temporal
range and granularity, while simultaneously allowing user B
to execute queries on the same data at a different granularity
without (i) introducing ciphertext expansion or data redun-
dancy, (ii) introducing any noticeable delays, or (iii) requiring
a trusted entity to facilitate this.

In this work, we introduce a partially homomorphic-
encryption-based access control construction (HEAC) that
supports both fine-grained access control and computations
over encrypted data within a unified scheme. These two as-
pects have traditionally been addressed independently: the
former through cryptographically enforced access control
schemes [35, 39, 49, 59, 83] and the latter through encrypted
data processing [60, 63, 75, 81]. HEAC simultaneously sup-
ports both while meeting the performance and access control
requirements of time series workloads. A key insight behind
the design of HEAC is based on the observation that time
series data streams are continuous and time is the natural
attribute for accessing and processing this data. Hence, we
discretize data streams into fixed-length time segments, and
encrypt each segment with a different key using symmetric-
key homomorphic encryption. This allows us to express fine-
grained access policies at the stream segment granularity.
This, however, raises two challenges; we need to manage a
large number of keys in an efficient and scalable manner and
translate stream access policies to the corresponding keys suc-
cinctly. To overcome these challenges in HEAC, we associate
keys with temporal segments. With this, we avoid the need to
maintain a mapping between keys and ciphertexts. We derive
these keys from a hierarchical key-derivation tree construc-
tion that allows us to express fine-grained access policies over
stream data and share keys efficiently (i.e., with logarithmic
complexity).

We provide an implementation and evaluation of a proto-
type of TimeCrypt on top of Cassandra. We evaluate Time-
Crypt in a range of scenarios combining IoT devices, AWS
(for data storage and processing), and time series traces from
real-world applications. We show that TimeCrypt can support
a wide range of applications by developing four applications
which vary in complexity and scalability requirements. Fi-
nally, we show that TimeCrypt’s performance is competitive
with the baseline (plaintext) and it outperforms prior work
by a factor of 2 to 52 (§6). Considering an ingest workload
with 5.77 million data points per second on a single machine,
TimeCrypt’s throughput is reduced only by 2.9% for both data
ingest and statistical queries over encrypted data.

Contributions. In summary, our contributions are:
• We introduce HEAC, an encryption-based access control

construction for stream data that is additively homomor-
phic. HEAC additionally provides verifiable computations
over ciphertexts to ensure the integrity of the outsourced
encrypted computation.

• We design, implement, and evaluate TimeCrypt, the first
scalable privacy-preserving time series database that meets
the scalability and low-latency requirements associated
with time series workloads. We introduce a design that
protects the data confidentiality, yet maintains its utility by
efficiently supporting a rich set of functionalities and ana-
lytics that are key to time series data. TimeCrypt supports
data lifecycle operations such as ongoing data summariza-
tion and deletion that are common in time series databases.
TimeCrypt supports expressive data access and privacy
policies, enforceable by encryption.

• We make TimeCrypt’s code publicly available1, both as a
standalone system and as a library to be integrated with
other time series databases.

2 Overview
TimeCrypt achieves its competitive performance through a
careful design of cryptographic primitives tailored for time
series data workloads. To understand the rationale behind
our techniques, we start this section by presenting relevant
background on time series data, then we give an overview of
TimeCrypt, and describe our security model.

2.1 Background on Time Series Data
Time series Applications. Time series data is increasingly
prevalent across a wide range of systems (e.g., monitoring,
telemetry, IoT) in diverse domains such as health, agricul-
ture [82], transportation [69], operational insight [2], and
smart cities. The growth of time series data is largely at-
tributed to the rising demand for instrumentation. Individuals
and organizations are continuously logging various metrics
which report the state of systems or organisms for better diag-
noses, forecasting, decision making, and resource allocation.
The ability to capture and analyze this data in a timely manner
is key for automation and is enabling a whole new spectrum
of applications [2, 33, 40, 69, 82]. The proliferation of time
series data has been coupled with increasing demand for high-
performance analytics over large volumes of time series, and
has led to numerous designs for databases that are optimized
for time series workloads [12, 33, 42, 45, 50, 62, 78].
Time series Workloads. (i) Write and Read: Data is append-
only and typically generated at an extremely high rate (high
velocity) and is initially stored at a high resolution (large vol-
ume) [12, 62]. It is not unusual for applications in this space
to report hundreds of millions of data points per day [7, 12].

1Available at: https://timecrypt.io/
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Hence, sustaining high read and write throughputs and scal-
ability are key requirements when storing and processing
time series data. Time is the primary dimension for access-
ing and processing data. Queries primarily consider tempo-
ral ranges (e.g., values from the last 3h) rather than target-
ing individual points. (ii) Analytics: Queries are primarily
of aggregate and statistical nature, and specialized indices
for accelerating statistical queries are common in time series
databases [12, 42, 65]. Additionally, analytics of diagnostic
(e.g., anomaly or trend detection) and predictive nature (e.g.,
forecasting) are common in this space. (iii) Data decay: Time
series data is often machine generated, continuous, and mas-
sive. Simultaneously, the value and relevance of data decays
rapidly with time. Analytics largely favor recent data over
older, and roll up aggregation is commonly applied to older
data to reduce storage requirements. Hence, data retention
and summarization [7, 62] are crucial for these systems.

The goal of our work is to retain the performance, function-
ality, and scalability of existing time series databases while
augmenting them with strong security and privacy guarantees.

2.2 Architecture
TimeCrypt’s architecture is analogous to that of conventional
times-series databases [10, 11, 12, 42, 50], where a standard
distributed key-value store is extended with additional logic
for time series workloads. TimeCrypt includes a trusted client
library to realize end-to-end encryption paired with access
control and integrity verification. TimeCrypt consists of two
components (i.e., the client and server libraries) and involves
four parties (i.e., data owner, data producer, data consumer,
and database server), as illustrated in Fig. 1. A data producer
is an entity (e.g., IoT device) that generates and uploads time
series data, and runs TimeCrypt’s client library which han-
dles stream preprocessing and encryption. The data owner
can express access permissions to its generated data. Mean-
while, data consumers are entities (e.g., services) that are au-
thorized to access a user’s data to provide added value, such
as visualizations, monitoring, and diagnoses. TimeCrypt’s
server executes statistical and analytical queries directly on
encrypted data. TimeCrypt supports a rich set of foundational
queries that are widely used in time series workloads (§4), i.e.,
statistical queries (e.g., min/max/mean), analytics (e.g., predic-
tion, trend detection), and lifecycle operations (e.g., ongoing
data summarization, deletion). The server builds in-memory
encrypted indices to support fast queries and analytics (§4).

2.3 Goals for Stream Data Access Control
Encryption is an effective tool for protecting data from exter-
nal threats, breaches, or malicious providers. However, a truly
comprehensive approach to data protection must also include
mechanisms for enforcing access control policies, to support
the privacy and security principles of least privilege and data
minimization, where data is protected by limiting unnecessary
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Figure 1: TimeCrypt’s architecture.

exposure. State-of-the-art relational databases have security
mechanisms designed for this purpose. The most adopted
approach to support access control is based on views2 and
row-level access policies. However, specifying effective ac-
cess control policies necessitates taking into consideration
the semantics of data. Therefore, we investigated the major
state-of-the-art time series databases [1, 4, 12, 42, 58, 65, 78]
to understand the state of affairs in stream data access policies.
We found that the only access policy restriction provided at the
database interface, if any, is at the stream unit (i.e., grant or de-
cline access to the entire stream). This binary protection level
is however too coarse. This prompted the following question:
What type of policies can offer the fine-grained protection that
is required for selective and secure sharing of data streams?
Stream data access control literature [24, 71] and time series
applications designed for multi-user settings[5, 40] both rec-
ognize that policies which are expressed in time, resolution,
and attributes are ideal for fine-grained access restrictions on
streams. Examples of such policies can be a user choosing
to simultaneously share hourly averages of their measured
heart rate with their doctor and per-minute averages with their
trainer but only for the duration of their workout session. Sim-
ilarly, a datacenter operator might share resource utilization
levels with a tenant but only for the duration of her job. Our
goal is to translate these stream-specific sharing semantics
into a cryptographically enforceable access control mecha-
nism.

2.4 Threat Model
Our goal is to maintain the confidentiality and integrity of
computations running on a cloud infrastructure that is po-
tentially subject to an adversary that can read and tamper
with data and manipulate query execution. In order to support
sharing, we require a public-key infrastructure, such that en-
tities can be identified and that a private/public key-pair can
be associated with them. TimeCrypt provides the following
guarantees in this setting:
Confidentiality. Data is encrypted using semantically secure
encryption before it leaves the client device. Since decryption
keys are never disclosed to the cloud provider, data confiden-
tiality is guaranteed even in the case of a system compromise

2A view; also referred to as virtual table, is a dynamic window of a subset
of the rows and columns in a database.
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or malicious provider. Note that we do not employ property-
revealing encryption, avoiding their inherent information leak-
age issues [55]. Our cryptographic access control mechanism
ensures that data consumers can only query and access data
according to the access policies defined by the data owner.
Integrity. TimeCrypt’s integrity protection guarantees that,
if a query completes, its output is equivalent to a correct
execution on a trusted platform. Therefore, a malicious server
cannot affect the computation, except by denying service.
Note that even in case an integrity key for a stream is leaked,
confidentiality remains intact.
Access Patterns. Similar to previous work [60, 63, 74, 81],
TimeCrypt is non-oblivious, i.e., it does not protect against
access pattern-based inferences in a trade-off for performance
and scalability. Therefore, an adversary can learn which data
the consumers are authorized to access by observing access
patterns. TimeCrypt could be complemented with Oblivious
RAM approaches [67] to hide these access patterns.
Access Control Collusion. Resolution based sharing in com-
bination with interval sharing is not collusion resistant, even
when considering a plaintext system. For example, any entity
with access to aggregation over the intervals [t0, t2) and [t1, t2),
can trivially derive the aggregation [t0, t1) over the overlapped
range by computing the difference. Hence, clients must be
careful when sharing different resolutions over overlapping
intervals. Furthermore, TimeCrypt comes with a trade-off be-
tween performance and collusion resistance when sharing
non-continuous intervals. In the default mode, an adversary
with access to two non-continuous intervals can compute the
aggregation between the two intervals. For cases where this
poses a privacy risk to applications, TimeCrypt provides a
mechanism to prevent such collusion (§3.1) at the cost of
increased decryption time.

A full security analysis with formal definitions and proofs
can be found in the appendix of the extended version of the
paper [23].

2.5 TimeCrypt Approach
TimeCrypt is a new encrypted time series database design
that meets the scalability and low-latency requirements associ-
ated with time series workloads. We propose a new approach
for data stream encryption that supports processing over en-
crypted data streams, computation integrity, and powerful
access control within a unified scheme.
Data Abstraction. TimeCrypt stores data points in a stream
as time-ordered chunks of predefined time intervals, i.e.,
[ti, ti+1) with a fixed interval size ∆ = ti+1 − ti. Each data
chunk also includes an encrypted digest that consists of statis-
tical summaries about the underlying data. The digest enables
TimeCrypt to compute statistical queries over time ranges
efficiently, as we discuss next. At the client, the chunks are en-
crypted with standard symmetric encryption while the digests
are encrypted with HEAC.

Aggregatable Digests. As HEAC is additively homomor-
phic3, it supports secure aggregation of ciphertexts. However,
to support queries beyond sum, we leverage aggregatable
encoding techniques that exist in literature to support sophis-
ticated statistical and analytical queries over encrypted data.
At a high level, we introduce a per-chunk digest, which holds
a vector of encoded values {x0, ...,xn} that are encrypted with
HEAC. To process queries, the server computes the aggregate
function on the encrypted encodings across different digests.
With this, we can support statistical queries that are inherently
aggregation-based (e.g., sum, mean) or can be transformed to
be aggregation-based (e.g., min/max, regression) (§4).
Encryption and Access Control. A key aspect of our
scheme is tied to the observation that time series data streams
are continuous. Consequently, to enable encrypted data pro-
cessing that natively supports access control, we model data
streams as a series of time segments, where each segment
is encrypted with a different encryption key. We introduce
a time-encoded keystream that maps keys to segments of
the data stream, such that when a user restricts access to the
data stream, only the corresponding range in the keystream
is shared with the data consumer (§3.1). Based on the access
policy, a data consumer is provided with the necessary decryp-
tion keys via an access tokens. Access tokens are encrypted
with the data consumer’s public key (hybrid encryption) and
stored at the server. To enable sharing without enumerating
all the keys and to support a succinct key state, we derive keys
from a hierarchical tree key-derivation construction (§3.3).
We also introduce a technique to support restricting access to
a particular resolution level (§3.3.2), e.g., aggregated values
at 10-minute resolution.

3 Encryption in TimeCrypt
In this section, we introduce the cryptographic components
of TimeCrypt and present HEAC in more detail. HEAC,
in essence is based on a symmetric homomorphic encryp-
tion [27]. However, we improve its performance by a factor of
2x for time series workloads by mapping keys to time and op-
timizing it for in-range ciphertext aggregations. Furthermore,
we extend it to support fine-grained cryptographic access con-
trol capabilities tailored to time series data. Finally, we ensure
computation integrity on encrypted data via Homomorphic
Message Authentication Codes.

3.1 Symmetric Homomorphic Encryption.
We encrypt an integer mi from the message space [0,M−1]
as ci = Encki(mi) = mi + ki mod M, with key ki ∈ [0,M−1].
Given ki, one can decrypt ci as Decki(ci) = ci− ki mod M =
mi. This scheme is semantically secure when the keys are
pseudorandom and no key is reused [27].

3An additive homomorphic encryption scheme supports additions on
ciphertexts, such that decrypt(C1⊕C2) = decrypt(C1)+decrypt(C2).
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Given the aggregated secret keys, one can decrypt the aggre-
gated ciphertexts:

n

∑
i=0

mi = Dec∑
n
i=0 ki(

n

∑
i=0

ci) =
n

∑
i=0

ci−
n

∑
i=0

ki mod M (1)

We set M to 264, to support all integer sizes, without leaking
any information about their original size.
Key Canceling. In the above scheme, the local computation
to aggregate keys is linear in the number of aggregated ci-
phertexts, forcing the client to perform the same amount of
computations as the server. We reduce this linear overhead
to a constant, by leveraging the fact that time series data is
generally aggregated in-range (i.e., over a contiguous range
in time) as discussed in §2.1. We can therefore employ key
canceling [6, 19, 31, 60]. This technique will also be rele-
vant later, when we discuss integrity and access control (§3.2,
§3.3). To enable this optimization, we choose the individual
encryption keys such that the inner keys cancel each other out
during aggregation. We do this by replacing the individual
key ki with a composite key that links subsequent messages:

Enck′i
(mi) = mi + k′i mod M, with k′i = ki− ki+1 (2)

For decryption of an in-range aggregated ciphertext (Eq. 1),
we now require only the two boundary keys:

n

∑
i=0

k′i = (k0−��k1 )+(��k1 −��k2 ) . . .(��kn − kn+1) (3)

With key canceling, the decryption time in TimeCrypt is in-
dependent of the number of in-range aggregated ciphertexts.
This scheme remains semantically secure [23, 27, 31]; an
attacker without access to the keys cannot exploit the cancel-
ing property. However, when given access to keys for two
non-continuous intervals, an adversary could learn aggregates
about the skipped time between the two intervals. For ex-
ample, when given access to k0, . . . ,k5 and k10, . . . ,k15, they
could compute ∑

10
i=5 mi mod M, given k5 and k10. The ramifi-

cations of this issue arise when users share adjacent intervals
in the same stream with small gaps. TimeCrypt provides a
hybrid key-canceling mechanism that limits this leakage in a
trade-off for longer decryption times. We split the keys into
epochs by replacing some ki with non-canceling skip-keys
k′i,k

′′
i in ki−1−ki and ki−ki+1, respectively. With this, we can

share one interval per epoch without leakage. This increases
the cost of aggregations over the epoch borders by two key
derivations and one addition.
Time-Encoded Keystream. In TimeCrypt, access permis-
sions are expressed with temporal ranges, e.g., Sep-14-15:00
till Sep-17-06:00 2019. Internally, TimeCrypt chunks data into
fixed time segments of size ∆, which can be set per stream
(e.g., 10 s intervals). In addition to the raw data points, each
chunk is augmented with digests that are used for statisti-
cal query processing. Each chunk is encrypted with a fresh

key from the keystream, indexed by the time window of the
chunk. Assuming the data stream starts at timestamp t0, the
chunk digest mi for the interval from ti to ti+1 is encrypted as
ci = Encki−ki+1(mi). By mapping keys to temporal ranges, a
time range implicitly determines the position of the used key
in the keystream. As a result, we sidestep the need to store
identifiers of the keys along with the ciphertexts and avoid
ciphertext expansion.

3.2 Integrity
Homomorphic encryption schemes are by design malleable,
and therefore susceptible to ciphertext manipulation. In our
setting, a dishonest server could try to drop, duplicate, or
manipulate ciphertexts, resulting in incorrect query outputs.
Incentives for deviations from the protocol could be as simple
as trying to preserve resources by reducing the complexity
of queries [72]. Beyond malicious behavior, integrity checks
help to prevent faulty executions (e.g., data corruption, hard-
ware faults, or misconfigurations). Ensuring computation in-
tegrity is essential, but is rarely considered in existing en-
crypted databases. Computation integrity can be achieved
by requiring the server to provide a proof that the encrypted
result was computed using the targeted data and function.
Along this line, we introduce a verification protocol that al-
lows the server to validate the output of in-range aggregations
over ciphertexts with a succinct tag that can be verified in
constant time at the client. To generate the proof, we use ho-
momorphic Message Authentication Codes (HoMAC) [28].
While HoMACs have been introduced as cryptographic build-
ing blocks in the literature, existing solutions do not achieve
integrity while maintaining scalability.
HoMAC. Conventional Message Authentication Codes
(MACs) are small tags generated for each ciphertext which
later ensure the authenticity and integrity of the ciphertext.
HoMACs [9, 28] are conceptually similar to MACs, but ad-
ditionally allow the server to perform computations like ag-
gregations over the ciphertexts, and to produce new tags that
authenticate the outputs of the computation. More precisely,
the client generates a HoMAC tag σ for each ciphertext c and
uploads (c,σ), where σ is defined as follows:

σ = HoMACs(c) = (s− c)/Z mod p (4)

where s is a per-ciphertext key, Z the HoMAC key, and p a
prime number. The server computes aggregations on both the
ciphertext and HoMAC tags ∑

n−1
i=0 (ci,σi) = (cres,σres). The

resulting tag σres authenticates and verifies that the output
cres corresponds to that specific aggregation. A client in pos-
session of the HoMAC key material can verify the result by
checking that the received σres tag matches the ciphertext cres:

n−1

∑
i=0

si
?
= cres +σresZ mod p (5)

HoMACs are interesting for our use-case, since their symmet-
ric nature makes them appealing to integrate with HEAC.
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In contrast to authenticated data structures [46, 84], which can
be used for outsourced computation verification, HoMAC tags
do not need to be updated when new data is inserted. How-
ever, without further optimization, their verification overhead
prevents their use in our setting.
Integrity Protocol. While HoMACs provide the desired in-
tegrity guarantees, they suffer from a verification overhead
that is linear in the number of records in the aggregation query.
Therefore, we apply a similar key canceling technique as al-
ready discussed above in the context of encryption: We define
a HoMAC keystream {s0,s1,s2, ...} and, for each ciphertext
ci, the client computes the HoMAC tag σi as follows:

HoMACs′i
(ci) = (s′i− ci)/Z = (si− si+1− ci)/Z mod p (6)

Setting s′i = si− si+1 enables a constant time verification at
the client side regardless of the input size, since only the two
outer keys are required:

n−1

∑
i=0

s′i = s0− sn
?
= cres +σresZ mod p (7)

Using the key canceling concept in both encryption and in-
tegrity is a key enabler for our efficient cryptographic access
control (§3.3). Since verification of aggregation results does
not require access to the individual messages that were ag-
gregated, our integrity protocol also integrates well with the
resolution-based access control (§3.3.2).
HoMAC Security. For an attacker, it is computationally
infeasible to generate a forged ciphertext and a tag which
pass the verification. Note that we use different HoMAC key
streams not just per-stream, but also per type of digest, i.e., tar-
get function. Therefore, the server cannot substitute a digest
aggregation with another. In the case of key leakage, a party
with access to the HoMAC key Z would be able to forge tags,
but data confidentiality always remains intact. For a complete
security treatment of HoMAC we refer to [28, 31] and the
extended paper [23].

3.3 Cryptographic Access Control
The symmetric homomorphic encryption and HoMAC both
require a pseudorandom keystream with one key for each
message. The conventional approach to efficiently generat-
ing such keystreams would be to leverage a pseudorandom
function with an initially exchanged secret key. This allows
handling a large number of keys with one secret. However,
with this approach, one could only share the entire data stream
(i.e., all-or-none or in other words no fine-grained access con-
trol). Instead, we want to allow efficient sharing of arbitrary
intervals, and want to allow users to restrict access to lower-
resolution data, e.g., hourly or daily summaries. To realize
this granular access control and to allow data owners to cryp-
tographically enforce the scope of access to their data, we
design a novel key derivation construction.

G0()

Keystreamk1 k2 k3 k4 k5 k6 k7k0

derived keys

pseudorandom 
generator
G(x) = G0(x)||G1(x)

shared node

G1()

…

KDF

Figure 2: TimeCrypt’s key derivation tree (leafs form a keystream).

3.3.1 Key Derivation Trees

Our key derivation is based on key derivation trees, i.e. bal-
anced binary trees where each node contains a unique pseu-
dorandom string. The leaf nodes represent the inputs to a
key derivation function (KDF) to compute the keystream
{k0,k1,k2, ...,k2h−1} as depicted in Fig. 2. The key derivation
tree is built top-down from a secret random seed as the root.
The child nodes are generated with a pseudorandom genera-
tor (PRG) that takes the parent string as the input. Our PRG
consists of G0(x) for the left-hand child and G1(x) for the
right-hand child, where x is the parent node. This procedure
is applied recursively until the desired depth h in the tree is
reached. We select a large h such that the keystream is virtu-
ally infinite, especially when considering that high-frequency
streams will be chunked into e.g., one chunk per second. The
pseudorandom generator can be realized from hash functions
G0(x) = H(0||x),G1(x) = H(1||x) with x as the key.
Access Token. The key derivation tree allows us to share
segments of the keystream efficiently. Instead of sharing the
segment key-by-key, the client shares a few inner tree nodes,
combined into an access token. For instance in Fig. 2’s toy
example, a data owner grants access to the stream from t0 to
t7, and the corresponding key segment {k0, . . . ,k7} is shared
using a single node. In practice, a single node in the tree
can be used to share thousands of keys. Note that given a
node it is computationally not feasible (i.e., due to one-way
property of PRGs) to compute the parent, sibling, or any of
the ancestor nodes. Hence, a data consumer cannot compute
any keys outside the segment they are granted access to.
Token Distribution. Once the data owner specifies an access
policy for a data consumer, the TimeCrypt client generates an
access token which encapsulates the inner nodes of the tree
needed to derive the corresponding shared keystream segment
specified in the access policy. We use the same key derivation
tree for the encryption and HoMAC keystreams, but with a
different KDF4. The token also contains encoded information
about the subtree height and key identifier offset. TimeCrypt
then encrypts the tokens with the data consumer’s public key
(i.e., hybrid encryption) and stores it at the server, such that
the data consumer can fetch it to gain access to the keying

4Each leaf node of the primary key derivation tree is used to produce
cryptographic keys needed for its corresponding chunk. Namely, keys for
each element in the digest (i.e., query type), chunk, and HoMAC. Hence, we
use different KDFs with the same node.
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Figure 3: Envelope encryption for resolution-based access, showing
envelopes required to share [t3, t12] at a resolution of 3∆.

material required to decrypt the data or query results. Note
that TimeCrypt’s key distribution is pluggable and we can
employ alternative solutions. For instance, we can encrypt
the token with attribute based encryption [83] to share tokens
based on attributes (e.g., month as a key attribute).

3.3.2 Resolution-based Access Restriction

We now discuss how TimeCrypt provides crypto-enforced ac-
cess control over the resolution at which data can be queried;
i.e., the data owner not only restricts access to a time range
per data consumer but also defines the temporal granularity
(e.g., per minute) at which they can retrieve or query data.
Resolution Levels. In TimeCrypt, the highest resolution for
queries and access control is defined by the chunk size ∆.
Whenever we aggregate over an interval, we reduce the data
resolution. For example, with one second chunks, an aggrega-
tion over 60 chunks results in a per-minute resolution. We can
exploit the fact that keys cancel out during in-range aggrega-
tions, as described in §3.1, to cryptographically restrict access
to lower resolution levels. In general, a ciphertext generated
through an in-range aggregation over the time period [ti, t j)
has the form:

j−1

∑
x=i

cx =
j−1

∑
x=i

mx + ki− k j (8)

where the inner keys are canceled out. Hence, given access
to just the boundary keys ki and k j, one can decrypt the ag-
gregation, but none of the individual ciphertexts. Resolution
levels must be multiples of the chunk size ∆ and the segments
at a given level must not overlap. Otherwise, data consumers
could compute the difference of two aggregates overlapping
by e.g., one chunk, allowing them to learn the data for that
chunk which would violate the resolution-based access policy.
For example, if the data owner wants to restrict access to a
3-fold resolution of the chunk size, the data owner would
share only {k0,k3,k6, ...} with the data consumer. The data
consumer can then decrypt the aggregated ciphertexts at the 3-
fold (i.e., 3 ·∆) or lower resolutions, but cannot access higher
resolutions since the inner keys are missing.
Envelopes. While a data owner could share the boundary
keys required for resolution-based access directly, this is
not efficient since the number of keys necessary is linear
in the length of the shared interval. Instead, the data pro-
ducer stores the required boundary keys for a stream on the

server, protected by another layer of encryption, the enve-
lope. The keys used for the envelope encryption are derived
from a new tree-based keystream {k̄0, k̄1, k̄2, . . .}. For each
resolution level, we use a different keystream for the en-
velope encryption. For example, if a data owner wants to
make a per-minute resolution available for a stream with
20 s data chunks, the data owner encrypts the boundary
keys {k0,k3,k6, . . .} with the envelope keystream, and stores
{enck̄1

(k0),enck̄2
(k3),enck̄3

(k9), . . .} on the server, as shown
in Fig. 3.

Sharing a stream at a lower resolution is then again a mat-
ter of sharing a single access token, with the difference that
the token now contains nodes of the key derivation tree for
the envelope keystream, rather than for the original encryp-
tion keystream. A lower-resolution query returns, in addition
to the encrypted result, two envelopes containing the two
boundary keys required to decrypt the aggregated ciphertext.
The overhead of resolution-based access control is similar to
access control without resolution restrictions (§3.3), i.e., an
access token consist of at most O(log(n)) nodes from the key
derivation tree.
Dynamic Resolution Levels. In TimeCrypt, a user does not
need to decide a priori on a fixed resolution for data consumers
and can dynamically at any point in time define a new reso-
lution. E.g., Alice can share her health data with a physician
at minute-level (high-resolution) during physiotherapy from
Jan-to-Feb, and from March reduce the resolution to hourly
(low-resolution). The physician only sees high-resolution data
for Jan-Feb and only hourly-data from March onwards.

3.4 Access Control Extensibility
Beyond temporal and resolution-based access policies, our
construction also lends itself to enabling privacy policies on
encrypted data, as combining ciphertexts from multiple users
creates valid ciphertexts under a new virtual aggregate key.
In the context of private operations, privacy policies permit a
data consumer (e.g., analyst) to only run cross-stream aggre-
gate queries, without having access to individual data streams.
Similar to data access policies, privacy policies in our sys-
tem are enforceable via encryption. As a concrete example, a
user might want to allow a research lab to query her data but
only if aggregated with a fixed set of n users, to preserve her
individual privacy. Ensuring that a data consumer can only
decrypt aggregates across a set of users can be realized by
ensuring that she only has access to the virtual aggregate key
(i.e., the data consumer never sees the keys for a particular
user’s stream in isolation). For instance, if a service is autho-
rized to access an aggregate query over n encrypted messages
from different users, then sharing only the virtual aggregate
key ∑

i=n
i=1 ki will ensure that the analyst can only decrypt the

aggregated result. Therefore, we need a way to compute the
virtual aggregate key without exposing the individual keys
ki of each user to any of the involved parties; the storage
provider, authorized data consumer, or other users.
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Function Description

(1) CreateStream(uuid, [config]) Create a new stream, config defines parameters, e.g., chunk interval, operators.
(2) DeleteStream(uuid) Delete specified stream with all associated data.
(3) RollupStream(uuid, res, [Ts, Te]) Rollup an existing stream or a segment of it to the specified resolution.

(4) InsertRecord(uuid, [t, val]) Serialize data points in a chunk and append to the end of the stream.
(5) GetRange(uuid, Ts, Te) Retrieve all data records within the specified time interval.
(6) GetStatRange([uuid], Ts, Te, resolution, [operators]) Retrieve statistics for the given time interval and resolution, default [sum, count, mean, var, freq].
(7) DeleteRange(uuid, start, end) Delete specified segment of the stream, while maintaining per-chunk digest.

(8) GrantViewAccess(viewid, [princ-id]) Grant access to an existing View.
(9) CreateView(viewid, [policy]) Create a View with the given policy in JSON format.
(10) CheckView(viewid, princ-id) Retrieve a View token.

Table 1: TimeCrypt’s basic API.
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Figure 4: A statistical index for time series data with a k-ary time-
partitioned aggregation tree. The pre-computed encrypted index
allows for fast response times for statistical queries.

This can be accomplished by a secure aggregation proto-
col [6, 19] between the involved users and the analyst. The
inputs to the protocol are the users’ individual keys ki and
the output is the blinded contributions towards the virtual
aggregate key. Queries across streams can be performed effi-
ciently on the server, and the analyst can only decrypt the final
result via a virtual aggregate key. In §6, we discuss a private
crowdsourcing application atop of TimeCrypt that uses this
technique.

4 Fast Analytics and Processing
To meet the requirements of time series databases, TimeCrypt
must handle massive amounts of data, yet at the same time
be able to serve queries with low latency. We address this
challenge by introducing efficient client-side serialization/en-
cryption and efficient encrypted indices on the server.
Client-side Data Serialization. The client serializes and
encrypts data chunks containing the raw data, and digests.
The content of a digest is set per stream based on the sup-
ported queries. The default query configuration of TimeCrypt
supports sum, count, and mean. Other query types such as
variance, standard deviation, histogram, bucket min/max,
approximated quantiles, trend detection, and limited f ilter
queries, can be enabled.
Server-side In-memory Encrypted Index. TimeCrypt’s
server maintains an in-memory encrypted index based on
a time-partitioned aggregation tree over encrypted data. This
is a key building-block that enables us to serve low-latency
analytics on large encrypted data streams and enables efficient
data retention. The index structure is a k-ary tree, where each
internal node (digest) holds k statistical summaries of the sub-
tree below it. The tree leaves store the chunk digests encrypted

with HEAC at the client and represent the highest resolution
data summaries (Fig. 4). On the arrival of a new chunk di-
gest, the server inserts it as a leaf node, and updates statistical
summaries of the parent nodes’s by performing an encrypted
aggregation. Any operation that can be expressed as an aggre-
gation of the intermediate results from the child subtrees can
be included in the summaries (see §4). Time series workloads
are in-order and append-only, therefore updating the tree is
straightforward. The encrypted index enables TimeCrypt to
significantly decrease the response time for statistical queries,
as the server avoids expensive serial scans. When executing
a statistical range query over a time interval, the server tra-
verses the tree and selects only the digests required to cover
this interval, as illustrated in Fig. 4.
Statistical Queries. So far, we have developed the means to
evaluate aggregates over ciphertexts, now we briefly5 discuss
how we combine aggregation with known encoding tech-
niques [32, 47, 68] to allow TimeCrypt to compute more
sophisticated statistics over ciphertexts. At a high level, each
per-chunk digest holds a vector of encoded values that are
encrypted with HEAC. For example, this vector might include
the encrypted sum and count of the data points in the chunk.
From this, we can then also calculate the mean. To compute
quadratic functions, e.g., var and stdev, the vector includes the
sum of squares of the points in the chunk. We can also include
the frequency count of data points in the chunk, which yields
valuable information to compute several statistical functions,
such as min, max, top N, bottom N, histograms, and quantiles.
For frequency counts, we use a vector [cv1 , ..,cvn ], where each
element in the vector cvi tracks the count of data points with
value vi. This works well for small n, which is often the case
for (discrete) time series data. For larger ranges of values,
we approximate the frequency count, i.e., each cvi tracks the
count of a small range (bin) around vi [32].
Advanced Analytics. In principle, any operations with ag-
gregatable transformations can be supported in TimeCrypt,
including a variety of sketch algorithms [52]. In addition,
we can support many forms of machine learning, e.g., via
aggregation-based encodings that allow private training of
linear models [32, 47, 68]. These types of analytics are often
employed in time series data to understand and detect runtime

5Due to space constraints, we keep the description here brief and refer
to [32, 47, 68] for detailed description.
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anomalies, trends, and patterns. We show how such analytics
can be realized in TimeCrypt, using the example of private
trend detection, i.e., identifying a general tendency over a de-
fined time interval. It allows users to estimate the magnitude
of a trend and is a highly related task to event detection (e.g.,
runtime anomalies). Linear regression using least-squares is a
simple yet powerful method for trend detection [15]. To com-
pute a linear regression model over a stream, the per chunk
digest is defined as (∑i xi, ∑i tixi) for i ∈ [0,n). This way the
expensive aggregations are done at the server. Such learning
on summarized data also delivers privacy gains, as the raw
data is not exposed in the training phase. In §6, we discuss
the performance aspects of implementing such applications
atop TimeCrypt.
Filter Queries. TimeCrypt supports filter queries with prede-
fined predicates. One can define digest encodings that contain
statistics over the values of the underlying chunk filtered with
a predicate P (e.g., the sum of all values larger than 10). In the
query phase, the filtered digests are used to compute statistics
over the values matching the predicate P.
Time-Decayed Data Processing. As time series data ages, it
is often aggregated into lower resolutions for long-term reten-
tion of historical data, while high-resolution data is aged-out.
Typical strategies are based on compact summaries through
aggregates [7, 43, 80]. TimeCrypt natively supports these ap-
proaches: as our index maintains aggregated summaries of
the raw data, we can selectively delete aged-out raw data and
prune lower nodes in the index. For example, we implement
a retention policy based on the time-decayed merge algo-
rithm [7] which keeps the data store compact (logarithmic in
the input size) by dynamically re-compacting older data as
new data arrives.

5 Prototype
API. TimeCrypt is realized as a service which exposes an
interface similar to conventional time series stores [7, 12, 50];
applications can insert encrypted data, retrieve encrypted data
by specifying an arbitrary time range, and process statistical
queries over arbitrary ranges of encrypted data, as summarized
in Table 1. In TimeCrypt, each stream is identified by a unique
UUID and associated stream metadata, e.g., hostname, data
type, sensor ID, location. Each stream has one writer (i.e., data
producer) and one or multiple readers (i.e., consumers). A
data owner can grant and specify access polices to consumers.
Granting Access to Stream Views. Data owners can man-
age access to their stream resources with the View API. Views
define what a data consumer can access within the scope of
the View. Views are set in JSON format, containing a unique
identifier and a list of per stream access policies. In the current
version, an owner can define the time range and the granu-
larity that is accessible per stream, as for example: "viewid":
2999, "streams": [{"uuid": [9,10], "from": "1546315200",
"to": "1546315800", "granularity": "60s" }]. This View de-
fines an access scoped to stream 9 and 10 in the specified time

window with a minute granularity. After the user defines a
policy, the API assembles the access token with the necessary
inner nodes of the key construction for the specified View
(§3.3). The client library then derives a View key, encrypts
the token along with the JSON description using AES-GCM
and uploads it to the server. To give data consumers access to
the View, the client invokes the GrantViewAccess command,
which encrypts the View key with the respective consumer’s
public keys. The authorized consumers can download the
tokens for the given View and can query the streams in the
defined scope by the access policy. Though access policies are
enforced by encryption, the intricacies of the key management
are insulated from users in our design.
Reference Implementation. TimeCrypt’s prototype is im-
plemented in Java and consists of 6k SLOC with additional
4k SLOC for the applications and benchmark code. We used
Netty [44] for network communication. TimeCrypt’s server
and client communicate over Google’s protobuffers [37] pro-
tocol. The current prototype uses Cassandra [26] as the stor-
age backend. The encrypted index is augmented with the
in-memory cache caffeine [51] to speed up index node ac-
cess. For the implementation of the cryptographic schemes,
we used the Java security provider and a native C implemen-
tation of AES-NI. We compare the encrypted index perfor-
mance with HEAC against alternative private aggregation
schemes. We implemented three variants of the encrypted
index based on Paillier [77] (Java BigIntegers), EC-ElGamal
(OpenSSL [57]), and ASHE (we implemented it as described
in [60]). Our code is available online.

6 Evaluation
In this section, we evaluate TimeCrypt’s practicality. Our eval-
uation answers three core questions: (1) Can TimeCrypt meet
the performance requirements of time series applications?
(2) What are the performance gains of HEAC compared to
alternatives? — HEAC supports access control and secure
computation simultaneously; both aspects have traditionally
been addressed with different schemes, consequently we ex-
amine alternatives independently in our evaluation. (3) Can
TimeCrypt run compelling real-world applications?
Setup. Our experiments are conducted in Amazon AWS, on
M5 instances equipped with a 2.5 GHz CPU running Ubuntu
(16.04 LTS). TimeCrypt’s server runs on an m5.2xlarge in-
stance with 8 virtual processor cores (vcores) and 32 GB of
RAM and a Cassandra node runs on an m5.xlarge instance
with 4 vcores and 16 GB of RAM. The clients are simulated
on several m5.xlarge instances. The client and server are lo-
cated in the same data center network, with up to 10 Gbps
bandwidth. In the microbenchmark, we quantify the over-
heads of encryption and decryption on end devices. We con-
sider resource-constrained IoT devices; this class of devices
is a major source of sensitive time series data. We use IoT
OpenMotes (32-bit ARM M3 SoC 32 MHz) and a MacBook
Pro 2.8 GHz Intel Core i7, with 16 GB RAM.
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System Micro Index - Size Average Ingest Time Average Query Time (worst-case)

ADD 1M 1k 1M 100M 1k 1M 100M

TimeCrypt 1ns 8.1MB (1x) 10µs (1.7x) 16µs (1.3x) 22µs (1.3x) 21µs (1.6x) 46µs (1.3x) 50µs (1.1x)
TimeCrypt+ 3ns 24.3MB (3x) 16µs (2.6x) 35µs (2.9x) 39µs (2.3x) 38µs (2.9x) 87µs (2.4x) 109µs (2.4x)
Plaintext 1ns 8.1MB (1x) 6µs (1x) 12µs (1x) 17µs (1x) 13µs (1x) 36µs (1x) 45µs (1x)

Table 2: Overview of evaluation results on the cloud, with 128-bit security, except for plaintext. The largest index size with 100M chunks,
represents 50 billion data points in our health app.
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Figure 5: Aggregate queries over varying time ranges (i.e., query
range size). Aggregating the entire index corresponds to retrieving
the encrypted root.

We quantify the overhead of TimeCrypt (confidentiality)
and TimeCrypt+ (confidentiality plus query verification),
and compare it to (i) operating on plaintext as the baseline,
and (ii) prior work where we consider alternative encryp-
tion schemes for encrypting the digest, i.e., Paillier (used in
CryptDB [63]), EC-ElGamal (used in Pilatus [74]) and ASHE
(used in Seabed [60]). For access control, we compare to a
strawman solution and a construction of KP-ABE (used in
Sieve [83]), that we use to realize temporal access control
similar to that supported by HEAC. Unless noted otherwise,
we use 128-bit security [13], i.e., 3072-bit keys for Paillier
and 256-bit elliptic curves for EC-ElGamal (i.e., prime256v1).
For the microbenchmarks, we use synthetic large data that
resembles the mhealth application (§6.4) dataset.

6.1 Encrypted Data Processing Performance
We now discuss the evaluation results of different aspects
of the encrypted index, as summarized in Table 2. In the
microbenchmark, the index supports one statistical operation
(i.e., sum) for isolated overhead quantification, whereas in
the E2E benchmark the index supports all our default queries.
In all experiments, we instantiate 64-ary index trees and a
keystream with one billion keys via the key derivation tree.
Index Size Expansion. To improve query efficiency, in-
memory time series databases aggressively seek to reduce
storage footprint, to support a model where almost all recent
data can be stored in memory. When considering encryp-
tion for time series data, the degree of ciphertext expansion
has a direct impact on the encrypted index storage footprint,
hence impacting query efficiency. TimeCrypt has no cipher-
text expansion for 64-bit values, TimeCrypt+ introduces a
128-bit expansion due to the HoMAC tag. The encryption
schemes in prior work [63, 75, 81] exhibit large ciphertext ex-
pansion, e.g., for one million chunks we experience 96x index

size expansion with Paillier. Hence, limiting the performance
gains of in-memory processing and impacting query latency.
ASHE [60] uses an encoding where the expansion depends
on the order of aggregation. With in-range aggregation this
amounts to 12.5% higher expansion compared to TimeCrypt.
Ingest Time. On each ingest, i.e., insertion of a leaf node,
statistical aggregates of ancestor nodes are updated. In Time-
Crypt, additions are as efficient as in plaintext. Hence, the
average ingest time increases slightly due to the encryption
cost; 1.3x for the large index. With verification the average
ingest time increases by 3.2x due to the HoMAC overhead.
Query Performance. Fig. 5 shows the performance of the in-
dex for statistical range queries of different lengths, i.e., [0,2x]
with x ∈ [0..26]. As the length of queries increases fewer tree
levels are traversed, which results in fewer cache fetches and
lower computation time, e.g., the index depth of five is ob-
servable in Fig. 5. For plaintext and TimeCrypt the resulting
pattern is similar due to the low cost of additions, while for
TimeCrypt the decryption overhead is visible. Queries with
non-power-of-k ranges require an index drill down on either
end of the range. This increases the computation time log-
arithmic, O(2(k-1)logk(n)) for a worst-case alignment, and
not linear to the n stored chunks.
Comparison to Alternatives. In Fig. 6, we show HEAC’s
performance gains relative to the encryption schemes used in
the other encrypted systems. For this experiment we launch
an ingest/query workload, with one machine and 100 threads,
where each thread constantly performs four statistical queries
after each chunk ingest. The plaintext setting reaches a
throughput of 5.77M records/s for ingest and 46.1k ops/s for
statistical queries, as shown in Fig. 6a-b. TimeCrypt demon-
strates an outstanding throughput for both ingest and statis-
tical queries with only 2.9% slowdown compared to plain-
text. With verification (TimeCrypt+), the slowdown increases
to 7.8% due to the larger index size and HoMAC compu-
tations. TimeCrypt is by a factor of 2x, 20x, and 52x faster
than ASHE, EC-ElGamal, and Paillier, respectively. Despite
ASHE’s lower encryption and decryption cost, the system
throughput is by 2x lower due to the higher aggregation costs
on the server. This is due to ASHE’s key-encoding updates,
which TimeCrypt eliminates with the time-to-key mapping.
Fig. 6c-d shows the respective observed query latency. The
impact of a small index cache (1 MB) is distinct, but similar
for both plaintext and TimeCrypt, due to higher cache misses.
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Figure 6: Latency and throughput for ingest and statistical queries for TimeCrypt with HEAC vs. EC-ElGamal, Paillier, & ASHE, and operating
on plaintext indices. Heavy load experiment with a read-write ratio of 4 to 1, and also with extremely small (S) index cache (1 MB). The AWS
load generator creates 1200 streams with 100 clients, corresponding to 48579 streams in our health app (∆:10s, 50Hz data rate).

HEAC ASHE Paillier

[Enc/Dec] [HoMAC ] [Enc/Dec] [Enc/Dec]

IoT 1.08ms 20µs 0.3ms 1.59s / 1.62s
Laptop 5.1µs 0.2µs 1.5µs / 1.3µs 30ms / 15ms

Table 3: Performance of crypto operations with at least 80-bit se-
curity and 32-bit integers on IoT devices (OpenMote) vs. laptop
(MacBook). TimeCrypt uses a key derivation tree with 230 keys.

To compare how other encrypted systems perform while
processing encrypted time series workloads, we run one ag-
gregate query over one billion data records on CryptDB, Pi-
latus, Seabed, and TimeCrypt. Seabed requires seconds to
process this query while CryptDB and Pilatus require min-
utes, whereas TimeCrypt can process such a query within a
few milliseconds on a single machine.

6.2 Client Performance

Table 3 summarizes the enc/decryption and HoMAC costs of
HEAC in TimeCrypt. TimeCrypt’s cryptographic costs are
dominated by the key derivation tree. Enc/decryption amount
to 5.1 µs, which accounts for the time to compute the key.
With HoMAC the clients incur 4% higher costs. To put this
in prospective, this is three orders of magnitude faster than
Paillier, EC-ElGamal, and ABE schemes with only few at-
tributes. ASHE is faster in enc/decryption; the slight overhead
in HEAC is due to the cost of deriving keys from our key
derivation construction to support access control. Though
overall, TimeCrypt is more performant in ingest and query
performance due to its faster aggregations. The overhead of
resolution-based access is defined by the access granularity.
For instance, with 10 s chunk intervals and minute and hourly
resolutions, the encryption cost increases by only 1% per day.

Low Power Devices. TimeCrypt is particularly compelling
for battery-powered constrained devices used in the IoT and
environmental sensing, where the power consumption of en-
cryption is a serious challenge. Assuming one minute chunk
intervals with TimeCrypt default queries, encryption con-
sumes only 1.4% (400mJ) more battery per day on an Open-
Mote device compared to sending data in the clear.

6.3 Access Control
In the following, we look at the performance and scalability
of our encryption-based access control mechanism. The over-
head can be quantified as the cost of key distribution, deriving
HoMAC and encryption keys, and computing the resolution
envelopes. To characterize the overhead, we consider an ex-
ample scenario where a data owner has 1000 streams and
shares a subset of each stream with a data consumer.
Naïve Key Management. TimeCrypt realizes access control
by encrypting units of stream data with unique keys. Conse-
quently, efficient key distribution is important for the scalabil-
ity of this approach. In a naïve approach, data owner can com-
pile all the keys associated with the specified access policy
and distribute the keys encrypted individually to each princi-
ple. However, this leads to access tokens of size O(n) where
n is the number of keys (i.e., units of stream data included in
the access policy). With our key derivation construction, we
have a logarithmic worst-case complexity in the number of
shared stream units O(log(n)).
Communication. An access token in TimeCrypt contains
in the worst-case 2(log(n)− 1) inner nodes of the tree key-
derivation construction where n is the number of keys in the
tree. This reduces the communication cost from a naïve ap-
proach from 50 GB to 1.28 MB, considering one year of data
shared in our example scenario. With resolution-based access
policies, the data consumer has to additionally download two
envelopes per aggregation query (72 additional bytes).
Computation. Deriving the access token for all streams re-
quires 145 ms. The decryption keys can be computed at a rate
of 400k per second. With resolution-based access, the princi-
pal has to perform an additional decryption (for the envelope),
which reduces the rate to 380k keys per second.
Storage. The storage cost can be broken down into two parts;
key storage at the data consumer (1.28 MB), and resolution-
related keying material at the server, which grows linearly
with time (i.e., the envelopes). With a stream that consists
of 10 s chunk intervals over one year with hour/day/month
resolution support, the server stores 1.6 MB keying material
(45.7k envelopes) per stream.
Comparison to an ABE-based Approach. Although,
key-policy attribute-based encryption (KP-ABE) (used in
Sieve [83]) is a powerful tool for access control, it comes
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Figure 7: Latency in log-scale for statistical queries of one month
data in our health app (121M records). The x-axis shows the granu-
larity of the requested data from one minute to one month.

with a relatively high computational cost, especially for low-
power devices and when used to enable fine-grained polices
as needed in time series data. Compared to KP-ABE (im-
plementation from [3]), HEAC is three orders of magnitude
more efficient for encryption/decryption. For an IoT device
encrypting one chunk per minute, an ABE-based solution
drains one order of magnitude more battery life compared to
HEAC. Additionally, ABE does not support computation on
encrypted data.
Interrupt Key Canceling. TimeCrypt can add epoch borders
to reduce the risk of leakage from aggregating the skipped
interval between two shared non-continuous intervals (§3.1).
Each additional epoch border within the query range incurs
an additional computational cost to decryption (i.e., one key
derivation and two additions). For example, considering a
weekly epoch and a daily epoch in a data stream, the decryp-
tion cost for a monthly aggregate result increases by a factor of
2.5x and 14.5x, respectively. However, even for fine-grained
epochs (e.g., over 300 per range), the decryption latency re-
mains well below 1 ms and would not impact user perception.

6.4 Applications
In this section, we evaluate the end-to-end overhead of Time-
Crypt and its effectiveness in running complex, real-world
applications. We developed four apps atop of TimeCrypt that
represent different challenging requirements and workloads.
mHealth Views - Interactivity. We implemented an
mHealth dashboard for the Biovotion health tracker [18]. The
dashboard shows summary plots of the underlying data (i.e,
windowed AVG). The data consists of 12 different metrics at
50 Hz from the Biovotion sensor over two weeks, which we
stretch to one year worth of data. Fig. 7 shows the response
time for aggregation plots of last month’s data (121M records).
We also consider the extreme case of plotting one-month data
at minute granularity (403 MB plot), which induces an over-
head of 1.45x (2.0x for TimeCrypt+) in latency compared to
plaintext. With lower granularity, the overhead sharply de-
creases and reaches 1.06x (1.29x for TimeCrypt+).
DevOps Trend Detection - Complex Analytics. We devel-
oped a trend detection app for CPU utilization. We use a CPU
monitoring dataset generated by the time series benchmark
suite [79] with 10 metrics, 10s data rate, and per minute chunk
size ∆ over one year. The results of a two-dimensional linear
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Figure 8: Applications: (a) DevOps trend detection queries on CPU
utilization over different number of records. (b) Energy consumption
queries for a day over multiple streams in a smart meter application.

regression model on different ranges of an encrypted CPU
monitoring stream are shown in Fig. 8a. TimeCrypt matches
the plaintext performance (0.75% slowdown).
Smart Energy Service - Access Control Scalability. We
extended a smart meter application, where a service computes
the aggregated energy consumption per day over households.
Each smart meter uploads a chunk every 5s, but the service can
only compute per day aggregates for each stream. We use the
ECO dataset [48], which contains smart meter data sampled
at 1 HZ rate and collected over 8 months. Fig. 8b shows the
query latency for the aggregated energy consumption over up
to 1000 streams. TimeCrypt’s overhead is attributed to multi-
stream processing and resolution-based access. The overhead
stems from the linearly increasing decryption costs in the
number of streams that are aggregated.
Crowdsourced mHealth - Privacy Policy Transformation.
We enhance the mHealth app with a crowdsourcing feature
which enables users to opt-in their data to be part of crowd-
sourcing for a targeted research project, as described in §3.4.
For n users, the secure aggregation protocol [19] adds a com-
munication overhead of n Diffie-Hellman key exchanges per
user to create the envelopes. The envelope enc/decryption
increases linearly (e.g., below 1 ms for 100 users).

7 Related Work
There is a large body of research on privacy-preserving sys-
tems, encrypted search, and secure outsourced computation.
For brevity, we focus our discussion here on works that are
closest to TimeCrypt.
Encrypted Databases. Fuller et al. [34] provide a compre-
hensive overview of the encrypted database landscape. We
now discuss several works in this space that are analogues
to TimeCrypt. CryptDB [63] and Monomi [81] augment re-
lational databases with encrypted data processing capabili-
ties, however, encryption schemes used in these systems are
not efficient enough to support interactive queries on large
data. Seabed [60] focuses on Spark-like batch processing
workloads and resorts to symmetric partial-homomorphic en-
cryption to enable interactive queries on big data but without
the tight latency requirements of time series data. CryptDB,
Monomi, and Seabed do not support cryptographic access
control or verifiable computation, as the case with TimeCrypt.
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ENKI [41] and Pilatus [74] support sharing and encrypted
computations but they scale poorly with the number of prin-
cipals and the size of data. Also, they do not support fine-
grained policies. Bolt [40] is an encrypted data storage sys-
tem for time series data that supports retrieval of encrypted
chunks but does not support server-side computation on en-
crypted data or fine-grained sharing. BlindSeer [61] enables
private boolean search queries over an encrypted database by
building an index with Yao’s garbled circuits and primarily
targets private search over large data with no support for sta-
tistical queries. It integrates access control for search queries
but requires two non-colluding parties. Another line of re-
search considers building data processing systems in trusted
execution environments [14, 64, 72], which can provide con-
fidentiality and integrity of queries. In TimeCrypt, we do not
require dedicated hardware and rely on cryptographic primi-
tives to ensure confidentiality and integrity of computation.

Cryptography-based Access. Cryptographically enforced
access control is explored by crypto-systems [35] such as
identity-based encryption, attribute-based encryption (ABE),
predicate encryption, and functional encryption. They enable
complex access control to encrypted data. ABE [8, 16, 38,
39, 59, 70] is the most expressive among them, though it
comes with limitations with respect to fine-grained access
and and dynamic updates [35]. Current ABE-based systems
lack homomorphic capabilities (i.e., no computation on ci-
phertexts) and scalability required for time series data work-
loads. In general, adding homomorphic capabilities to ABE
remains an open challenge [22]. Recently, important progress
has been made on constructions of homomorphic attribute
based encryption [20, 22, 30, 36]. However, they remain lim-
ited in functionality and are computationally expensive. A
related line of work is searching over encrypted data with
predicate evaluation [21, 76]. While predicate encryption
schemes [21, 76] support range queries over encrypted data,
they lack the required efficiency in our setting, as they re-
quire a linear scan through the database and also due to their
underlying computationally expensive pairing-crypto.

8 Conclusion

In this paper, we presented TimeCrypt, a new scalable system
that enables fast analytics over large encrypted data streams.
TimeCrypt introduces HEAC, a novel encryption construction
that enables execution of real-time analytics over encrypted
stream data and empowers data owners to enforce access re-
strictions on encrypted data based on their privacy and access
control preferences. Our evaluation on various large-scale
workloads shows TimeCrypt’s performance is close to operat-
ing on plaintext data, demonstrating the feasibility of provid-
ing high-performance and strong confidentiality guarantees
when operating on large-scale sensitive time series data.
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Abstract
Data-sharing systems are often used to store sensitive data.
Both academia and industry have proposed numerous solu-
tions to protect the user privacy and data integrity from a
compromised server. Practical state-of-the-art solutions, how-
ever, use weak threat models based on centralized trust—they
assume that part of the server will remain uncompromised, or
that the adversary will not perform active attacks. We propose
Ghostor, a data-sharing system that, using only decentralized
trust, (1) hides user identities from the server, and (2) allows
users to detect server-side integrity violations. To achieve (1),
Ghostor avoids keeping any per-user state at the server, requir-
ing us to redesign the system to avoid common paradigms
like per-user authentication and user-specific mailboxes. To
achieve (2), Ghostor develops a technique called verifiable
anonymous history. Ghostor leverages a blockchain rarely,
publishing only a single hash to the blockchain for the entire
system once every epoch. We measured that Ghostor incurs a
4–5x throughput overhead compared to an insecure baseline.
Although significant, Ghostor’s overhead may be worth it for
security- and privacy-sensitive applications.

1 Introduction
Systems for remote data storage and sharing have seen
widespread adoption over the past decade. Every major cloud
provider offers it as a service (e.g., Amazon S3, Azure Blobs),
and it is estimated that 39% of corporate data uploaded to
the cloud is related to file sharing [51]. Given the relentless
attacks on servers storing data [45], a long-standing problem
in academia [14, 31, 35, 41, 49, 55, 60, 64, 75, 87] and indus-
try [27, 46, 52, 77, 98] has been to provide useful security
guarantees even when the storage server, and some users, are
compromised by an adversary.

To address this, early systems [35, 48] have users encrypt
and sign files. However, a sophisticated adversary can still:
• observe metadata about users’ identities [24, 38, 47, 102].

Even if the files are encrypted, the adversary sees which
users are sharing a file, which user is accessing a file at a
given time, and the list of users in the system. Fig. 1 shows
an example where the attacker can conclude that Alice has
cancer from such metadata. Further, this allows the attacker
to learn the graph of user social relations [81, 89].

• perform active attacks. Despite the signatures, an adversary
can revert a file to an earlier state as in a rollback attack,
or hide users’ updates from each other as in a fork attack,
without being detected. These are dangerous if, for example,

*Sam Kumar and Yuncong Hu contributed equally to this work. They
are listed in alphabetical order by last name.

E2EE Systems Ghostor's Anonymous E2EE
Alice and BobMD have accounts This system has unknown users
Alice owns medical profile file F
Alice and BobMD have access to F
Alice reads F at 2pm
BobMD writes to F at 3pm

File F exists with unknown owner
F's Access Control List is unknown
Unknown reads F at 2pm
Unknown (could be same as
above) writes to F at 3pmGoogle search says BobMD

is an oncologist. Each of
these tells me that Alice
might suffer from cancer.

Figure 1: An example of what a server attacker sees in a
typical E2EE system versus Ghostor’s Anonymous E2EE

the shared file is Alice’s medical profile, and she does not
learn that her doctor changed her treatment.

Research over the past 15 years has striven to mitigate these
attacks by providing anonymity—hiding users’ identities from
the storage server—or verifiable consistency—enabling users
to detect rollback and fork attacks. In achieving these stronger
security guarantees, however, state-of-the-art systems employ
weaker threat models that rely on centralized trust: a trust
assumption on a few specific machines. For example, they rely
on a trusted party [66,90], split the server into two components
assuming one is honest [49, 54, 74], or assume the adversary
is honest-but-curious (not malicious) [7, 16, 65, 104] meaning
the attacker does not change the server’s data or execution.

Attackers have notoriously performed highly targeted at-
tacks, spreading malware with the ability to modify software,
files, or source code [62, 106, 107]. In such attacks, a deter-
mined attacker can compromise any few central servers. Ide-
ally, we would avoid any trust in the server or other clients, but
unfortunately, that is impossible: Mazières and Shasha [69]
proved that, if one cannot assume that clients are reliably on-
line [55], clients cannot detect fork attacks without placing
some trust in the server. Hence, this paper asks the question:
Can we achieve strong privacy and integrity guarantees in a
data-sharing system without relying on centralized trust?

To answer this question, we design and build Ghostor,
an object store based on decentralized trust that achieves
anonymity and verifiable linearizability (abbreviated VerLin-
ear). At a high level, anonymity1 means that the protocol
does not reveal directly to the server any user identity with
any request, as previously defined in the secure storage litera-
ture [54, 65, 74, 104]. As shown in Fig. 1, the server does not
see which user owns which objects, which users have read or

1Outside of secure storage, anonymity is sometimes defined differently.
In secure messaging, for example, an anonymous system is expected to hide
the timing of accesses [97] and which files/mailboxes are accessed, but not
necessarily the system’s membership [26].
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Figure 2: Information leakage in a data-sharing system and
associated privacy properties

write permissions to a given object, or even who are the users
of the system. The server essentially sees ghosts accessing the
storage, hence the name “Ghostor.” VerLinear means clients
can verify that each write is reflected in later reads, except
for benign reordering of concurrent operations as formalized
by linearizability [42]. To achieve these properties, we build
Ghostor’s integrity on top of a consistent storage primitive
based on decentralized trust, like a blockchain [17, 73, 105]
or verifiable ledger [30, 44], while using it only rarely.

1.1 Hiding User Identities
Achieving anonymity in practical data-sharing systems
like Ghostor is difficult because common system design
paradigms, like user login, per-user mailboxes on the server,
and client-side caching, let the server track users. We re-
architect the system to avoid these paradigms (§4), using
data-centric key distribution and encrypted key lists instead of
server-side ACLs. Like prior systems [4,33,57], Ghostor uses
cryptographic keys as capabilities, allowing the server and
other users to verify each access is performed by an autho-
rized user. Ghostor also leverages this technique to achieve
anonymity by having all users authorized in a particular way
share the same capability, and by distributing these capabili-
ties to users without revealing ACLs to the server. We find this
technique, anonymously distributed shared capabilities, inter-
esting because anonymity is not typically a goal of public-key
access control [4, 33] or capability-based systems [63, 72, 84].

An additional challenge is to guard against resource abuse
while preserving anonymity. This is typically done by en-
forcing per-user resource quotas (e.g., Google Drive requires
users to pay for additional space), but this is incompatible
with Ghostor’s anonymity. One solution is for users to pay
for each operation via an anonymous cryptocurrency (e.g.,
Zcash [105]), but this puts an expensive blockchain operation
in the critical path. To avoid this, Ghostor leverages blind sig-
natures [18, 22, 23] to allow a user to pay the Ghostor server
for service in bulk and in advance, while removing the linkage
between payments and operations.
Relationship to obliviousness. Fig. 2 positions Ghostor’s
anonymity with respect to other privacy properties. Global
obliviousness [7, 66], which hides which object is accessed
across all uncompromised objects and users in the system, is

orthogonal to Ghostor’s anonymity, which hides which user
performs each access. Obliviousness and anonymity are also
complementary: (1) In some cases, without obliviousness,
users may be identified based on access patterns. (2) Without
anonymity, knowing which user issued a request may reveal
information about what data that request may access. We view
Ghostor’s techniques for anonymity as a transformation:
• If applied to an E2EE system, we obtain Ghostor, an

anonymous E2EE system.
• If applied to a globally oblivious scheme, we obtain

Ghostor-MH, a data-sharing scheme that hides all
metadata (except when initializing a group of objects or
redeeming payments, as explained in Appendix D).

Hiding metadata from a malicious adversary, as in Ghostor-
MH, is a very strong guarantee—existing globally oblivious
schemes inherently reveal user identities [66] or assume the
adversary is honest-but-curious [7, 65]. However, globally
oblivious data-sharing schemes, like Ghostor-MH, are theo-
retical schemes that are far from practical. Thus, Ghostor-MH
is only a proof of concept demonstrating the power of Ghos-
tor’s techniques to lift a globally oblivious scheme all the way
to virtually zero leakage for a malicious adversary.

1.2 Verifiable Consistency
To provide VerLinear, prior work has clients sign hashes [55]
so the clients can verify that they see the same hash, or store
hashes on a separate hash server [49], trusted not to collude
with the storage server. Neither technique can be used in
Ghostor: client signatures are at odds with anonymity, and the
hash server is a trusted party, which Ghostor aims to avoid.

One way to adapt the prior designs to Ghostor’s decen-
tralized trust is to store hashes on a blockchain, which can
be accomplished by running the hash server in a smart con-
tract. Unfortunately, this design is too slow to be practical.
The client posts a hash on the blockchain for every object
write, which is expensive: blockchains incur high latency
per transaction, have low transaction throughput, and require
cryptocurrency payment for each transaction [17, 73, 105].

To sidestep the limitations of a blockchain, we design Ghos-
tor to only interact with the blockchain rarely and outside of
the critical path. Ghostor divides time into intervals called
epochs. At the end of each epoch, the Ghostor server publishes
to the blockchain a small checkpoint, which summarizes the
operations performed during that epoch for all objects and
users in the system. Each user can then verify that the re-
sults of their accesses during the epoch are consistent with the
checkpoint. The consistency properties of a blockchain ensure
all clients see the same checkpoint, so the server is committed
to a single history of operations and cannot perform a fork
attack. Commit chains [53] and monitoring schemes [15, 93]
are based on similar checkpoints, but Ghostor applies them to
object storage while maintaining users’ anonymity.

A significant obstacle is that a hash-chain-based history
is not amenable to concurrent appends. Each entry in the
history contains the hash of the previous entry, causing one
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Goal Technique
Anonymous user access
control

Anonymously distributed
shared capabilities (§4)

Anonymous server in-
tegrity verification

Verifiable anonymous history
(§5)

Concurrent operations
on a single object

Optimized GETs, two-phase
protocol for PUTs (§5.4)

Anonymous resource
abuse prevention

Blind signatures and proof of
work (§6)

Hiding user IP addresses Anon. network, e.g., Tor (§8)
Table 1: Our goals and how Ghostor achieves each one

operation to fail if a concurrent operation appends a new
entry. Existing techniques for concurrent operations, such
as SUNDR’s VSLs [64], reveal per-user version numbers
that would undermine Ghostor’s anonymity. Our insight in
Ghostor is to have the server, not the client, populate the
hash of the previous entry when appending a new entry. To
make this safe despite a malicious adversary, we carefully
design a conflict resolution strategy, involving multiple linked
entries in the history for each write, that prevents attackers
from manipulating data via replay or time-stretch attacks.

We call the resulting design a verifiable anonymous history.

1.3 Summary of Contributions
Our goals and techniques are summarized in Table 1. Overall,
this paper’s contributions are:
• We design an object store providing anonymity and verifi-

able linearizability based only on decentralized trust.
• We develop techniques to (1) share capabilities for

anonymity and distribute them anonymously, (2) create
and checkpoint a verifiable anonymous history, and (3)
support concurrent operations on a single object with a
hash-chain-based history.

• We combine these with existing building blocks to instanti-
ate Ghostor, an object store with anonymity and VerLinear.

• We also apply these to a globally oblivious scheme to
instantiate Ghostor-MH, which hides nearly all metadata.

We also implemented Ghostor and evaluated it on Amazon
EC2. Overall, Ghostor brings a 4-5x throughput overhead on
top of a simplistic and completely insecure baseline. There
are two types of latency overhead. Completing an individ-
ual operation takes several seconds. Afterward, it may take
several minutes for a checkpoint to be incorporated into the
blockchain, to confirm that no active attack has occurred for a
batch of operations. We explain how these latencies play out
in the context of a particular application, EHR Sharing (§7.1).

2 System Overview
Ghostor is an object store, which stores unstructured data
items (“objects”) and allows shared access to them by multiple
users. We instantiate Ghostor as an object store (as in Amazon
S3 or Azure Blobs) because it is a basic primitive on top of
which more complex systems can be built. Fig. 3 illustrates
Ghostor’s architecture. Multiple users, with separate clients,

Ghostor Server

Blockchain checkpointscheckpoints

Verification Daemon

Ghostor
Library

digests

Ghostor Client

Application

alarm

StorageServer SideUser Side

verifiable
anonymous history

root
hash

…
…
…

Figure 3: System overview of Ghostor. Shaded areas indicate
components introduced by Ghostor.

have shared access to objects on the Ghostor server.
Server. The Ghostor storage server processes requests from
clients. At the end of each epoch, the server generates a single
small checkpoint and publishes it to the blockchain.
Client. The client software consists of a Ghostor library,
linked into applications, and a verification daemon, which
runs as a separate process. The Ghostor library receives re-
quests from the application and interacts with the server to
satisfy each request. Upon accessing an object, the library
forwards a digest summarizing the operation to the verifi-
cation daemon. At the end of each epoch, the daemon (1)
fetches object histories from the server, (2) verifies that they
are consistent with the server’s checkpoint on the blockchain,
and (3) checks that the digests collected during the epoch are
consistent with the object histories, as explained in §5.

The daemon stores the user’s keypair. If a user loses her se-
cret key, she loses access to all objects that she created or was
granted access to. Similarly, an attacker who steals a user’s
secret key can impersonate that user. To securely back up her
key on multiple devices, a user can use standard techniques
like secret sharing [82, 83, 99]. A user who accesses Ghostor
from multiple devices uses the same key on all devices.

Application developers interact with Ghostor using the
API below. Developers can work with usernames, ACLs, and
object IDs, but Ghostor clients will not expose them to the
Ghostor server. Below is a high-level description of each API
call; a step-by-step technical description is in Appendix A.
♦ create_user(): Creates a Ghostor user by generating keys
for a new user. This operation runs entirely in the Ghostor
client—the server does not know this operation was invoked.
♦ user.pay(sum): Users pay the server through an anonymous
cryptocurrency such as Zcash [105], and obtain tokens from
the server proportional to the amount paid. These tokens can
later be anonymously redeemed and used as proof of payment
when invoking the below API functions.
♦ user.create_object(id): Creates an object with ID id,
owned by user who invokes this. The client expends one
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token obtained from a previous call to pay. The id can be a
meaningful name (e.g., a file path). It lives only within the
client—the server receives some cryptographic identifier—so
different clients can assign different ids to the same object.
♦ user.set_acl(id, acl): The user who invokes this must be the
owner of the object with ID id. This function sets a new ACL
for that object. For simplicity, only the owner of an object can
set its ACL, but Ghostor can be extended to permit other users
as well. The client encodes acl into an object header that hides
user identities, as in §4. If new users are given access, they
are notified via an out-of-band channel. Existing data-sharing
systems also have this requirement; for example, Dropbox and
Box send an email with an access URL to the user. In Ghostor,
all keys are transferred in-band; the out-of-band channel is
used only to inform the user that she has been given access.
Ghostor does not require a specific out-of-band channel; for
example, one could use Tor [29] or secure messaging [95,97].
♦ user.get_object(id), user.put_object(id, content): The
user can GET or PUT an object if permitted by its ACL.

3 Threat Model and Security Guarantees
Against a malicious attacker who has compromised the server,
Ghostor provides:
• verifiable linearizability, as described in §3.2, and
• a notion of user anonymity, described in §3.3: briefly, it

does not reveal user identities, but reveals object access
patterns. Ghostor-MH additionally hides access patterns.

Ghostor does not protect against attacks to availability. Nev-
ertheless, its anonymity makes it more difficult for the server
to selectively deny service to (or fork views of) certain users.
Users, and the Ghostor client instances running on their behalf,
can be malicious and can collude with the server.

Formal definitions and proofs for these properties require
a large amount of space, so we relegate them to Appendix E
and Appendix F. Below, we include only informal definitions.

3.1 Assumptions
Ghostor is designed to derive its security from decentralized
trust. Thus, our threat model assumes an adversary who can
compromise any few machines, as described below.
Blockchain. Ghostor makes the standard assumption that the
blockchain is immutable and consistent (all users see the same
transaction history). This is based on the assumption that, in
order to attack a blockchain, the adversary cannot simply com-
promise a few machines, but rather a significant fraction of
the world’s computing power. Ghostor’s design is not tied to
a specific blockchain. Our implementation uses Zcash [105]
because it supports both public and private transactions; we
use Zcash’s private transactions for Ghostor’s anonymous pay-
ments. The privacy guarantees of Zcash can be implemented
on top of other blockchains as well [11].
Network. We assume clients communicate with the server in
a way that does not reveal their network information. This can
be done using mixnets [21] or secure messaging [95,97] based
on decentralized trust. Our implementation uses Tor [29].

3.2 Verifiable Linearizability
If an attack is immediately detectable to a user—for example,
if the server fails to honor payment or provides a malformed
response (e.g., bad signature)—we consider it an attack on
availability, which Ghostor does not prevent.

Clients should be able to detect active attacks, including
fork and rollback attacks. Some reordering of concurrent op-
erations, however, is benign. We use linearizability [42] to
define when reordering at the server is considered benign or
malicious. Informally, linearizability requires that after a PUT
completes, all later GETs return the value of either (1) that PUT,
(2) a PUT that was concurrent with it, or (3) a PUT that comes
after it. We provide a more formal definition in Appendix
F. Ghostor provides verifiable linearizability (abbreviated
VerLinear). This means that if the server deviates from lin-
earizability, clients can detect it at the end of the epoch. We
discuss how to choose the epoch length in §9. Ghostor does
not provide consistency guarantees for malicious user, or for
objects for which a malicious user has write access.

Guarantee 1 (Verifiable linearizability). For any object F
and any list E of consecutive epochs, suppose that, for each
epoch in E, the set of honest users who ran the verification pro-
cedure includes all writers of F in that epoch (or is nonempty
if F was not written). If the server did not linearizably execute
the operations that verifying clients performed in the epochs
that they verified, then at least one of the verifying clients
will encounter an error in the verification procedure and can
generate a proof that the server misbehaved.

3.3 Anonymity
As explained in §1.1, Ghostor’s anonymity means that the
server sees no user identities associated with any action. In par-
ticular, an adversary controlling the server cannot tell which
user accesses each object, which users are authorized to access
each object, or which users are part of the system.

Ghostor. We informally define Ghostor’s privacy via a leak-
age function: what the server learns when a user makes each
API call (§2). For create_object – put_object, the server
learns the object identifier and the type of the operation. The
server also sees the time of the operation, and the size of the
encrypted ACL and encrypted object, which can be hidden via
padding at an extra cost. create_user leaks no information
to the server, and pay reveals only the sum paid and when.
The server learns no user identities, no object contents, and
no ACLs. If the attacker has compromised some users, he
learns the contents of objects those users can access, includ-
ing prior versions encrypted under the same key. Collectively,
the verification daemons leak the number of clients perform-
ing verification for each object. If all clients in an object’s
ACL are honest and running, this equals the ACL size. If the
ACL is padded to a maximum size, the owner should run ver-
ification more times to hide the ACL size. Ghostor does not
hide access patterns or timing (Fig. 2). An adversary who uses
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Keypair or Key Description
(PVK, PSK) Signing keypair used to set ACL
(RVK, RSK) Signing keypair used to get object
(WVK, WSK) Signing keypair used to put object

(OSK) Symmetric key for object contents
Table 2: Per-object keys in Ghostor. The server uses the global
signing keypair (SVK,SSK) to sign digests for objects.

this information cannot see the contents of files and ACLs
because they are encrypted. But such an adversary could try
to deduce correlations between which users issue different
operations based on access patterns and timing, and in some
cases, identify the user based on that information. This can
be partially mitigated by carefully designing the application
using Ghostor (§4.5). In contrast, Ghostor-MH does hide ac-
cess patterns. In Appendix E, we formally define Ghostor’s
privacy guarantee in the simulation paradigm of Secure MPC.

Ghostor-MH. We informally define Ghostor-MH’s privacy
via a leakage function, as above. create_object reveals that
a group of objects was created. set_acl, get_object, and
put_object reveal nothing if the object’s ACL contains only
honest users; otherwise, they reveal which object was ac-
cessed. create_user and pay have the same leakage as de-
scribed for Ghostor above. The leakage function also includes
the total number of honest users in the system.

4 Hiding User Identities
System design paradigms used in typical data-sharing systems
are incompatible with anonymity. We identify the incompati-
ble system design patterns and show how Ghostor replaces
them. Ultimately, we arrive at anonymously distributed shared
capabilities, which allow Ghostor to enforce access control
for anonymous users without server-visible ACLs.

4.1 No User Login or User-Specific Mailboxes
Data-sharing systems typically have some storage space on
the server, called an account file, dedicated to a user’s account.
For example, Keybase [52] has a user account and Mylar [75]
has a user mailbox where the user receives a key to a new file.
Accesses to the account file, however, can be used to link user
operations. As an example, suppose that when a user accesses
an object, her client first retrieves the decryption key from a
user-specific mailbox. This violates anonymity because the
server can tell whether or not two accesses were made by the
same user, based on whether the same mailbox was accessed
first. Instead, Ghostor’s anonymity requires that any sequence
of API calls (§2) with the same inputs, when performed by
any honest user, results in the same server-side accesses.

Ghostor does not have any user-specific storage as in exist-
ing systems. To allow in-band key exchange, Ghostor asso-
ciates a header with each object. The object header functions
like an object-specific mailbox, in that it is used to distribute
the object’s keys among users who have access to the object.
Unlike a user-specific mailbox, it preserves anonymity be-
cause, for a given object, each user reads the same header

Enc(Object Content) OSK

Object Header
• (RVK, WVK)
• SignatureHeader

KeyList
• Enc(RSK, WSK, OSK) User1

• Enc(RSK, OSK) User2
• ......

Object Name: PVK

Figure 4: Object layout in Ghostor

before accessing it.

4.2 No Server-Visible ACLs
An honest server must be able to prevent unauthorized users
from modifying objects, and users must be able to verify that
objects returned by the server were produced by authorized
writers. This is typically accomplished by having writers sign
objects, and having the server check that the user who signed
the object is on the object’s ACL. However, this requires the
ACL to be visible to the server, which violates anonymity.

We observe that by switching to a design based on shared
capabilities, we can allow the server and other users to ver-
ify that writes are indeed made by authorized users, without
requiring the server or other users to know the ACL of the
object, or which users are authorized. Every Ghostor object
has three associated signing keypairs (Table 2). All users
of the object (and the server) know the verifying keys PVK,
RVK, and WVK because PVK is the name of the object, and
RVK and WVK are in the object header; the associated signing
keys PSK, RSK, and WSK are capabilities that grant access
to set the ACL, get the object, and put the object, respectively.
To distribute these capabilities to users in the object’s ACL,
the owner places a key list in the object header. The key list
contains, for each user, a list of capabilities encrypted under
that user’s public key. If a user has read/write access to an
object, her entry in the key list contains WSK, RSK, and OSK;
a user with only read access is given a dummy key instead
of WSK. Crucially, different users with the same permission
share the same capability, so the server cannot distinguish be-
tween users on the basis of which capability they use. When
accessing an object, a user downloads the header and decrypts
her entry in the key list to obtain OSK (used to decrypt the
object contents) and her capabilities for the object.

Users sign updates to the object with WSK, allowing the
server and other users to verify that each update is made by a
user with write access. PSK is stored locally by the owner and
is used to sign the header. The owner can set the object’s ACL
by (1) freshly sampling (RVK,RSK), (WVK,WSK), and OSK,
(2) re-encrypting the object with OSK and signing it with
WSK, (3) creating a new object header with an updated key
list, (4) signing the new header with PSK, and (5) uploading
it to the server. (RVK,RSK) will be relevant in §5.

Ghostor’s object layout is summarized in Fig. 4.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    855



4.3 No Server-Visible User Public Keys
Prior systems [64] reveal the user’s public key to the server
when the client interacts with it. For example, SUNDR re-
quires users to provide a signature along with each operation.
First, the signature itself could leak the user’s public key. Sec-
ond, to check the legitimacy of writes, the server needs to
know the user’s public key to verify the signature. The server
can use the public key as a pseudonym to track users.

The key list in §4.2, however, potentially leaks users’ public
keys: each entry in the key list is a set of capabilities encrypted
under a user’s public key, but public-key encryption is only
guaranteed to hide the message being encrypted, not the pub-
lic key used to encrypt it. For example, an RSA ciphertext
leaks which public key was used for encryption. Therefore,
Ghostor uses key-private encryption [10], which is guaranteed
to hide both the message and the public key.

In summary, Ghostor has users share capabilities for
anonymity, and then distributes the capabilities anonymously,
without revealing ACLs to the server. We call the resulting
technique anonymously distributed shared capabilities.

4.4 No Client-Side Caching
Assuming that an object’s ACL changes rarely, it may seem
natural for clients to locally cache an object’s keypairs
(RVK,RSK) and (WVK,WSK), to avoid downloading the
header on future accesses to that object. Unfortunately, the
mere fact that a client did not download the header before
performing an operation tells the server that the same user re-
cently accessed that object. As a result, Ghostor’s anonymity
prohibits user-specific caching. That said, server-side caching
of commonly accessed objects is allowed.

4.5 Careful Application Design
Ghostor does not hide access patterns or timing information
from the server. A sophisticated adversary could, for example,
deny or delay accesses to a particular object and see how ac-
cess patterns shift, to try and deduce which user made which
accesses. Therefore, one should carefully design the appli-
cation using Ghostor to avoid leaking user identities in its
access patterns. For example, just as Ghostor has no client-
side caching or user-specific mailboxes, an application using
Ghostor should avoid caching data locally to avoid requests to
the server or using an object as a user-specific mailbox. Note
that Ghostor-MH hides these access patterns.

5 Achieving Verifiable Consistency
Ghostor’s verifiable anonymous history achieves the “verifi-
able equivalent” of a blockchain for critical-path operations,
while using the underlying blockchain rarely. It consists of:
(1) a hash chain of digests, (2) periodic checkpoints on a real
blockchain, and (3) a verification procedure that does not
require knowledge of user identities.

5.1 Hash Chain of Digests in Ghostor
We now achieve fork consistency for a single object in Ghos-
tor using techniques inspired from SUNDR [64], but modified

Field Description
Epoch epoch when operation was committed
PVK, WVK, RVK permission/writer/reader verifying key
Hashprev hash of previous digest in chain
Hashkeylist hash of key list
Hashdata hash of object contents
Sigclient client signature with RSK, WSK, or PSK
Sigserver server signature using SSK
nonce random nonce chosen by client

Table 3: A digest for an operation in Ghostor

because SUNDR is not anonymous. Each access to an object,
whether a GET or a PUT, is summarized by a digest shown in
Table 3. The object’s history is stored as a chain of digests.

To access the object, a client first produces a digest sum-
marizing that operation as in Table 3. This requires fetching
the object header from the server, so that the client can obtain
the secret key (RSK, WSK, or PSK) for the desired operation.
Then the client fetches the latest digest for the object and
computes Hashprev in the new digest. To GET the object, the
client copies Hashdata from the latest digest; to PUT it, the
client hashes the new contents to obtain Hashdata. If the client
is changing permissions, then Hashkeylist is calculated from
the new header; otherwise, it is copied from the latest digest.

Then the client signs the digest with the appropriate key
and provides the signed digest to the server. The server signs
the digest using SSK, appends it to a log, and returns the
signed digest and the result of the operation. At the end of the
epoch, the client downloads the digest chain for that object
and epoch, and verifies that (1) it is a valid history for the
object, and that (2) it contains the operations performed by
that client. We specify protocol details in Appendix A.

Ghostor’s digests differ from SUNDR in two main ways.
First, for anonymity, a client does not sign digests using the
user’s secret key, but instead uses RSK, WSK, or PSK, which
can be verified without knowing the user’s public key. When
inspecting the digest, the server no longer learns which user
performed the operation, only that the user has the required
permission. Second, each digest is signed by the server. Thus,
if the server violates linearizability, the client can assemble
the offending digests into a proof of misbehavior.

5.2 Checkpoint and Verification
The construction so far is susceptible to fork attacks [64],
in which the server presents two users with different views
over the same object. To detect fork attacks, Ghostor requires
the server to produce a checkpoint at the end of each epoch,
consisting of the hash of the object’s latest digest and the
epoch number, and publish the checkpoint to the blockchain.
The verification procedure run by a client consists of fetch-
ing the checkpoint from the blockchain, checking it corre-
sponds to the hash for the last digest in the list of digests
obtained from the server, and running the verification in
§5.1. The blockchain guarantees that all users see the same
checkpoint. This prevents the server from forking two users’
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views, as the latest digests for two different views cannot both
match the published checkpoint. In this way, we bootstrap
the blockchain’s consistency guarantees to achieve verifiable
consistency over an entire epoch of operations.

5.3 Multiple Objects per Checkpoint
So far, the server puts one checkpoint in the blockchain per
object, which is undesirable when there are many objects. We
address this as follows. The server computes the hash of the
final digest of each object, builds a Merkle tree over those
hashes, and publishes the root hash in the blockchain as a
single checkpoint for all objects. To verify integrity at the end
of an epoch, a Ghostor client fetches the digest chain from the
server for objects that are either (1) accessed by the client dur-
ing the epoch or (2) owned by the client’s user. It verifies that
all operations that it performed on those objects are included
in the objects’ digest chains. Then, it requests Merkle proofs
from the server to check that the hash of the latest digest is
included in the Merkle tree at the correct position based on
the object’s PVK. Finally, it verifies that the Merkle root hash
matches the published checkpoint.

Although we maintain a separate digest chain for each
object, the collective history of operations, across all objects,
is also linearizable. This follows from the classical result that
linearizability is a local property [42]. Thus, Ghostor provides
verifiable linearizability across all objects, while supporting
full concurrency for operations on different objects.

5.4 Concurrent Operations on a Single Object
As explained in §5.1, the client must fetch the latest digest
from the server to construct a digest for a new GET or PUT. If
two clients attempt to GET or PUT an object concurrently, they
may retrieve the same latest digest for that object, and there-
fore construct new digests that both have the same Hashprev.
An honest server can only accept one of them; the other opera-
tion must be aborted. A naïve fix is for clients to acquire locks
(or leases) on objects during network round trips, but this
limits single-object throughput according to client round-trip
times. How can we allow concurrent operations on a single
object without holding server-side locks during round trips?
We explain our techniques at a high level below; Appendix A
contains a full description of our protocol.
GETs. We optimize GETs so that clients need not fetch the lat-
est digest, obviating the need to lock for a round trip. When a
client submits a GET request to the server, the client need
not include Hashprev, Hashdata, or Hashkeylist in the digest
presented to the server. The client includes the remaining
fields and a signature over only those fields. Then, the server
chooses the hashes for the client and returns the resulting di-
gest, signed by the server. Although the server can replay oper-
ations, this is harmless because GETs do not affect data. When
the verification daemon verifies a GET, it checks the client
signature without including Hashprev, Hashdata, or Hashkeylist.
PUTs. The above technique does not apply to PUTs, because
the server can roll back objects by replaying PUTs. Simply

using a client-provided nonce to detect replayed PUTs is not
sufficient, because the server can delay incorporating a PUT
(which we call a time-stretch attack) to manipulate the final
object contents. For PUTs, Ghostor uses a two-phase protocol.
In the PREPARE phase, the client operates in the same way
as GET, but signs the digest with WSK; the server fills in the
hashes, signs the resulting digest, appends it to the object’s
digest chain, and returns it to the client. In the COMMIT phase,
the client creates the final digest for the operation—omitting
Hashprev and appending an additional field Hashprep, which
is the hash of the server-signed digest obtained in the PRE-
PARE phase—and uploads it to the server with the new object
contents. The server fills in Hashprev based on the object’s
digest chain (which could have changed since the PREPARE
phase), signs the resulting digest, appends it to the object’s
digest chain, and returns it to the client. The server can re-
play PREPARE requests, but it does not affect object contents.
The server cannot generate a COMMIT digest for a replayed
PREPARE request, because the client signed the COMMIT di-
gest including the hash of the server-signed PREPARE digest,
which includes Hashprev. The server can replay a COMMIT
request for a particular PREPARE request, but this is harmless
because of our conflict resolution strategy described below.
Resolving Conflicts. If two accesses are concurrent (i.e., nei-
ther commits before the other prepares), then linearizability
does not require any particular ordering of those operations,
only that all clients perceive the same ordering. If a GET is
concurrent with a PUT (GET digest between the PREPARE and
COMMIT digests for a PUT), Ghostor linearizes the GET as
happening before the PUT. This allows the result of the GET to
be served immediately, without waiting for the PUT to finish.
For concurrent PUTs, it is unsafe for the linearization order
to depend on the COMMIT digest, because the server could
perform a time-stretch or replay attack on a COMMIT digest,
to manipulate which PUT wins. Therefore, Ghostor chooses
as the winning PUT the one whose PREPARE digest is latest.
The server can still delay PREPARE digests, but the client can
choose not to COMMIT if the delay is unacceptably large. To
simplify the implementation of this conflict resolution pro-
cedure, we require that the PREPARE and COMMIT phases
happen over the same session with the client, during which the
server can keep in-memory state for the relevant object. This
allows the server to match PREPARE and COMMIT digests
without additional accesses to secondary storage.
Verification Complexity. To verify PUTs, the verification dae-
mon must check that Hashdata only changes on COMMIT
digests for winning writes. Thus, it must keep track of all
PREPARE digests since the latest PREPARE digest whose cor-
responding COMMIT has been seen. We can bound this state
by requiring that PUT requests do not cross an epoch boundary.
ACL Updates. We envision that updates to the ACL will be
rare, so our implementation does not allow set_acl operations
to proceed concurrently with GETs or PUTs. It may be possible
to apply a two-phase technique, similar to our concurrent PUT
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protocol, to allow set_acl operations to proceed concurrently
with other operations. We leave exploring this to future work.

6 Mitigating Resource Abuse
To prevent resource abuse, commercial data-sharing systems,
like Google Drive and Dropbox, enforce per-user resource
quotas. Ghostor cannot do this, because Ghostor’s anonymity
prevents it from tracking users. Instead, Ghostor uses two
techniques to prevent resource abuse without tracking users:
anonymous payments and proof of work.

6.1 Anonymous Payments
A strawman approach is for users to use an anonymous cryp-
tocurrency (e.g., Zcash [105]) to pay for each expensive oper-
ation (e.g., operations that consume storage). Unfortunately,
this requires a separate blockchain transaction for each opera-
tion, limiting the system’s overall throughput.

Instead, Ghostor lets users pay for expensive operations
in bulk via the pay API call (§2). The server responds with
a set of tokens proportional to the amount paid via Zcash,
which can later be redeemed without using the blockchain
to perform operations. Done naïvely, this violates Ghostor’s
anonymity; the server can track users by their tokens (tokens
issued for a single pay call belong to the same user).

To circumvent this issue, Ghostor uses blind signatures [18,
22,23]. A Ghostor client generates a random token and blinds
it. After verifying that the client has made a cryptocurrency
payment, the server signs the blinded token. The blind signa-
ture protocol allows the client to unblind it while preserving
the signature. To redeem the token, the client gives the un-
blinded signed token to the server, who can verify the server’s
signature to be sure it is valid. The server cannot link tokens
at the time of use to tokens at the time of issue because the
tokens were blinded when the server originally signed them.

6.2 Proof of Work (PoW)
Another way to mitigate resource abuse is proof of work
(PoW) [6]. Before each request from the client, the server
sends a random challenge to the client, and the client must
find a proof such that Hash(challenge,proof, request) < diff.
diff controls the difficulty, which is chosen to offset the ampli-
fication factor in the server’s work. Because of the guarantees
of the hash function, the client must iterate through different
proofs until it finds one that works. In contrast, the server
efficiently checks the proof by computing one hash.

6.3 Anonymous Payments & PoW in Ghostor
Ghostor uses anonymous payments and PoW together to miti-
gate resource abuse. Our implementation requires anonymous
payment only for create_object, which requires the server to
commit additional storage space for the new object. This is
analogous to systems like Google Drive or Dropbox, which
require payment to increase a user’s storage limit but do not
charge based on the count or frequency of object accesses.
Implicit in this model are hard limits on object size and per-
object access frequency, which Ghostor can enforce. Although

our implementation requires payment only for create_object,
an alternate implementation may choose to require payment
for every operation except pay. Ghostor requires PoW for all
API calls. This includes pay and create_object, to offset the
cost of Zcash payments and verifying blind signatures.

7 Applying Ghostor to Applications
In this section, we discuss two applications of Ghostor that
we implemented: EHR Sharing and Ghostor-MH.

7.1 Case Study: EHR Sharing
Our goal in this section is to show how a real application
may interface with Ghostor’s semantics (e.g., ownership, key
management, error handling) and how Ghostor’s security guar-
antees might benefit a real application. To make the discussion
concrete, we explore a particular use case: multi-institutional
sharing of electronic health records (EHRs). It has been of
increasing interest to put patients in control of their data as
they move between different healthcare providers [37, 43, 85].
As it is paramount to protect medical data in the face of attack-
ers [28], various proposals for multi-institutional EHR sharing
use a blockchain for access control and integrity [5, 70]. Be-
low, we explore how to design such a system using Ghostor to
store EHRs in a central object store, using only decentralized
trust. We also implemented the system for Open mHealth [3].

Each patient owns one or more objects in the central Ghos-
tor system representing their EHRs. Each patient’s Ghostor
client (on her laptop or phone) is reponsible for storing the
PSKs for these objects. The PSKs could be stored in a wrist-
band, as in [70], in case of emergency situations for at-risk
patients. When the patient seeks treatment from a healthcare
provider, she can grant the healthcare provider access to the
objects containing the relevant information in Ghostor. Each
healthcare provider’s Ghostor client maintains a local meta-
data database, mapping patient identities (object IDs, §2) to
PVKs. This mapping could be created when a patient checks
in to the office for the first time (e.g., by sharing a QR code).
Benefits. Existing proposals leverage a blockchain to achieve
integrity guarantees [5, 70] but use the blockchain more heav-
ily than Ghostor: for example, they require a blockchain trans-
action to grant access to a healthcare provider, which results
in poor performance and scalability. Additionally, Ghostor
provides anonymity for sharing records.
Epoch Time. An important aspect of Ghostor’s semantics is
that one has to wait until the next epoch before one can verify
that no fork has occurred. It is reasonable to fetch a patient’s
record at the time that they check in to a healthcare facility,
but before they are called in for treatment. This allows the
time to wait until the end of an epoch to overlap with the
patient’s waiting time. In the case of scheduled appointments,
the record can be fetched in advance so that integrity can be
verified by the time of the appointment. An epoch time of
15–30 minutes would probably be sufficient.
Error Handling. If a healthcare provider detects a fork when
verifying an epoch, it informs other healthcare providers of the
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integrity violation out-of-band of the Ghostor system. Ghostor
does not constrain what happens next. One approach, used
in Certificate Transparency (CT), is to abandon the Ghostor
server for which the integrity violation was detected. We
envision that there would be a few Ghostor servers in the
system, similar to logs in CT, so this would require affected
users to migrate their data to a new server. Another approach
is to handle the error in the same way that blockchain-based
systems [5,70] handle cases where the hash on the blockchain
does not match the hash of the data—treat it as an availability
error. While neither solution is ideal, it is better than the status
quo, in which a malicious adversary is free to perform fork
or rollback attacks undetected, causing patients to receive
incorrect treatments based on old or incorrect data, potentially
resulting in serious physical injury.

7.2 A Metadata-Hiding Data-Sharing Scheme
Ghostor’s anonymity techniques can be combined with a glob-
ally oblivious scheme, AnonRAM [7], to obtain a metadata-
hiding object-sharing scheme, Ghostor-MH. Ghostor-MH is
not a practical system, but only a theoretical scheme; our
goal is to show that Ghostor’s techniques are complementary
to and compatible with those in globally oblivious schemes.
Below we summarize how we apply Ghostor’s techniques
in Ghostor-MH; we discuss Ghostor-MH in more detail in
Appendix D. First, we apply Ghostor’s principle of switching
from a user-centric to a data-centric design. Whereas each
ORAM instance in AnonRAM corresponds to a user, each
ORAM instance in Ghostor-MH corresponds to an object
group, a fixed-sized set of objects with a shared ACL. Second,
we apply the design of Ghostor’s object header in Ghostor-
MH. This is accomplished by storing the ORAM secret state,
encrypted, on the server. Finally, we use similar techniques to
mitigate resource abuse in Ghostor-MH as we do in Ghostor.

8 Implementation
We implemented a prototype of Ghostor in Go. It consists of
three parts, as in Fig. 3, server (≈ 2100 LOC), client library (≈
1000 LOC), and verification daemon (≈ 1000 LOC), which
all depend on a set of core Ghostor libraries (≈ 1400 LOC).

Our implementation uses Ceph RADOS [101] for consis-
tent, distributed object storage. We use SHA-256 for the cryp-
tographic hash and the NaCl secretbox library (which uses
XSalsa20 and Poly1305) for authenticated symmetric-key en-
cryption. For key-private asymmetric encryption (to encrypt
signing keys in the object header), we implemented the El
Gamal cryptosystem, which is key-private [10], on top of the
Curve25519 elliptic curve. We use an existing blind signature
implementation [1] based on RSA with 2048-bit keys and
1536-bit hashes. We use Ed25519 for digital signatures.

As discussed in §3, Ghostor uses external systems for
anonymous communication and payment. In our implemen-
tation, clients use Tor [29] to communicate with the server
and Zcash 1.0.15 for anonymous payments. We build a Zcash
test network, separate from the Zcash main network. Ghostor,
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however, could also be deployed on the Zcash main chain.
Zcash is also used as the blockchain to post checkpoints. Our
implementation runs as a single Ghostor server that stores its
data in a scalable, fault-tolerant, distributed storage cluster.
We discuss how to scale to multiple servers in Appendix B.

We implemented a proof of concept of our theoretical
scheme Ghostor-MH (§7.2), in ≈ 2100 additional LOC. As it
is a theoretical scheme, our focus in evaluating Ghostor-MH
is simply to understand the latency of operations. Ghostor-
MH includes AnonRAM’s functionality, which, to our knowl-
edge, has not been previously implemented. We omit zero-
knowledge proofs in our implementation, as they are similar
to AnonRAM and are not Ghostor-MH’s innovation.

9 Evaluation
We run our experiments on Amazon EC2. Ghostor’s storage
cluster consists of three i3en.xlarge servers. We configure
Ceph to replicate each object (key-value pair) on two SSDs
on different machines, for fault-tolerance.

9.1 Microbenchmarks
Basic Crypto Primitives. We measured the latency of crypto
operations used in Ghostor’s critical path. En/decryption of
object contents varies linearly with the object size, and takes≈
2 ms for 1 MiB. Key-private en/decryption for object headers
and signing/verification of digests takes less than 150 us.
Blind Signatures. We also measure the blind signature
scheme used for object creation, which consists of four steps.
(1) The client generates a blinded hash of a random number.
(2) The server signs the blinded hash. (3) The client unblinds
the signature, obtaining the server’s signature over the original
number. (4) The server verifies the signature and the number
during object creation. Results are shown in Fig. 5.
Verification Procedure. In Fig. 7, we measure the overhead
of verification for digests in a single epoch. For client veri-
fication time, we perform an end-to-end test, measuring the
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total time to fetch digests and to verify them. The client has
1,000 signed digests for operations the client performed dur-
ing the epoch that the client needs to check were included in
the history of digests. We vary the total number of digests in
the object’s history for that epoch. The reported values in Fig.
7a are the total time to verify the object, divided by the total
number of operations on the object, indicating the verification
time per digest. The trend indicates a constant overhead when
the total number of operations on the object is small, that is
amortized when the number of operations is large.

Fig. 7b shows the server’s overhead to compute the Merkle
root. We inserted objects using YCSB (§9.2.2) during an
epoch, and measured the time to compute the Merkle root at
the end of that epoch. For 10,000 objects, this takes about 2.5
seconds; for 1,000,000 objects, it takes about 280 seconds.
Reading the latest digest for each object (leaves of the Merkle
tree) dominates the time to compute the Merkle root (2 sec-
onds for 10,000 objects, 272 seconds for 1,000,000 objects).
The reason is that our on-disk data structures are optimized
for single-object operations, which are in the critical path. In
particular, each object’s digest chain is stored as a separate
batched linked list, so reading the latest digests requires a
separate read for each object.

9.2 Server-Side Overhead
This section measures to what extent anonymity and VerLin-
ear affect Ghostor’s performance. To ensure that the bottle-
neck was on the server, we set proof of work to minimum
difficulty and do not use anonymous communication (§3), but
we return to evaluating these in §9.3.

We measure the end-to-end performance of operations in
Ghostor, both as a whole and for instantiations of Ghostor
having only anonymity or VerLinear. We compare these to
an insecure baseline as well as to competitive solutions for
privacy and verifiable consistency, as we now describe.
1. Insecure system (“Insec”). This system uses the traditional
ACL-based approach for serving objects. Each object access
is preceded by a read to the object’s ACL to verify that the
user has permission to access the object. Similarly, creating
an object requires a read to a per-user account file. It provides
no security against a compromised server.
2. End-to-End Encrypted system (“E2EE”). This system en-
crypts objects placed on the server using end-to-end encryp-
tion similarly to SiRiUS [35]. Such systems have an encrypted
KeyList similar to Ghostor’s, but clients can cache their keys
locally on most accesses unlike Ghostor.
3. Ghostor’s anonymity system (“Anon”). This is Ghostor
with VerLinear disabled. This fits a scenario where one wants
to hide information from a passive server attacker. Unlike the
E2EE system above, this system cannot cache keys locally—
every operation incurs an additional round trip to fetch the
KeyList from the server. In addition, every operation incurs
yet another round trip at the beginning for the client to perform
a proof of work. On the positive side, the server does not
maintain any per-user ACL.

4. Fork Consistent system (“ForkC”). This system maintains
Ghostor’s digest chain (§5.1), but does not post checkpoints.
Each operation appends to a per-object log of digests, using
the techniques in §5.4. This system also performs an ACL
check when creating an object.
5. Ghostor’s VerLinear system (“VLinear”). This system cor-
responds to the VerLinear mechanism in §5 (including §5.2).
This matches a use case where one wants integrity, but does
not care about privacy. We do not include the verification
procedure, already evaluated in §9.1.
6. Ghostor. This system achieves both anonymity and VerLin-
ear, and therefore incurs the costs of both guarantees.
9.2.1 Object Accesses
In each setup, we measured the latency for create, GET, and
PUT operations (Fig. 8a), throughput for GETs/PUTs to a single
object (Fig. 9a), and the throughput for creating objects and
for GETs/PUTs to multiple objects (Fig. 9b).

Fork consistency adds substantial overhead, because ad-
ditional accesses to persistent storage are required for each
operation, to maintain each object’s log of digests. Ghostor,
which both maintains a per-object log of digests and provides
anonymity, incurs additional overhead because clients do not
cache keys, requiring the server to fetch the header for each
operation. In contrast, for Anon, the additional cost of reading
the header is offset by the lack of ACL check. For 1 MiB
objects, en/decryption adds a visible overhead to latency.

End-to-end encryption adds little overhead to throughput;
this is because we are measuring throughput at the server,
whereas encryption and decryption are performed by clients.
The only factor affecting server performance is that the ci-
phertexts are 40 bytes larger than plaintexts.

Single-object throughput is lower for ForkC, VLinear, and
Ghostor, because maintaining a digest chain requires requests
to be serialized across multiple accesses to persistent storage.
In contrast, Insec, E2EE, and Anon serve requests in parallel,
relying on Ceph’s internal concurrency control.

In the multi-object experiments, in which no two concur-
rent requests operate on the same object, this bottleneck dis-
appears. For small objects, throughput drops in approximately
an inverse pattern to the latency, as expected. For large ob-
jects, however, all systems perform commensurately. This is
likely because reading/writing the object itself dominated the
throughput usage for these experiments, without any concur-
rency overhead at the object level to differentiate the setups.
9.2.2 Yahoo! Cloud Serving Benchmark
In this section, we evaluate our system using the Yahoo! Cloud
Serving Benchmark (YCSB). YCSB provides different work-
loads representative of various use cases, summarized in Ta-
ble 6. We do not use Workload E because it involves range
queries, which Ghostor does not support. As shown in Fig.
9c, anonymity incurs up to a 25% overhead for benchmarks
containing insertions, owing to the additional accesses to
storage required to store used object creation tokens. How-
ever, it shows essentially no overhead for GETs and PUTs. Fork
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consistency adds a 3–4x overhead compared to the Insec base-
line. VerLinear adds essentially no overhead on top of fork
consistency; this is to be expected, because the overhead of
VerLinear is outside of the critical path (except for insertions,
where the overhead is easily amortized). Ghostor, which pro-
vides both anonymity and VerLinear, must forgo client-side
caching, and therefore incurs additional overhead, with a 4–5x
throughput reduction overall compared to the Insec baseline.

9.3 End-to-End Latency
We now analyze the performance of Ghostor from the client’s
perspective, including the cost of proof of work and anony-
mous communication (§3).
9.3.1 Microbenchmarks
The latency experienced by a Ghostor client is the latency
measured in Fig. 8, plus the additional overhead due to the
proof of work mechanism and anonymous communication.
The difficulty of the proof of work problem is adjustable. For
the purpose of evaluation, we set it to a realistic value to
prevent denial of service. Fig. 8b indicates that it takes ≈ 32
ms for a Ghostor operation; therefore, we set the proof of
work difficulty such that it takes the client, on average, 100
times longer to solve (≈ 3.2 s). Fig. 10 shows the distribution
of latency for the client to solve the proof of work problem.
As expected, the distribution appears to be memoryless.

In our implementation, a client connects to a Ghostor server
by establishing a circuit through the Tor [29] network. The
performance of the connection, in terms of both latency and
throughput, varies according to the circuit used. Fig. 10 shows
the distribution of (1) circuit establishment time, (2) round-
trip time, and (3) network bandwidth. We used a fresh Tor
circuit for each measurement. Based on our measurements,
a Tor circuit usually provides a round-trip time less than 1
second and bandwidth of at least 2 Mb/s.
9.3.2 Macrobenchmarks
We now measure the end-to-end latency of each operation
in Ghostor’s client API (§2), including all overheads experi-
enced by the client. As explained in §9.3.1, the overhead due
to proof of work and Tor is quite variable; therefore, we repeat
each experiment 1000 times, using a separate Tor circuit each
time, and report the distribution of latencies for each operation

in Fig. 12. Comparing Fig. 12 to Fig. 8, the client-side latency
is dominated by the cost of PoW and Tor; Ghostor’s core
techniques in Fig. 8 have relatively small latency overhead.
For the pay operation, we measure only the time to redeem a
Zcash payment for a single token, not the time for proof of
work or making the Zcash payment (see §9.4 for a discussion
of this overhead). GET and PUT for large objects are the slow-
est, because Tor network bandwidth becomes a bottleneck.
The create_user operation (not shown in Fig. 12) is only
132 microseconds, because it generates an El Gamal keypair
locally without any interaction with the server.

9.4 Zcash
In our implementation, we build our own Zcash test network
to avoid the expense from Zcash’s main network. Since our
system leverages Zcash in a minimal way, the overhead of
Zcash is not on the critical path of our protocol. According to
the Zcash website [105] and block explorer [2], the block size
limit is about 2 MiB, and block interval is about 2.5 minutes.
In the past six months, the maximum block size has been
less than 150 KiB and the average transaction fee has been
much less than 0.001 ZEC (0.05 USD at the time of writing).
Hence, even with shorter epochs (less time for misbehavior
detection), the price of Ghostor’s checkpoints is modest since
there is a single checkpoint per epoch for the whole system.

9.5 Ghostor-MH
For completeness, we evaluate the theoretical Ghostor-MH
scheme presented in §7.2, focusing only on the latency of
accessing an object. We do not use Tor and we set the PoW
difficulty to minimum. Latency is dominated by en/decryption
on the client, because object contents and ORAM state are
encrypted with El Gamal encryption, which is much slower
than symmetric-key encryption. Fig. 11a shows the object
access latency for an object group, as we vary its size. It scales
logarithmically, as expected from Path ORAM. An additional
overhead of ≈ 2 s comes from re-encrypting ORAM client
state (32 KiB, after padding and encryption) on each access.
Fig. 11b shows the object access latency as we vary the num-
ber of object groups (each object group is 31 KiB). It scales
linearly, because the client makes fake accesses to all other
object groups to hide which one it truly accessed. Latency
could be improved by using multiple client CPU cores.

10 Related Work
Systems Providing Consistency. We have already compared
extensively with SUNDR [64]. Venus [87] achieves even-
tual consistency; however, Venus requires some clients to
be frequently online and is vulnerable to malicious clients.
Caelus [55] has a similar requirement and does not resist col-
lusion of malicious clients and the server. Verena [49] trusts
one of two servers. SPORC [31], which combines fork con-
sistency with operational transformation, allows clients to
recover from a fork attack, but does not resist faulty clients.
Depot [67] can tolerate faulty clients, but achieves a weaker
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notion of consistency than VerLinear. Furthermore, its con-
sistency techniques are at odds with anonymity. Ghostor and
these systems use hash chains [39,68] as a key building block.
Systems Providing E2EE. Many systems provide end-to-
end encryption (E2EE), but leak significant user information
as discussed in §3.3: academic systems such as Persona [8],
DEPSKY [13], CFS [14], SiRiUS [35], Plutus [48], Shad-
owCrypt [41], M-Aegis [60], Mylar [75] and Sieve [99] or
industrial systems such as Crypho [27], Tresorit [46], Key-
base [52], PreVeil [76], Privly [77] and Virtru [98].
Systems Using Trusted Hardware. Some systems, such as
Haven [9] and A-SKY [25], protect against a malicious server
by using trusted hardware. Existing trusted hardware, like
Intel SGX, however, suffer from side-channel attacks [96].
Oblivious Systems. A complementary line of work to Ghos-
tor aims to hide access patterns: which object was accessed.
Standard Oblivious RAM (ORAM) [36, 86, 100] works in the
single-client setting. Multi-client ORAM [7, 40, 50, 65, 66, 80,
90] extends ORAM to support multiple clients. These works
either rely on central trust [80,90] (either a fully trusted proxy
or fully trusted clients) or provide limited functionality (not

providing global object sharing [7], or revealing user identi-
ties [66]). GORAM [65] assumes the adversary controlling
the server does not collude with clients. Furthermore, it only
provides obliviousness within a single data owner’s objects,
not global obliviousness across all data owners.

AnonRAM [7] and PANDA [40] provide global oblivious-
ness and hide user identity, but are slow. They do not provide
for sharing objects or mitigate resource abuse. One can real-
ize these features by applying Ghostor’s techniques to these
schemes, as we did in §7.2 to build Ghostor-MH. Unlike these
schemes, Ghostor-MH is a metadata-hiding object-sharing
scheme providing both global obliviousness and anonymity
without trusted parties or non-collusion assumptions.
Decentralized Storage. Peer-to-peer storage systems, like
OceanStore [56], Pastry [79], CAN [78], and IPFS [12], al-
low users to store objects on globally distributed, untrusted
storage without any coordinating central trusted party. These
systems are vulnerable to rollback/fork attacks on mutable
data by malicious storage nodes (unlike Ghostor’s VerLinear).
While some of them encrypt objects for privacy, they do not
provide a mechanism to distribute secret keys while preserv-
ing anonymity, as Ghostor does. Recent blockchain-based
decentralized storage systems, like Storj [92], Swarm [94],
Filecoin [32], and Sia [88], have similar shortcomings.
Decentralized Trust. As discussed in §1, blockchain sys-
tems [17, 20, 73, 103] and verifiable ledgers [61, 71] can serve
as the source of decentralized trust in Ghostor.

Another line of work aims to provide efficient auditing
mechanisms. EthIKS [15] leverages smart contracts [17] to
monitor key transparency systems [71]. Catena [93] builds
log systems based on Bitcoin transactions, which enables ef-
ficient auditing by low-power clients. It may be possible to
apply techniques from those works to optimize our verifica-
tion procedure in §5.2. However, none of them aim to build
secure data-sharing systems like Ghostor.
Secure Messaging. Secure messaging systems [26, 95, 97]
hide network traffic patterns, but they do not support object
storage/sharing as in our setting. Ghostor can complementar-
ily use them for its anonymous communication network.

11 Conclusion
Ghostor is a data-sharing system that provides anonymity and
verifiable linearizability in a strong threat model that assumes
only decentralized trust.
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A Full Protocol Description for Ghostor
Below, we describe the client-server protocol used by Ghostor.

A.1 GET Protocol
1. Server sends a PoW challenge to the client (§6).
2. Client sends the server the PoW solution, PVK of the object

that the user wishes to access, and the server returns the
object header and current epoch.

3. The client assembles a digest for the GET operation, in-
cluding the epoch number, PVK, RVK, WVK, and a random
nonce, and signs it with RSK (obtained from the header).
It sends the signed digest to the server.

4. Server reads the latest digest and checks that the client’s
candidate digest is consistent with it. If not (for example, if
the header was changed in-between round trips), the server
gives the client the object header, and the protocol returns
to Step 3.

5. Server adds Hashprev, Hashheader, and Hashdata to the di-
gest (according to the order in which it commits operations
on the object). Then it signs it and adds it to the log of
digests for that object.

6. Server returns the object contents and the digest, including
the server’s signature, to the client.

7. Client checks that the signed digest matches the object
contents and digest that the client provided. If so, it returns
the object contents to the user and sends the signed digest
to the verification daemon.

A.2 PUT Protocol
1. Server sends a PoW challenge to the client (§6).
2. Client sends the server the PoW solution and PVK of the

object to PUT, and the server returns the object header, cur-
rent epoch, and latest server-signed digest for that object.

3. The client assembles a PREPARE digest for the write oper-
ation, including the epoch number, PVK, RVK, WVK, and
signs it with WSK (obtained from the header). It sends the
signed digest to the server.

4. Server reads the latest digest and checks that the client’s
candidate digest is consistent with it. If not, then the server
gives the client the object header, and the protocol returns
to Step 3.

5. Server adds Hashprev, Hashheader, and Hashdata to the di-
gest (according to the order in which it commits operations
on the object). Then it signs it and adds it to the log of
digests for that object.

6. Server returns the signed digest to the client.
7. Client assembles a COMMIT digest for the write operation,

including the same fields as the PREPARE digest, and also
Hashprep and Hashdata according to the new data. Then
it signs it and uploads it to the server, including the new
object contents.

8. Server decides if this PUT “wins.” It wins as long as no
other PUT whose PREPARE digest is after this PUT’s PRE-
PARE digest has already committed. If this PUT wins, then
the server performs the write, signs the digest, and adds it
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to the log of digests for that object. If not, it still signs the
digest and adds it to the log, but it replaces Hashdata with
the current hash of the data, including the value provided
by the client as an “addendum” so that the verification
daemon can still verify the client’s signature. The server
may also reject the COMMIT digest if the key list changed
meanwhile due to a set_acl operation.

9. Server returns the digest, including the server’s signature,
to the client.

10. Client checks that the signed digest matches the object
contents and digest that the client provided. If so, it sends
the signed digest to the verification daemon.

A.3 Access Control
1. Server sends a PoW challenge to the client (§6).
2. Client sends the server the PoW solution and PVK of the

object to write, and the server returns the object header,
current epoch, and latest server-signed digest for that ob-
ject.

3. The client assembles a digest for the write operation, in-
cluding all fields, and signs it with PSK. It sends the signed
digest to the server. Client also signs PVK with PSK and
includes that signature in the request. Client also includes
the new header.

4. Server acquires a lock (lease) on the object for this client
(unless it is already held for this client), reads the latest
digest, and checks that the client’s candidate digest is con-
sistent with it. If not, then the server gives the client the
object header, and the protocol returns to Step 3. When re-
turning to Step 3, the server checks if the client’s signature
over PVK is correct. If so, the server holds the lock on the
object during the round trip. If not, the server releases it.

5. Server updates the header, signs the digest, adds it to the
log of digests for that object, and releases the lock.

6. Server returns the digest, including the server’s signature,
to the client.

7. Client checks that the signed digest matches the object
contents and digest that the client provided. If so, it returns
the object contents to the user and sends the signed digest
to the verification daemon.

The owner of the object generates new keys and encrypts the
object under the new key. If a user is being granted access,
the owner may still generate new keys to prevent the server
from learning whether or not a user was revoked. The owner
shuffles the key list upon any change to it. The owner may
also add padding to hide the number of users in the key list.

A.4 Object Creation
1. Server sends a PoW challenge to the client (§6)
2. Client sends the server the PoW, PVK of the object that

the user wishes to create, a token signed by the server
for proof of payment (§2), the header for the new object,
and the object’s first digest (for which Hashprev is empty).
This involves generating all the keys in Fig. 4) for the new
object.

3. Server verifies the signature on the token, and checks that
it has not been used before.

4. Server “remembers” the hash of the token by storing it in
permanent storage.

5. Server writes the object header. It signs the digest and
creates a log for this object containing only that digest.

6. Server returns the digest, including the server’s signature,
to the client.

7. Client checks that the signed digest matches the object
contents and digest that the client provided. If so, it returns
the object contents to the user and sends the signed digest
to the verification daemon.

A.5 Verification Procedure
At the end of each epoch, the verification daemon downloads
the digest chain and checkpoints to verify operations per-
formed in the epoch.
1. Server sends a PoW challenge to the daemon (§6). (The

server will request additional PoWs for long lists of digests
as it streams them to the daemon in Step 3.)

2. Daemon responds with PoW and requests the object’s
digest chain from the server for that epoch. It sends the
server a signed digest for that object, so the server knows
this is a legitimate request.

3. Server returns the digest chain for that object, along with
a Merkle proof.

4. Daemon retrieves the Merkle root from the checkpoint in
Zcash, and verifies the server’s Merkle proof to check that
the last digest in the digest chain is included in the Merkle
tree at the correct position based on the object’s PVK.

5. Daemon verifies that all digests corresponding to the user’s
operations are in the digest chain, and that the diges chain
is valid.

To check that the digest chain is valid, the daemon checks:
1. Hashprev for each digest matches the previous digest. If

this digest is the first digest in this epoch, the previous
digest is the last digest in the previous epoch. The daemon
knows this previous digest already since the daemon must
have checked the previous epoch. If this is the first epoch,
then Hashprev should be empty.

2. Hashprep in each COMMIT digests matches an earlier PRE-
PARE digest in the same epoch, and each PREPARE digest
matches with at most one COMMIT digest.

3. Hashdata only changes in winning COMMIT digests, which
are signed with WSK.

4. WVK, RVK, and Hashkeylist only change in digests signed
with PSK, and PVK never changes.

5. The epoch number in digests matches the epoch that the
client requested, and never decreases from one digest to
the next.

6. Sigclient is valid and signed using the correct signing key.
For example, if this operation is read, Sigclient must be
signed using RSK.
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A.6 Payment
First, the user pays the server using an anonymous cryptocur-
rency such as Zcash [105], and obtains a proof of payment
from Zcash. Then, the client obtains tokens from the server,
as follows:

1. Server sends a PoW challenge to the client (§6).
2. Client sends the server the PoW, proof of payment, and t

blinded tokens, where t corresponds to the amount paid.
3. Server checks that the proof of payment is valid and has

not been used before.
4. Server “remembers” the proof of payment by storing it in

persistent storage.
5. Server signs the blinded tokens, ensuring that t indeed cor-

responds to the amount paid, and sends the signed blinded
tokens to the client.

6. Client unblinds the signed tokens and saves them for later
use.

B Extension: Scalability
Our implementation of Ghostor that we evaluated in §9 con-
sists of a single Ghostor server, which stores data in a storage
cluster that is internally replicated and fault-tolerant (Ceph
RADOS). In this appendix, we discuss techniques to scale
this setup by replicating the Ghostor server as well.

Given that we consider a malicious adversary, it may seem
natural to use PBFT [20]. PBFT, however, is neither necessary
nor sufficient in Ghostor’s setting. It is not necessary because
we already post checkpoints to a ledger based on decentralized
trust (§5.2) to achieve verifiable integrity. It is not sufficient
because we assume an adversary who can compromise any
few machines across which we replicate Ghostor, which is
incompatible with Byzantine Fault Tolerance.

The primary challenge to replicating the Ghostor server is
synchronization: if multiple operations on the same object
may be handled by different servers, the servers may con-
currently mutate the on-disk data structure for that object. A
simple solution is to use object-level locks provided by Ceph
RADOS. This is probably sufficient for most uses. But, if
server-side caching of objects in memory is implemented,
caches in the Ghostor servers would have to be kept coherent.

Alternatively, one could partition the object space among
the servers, so each object has a single server responsible for
processing operations on it. A set of load balancer servers
run Paxos [58, 59] to arrive at a consensus on which servers
are up and running, so that requests meant for one server can
be re-routed to another if it goes down. Note that Paxos is
outside of the critical path; it only reacts to failures, not to
individual operations. Based on the consensus, the load bal-
ancers determine which server is responsible for each object.
Because all objects are stored in the same storage pool, the
objects themselves do not need to be moved when Ghostor
servers are added or removed, only when storage servers are
added or removed (which is handled by Ceph). Object-level

locks in Ceph RADOS would still be useful to enforce that at
most one server is operating on a Ghostor object at a time.

C Extension: Files and Directories
Our design of Ghostor can be extended to support a hierarchy
of directories and files. Each directory or file corresponds to a
PVK and associated Ghostor object; the PVK has a similar role
to an inode number in a traditional file system. The Ghostor
object corresponding to a directory contains a mapping from
name to PVK as a list of directory entries. Given the PVK of
a root directory and a filepath, a client iteratively finds the
PVK of each directory from left to right; in the end, it will
have the PVK of the file, allowing it to access the Ghostor
object corresponding to a file. The procedure is analogous to
resolving a filepath to an inode number in a traditional file
system. The Ghostor object corresponding to a file may either
contain the file contents directly, or it may contain the PVKs
of other objects containing the file data, like an inode in a
traditional file system.

The “no user-side caching” principle §4 applies here, in
the sense that clients may not cache the PVK of a file after
resolving it once. A client must re-resolve a file’s PVK on each
access; caching the PVK and accessing the file without first
accessing all parent directories would reveal that the same
user has accessed the file before.

D Additional Description of Ghostor-MH
§7.2 explains Ghostor-MH at a high level. §8 and §9 describe
our implementation and evaluation of Ghostor-MH.

Appendix D.2 below provides a more in-depth explana-
tion of Ghostor-MH. We first provide more details about
AnonRAM in Appendix D.1. This is necessary because, as
explained in §7.2, we construct Ghostor-MH by applying
Ghostor’s techniques to AnonRAM [7].

D.1 Overview of AnonRAM
ORAM [36] is a technique to access objects on a remote
server without revealing which objects are accessed. Many
ORAM schemes, such as Path ORAM [91], allow a single
user to access data. Path ORAM [91] works by having the
client shuffle a small amount of server-side data with each
access, such that the server cannot link requests to the same
object. Clients store mutable secret state, including a stash
and position map, used to find objects after shuffling.

AnonRAM extends single-user ORAM to support multiple
users. Each AnonRAM user essentially has her own ORAM
on the server. When a user accesses an object, she (1) per-
forms the access as normal in her own ORAM, and (2) per-
forms a fake access to all of the other users’ ORAMs. To
the server, the fake accesses are indistinguishable from gen-
uine accesses, so the server does not learn to which ORAM
the user’s object belongs. This, together with each individual
ORAM hiding which of its objects was accessed, results in
global obliviousness across all objects in all ORAMs.

To support fake accesses, re-randomizable public-key en-
cryption (e.g., El Gamal) is used to encrypt objects in each
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ORAM. To guard against malicious clients, the server requires
a zero-knowledge proof with each real or fake access, to prove
that either (1) the client knows the secret key for the ORAM,
or (2) the new ciphertexts encrypt the same data as existing
ciphertexts (i.e., they were re-randomized correctly).

A limitation of AnonRAM is that there is no object sharing
among users; each user can access only the objects she owns.
Furthermore, AnonRAM and similar schemes (§10) are theo-
retical—they consider oblivious storage from a cryptographic
standpoint, but do not consider challenges like payment, user
accounts, and resource abuse.

D.2 Ghostor-MH
Recall from §7.2 that we apply to AnonRAM Ghostor’s prin-
ciple of switching from a user-centric to a data-centric design.
Each ORAM now corresponds to an object group, which is
a fixed-size set of objects with a shared ACL. Each object
group has one object header and one digest chain.

Ghostor-MH uses Path ORAM, which organizes server-
side storage as a binary tree. To guard against a malicious
adversary controlling the server, we build a Merkle tree over
the binary tree, and compute Hashdata in each digest as the
hash of the Merkle root and ORAM secret state. This allows
each client to efficiently compute the new Hashdata after each
ORAM access, without downloading the entire ORAM tree.
The ORAM secret state is stored on the server, encrypted with
OSK, so multiple clients can access an object group. This is
analogous to Ghostor’s object header, which stores an object’s
keys encrypted on the server.

To access an object, a client (1) identifies the object group
containing it, (2) downloads the object header and encrypted
ORAM secret state, (3) obtains OSK from the object header,
(4) decrypts the ORAM secret state, (5) uses it to perform
the ORAM access, (6) encrypts and uploads the new ORAM
secret state, (7) computes a new digest for the operation, (8)
has the server sign it, and (9) sends it to the verification dae-
mon. For all other object groups, the client performs a fake
access that fetches data from the server and generates a digest,
but only re-randomizes ciphertexts instead of performing a
real access. This hides which object group contains the object.
When writing an object, the client pads it to a maximum size
(the ORAM block size) to hide the length of the object.

Below, we explain some more details about Ghostor-MH:
Fake accesses. OSK is replaced with an El Gamal keypair.
This allows ciphertexts in the ORAM tree and the ORAM se-
cret state to be re-randomized. We no longer attach a client sig-
nature to each digest, but instead modify the zero-knowledge
proof in AnonRAM to prove that either the client can produce
a signature over the digest with WSK, or the ciphertexts were
properly re-randomized.
Hiding timing. Similar to secure messaging systems [97],
Ghostor-MH operates in rounds (shorter than epochs) to hide
timing. In each round, each client either accesses an object
as described above, or performs a fake access on all ORAMs

if there is no pending object access. Each client chooses a
random time during the round to make its request to the server.
Using tokens. In a globally oblivious system like Ghostor-
MH, it is impossible to enforce the per-object quotas discussed
in §6.3. Thus, it is advisable to require users to expend tokens
for all operations (except pay), not just create_object. Our
PoW mechanism applies to Ghostor-MH unchanged.
Object group creation. The server can distinguish payment
(to obtain tokens) and object group creation from GET/PUT
operations. The most secure solution is to have a setup phase
to create all object groups and perform all payment in advance.
Barring this, we propose adding a special round at the start
of each epoch, used only for creation and payment; all object
accesses during an epoch happen after this special round.
List of object groups. To make fake accesses, each client
must know the full list of object groups. To ensure this, we
can add an additional digest chain to keep track of all created
object groups, checkpointed every epoch with the rest of the
system.
Changing permissions. In our solution so far, the server can
distinguish a set_acl operation from object accesses. To fix
this, we require the owner of each object group to perform
exactly one set_acl for that object group during each epoch;
if he does not wish to change it, he sets it to the same value.
Concurrency. When a client iterates over all ORAMs to
make accesses (fake or real), the client locks each ORAM
individually and releases it after the access. No “global lock”
is held while a client makes fake accesses to all ORAMs.

E Ghostor’s Privacy Guarantee
In this appendix, we use the simulation paradigm of Secure
Multi-Party Computation (SMPC) [19] to define Ghostor’s
privacy guarantee. We begin in Appendix E.1 by providing
an overview of our definition and proof sketch, along with an
explanation of how our simulation-based definition matches
the one in §3.3.

E.1 Overview
We formally define Ghostor’s anonymity by specifying an
ideal world. We provided a definition in §3.3, but we consider
it to be informal because it does not clearly state what the
adversary learns if some users are compromised/malicious.
The ideal world is specified such that it is easy to reason
about what information the adversary learns; what the ad-
versary learns in the ideal world is our definition of what an
anonymous object sharing system leaks to an adversary (i.e.,
what anonymity does not hide). In the ideal world, clients
interact with an uncorruptible trusted party F called an ideal
functionality. On each API call issued by a client, F services
the request and provides to the adversary (denoted S in the
ideal world) a well-defined subset of information in the API
call. The subset of information that F gives to S defines what
information Ghostor leaks to the adversary, and provides a
clear definition of what anonymity means in our setting. To
allow for a malicious adversary, S chooses what response is
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returned to the client. S may violate integrity in a way that
the client will only detect at the end of the epoch (e.g., fork
attack), but cannot deny service by returning a message that
the client would immediately detect as fake (e.g., a message
with a bad or missing signature).

To prove that Ghostor achieves that definition of anonymity,
we additionally define a real world. The purpose of the real
world is to model the Ghostor system in the abstract environ-
ment we used for the ideal world. In the real world, clients
interact directly with the adversary (denoted A in the real
world), which services the requests and learns some informa-
tion. The protocol that clients use to interact with A is the
same as that used in the actual Ghostor system.

In both worlds, there is another party Z called the envi-
ronment. The environment can communicate freely with the
adversary and decides what operations the clients issue.

E.1.1 Summary of Proof Sketch
To prove that Ghostor achieves our definition of anonymity
as specified in the ideal world, we demonstrate that for ev-
ery real-world adversary A in the real world, there exists an
ideal-world adversary S in the ideal world such that the envi-
ronment Z cannot distinguish whether it is interacting with
the real world or the ideal world. Intuitively, this means that
any “attack” that the real-world adversary A can perform in
the real world, can also be performed by the ideal-world S
in the ideal world. Because the ideal-world setup is, by def-
inition, anonymous, this shows that any attacks that A can
perform are those allowed by anonymity, which implies that
the real-world setup achieves anonymity.

Given a real-world adversary A, we construct the corre-
sponding ideal-world adversary S via a simulation. This
means that S uses A as a black box by carefully simulat-
ing a “real world” that runs in tandem with the ideal world.

E.1.2 Map to Definition of Anonymity in §3.3
In §3.3, we explained Ghostor’s privacy guarantee in terms
of a leakage function. Anonymity, as defined by our ideal
world below, maps to the leakage function given in §3.3 as
follows. The leakage function in §3.3 is largely the same as
the information that F gives to S on each API call (Appendix
E.2.2). There are a few minor differences, which we now
explain. Timing information is not included in Appendix E.2.2
because the model we use in our cryptographic formalization
does not have a notion of time. That said, the order in which
the requests are processed is given to S; it is implicit in the
order in which F sends messages to it. Finally, although not
explicit in Appendix E.2.2, S can infer how many round trips
are performed between the client and server in processing
each operation: as long as there is no client-side caching of
data (§4.4), the adversary can infer how many round trips
are required from the client-server protocol (Appendix A),
because we do not model concurrently executing operations.
We consider the protocol to be public, so this does not reveal
any meaningful information.

Our definition of anonymity matches the everyday use of
the word “anonymity” because S does not receive any user-
specific information for operations issued by honest users
on objects that no compromised user is authorized to access.
Furthermore, S does not see the membership of the system
(public keys of users) or even know how many users exist in
the system, apart from corrupt/maliicous users.
E.1.3 Limitations of our Formalization
Although our cryptographic formalization is useful to prove
Ghostor’s anonymity, there are some aspects of Ghostor that
it does not model. First, we do not directly model the anony-
mous payment (e.g., Zcash) aspect of Ghostor. Instead, we as-
sume the existence of an ideal functionality for Zcash, FZcash,
that can be queried to validate payment (i.e., learn how much
was paid and when). Second, we do not directly model net-
work information (e.g., IP addresses) leaked to the server
when clients connect, because this is hidden by the use of an
anonymity network like Tor (§8). Third, whereas the Ghostor
system allows operations to be processed concurrently (i.e.,
round trips of different operations may be interleaved), our
formalization assumes that the Ghostor server processes each
operation one at a time. Fourth, we do not fully model Ghos-
tor’s integrity mechanisms, such as the return value of obtai
n_digests.

Users may also be malicious (i.e., controlled by the adver-
sary). In our formalization, the adversary may compromise
users, but we restrict the adversary to doing so statically. This
means that the adversary compromises users at the time of
their creation. The environment Z may choose to give the
adversary control over certain users and clients to try and
distinguish the ideal world from the real world.

E.2 Ideal World
We define an ideal functionality for an anonymous object
sharing system in the simulation paradigm, which captures
Ghostor’s privacy guarantee. Our notation and setup are as
follows. The environment Z interacts with the party P repre-
senting a Ghostor client, which simply relay messages to the
ideal functionality F . The ideal-world adversary S interacts
with F .
E.2.1 Execution in the Ideal World
Control begins with the environmentZ . The environment may
request P to initiate an operation provided by Ghostor’s Client
API: GET, PUT, set_acl, create_user, obtain_token, or
obtain_digests. This is done via Initiate and New_User
messages. In the ideal world, the P is a dummy party, which
forwards these Initiate and New_User messages to F .

We model create_object as a special case of set_acl.
We find this convenient because both create_object and
set_acl set the object’s header. Furthermore, our implemen-
tation (§8) uses the same RPC call to handle both.

To perform certain operations (e.g., GET, PUT, set_acl,
etc.), a user keypair is necessary. This user keypair can be
used for asymmetric encryption/decryption with a key-private

870    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



encryption scheme, and is used in order to obtain the object’s
signing key from the object header. To formalize this, we draw
a distinction between users and clients. Users have keypairs
and are represented in the ideal world with IDs; in contrast, the
client is P. Each Initiate message contains the user_ID of the
user on whose behalf the operation will be performed. That
there is only client that will actually perform the operation
informally captures the guarantee given by the anonymity
network, that the server cannot tell apart different Ghostor
clients on the basis of network information.

In summary, each Initiate message contains:
• user_ID specifying which user’s keypair to use for this

request
• opcode, which can be one of GET, PUT, set_acl,
create_user, obtain_token, or obtain_digests

• new_contents if opcode= PUT or opcode= set_acl
• new_header if opcode= set_acl
• payment_ID (forwarded to FZcash) if opcode =
obtain_token

• object_ID specifying the object on which this request op-
erates

• Payment token to fund the operation (if applicable)
No information related to proof of work is included because
S will be able to simulate it without any external informa-
tion. Upon receiving an Initiate message, F reveals some
information to S, described in Appendix E.2.2.

As mentioned earlier, we allow users to be corrupted, but
require corruption to be static: users are corrupted at the time
they are created. This is handled by the New_User message,
which contains:
• inform, a bit indicating if the adversary is aware of this user
• compromise, a bit indicating if this user is corrupted or not
Upon receiving a New_User message, F generates a random
user_ID, and keeps track of whether the user is compromised.
If the inform bit is set, then the user_ID is given to the adver-
sary S so that malicious users may add this user to ACLs. If
the user is compromised, then F uses this information to give
more information to S when processing requests (see Ap-
pendix E.2.2). In each PUT operation, F generates a fresh ID,
denoted content_ID, to represent the contents being written
to that object. We refer to this mapping from PUT operation
to content_ID as the content table.
E.2.2 Information that F gives to S
Each Initiate message that the dummy party P sends to F
represents an API call (§2) to the server. Given each API call,
F processes the request and reveals some information to S.
First, F checks if the user issuing the request is malicious
or not. If the user is malicious, then F reveals to S all in-
formation about the request, including which user makes the
request and all arguments to the request. If the user issuing
the request is honest, then F reveals to S the opcode and the
following information:
• For create_user, the user_ID is given to S if either the

inform or compromise bits are set. Otherwise, nothing is

given to S.
• For GET, F gives S only the object_ID of the object being

accessed. S gives back to F the content_ID of the content
to be returned, or ⊥ if the operation fails or is aborted by
S.

• For PUT, F gives S only the object_ID of the object be-
ing accessed, and the content_ID and length of the object
contents being written. However, if a malicious user has
ever been on the ACL of the object, the object contents are
given to S in cleartext.

• For set_acl,F scans the ACL being set, identifying which
users are malicious. For each honest user in the ACL, F re-
places the corresponding rows of the ACL with NULL. As
object is being re-encrypted,F either gives S a content_ID
and length, or the cleartext contents, depending on whether
a malicious user has ever been on the ACL of the object.

• For obtain_token, F reveals to S the payment_ID. S
responds with tokens that can be redeemed with future
operations. F returns integers back to the party, which can
be used as payment tokens in future Initiate messages to
pay for operations. F keeps track of which of these tokens
are spent, based on feedback from S indicating for which
operations the payment was accepted.

• For obtain_digests, F reveals to S the epoch number
and object_ID for which digests are to be obtained.

Additionally, F checks that the payment token provided in
the Initiate message is valid, and reveals to S a single bit
indicating whether a valid token was provided.

We have not yet specified what F returns to P. In order to
allow the adversary to make arbitrary integrity violations dur-
ing an epoch, the return value must originate from S . For GET,
S returns the content_ID for the returned content; F trans-
lates it back into actual content and gives it to the party P who
requested it. For obtain_token, F forwards the response
from S back to P. For operations involving token payment, S
gives F a bit indicating whether the payment was accepted,
which is forwarded to the original party P. For operations
performed by a malicious user, P gives Z the result of the
operation.

At any time, S can send FZcash a payment_ID. If it does
so, it will receive from FZcash a response message indicating
if the payment to the server is valid, and if so, and how much
was paid and when.

E.3 Real World
The real world models Ghostor’s execution. We will prove
that our model of Ghostor in the real world reveals essentially
the same information to the adversary as is revealed to the
adversary in the ideal world.

The real world has the following key differences from the
ideal world, in order to properly model Ghostor’s execution:
• The party P handles Initiate messages from Z , instead of

simply forwarding them to F .
• The party P sends Request messages to A and receive

Response messages from A (instead of F).
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• The party P encrypts object headers and object contents,
and A receives the ciphertexts, according to the Ghostor
protocol.
Upon receiving an Initiate message fromZ , the P performs

the operation specified in the Initiate message by interact-
ing with A according to the Ghostor protocol (Appendix A).
We do not specify the protocol in additional detail here be-
cause it is already specified in Appendix A. Upon receiving
a New_User message, P creates a keypair (pk,sk) and gen-
erates a user_ID for the new user and stores them locally. If
the compromise bit is set, it shares the secret key with A,
and if either the inform or compromise bits are set, then it in-
forms A of the user_ID and public key. As in the ideal world,
malicious users’ results are given to Z .

For obtain_token, recall that we model Zcash as an ideal
functionality FZcash, which allows the adversary to validate a
payment transaction via Zcash and learn how much was paid
and when. Although A may follow the protocol in Appendix
A at times, it is not obligated to; it may violate the protocol
in ways that are not immediately detectable to the clients. Z
can also create users via New_User messages, which are han-
dled locally by P. They generate the corresponding keypair
and locally store which user_ID maps to that keypair. If the
New_User message has the inform bit set, then the user_ID
and pk for that user are given to A; if the compromise bit is
set, then A is also given sk for that user.

E.4 Simulator
We now describe a simulator S that, given any real-world
adversary A, performs the same attack in the ideal world as
A does in the real world, by invoking A as a black box. Note
that S , by the design of F , is not given any user identities, yet
needs to interact with A as some user. The key idea is that S
simply creates a single “dummy” user keypair, and performs
all interaction with A on behalf of honest users as that one
user. The design of Ghostor is such that the server cannot
distinguish this from a separate keypair being consistently
used for each honest user.
S works by simulating a real world in which A exists as a

black box. Recall that the real world consists of the parties P,
Z , and A; for clarity, we use Q to refer to P in this simulated
real world, to distinguish it from P in the ideal world.
E.4.1 State Maintained by S
S maintains a pool of tokens to use. Successful calls to obtai
n_token contribute to this token pool, S stores tokens in this
pool. For operations that require payment, F does not tell S
which particular tokens to use, so S chooses tokens randomly
from the pool.
S also maintains a ciphertext table. In the messages re-

ceived, certain encryptable pieces of data (e.g., content_IDs)
correspond to encrypted data in the actual Ghostor. To ac-
count for this, the ciphertext table maps each encryptable
datum received by S to a fake ciphertext.
• The fake ciphertext corresponding to object contents is

an encryption of a “zero string” of the same length as the

object contents. The key used to encrypt the zero string
is the same as the key normally used to encrypt object
contents.2

• The fake ciphertext corresponding to a NULL entry in the
object header is an encryption of a “zero string” of the
same length as the plaintext object header entry, using the
dummy user keypair.

E.4.2 Overview
Now, we explain how S interacts with A upon receiving in-
formation from F . When F asks S to start an operation, it
interacts with A over multiple round trips according to the
Ghostor protocol via the simulated party, making sure to blind
the request messages appropriately by replacing ciphertexts
with fake ciphertexts. All object header entries correspond-
ing to non-corrupt users are blinded; entries are created for
them in the ciphertext table. The decision of whether to blind
the object contents depends on whether a corrupt user has
permission to read the object. Note that F has already de-
termined this by the time it has sent the message to S, and
has NULLed object header entries for non-corrupt users and
replaced data for each object not shared with corrupt users
with an ID from its contents table. Therefore, S simply needs
to create fake ciphertexts for object data that correspond to
IDs in F’s content table and for NULLed object header en-
tries. Any object contents or object header entries that are
not blinded are encrypted exactly as in the normal Ghostor
system; S then forwards the ciphertexts to A.

E.4.3 Simulator Functionality
Now, we describe the simulator more precisely. For operations
that require payment, S verifies that the message it received
from F indicates that a valid token were paid. Then it chooses
a token randomly from its store, unblinds it, and uses it when
interacting with A. If the operation is successful, it marks the
token as “used” so it is not chosen for a later operation.
create_user. Suppose S receives a message from F with
a create_user opcode. If the compromise bit is set, then
S generates a keypair (pk,sk) for this user and stores the
mapping from the provided user_ID to this keypair. If the
inform bit or compromise bit is set, thenA is informed of this
user_ID, as if Q received a New_User message.
set_acl. Suppose S receives a message from F with a
set_acl opcode. S has the party Q perform a set_acl oper-
ation.
• If this operation creates the object, then S generates the

keypairs for the object, and creates the encrypted key list for
the object. S constructs each entry of the key list correctly
in plaintext, and then encrypts each one as follows. If the
entry corresponds to a malicious user, then it encrypts the
entry using that user’s public key. If the entry corresponds
to an honest user, then it creates a fake ciphertext (encryp-
tion of zero string of the same length) using the honest

2S has access to this key because it executed set_acl for this object in
the past.
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keypair shared by all honest users and adds the mapping in
the ciphertext table. Then it completes the operation using
the resulting encrypted keylist.

• If this operation operates on an existing object, then S per-
forms the operation using PSK (with a check if the owner is
malicious). If the message from F includes a content_ID
and length, then S has the same operation include a fake
ciphertext for the re-encrypted object contents; otherwise
if F includes the contents, then S encrypts it to produce
the new data ciphertext. In both cases, the key to encrypt
the object data is updated with a fresh one.

PUT. Suppose S receives a message from F with a PUT op-
code. There are three cases:
• Suppose the PUT was performed by an honest user, and no

malicious users have ever been on the ACL. S receives the
ID of the object and the length of the contents being written.
In the simulation, S has Q perform a PUT operation, using
WSK. S uses a fake ciphertext (encrypted string of zeros of
the correct length) and adds a mapping from the provided
content_ID to the fake ciphertext in the ciphertext table.

• Suppose the PUT was performed by an honest user, but mali-
cious users have been on the ACL of the object. S receives
the ID of the object and the object contents. Then S en-
crypts the object contents and uses the resulting ciphertext
instead of using a fake ciphertext, and has Q interact with
A to write the fake ciphertext to the specified object.

• Suppose the PUT was performed by a malicious user. Then
S has Q perform the operation using the information in the
Initiate message, without using any fake ciphertexts.

GET. Suppose that S receives a message from F with a GET
opcode. There are two cases:
• Suppose the GET was performed by an honest user. In this

case, S gets the object_ID of the object being accessed.
Then S has Q perform the GET operation using RSK. The
ciphertext returned byA is translated back to a content_ID
based on the ciphertext table (or decrypted if it is not a fake
ciphertext), and given back to F .

• Suppose the GET was performed by a malicious user. In
this case, S gets the entire Initiate message used to initiate
this operation. Then S has Q perform the GET operation
using the keypair for that malicious user. The ciphertext
returned by A is translated back to a content_ID based
on the ciphertext table (or decrypted if it is not a fake
ciphertext), and given back to F .

obtain_token. Suppose that S receives a message from
F with an obtain_token opcode. The message contains the
payment_ID, which is forwarded to A. The tokens produced
by A are then collected by S. S keeps the tokens from A in
its global pool of tokens. Then S forwards identifiers for the
tokens back to F as the return value. If A attempts to send a
message to FZcash (as part of obtain_token or at any other
time), then S sends the message to FZcash in the ideal world,
and gives the response to A in simulation.
obtain_digests. Suppose that S receives a message

from F with an obtain_digests opcode. The message is
forwarded to A.

Notably, this model does not include the payment phase
in which the client initiates a Zcash transaction to transfer
funds. Instead, we model Zcash as a trusted party, which
the adversary cannot control. This ensures that the server
learns nothing during the payment phase in the actual protocol.
Formally, we define an ideal Zcash functionalityFZcash, which
the adversary can use to check if a Zcash transaction ID is
valid. FZcash reveals only the time of the transaction and the
amount paid. Modeling Zcash (i.e., providing a real-world
setup that realizes FZcash) is out of scope for this work.

E.5 Proof Sketch
We are now ready to define Ghostor’s anonymity. We denote
the security parameter as κ throughout this paper.

Theorem 1 (Privacy in Ghostor). Suppose that in Ghostor,
the data encryption scheme is CCA2-secure, the ACL encryp-
tion scheme is CPA-secure, the ACL encryption scheme is
key-private, payment tokens are blind, and FZcash is an ideal
functionality for Zcash. For every non-uniform probabilistic
polynomial-time real-world adversary A, there exists a non-
uniform probabilistic polynomial-time ideal-world adversary
S such that for every non-uniform probabilistic polynomial-
time environment Z , Z cannot distinguish the real world with
adversary A from the ideal world with adversary S.

Proof. We shall demonstrate that for every real-world ad-
versary A, there exists an ideal-world adversary (simula-
tor) S such that there exists no environment Z probabilistic
polynomial-time in κ that can distinguish between interact-
ing with the real world and interacting with the ideal world.
Specifically, for an arbitrary real-world adversary A, we con-
struct an ideal-world adversary S that uses A as a black box
to perform the same attack in the ideal world as A performs
in the real world. S simulates an environment that is compu-
tationally indistinguishable from the real world, meaning that
A will behave the same way in simulation with at most a neg-
ligible difference in probability. We take S as the simulator
described in Appendix E.4.

There are two things to prove:
1. From A’s perspective, the simulated world provided by S

is computationally indistinguishable from the real world.
2. From Z’s perspective, the real world with adversary A

is computationally indistinguishable from the ideal world
with adversary S .

To show that these statements are true, we consider a sequence
of seven hybrid setups. Although the two statements above
are in principle separate, we use the same sequence of hybrids
to prove both of them. Note thatH0 is equivalent to the real-
world setup, andH6 is equivalent to the simulated setup. In
a true hybrid argument, only one operation can be modified
at a time; our hybrids in the proof sketch below should be
interpreted as key stages.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    873



HybridH0. This is exactly the real-world setup in Appendix
E.3.
Hybrid H1. This is the same as H0, except that we replace
A with S. S, in this hybrid, maintains a simulated party Q
corresponding to P, and internal to S , these simulated parties
interact with A. P interacts with S; when S receives a mes-
sage from P, it forwards it to A via Q, and when A sends a
message to one of S’s simulated parties Q, it forwards it to P.
Similarly, when A sends a message to FZcash, S forwards the
message to FZcash, obtains the response, and forwards it to A,
as if A communicated with FZcash directly.
S acts simply as a relay, shuttling data back and forth be-

tween P and Q and between A and FZcash. In particular, the
messages observed byA andZ are exactly the same as before.
Therefore, neither A nor Z can distinguishH0 fromH1.
Hybrid H2. This is the same as H1, except that we now
introduce the ideal functionality F . F , in this hybrid, just
relays messages back and forth between the real-world party
P and the simulator S.

Here, the newly introduced F acts as another intermediate
relay. Again, the messages observed by A and Z are dis-
tributed exactly the same as before. Therefore, neither A nor
Z can distinguishH1 fromH2.
Hybrid H3. We change P to a dummy party as in the ideal
world. Instead, S handles participating in the protocol as the
honest clients, including PoW. The requests for operations
are forwarded by the party P to F .

Although S now uses its dummy user keypair to interact
with the server, the encryption is key-private; the server cannot
distinguish an ACL entry encrypted under a user’s key from
the same ACL entry encrypted with S’s dummy user key.
Therefore, neither Z nor A can distinguishH2 fromH3.
Hybrid H4. This is the same as H3, except that F replaces
ACL entries of honest users with NULL; S replaces NULL
entries with encryptions of zero under the dummy key, for the
ACLs of the real-world protocol.

The semantic security of the encryption scheme used for
ACLs guarantees that, to the adversary, an encryption of zero
is indistinguishable from the actual encrypted ACL entry.
Therefore, neither Z nor A can distinguishH3 fromH4.
Hybrid H5. This is the same as H4, except that F also re-
places object contents with IDs in its content table, and S in
turn replaces these IDs with fake ciphertexts in its ciphertext
table. In particular, if all users in an object’s ACL are honest,
then F and S , together, replace the contents of the object with
an encryption of the zero message of the same length, using
the same key normally used to encrypt the object contents.

The semantic security of the encryption scheme used to
encrypt object contents guarantees that A cannot distinguish
between the fake ciphertext and the actual ciphertext. Further-
more, because the plaintext is returned as the result of the
operation, we need to be sure thatA cannot create a new valid
ciphertext with a different plaintext distribution. Fortunately,
the fact that we use CCA2-secure authenticated encryption

guarantees this; the adversary cannot create a new cipher-
text based on the fake one. Therefore, neither A nor Z can
distinguishH4 fromH5.
HybridH6. This is the same asH5, except that S keeps track
of a pool of tokens, S gives F identifiers for the tokens, and
F gives S a bit indicating if a valid token was used instead of
specifying which token was used.

The blindness property of the blind signature scheme means
that, to the server, different payment tokens, after being un-
blinded, are indistinguishable from each other. To the envi-
ronment Z , the interface is exactly the same and tokens are
expended exactly as before. Therefore, neither A nor Z can
distinguishH5 fromH6.

F Ghostor’s Integrity Guarantee
In this appendix, we state the integrity guarantee provided by
Ghostor.

F.1 Linearizability
Before we formalize Ghostor’s VerLinear guarantee, we de-
fine linearizability as a consistency property. Linearizability
is well-studied in the systems literature [34,42], and providing
a comprehensive survey of this literature and a fully general
definition is out of scope for this paper. Here, we aim to define
linearizability in the context of Ghostor, to help frame our
contributions.

Definition 1 (Linearizability). Let F be a set of objects stored
on a Ghostor server, and let U be a set of users who issue read
and write operations on those objects. The server’s execution
of those operations is linearizable if there exists a linear or-
dering L of those operations on F, such that the following two
conditions hold.
1. The result of each operation must be the same as if all

operations were executed one after the other according to
the linear ordering L.

2. For every two operations A and B where B was dispatched
after A returned, it must hold that B comes after A in the
linear ordering L.

In Ghostor, an object’s digest chain implies a linear or-
dering L of GET and PUT operations, as follows.
Linear ordering L implied by a digest chain. The linear
ordering L to which the server commits is based on the digest
chain as follows. First, we assign a sequence number to write
operations according to the order of their PREPARE digests in
the digest chain. Next, we bind each operation to a digest in
the digest chain as follows:
• Each read is bound to the digest representing that read.
• A write with sequence number i is bound to the first COM-

MIT digest whose sequence number is at least i. This is
either the COMMIT digest for this write, or the COM-
MIT digest for a concurrent write that wins over this
one based on the conflict resolution policy in §5.4.
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Assuming the digest chain is well-formed (all cases except
Case 1 below), each write will be bound to a COMMIT digest
that is after its PREPARE digest and before or at its COMMIT
digest. Finally, we generate the linear ordering as follows:
• If two operations are bound to different digests, then they

appear in L in the same order as the digests appear in the
digest chain.

• If two writes are bound to the same digest, then they are
ordered in L according to their sequence numbers.

For example, suppose the digest chain contains
(R1,P1,R2,P2,R3,C2,R4,P3,R5,C1,R6,C3,R7,P4,R8,C4,R9),
where R denotes a read digest, P denotes a PRE-
PARE digest, and C denotes a COMMIT digest.
The corresponding linear ordering of operations is
L = (R1,R2,R3,W1,W2,R4,R5,R6,W3,R7,R8,W4,R9), where
R denotes a read operation and W denotes a write operation.

F.2 Verifiable Linearizability
We begin by stating and proving Theorem 2 below, which
specifies the achieved guarantees when some users perform
the verification procedure for an epoch. Then, we present
the VerLinear property of Ghostor as Corollary 1, a special
case of Theorem 2. We use this approach because Theorem 2,
despite being a more general statement, has fewer edge cases
than Corollary 1, and we feel its proof is easier to understand
in isolation. The statement of Corollary 1 maps directly to our
informal definition of verifiable linearizability in §3; the key
differences are only that Corollary 1 is explicit that security
depends on collision resistance of Ghostor’s hash function
and existential unforgeability of Ghostor’s signature scheme,
introduces variables that are useful in the proof, and states the
security guarantee as the contrapositive of Guarantee 1.

Theorem 2 (Epoch Verification Theorem). Suppose the hash
function H used by Ghostor is a collision-resistant hash func-
tion with security parameter κ. Let B be a non-uniform ad-
versary that is probabilistic polynomial-time in κ performing
an active attack on the server. Let E be a list of consecutive
epochs. For each epoch e ∈ E, let Ue be a set of users for
whom the verification procedure for a particular object F
detected no problems during epoch e, and let Oe be the set of
operations performed by those users on F. If Ue 6=∅ (i.e., Ue
is nonempty) for all e ∈ E, then there exists, with probability
at least 1− µ(κ), where µ denotes a negligible function, a
linear ordering L of operations in O =

⋃
e∈E Oe and possibly

some other operations, such that for the users in U and their
operations O, the following two statements hold.
1. The result of each successful operation is the same as if

all operations were executed one after the other according
to L.

2. For every two operations A and B where B was dispatched
after A returned, B comes after A in L.

Proof. We will perform a reduction to show that if there exists
an adversary B that can cause one of the two conditions to be
violated, then there exists an adversary A that can violate the

collision-resistance of H with non-negligible probability. For
concreteness, suppose that B performs such an attack with
non-negligible probability δ(κ) (so that the condition in the
theorem holds with probability 1−δ(κ)). We will explain how
A can succeed in finding a hash collision with non-negligible
probability.

By the nature of the attack, B is able to violate the property
in the theorem statement, while remaining undetected by users
in U . Observe that B’s attack must fall into at one of four
cases.
1. There exists at least one object such thatB does not commit

to a valid digest chain for an epoch, for some honest user.
2. There exists at least one object such that B commits to a

different digest chain for different honest users.
3. There exists an operation on an object f ∈ F whose re-

sult is different from the result that would be obtained by
applying the operations one after the other in the linear
ordering implied by f ’s digest chain.

4. There exist operations a and b on the same object, where a
was issued after b completed, but a precedes b in the linear
ordering implied by the digest chain.

In particular, if B’s attack does not fall into one of these cases,
then the locality property proved in §3 of [42] guarantees
that B’s behavior is consistent with the theorem statement
(linearizability of operations in L). We will show that no
matter which of the above four cases describes B’s attack, A
can find a hash collision.
Case 1. In this case, B returns an invalid linear ordering to a
user when the user performs an obtain_digests operation.
The ordering could be invalid because the digest is not signed
properly, or the digests do not form a well-formed chain. This
also includes the case where a user’s operation is missing
from the digest chain. Because we require that Ue 6=∅ for all
e ∈ E, this will be detected with probability 1. Therefore, we
do not consider this case.3 An important note is that if each
Le is valid, then L is valid.
Case 2. In this case, the adversary returns different histories
to different users. Because the histories differ, they cannot
be the same in all epochs; we consider an epoch e in which
they differ. This allows us to confine our argument to a single
epoch. In particular, there exist two obtain_digests opera-
tions on the same object during epoch e, for which B returns
different histories in a way that is not detectable.4 We define
two subcases.

In the first subcase, the leaf of the Merkle tree, containing
the hash of the final digest for the object in the epoch, is differ-

3For the purpose of this proof, it does not matter which party signs the
digest, only that it was signed with the correct signing key (which is a per-
object key rather than a per-user key). In the actual Ghostor system, only an
authorized user can produce the signature due to the existential unforgeability
of the signature scheme.

4If for all e ∈ E where the histories differ, only a single call is made to
obtain_digests, then the server cannot commit to multiple histories, and
therefore cannot attack the protocol in this way; therefore, we do not consider
this case.
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ent for each call. However, given our consistency assumption
for the blockchain, each user will see the same Merkle root.
Furthermore, because the leaves of the Merkle tree are sorted
and each intermediate node indicates the range of objects in
each of its children, each node in the root-to-leaf path un-
ambiguously specifies the hash of the next node in the path.
Because the first element (root) is the same for the paths re-
turned in each call to obtain_digests, but the last element
is different, there must be a hash collision somewhere along
the path. A finds this collision.

In the second subcase, both calls to obtain_digests see
the same Merkle leaf and therefore the same hash of the final
digest, but see different digest chains regardless. Observe
that the last digest and first digest, for this epoch’s digest
chain, are fixed based on the checkpoint for this epoch and
the checkpoint for the previous epoch, which the client can
obtain from the server (to make the argument simpler, we
consider the final digest of the previous epoch to also be
the first digest of the current epoch). Furthermore, the user
knows the hashes of these digests, from the checkpoints on
the blockchain. Therefore, if first or last digests of the digest
chains returned to both calls to obtain_digests differ, then
A can use them to find a hash collision (since their hashes
must match the Merkle leaves). If these digests match, then
the intermediate digests must differ. To find a collision in this
case,A simply walks backwards along the digest chains, until
they differ. A can use the digests on each chain, at the point
that they differ, to obtain a hash collision.
Case 3. Observe that the result of any committed write is
“Success.” Therefore, we can restrict this case to reads that
return the wrong value.

Suppose that a read operation in Oe (for some e ∈ E) re-
turned a value that is not consistent with the linear ordering
for the object. In order for the operation to be considered
successful, the Hashdata value in the signed digest received by
the client must match the hash of the returned object contents.
Furthermore, the verification procedure guarantees that the
Hashdata value in each digest corresponding to a read matches
the Hashdata value in the latest write at that time—it does this
by checking that Hashdata never changes as the result of a
read, and that it only changes in the COMMIT digests of win-
ning writes. It follows that the incorrect value returned by the
read operation, and the correct value that should have been re-
turned (which was written by the latest write), have the same
hash. A can present these two values as a hash collision.
Case 4. If an operation is missing from the digest chain
entirely, this will be detected by the client that issued the op-
eration. We now consider the case where the digests appear
in the wrong order. Concretely, let op1 and op2 be two oper-
ations, where op2 is issued after op1 completed. If op1 is a
PUT, then d1 is its COMMIT digest; otherwise, if op1 is a GET,
d1 is the single digest for that GET. If op2 is a PUT, then d2 is
its PREPARE digest; otherwise, if op2 is a GET, d2 is the single
digest for that GET. Because op2 is issued after op1 completed,

their digests should unambiguously appear in order in the di-
gest chain: d1 appears before d2. Now, suppose d1 appears
sometime after d2, so that the linear ordering is inconsistent
with execution order. In this case,Awaits until the users have
run the verification procedure, and then rewinds B’s state to
a point after B has committed op1, but before op2 has been
issued. The client places a fresh nonce in d2 this time around,
but otherwise execution is resumed as before. A waits until
the user runs the verification procedure again, and it compares
the digest chains produced by B’s execution both times. Be-
cause all that changed is the client’s nonce in d2, and it is taken
from the same uniform random distribution, B’s probability
of performing a successful attack is still non-negligible. So
the probability that B performed a successful attack in both
distributions is non-negligible (δ(κ)2). In this case, A walks
the digest chains backward starting at d1; the digest chains
must differ at some point, because d2 precedes d1 in the first
history, d2 has a different random nonce in the second history,
and the digest for d1 is the same in both histories. This way,
A can obtain a hash collision.

Although the two conditions in Theorem 2 are the same
as those in Definition 1, Theorem 2 does not guarantee lin-
earizability of operations in O (operations performed by users
in U). This is because the linear ordering L in Theorem 2 in-
cludes additional operations in the system beyond those in O,
which could be digests that the server replayed or operations
performed by users who did not run the verification proce-
dure. This motivates us to state Corollary 1, which specifies
under what conditions a set of users can be sure that their
operations were processed in a linearizable way. Because our
definition is now in line with linearizability (Definition 1), we
can leverage the locality property of linearizability [42] to
state the corollary in terms of a single object.

Corollary 1 (Verifiable Linearizability). Suppose the hash
function H used by Ghostor is a collision-resistant hash func-
tion and the signature scheme is existentially unforgeable. For
any adversary probabilistic polynomial-time in κ, any object
F, and any list E of consecutive epochs: suppose that for each
epoch e ∈ E, the set Ue of users who ran the verification pro-
cedure on F during epoch e (1) is nonempty (i.e., Ue 6=∅) and
(2) contains all users who wrote the object F during epoch
e (and possibly other users too). With probability at least
1− µ(κ), where µ denotes a negligible function, if no user
detects a problem when running the verification procedure,
then the server’s execution of operations in O =

⋃
e∈E Oe is

linearizable, where Oe is the set of operations performed by
users in Ue during epoch e.

Proof. By Theorem 2, we know that there exists a linear
ordering L containing all operations in O plus some other
authorized operations on F such that Properties #1 and #2 in
the statement of Theorem 2 hold for operations in O, with
respect to L. Because each Ue contains all users who wrote
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f during epoch e, and the signature scheme is existentially
unforgeable, we know that all operations in L that are not in
O must be reads. Let ` denote the subset of L consisting only
of operations in O. Now, observe that Properties #1 and #2
in the statement of Theorem 2 also hold for the operations
in O with respect to `. This is because (1) L is the same as
` with some additional read operations, so the result of each

operation, when operations are executed one after the other,
is the same for both orderings, and (2) the relative ordering
of operations in O is the same in both L and `. Because `
contains only the operations in O and it satisfies Properties
#1 and #2, it fulfills Definition 1. Therefore, the execution of
operations in O is linearizable.
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Abstract
Despite the rapid increase in mobile web traffic, page loads
still fall short of user performance expectations. State-of-
the-art web accelerators optimize computation or network
fetches that occur after a page’s HTML has been fetched.
However, clients still suffer multiple round trips and server
processing delays to fetch that HTML; during that time, a
browser cannot display any visual content, frustrating users.
This problem persists in warm cache settings since HTML is
most often marked as uncacheable because it usually embeds
a mixture of static and dynamic content.

Inspired by mobile apps, where static content (e.g., lay-
out templates) is cached and immediately rendered while
dynamic content (e.g., news headlines) is fetched, we built
Fawkes. Fawkes leverages our measurement study finding
that 75% of HTML content remains unchanged across page
loads spread 1 week apart. With Fawkes, web servers extract
static, cacheable HTML templates for their pages offline, and
online they generate dynamic patches which express the up-
dates required to transform those templates into the latest
page versions. Fawkes works on unmodified browsers, using
a JavaScript library inside each template to asynchronously
apply updates while ensuring that JavaScript code only sees
the state that it would have in a default page load despite
downstream content having already been loaded. Across a
wide range of pages, phones, and live wireless networks,
Fawkes improves interactivity metrics such as Speed Index
and Time-to-first-paint by 46% and 64% at the median in
warm cache settings; results are 24% and 62% in cold cache
settings. Further, Fawkes outperforms recent server push and
proxy systems on these metrics by 10%-24% and 69%-73%.

1 INTRODUCTION

Mobile web browsing has rapidly grown in popularity, gen-
erating more traffic than its desktop counterpart [18, 20, 57].
Given the importance of mobile web speeds for both user
satisfaction [11, 12, 23] and content provider revenue [21],
many systems have been developed by both industry and
academia to accelerate page loads. Prior approaches have fo-
cused on pushing content to clients ahead of time [61, 70,
76, 19], compressing data between clients and servers [4, 67,
63], intelligent dependency-aware request scheduling [14,
42], offloading tasks to proxy servers [47, 65, 10, 6], and
rewriting pages for the mobile setting (either by automati-
cally serving post-processed objects to clients [71, 43, 51],
or by manually modifying pages to follow mobile-focused
guidelines [24, 34]). Yet despite these efforts, mobile page
loads continue to fall short of user expectations in practice.
Even on a state-of-the-art phone and LTE cellular network,
the median page still takes over 10 seconds to load [7, 61].

300	ms 1100	ms 2900	ms

Mobile	
App

Web	
Page

Figure 1: Comparing the mobile app and mobile web browser
loading processes for BBC News over an LTE cellular network.

Our key observation is that, while existing optimizations
are effective at reducing network fetch delays and client-side
computation costs during page loads, they all ignore a large
and fundamental bottleneck in the page load process: the
download of a page’s top-level HTML file. To fetch a page’s
top-level HTML, a browser often incurs multiple network
round trips for connection setup (e.g., DNS lookups, TCP
and TLS handshakes), server processing delays to generate
and serve content, and transmission time. These tasks can
sum to delays of hundreds of milliseconds, particularly on
high-latency mobile links.1 Only after receiving and parsing
a page’s HTML object can the browser discover subsequent
objects to fetch and evaluate, make use of previously cached
objects, or render any content to the blank screen. Thus, from
a client’s perspective, the entire page load process is blocked
on downloading the page’s top-level HTML object. This is
true even in warm cache scenarios, since HTML objects are
most often marked as uncacheable [44] (§2).

Eliminating these early-stage inefficiencies would be fruit-
ful for two reasons. First, overall load times would reduce
since client-side computation and rendering tasks for cached
content could begin earlier and be overlapped with network
and server-side processing delays for new content; the CPU
is essentially idle as top-level HTML files are fetched in tra-
ditional page loads. Second, and more importantly, browsers
could immediately display static content, rather than show-
ing only a blank screen as the HTML is fetched (Figure 1).
This is critical as numerous web user studies and recent per-
formance metrics highlight user emphasis on content becom-
ing visible quickly and progressively [46, 25, 35, 49, 66].

1These delays persist even for HTML objects served from CDNs since
last-mile mobile link latencies still must be incurred.
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Figure 2: Overview of cold and warm cache page loads with Fawkes. Servers return static, cacheable HTML templates, as well as
uncacheable dynamic patch files that list the updates required to convert those templates into the latest page. Updates are performed
dynamically using the Fawkes JavaScript patcher library that is embedded in the templates.

To enable these benefits, we draw inspiration from mobile
apps which, despite sharing many components with the mo-
bile web (e.g., client devices, networks, content), are able to
deliver lower startup delays (Figure 1). Apps reduce startup
times by aggressively separating static content from dynamic
content. At the start of executing a task (akin to loading a
page), an app will issue a request for dynamic content in
parallel with rendering locally cached content like structural
templates, images, and banners. Once downloaded, dynamic
content is used to patch the already-displayed static content.

Like apps, web pages already cache significant amounts of
content across loads: 63% and 93% of the objects and bytes
are cacheable on the median page. Yet startup times in warm
cache page loads remain high due to download delays of top-
level HTML files (§2). But why are HTML objects marked as
uncacheable? The reason is that they typically bundle static
content defining basic page structure with dynamic content
(e.g., news headlines or search results). HTML which em-
beds dynamic content must be uncacheable so clients see the
most recent page. Thus, at first glance, it appears that ad-
dressing this challenge with app-like templating would re-
quire a rethink of how web pages are written. However, our
measurement study (§2) reveals that web pages are already
highly amenable to such an approach given the large struc-
tural and content similarities for HTML objects across loads
of a page. For instance, 75% of HTML tags on the median
top 500 page have fixed attributes and positions across 1
week, and could thus be separated into static templates.

We present Fawkes, a new web acceleration system that
modifies the early steps in the page load process to mirror
that of mobile apps (Figure 2). Fawkes optimizes page loads
in a two-step process. In the first phase, which is performed
offline, web servers automatically produce static, cacheable
HTML templates, which capture all content that remains un-
changed across versions of a page’s top-level HTML. The
second phase occurs during a client page load; servers gen-
erate dynamic patches, which express the updates (i.e., DOM
transformations) required to convert template page state into
the latest version of a page. During cold cache page loads,
browsers download precomputed templates while dynamic
patches are being produced, and can quickly begin render-
ing template content and fetching referenced external ob-

jects as patches are pushed. In warm cache settings, browsers
can immediately render/evaluate templates and referenced
cached objects while asynchronously downloading the dy-
namic patch needed to generate the final page.

Realizing this approach with legacy pages and unmodified
browsers requires Fawkes to solve multiple challenges:

• On the server-side, generating templates is difficult: tra-
ditional tree comparison algorithms [75, 36, 16, 54, 55]
do not consider invariants involving a page’s JavaScript
and DOM state, but templates execute to completion prior
to patches being applied and thus must be internally con-
sistent. For example, removing an attribute on an HTML
tag can trigger runtime errors if downstream JavaScript
code accesses that attribute; an acceptable template must
keep or omit both of these components. In addition, graph
algorithms are far too slow to be used for online patch
generation. Instead, Fawkes uses an empirically-motivated
heuristic which trades off patch generation time for patch
optimality (i.e., number of operations; note that the final
page is unchanged). Our insight is that tags largely re-
main on the same depth level of the tree as HTML files
evolve over time. This enables Fawkes to use a breadth-
first-search variant which generates patches 2 orders of
magnitude faster (in 20 ms) with comparable content.

• On the client-side, each static template embeds a special
JavaScript library which Fawkes uses to asynchronously
download dynamic patches and apply the listed updates.
The primary challenge is in ensuring view invariance for
JavaScript code that is inserted via an update: that code
must see the same JavaScript heap and DOM state as it
would have seen during a normal page load. For exam-
ple, consider an update which adds a <script> tag to
the top of the HTML template. If that script executes a
DOM method that reads DOM state, the return value may
include DOM nodes pertaining to downstream tags in the
template—this state is already loaded in a Fawkes page
load, but not in a default one, and may trigger execu-
tion errors. To provide view invariance, Fawkes uses novel
shims around DOM methods which prune the DOM state
returned by native methods based on knowledge of page
structure and the position of the script calling the method.
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We evaluated Fawkes using more than 500 real pages, live
wireless networks (cellular and WiFi), and two smartphone
models. Our experiments reveal that Fawkes significantly ac-
celerates warm cache mobile page loads compared to de-
fault browsers: median benefits are 64% for Time-to-first-
paint (TTFP), 46% for Speed Index (SI), 26% for Time-to-
interactive (TTI), and 22% for page load time (PLT). Despite
targeting warm cache settings, Fawkes speeds up cold cache
loads by 62%, 24%, 20%, and 17% on the same metrics.
Fawkes also outperforms Vroom [61] and WatchTower [47],
two recent mobile web accelerators, by 69%-73% and 10%-
24% on warm cache TTFP and SI. Importantly, Fawkes is
complementary to these approaches; Fawkes with Vroom
achieves Fawkes’s TTFP and SI benefits, while exceeding
Vroom’s PLT improvements by 22%. Source code and ex-
perimental data for Fawkes are available at https://github.
com/fawkes-nsdi20.

2 MOTIVATION

We begin with a range of measurements that illustrate the
startup discrepancies between mobile apps and web pages
(§2.1), and the amenability of web pages to app-like tem-
plating (§2.2). Results used the LTE setup described in §5.1.

2.1 Mobile Apps vs. Mobile Web
We compare the load process of mobile apps and web pages
by analyzing equivalent tasks across 10 web services; ser-
vices were selected by randomly choosing web pages from
the Alexa US top 100 list [5], and discarding those without a
corresponding mobile app. Our corpus includes news, rec-
ommendation platforms, search engines, and social media
applications. For each service, we equate loading a home-
page with a mobile browser to loading the home screen with
the mobile app. When applicable, we also compare equiva-
lent searches on both platforms. We load each task in the mo-
bile app and website back to back, and for each task, we log
the time until the first paint to the screen and collect screen-
shots for three events: the first time either platform displays
content to the user (Time-to-first paint, or TTFP), an inter-
mediate checkpoint with additional displayed content, and
the time when both platforms reach their final visual state.
Mobile app screenshots and paint events are captured via the
Apowersoft Recorder [8] and Android Systrace [31] tools,
respectively. Since apps have content cached during installa-
tion, for fair comparison, we consider warm cache page loads
(back to back). Certain mobile apps operate by displaying a
logo for several seconds during startup, prior to displaying
the home screen. We do not consider such apps here.

Startup delays are far lower with apps than web pages.
Across the corpus, our experiments reveal that TTFP values
are between 3.5×–5.2× lower with mobile apps than mobile
web pages. Figure 1 provides a representative example of
loading the home page for BBC News. As shown, despite the
high network latencies and potential server processing de-
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Figure 3: Caching has minimal impact on time-to-first-paint
since browsers cannot render cached content until they down-
load the top-level HTML (typically uncacheable).

lays, the mobile app is able to quickly display static content
that establishes the overall app layout and logos in under 300
ms. We verified that the reason for this is that the app quickly
pulls this content from its local cache while asynchronously
fetching dynamic news headlines. In contrast, the BBC web
page remains blank as the browser establishes a connection
to the backend and downloads the top-level HTML for the
page. Only upon receiving the HTML object can the browser
begin rendering any static or dynamic content to the screen–
this does not begin until 1200 ms, 4× longer than the app.

Problem: uncacheable HTML limits caching benefits for
the web. The above discrepancies between mobile apps and
web pages are indicative of a fundamental difference in the
startup tasks on the two platforms. Web HTML objects are
used to set the context for the remainder of a page load, es-
tablishing render and JavaScript engine processes, creating
a DOM tree (i.e., the browser’s programmatic representation
of the page’s HTML) and JavaScript heap, and so on. How-
ever, most HTML objects are marked as uncacheable. For
example, 72% are uncacheable across back to back loads of
the top 500 pages; this number jumps to 85% for loads sepa-
rated by 5 minutes. As a result, browsers are unable to make
use of other objects marked as cacheable (e.g., images, CSS)
until they download an HTML object; for reference, 53% and
93% of objects and bytes are cacheable on the median page.
Figure 3 illustrates this point: median TTFP values are only
5.3% lower in warm cache scenarios than during cold cache
page loads despite so many objects being cached.

2.2 Templating Opportunities for the Web
Motivated by the startup discrepancies between mobile app
and web page loads described above, we investigated how
amenable web pages are to app optimizations. Our analysis
focuses on the feasibility of extracting static templates from
HTML objects that can be cached across page loads. We con-
sider two different sets of sites: the Alexa top 500 landing
pages [5], and a smaller set which includes 10 pairs of dif-
ferent pages of the same type (e.g., different news articles or
search results). More dataset details are provided in §5.

We loaded each page (or pair of pages in the smaller cor-
pus) multiple times to mimic different warm cache scenar-
ios: back to back, 12 hours apart, 24 hours apart, and 1
week apart. In each setting, we compared the resulting top-
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Figure 4: Structural similarity for HTML files over time. Sim-
ilarity is defined as the percentage of shared tag sequences (in-
cluding tag attributes, bodies, and types).

level HTML objects to determine structural similarities. We
identify each tag as a tuple consisting of its tag type (e.g.,
<div>), HTML attributes (e.g., class), and body (e.g., in-
line script code). Since static templates can be patched dur-
ing page loads, we also consider tuple versions with all tag
attributes stripped, and with both tag attributes and bodies
stripped. Additionally, since HTML can be modeled as a tree
where ordering matters, for each tag T , we generate a se-
quence of tags by following parent tags up from T to the root
node. We then define structural similarity as the fraction of
sequences that remain identical across the HTML versions.

Opportunity: HTML structure and content is largely un-
changed over time. Figure 4 shows that HTML objects ex-
hibit high structural similarity. For example, for the median
top 500 page, 92% of HTML tags remain identical across
loads separated by 12 hours; these numbers jump to 98%
and 100% when attributes are stripped alone or with bodies.
These trends persist for different pages of the same type. For
instance, two different Instagram profile pages exhibit struc-
tural similarity of 98% when only attributes are stripped. The
trends also persist for other time windows. For example, me-
dian similarities in the 1-week setting are 75% and 95% with
nothing and attributes stripped, respectively.

Key Takeaways:

• Mobile apps exhibit a desirable startup process com-
pared to mobile web pages because apps explicitly sepa-
rate static and dynamic content, and immediately render
cached static content while dynamic content is fetched.
Web pages, on the other hand, remain blocked (blank
screen) on downloading uncacheable HTML objects, de-
spite most other objects being cacheable.

• Mobile web pages are amenable to app-like templating of
static content since HTML objects (typically uncacheable)
have large structural similarities over long time periods.

3 DESIGN

Figure 2 shows the high-level design of Fawkes. Clients use
unmodified browsers to load pages as normal. On the server
side, websites must run Fawkes to handle incoming client
HTTP(S) requests. The server-side Fawkes code performs
two primary tasks. For a given page, Fawkes statically an-
alyzes possible variants of the unmodified top-level HTML
objects for the page and extracts a single static HTML
template which maximally captures shared HTML content
across versions. The generation of the static HTML tem-
plate is performed offline, i.e., not during a client page load.
Then, when a user loads the page, Fawkes compares the
static HTML template to the target HTML, or the one that
the default web server would have served without Fawkes,
and generates a dynamic patch, which is a JSON file with
an ordered list of DOM updates required to convert the tem-
plate page into the target one.

The static HTML template includes an inline JavaScript
“patcher” library that asynchronously downloads the dy-
namic patch file, and upon receiving it, dynamically applies
the listed updates. During cold cache loads, Fawkes’s server
first returns the cacheable, static HTML template, and then
streams the dynamic patch with HTTP/2 server push soon
after; the template is sent earlier since it is precomputed, and
this allows the browser to quickly start rendering template
content and fetching referenced external resources. During
warm cache page loads, the browser immediately begins to
evaluate and render the cached template and other cached
objects that it references as the patch downloads.

3.1 Server-Side Operation
In order to generate static HTML templates, Fawkes’s server-
side component leverages state-of-the-art tree matching al-
gorithms [54, 55]. The goal of these algorithms is to de-
termine the minimum distance between two (or more) tree
structures; recall that HTML files are structured as trees (§2).
In particular, these algorithms take as input a set of trees
whose nodes are assigned labels. The algorithms then com-
pute a set of operations that, if applied, would efficiently
transform the first input tree into the second. Operations typi-
cally comprise three primary types: delete operations remove
a node and connect its children to its parent, insert operations
add a node to a specific position in the tree, and rename op-
erations do not change node positions but instead only alter
a node’s label. Algorithm execution works much like string
edit distance techniques, using dynamic programming and
assigning each operation a cost of 1.

Altering tree matching algorithms: Fawkes must alter ex-
isting tree matching algorithms in several ways to ensure that
they are compatible with HTML and web semantics. First,
existing algorithms require each tree node to be labeled with
an individual string. However, HTML tags can include state
beyond simple tag type (e.g., <div> or <link>), each of
which could be shared across versions of a page. Properties
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include attributes (e.g., class) that control the tag’s behav-
ior with respect to CSS styling rules and interactions with
JavaScript code, and bodies such as inline JavaScript code
or text to print. Failing to consider attributes during HTML
comparison can result in either broken pages if attributes
are incorrectly treated as equivalent, or suboptimal templates
if shared attributes are not maximally preserved, i.e., any
attribute discrepancy would require omitting a tag. Thus,
Fawkes’s tree comparison algorithm labels each HTML tag
with a (type, [attributes], body) three-tuple.

Second, Fawkes opts to not support rename operations,
and instead only supports new merge operations. Unlike re-
name operations that can entirely change a node’s label to
deem it equivalent to a node in the other tree, merge opera-
tions can only alter a tag’s attributes or body to claim such
equivalence. Importantly, merge operations do not allow tag
types to be modified. The reasoning behind this decision is
that different tags impose different semantic restrictions on
HTML structure. For instance, an <img> tag is self-closing,
and cannot contain children tags, while <div> tags can have
arbitrary children structures. Rewriting a <div> tag to an
<img> tag would thus trigger cascading effects on existing
children tags, leading to smaller templates.

Generating static HTML templates: Fawkes uses the
above tree matching framework to generate static HTML
templates from a set of HTML files. We describe how to
get this input set in §3.3, and for simplicity, describe the
approach assuming two input HTML files. To start, Fawkes
runs its tree matching algorithm to generate a set of oper-
ations which, if applied, would convert HTML1 to HTML2.
Fawkes then iterates through HTML1 and selectively applies
certain updates to only keep content that is shared across the
inputs. Delete operations are directly applied to HTML1 as
they represent content which is not shared across versions
and thus should not be part of the static HTML template.
Similarly, insert operations are ignored as they represent con-
tent that must be added to reach HTML2 and is thus not
shared. Finally, Fawkes strips all content (tag attributes and
bodies) referenced by merge operations as these highlight
discrepancies between HTML versions.

While applying these operations and generating static
HTML templates, Fawkes must be careful to preserve page
semantics and not violate inherent dependencies between
page state. In particular, Fawkes must ensure that static
HTML templates are internally consistent and do not trig-
ger JavaScript execution errors when parsed; this is impor-
tant as templates are parsed to completion prior to any patch
updates being applied. The key challenge is that altering
an HTML tag’s attributes or body can have downstream ef-
fects due to the shared state between JavaScript code and the
DOM tree [42]. For example, a downstream <script> tag
may access an upstream <p> tag’s attribute. Deleting that
<p> tag’s attribute can thus trigger execution errors when
the browser reaches the <script> tag. Similarly, differ-

ent <script> tags can share state on the JavaScript heap.
As a simple example, an upstream tag may define a variable
which the downstream tag accesses. Thus, cutting the up-
stream tag’s body can trigger downstream execution errors.

Existing tree matching algorithms are unaware of such
dependencies and are agnostic to the HTML execution en-
vironment. Thus, Fawkes applies a post-processing step to
ensure that such dependencies are not violated in the static
HTML template. Fawkes essentially iterates through the
static HTML template, and upon detecting an altered tag,
cuts downstream <script> tags. Fawkes could leverage
techniques like Scout [42] to more precisely characterize the
dependencies between tags and JavaScript code in an effort
to preserve more state in static HTML templates. However,
accurately capturing such fine-grained dependencies would
require web servers to also execute HTML content and load
pages. Our empirical results motivate that templates derived
from static tree analysis sufficiently keep the browser oc-
cupied with render and fetch tasks as dynamic patches are
fetched, obviating the need for dynamic processing.

Generating dynamic patches: Fawkes servers must gener-
ate dynamic patches that list updates which, if applied, would
convert the page state produced by a template into its de-
sired final form. The inputs for patch generation are the static
HTML template and the target HTML which is the file that a
default web server would serve during the current page load.

The tree comparison algorithm described above can pro-
duce the desired set of transformation updates that a patch
must contain. However, such algorithms are far too slow for
patch generation which, unlike template generation, must be
performed online, during client page loads. Thus, Fawkes
uses a tree comparison heuristic which trades off patch gen-
eration time for optimality in terms of number of operations
in the patch. The key insight is empirically motivated: we ob-
serve that tags most often remain on the same depth level of a
tree as HTML files evolve over time. Our analysis of HTML
files for 600 pages over a week revealed that, at the median
and 95th percentile, 0% and 1% of tags in target HTML files
were at a different depth than they were a week earlier. This
property favors a breadth-first-search approach over a depth-
first-search one, and implies that we need not consider new
positions for a tag outside of its current level (as traditional
algorithms would). So, for each level in the target HTML
file, Fawkes’s algorithm works as follows:

1. Create hash maps for both the target and template
HTML files that list all of the nodes for a given tag type
in the order they appear on that level (from left to right).

2. Iterate through the template’s level from left to right and
handle each node in one of two ways. If the node’s tag
type exists in the same level of the target, match this
node to the closest node of the same type with the same
parent, and remove that node’s entry from the target’s
hash map; if no node has a matching parent, match to
the closest node of the same type. Record a merge op-
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eration by comparing the attributes and bodies for the
matched nodes. Else, if the tag type does not exist in
the same level of the target, delete this node in the tem-
plate and record a delete operation.

3. Once we reach the end of the template’s level, apply
move operations to order all matched nodes in the tem-
plate in the same way as they appear in the target; ob-
jects which remain in the same position do not require
any operation. Note that move operations (which sim-
ply change the position of a node) are not supported by
traditional tree diffing algorithms, and are only enabled
by our heuristic’s “look ahead” hash maps. Also, note
that moves made at this level are immediately reflected
in lower levels of the tree as children are reordered.

4. Finally, from left to right, insert any remaining nodes
listed in the target’s hash map to the appropriate posi-
tion. Record insert operations for these additions.

The key limitation of this heuristic is with respect to nodes
moving across levels in the tree. Traditional algorithms can
identify such cases, while Fawkes’s approach would auto-
matically require a delete at the original level and an insert
at the new level. However, as noted above, such transforma-
tions are rare. In addition, matching nodes to their closest
counterparts with the same parent could be suboptimal: an
inserted node in the target can create cascading suboptimal
rename and move operations for nodes of that type. Despite
such potential inefficiencies, correctness of the final page
load is unaffected. We compare this heuristic to standard tree
comparison algorithms and other heuristics in §5.5.

Each update in a dynamic patch must identify a node to
which the update should be applied. Fawkes identifies DOM
nodes by their child paths from the root of the HTML tree.
For example, a child path of [1,3,2] represents an HTML tag
that can be reached by traversing the first child of the root
HTML tag, the third child of that tag, and then the second
child of that tag. Child path ids are easy to compare and can
be computed purely based on HTML tree structure.

3.2 Client-Side Operation
To load a page, a mobile browser first loads the static
HTML template, whose initial tag is the Fawkes patcher
JavaScript library. The patcher begins by issuing an asyn-
chronous XMLHttpRequest (XHR) request for the page’s
latest dynamic patch. The patcher defines a callback function
on the XHR request which will be executed upon receiving
the dynamic patch JSON file to apply updates. The patcher
then defines the DOM shims required by the callback to ap-
ply the dynamic patch updates (described below). Finally, the
patcher removes its HTML <script> tag from the page to
prevent violating downstream state dependencies and to en-
sure that the final page’s DOM tree is unmodified. We note
that the state defined by the patcher persists on the JavaScript
heap despite its tag being removed from the page.

Applying updates: Upon downloading the dynamic patch,

<html>

<div> <script> <div>

<img> <img> <a>

DOM	
Pruning	
Boundary

Figure 5: Update challenge 1: provide view invariance to
JavaScript code by hiding downstream DOM state. Shaded
nodes are part of the static HTML template. The <script>
tag is inserted via Fawkes’s patcher and calls a DOM method to
find <img> tags. The native DOM method would return the two
nodes outlined in bold, even though the rightmost one would
not be returned in the default page load; Fawkes’s DOM shims
prune the rightmost node from the return value.

the patcher’s callback function iterates over the listed updates
and applies them in order until completion. To apply a given
update, the patcher first obtains a reference to the affected
DOM node (i.e., the one listed in the update) by walking the
DOM tree based on the listed child path. The patcher then
uses native DOM methods to apply the update.

For insert operations, the patcher first creates a new DOM
node using document.createElement(), sets the appropriate
attributes with Element.setAttribute(), and then adds it to
the appropriate position in the DOM tree by calling docu-
ment.insertBefore(). Adding nodes to the DOM tree can have
cascading effects with respect to rendering and layout tasks
(both of which are expensive). To mitigate these overheads,
Fawkes intelligently looks ahead in the update list to deter-
mine if subsequent updates reference the node being added
by the current insert update [43, 22]. In these cases, Fawkes
constructs a DOM subtree on the JavaScript heap prior to
applying the entire subtree to the actual DOM. Fawkes uses
similar techniques to handle merge and delete operations.

Handling DOM discrepancies: There are two main chal-
lenges with applying updates, both of which relate to
JavaScript execution and its interaction with the DOM tree.
Fawkes handles both using a novel set of shims (or wrappers)
around DOM methods, which are the vehicles with which
JavaScript can access or modify the DOM tree.

• The first issue is with providing view invariance for
JavaScript code inserted via an update: that code must see
the same JavaScript heap and DOM state as it would have
seen during a normal page load. This is challenging since
updates are not applied until after a page’s static HTML
template is entirely parsed. For example, consider Figure 5
where an inserted <script> tag invokes a DOM method
to read <img> tags in the page. The return value for this
method would include an <img> tag that is downstream
in the page’s HTML; this divergence from the default page
load could trigger JavaScript execution errors or alter page
semantics. To handle this, Fawkes shims all DOM meth-
ods which return a DOM node or a list of DOM nodes;
examples include document.getElementById() and docu-
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ment.getElementsbyTagName(). Each shim calls the na-
tive method and prunes the result prior to returning it to
the client. Pruning is done by identifying the position in
the DOM tree of the script invoking the DOM method, and
then removing DOM nodes in the result which are below
that position in the DOM tree. Fawkes’s shims skip prun-
ing for callback functions (e.g., timers) and provide view
plausibility since the page makes no guarantee on what
DOM state those asynchronous events can encounter. We
note that it is not possible for inserted scripts to see less
DOM state than it would in a default page load because
updates are ordered with respect to HTML positions.

• The second issue is that JavaScript code can alter the
DOM tree in ways that affect the child path ids for subse-
quent updates. The reason is that the child path ids listed
in the dynamic patch are based on the static HTML, which
does not consider JavaScript execution, but are applied to
the dynamic DOM tree which JavaScript code can manip-
ulate (Figure 6). To handle this, Fawkes shims DOM meth-
ods that affect DOM structure, either by adding, remov-
ing, or relocating nodes; example methods include doc-
ument.appendChild() and document.insertBefore(). Each
shim calls the native method, logs its effect on DOM struc-
ture (e.g., the child path of an added node), and then re-
turns the value. When the patcher attempts to apply an up-
date, it first checks this log, and modifies the child paths in
the remaining updates based on the listed DOM changes.
We note that JavaScript can also invalidate a listed up-
date, e,g,. by replacing a <div> tag with an <img> tag in
the same position. Fawkes’s shims detect these alterations,
and the patcher discards such updates since JavaScript
takes priority over HTML for final page structure.

3.3 Identifying HTML Objects to Consider
Fawkes’s server-side static template generation inherently
relies on having a set of representative HTML files from
which to extract a template. Here we discuss several ap-
proaches for websites to generate this input set for each of
their pages; Fawkes is agnostic to the specific approach that
a site uses for this. We note that the input set need not be
comprehensive and cover all possible HTML versions for a
page since patches will include all necessary updates to reach
the target page. However, considering a comprehensive set of
HTML objects can reduce the number of updates required at
runtime, leading to improved performance.

Option 1: empirical analysis: One approach is for web
servers to log the HTML objects that they would serve to
clients over time without Fawkes. Fawkes can then periodi-
cally recompute a static HTML template based on the latest
served HTML files to account for structural modifications
that developers make to the page. An advantage of this ap-
proach is that the static HTML templates will inherently be
based off of the popular pages that are actually served to
clients. For instance, if a very rare state configuration would

<html>

<script> <link> <div>

<img> <a>

Insert	<a>
Original position:	<0,1,1>
Modified position:	 <0,2,1>

Figure 6: Update challenge 2: revise update positional infor-
mation to reflect JavaScript execution. Shaded nodes are part
of the static HTML template. Upon execution, the <script>
tag inserts an adjacent <link> tag into the page. Later, when
the patcher tries to apply an update to insert an <a>, the listed
child path id has gone out of date and must be updated.

alter the structure of a page, most page loads would benefit
from not considering this version in template generation.

Option 2: leveraging web frameworks: An alternative ap-
proach is to leverage the model-view-controller architecture
that many popular web frameworks (e.g., Django, Ruby on
Rails, and Express) use. In these systems, incoming requests
are mapped to a controller function which generates a re-
sponse by executing application logic code that combines
application data and premade HTML blocks. Note that these
blocks are small, spanning only a few tags each, and are sig-
nificantly augmented with HTML tags generated by applica-
tion logic–this precludes us from using these blocks as our
templates. To leverage this structure, we can perform stan-
dard static program analysis [62, 37] on application code
(particularly the controller for the URL under consideration)
to determine the possible HTML block combinations and dy-
namically produced HTML code that could result for a page.

Option 3: hybrid approach: A final approach is to perform
static program analysis on the application backend source
code to determine what inputs affect HTML structure, e.g.,
Cookie values, database state, time of day, etc. Fawkes can
then simply probe the backend with different input values to
generate a range of potential HTML objects that could be
returned to clients; static HTML template generation would
then work in the same way as Option 1.

Case studies: Our evaluation (§5) primarily focuses on Op-
tion 1. However, to validate the feasibility of the remaining
options, we analyzed the source code of two real open source
web applications: Reddit [2] and ShareLatex [1]. Both appli-
cations follow the MVC model described above, with Reddit
using the Python Pylons framework [58] and ShareLatex us-
ing NodeJS’s Express [50]. For both applications, we wrote
custom static analyzers which profile the controller for the
sites’ landing pages. The output of the profiler is an interme-
diate template that intertwines HTML code with Python (or
JavaScript) logic that, when executed, reads in application
variables and outputs a fully formed HTML file. Following
branch conditions and unrolling loop bodies in the interme-
diate template revealed that a ShareLatex project page has
16 possible HTML structures, while Reddit can have over
150. We note that, for this analysis, any tag insertion/dele-
tion or change in tag composition (e.g., an attribute value)
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is treated as a new page structure. Consequently, despite the
large number of potential HTML structures, both pages are
highly amenable to large static templates.

3.4 Subtleties

Handling different template versions: Since Fawkes
clients cache static HTML templates, and Fawkes servers
can decide to generate new templates based on page mod-
ifications or popularity changes, it is possible that different
clients have different template versions cached. One option
is to have clients check for updates prior to evaluating cached
templates using the If-Modified-Since HTTP header, but this
would eliminate most of Fawkes’s warm cache benefits as
a browser would have to incur multiple round trips before
rendering any content for the user. Instead, to handle these
differences, static templates include a hash of the template
contents as a variable in the inline patcher code. The patcher
includes this information in its XHR request for a dynamic
patch file; no browser modifications are required.

In order to make use of hash information in client requests,
Fawkes servers must maintain a mapping of hashes to past
static HTML template files which covers the max duration
over which the templates are cacheable, i.e., if the templates
for a URL are set to be cacheable for 1 day, the Fawkes server
must store an entry for each template version served over the
past day. Importantly, we expect these storage overheads to
be low as our results highlight that templates remain largely
unchanged on the order of weeks, and across personalized
versions of pages for different users (§2 and §5).

Updating cached templates: Fawkes can use the hash-
based approach described above to ensure benefits despite
variations in cached templates. However, over time, Fawkes
servers may wish to update cached templates to reflect sig-
nificant changes in page structure that may deem past ver-
sions poor in terms of performance. For this, Fawkes servers
simply send updated templates along with dynamic patches
served with HTTP/2 server push. Because the pushed tem-
plates will remain cacheable for longer durations than the
currently cached versions, default browsers will automati-
cally replace the cached template for subsequent loads.

Static templates across URLs: In scenarios where static
templates are generated for individual URLs by consider-
ing their possible HTML variants, templates can be cached
directly under the page’s URL. However, as we discuss in
§2 and §5, Fawkes’s template caching approach can provide
significant benefits across different URLs of the same page
type, e.g., different search result pages or news articles. To
support such scenarios efficiently, browsers must slightly al-
ter their caching approach to allow objects to be cacheable
across multiple URLs. Websites can specify a regular expres-
sion that precisely covers the URLs for which the template
applies, and browsers would use the same cached template
for any load which matches that regular expression.

4 IMPLEMENTATION

On the server-side, Fawkes’s template and dynamic patch
generation code are written in 1912 and 462 lines of Python
and C++ code, respectively. Both components are imple-
mented as standalone modules for seamless integration with
existing web servers and content management platforms [17,
73]. Module inputs are a set of HTML files, and outputs
are full formed HTML and JSON files that can be directly
shipped to client browsers. For template generation, Fawkes
extended the APTED tree comparison tool [55, 56]. HTML
parsing and modification are done using Beautiful Soup [60].

On the client-side, Fawkes’s JavaScript patcher library
consumes 3 KB when compressed with Brotli [27]. The
patcher is written entirely using native DOM and JavaScript
methods, and is thus compatible with unmodified web
browsers. We note that the DOM shims are shared across
pages, and thus could be cached as a separate object from
each page’s static template to reduce bandwidth costs.

5 EVALUATION

5.1 Methodology
We evaluated Fawkes using two phones, a Nexus 6 (Android
Nougat; 2.7 GHz quad core processor; 3 GB RAM) and a
Galaxy Note 8 (Android Oreo, 2.4 Ghz octa core; 6 GB
RAM). Fawkes performed similarly across the two devices,
so we only report results for the Nexus 6. Unless otherwise
noted, page loads were run with Google Chrome (v75).

Our experiments consider two different sets of pages:

• Alexa top 500 US landing pages [5]. We augment this list
with 100 interior pages that were randomly chosen from
a pool of 1000 pages generated by a monkey crawler [3]
that clicked links on each site’s landing page.

• a smaller set of 20 pages that includes pairs of different
pages of the same type. Starting from the Alexa top 50
list, we identified page types that have many versions, and
manually generated pairs for each one, e.g., two Google
search results and two public Twitter profile pages.

In order to create a reproducible test environment and
because Fawkes involves page modifications, our evalua-
tion uses the Mahimahi web record-and-replay tool [48]. We
recorded versions of each page in our corpus at multiple
times to mimic different warm cache scenarios: back to back
page loads, and page loads separated by 12 and 24 hours.
Mobile-optimized (including AMP [24]) pages were used
when available. To replay pages, we hosted the Mahimahi
replay environment on a desktop machine. Mobile phones
were connected to the desktop machine via both USB teth-
ering and live wireless networks (Verizon LTE and WiFi)
with strong signal strength. The desktop initiated page loads
on the mobile device using Lighthouse [28], and all con-
trol traffic for this was sent over the USB connection. All
web and DNS traffic were sent over the live wireless net-
works into Mahimahi’s replay environment. We modified
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Figure 7: Distributions of warm cache (back to back and 12 hour) per-page improvements with Fawkes vs. a default browser (i.e.,
using each page’s default HTML) for 600 pages.

Mahimahi to faithfully replay the use of HTTP/2 (including
server push decisions) and server processing delays observed
during recording; details of these modifications are listed in
§A.1.

In accordance with §3, in all experiments, Fawkes’s tem-
plates are generated a priori (i.e., offline). We apply server
processing delays for a given template as the median delay
observed for objects marked as cacheable in the default load
of the page; these objects likely represent premade content.
Note that this strategy ensures that templates experience the
observed server-side delays that do not relate to content gen-
eration, e.g., delays due to high server load. Unless otherwise
noted, templates are generated using the first and current ver-
sions of a page (i.e., a version at time 0, and the version in
the back to back load, 12 hours later, etc.); we present results
for other template generation strategies in §5.5. Dynamic
patches are generated online by Mahimahi’s web servers.
Server processing times for patches include both the ob-
served server processing time for the page’s original HTML
file, as well as the time taken to generate a patch.

We evaluate Fawkes on multiple web performance met-
rics. Page load time was measured as the time between the
navigationStart and onload JavaScript events. We
also consider three state-of-the-art metrics which better re-
late to user-perceived performance: 1) Speed Index (SI),
which represents the time needed to fully render the pixels
in the intial view of the page, 2) Time-to-first-contentful-
paint (TTFP), which measures the time until the first DOM
content is rendered to the screen, and 3) Time-to-interactive
(TTI), which measures how quickly a page becomes interac-
tive with rendered content, an idle network, and the ability
to immediately support user inputs. All three metrics were
measured using pwmetrics [32]. In all experiments, we load
each page three times with each system under test, rotating
amongst them in round robin fashion; we report numbers per
system based on the load with the median page load time.

Correctness and limitations: To ensure a faithful evalua-
tion, we analyzed the pages in our 600-page corpus to iden-
tify and exclude those that experience replay errors due to
either Mahimahi’s (22 pages) or Fawkes’s limitations (17
pages). Details about our correctness checks are in §A.2.
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Figure 8: Warm cache speedups for sites in our smaller corpus.

5.2 Improving User-Perceived Web Performance

Warm Cache: Figure 7 illustrates Fawkes’s ability to im-
prove performance for our 600-page corpus, compared to a
default browser, across a variety of web performance metrics
and warm cache settings; we omit results for the 24 hour set-
ting due to space constraints, but note that the trends were
the same. Benefits with Fawkes are most pronounced on the
metrics that evaluate visual loading progress, SI and TTFP.
For example, in the 12 hour warm cache setting, median SI
improvements are 38% and 22% on the LTE and WiFi net-
works, respectively. Improvements jump to 67% and 51%
for TTFP; these benefits directly characterize Fawkes’s im-
mediate rendering of static HTML templates, compared to
the lengthy blank screen in a default page load. Table 3 lists
the raw time savings pertaining to these improvements.

Despite targeting quick visual feedback, Fawkes’s results
are also significant for more general web performance met-
rics like TTI and PLT: median improvements in the 24 hour
scenario are 20% and 17% in the LTE setting. The reason is
that in warm cache settings, Fawkes enables browsers to uti-
lize network and CPU resources that go idle in standard page
loads as HTML objects are being loaded. Browsers can im-
mediately perform required rendering and processing tasks
(which are non-negligible on mobile devices [43, 41, 69, 61])
of both template content and referenced cached objects; at
the same time, browsers can issue requests for any referenced
uncacheable objects to make use of the idle network.

Across all metrics, Fawkes’s benefits are higher in LTE
settings than on WiFi networks. The reason is that network
latencies are higher on LTE networks: in our setup, last mile
(access link) RTT values were consistently around 82 ms for
LTE and 17 ms for WiFi. Higher round trip times increase the
time that default page loads are blocked on fetching top-level
HTML objects while Fawkes parses its templates.

As expected, benefits were consistently higher in the back-
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Property back to back 12 hours 24 hours
Static template size (KB) 102 (601) 77 (343) 73 (358)
Dynamic patch size (KB) 6 (249) 44 (491) 52 (460)

Table 1: Analysis of Fawkes’s templates and dynamic patches
across warm cache scenarios with different time windows. Re-
sults list median (95th percentile) values for each property.
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Figure 9: Cold cache speedups with Fawkes versus a default
browser on our 600-page corpus. Bars represent medians, and
error bars span from the 25th to 75th percentile.

to-back warm cache setting than when page loads were sep-
arated by 12 or 24 hours. This is because HTML objects un-
dergo fewer changes across back-to-back loads, leading to
larger templates and fewer updates (Table 1). Larger tem-
plates result in immediate feedback that more closely resem-
bles the final page, as well as increased opportunities to uti-
lize idle CPU and network resources. Note that patch sizes
include page content (e.g., inline scripts) to be inserted.

Figure 8 illustrates similar warm cache benefits (over the
LTE network) for representative sites in our smaller corpus.
Templates are made by consideringdifferent versions of the
same page type. We note that TTFP benefits were highest for
Google search pages because those pages incur the highest
server processing times (for result generation).
Cold Cache: Although Fawkes’s template-based approach
primarily targets warm cache settings, benefits are significant
in cold cache scenarios (Figure 9). For example, median SI
and TTFP improvements were 24% and 62% for the LTE
network. These results consider templates generated using
HTML files generated 24 hours apart. The reason for these
benefits mirror those in warm cache settings, but with smaller
savings. Since static HTML templates are served faster than
dynamic patches, browsers still have a window to perform
template rendering and compute tasks with Fawkes while the
default page load is blocked. Browsers largely use this time
to quickly fetch referenced uncached objects, making better
use of the idle network. Like in warm cache settings, SI and
TTFP benefits drop to 21% and 44% on the WiFi network
due to the decreased network round trip times.

5.3 Understanding Fawkes’s Benefits

Case study: To better understand Fawkes’s performance, we
analyzed the visual progress of page loads both with and
without Fawkes. Visual progress tracks the fraction of the
browser viewport (i.e., the part of the page that is visible
without scrolling) that has been rendered to its final form.

Figure 10 shows warm and cold cache results for a rep-
resentative site in our corpus, the Yahoo homepage. In the
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Figure 10: Visual progress with and without Fawkes for the
Yahoo homepage. Warm cache loads were 12 hours apart.

warm cache scenario, Fawkes is able to make an immediate
jump (53% in 790 ms) in visual progress by parsing and ren-
dering a large part of the static HTML template, as well as
referenced static objects which are also in the browser cache.
In contrast, the default browser is blocked on the multiple
network round trips and server processing delays required to
fetch the page’s top-level HTML object; visual progress does
not increase until 1110 ms into the load. The initial render
(29% in 1270 ms) is also much smaller than with Fawkes be-
cause the default HTML parse gets quickly blocked on fetch-
ing an uncacheable JavaScript file—rendering is blocked un-
til this file is fetched and evaluated. Fawkes also has to fetch
this file, but this occurs via an applied update, at which point
Fawkes has already reached 53% visual completeness. We
note that evaluation of this script (and thus blocked render-
ing) is 27 ms worse with Fawkes due to overheads from
DOM shims. However, these overheads are overshadowed by
the large early lead in visual progress that Fawkes achieves.

In the cold cache setting, both Fawkes and the default
browser incur network delays to fetch an HTML object for
the page. However, this delay is lower for Fawkes as the
static template is pre-generated. From this point, the page
loads are largely similar to the warm cache setting: Fawkes
makes a larger immediate jump in visual progress (40% in
690 ms vs. 17% in 1250 ms) as the default browser gets
quickly blocked on fetching an external script, while Fawkes
does so only after the template is parsed. From there, both
page loads progressively render content, but Fawkes never
relinquishes its lead. We note that, though it is not visible in
the graphs, Fawkes issues requests for non-blocking external
objects (e.g., images) that are listed in the template earlier.

Template content: Fawkes’s early template parsing enables
browsers to 1) process referenced cached objects sooner in
warm cache loads, and 2) quickly issue requests for refer-
enced external objects in cold cache loads. To understand
how often these optimizations are applied, we analyzed the
static URLs listed in Fawkes’s templates; we considered tem-
plates generated using loads 12 hours apart. We found that,
on the median page, templates referenced 46% of the page’s
objects, of which 72% were cacheable.

Patch generation: As described in §3, Fawkes opts to run
a tree comparison heuristic rather than a state-of-the-art tree
diffing algorithm. Fawkes’s heuristic is designed to trade off

888    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Algorithm # of operations Execution time (ms)
Fawkes’s heuristic 2 (667) 20 (59)

Insert-first heuristic 2 (3013) 30 (70)
Delete-first heuristic 2 (3065) 30 (70)
State-of-the-art tree

diffing algorithm (§3) 17 (136) 2717 (19702)

Table 2: Fawkes’s dynamic patch generation heuristic yields a
desirable tradeoff between patch generation time and patch op-
timality, compared to other heuristics and a state-of-the-art tree
diffing algorithm (which Fawkes uses for template generation).
Results list median (95th percentile) values.

System SI TTFP TTI PLT
Default 2.9 (3.9) 0.5 (0.5) 3.6 (4.4) 4.0 (5.2)
Fawkes 1.8 (2.9) 0.2 (0.3) 2.8 (3.5) 3.3 (4.2)
Vroom 2.4 (3.4) 0.6 (0.5) 2.9 (3.3) 3.2 (3.8)

WatchTower 2.0 (2.5) 0.6 (0.6) 2.6 (3.0) 2.8 (3.6)
Fawkes + Vroom 1.8 (2.9) 0.2 (0.3) 2.6 (3.14) 2.5 (3.4)

Table 3: Median warm (cold) cache raw times for our 600-page
corpus on an LTE cellular network. All results are in seconds,
and warm cache loads are spread by 12 hours.

patch generation time for optimality (in terms of number of
operations). To evaluate Fawkes’s heuristic on this tradeoff,
we compare it to the tree diffing algorithm Fawkes uses for
template generation, and two additional heuristics: ‘insert-
first’ and ‘delete-first’ breadth-first-search approaches where
discrepancies discovered when comparing a level in the tem-
plate and target are handled by first inserting the missing
node or deleting the mismatched node, respectively, and then
accounting for any remaining deltas (Table 2). As shown,
Fawkes’s heuristic runs 2 orders of magnitude faster than ex-
isting tree diffing algorithms. Median operations are lower
with Fawkes’s heuristic due to its move operation. 95th per-
centile operations are 5× worse with Fawkes’s heuristic due
to the inefficiences described in §3.1, but we note that this
large gap is only present in 8% of pages.

Importantly, across all warm cache page loads, Fawkes
completes heuristic execution and shipping patches to clients
before client-side template processing completes; shipping
patches before this does not improve performance a template
parsing must conclude prior to patch application.

5.4 Comparison with Vroom and WatchTower
We compared Fawkes with two recent mobile web opti-
mization systems, Vroom [61] and WatchTower [47]. With
Vroom, web servers user HTTP/2 server push to proactively
send static resources that they own to clients ahead of fu-
ture requests. In addition, Vroom servers send HTTP preload
headers [68] to let clients quickly download resources that
they will soon need from other domains. In contrast, Watch-
Tower accelerates page loads by selectively using proxy
servers based on page structural properties and network con-
ditions. When enabled, a proxy loads a page locally using a
headless browser and fast network links, and streams individ-
ual resources back to the client for processing. Our evalua-
tion considers WatchTower’s HTTPS-sharding mode, where
each HTTPS origin runs their own proxy to preserve HTTPS

security. Proxies were run on EC2 in California where the
WatchTower paper reported the highest speedups.

Table 3 compares Fawkes with Vroom and WatchTower
for both cold and warm cache loads of our 600 page cor-
pus over an LTE network; trends were similar on the WiFi
network. As shown, Fawkes is able to significantly improve
performance on the interactivity-focused metrics compared
to these systems. For example, median warm cache Speed
Index values were 24% and 10% lower with Fawkes than
with Vroom and WatchTower, respectively. Fawkes’s TTFP
benefits over these systems were 69%-73% since accelera-
tion techniques with WatchTower and Vroom only take af-
fect after incurring multiple network round trips and server
processing delays to download HTML objects.

Our results also show that Vroom and WatchTower are
more effective than Fawkes at reducing PLT; median ben-
efits are 3.3% and 16.6%, respectively. The reason is that
both Vroom and WatchTower can mask network round trips
required to fetch external objects throughout the page load,
including those triggered by non-HTML objects. Fawkes, on
the other hand, focuses on early parts of a page load–indeed,
targeting startup bottlenecks is what differentiates Fawkes
from prior acceleration techniques. Importantly, we note that
Fawkes’s early-stage optimizations are largely complemen-
tary to prior techniques.To validate this, we reran the ex-
periment above using a combination of Fawkes and Vroom.
Vroom’s server hints on the top-level HTML were sent along
with Fawkes’s dynamic patches. As shown in Table 3, this
combination outperforms any tested system in isolation.

5.5 Additional Results

Stale HTML templates: Our warm cache evaluation con-
sidered static templates that were generated using the HTML
object at time 0 and the one for the current time (e.g., 12
hours). Although this is possible using the techniques pre-
sented in §3.3 to generate representative HTML files for a
page, it is not the sole practical deployment scenario. An al-
ternative approach would be to generate static HTML tem-
plates with only back-to-back loads at a time 0, and use this
for future warm cache loads. To evaluate the impact of such
stale templates, we loaded the pages in our corpus using both
stale (i.e., generated at time 0) and up-to-date (generated us-
ing HTML files at time 0 and the current time) templates. We
considered staleness of 12 and 24 hours, and observed mini-
mal performance degradations. For example, on the LTE net-
work, median SI values dropped by only 4.2% and 6.8% for
the 12 and 24 hour scenarios; TTFP values were unchanged.

Personalized pages: We selected 20 sites from our 600 page
corpus that supported user accounts. For each site, we made
two user accounts, selecting different preferences when pos-
sible, e.g., order results based on time or popularity. We then
generated static templates from the HTML objects that each
user account fetched. Finally, we loaded one of the user’s
pages 12 hours later with a warm cache, and compared per-
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formance to that of a default browser. Fawkes was able to
reduce SI by 27% and 18% on the LTE and WiFi networks,
respectively. It is important to note that these trends may not
hold for all personalization strategies. For example, pages
like Facebook can display structurally diverse content over
time and across users. However, our results illustrate that
many pages do remain structurally similar across users.

Energy savings and other browsers: Fawkes reduces (per-
page) energy usage by 7-18%, and its speedups persist across
other browsers (e.g., Firefox). Details provided in §A.3.

6 RELATED WORK

Server push systems: Numerous systems, including Vroom
(§5.4), aim to accelerate mobile page loads by leverag-
ing HTTP/2’s server push feature [9], where servers proac-
tively push resources to clients in anticipation of future re-
quests [61, 19, 70]. Fawkes is largely complementary to
server push systems as these approaches reduce fetch times
for resources loaded after the top-level HTML. In contrast,
Fawkes speeds up page startup times.

Proxy and backend accelerators: Compression proxies [4,
63, 67, 52] compress objects in-flight between clients and
servers, while remote dependency resolution proxies [65, 47,
48, 64] perform object fetches on behalf of clients. Fawkes
is orthogonal to these approaches, and can mask the network
indirection and computation overheads associated with prox-
ying. In addition, Fawkes preserves the end-to-end nature of
the web, avoiding the security challenges of proxying.

More recently, Prophecy [43], Shandian [71], and Opera
Mini [51] return post-processed versions of objects to reduce
client-side computation and bandwidth costs. All three sys-
tems must incur the same network round trips and (more)
server processing delays that default page loads to down-
load top-level HTML objects–only then do their accelera-
tion techniques help. These delays are exactly what Fawkes
aims to alleviate. We also note that Fawkes’s patcher and
shims tackle a fundamentally different challenge than those
in Prophecy and Shandian: Fawkes must execute JavaScript
code in an environment with fast-forwarded DOM state.

Dependency-aware scheduling: Certain systems have im-
proved the scheduling of network requests based on inherent
dependencies in page content. Klotski [14] analyzes pages
offline to identify high-priority objects in terms of user util-
ity, and uses knowledge of network bandwidth to stream
them to clients before they are needed. Polaris [42] uses a
client-side request scheduler that reorders requests to mini-
mize the number of effective round trips in a page load with-
out violating state dependencies. However, both systems are
unable to process or render content prior to an HTML down-
load. Thus, these systems can work side by side with Fawkes.

JavaScript UI frameworks: Libraries like Vue.js [74], An-
gularJS [26], and React [22] efficiently update client-side
page state during page loads. A key feature across these

frameworks is the use of a virtual DOM, where JavaScript-
based DOM updates are first performed on a lightweight
DOM representation, and aggregate results (rather than in-
termediate layout and render events) are applied to the actual
DOM. Using such efficient update strategies, these frame-
works support client-side page rendering, whereby a page’s
top-level HTML embeds only a single JavaScript library
that is responsible for downloading and rendering down-
stream page content. While these frameworks focus on ef-
ficiently updating content during a page load and require
developers to rewrite pages, Fawkes operates on unmodi-
fied pages and aims to quickly display content shared across
page loads. Further, unlike the client-side page rendering ap-
proach, Fawkes’s static templates embed both the JavaScript
patcher library and all of a page’s static HTML content. This,
in turn, ensures that Fawkes can render static content while
fetching downstream (dynamic) content.
Accelerating HTML loading: Google’s SDCH [15] allows
web servers to specify cacheable components of HTML files;
on subsequent loads, servers need only send new compo-
nents or deltas to cached ones, thereby saving bandwidth.
Unlike Fawkes, SDCH does not allow browsers to render
cached HTML components until the entire HTML is con-
structed. Thus, SDCH does not face the view invariance
challenges that Fawkes’s patcher does, and SDCH is unable
to reduce web startup times by rendering cached HTML con-
tent quickly for users. Other industry efforts have focused on
dividing pages into modular components called “pagelets”,
which can be generated and processed independently and in
parallel [13, 33]. Pagelets share Fawkes’s goal of improving
resource utilization to more quickly display content to users.
However, unlike Fawkes, individual pagelets do not include
a mechanism for automatically separating static and dynamic
HTML, and instead use a single response that is shipped only
after the pagelet’s dynamic content is generated.

7 CONCLUSION

Inspired by the mobile app startup process, this paper
presents Fawkes, a mobile web acceleration system that gen-
erates cacheable, static HTML templates that can be imme-
diately rendered to quickly display content to users as page
updates are fetched. Fawkes represents a shift in the web ac-
celeration space, by focusing on leveraging underutilized re-
sources at the beginning of page loads. We find that Fawkes
brings median warm cache reductions of 46%, 64%, 26%,
and 22% for SI, TTFP, TTI, and PLT, and outperforms state-
of-the-art server push and proxy-based acceleration systems
by 10%-24% and 69%-73% on SI and TTFP.
Acknowledgements: We thank Harsha Madhyastha and
James Mickens for their valuable feedback on earlier drafts
of the paper, as well as Ben Greenstein and Michael Buettner
for useful discussions on Fawkes’ practical implications. We
also thank our shepherd, Ankit Singla, and the anonymous
NSDI reviewers for their constructive comments.

890    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



REFERENCES

[1] Overleaf: A web-based collaborative latex editor. https:
//github.com/overleaf/overleaf.

[2] Reddit. https://github.com/reddit-archive/reddit.
[3] Seleniumhq browser automation. https://selenium.dev/,

2019.
[4] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-

gan, B. Greenstein, S. McDaniel, M. Piatek, C. Scott,
M. Welsh, and B. Yin. Flywheel: Google’s Data
Compression Proxy for the Mobile Web. NSDI ’15.
USENIX, 2015.

[5] Alexa. Top Sites in the United States. http://www.
alexa.com/topsites/countries/US, 2018.

[6] Amazon. Silk Web Browser. https : / /docs .aws .
amazon.com/silk/latest/developerguide/introduction.
html, 2018.

[7] D. An. Find out how you stack up to new in-
dustry benchmarks for mobile page speed. https :
/ / www. thinkwithgoogle . com / marketing - resources /
data-measurement/mobile-page-speed-new-industry-
benchmarks/, 2018.

[8] APOWERSOFT. Apowersoft Screen Recorder.
https://play.google.com/store/apps/details?id=com.
apowersoft.screenrecord&hl=en US, 2019.

[9] M. Belshe, R. Peon, and M. Thomson. HTTP/2.0 Draft
Specifications. https://http2.github.io/, 2018.

[10] D. Bhattacherjee, M. Tirmazi, and A. Singla. A Cloud-
based Content Gathering Network. In Proceedings of
HotCloud, 2017.

[11] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating
User-perceived Quality into Web Server Design. World
Wide Web Conference on Computer Networks : The
International Journal of Computer and Telecommuni-
cations Networking, 2000.

[12] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in
the Eye of the Beholder: Meeting Users’ Requirements
for Internet Quality of Service. CHI, The Hague, The
Netherlands, 2000. ACM.

[13] A. Brousseau. Generating Web Pages in Parallel with
Pagelets, the Building Blocks of Yelp.com. https:
//engineeringblog.yelp.com/2017/07/generating-web-
pages-in-parallel-with-pagelets.html, 2017.

[14] M. Butkiewicz, D. Wang, Z. Wu, H. Madhyastha, and
V. Sekar. Klotski: Reprioritizing Web Content to Im-
prove User Experience on Mobile Devices. In Proceed-
ings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI. USENIX
Association, 2015.

[15] J. Butler, W.-H. Lee, B. McQuade, and K. Mixter.
[16] E. D. Demaine, S. Mozes, B. Rossman, and

O. Weimann. An optimal decomposition algorithm for
tree edit distance. In Proceedings of the 34th Interna-
tional Conference on Automata, Languages and Pro-
gramming, ICALP’07, pages 146–157, Berlin, Heidel-

berg, 2007. Springer-Verlag.
[17] Drupal. Drupal - Open Source CMS. https://www.

drupal.org/, 2019.
[18] E. Enge. MOBILE VS. DESKTOP USAGE IN

2019. https://www.perficientdigital.com/insights/our-
research/mobile-vs-desktop-usage-study, 2019.

[19] J. Erman, V. Gopalakrishnan, R. Jana, and K. K.
Ramakrishnan. Towards a SPDY’Ier Mobile Web?
IEEE/ACM Trans. Netw., 23(6):2010–2023, Dec. 2015.

[20] D. Etherington. Mobile internet use passes desktop
for the first time, study finds. https://techcrunch.com/
2016/11/01/mobile- internet-use-passes-desktop-for-
the-first-time-study-finds/, 2016.

[21] T. Everts and T. Kadlec. WPO stats. https://wpostats.
com/, 2019.

[22] Facebook. React: A JavaScript library for building user
interfaces. https://reactjs.org/, 2019.

[23] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web
Site Delays: How Tolerant are Users? Journal of the
Association for Information Systems, 2004.

[24] Google. Accelerated Mobile Pages Project – AMP.
https://www.ampproject.org/.

[25] Google. Speed Index - WebPagetest Documenta-
tion. https://sites.google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index, 2012.

[26] Google. AngularJS: Superheroic JavaScript MVW
Framework. https://angularjs.org/, 2019.

[27] Google. Brotli compression format. https://github.com/
google/brotli, 2019.

[28] Google. Lighthouse. https://developers.google.com/
web/tools/lighthouse/, 2019.

[29] Google. Progressive Web Apps. https://developers.
google.com/web/progressive-web-apps/, 2019.

[30] Google. Service Workers: an Introduction. https:
//developers.google.com/web/fundamentals/primers/
service-workers/, 2019.

[31] Google Android. Understanding Systrace. https :
/ / source . android . com / devices / tech / debug / systrace,
2019.

[32] P. Irish. pwmetrics: Progressive web metrics. https:
//github.com/paulirish/pwmetrics, 2019.

[33] C. Jiang. BigPipe: Pipelining web pages for high per-
formance. https://www.facebook.com/notes/facebook-
engineering/bigpipe-pipelining-web-pages-for-high-
performance/389414033919/, 2010.

[34] B. Jun, F. E. Bustamante, S. Y. Whang, and Z. S.
Bischof. AMP up your Mobile Web Experience: Char-
acterizing the Impact of Google’s Accelerated Mobile
Project. In Proceedings of the 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom. ACM, 2019.

[35] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R.
Das. Improving User Perceived Page Load Time Us-
ing Gaze. In Proceedings of the 14th USENIX Confer-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    891



ence on Networked Systems Design and Implementa-
tion, NSDI’17, pages 545–559. USENIX Association,
2017.

[36] P. N. Klein. Computing the edit-distance between un-
rooted ordered trees. In Proceedings of the 6th Annual
European Symposium on Algorithms, ESA ’98, pages
91–102, London, UK, UK, 1998. Springer-Verlag.

[37] G. Li, E. Andreasen, and I. Ghosh. Symjs: Automatic
symbolic testing of javascript web applications. In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE 2014, pages 449–459, New York, NY, USA, 2014.
ACM.

[38] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and
A. Ntoulas. PocketWeb: Instant Web Browsing for
Mobile Devices. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XVII. ACM, 2012.

[39] J. Mickens, J. Elson, and J. Howell. Mugshot: De-
terministic Capture and Replay for Javascript Appli-
cations. In Proceedings of the 7th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI’10, page 11. USENIX Association, 2010.

[40] Monsoon Solutions Inc. Power monitor software. http:
//msoon.github.io/powermonitor/, 2018.

[41] J. Nejati and A. Balasubramanian. An In-depth Study
of Mobile Browser Performance. In Proceedings of
the 25th International Conference on World Wide Web,
WWW ’16, pages 1305–1315. International World
Wide Web Conferences Steering Committee, 2016.

[42] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-
nan. Polaris: Faster Page Loads Using Fine-grained
Dependency Tracking. In Proceedings of the 13th
USENIX Conference on Networked Systems Design
and Implementation, NSDI. USENIX, 2016.

[43] R. Netravali and J. Mickens. Prophecy: Accelerating
Mobile Page Loads Using Final-state Write Logs. In
Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI,
Berkeley, CA, USA, 2018. USENIX Association.

[44] R. Netravali and J. Mickens. Remote-Control Caching:
Proxy-based URL Rewriting to Decrease Mobile
Browsing Bandwidth. In Proceedings of the 19th Inter-
national Workshop on Mobile Computing Systems and
Applications, HotMobile ’18. ACM, 2018.

[45] R. Netravali and J. Mickens. Reverb: Speculative De-
bugging for Web Applications. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19,
page 428–440, New York, NY, USA, 2019. Association
for Computing Machinery.

[46] R. Netravali, V. Nathan, J. Mickens, and H. Balakrish-
nan. Vesper: Measuring Time-to-Interactivity for Web
Pages. In Proceedings of the 15th USENIX Confer-

ence on Networked Systems Design and Implementa-
tion, NSDI. USENIX, 2018.

[47] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakr-
ishnan. WatchTower: Fast, Secure Mobile Page Loads
Using Remote Dependency Resolution. In Proceed-
ings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys
’19, pages 430–443. ACM, 2019.

[48] R. Netravali, A. Sivaraman, K. Winstein, S. Das,
A. Goyal, J. Mickens, and H. Balakrishnan. Mahimahi:
Accurate Record-and-Replay for HTTP. Proceedings
of ATC ’15. USENIX, 2015.

[49] J. Newman and F. Bustamante. The Value of First Im-
pressions: The Impact of Ad-Blocking on Web QoE”.
In D. Choffnes and M. Barcellos, editors, Passive and
Active Measurement - 20th International Conference,
PAM 2019, Proceedings, pages 273–285, Germany, 1
2019. Springer Verlag.

[50] NodeJS. Express: Fast, unopinionated, minimalist web
framework for Node.js. https://expressjs.com/, 2019.

[51] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2018.

[52] Opera. Opera Turbo. http://www.opera.com/turbo,
2018.

[53] V. N. Padmanabhan and J. C. Mogul. Using Predic-
tive Prefetching to Improve World Wide Web Latency.
SIGCOMM Comput. Commun. Rev., 26(3):22–36, July
1996.

[54] M. Pawlik and N. Augsten. Rted: A robust algo-
rithm for the tree edit distance. Proc. VLDB Endow.,
5(4):334–345, Dec. 2011.

[55] M. Pawlik and N. Augsten. Efficient Computation of
the Tree Edit Distance. ACM Trans. Database Syst.,
40(1):3:1–3:40, Mar. 2015.

[56] M. Pawlik and N. Augsten. APTED algorithm for the
Tree Edit Distance. https://github.com/DatabaseGroup/
apted, 2018.

[57] C. Petrov. 52 Mobile vs. Desktop Usage Statistics For
2019 [Mobile’s Overtaking!]. https://techjury.net/stats-
about/mobile-vs-desktop-usage/, 2019.

[58] Pylons Project. Pylons Project. https://pylonsproject.
org/, 2019.

[59] L. Ravindranath, S. Agarwal, J. Padhye, and
C. Riederer. Give in to Procrastination and Stop
Prefetching. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, HotNets-XII.
ACM, 2013.

[60] L. Richardson. Beautiful Soup. https://www.crummy.
com/software/BeautifulSoup/bs4/doc/, 2019.

[61] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.
Madhyastha. Vroom: Accelerating the Mobile Web
with Server-Aided Dependency Resolution. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM. ACM,

892    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



2017.
[62] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,

M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
IEEE Symposium on Security and Privacy, 2016.

[63] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and
R. Govindan. FlexiWeb: Network-Aware Compaction
for Accelerating Mobile Web Transfers. In Proceed-
ings of the 21st Annual Conference on Mobile Comput-
ing and Networking, MobiCom. ACM, 2015.

[64] A. Sivakumar, C. Jiang, S. Nam, P. Shankaranarayanan,
V. Gopalakrishnan, S. Rao, S. Sen, M. Thottethodi, and
T. Vijaykumar. Scalable Whittled Proxy Execution for
Low-Latency Web over Cellular Networks. In Proceed-
ings of the 23rd Annual International Conference on
Mobile Computing and Networking, Mobicom. ACM,
2017.

[65] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakr-
ishnan, S. Lee, S. Rao, and S. Sen. Parcel: Proxy as-
sisted browsing in cellular networks for energy and la-
tency reduction. In Proceedings of the 10th ACM Inter-
national on Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’14, pages 325–
336, New York, NY, USA, 2014. ACM.

[66] M. Varvello, J. Blackburn, D. Naylor, and K. Papagian-
naki. EYEORG: A Platform For Crowdsourcing Web
Quality Of Experience Measurements. In Proceed-
ings of the 12th Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’16. ACM,
2016.

[67] J. Volpe. Nokia Xpress brings cloud-based
compression to the Lumia line. Engadget.
https://www.engadget.com/2012/10/03/nokia-xpress-

brings-cloud-based-compression-to-the-lumia-line/,
October 3, 2012.

[68] W3C. Preload. Editor’s Draft. https://w3c.github.io/
preload/, January 9, 2018.

[69] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying Page Load Perfor-
mance with WProf. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI. USENIX Association, 2013.

[70] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. How Speedy is SPDY? In Proceed-
ings of NSDI, NSDI’14, pages 387–399, Berkeley, CA,
USA, 2014. USENIX Association.

[71] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
Speeding Up Web Page Loads with Shandian. In Pro-
ceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI. USENIX
Association, 2016.

[72] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How
Far Can Client-only Solutions Go for Mobile Browser
Speed? In Proceedings of the 21st International Con-
ference on World Wide Web, WWW ’12. ACM, 2012.

[73] WordPress. Blog Tool, Publishing Platform, and CMS
– WordPress. https://wordpress.org/, 2019.

[74] E. You. Vue.js: The Progressive JavaScript Framework.
https://vuejs.org/, 2019.

[75] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems.
SIAM J. Comput., 18(6):1245–1262, Dec. 1989.

[76] T. Zimmermann, B. Wolters, O. Hohlfeld, and
K. Wehrle. Is the Web ready for HTTP/2 Server
Push? In Proceedings of the 14th ACM International
on Conference on Emerging Networking Experiments
and Technologies, CoNEXT. ACM, 2018.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    893



A APPENDIX

A.1 Mahimahi Modifications
To compute per-object server processing delays, we first
recorded the RTT to each origin in a page as the median
time between the TCP SYN and SYN/ACK packets across
all connections with that origin. We then defined the server
processing delay for an object as its TTFB minus 1 RTT (for
the transmission of the HTTP request and initial response
bytes); when applicable, we also subtracted out connection
setup delays (1 or 2 RTTs depending on whether the resource
was downloaded via HTTP or HTTPS). Lastly, we modified
Mahimahi’s replayserver to wait for the corresponding
server processing delay before shipping back any object.

A.2 Correctness and Limitations
To ensure a faithful evaluation of Fawkes, we analyzed the
pages in our corpora to identify and exclude pages that ex-
perience replay errors due to either Mahimahi or Fawkes.
We excluded 22 pages due to Mahimahi replay errors, most
of which were the result of SSL errors for pages that lever-
age the Server Name Indication (SNI) feature in SSL/TLS
certificates (which Mahimahi does not support), and miss-
ing resources that Mahimahi’s URL matching heuristic was
unable to remedy.

On the remaining pages, correctness with Fawkes was
evaluated by forcing determinism upon JavaScript ex-
ecution (e.g., using fixed return values for calls to
Math.Random()) [39, 45], and comparing loads with and
without Fawkes in three ways: 1) a pixel-by-pixel analysis of
the final page (using pwmetrics’ screenshots and visual anal-
ysis tools [32]), 2) the number of registered JavaScript event
handlers (logged using shims on the addEventListener
mechanism and by iterating over the DOM tree after the
onload event fired [46]), and 3) the browser console er-
rors printed during the page load. We excluded the 17 pages
that differed on any of these three properties from our evalua-
tion. Further investigation revealed two key reasons for such
discrepancies, which are limitations with Fawkes:
• Although Fawkes cuts downstream JavaScript in tem-

plates after the first tag removal or alteration, it does not
remove CSS. The reason is that CSS rules can significantly
affect the styling of template content, bringing it closer
to the final page version. However, CSS and JavaScript
code can share state in the form of DOM node attributes.
As a result, downstream CSS files in a page’s template
can modify DOM attribute state that patched (upstream)
JavaScript code can subsequently access—this can alter
page execution and lead to errors.

• JavaScript code can dynamically rewrite downstream
HTML using the document.write() interface. How-
ever, Fawkes’s patches are based on a page’s static HTML,
which does not reflect JavaScript execution. Thus, because
our current implementation of Fawkes does not use shims
for document.write(), it is possible for JavaScript

code in the template to (correctly) rewrite downstream
HTML content, that is (incorrectly) resurrected by the
Fawkes patcher.

A.3 Additional Results

Energy consumption: To examine the impact that Fawkes
has on energy usage, we connected a Nexus 6 phone to a
Monsoon power monitor [40] and loaded our 600 page cor-
pus. During cold cache loads, Fawkes’s speedups reduce me-
dian per-page energy usage by 11% and 7% compared to a
default browser on the LTE and WiFi networks, respectively.
Benefits jump to 18% and 11% in warm cache settings (12
hours apart). In both cases, benefits are higher on LTE due
to the higher network latencies and the fact that LTE radios
consume more energy than WiFi hardware when active [65].
Additional browsers: Since Fawkes does not require any
browser modifications, we also evaluated Fawkes with Fire-
fox (v68) using our 600 page corpus and the same experi-
mental setup from §5.1. Benefits in the 12 hour warm cache
setting were quite comparable, despite Firefox using a differ-
ent rendering engine than Chrome. Fawkes reduced median
SI by 21% and 34% on the WiFi and LTE networks.

A.4 Additional Related Work

Mobile-optimized pages: Certain sites cater to mobile set-
tings by serving pages that involve less client-side computa-
tion, fewer bytes, and fewer network fetches. For example,
Google AMP [24, 34] is a recent mobile web standard that
requires developers to rewrite pages using restricted forms
of HTML, JavaScript, and CSS. Unlike AMP, Fawkes accel-
erates legacy pages without needing developer effort. Fur-
ther, Fawkes provides complementary benefits and can lower
AMP startup delays: Fawkes’s TTFP and SI reductions were
58% and 27% for the 23 AMP pages in our corpus.
Prefetching: Prefetching systems predict user browsing be-
havior and optimistically download objects prior to user page
loads [53, 38, 72]. Unfortunately, such systems have wit-
nessed minimal adoption due to challenges in predicting
what pages a user will load and when; inaccurate page and
timing predictions can waste device resources or result in
stale page content [59]. By rendering static templates as soon
as a user navigates to a page, Fawkes is able to achieve com-
parable TTFP reductions without the issues of prefetching.
Progressive Web Apps (PWAs): Google recently proposed
PWAs [29], applications that are written using standard web
languages (e.g., HTML, JavaScript), can be loaded by a stan-
dard web browser, but are installed as an application on a
user device. PWAs use service workers [30] which employ
aggressive caching and custom update logic to run offline
and support push notifications from servers. Fawkes shares
the idea of improving use of web caching and app-like update
logic. However, in contrast to PWAs which require developer
effort for creation (and potentially maintenance), Fawkes
transparently applies app-like templating to legacy pages.
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VMscatter: A Versatile MIMO Backscatter

Xin Liu∗, Zicheng Chi∗, Wei Wang, Yao Yao, and Ting Zhu
University of Maryland, Baltimore County

Abstract
In this paper, we design and implement a versatile MIMO

backscatter (VMscatter) system, which leverages the diver-
sity features of MIMO to dramatically decrease bit error rate
(BER) and increase throughput with negligible overhead. Our
approach is different from existing WiFi MIMO backscatter
approaches which simply reflect the signals from the WiFi
MIMO sender and do not take advantage of MIMO tech-
nologies’ advanced features (i.e., low bit error rate and high
throughput). In our approach, the backscatter can achieve the
same full diversity gain as traditional MIMO system by imple-
menting the space-time coding on the backscatter tag under
the constraint that backscatter tags cannot control the reflected
signals to be orthogonal. Moreover, the backscatter can reflect
excitation signals from the senders that have either a single
antenna or multiple antennas. To implement the VMscatter
system, we addressed the special design challenges such as
complicated channel estimations among the sender, tag, and
receiver by using a novel pre-scatter channels elimination
method and a post-scatter channels equalization method. Our
VMscatter design introduces negligible overheads (in terms
of hardware cost, energy consumption, and computation) on
the backscatter tag. We further extended our design to support
any number of antennas that the sender, tag, and receiver have.
Our MIMO backscatter design is generic and has the potential
to be extended to achieve massive MIMO. We extensively
evaluated our system in different real-world scenarios. Results
show that the BER is reduced by a factor of 862 compared to
the most related work MOXcatter [68].

1 Introduction
In the last few years, backscatter systems have been proposed
to piggyback data on ambient signals such as WiFi [33, 59],
Bluetooth [30], LoRa [28,47], FM [53], etc. By doing this, the
backscatter device consumes very little energy to wirelessly
transmit data, which can enable lots of Internet-of-Things
applications, such as device tracking [31], smart homes and
smart health [5, 30]. On the other hand, the Multiple-Input

∗Both authors contributed equally to the paper

Multiple-Output (MIMO) technique has become an essential
element of wireless communication. To explore the benefits
of the MIMO technique, researchers have proposed various
important approaches, such as full duplex MIMO [10, 11,
15], multi-user MIMO [9, 19, 35, 48–50, 56], massive MIMO
[12, 29, 32, 65, 66], distributed MIMO [26, 27], and MIMO
networks [21, 25, 43, 44, 57, 67].

Although MIMO has been widely used and explored in
wireless systems, little work has been conducted to effec-
tively integrate MIMO techniques into a backscatter sys-
tem for more reliable and faster backscatter communications.
The only related work (MOXcatter [68]) tries to backscatter
MIMO signals from the WiFi MIMO sender. However, the
multiple antennas on MOXcatter do not take advantage of ad-
vanced features of MIMO technology. Specifically, although
MOXcatter uses multiple antennas, the phase changes among
these antennas are always the same when reflecting the WiFi
signals. Therefore, MOXcatter does not fully leverage the
spatial diversity, which leads to even higher bit error rate and
lower throughput than the corresponding non-MIMO WiFi
backscatter system FreeRider [62]. Moreover, the MOXcatter
tag needs explicit control signals from the sender to identify
whether the sender is sending a single stream or multiple
streams signals. These explicit control signals prevent MOX-
catter to be widely deployed in an environment where the
sender is uncontrollable.

Different from existing WiFi backscatters that reflecting
non-MIMO [14, 33, 61, 62] and MIMO [68] signals, our high-
level goal in this paper is to design a versatile MIMO backscat-
ter (VMscatter) system, which leverages the diversity features
of MIMO to dramatically decrease bit error rate (BER) with
negligible overhead because the backscatter communication
has a very low signal-to-noise ratio (SNR) which leads to a
high BER. With a lower BER, the backscatter communica-
tion can have a longer effective communication range, better
robustness, and better reliability. We note that the sender of
VMscatter is not required to be a MIMO device. In our design,
we encountered the following challenges:
C1. How to realize MIMO transmissions on a low-power
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backscatter tag for reliable communication? A traditional
MIMO system improves the reliability by utilizing a space-
time coding scheme to generate orthogonal symbols (which
increase the diversity gain) among antennas. However, the
low-power backscatter tag cannot demodulate the incoming
ambient signals (which are used to piggyback backscatter
data) due to limited resources on the tag. Therefore, the
backscatter tag is not able to generate orthogonal symbols.
We discovered that by implementing space-time coding on
the backscatter tag, we can achieve the same full diversity
gain as traditional MIMO systems, even though the reflected
backscattered symbols are non-orthogonal. We note that the
non-orthogonality is not a hard constraint. Our proposed al-
gorithm is applicable for the reflected symbols being either
orthogonal or non-orthogonal. However, it is very challenging
to implement space-time coding on the tag by only turning
on/off the switches, because we do not want to increase the
tag’s computation and energy overheads.
C2. How to demodulate the backscattered data? The
MIMO backscatter system is more complicated than tradi-
tional MIMO system because we need to deal with the pre-
scatter channels (i.e., the channels between the sender and the
backscatter tag) and post-scatter channels (i.e., the channels
between the backscatter tag and the receiver) for proper de-
modulation. For example, a 2×2 MIMO system has four dif-
ferent physical channels among the two sender antennas and
two receiver antennas. The receiver needs to estimate these
four channels in order to correctly demodulate the data. With
a two-antenna backscatter tag in the middle (i.e., 2× 2× 2
setup), the situation becomes even more complicated. To ob-
tain the backscattered data, eight physical channels need to
be estimated (i.e., four pre-scatter channels and four post-
scatter channels). Furthermore, we also considered frequency
mismatch (including cumulative clock drift and oscillator in-
stability) between the VMscatter tag and receiver as well.
C3. How to achieve a generic M×K×N setup? As a ver-
satile MIMO backscatter system, it needs to support an arbi-
trary number of antennas at the sender, tag, and receiver sides
(shown in Fig. 1). It is important to support any number (i.e.,
M) of antennas that the senders may have, because we want
to leverage various types of existing infrastructures. However,
it is very challenging to achieve this because the lower-power
backscatter tag cannot decode the packet from the sender to
obtain the knowledge of the number of antennas. Existing
work such as MOXcatter [68]) needs to modify the sender to
explicitly send out control messages (i.e., four consecutive spe-
cial packets) to the tag so that the tag can identify the types of
the sender’s excitation signals (i.e., MIMO v.s. non-MIMO),
which is impractical. We mathematically demonstrate how to
eliminate the impact of the pre-scatter channels such that the
impact of the number (i.e., M) of senders’ antennas can be
eliminated (see Sec. 4.3). Therefore, we do not need to modify
the sender. We further describe how to support an arbitrary
number of antennas at both the tag (i.e., K) and receiver (i.e.,
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Figure 1: System Architecture

N) sides (see Sec. 4.4). We also validate our design using
both experiments and simulations.

Our key contributions are as follows:
• To the best of our knowledge, this is the first work that
designed and implemented a versatile MIMO system, which
leverages the diversity features of MIMO to dramatically de-
crease bit error rate (BER) and increase throughput with neg-
ligible hardware cost, energy consumption, and computation
overheads on the low-power backscatter tag.
• To implement the versatile MIMO backscatter system, we
addressed the special design challenges on the backscatter tag
(e.g., how to implement space-time coding by only turning
on/off the switches) and on the receiver side (e.g., frequency
mismatch and complicated channel estimations among the
sender, tag, and receiver).
• Our design is generic. It can support an arbitrary number of
antennas at the sender, tag, and receiver. The design principles
have the potential to be extended to achieve massive MIMO.
•We build a hardware prototype of the proposed VMscatter
system and design an IC circuit. We also extensively evaluated
our system under different real-world settings. Evaluation
results demonstrate that VMscatter can provide faster and
orders of magnitude more reliable communication than state-
of-the-art backscatter systems. For example, VMscatter’s bit
error rate is smaller than that of MOXcatter by a factor of
more than 800.

2 Motivation and Design Overview
Our work is motivated by the recent advances in MIMO tech-
nology, such as Surface MIMO [16] which enables MIMO
communication between devices using surfaces coated with
conductive paint or cloth. For example, a single-antenna
sender-receiver pair can achieve 3× 3 MIMO communication
by using two points of contact on the conductive surface. By
doing this, the number of antennas on the sender and receiver
sides can be as low as 1.

We also note that with the advances in printed antennas
[3, 23] and RF Micro-Electro-Mechanical Systems (MEMS)
[4, 6, 36] technologies, multiple antennas can be integrated
into a device. Therefore, it is essential to explore how to
achieve MIMO on backscatter tags and what the benefits are.
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Applications. Since MIMO technology can enable reliable
and fast communication, by leveraging the advantages of
MIMO technology, our VMscatter has the potential to be
applied to applications in noisy and multipath-rich environ-
ments, such as smart buildings and smart cities for low-power
and reliable sensing data collection.

As shown in Fig. 1, our system contains three parts:
Sender: The sender does not need to be controlled for trans-
mitting explicit control messages. The sender can be equipped
with either a single antenna or multiple antennas.
VMscatter Tag: The backscatter tag piggybacks backscatter
data on the ambient signals emitted by the sender. To support
a variety of existing infrastructures, our VMscatter tag can
naturally support any number of sender antennas without the
need of explicit control messages. The MIMO modulation
module not only modulates the binary data into in-phase and
quadrature values but also encodes the data depending on
the number of available antennas. Two coding methods can
be used for reducing bit error rate or increasing throughput
(details in Sec. 4.2). The RF switches for different antenna
ports reflect the incoming RF signals based on the output of
the MIMO modulation module. By doing this, the backscatter
data piggybacks on the ambient RF signal and the MIMO
signals are transmitted out.
Receiver: The receiver takes the incoming signal and de-
composes the signal by using an FFT module. A backscatter
packet structure is proposed to cooperate with the conven-
tional channel estimation and equalization module for elim-
inating the impact of the pre-scatter channel (the channel
between the sender and the VMscatter tag). A backscatter
demodulation module (including the backscatter channel esti-
mator, maximum likelihood detector, and space-time decoder)
is designed on top of the conventional channel estimation and
equalization module. The backscatter channel estimator and
maximum likelihood detector are used to combat the impact
of the post-scatter channel, cumulative clock drift, and os-
cillator instability. The space-time decoder decodes the data
obtained from all the antennas according to the coding method
(detailed in Sec. 4.3).

3 Space-Time Coding for MIMO Backscatter
In this section, we first provide the background of a traditional
MIMO system. then, we describe why we cannot use existing
backscatter systems to achieve MIMO. In the end, we discuss
why VMscatter is different.

3.1 Background of Space-Time Coding for
MIMO System

We first review the background of space-time coding for the
M×N MIMO-OFDM system which serves as the base of
the advanced WiFi protocol (e.g., IEEE 802.11n). For the
sake of simplicity, we show the structure of a typical 2× 2
MIMO-OFDM system with Alamouti space-time coding [7]
in Fig. 2(a). Traditional MIMO systems use complex modules
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Figure 2: 2×2 Alamouti MIMO system and 2×2×2 MIMO
Backscatter. Conventional MIMO systems need to create
the orthogonal symbols to construct the space-time coding.
MIMO backscatter can realize the diversity gain of the space-
time coding by using the non-orthogonal symbols.

to create orthogonal symbols which provide the full diver-
sity gain [55] for reliable wireless communications. Fig. 2(a)
shows the creation process of the orthogonal symbols. First,
the data streams (i.e., bit streams) are modulated to complex
values (i.e., in-phase and quadrature values). Next, the space-
time coding module encodes the complex values based on
Alamouti code scheme and feeds the coded data into the In-
verse Fast Fourier Transform (IFFT) module for each antenna.
Then, each IFFT module efficiently allocates the coded data
on multiple subcarriers to form two OFDM symbols (e.g.,
{x1,−x∗2} or {x2,x∗1}). Finally, two antennas are used to trans-
mit the four OFDM symbols in two time slots. Because of
the orthogonal design in the code scheme, the code matrix
formed by the four transmitted symbols fulfills the orthogonal
property [54]:[

x1 x2
−x∗2 x∗1

]H

·
[

x1 x2
−x∗2 x∗1

]
= (|x1|2 + |x2|2) ·

[
1

1

]
(1)

where (·)H denotes the complex conjugate transpose operator,
(·)∗ denotes the conjugate operator. Hence, Alamouti code
has a full diversity gain [55].

During wireless transmission, the transmitted symbols suf-
fer from channel fading and at the receiver, their sum will be
received. Therefore, the 2×2 MIMO system with Alamouti
Code can be represented by the following:[

y1A
y1B

]
=

[
hA1 hA2
hB1 hB2

]
·
[

x1
x2

]
+

[
n1A
n1B

]
[

y2A
y2B

]
=

[
hA1 hA2
hB1 hB2

]
·
[
−x∗2

x∗1

]
+

[
n2A
n2B

] (2)

where [y1A,y1B]
ᵀ denotes the received vector in the first time

slot by receive antennas 1 and 2 respectively, [y2A,y2B]
ᵀ de-

notes the received vector in the second time slot by receive
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antennas 1 and 2 respectively, hnm denotes the channel im-
pulse response from the mth transmit antenna to the nth receive
antenna, and nnm denotes the corresponding noise.

3.2 Why can’t we use existing backscatter sys-
tems to achieve MIMO?

Since the existing backscatter tag (such as the system in
[33, 62, 68]) cannot afford the demodulation (which requires
power hungry modules) of incoming signals, the orthogo-
nal property is not guaranteed for backscattered signals. As
shown in Fig. 2(b), let us assume the pre-scatter channel (i.e.,
the channel between the sender and VMscatter tag) is HR and
the post-scatter channel (i.e., the channel between VMscatter
tag and the receiver) is HT:

HR =

[
ha1 ha2
hb1 hb2

]
, HT =

[
hAa hAb
hBa hBb

]
In the tth time slot, let xtk be the transmitted symbol on the
kth transmit antenna, stk be the incoming symbol on the kth

backscatter switch and nR
tk be the corresponding noise. Then,

the incoming symbol vectors in two time slots can be repre-
sented by the following:[

s1a
s1b

]
=HR ·

[
x11
x12

]
+

[
nR

1a
nR

1b

]
,

[
s2a
s2b

]
=HR ·

[
x21
x22

]
+

[
nR

2a
nR

2b

]
(3)

From Eqn. 3, we can see that the information of the incom-
ing symbol stk includes the channel interference HR and the
baseband value of the transmitted symbol xtk. The backscatter
cannot estimate the channel or demodulate the baseband sig-
nals without high power components. Therefore, the backscat-
ter does not have knowledge about the incoming signals and
cannot guarantee the backscattered signals to be orthogonal.

As a result, even though the backscatter leverages the
space-time coding scheme to code its data, the reflected sym-
bols are not orthogonal. For example, as shown in Fig. 2(b),
if the backscatter wants to transmit the data {ψa,ψb}, the
coded data being modulated into the incoming symbols
[s1a,s1b,s2a,s2b] are [ψa,ψb,−ψ∗b,ψ

∗
a]. Therefore, the re-

flected symbols are [s1aψa,s1bψb,−s2aψ∗b,s2bψ∗a]. The rep-
resentation of the received vectors in two time slots are:[

y1A
y1B

]
= HT ·

[
s1aψa
s1bψb

]
+

[
nT

1A
nT

1B

]
[

y2A
y2B

]
= HT ·

[
−s2aψ∗b

s2bψ∗a

]
+

[
nT

2A
nT

2B

] (4)

where nT
tm is the noise of the received symbol ytm. By plugging

the reflected symbols into Eqn. 1, we obtain[
s1aψa s1bψb
−s2aψ∗b s2bψ∗a

]H

·
[

s1aψa s1bψb
−s2aψ∗b s2bψ∗a

]
6= R ·

[
1

1

]
where R is a real number. It is clear that the four reflected
symbols cannot fulfill the orthogonal property.

3.3 Why is VMscatter different?
In this section we describe our VMscatter’s two unique fea-
tures: i) it achieves the same full diversity gain as traditional

MIMO system without transmitting orthogonal signals; and ii)
our demodulation scheme estimates the complicated channels
among sender, backscatter tag, and receiver while solving the
demodulation errors caused by practical facts (e.g., cumula-
tive clock drift and oscillator instability).
Feature 1: Although there is no orthogonal symbols for the
MIMO backscatter to construct the space-time coding, we
discover that MIMO backscatter can achieve the same full
diversity gain as the space-time coding by using the non-
orthogonal symbols.

Firstly, we define M(si j,spq) = HT ·diag(s−1
i j ,s−1

pq ) ·HT
−1.

By multiplying M(si j,spq) to both sides of Eqn. 4, we get:

M(s1a,s1b)

[
y1A
y1B

]
= HT ·

[
ψa
ψb

]
+M(s1a,s1b)

[
n1A
n1B

]
M(s2a,s2b)

[
y2A
y2B

]
= HT ·

[
−ψ∗b

ψ∗a

]
+M(s2a,s2b)

[
n2A
n2B

] (5)

We note that Eqn. 5 has the same standard representation as
that of conventional 2×2 Alamouti MIMO systems (showed
in Eqn. 2). In other words, if the value of M(si j,spq) in Eqn. 5
is known, the MIMO backscatter system can also achieve full
diversity gain, as proven in the following:[

ψa ψb
−ψ∗b ψ∗a

]H

·
[

ψa ψb
−ψ∗b ψ∗a

]
= (|ψa|2 + |ψb|2) ·

[
1

1

]
(6)

To realize the space-time coding, the conjugate operations
are required. Traditional RFID works by selecting different
antenna impedance loading. To reduce the design complexity,
VMscatter only leverages the two states of switch (on and off)
to realize the conjugate operation (detailed in Sec. 4.2).
Feature 2: To solve Eqn. 5, we must know M(si j,spq). How-
ever, to detect M(si j,spq), we face two challenges. The first
challenge is that the backscatter tag does not exactly shift
the ambient signal as the desired phase in reality because of
some practical facts (such as cumulative clock drift and oscil-
lator instability). The difference of the desired shifting phase
and the real shifting phase interfere the detection result of
M(si j,spq). The second challenge is that the existing channel
estimation module cannot resolve both of the pre-scatter and
post-scatter channels to extract the backscatter data. We will
discuss how to overcome these two challenges in Sec. 4.3.

4 Design
This section presents the detailed design of the VMscatter
system. We first propose the channel model of the VMscatter
system. Secondly, we introduce the modulation scheme at
the VMscatter tag. Thirdly, we describe the demodulation
scheme at the receiver. Finally, we explain how to extend
from 2×2×2 to M×K×N.

4.1 VMscatter Channel Model
In order to explain the signal propagations of our MIMO
backscatter, we build a mathematical channel model for our
system. Though a backscatter tag does not “receive” the signal
(the tag “reflects” the signal out immediately when the sig-
nal comes in), we decompose the receiving and transmitting
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Figure 3: Basic Modulation. The signal in the shaded time slot is
shifted by π.

processes in the channel model. Fig. 2(b) shows the channel
model of a 2×2×2 setup. Without loss of generality, let us
take the receive vector in the first time slot (i.e., [y1A,y1B])
as an example to describe the channel model. From Eqn. 4
and 3, we can rewrite the representation of the receive vector
in the first time slot as:[

y1A
y1B

]
=HT·

[
s1aψa
s1bψb

]
+

[
nT

1A
nT

1B

]
=HT·

[
ψa

ψb

]
·
[

s1a
s1b

]
+

[
nT

1A
nT

1B

]
(7)

Let us assume X , Y , Ψ, and N are the transmitted signal at
the sender, the received signal at the receiver, the backscatter
data, and the noise respectively. We rewrite Eqn. 7 here:

Y = HTΨHRX+N (8)
Eqn. 8 gives the channel model of a 2× 2× 2 MIMO

backscatter system. It proves that the backscatter modulation
not only splits the whole channel (from sender to receiver)
into two parts: HR and HT, but also inserts the backscatter
information into the whole channel. Therefore, to demodulate
the backscatter data, it is important to estimate the channel HR
and HT. However, since existing channel estimators estimate
the whole channel without considering the backscatter mod-
ulation, the estimation result is interfered by the backscatter
data. To address this challenge, we first need to understand
the backscatter modulation scheme.

4.2 MIMO Modulation @ VMscatter Tag
In this section, we introduce how a VMscatter tag creates
MIMO signals which can increase the communication per-
formance. Our goal is to realize MIMO transmission while
maintaining low power consumption at a power constrainted
VMscatter tag. The MIMO transmission can significantly re-
duce the bit error rate (BER) or increase the throughput by
increasing the number of antennas. It is challenging to trans-
mit spatial coded information at a lower power VMscatter tag
to improve the communication performance at the receiver
side. To understand it, we first introduce the basic modula-
tion scheme with a 2×2×2 setup, then describe two coding
methods for improving the throughput and reducing the BER.
Basic modulation scheme: In a basic modulation scheme,
the backscatter tag shifts the phase of an ambient OFDM
signal on one antenna port or multiple antenna ports (trans-
mitting same data on all ports) to transmit backscatter data.
For example, the phase can be shifted by e jθk , where k is the
index of antennas. θk = 0 or π indicates data bit “0” or “1”.
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b
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a

ψa-ψb =  e-j2π 

Figure 4: An example of improving throughput. Eight bits
“00110110” are transmitted during four time slots. The signals in the
shaded time slots are shifted by π.

Fig. 3 shows a simple example that, in a 2× 2× 2 setup,
two antennas (a and b) transmit the same data by using RF
switches (i.e., ADG902 [8]) to shift the ambient signal’s phase.
In Fig. 3(a), continuous square waves (θa,b = 0) from T1 to
T4 are driving the RF switches. Thus, no phase shift is caused
to the ambient OFDM signal and the data of “0000” is trans-
mitted. In Fig. 3(b), the square waves are shifted by θa,b = π

during T2 which yields the data of “0100” being transmitted.
Improving throughput: The VMscatter tag takes advantage
of the MIMO system to increase throughput. For example,
with two antennas, the throughput can be doubled. To in-
crease throughput, the data is encoded across two antennas
as follows: at time slot Tn, the aggregate value of two data
streams (i.e., ψa +ψb) is transmitted from antenna a while
the difference (i.e., ψa−ψb) is transmitted from antenna b
simultaneously. Thus, the received signals at the receiver are:

Y = HT

[
ψa +ψb

ψa−ψb

]
HRX+N (9)

Fig. 4 shows that 8 bits (i.e., “00110110”) are encoded
and transmitted on antenna a and b during time slots T1 to
T4. The phase changes of ψa +ψb and ψa−ψb can be de-
fined as e j(a+b) and e j(a−2b). For example, during T2, data
“11” is transmitted. Therefore, antenna a is transmitting
ψa +ψb = e j2π = 1 (i.e., zero phase change) while antenna b
is transmitting ψa−ψb = e− jπ =−1 (i.e., a phase inversion).
Reducing BER: It is more challenging to reduce the BER
on power constrained backscatter tag. In the VMscatter sys-
tem, in order to have a more reliable transmission, we utilize
the space-time coding on top of the basic modulation across
all the antennas (i.e., the antennas at the VMscatter tag) and
adjacent time slots. However, it is very challenging to im-
plement space-time coding on the tag by only turning on/off
the switches, because we do not want to increase the tag’s
computation and energy overheads. We note that since the
backscatter data is real number, the conjugate of the backscat-
ter data is itself. For example, ψa = ψ∗a and −ψ∗b = −ψb.
Therefore, VMscatter can construct the space-time coding by
using the two states of switch (on and off). Fig. 5 shows the
coding sequence. At a given time slot Tn, two streams of data
are simultaneously transmitted from antennas a and b. The
data transmitted from antennas a and b are denoted by ψa and
ψb, respectively, where ψa = e jθa and ψb = e jθb . During the
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data=’01’ data=’01’

b

Antenna
a

Figure 5: An Example of reducing BER. Four bits “0101” are
transmitted during four time slots. The signals in the shaded time
slots are shifted by π.

Figure 6: The distribution of e jπ modulated signal. The sender-to-
tag distance is 3 ft and the tag-to-receiver distance is 6 ft. We observe
that the shifted phases are distributed between 0 and 2π.

next time slot Tn+1, data −ψ∗b =−e− jθb is transmitted from
antenna a while data ψ∗a = e− jθa is transmitted from antenna
b. By plugging the coding sequence into the channel model
(Eqn. 8), the received signals in two time slots are:

Y1 = HT

[
ψa

ψb

]
HRX1 +N1

Y2 = HT

[
−ψ∗b

ψ∗a

]
HRX2 +N2

(10)

Fig. 5 illustrates how four bits of data (i.e., “0101”) are
transmitted on antenna a and b during time slots T1 to T4. We
take time slots T1 and T2 as an example. During T1, the first
data bit “0” (represented by ψa = e j0) is transmitted from
antenna a while the second data bit “1” (represented by ψb =
e jπ) is transmitted from antenna b. During T2, the encoded
data (according to Eqn. 10) −ψ∗b =−e− jπ and ψ∗a = e− j0 are
transmitted from antenna a and b, respectively.

4.3 MIMO Demodulation @ Receiver
In Sec. 4.2, we described the modulation scheme on a low
power VMscatter tag. In this section, we will introduce how
to demodulate the signal from a VMscatter tag. The most
challenging part is to estimate the pre-scatter channel HR
(the channel between sender and backscatter) and post-scatter
channel HT (the channel between backscatter and receiver)
in a MIMO setup, which is crucial for achieving reliable
backscatter communication.

To demodulate the backscatter data, the first challenge is
that in reality, the backscatter tag does not exactly shift the
ambient OFDM signal by e jθk , which may yield demodula-
tion error at the receiver. As we introduced in Sec. 4.2, the
backscatter tag shifts the ambient signal by e jθk , where k is
the index of the antennas, to modulate backscatter data. i.e.
θk = 0 indicates data bit “0”, θk = π indicates data bit “1”.
However, due to some practical facts (i.e., cumulative clock

RX Reference…
SymbolsSymbols
HybridLong Training

Fields

Channel Estimator Equalizer

FFTs FFTs FFTs

Equalizer

Channel EstimatorBackscatter

Conventional Channel Estimation and Equalization Modules

Maximum
Likelihood
DetectorDecoderData

Backscatter

Backscatter Demodulation Module

Space-Time

Figure 7: Proposed backscatter demodulation module. The backscat-
ter demodulation module takes the output of the conventional chan-
nel estimation and equalization modules as input.

drift and oscillator instability), the backscattered signal is not
exactly shifted by e jθk . Fig. 6 shows the distribution of a
backscattered signal sample set. The desired phase shift is
e jθk , where θk = π. The total symbols of the sample set are
more than 800,000. We can observe that around 50% of the
symbols are shifted by π while another 50% are shifted either
less or more than π.

The second challenge is that the existing channel estima-
tion method (i.e., simply solving the channel matrix) cannot
resolve both of the pre-scatter channel matrix HT and post-
scatter channel matrix HR, which is important to demodulate
the backscatter data (as we modeled in Eqn. 8). As shown in
Fig. 7, the conventional channel estimation module relies on
the Long Training Fields (LTFs) in the preamble to estimate
the channel between the sender and receiver. Then the equal-
izer uses the estimated channel matrix to compensate for the
upcoming data symbol. However, with a backscatter tag in
the middle (of the sender and the receiver), we need to resolve
both channel matrices HT and HR (as shown in Eqn. 11) for
reliable demodulation.

To overcome the first challenge, we have the following
analysis. Though the two practical facts (cumulative clock
drift and oscillator instability) cause the frequency mismatch
between the VMscatter tag and OFDM receiver, these two
facts behave as a phase offset in the demodulation procedure.
Fig. 6 shows the distribution of a sample set of the backscatter
signal. The expected phase is π because the VMscatter tag
transmits a e jπ. However, due to the cumulative clock drift
and oscillator instability, a portion of the symbols are not as
expected. To show the impact of these two practical facts, we
elaborate Eqn. 8 to be:

Y = HRΨPHTX+N = HRΨH′TX+N (11)

where P is the unwanted phase offset caused by cumulative
clock drift and oscillator instability. Since the essences of
P and HT are all phase offsets, we can combine them as
H′T = PHT. So far, we have solved the first challenge and
the second challenge becomes resolving HR and H′T.

To overcome this challenge, we propose a special backscat-
ter packet structure (shown in Fig. 8) as well as a backscatter
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Figure 8: VMscatter packet structure. It includes three fields: i)
0s sequence, in which the VMscatter transmits continuous “0” on
both antennas to pass through the LTFs from the ambient signal; ii)
reference signal, in which the VMscatter transmitted agreed symbols
on two antennas; and iii) backscatter data.

demodulation module on top of the conventional channel es-
timation and equalization modules (shown in Fig. 7). The
packet includes three fields: i) “0” sequence; ii) reference
signal; and iii) backscatter data.

i) “0” sequence: The VMscatter tag transmits a “0” se-
quence during the ambient signal’s Long Training Fields
(LTFs). The “0” sequence can shift the LTFs to the adja-
cent channel for minimizing the strong self-interference from
the original channel and getting a high SNR [63]. However, it
does not embed any useful backscatter data in the LTFs. Thus,
the backscatter data Ψ in this filed equals to an identity matrix
I2 and Eqn. 11 becomes:

YLTFs = HRI2H′TXLTFs +N = HEXLTFs +N (12)

where HE = HRI2H′T = HRH′T is the channel response for
the transmitted LTFs (i.e., XLTFs). Since XLTFs are known to
the receiver, HE is resolved by the existing channel estimator
(shown in Fig. 7). Then it is used to equalize the data symbol
in existing equalizers by using the following equation:

X̃ = H−1
E Y = H

′−1
T H−1

R Y (13)
where X̃ is the estimated symbol value. By plugging Eqn. 11
into Eqn. 13, we will get:

X̃=H
′−1
T �

�H−1
R ��HRΨH′TX+H−1

E N=H
′−1
T ΨH′T X+H−1

E N (14)

We note that the impact of the pre-scatter channel HR is
eliminated so far by using the “0” sequence and the existing
channel estimation and equalization process. To obtain Ψ,
we need to resolve H′T. H−1

E N is random noise which can be
resolved by a Maximum Likelihood estimation.

ii) Reference signal: To resolve H′T, we designed the sec-
ond field Reference signal in the VMscatter packet structure
(Fig. 8). A group of agreed on (between VMscatter tag and
OFDM receiver) symbols are transmitted to estimate H′T. The
backscatter channel estimation module (in Fig. 7) calculates
the estimated H̃′T by using:

H̃′T = arg min
H′T

∑
Ψre f

||X̃−H
′−1
T Ψre f H′T X||2 (15)

where Ψre f is the backscatter reference symbols as shown in
Fig. 8. X can be obtained from the original TX-RX channel
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Figure 9: The Example Signals at Each Demodulation Stage.

without backscatter’s interference (similar techniques are pro-
posed in [61, 62]). Eqn. 15 is a minimum mean squared error
(MMSE) channel estimator. A reduced complexity MMSE es-
timator can be achieved by employing the optimal rank reduc-
tion [60], which has a computational complexity of O(LSC2).
Where L is the number of reference symbols, S is the num-
ber of subcarriers and C = min(K,N). For a low power edge
computing platform Jetson Nano [45] (only cost $99) imple-
mented on an ARM A57 processor with 472 Giga -Floating
Point Operations per Second, it can solve a 4×4 MIMO chan-
nel estimation (with 4 reference symbols and 64 subcarriers)
in 4∗64∗42

472∗109 = 8ns, which is shorter than a symbol duration 4µs.
iii) Data: After resolving H′T, a maximum likelihood es-

timation module (shown in Fig. 7) is used to calculate the
upcoming data field. The maximum likelihood estimation
module minimizes the Euclidean distance between the equal-
ized values X̃ =

[
x̃A x̃B

]ᵀ and all possible estimated val-

ues X̃MLE =
[
x̃A_MLE x̃B_MLE

]ᵀ
= H̃′

−1
T Ψ H̃′T X, where x̃A

and x̃B are the values on RX antenna A and B, respectively.
X̃ is obtained from Eqn. 14. H̃′T is obtained from Eqn. 15.
Ψ = Diag(e jθa ,e jθb) is the possible backscattered data, X is
obtained from the original TX-RX channel as we mentioned
before. Thus, the backscatter data can be obtained by the
following equation:[

θ̃a
θ̃b

]
= arg min

θa,θb∈{0,π}
∑

s=A,B

T

∑
t=0
||x̃s(n+ t), x̃s_MLE(n+ t)||2 (16)

where T = 1 for VMscatter low bit error rate mode and T = 0
for VMscatter high throughput mode.

After demodulating [θ̃a, θ̃b]
ᵀ, the space-time decoding mod-

ule calculates the data bit value based on the coding method
as proposed in Sec. 4.2.

Fig. 9 shows example signals at different demodulation
stages. In Fig. 9(a), the blue circle indicates the I/Q values
of the ambient signal while the red circle indicates that the
signal is shifted by π after backscattering. Fig. 9(b) shows
the received signal without any equalization. We can observe
the rotating pattern which may be caused by channel and fre-
quency mismatch. Fig. 9(c) shows the signal passed through
the conventional channel estimation and equalization module,
in which the pre-scatter channel HR is eliminated. Finally,
the signal in Fig. 9(d) is processed by our backscatter demod-
ulation module where H′T (which includes the post-scatter
channel HT and cumulative clock drift and oscillator instabil-
ity P) is resolved. We can observe that most dots are in the
first quadrant, which can be correctly demodulated.
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Figure 11: VMscatter tag hardware diagram.

4.4 From 2×2×2 to M×K×N
In this section, we extend the backscatter MIMO system from
2×2×2 to M×K×N.
Modulation. To reduce BER, in Sec. 4.2, we already show
the 2×2 coding matrix (i.e., Matrix 17 shown below).

Γ(θa,θb) =

[
e jθa e jθb

−e− jθb e− jθa

]
(17)

When there are 4 antennas on the backscatter (K = 4), the
transmitted backscatter data becomes {θa,θb,θc,θd}. Then,
from Matrix 17, the coding matrix will be extended as follows:

Γ(θa,θb,θc,θd) =

[
Γ(θa,θb) Γ(θc,θd)
−Γ∗(θc,θd) Γ∗(θa,θb)

]
(18)

Each element in the coding Matrix 18 can be calculated
from Matrix 17. In other words, for the backscatter with 4 an-
tennas, each element in the coding matrix can be represented
by the coding matrix of the backscatter with 2 antennas. There-
fore, for the backscatter with K antennas, the coding matrix
can be represented as follow:

Γ(θ1, . . . ,θK)=

[
Γ(θ1, . . . ,θ K

2
) Γ(θ1+K

2
, . . . ,θK)

−Γ∗(θ1+K
2
, . . . ,θK) Γ∗(θ1, . . . ,θ K

2
)

]
(19)

In this coding matrix, each element can be calculated from
the coding matrix of backscatter with K/2 antennas.
Demodulation. In Sec. 4.3 Eqn. 15, we have built the
backscatter channel estimation model to estimate the pre-
scatter channel H′T. In this model, H′T is a 2×2 matrix and
has the invertible matrix H

′−1
T . For a M×K×N setup, H′T can

be represented as a M×K matrix. When M = K, H′T is invert-
ible and H

′−1
T exists. When M 6= K, the invertible matrix can

be replaced by the pseudoinverse matrix (H
′ᵀ
T H′T)

−1H
′ᵀ
T [20].

Therefore, we can still leverage the backscatter channel esti-
mation model and the maximum likelihood estimation model
to estimate H′T and further demodulate the backscatter data.

5 Evaluation
5.1 Implementation
Hardware Tag. We implement VMscatter on a customized
four-layer printed circuit board (PCB). As shown in Fig. 10,

140 feet

ReceiverTagSender

Figure 12: VMscatter Experimental Field

the hardware tag has three components: a 20MHz clock oscil-
lator, a baseband processor and an RF front. In the evaluation,
we show the impact of different oscillator accuracies.

We use a low-power FPGA (Microsemi Igloo Nano
AGLN250 [40]) as the baseband processor. The processor con-
trols the RF front, which consists of 4 RF switches (ADG902)
and connects up to 4 antennas. All the design introduced in
Sec. 4.2 is implemented in the processor. Fig. 11 shows a
basic VMscatter that can support 2 antennas.

Comparing with conventional backscatter systems [62, 68],
VMscatter only needs to add several low-power RF switches
and antennas to build the MIMO system. These switches and
antennas can be easily implemented on conventional backscat-
ter systems. The space-time coding can be achieved by shift-
ing the phase of the backscatter data to its orthogonal alterna-
tive, which also can be easily employed on the conventional
backscatter system. To be more specific, as mentioned in Pas-
sive WiFi [34], the phase shift can be realized by shifting the
initial phase of the square wave on the switch. As a result, the
modulation complexity of VMscatter is low.
Sender and Receiver Implementation. As shown in Fig. 12,
we implement the MIMO-OFDM sender on a B210 USRP,
which connects two antennas and is placed 3 feet away from
the tag. The sender’s output power is set as 0 dBm. The re-
ceiver is implemented on two X310 USRPs with four 9dbi
omnidirectional antennas. Therefore, there is a 2×4 MIMO
across the sender and receiver. Each receiving antenna is con-
nected to a UBX-160 daughterboard, which down-converts
the backscattered signal to the baseband signal and samples it.
To synchronize and align the sample clocks, the two USRPs
are connected in a daisy chain configuration [1], where one
device in the chain is configured as a master and exports its
10MHz clock and PPS time references to the other device.
5.2 Experiment Setup
To extensively evaluate the performance of VMscatter, we
conducted the experiments in the following configurations:
Single Input Multiple Output (SIMO): The sender has a
single data stream (therefore a single transmitting antenna).
We evaluate the performance of VMscatter in SIMO with
different number of backscatter antennas (2 and 4), which
constructs a 1×2×2 and a 1×4×4 setup, respectively.
Multiple Input Multiple Output (MIMO): The sender has
two independent data streams (therefore two transmitting an-
tennas). We evaluate the performance of VMscatter in MIMO
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Figure 13: BER

0 20 40 60 80

Distance (ft)

0

0.5

1

P
a
c
k
e
t 

R
e
c
e
p

ti
o

n
 R

a
ti

o

MOXcatter

SA (1x1x1)

VM (1x2x2)

VM (1x4x4)

Figure 14: PRR vs. Distance
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Figure 15: PRR vs. Packet Length
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Figure 16: Throughput

with different number of antennas (2 and 4), which constructs
a 2×2×2 and a 2×4×4 setup, respectively.
Baseline. We implemented the state-of-the-art MIMO
backscatter system (MOXcatter [68]) as our baseline. Be-
cause it neither employs the space-time coding nor introduces
any backscatter channel estimation. We also implemented a
1× 1× 1 Single Antenna setup (SA), which only employs
the backscatter channel estimation technique. Comparing it
with MOXcatter, the performance of the backscatter channel
estimation is evaluated. Comparing it with VMscatter, the
performance of space-time coding is evaluated.

5.3 VMscatter in SIMO
In this section, we show the evaluation results of VMscatter
with one transmitting antenna (i.e., single data stream).
5.3.1 Bit Error Rate
Fig. 13 shows the BER of VMscatter under the low bit error
rate mode. The performance of VMscatter is much better than
that of MOXcatter. When the distance between backscatter
and the receiver is as low as 6 f t, the BER for VMscatter with
4 antennas is around 0.00002, which is reduced by a factor
of 366 compared to MOXcatter (0.007). As the distance in-
creases to 66 f t, the BER of VMscatter is still low enough to
conduct communication while the BER of MOXcatter is 1.
The reasons why VMscatter shows dominant performance is
because VMscatter uses a novel backscatter channel estima-
tion technique and leverages the spatial diversity for communi-
cation, which eliminates the errors introduced by cumulative
clock drift or oscillator instability, etc and significantly reduce
the BER. In addition, we can also observe that by simply us-
ing channel estimation, the BER of a 1×1×1 single antenna
setup (SA) is better than that of MOXcatter with multiple
antennas. In contrast, although MOXcatter can backscatter a
single stream from the WiFi sender, it does not leverage the
spatial diversity in the reflected signals and channel estimation
techniques, which increases the BER.
5.3.2 Packet Reception Ratio
Fig. 14 shows the Packet Reception Ratio (PRR) of VM-
scatter (low bit error rate mode) under different distances be-
tween backscatter and receiver. The PRR of MOXcatter drops
rapidly as the distance increases from 6 f t to 30 f t while the
performance of SA is still better than that of MOXcatter. For
the distances larger than 30 f t, nearly all the packets trans-
mitted from MOXcatter cannot be correctly decoded at the
receiver side. On the contrary, since SA utilizes channel esti-
mation, it can still conduct communication until the distance

reaches 50 f t. Our VMscatter shows great advantages as dis-
tance increases. The curves are much more stable for both
the 2 antennas and 4 antennas configurations. For the first
30 f t, the PRR of VMscatter is more than 90%, which is much
higher than that of MOXcatter.

As shown in Figure 15, we also study the Packet Reception
Ratio (PRR) of VMscatter (low bit error rate mode) with the
packet length varying from 50 bits to 150 bits. Since the
experiments reveal similar trends, we only show the results of
the 4 antennas configuration (1x4x4). We can observe that the
PRR decreases with the increasing of the packets length while
VMscatter is more robust against different packet lengths. As
shown in this figure, the PRR reaches nearly 0 as the distance
increases to 70 f t. For MOXcatter, it does not use any space-
time coding and channel estimation techniques. As a result,
the PRR is nearly 0 when the distance increases to 30 f t for the
50 bits packet length. However, when the packet lengths are
100 and 150 bits, the PRR is nearly 0 as the distance increases
to 24 f t. Therefore, VMscatter can effectively increase the
communication range of backscatter.
5.3.3 Throughput
We show the throughput of VMscatter under the high through-
put mode with the increasing of the distance between backscat-
ter and receiver. As we can see from Fig. 16, the throughput
of VMscatter with two antennas is around 2 times as high as
that of MOXcatter. This is because VMscatter takes advan-
tages of the MIMO communication techniques. Specifically,
the antennas on VMscatter are transmitting different data,
which doubles the throughput. As the number of transmit-
ting antennas increases to 4, the throughput of VMscatter is
around 4 times as high as that of MOXcatter. On the contrary,
the antennas on MOXcatter are transmitting the same data,
which wastes the communication resources. In addition, due
to the lack of channel estimation, the throughput is further
hampered. As a result, the performance of MOXcatter is even
worse than that of single antenna setup (SA).
5.4 VMscatter in MIMO
In this section, we evaluate the performance of VMscatter
with two transmitting antennas (i.e., multi-data stream).

5.4.1 Bit Error Rate
As shown in Fig. 17, similar to a single data stream, the BER
of VMscatter is still much lower than that of MOXcatter and
SA. When the distance is as low as 6 f t, the BER of VMscat-
ter is around 0.000011, which is reduced by a factor of 862
compared to the BER of MOXcatter. When comparing with
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Figure 19: PRR vs. Packet Length
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Figure 21: BER v.s. SNR
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Figure 22: BER with a fixed tag-
to-receiver distance
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Figure 23: BER with a fixed
sender-to-receiver distance
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Figure 24: PRR with a fixed
sender-to-receiver distance

the single data stream scenario in Fig. 13, we can also observe
that the BER of VMscatter with two transmitting antennas
is lower than the BER with one transmitting antenna. Inter-
estingly, as shown in Table 1, the BER of MOXcatter shows
the opposite trends, that is, the BER with two transmitting
antennas is higher than the BER in the single data stream
scenario and even higher than BER of the non-MIMO WiFi
backscatter system FreeRider [62].

Table 1: BER Comparison
System FreeRider MOXcatter VMscatter

(Non-MIMO) (MIMO) (MIMO)
BER 0.002 0.0095 0.000011

This is because as the number of transmitting antennas in-
creases, the interference and multi-path effects become more
severe than the single antenna scenario, which degrades the
performance of MOXcatter. In contrast, VMscatter fully lever-
ages the feature of the MIMO spatial diversity. As the number
of transmitting antennas increases, it is easier for VMscatter
to conduct communication. Therefore, different from MOX-
catter, VMscatter shows great advantages in this scenario.
5.4.2 Packet Reception Ratio
Fig. 18 and Fig. 19 show the Packet Reception Ratio under
various distances and packet lengths, respectively. Similar
to the single antenna scenario, the packet reception ratio of
VMscatter is much higher than that of MOXcatter and SA.
We can observe that the performance of SA with 150 bits
packet length is better than that of MOXcatter with 50 bits
packet length. This results prove the advances of our channel
estimation technique. Moreover, we also can observe that the
packet reception ratio of VMscatter is almost 100% for the
first 36 f t, which shows the reliability of the low bit error rate
mode of VMscatter.
5.4.3 Throughput
Fig. 20 shows the throughput of VMscatter with 2 and 4
backscatter antennas under the high throughput mode. The
throughput of MOXcatter is even worse than that of the single
antenna SA. This is because MOXcatter does not introduce

any channel estimation techniques. As the number of trans-
mitting antennas increases, the interference is higher, which
reduces the throughput. In contrast, VMscatter can estimate
the channel to minimize the interference and other unwanted
errors. Moreover, VMscatter utilizes the MIMO technique
to conduct backscatter communication. As the number of
backscatter antennas increases to 2 and 4, the throughput of
VMscatter also increases, which is around 2 and 4 times as
high as that of MOXcatter.
5.4.4 BER v.s. SNR
To better understand the gain of MIMO technique for
backscatter communication, we investigated the relationship
between BER and SNR. In this experiment, we fixed the loca-
tions of sender, backscatter tag, and receiver while varying the
transmission power of the excitation signals. Figure 21 plots
the captured data points of BER over SNR for VMscatter in
a 2× 2× 2 (VM) configuration comparing with the signal
antenna configuration (SA). We can observe that the BER is
around 3× 10−5 which is at least two orders of magnitude
lower than that of SA.

5.5 Impact
In this section, we evaluate VMscatter under a variety of
settings to further show the advantages of our design.
5.5.1 Impact of Sender-to-Tag Distance
The sender-to-tag distance is an important factor for the
backscatter communication range. We evaluate its impact
in two sets of experiments. In the first experiment, we fix
the tag-to-receiver distance to be 1 f t and move the tag and
receiver to different locations, searching for the maximum
backscatter communication range. As shown in Fig. 22, when
the sender-to-tag distance increases to 45 f t, the BER for
VMscatter with 4 antennas is around 0.01, which is still low
enough to conduct communication.

In the second experiment, we fix the location of the sender
and place the receiver at a distance of 24 ft. Then, we move the
tag along the line from the sender to the receiver and measure
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Figure 25: Impact of Oscillator Accuracy
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Figure 26: BER vs. Human Movement
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Figure 27: Throughput vs. Human Movement
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Figure 28: Number of Sender’s Antennas
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Figure 29: Number of Receiver’s Antennas
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Figure 30: Number of Backscatter’s Antennas

the BER and the packet reception ratio reported by VMscatter.
Fig. 23 and Fig. 24 show the BER and packet reception ratio
results, which can be improved either by reducing the sender-
to-tag distance or the tag-to-receiver distance. This is because
the signal strength at the receiver can be modeled by using
Friis Transmission Equation [34, 42]. As the sender-to-tag
distance or the tag-to-receiver distance decreases, the signal
strength is increased at the receiver side, which means the
SNR is also improved.
5.5.2 Impact of Backscatter Oscillator Accuracy
We study the impact of oscillator accuracy under VMscatter
low bit error rate mode. The distance between the backscatter
and the receiver is 6 f t. As shown in Fig. 25, with the decrease
of crystal oscillator accuracy, the BER of MOXcatter increases
while the BER of VMscatter almost remains the same. This
is because MOXcatter is suffering cumulative clock drift and
oscillator instability. Therefore, the performance of MOXcat-
ter is highly related to the oscillator accuracy. In practice, an
oscillator with high accuracy is more expensive and power
hungry, which will limit the potential low power applications
of MOXcatter. In contrast, our VMscatter utilizes a channel es-
timation technique, which eliminates the errors introduced by
oscillator. In summary, VMscatter is stable against oscillator
accuracy. A low power ring oscillator is enough for VMscatter
to achieve low BER. Therefore, VMscatter has the potential
to be widely adopted to real world scenarios.
5.5.3 Impact of Human Movements
Fig. 26 (low bit error rate mode) and Fig. 27 (high through-
put mode) study the performances of VMscatter with human
movements. During the experiments, the distance between
the backscatter and the receiver is 36 f t. Two people are walk-
ing between the backscatter and the receiver. As shown in
Fig. 26, the performance of VMscatter is robust against hu-
man movements. The BER remains at the level of 10−3 for
single data stream and 10−4 for multi-data stream, respec-
tively. Fig. 27 shows the throughput of VMscatter under high
throughput mode. As we can see from this figure, when there
are no human movements, the throughputs of VMscatter are
239.7Kbps and 245.9Kbps for single data stream and multi-

data stream, respectively. For the human movements scenario,
the throughputs of VMscatter still remain at 230.2Kbps and
238.5Kbps, which further demonstrates the reliable commu-
nication of our VMscatter.
5.6 Simulation
To demonstrate that VMscatter can work under massive
MIMO scenarios, we show the simulation results in this sec-
tion. In the simulation, the physical layer configurations of
the sender and receiver follow the 802.11n specification [2].

Fig. 28 and Fig. 29 study the BER with the increase of
signal to noise ratio (SNR) under different number of antennas
configurations. These two figures show a similar trend, that
is, the BER decreases as the SNR increases. Moreover, the
BER of VMscatter is lower when the number of antennas
increases. When SNR reaches 30dB, the BER results are
significantly reduced (at the level of 10−5). These results show
that VMscatter can achieve better performance in massive
MIMO scenarios, especially when the numbers of sender and
receiver antennas are large.

Fig. 30 shows the results with different number of anten-
nas on a backscatter device. When the number of antennas
increases, the BER decreases. When the SNR is as low as
2dB, the BER for 32 antennas is at the level of 10−1 while
the BERs for 128 antennas are at the level of 10−2. As SNR
increases to 30dB, the BER for 32 antennas is at the level of
10−5. In contrast, the BER for 64 antennas drops to the level
of 10−6 while the BER for 128 antennas drops below the level
of 10−6. These results further demonstrate that VMscatter can
effectively leverage the spatial diversity to conduct reliable
backscatter communication.

5.7 Energy Consumption
In this section, we first measure the power consumption of
our hardware tag. We then design an integrated circuit based
on the hardware and conduct power simulations to show the
potential low-power capability.

5.7.1 Hardware Power Consumption Measurement
The hardware power consumption of VMscatter tag is similar
to those traditional backscatter systems [61, 62, 69] that do
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not support MIMO communication. First, VMscatter only
has 1∼ 3 more passive antennas and low-power RF switches
than traditional backscatter systems. Therefore, the power
consumption on the RF front is low. Second, the low-power
FPGA [40] provides an internal ring oscillator to generate
the clock, which consumes significantly less power than an
external oscillator [64]. Third, the low-power FPGA supports
the flash freeze technology. According to our lightweight
modulation technique, 80% flash can be frozen.

We utilize a KEITHLEY 2701 multimeter to measure VM-
scatter tag’s DC power draw. Under the work mode, the tag
consumes as low as 464µW (it is 32µW in IC design simu-
lation), which is 516× lower than existing 802.11n MIMO
chip [51]. Under the sleep mode, it consumes as little as
2.4µW of power, which is 25× lower than existing 802.11n
MIMO chip [51]. We can find that the work mode saves much
more power than that of the sleep mode when comparing with
MIMO chip. This is because the advantage of the backscatter
is passive radio communication while the WiFi chip needs to
generate the active radio under work mode. If the duty-cycles
of the backscatter are from 1% to 10%, the overall power
consumptions are around 5µW to 50µW .

5.7.2 IC Design Power Consumption Simulation
To show the potential low-power capability of VMscatter, we
designed an integrated circuit (IC) for VMscatter tag. The
IC design consists of four main components: RF transistors,
modulation logic gates, coding logic gates, and a ring oscilla-
tor. The simulation is conducted by using the HSPICE model
for TMSC 55nm process. In the power consumption simu-
lation, we considered multiple factors including operating
voltages, operating temperature, system clock frequency, and
power mode usage. Overall , the results show that the power
consumption of VMscatter tag IC under work mode is 32µW .

6 Related Work
The related work can be divided into two categories:

Backscatter Communications. Backscatter is one of the
hot topics in recent years for its potential to support low-
power and low-cost applications [5, 24, 38, 41, 52, 64]. Lots of
work has been proposed to support various types of backscat-
ter communications, such as WiFi [33, 59], Bluetooth [30],
TV [39], FM [53]. LoRa [28, 47], or even Quantum Backscat-
ter Communication [22] etc. Furthermore, researchers also
improved backscatter to support full duplex [13]. The most re-
lated work to VMscatter is WiFi backscatter techniques. The
first work of backscattering WiFi signals is WiFi Backscat-
ter [33], which mainly modulates the CSI/RSSI information
to conduct backscatter communication. Based on this work,
BackFi [14] modulates phase information of the received
WiFi signal and leverages the full-duplex technique to im-
prove the throughput and communication range at the same
time. HitchHike [61] introduces a codeword translation tech-
nique to make backscatter communication compatible with

802.11b radios. To support OFDM transmissions, [58] intro-
duces a system model that analyzes the OFDM backscatter.
FreeRider [62] can support backscatter communications with
OFDM signals by leveraging the codeword translation to
OFDM signals. MOXcatter [68] is able to backscatter MIMO
signals from the WiFi MIMO sender. However, the multiple
antennas on MOXcatter do not take advantage of the advanced
features of MIMO technology.

MIMO Techniques. MIMO techniques have become one
of the most important part in modern communication systems.
Lots of projects have been proposed with focus on full duplex
MIMO [10, 11, 15], Multi-User MIMO [9, 19, 35, 48–50, 56],
Massive MIMO [12, 29, 32, 66], MIMO networks [21, 25, 57,
67] and novel MIMO systems [16–18, 37, 46], etc. For exam-
ple, to improve the energy efficiency, CMES [46] mainly tar-
gets at finding the efficient antenna settings for MIMO 802.11
devices. To study full duplex MIMO, [15] introduces a full
duplex WiFi-PHY based MIMO radios while [11] compares
the capacity of multiple-antennas half-duplex MIMO with
a full-duplex MIMO. Researchers have also presented lots
of systems with focus on Multi-User MIMO (MU-MIMO)
and Massive MIMO. MUSE [50] proposes a user selection
framework on commodity devices to improve the throughput
gains while Hekaton [56] combines a beamforming technique
with phased-array antennas to improve the capacity gains in
large-scale MU-MIMO systems. [66] introduces a scalable
directional training method to obtain CSI in FDD massive
MIMO systems. Surface MIMO [16] leverages the conductive
paint or cloth on the surface to create an additional spatial
path for communication between small devices.

Our work builds on top of the existing techniques in
backscatter and MIMO. To the best of our knowledge, VM-
scatter is the first work that designed and implemented a versa-
tile MIMO system. By doing this, VMscatter effectively lever-
ages the spatial diversity feature of ambient MIMO signals,
which significantly reduces the bit error rate and improves
the throughput. Moreover, our design is generic and has the
potential to be extended to massive MIMO.

7 Conclusion
In this paper, we present a new MIMO system on the backscat-
ter device that can i) support various number of antennas at
the sender, backscatter, and receiver; ii) significantly reduce
the bit error rate or increase the throughput; and iii) achieve
a similar level of energy consumption as existing backscat-
ter systems. We built a hardware prototype and extensively
evaluated our system under various real-world settings to
demonstrate its extremely low BER performance. For exam-
ple, the BER is reduced by a factor of 862 compared to the
most related work MOXcatter [68].

Acknowledgments
This project is supported by NSF grants CNS-1652669 and
CNS-1824491. We also thank anonymous reviewers and our
shepherd Dr. Dinesh Bharadia for their valuable comments.

906    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] Ettus research usrp hardware driver and usrp man-
ual. https://files.ettus.com/manual/page_
multiple.html. [Online].

[2] Ieee standard for information technology–
telecommunications and information exchange
between systems local and metropolitan area networks–
specific requirements - part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifi-
cations. IEEE Std 802.11-2016 (Revision of IEEE Std
802.11-2012), 2016.

[3] Microstrip antenna — Wikipedia. https:
//en.wikipedia.org/wiki/Microstrip_antenna,
2019. [Online].

[4] Radio-frequency microelectromechanical system —
Wikipedia. https://en.wikipedia.org/wiki/
Radio-frequency_microelectromechanical_
system, 2019. [Online].

[5] Ali Abedi, Mohammad Hossein Mazaheri, Omid Abari,
and Tim Brecht. Witag: Rethinking backscatter commu-
nication for wifi networks. In HotNets, 2018.

[6] C.J. Aguilar-Armenta and S.J. Porter. Cantilever rf-
mems for monolithic integration with phased array an-
tennas on a pcb. International Journal of Electronics,
2015.

[7] S. M. Alamouti. A simple transmit diversity technique
for wireless communications. IEEE Journal on Selected
Areas in Communications, 1998.

[8] Analog Devices. ADG901/ADG902: Wideband, 40
dB Isolation at 1 GHz, CMOS 1.65 V to 2.75 V, SPST
Switches Data Sheet, 2019. Rev. D.

[9] Narendra Anand, Jeongkeun Lee, Sung-Ju Lee, and Ed-
ward W Knightly. Mode and user selection for multi-
user mimo wlans without csi. In INFOCOM, 2015.

[10] Ehsan Aryafar, Mohammad Amir Khojastepour,
Karthikeyan Sundaresan, Sampath Rangarajan, and
Mung Chiang. Midu: Enabling mimo full duplex. In
MobiCom, 2012.

[11] Sanaz Barghi, Amir Khojastepour, Karthik Sundaresan,
and Sampath Rangarajan. Characterizing the through-
put gain of single cell mimo wireless systems with full
duplex radios. In WiOpt, 2012.

[12] Jona Beysens, Ander Galisteo, Qing Wang, Diego Juara,
Domenico Giustiniano, and Sofie Pollin. Densevlc: a
cell-free massive mimo system with distributed leds. In
CoNEXT, 2018.

[13] Dinesh Bharadia, Kiran Raj Joshi, and Sachin Katti.
Full duplex backscatter. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, HotNets-
XII, 2013.

[14] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,
and Sachin Katti. Backfi: High throughput wifi backscat-
ter. 2015.

[15] Dinesh Bharadia and Sachin Katti. Full duplex
{MIMO} radios. In NSDI, 2014.

[16] Justin Chan, Anran Wang, Vikram Iyer, and Shyamnath
Gollakota. Surface mimo: Using conductive surfaces
for mimo between small devices. In MobiCom, 2018.

[17] Zicheng Chi, Yan Li, Xin Liu, Yao Yao, Yanchao Zhang,
and Ting Zhu. Parallel inclusive communication for con-
necting heterogeneous iot devices at the edge. SenSys
’19, 2019.

[18] Zicheng Chi, Yan Li, Hongyu Sun, Yao Yao, Zheng Lu,
and Ting Zhu. B2w2: N-way concurrent communication
for iot devices. SenSys ’16.

[19] Junsu Choi, Sunghyun Choi, and Kwang Bok Lee.
Sounding node set and sounding interval determination
for ieee 802.11 ac mu-mimo. IEEE Transactions on
Vehicular Technology, 2016.

[20] Wikipedia contributors. Moore–penrose inverse, 2019.

[21] Lara Deek, Eduard Garcia-Villegas, Elizabeth Belding,
Sung-Ju Lee, and Kevin Almeroth. Joint rate and chan-
nel width adaptation for 802.11 mimo wireless networks.
In SECON, 2013.

[22] Roberto Di Candia, Riku Jäntti, Ruifeng Duan, Jari Liet-
zén, Hany Khalifa, and Kalle Ruttik. Quantum backscat-
ter communication: A new paradigm. In ISWCS, 2018.

[23] Lee Kai Fong and Luk Kwai Man. Microstrip Patch
Antennas. World Scientific, 2001.

[24] Wei Gong, Haoxiang Liu, Kebin Liu, Qiang Ma, and
Yunhao Liu. Exploiting channel diversity for rate adap-
tation in backscatter communication networks. In IEEE
INFOCOM, 2016.

[25] Deke Guo, Yuan He, Yunhao Liu, Panlong Yang, Xiang-
Yang Li, and Xin Wang. Link scheduling for exploiting
spatial reuse in multihop mimo networks. TPDS, 2013.

[26] Ezzeldin Hamed, Hariharan Rahul, Mohammed A. Ab-
delghany, and Dina Katabi. Real-time distributed mimo
systems. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    907

https://files.ettus.com/manual/page_multiple.html
https://files.ettus.com/manual/page_multiple.html
https://en.wikipedia.org/wiki/Microstrip_antenna
https://en.wikipedia.org/wiki/Microstrip_antenna
https://en.wikipedia.org/wiki/Radio-frequency_microelectromechanical_system
https://en.wikipedia.org/wiki/Radio-frequency_microelectromechanical_system
https://en.wikipedia.org/wiki/Radio-frequency_microelectromechanical_system


[27] Ezzeldin Hamed, Hariharan Rahul, and Bahar Partov.
Chorus: Truly distributed distributed-mimo. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18.

[28] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota.
Netscatter: Enabling large-scale backscatter networks.
NSDI’19.

[29] MM Aftab Hossain, Cicek Cavdar, Emil Björnson, and
Riku Jäntti. Energy saving game for massive mimo:
Coping with daily load variation. IEEE Transactions on
Vehicular Technology, 2018.

[30] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath
Gollakota, and Joshua Smith. Inter-technology backscat-
ter: Towards internet connectivity for implanted devices.
In SIGCOMM 2016, 2016.

[31] Kiran Joshi, Dinesh Bharadia, Manikanta Kotaru, and
Sachin Katti. Wideo: Fine-grained device-free motion
tracing using RF backscatter. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), 2015.

[32] Petteri Kela, Mário Costa, Jussi Turkka, Kari Leppänen,
and Riku Jäntti. Flexible backhauling with massive
mimo for ultra-dense networks. IEEE Access, 2016.

[33] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R. Smith, and David Wetherall. Wi-fi backscat-
ter: Internet connectivity for rf-powered devices. In
SIGCOMM, 2014.

[34] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and
Joshua R. Smith. Passive wi-fi: Bringing low power to
wi-fi transmissions. In NSDI, 2016.

[35] Tae Hyun Kim, Robert W Heath, and Sunghyun Choi.
Multiuser mimo downlink with limited feedback using
transmit-beam matching. In ICC, 2008.

[36] N. Kingsley, D. E. Anagnostou, M. Tentzeris, and J. Pa-
papolymerou. Rf mems sequentially reconfigurable
sierpinski antenna on a flexible organic substrate with
novel dc-biasing technique. Journal of Microelectrome-
chanical Systems, 2007.

[37] Yan Li, Zicheng Chi, Xin Liu, and Ting Zhu. Chiron:
Concurrent high throughput communication for iot de-
vices. MobiSys ’18.

[38] Yan Li, Zicheng Chi, Xin Liu, and Ting Zhu. Passive-
zigbee: Enabling zigbee communication in iot networks
with 1000x+ less power consumption. SenSys ’18.

[39] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R. Smith. Ambient

backscatter: Wireless communication out of thin air. In
SIGCOMM, 2013.

[40] Microsemi. IGLOO nano Low Power Flash FPGAs with
Flash Freeze Technology, 2019. Revision 19.

[41] Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla,
Shyamnath Gollakota, and Joshua R Smith. Towards
battery-free hd video streaming. In NSDI, 2018.

[42] P. V. Nikitin and K. V. S. Rao. Theory and measurement
of backscattering from rfid tags. IEEE Antennas and
Propagation Magazine, 2006.

[43] Konstantinos Nikitopoulos and Kyle Jamieson. Faster:
Fine and accurate synchronization for large distributed
mimo wireless networks. 2013.

[44] Konstantinos Nikitopoulos, Juan Zhou, Ben Congdon,
and Kyle Jamieson. Geosphere: Consistently turning
mimo capacity into throughput. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14.

[45] NVIDIA. Jetson nano brings ai computing
to everyone. https://devblogs.nvidia.com/
jetson-nano-ai-computing/, 2019.

[46] Ioannis Pefkianakis, Chi-Yu Li, Chunyi Peng, Suk-Bok
Lee, and Songwu Lu. Cmes: Collaborative energy save
for mimo 802.11 wireless networks. In ICNP, 2013.

[47] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xi-
anshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle
Jamieson. Plora: A passive long-range data network
from ambient lora transmissions. In SIGCOMM, 2018.

[48] Wei-Liang Shen, Kate Ching-Ju Lin, Ming-Syan Chen,
and Kun Tan. Client as a first-class citizen: Practical
user-centric network mimo clustering. In INFOCOM,
2016.

[49] Wei-Liang Shen, Yu-Chih Tung, Kuang-Che Lee, Kate
Ching-Ju Lin, Shyamnath Gollakota, Dina Katabi, and
Ming-Syan Chen. Rate adaptation for 802.11 multiuser
mimo networks. In Mobicom, 2012.

[50] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and
Kyu-Han Kim. Practical mu-mimo user selection on
802.11ac commodity networks. In MobiCom, 2016.

[51] Espressif Systems. ESP8266EX Datasheet. Espressif
Systems, 2018.

[52] Deepak Vasisht, Guo Zhang, Omid Abari, Hsiao-Ming
Lu, Jacob Flanz, and Dina Katabi. In-body backscatter
communication and localization. In SIGCOMM, 2018.

[53] Anran Wang, Vikram Iyer, Vamsi Talla, Joshua R. Smith,
and Shyamnath Gollakota. Fm backscatter: Enabling
connected cities and smart fabrics. In NSDI, 2017.

908    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://devblogs.nvidia.com/jetson-nano-ai-computing/
https://devblogs.nvidia.com/jetson-nano-ai-computing/


[54] Wikipedia contributors. Orthogonal matrix —
Wikipedia, the free encyclopedia, 2019. [Online; ac-
cessed 8-September-2019].

[55] Wikipedia contributors. Space–time block code —
Wikipedia, the free encyclopedia, 2019. [Online; ac-
cessed 31-August-2019].

[56] Xiufeng Xie, Eugene Chai, Xinyu Zhang, Karthikeyan
Sundaresan, Amir Khojastepour, and Sampath Rangara-
jan. Hekaton: Efficient and practical large-scale mimo.
In MobiCom, 2015.

[57] Xiufeng Xie, Xinyu Zhang, and Karthikeyan Sundare-
san. Adaptive feedback compression for mimo networks.
In MobiCom, 2013.

[58] Gang Yang and Ying-Chang Liang. Backscatter commu-
nications over ambient ofdm signals: Transceiver design
and performance analysis. In GLOBECOM, 2016.

[59] Zhice Yang, Qianyi Huang, and Qian Zhang. Nicscatter:
Backscatter as a covert channel in mobile devices. In
MobiCom, 2017.

[60] Yang-Seok Choi, P. J. Voltz, and F. A. Cassara. On
channel estimation and detection for multicarrier signals
in fast and selective rayleigh fading channels. IEEE
Transactions on Communications, 2001.

[61] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. Hitchhike: Practical backscatter using
commodity wifi. In SenSys, 2016.

[62] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia,
and Sachin Katti. Freerider: Backscatter communication
using commodity radios. In CoNEXT, 2017.

[63] PENGYU ZHANG, Mohammad Rostami, Pan Hu, and
Deepak Ganesan. Enabling practical backscatter com-
munication for on-body sensors. In SIGCOMM, 2016.

[64] Pengyu Zhang, Mohammad Rostami, Pan Hu, and
Deepak Ganesan. Enabling practical backscatter com-
munication for on-body sensors. In SIGCOMM, 2016.

[65] X. Zhang, L. Zhong, and A. Sabharwal. Directional
training for fdd massive mimo. IEEE Transactions on
Wireless Communications, 2018.

[66] Xing Zhang, Lin Zhong, and Ashutosh Sabharwal. Di-
rectional training for fdd massive mimo. IEEE Transac-
tions on Wireless Communications, 2018.

[67] Xinyu Zhang, Karthikeyan Sundaresan, Mohammad
A. (Amir) Khojastepour, Sampath Rangarajan, and
Kang G. Shin. Nemox: Scalable network mimo for
wireless networks. In MobiCom, 2013.

[68] Jia Zhao, Wei Gong, and Jiangchuan Liu. Spatial stream
backscatter using commodity wifi. In MobiSys, 2018.

[69] Jia Zhao, Wei Gong, and Jiangchuan Liu. X-tandem: To-
wards multi-hop backscatter communication with com-

modity wifi. In MobiCom, 2018.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    909





Performant TCP for Low-Power Wireless Networks

Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler
University of California, Berkeley

Abstract

Low-power and lossy networks (LLNs) enable diverse appli-
cations integrating many resource-constrained embedded de-
vices, often requiring interconnectivity with existing TCP/IP
networks as part of the Internet of Things. But TCP has re-
ceived little attention in LLNs due to concerns about its over-
head and performance, leading to LLN-specific protocols that
require specialized gateways for interoperability. We present
a systematic study of a well-designed TCP stack in IEEE
802.15.4-based LLNs, based on the TCP protocol logic in
FreeBSD. Through careful implementation and extensive ex-
periments, we show that modern low-power sensor platforms
are capable of running full-scale TCP and that TCP, counter
to common belief, performs well despite the lossy nature of
LLNs. By carefully studying the interaction between the trans-
port and link layers, we identify subtle but important modi-
fications to both, achieving TCP goodput within 25% of an
upper bound (5–40x higher than prior results) and low-power
operation commensurate to CoAP in a practical LLN applica-
tion scenario. This suggests that a TCP-based transport layer,
seamlessly interoperable with existing TCP/IP networks, is
viable and performant in LLNs.

1 Introduction
Research on wireless networks of low-power, resource con-
strained, embedded devices—low-power and lossy networks
(LLNs) in IETF terms [128]—blossomed in the late 1990s.
To obtain freedom to tackle the unique challenges of LLNs,
researchers initially departed from the established conven-
tions of the Internet architecture [50, 68]. As the field ma-
tured, however, researchers found ways to address these chal-
lenges within the Internet architecture [70]. Since then, it
has become commonplace to use IPv6 in LLNs via the
6LoWPAN [105] adaptation layer. IPv6-based routing pro-
tocols, like RPL [33], and application-layer transports over
UDP, like CoAP [35], have become standards in LLNs. Most
wireless sensor network (WSN) operating systems, such as
TinyOS [95], RIOT [24], and Contiki [45], ship with IP imple-
mentations enabled and configured. Major industry vendors
offer branded and supported 6LoWPAN stacks (e.g., TI Sim-
pleLink, Atmel SmartConnect). A consortium, Thread [64],
has formed around 6LoWPAN-based interoperability.

Despite these developments, transport in LLNs has re-
mained ad-hoc and TCP has received little serious consid-
eration. Many embedded IP stacks (e.g., OpenThread [106])
do not even support TCP, and those that do implement only a
subset of its features (Appendix B). The conventional wisdom

is that IP holds merit, but TCP is ill-suited to LLNs. This view
is represented by concerns about TCP, such as:

• “TCP is not light weight ... and may not be suitable for
implementation in low-cost sensor nodes with limited pro-
cessing, memory and energy resources.” [110] (Similar ar-
gument in [42], [75].)

• That “TCP is a connection-oriented protocol” is a poor
match for WSNs, “where actual data might be only in the
order of a few bytes.” [114] (Similar argument in [110].)

• “TCP uses a single packet drop to infer that the network
is congested.” This “can result in extremely poor trans-
port performance because wireless links tend to exhibit
relatively high packet loss rates.” [109] (Similar argument
in [43], [44], [75].)

Such viewpoints have led to a plethora of WSN-specialized
protocols and systems [110, 117, 132] for reliable data trans-
port, such as PSFQ [130], STCP [75], RCRT [109], Flush [88],
RMST [125], Wisden [138], CRRT [10], and CoAP [31], and
for unreliable data transport, like CODA [131], ESRT [118],
Fusion [71], CentRoute [126], Surge [94], and RBC [142].

As LLNs become part of the emerging Internet of Things
(IoT), it behooves us to re-examine the transport question,
with attention to how the landscape has shifted: (1) As part
of IoT, LLNs must be interoperable with traditional TCP/IP
networks; to this end, using TCP in LLNs simplifies IoT
gateway design. (2) Popular IoT application protocols, like
MQTT [39] and ZeroMQ [8], assume that TCP is used at the
transport layer. (3) Some IoT application scenarios demand
high link utilization and reliability on low-bandwidth lossy
links. Embedded hardware has also evolved substantially,
prompting us to revisit TCP’s overhead. In this context, this
paper seeks to determine: Do the “common wisdom” con-
cerns about TCP hold in a modern IEEE 802.15.4-based
LLN? Is TCP (still) unsuitable for use in LLNs?

To answer this question, we leverage the fully-featured TCP
implementation in the FreeBSD Operating System (rather
than a limited locally-developed implementation) and refactor
it to work with the Berkeley Low-Power IP Stack (BLIP),
Generic Network Stack (GNRC), and OpenThread network
stack, on two modern LLN platforms (§5). Naïvely running
TCP in an LLN indeed results in poor performance. However,
upon close examination, we discover that this is not caused by
the expected reasons, such as those listed above. The actual
reasons for poor TCP performance include (1) small link-
layer frames that increase TCP header overhead, (2) hidden
terminal effects over multiple wireless hops, and (3) poor
interaction between TCP and a duty-cycled link. Through
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Challenge Technique Observed Improvement
Resource Zero-Copy Send Send Buffer: 50% less mem.

Constraints In-Place Reass. Recv Buffer: 38% less mem.
Link-Layer Large MSS TCP Goodput: 4–5x higher
Properties Link Retry Delay TCP Seg. Loss: 6%→ 1%

Energy Adaptive DC HTTP Latency: ≈ 2x lower
Constraints L2 Queue Mgmt. TCP Radio DC: 3%→ 2%

Table 1: Impact of techniques to run full-scale TCP in LLNs

a systematic study of TCP in LLNs, we develop techniques
to resolve these issues (Table 1), uncover why the generally
assumed problems do not apply to TCP in LLNs, and show
that TCP perfoms well in LLNs once these issues are resolved:

We find that full-scale TCP fits well within the CPU and
memory constraints of modern LLN platforms (§5, §6).
Owing to the low bandwidth of a low-power wireless link, a
small window size (≈ 2 KiB) is sufficient to fill the bandwidth-
delay product and achieve good TCP performance. This trans-
lates into small send/receive buffers that fit comfortably within
the memory of modern WSN hardware. Furthermore, we
propose using an atypical Maximum Segment Size (MSS)
to manage header overhead and packet fragmentation. As
a result, full-scale TCP operates well in LLNs, with 5–40
times higher throughput than existing (relatively simplis-
tic) embedded TCP stacks (§6).

Hidden terminals are a serious problem when running TCP
over multiple wireless hops. We propose adding a delay d
between link-layer retransmissions, and demonstrate that it
effectively reduces hidden-terminal-induced packet loss for
TCP. We find that, because a small window size is sufficient
for good performance in LLNs, TCP is quite resilient to spu-
rious packet losses, as the congestion window can recover
to a full window quickly after loss (§7).

To run TCP in a low-power context, we adaptively duty-
cycle the radio to avoid poor interactions with TCP’s self-
clocking behavior. We also propose careful link-layer queue
management to make TCP more robust to interference. We
demonstrate that TCP can operate at low power, compara-
ble to alternatives tailored specifically for WSNs, and that
TCP brings value for real IoT sensor applications (§8).

We conclude that TCP is entirely capable of running on
IEEE 802.15.4 networks and low-cost embedded devices in
LLN application scenarios (§9). Since our improvements to
TCP and the link layer maintain seamless interoperability with
other TCP/IP networks, we believe that a TCP-based transport
architecture for LLNs could yield considerable benefit.

In summary, this paper’s contributions are:
1. We implement a full-scale TCP stack for low-power em-

bedded devices and reduce its resource usage.
2. We identify the actual issues causing poor TCP perfor-

mance and develop techniques to address them.
3. We explain why the expected insurmountable reasons for

poor TCP performance actually do not apply.

4. We demonstrate that, once these issues are resolved, TCP
performs comparably to LoWPAN-specialized protocols.

Table 1 lists our techniques to run TCP in an LLN. Although
prior LLN work has already used various forms of link-layer
delays [136] and adaptive duty-cycling [140], our work shows,
where applicable, how to adapt these techniques to work well
with TCP, and demonstrates that they can address the chal-
lenges of LLNs within a TCP-based transport architecture.

2 Background and Related Work
Since the introduction of TCP, a vast literature has emerged,
focusing on improving it as the Internet evolved. Some rep-
resentative areas include congestion control [9, 51, 62, 76],
performance on wireless links [15, 27], performance in high-
bandwidth environments [11, 30, 53, 65, 78], mobility [124],
and multipath operation [115]. Below, we discuss TCP in the
context of LLNs and embedded devices.

2.1 Low-Power and Lossy Networks (LLNs)
Although the term LLN can be applied to a variety of tech-
nologies, including LoRa and Bluetooth Low Energy, we re-
strict our attention in this paper to embedded networks using
IEEE 802.15.4. Such networks are called LoWPANs [93]—
Low-Power Wireless Personal Area Networks—in contrast
to WANs, LANs (802.3), and WLANs (802.11). Outside of
LoWPANs, TCP has been successfully adapted to a variety of
networks, including serial [77], Wi-Fi [27], cellular [25, 100],
and satellite [15,25] links. While an 802.15.4 radio can in prin-
ciple be added as a NIC to any device, we consider only em-
bedded devices where it is the primary means of communica-
tion, running operating systems like TinyOS [68], RIOT [24],
Contiki [45], or FreeRTOS. These devices are currently built
around microcontrollers with Cortex-M CPUs, which lack
MMUs. Below, we explain how LoWPANs are different from
other networks where TCP has been successfully adapted.
Resource Constraints. When TCP was initially adopted
by ARPANET in the early 1980s, contemporary Internet
citizens—typically minicomputers and high-end workstations,
but not yet personal computers—usually had at least 1 MiB of
RAM. 1 MiB is tiny by today’s standards, yet the LLN-class
devices we consider in this work have 1-2 orders of magnitude
less RAM than even the earliest computers connected with
TCP/IP. Due to energy constraints, particularly SRAM leak-
age, RAM size in low-power MCUs does not follow Moore’s
Law. For example, comparing Hamilton [83], which we use
in this work, to TelosB [113], an LLN platform from 2004,
shows only a 3.2x increase in RAM size over 16 years. This
has caused LLN-class embedded devices to have a different
balance of resources than conventional systems, a trend that is
likely to continue well into the future. For example, whereas
conventional computers have historically had roughly 1 MiB
of RAM for every MIPS of CPU, as captured by the 3M rule,
Hamilton has ≈ 50 DMIPS of CPU but only 32 KiB of RAM.
Link-Layer Properties. IEEE 802.15.4 is a low-bandwidth,
wireless link with an MTU of only 104 bytes. The research
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community has explored using TCP with links that are sepa-
rately low-bandwidth, wireless [27], or low-MTU [77], but
addressing these issues together raises new challenges. For ex-
ample, RTS-CTS, used in WLANs to avoid hidden terminals,
has high overhead in LoWPANs [71, 136] due to the small
MTU—control frames are comparable in size to data frames.
Thus, LoWPAN researchers have moved away from RTS-
CTS, instead carefully designing application traffic patterns
to avoid hidden terminals [71, 88, 112]. Unlike Wi-Fi/LTE,
LoWPANs do not use physical-layer techniques like adaptive
modulation/coding or multi-antenna beamforming. Thus, they
are directly impacted by link quality degradation due to vary-
ing environmental conditions [112, 127]. Additionally, IEEE
802.15.4 coexists with Wi-Fi in the 2.4 GHz frequency band,
making Wi-Fi interference particularly relevant in indoor set-
tings [99]. As LoWPANs are embedded networks, there is no
human in the loop to react to and repair bad link quality.

Energy Constraints. Embedded nodes—the “hosts” of an
LLN—are subject to strict power constraints. Low-power ra-
dios consume almost as much energy listening for a packet as
they do when actually sending or receiving [20, 83]. There-
fore, it is customary to duty-cycle the radio, keeping it in a
low-power sleep state, in which it cannot send or receive data,
most of the time [70,112,139]. The radio is only occasionally
turned on to send/receive packets or determine if reception
is likely. This requires Media Management Control (MMC)
protocols [70, 112, 139] at the link layer to ensure that frames
destined for a node are delivered to it only when its radio is on
and listening. Similarly, the CPU also consumes a significant
amount of energy [83], and must be kept idle most of the time.

Over the past 20 years, LLN researchers have addressed
these challenges, but only in the context of special-purpose
networks highly tailored to the particular application task at
hand. The remaining open question is how to do so with a
general-purpose reliable transport protocol like TCP.

2.2 TCP/IP for Embedded LLN-Class Devices
In the late 1990s and early 2000s, developers attempted to
bring TCP/IP to embedded and resource-constrained systems
to connect them to the Internet, usually over serial or Ethernet.
Such systems [32, 80] were often designed with a specific
application—often, a web server—in mind. These TCP/IP
stacks were tailored to the specific applications at hand and
were not suitable for general use. uIP (“micro IP”) [42], in-
troduced in 2002, was a standalone general TCP/IP stack
optimized for 8-bit microcontrollers and serial or Ethernet
links. To minimize resource consumption to run on such plat-
forms, uIP omits standard features of TCP; for example, it
allows only a single outstanding (unACKed) TCP segment
per connection, rather than a sliding window of in-flight data.

Since the introduction of uIP, embedded networks have
changed substantially. With wireless sensor networks and
IEEE 802.15.4, various low-power networking protocols have
been developed to overcome lossy links with strict energy

and resource constraints, from S-MAC [139], B-MAC [112],
X-MAC [34], and A-MAC [49], to Trickle [96] and CTP [59].
Researchers have viewed TCP as unsuitable, however, ques-
tioning end-to-end recovery, loss-triggered congestion con-
trol, and bi-directional data flow in LLNs [44]. Furthermore,
WSNs of this era typically did not even use IP; instead, each
WSN was designed specifically to support a particular appli-
cation [89, 102, 138]. Those that require global connectivity
rely on application-specific “base stations” or “gateways” con-
nected to a TCP/IP network, treating the LLN like a peripheral
interconnect (e.g., USB, bluetooth) rather than a network in its
own right. This is because the prevailing sentiment at the time
was that LLNs are too different from other types of networks
and have to operate in too extreme conditions for the layered
Internet architecture to be appropriate [50].

In 2007, the 6LoWPAN adaptation layer [105] was intro-
duced, enabling IPv6 over IEEE 802.15.4. IPv6 has since been
adopted in LLNs, bringing forth IoT [70]. uIP has been ported
to LLNs [48], and IPv6 routing protocols, like RPL [33], and
UDP-based application-layer transports, like CoAP [35], have
emerged in LLNs. Representative operating systems, like
TinyOS and Contiki, implement UDP/RPL/IPv6/6LoWPAN
network stacks with IEEE 802.15.4-compatible MMC proto-
cols for 16-bit platforms like TelosB [113].

TCP, however, is not widely adopted in LLNs. The few
LLN studies that use TCP [47,60,67,70,72,86,144] generally
use a simplified TCP stack (Appendix B), such as uIP.

In summary, despite the acceptance of IPv6, LLNs remain
highly tailored at the transport layer to the application at hand.
They typically use application-specific protocols on top of
UDP; of such protocols, CoAP [31] has the widest adoption.
In this context, this paper explores whether adopting TCP—
and more broadly, the ecosystem of IP-based protocols, rather
than IP alone—might bring value to LLNs moving forward.

3 Motivation: The Case for TCP in LLNs
As explained in §2, LLN design has historically been highly
tailored to the specific application task at hand, for maxi-
mum efficiency. For example, PSFQ broadcasts data from a
single source node to all others, RMST supports “directed
diffusion” [73], and CoAP is tied to REST semantics. But
embedded networks are not just isolated devices (e.g., periph-
eral interconnects like USB or bluetooth)—they are now true
Internet citizens, and should be designed as such.

In particular, the recent megatrend of IoT requires LLNs to
have a greater degree of interoperability with regular TCP/IP
networks. Yet, LLN-specific protocols lack a clear separa-
tion between the transport and application layers, requiring
application-layer gateways to communicate with TCP/IP-
based services. This has encouraged IoT applications to de-
velop as vertically-integrated silos, where devices cooperate
only within an individual application or a particular manufac-
turer’s ecosystem, with little to no interoperability between
applications or with the general TCP/IP-based Internet. This
phenomenon, sometimes called the “CompuServe of Things,”
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is a serious obstacle to the IoT vision [57,97,104,133,141]. In
contrast, other networks are seamlessly interoperable with the
rest of the Internet. Accessing a new web application from a
laptop does not require any new functionality at the Wi-Fi ac-
cess point, but running a new application in a gateway-based
LLN does require additional application-specific functionality
to be installed at the gateway.

In this context, TCP-enabled LLN devices would be first-
class citizens of the Internet, natively interoperable with the
rest of the Internet via TCP/IP. They could use IoT protocols
that assume a TCP-based transport layer (e.g., MQTT [39])
and security tools for TCP/IP networks (e.g., stateful fire-
walls), without an application-layer gateway. In addition,
while traditional LLN applications like environment mon-
itoring can be supported by unreliable UDP, certain applica-
tions do require high throughput and reliable delivery (e.g.,
anemometry (Appendix D), vibration monitoring [81]). TCP,
if it performs well in LLNs, could benefit these applications.

Adopting TCP in LLNs may also open an interesting re-
search agenda for IoT. TCP is the default transport protocol
outside of LLNs, and history has shown that, to justify other
transport protocols, application characteristics must offer sub-
stantial opportunity for optimization (e.g., [55, 134, 135]). If
TCP becomes a viable option in LLNs, it would raise the
bar for application-specific LLN protocols, resulting in some
potentially interesting alternatives.

Although adopting TCP in LLNs could yield significant
benefit and an interesting agenda, its feasibility and perfor-
mance remain in question. This motivates our study.

4 Empirical Methodology
This section presents our methodology, carefully chosen to
ground our study of full-scale TCP in LLNs.

4.1 Network Stack
Transport layer. That only a few full-scale TCP stacks exist,
with a body of literature covering decades of refining, demon-
strates that developing a feature-complete implementation of
TCP is complex and error-prone [111]. Using a well-tested
TCP implementation would ensure that results from our mea-
surement study are due to the TCP protocol, not an artifact
of the TCP implementation we used. Thus, we leverage the
TCP implementation in FreeBSD 10.3 [56] to ground our
study. We ported it to run in embedded operating systems and
resource-constrained embedded devices (§4.2).

To verify the effectiveness of full-scale TCP in LLNs, we
compare with CoAP [123], CoCoA [29], and unreliable UDP.
CoAP is a standard LLN protocol that provides reliability
on top of UDP. It is the most promising LLN alternative to
TCP, gaining momentum in both academia [29, 38, 90, 119,
121, 129] and industry [3, 79], with adoption by Cisco [5, 41],
Nest/Google [4], and Arm [1, 2]. CoCoA [29] is a recent
proposal that augments CoAP with RTT estimation.

It is attractive to compare TCP to a variety of commer-
cial systems, as has been done by a number of studies in

TelosB Hamilton Firestorm Raspberry Pi
CPU MSP430 Cortex-M0+ Cortex-M4 Cortex-A53
RAM 10 KiB 32 KiB 64 KiB 256 MB
ROM 48 KiB 256 KiB 512 KiB SD Card

Table 2: Comparison of the platforms we used (Hamilton and
Firestorm) to TelosB and Raspberry Pi

LTE/WLANs [55, 135]. Unfortunately, multihop LLNs have
not yet reached the level of maturity to support a variety of
commercial offerings; only CoAP has an appreciable level of
commercial adoption. Other protocols are research proposals
that often (1) are implemented for now-outdated operating
systems and hardware or exist only in simulation [10, 75, 88],
(2) target a very specific application paradigm [125,130,138],
and/or (3) do not use IP [75, 88, 109, 130]. We choose CoAP
and CoCoA because they are not subject to these constraints.

Layers 1 to 3. Because it is burdensome to place a border
router with LAN connectivity within wireless range of every
low-power host (e.g., sensor node), it is common to transmit
data (e.g., readings) over multiple wireless LLN hops. Al-
though each sensor must be battery-powered, it is reasonable
to have a wall-powered LLN router node within transmission
range of it.1 This motivates Thread2 [64,87], a recently devel-
oped protocol standard that constructs a multihop LLN over
IEEE 802.15.4 links with wall-powered, always-on router
nodes and battery-powered, duty-cycled leaf nodes. We use
OpenThread [106], an open-source implementation of Thread.

Thread decouples routing from energy efficiency, providing
a full-mesh topology among routers, frequent route updates,
and asymmetric bidirectional routing for reliability. Each leaf
node duty cycles its radio, and simply chooses a core router
with good link quality, called its parent, as its next hop to all
other nodes. The duty cycling uses listen-after-send [120]. A
leaf node’s parent stores downstream packets destined for that
leaf node, until the leaf node sends it a data request message.
A leaf node, therefore, can keep its radio powered off most
of the time; infrequently, it sends a data request message to
its parent, and turns on its radio for a short interval afterward
to listen for downstream packets queued at its parent. Leaf
nodes may send upstream traffic at any time. Each node uses
CSMA-CA for medium access.

4.2 Embedded Hardware
We use two embedded hardware platforms: Hamilton [83]
and Firestorm [18]. Hamilton uses a SAMR21 SoC with a 48
MHz Cortex-M0+, 256 KiB of ROM, and 32 KiB of RAM.
Firestorm uses a SAM4L 48 MHz Cortex-M4 with 512 KiB
of ROM and 64 KiB of RAM. While these platforms are more
powerful than the TelosB [113], an older LLN platform widely

1The assumption of powered “core routers” is reasonable for most IoT use
cases, which are typically indoors. Recent IoT protocols, such as Thread [64]
and BLEmesh [63], take advantage of powered core routers.

2Thread has a large amount of industry support with a consortium already
consisting of over 100 members [6], and is used in real IoT products sold by
Nest/Google [7]. Given this trend, using Thread makes our work timely.
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Figure 1: Snapshot of uplink routes in OpenThread topology
at transmission power of -8 dBm (5 hops). Node 1 is the
border router with Internet connectivity.

used in past studies, they are heavily resource-constrained
compared to a Raspberry Pi (Table 2). Both platforms use the
AT86RF233 radio, which supports IEEE 802.15.4. We use its
standard data rate, 250 kb/s. We use Hamilton/OpenThread
in our experiments; for comparison, we provide some results
from Firestorm and other network stacks in Appendix A.

Handling automatic radio features. The AT86RF233 radio
has built-in hardware support for link-layer retransmissions
and CSMA-CA. However, it automatically enters low-power
mode during CSMA backoff, during which it does not listen
for incoming frames [20]. This behavior, which we call deaf
listening, interacts poorly with TCP when radios are always
on, because TCP requires bidirectional flow of packets—data
in one direction and ACKs in the other. This may initially
seem concerning, as deaf listening is an important power-
saving feature. Fortunately, this problem disappears when
using OpenThread’s listen-after-send duty-cycling protocol,
as leaf nodes never transmit data when listening for down-
stream packets. For experiments with always-on radios, we
do not use the radio’s capability for hardware CSMA and link
retries; instead, we perform these operations in software.

Multihop Testbed. We construct an indoor LLN testbed, de-
picted in Figure 1, with 15 Hamiltons where node 1 is con-
figured as the border router. OpenThread forms a 3-to-5-hop
topology at transmission power of -8 dBm. Embedded TCP
endpoints (Hamiltons) communicate with a Linux TCP end-
point (server on Amazon EC2) via the border router. During
working hours, interference is present in the channel, due to
people in the space using Wi-Fi and Bluetooth devices in the
2.4 GHz frequency band. At night, when there are few/no
people in the space, there is much less interference.

5 Implementation of TCPlp
We seek to answer the following two questions: (1) Does
full-scale TCP fit within the limited memory of modern LLN
platforms? (2) How can we integrate a TCP implementation
from a traditional OS into an embedded OS? To this end,
we develop a TCP stack for LLNs based on the TCP imple-
mentation in FreeBSD 10.3, called TCPlp [91], on multiple
embedded operating systems, RIOT OS [24] and TinyOS [95].
We use TCPlp in our measurement study in future sections.

Although we carefully preserved the protocol logic in the
FreeBSD TCP implementation, achieving correct and perfor-

Protocol Socket Layer posix_sockets

ROM 19972 B 6216 B 5468 B
RAM (Active) 364 B 88 B 48 B
RAM (Passive) 12 B 88 B 48 B

Table 3: Memory usage of TCPlp on RIOT OS. We also
include RIOT’s posix_sockets module, used by TCPlp to
provide a Unix-like interface.

mant operation on sensor platforms was a nontrivial effort.
We had to modify the FreeBSD implementation according to
the concurrency model of each embedded network stack and
the timer abstractions provided by each embedded operating
system (Appendix A). Our other modifications to FreeBSD,
aimed at reducing memory footprint, are described below.

5.1 Connection State for TCPlp
As discussed in Appendix B, TCPlp includes features from
FreeBSD that improve standard communication, like a slid-
ing window, New Reno congestion control, zero-window
probes, delayed ACKs, selective ACKs, TCP timestamps, and
header prediction. TCPlp, however, omits some features in
FreeBSD’s TCP/IP stack. We omit dynamic window scaling,
as buffers large enough to necessitate it (≥ 64 KiB) would
not fit in memory. We omit the urgent pointer, as it not rec-
ommended for use [61] and would only complicate buffering.
Certain security features, such as host cache, TCP signatures,
SYN cache, and SYN cookies are outside the scope of this
work. We do, however, retain challenge ACKs [116].

We use separate structures for active sockets used to send
and receive bytes, and passive sockets used to listen for in-
coming connections, as passive sockets require less memory.

Table 3 depicts the memory footprint of TCPlp on RIOT
OS. The memory required for the protocol and application
state of an active TCP socket fits in a few hundred bytes, less
than 1% of the available RAM on the Cortex-M4 (Firestorm)
and 2% of that on the Cortex-M0+ (Hamilton). Although TC-
Plp includes heavyweight features not traditionally included
in embedded TCP stacks, it fits well within available memory.

5.2 Memory-Efficient Data Buffering
Existing embedded TCP stacks, such as uIP and BLIP, allow
only one TCP packet in the air, eschewing careful imple-
mentation of send and receive buffers [86]. These buffers,
however, are key to supporting TCP’s sliding window func-
tionality. We observe in §6.2 that TCPlp performs well with
only 2-3 KiB send and receive buffers, which comfortably fit
in memory even when naïvely pre-allocated at compile time.
Given that buffers dominate TCPlp’s memory usage, however,
we discuss techniques to optimize their memory usage.
5.2.1 Send Buffer: Zero-Copy
Zero-copy techniques [28, 40, 82, 98, 101] were devised for
situations where the time for the CPU to copy memory is
a significant bottleneck. Our situation is very different; the
radio, not the CPU, is the bottleneck, owing to the low band-
width of IEEE 802.15.4. By using a zero-copy send buffer,
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(a) Naïve receive buffer. Note that size of advertised window +
size of buffered data = size of receive buffer.

(b) Receive buffer with in-place reassembly queue. In-sequence data
(yellow) is kept in a circular buffer, and out-of-order segments (red)
are written in the space past the received data.

Figure 2: Naïve and final TCP receive buffers

however, we can avoid allocating memory to intermediate
buffers that would otherwise be needed to copy data, thereby
reducing the network stack’s total memory usage.

In TinyOS, for example, the BLIP network stack supports
vectored I/O; an outgoing packet passed to the IPv6 layer is
specified as an iovec. Instead of allocating memory in the
packet heap for each outgoing packet, TCPlp simply creates
iovecs that point to existing data in the send buffer. This
decreases the required size of the packet heap.

Unfortunately, zero-copy optimizations were not possible
for the OpenThread implementation, because OpenThread
does not support vectored I/O for sending packets. The result
is that the TCPlp implementation requires a few kilobytes of
additional memory for the send buffer on this platform.
5.2.2 Receive Buffer: In-Place Reassembly Queue
Not all zero-copy optimizations are useful in the embedded
setting. In FreeBSD, received packets are passed to the TCP
implementation as mbufs [137]. The receive buffer and re-
assembly buffer are mbuf chains, so data need not be copied
out of mbufs to add them to either buffer or recover from
out-of-order delivery. Furthermore, buffer sizes are chosen
dynamically [122], and are merely a limit on their actual size.
In our memory-constrained setting, such a design is danger-
ous because its memory usage is nondeterministic; there is
additional memory overhead, due to headers, if the data are
delivered in many small packets instead of a few large ones.

We opted for a flat array-based circular buffer for the re-
ceive buffer in TCPlp, primarily owing to its determinism in
a limited-memory environment: buffer space is reserved at
compile-time. Head/tail pointers delimit which part of the ar-
ray stores in-sequence data. To reduce memory consumption,
we store out-of-order data in the same receive buffer, at the
same position as if they were in-sequence. We use a bitmap,
not head/tail pointers, to record where out-of-order data are
stored, because out-of-order data need not be contiguous. We
call this an in-place reassembly queue (Figure 2).

6 TCP in a Low-Power Network
In this section, we characterize how full-scale TCP interacts
with a low-power network stack, resource-constrained hard-
ware, and a low-bandwidth link.

6.1 Reducing Header Overhead using MSS
In traditional networks, it is customary to set the Maximum
Segment Size (MSS) to the link MTU (or path MTU) mi-

Fast Ethernet Wi-Fi Ethernet 802.15.4
Capacity 100 Mb/s 54 Mb/s 10 Mb/s 250 kb/s
MTU 1500 B 1500 B 1500 B 104–116 B
Tx Time 0.12 ms 0.22 ms 1.2 ms 4.1 ms

Table 4: Comparison of TCP/IP links
Header 802.15.4 6LoWPAN IPv6 TCP Total

1st Frame 11–23 B 5 B 2–28 B 20–44 B 38–107 B
nth Frame 11–23 B 5–12 B 0 B 0 B 16–35 B
Table 5: Header overhead with 6LoWPAN fragmentation

nus the size of the TCP/IP headers. IEEE 802.15.4 frames,
however, are an order of magnitude smaller than frames in
traditional networks (Table 4). The TCP/IP headers consume
more than half of the frame’s available MTU. As a result, TCP
performs poorly, incurring more than 50% header overhead.

Earlier approaches to running TCP over low-MTU links
(e.g., low-speed serial links) have used TCP/IP header com-
pression based on per-flow state [77] to reduce header over-
head. In contrast, the 6LoWPAN adaptation layer [105], de-
signed for LLNs, supports only flow-independent compression
of the IPv6 header using shared link-layer state, a clear depar-
ture from per-flow techniques. A key reason for this is that
the compressor and decompressor in an LLN (host and border
router) are separated by several IP hops3, making it desirable
for intermediate nodes to be able to determine a packet’s IP
header without per-flow context (see §10 of [105]).

That said, compressing TCP headers separately from IP
addresses using per-flow state is a promising approach to fur-
ther amortize header overhead. There is preliminary work in
this direction [22, 23], but it is based on uIP, which has one
in-flight segment, and does not fully specify how to resynchro-
nize compression state after packet loss with a multi-segment
window. It is also not officially standardized by the IETF.

Therefore, this paper takes an approach orthogonal to
header compression. We instead choose an MSS larger than
the link MTU admits, relying on fragmentation at the lower
layers to decrease header overhead. Fragmentation is han-
dled by 6LoWPAN, which acts at Layer 2.5, between the
link and network layers. Unlike end-to-end IP fragmentation,
the 6LoWPAN fragments exist only within the LLN, and are
reassembled into IPv6 packets when leaving the network.

Relying on fragmentation is effective because, as shown
in Table 5, TCP/IP headers consume space in the first frag-
ment, but not in subsequent fragments. Using an excessively
large MSS, however, decreases reliability because the loss
of one fragment results in the loss of an entire packet. Exist-
ing work [21] has identified this trade-off and investigated
it in simulation in the context of power consumption. We
investigate it in the context of goodput in a live network.

Figure 3a shows the bandwidth as the MSS varies. As

3Thread deliberately does not abstract the mesh as a single IP link. Instead,
it organizes the LLN mesh as a set of overlapping link-local scopes, using
IP-layer routing to determine the path packets take through the mesh [70].
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Figure 3: TCP goodput over one IEEE 802.15.4 hop
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Figure 4: Analysis of overhead limiting TCPlp’s goodput

expected, we see poor performance at a small MSS due to
header overhead. Performance gains diminish when the MSS
becomes larger than 5 frames. We recommend using an MSS
of about 5 frames, but it is reasonable to decrease it to 3 frames
if more wireless loss is expected. Despite the small frame
size of IEEE 802.15.4, we can effectively amortize header
overhead for TCP using an atypical MSS. Adjusting the
MSS is orthogonal to TCP header compression. We hope that
widespread use of TCP over 6LoWPAN, perhaps based on our
work, will cause TCP header compression to be separately
investigated and possibly used together with a large MSS.

6.2 Impact of Buffer Size
Whereas simple TCP stacks, like uIP, allow only one in-flight
segment, full-scale TCP requires complex buffering (§5.2). In
this section, we vary the size of the buffers (send buffer for up-
link experiments and receive buffer for downlink experiments)
to study how it affects the bandwidth. In varying the buffer
size, we are directly affecting the size of TCP’s flow window.
We expect throughput to increase with the flow window size,
with diminishing returns once it exceeds the bandwidth-delay
product (BDP). The result is shown in Figure 3b. Goodput
levels off at a buffer size of 3 to 4 segments (1386 B to
1848 B), indicating that the buffer size needed to fill the
BDP fits comfortably in memory. Indeed, the BDP in this
case is about 125kb/s ·0.1s≈ 1.6KiB.4

Downlink goodput at a buffer size of one segment is un-
usually high. This is because FreeBSD does not delay ACKs
if the receive buffer is full, reducing the effective RTT from
≈ 130 ms to ≈ 70 ms. Indeed, goodput is very sensitive to
RTT when the buffer size is small, because TCP exhibits
“stop-and-wait” behavior due to the small flow window.

4We estimate the bandwidth as 125 kb/s rather than 250 kb/s to account
for the radio overhead identified in §6.3.

6.3 Upper Bound on Single-Hop Goodput
We consider TCP goodput between two nodes over the IEEE
802.15.4 link, over a single hop without any border router.
Using the Hamilton/OpenThread platform, we are able to
achieve 75 kb/s.5 Figure 4b lists various sources of overhead
that limit TCPlp’s goodput, along with the ideal upper bounds
that they admit. Link overhead refers to the 250 kb/s link
capacity. Radio overhead includes SPI transfer to/from the ra-
dio (i.e., packet copying [107]), CSMA, and link-layer ACKs,
which cannot be pipelined because the AT86RF233 radio has
only one frame buffer. A full-sized 127-byte frame spends 4.1
ms in the air at 250 kb/s, but the radio takes 7.2 ms to send
it (Figure 4a), almost halving the link bandwidth available
to a single node. This is consistent with prior results [107].
Unused refers to unused space in link frames due to inefficien-
cies in the 6LoWPAN implementation. Overall, we estimate
a 95 kb/s upper bound on goodput (100 kb/s without TCP
headers). Our 75 kb/s measurement is within 25% of this
upper bound, substantially higher than prior work (Table 6).
The difference from the upper bound is likely due to network
stack processing and other real-world inefficiencies.

7 TCP Over Multiple Wireless Hops
We instrument TCP connections between Hamilton nodes in
our multi-hop testbed, without using the EC2 server.

7.1 Mitigating Hidden Terminals in LLNs
Prior work over traditional WLANs has shown that hidden
terminals degrade TCP performance over multiple wireless
hops [58]. Using RTS/CTS for hidden terminal avoidance has
been shown to be effective in WLANs. This technique has an
unacceptably high overhead in LLNs [136], however, because
data frames are small (Table 4), comparable in size to the
additional control frames required. Prior work in LLNs has
carefully designed application traffic, using rate control [71,
88] and link-layer delays [136], to avoid hidden terminals.

But prior work does not explore these techniques in the con-
text of TCP. Unlike protocols like CoAP and simplified TCP
implementations like uIP, a full-scale TCP flow has a multi-
segment sliding window of unacknowledged data, making it
unclear a priori whether existing LLN techniques will be
sufficient. In particular, rate control seems sufficient because
of bi-directional packet flow in TCP (data in one direction
and ACKs in the other). So, rather than applying rate control,
we attempt to avoid hidden terminals by adding a delay d
between link-layer retries in addition to CSMA backoff. After
a failed link transmission, a node waits for a random duration
between 0 and d, before retransmitting the frame. The idea is

5Appendix A.4 provides the corresponding goodput figures for Hamil-
ton/GNRC and Firestorm/BLIP platforms, for comparison.

6One study [47] achieves ≈ 16 kb/s over multiple hops using the Linux
TCP stack. We do not include it in Table 6 because it does not capture the
resource constraints of LLNs—it uses traditional computers (PCs) for the end
hosts—and does not consider hidden terminals—each hop uses a different
wireless channel. It also uses TCP as a workload to evaluate a new link-layer
protocol (burst forwarding), instead of evaluating TCP in its own right
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[144] [22] [67] [86] [69, 70] This Paper (Hamilton Platform)
TCP Stack uIP uIP uIP BLIP Arch Rock TCPlp (RIOT OS, OpenThread)
Max. Seg Size 1 Frame 1 Frame 4 Frames 1 Frame 1024 bytes 5 Frames
Window Size 1 Seg. 1 Seg. 1 Seg. 1 Seg. 1 Seg. 1848 bytes (4 Seg.)
Goodput (One Hop) 1.5 kb/s ≈ 6.4 kb/s ≈ 12 kb/s ≈ 4.8 kb/s 15 kb/s 75 kb/s
Goodput (Multi-Hop) ≈ 0.55 kb/s ≈ 1.9 kb/s ≈ 12 kb/s ≈ 2.4 kb/s 9.6 kb/s 20 kb/s

Table 6: Comparison of TCPlp to existing TCP implementations used in network studies over IEEE 802.15.4 networks.6 Goodput
figures obtained by reading graphs in the original paper (rather than stated numbers) are marked with the ≈ symbol.
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Figure 5: Effect of varying time between link-layer retransmissions. Reported “segment loss” is the loss rate of TCP segments,
not individual IEEE 802.15.4 frames. It includes only losses not masked by link-layer retries.

that if two frames collide due to a hidden terminal, the delay
will prevent their link-layer retransmissions from colliding.

We modified OpenThread, which previously had no delay
between link retries, to implement this. As expected, single-
hop performance (Figure 5a) decreases as the delay between
link retries increases; hidden terminals are not an issue in
that setting. Packet loss is high for the multihop experiment
(Figure 5b) when the link retry delay is 0, as is expected
from hidden terminals. Adding a small delay between link
retries, however, effectively reduces packet loss. Making
the delay too large raises the RTT (Figure 5c).

We prefer a smaller frame/segment loss rate, even if good-
put stays the same, in order to make more efficient use of
network resources. Therefore, we prefer a moderate delay
(d = 40 ms) to a small delay (d = 5 ms), even though both
provide the same goodput, because the frame and segment
loss rates are smaller when d is large (Figures 5b and 5d).

7.2 Upper Bound on Multi-Hop Goodput
Comparing Figures 5a and 5b, goodput over three wireless
hops is substantially smaller than goodput over a single hop.
Prior work has observed similar throughput reductions over
multiple hops [86, 107]. It is due to radio scheduling con-
straints inherent in the multihop setting, which we describe
in this section. Let B be the bandwidth over a single hop.

Consider a two-hop setup: S→ R1→ D. R1 cannot receive
a frame from S while sending a frame to D, because its ra-
dio cannot transmit and receive simultaneously. Thus, the
maximum achievable bandwidth over two hops is B

2 .
Now consider a three-hop setup: S→R1→R2→D. By the

same argument, if a frame is being transferred over R1→ R2,
then neither S→ R1 nor R2→ D can be active. Furthermore,
if a frame is being transferred over R2→ D, then R1 can hear
that frame. Therefore, S→ R1 cannot transfer a frame at that
time; if it does, then its frame will collide at R1 with the
frame being transferred over R2 → D. Thus, the maximum

bandwidth is B
3 . We depict this ideal upper bound in Figure

5b, taking B to be the ideal single-hop goodput from §6.3.
In setups with more than three hops, every set of three adja-

cent hops is subject to this constraint. The first hop and fourth
hop, however, may be able to transfer frames simultaneously.
Therefore, the maximum bandwidth is still B

3 . In practice,
goodput may fall slightly because transmissions from a node
may interfere with nodes multiple hops away, even if they can
only be received by its immediate neighbors.

We made empirical measurements with d = 40 ms to vali-
date this analysis. Goodput over one hop was 64.1 kb/s; over
two hops, 28.3 kb/s; over three hops, 19.5 kb/s; and over four
hops, 17.5 kb/s. This roughly fits the model.

This analysis justifies why the same window size works
well for both the one-hop experiments and the three-hop exper-
iments in §7.1. Although the RTT is three times higher, the
bandwidth-delay product is approximately the same. Cru-
cially, this means that the 2 KiB buffer size we deter-
mined in §6.2, which fits comfortably in memory, remains
applicable for up to three wireless hops.
7.3 TCP Congestion Control in LLNs
Recall that small send/receive buffers of only 1848 bytes (4
TCP segments) each are enough to achieve good TCP perfor-
mance. This profoundly impacts TCP’s congestion control
mechanism. For example, consider Figure 5b. It is remarkable
that throughput is almost the same at d = 0 ms and d = 30
ms, despite having 6% packet loss in the first case and less
than 1% packet loss in the second.

Figure 6a depicts the congestion window over a 100 sec-
ond interval during the d = 0 ms experiment.7 Interestingly,

7All congestion events in Figure 6a were fast retransmissions, except
for one timeout at t = 569 s. cwnd is temporarily set to 1 MSS during fast
retransmissions due to an artifact of FreeBSD’s implementation of SACK
recovery. For clarity, we cap cwnd at the size of the send buffer, and we
remove fluctuations in cwnd which resulted from “bad retransmissions” that
the FreeBSD implementation corrected in the course of its normal execution.
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Figure 6: Congestion behavior of TCP over IEEE 802.15.4

the cwnd graph is far from the canonical sawtooth shape
(e.g., Figure 11(b) in [26]); cwnd is almost always maxed
out even though losses are frequent (6%). This is specific to
small buffers. In traditional environments, where links have
higher throughput and buffers are large, it takes longer for
cwnd to recover after packet loss, greatly limiting the send-
ing rate with frequent packet losses. In contrast, in LLNs,
where send/receive buffers are small, cwnd recovers to
the maximum size quickly after packet loss, making TCP
performance robust to packet loss.

Congestion behavior also provides insight into loss pat-
terns, as shown in Figure 6b. Fast retransmissions (used for
isolated losses) become less frequent as d increases, suggest-
ing that they are primarily caused by hidden-terminal-related
losses. Timeouts do not become less frequent as d is increased,
suggesting that they are caused by something else.

7.4 Modeling TCP Goodput in an LLN
Our findings in §7.3 suggest that, in LLNs, cwnd is limited by
the buffer size, not packet loss. To validate this, we analyti-
cally model TCP performance according to our observations
in §7.3, and then check if the resulting model is consistent
with the data. Comprehensive models of TCP, which take
window size limitations into account, already exist [108]; in
contrast, our model is intentionally simple to provide intuition.

Observations in §7.3 suggest that we can neglect the time
it takes the congestion window to recover after packet loss.
So, we model a TCP connection as binary: either it is sending
data with a full window, or it is not sending new data because
it is recovering from packet loss. According to this model, a
TCP flow alternates between bursts when it is transmitting
at a full window, and rests when it is in recovery and not
sending new data. Burst lengths depend on the packet loss
rate p and rest lengths depend on RTT. This approach leads
to the following model (full derivation is in Appendix C):

B =
MSS
RTT

· 1
1
w +2p

(1)

where B, the TCP goodput, is written in terms of the maximum
segment size MSS, round-trip time RTT, packet loss rate p
(0 < p < 1), and window size w (sized to BDP, in packets).
Figures 5a and 5b include the predicted goodput as dotted
lines, calculated according to Equation 1 using the empirical
RTT and segment loss rate for each experiment. Our model
of TCP goodput closely matches the empirical results.

An established model of TCP outside of LLNs is [92, 103]:

B =
MSS
RTT

·

√
3

2p
(2)

Equation 2 fundamentally relies on there being many com-
peting flows, so we do not expect it to match our empirical
results from §7.3. But, given that existing work examining
TCP in LLNs makes use of this formula to ground new algo-
rithms [72], the differences between Equations 1 and 2 are
interesting to study. In particular, Equation 1 has an added
1
w in the denominator and depends on p rather than

√
p, ex-

plaining, mathematically, how TCP in LLNs is more robust to
small amounts of packet loss. We hope Equation 1, together
with Equation 4 in Appendix C, will provide a foundation for
future research on TCP in LLNs.

8 TCP in LLN Applications
To demonstrate that TCP is practical for real IoT use cases,
we compare its performance to that of CoAP, CoCoA, and un-
reliable UDP in three workloads inspired by real application
scenarios: web server, sense-and-send, and event detection.
We evaluate the protocols over multiple hops with duty-cycled
radios and wireless interference, present in our testbed in the
day (§4.2). In our experiments, nodes 12–15 (Figure 1) send
data to a server running on Amazon EC2. The RTT from the
border router to the server was ≈ 12 ms, much smaller than
within the low-power mesh (≈ 100-300 ms).

In our preliminary experiments, we found that in the pres-
ence of simultaneous TCP flows, tail drops at a relay node
significantly impacted fairness. Implementing Random Early
Detection (RED) [54] with Explicit Congestion Notification
(ECN) support solved this problem. Therefore, we use RED
and ECN for experiments in this section with multiple flows.
While such solutions have sometimes been problematic since
they are implemented in routers, they are more natural in
LLNs because the intermediate “routers” relaying packets in
an LLN typically also participate in the network as hosts.

We generally use a smaller MSS (3 frames) in this section,
because it is more robust to interference in the day (§6). We
briefly discuss how this affects our model in Appendix C, but
leave a rigorous treatment to future work.

Running TCP in these application scenarios motivates
Adaptive Duty Cycle and Finer-Grained Link Queue
Management, which we introduce below as they are needed.

8.1 Web Server Application Scenario
To study TCP with multiple wireless hops and duty cycling,
we begin with a web server hosted on a low-power device.
We compare HTTP/TCP and CoAP/UDP (§4.1).
8.1.1 Latency Analysis
An HTTP request requires two round-trips: one to establish
a TCP connection, and another for request/response. CoAP
requires only one round trip (no connection establishment)
and has smaller headers. Therefore, CoAP has a lower latency
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Figure 7: Latency of web request: CoAP vs. HTTP/TCP

than HTTP/TCP when using an always-on link (Figure 7a).
Even so, the latency of HTTP/TCP in this case is well below
1 second, not so large as to degrade user experience.

We now explore how a duty-cycled link affects the latency.
Recall that leaf nodes in OpenThread (§4.1) periodically poll
their parent to receive downstream packets, and keep their
radios in a low-power sleep state between polls. We set the
sleep interval—the time that a node waits between polls—to
1 s and show the latency in Figure 7b. Interestingly, HTTP’s
minimum observed latency is much higher than CoAP’s, more
than is explained by its additional round trip.

Upon investigation, we found that this is because the self-
clocking nature of TCP [76] interacts poorly with the
duty-cycled link. Concretely, the web server receives the
SYN packet when it polls its parent, and sends the SYN-ACK
immediately afterward, at the beginning of the next sleep in-
terval. The web server therefore waits for the entire sleep
interval before polling its parent again to receive the HTTP
request, thereby experiencing the worst-case latency for the
second round trip. We also observed this problem for batch
transfer over TCP; TCP’s self-clocking behavior causes it to
consistently experience the worst-case round-trip time.

To solve this problem, we propose a technique called Adap-
tive Duty Cycling. After the web server receives a SYN, it re-
duces the sleep interval in anticipation of receiving an HTTP
request. After serving the request, it restores the sleep interval
to its old value. Unlike early LLN link-layer protocols like S-
MAC [140] that use an adaptive duty cycle, we use transport-
layer state to inform the duty cycle. Figure 7c shows the
latency with adaptive duty cycling, where the sleep interval
is temporarily reduced to 100 ms after connection establish-
ment. With adaptive duty-cycling, the latency overhead of
HTTP compared to CoAP is small, despite larger headers
and an extra round trip for connection establishment.

Adaptive duty cycling is also useful in high-throughput
scenarios, and in situations with persistent TCP connections.
We apply adaptive duty cycling to one such scenario in §8.2.

8.1.2 Throughput Analysis
In §8.1.1, the size of the web server’s response was 82 bytes,
intentionally small to focus on latency. In a real application,
however, the response may be large (e.g., it may contain a
batch of sensor readings). In this section, we explore larger
response sizes. We use a short sleep interval of 100 ms. This
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Figure 8: Goodput: CoAP vs. HTTP/TCP

is realistic because, using adaptive duty cycling, the sleep
interval may be longer when the node is idle, and reduced to
100 ms only when transferring the response.

Figure 8a shows the total time from dispatching the re-
quest to receiving the full response, as we vary the size of
the response. It plots the median time, with quartiles shown
in error bars. HTTP takes longer than CoAP when the re-
sponse size is small (consistent with Figure 7), but CoAP takes
longer when the response size is larger. This indicates that
while HTTP/TCP has a greater fixed-size overhead than CoAP
(higher y-intercept), it transfers data at a higher throughput
(lower slope). TCP achieves a higher throughput than CoAP
because CoAP sends response segments one-at-a-time (“stop
and wait”), whereas TCP allows multiple segments to be in
flight simultaneously (“sliding window”).

To quantify the difference in throughput, we compare
TCP and CoAP when transferring 50 KiB of data in Fig-
ure 8b. TCP achieves 40% higher throughput compared
to CoAP, over multiple hops and a duty-cycled link.
8.1.3 Power Consumption
TCP consumes more energy than CoAP due to the extra round-
trip at the beginning. In practice, however, a web server is
interactive, and therefore will be idle most of the time. Thus,
the idle power consumption dominates. For example, TCP
keeps the radio on 35% longer than CoAP for a response size
of 1024 bytes, but if the user makes one request every 100
seconds on average, this difference drops to only 0.35%.

Thus, we relegate in-depth power measurements to the
sense-and-send application (§8.2), which is non-interactive.

8.2 Sense-and-Send Application Scenario
We turn our focus to the common sense-and-send paradigm,
in which devices periodically collect sensor readings and send
them upstream. For concreteness, we model our experiments
on the deployment of anemometers in a building, a real-world
LLN use case described in Appendix D. Anemometers collect
measurements frequently (once per second), making heavy
use of the transport protocol; given that our focus is on trans-
port performance, this makes anemometers a good fit for our
study. Other sensor deployments (e.g., temperature, humidity,
building occupancy, etc.) sample data at a lower rate (e.g.,
0.05 Hz), but are otherwise similar. Thus, we expect our re-
sults to generalize to other sense-and-send applications.

Nodes 12–15 (Figure 1) each generate one 82-byte reading
every 1 second, and send it to the cloud server using either
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Figure 9: Effect of batching on power consumption

TCP or CoAP. We use most of the remaining RAM as an
application-layer queue to prevent data from being lost if
CoAP or TCP is in backoff after packet loss and cannot send
out new data immediately. We make use of adaptive duty
cycling for both TCP and CoAP, with a base sleep interval of
four minutes (OpenThread’s default) and decreasing it to 100
ms8 when a TCP ACK or CoAP response is expected.

We measure a solution’s reliability as the proportion of
generated readings delivered to the server. Given that TCP and
CoAP both guarantee reliability, a reliability measurement of
less than 100% is caused by overflow of the application-layer
queue due to poor network conditions preventing data from
being reliably communicated as fast as they are generated.
Generating data more slowly would result in higher reliability.
8.2.1 Performance in Favorable Conditions
We begin with experiments in our testbed at night, when there
is less wireless interference. We compare three setups: (1)
CoAP, (2) CoCoA, and (3) TCPlp. We also compare two
sending scenarios: (1) sending each sensor reading right away
(“No Batching”), and (2) sending sensor readings in batches
of 64 (“Batching”) [89]. We ensure that packets in a CoAP
batch are the same size as segments in TCP (five frames).

All setups achieved 100% reliability due to end-to-end
acknowledgments (figures are omitted for brevity). Figures 9a
and 9b also show that all the three protocols consume similar
power; TCP is comparable to LLN-specific solutions.

Both the radio and CPU duty cycle are significantly
smaller with batching than without batching. By sending
data in batches, nodes can amortize the cost of sending data
and waiting for a response. Thus, batching is the more realistic
workload, so we use it to continue our evaluation.
8.2.2 Resilience to Packet Loss
In this section, we inject uniformly random packet loss at the
border router and measure each solution.The result is shown
in Figure 10. Note that the injected loss rate corresponds to
the packet-level loss rate after link retries and 6LoWPAN re-
assembly. Although we plot loss rates up to 21%, we consider
loss rates > 15% exceptional; we focus on the loss rate up
to 15%. A number of WSN studies have already achieved
> 90% end-to-end packet delivery, using only link/routing
layer techniques (not transport) [46, 84, 85]. In our testbed
environment, we have not observed the loss rate exceed 15%
for an extended time, even with wireless interference.

8100 ms is comparable to ContikiMAC’s default sleep interval of 125 ms.
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Figure 10: Performance with injected packet loss

Both CoAP and TCP achieve nearly 100% reliability
at packet loss rates less than 15%, as shown in Figure 10a. At
loss rates greater than 9%, CoCoA performs poorly. The rea-
son is that CoCoA attempts to measure RTT for retransmitted
packets, and conservatively calculates the RTT relative to the
first transmission. This results in an inflated RTT value that
causes CoCoA to delay longer before retransmitting, causing
the application-layer queue to overflow. Full-scale TCP is
immune to this problem despite measuring the RTT, because
the TCP timestamp option allows TCP to unambiguously
determine the RTT even for retransmitted segments.

Figures 10c and 10d show that, overall, TCP and CoAP
perform comparably in terms of radio and CPU duty cy-
cle. At 0% injected loss, TCPlp has a slightly higher duty
cycle, consistent with Figure 9. At moderate packet loss, TC-
Plp appears to have a slightly lower duty cycle. This may be
due to TCP’s sliding window, which allows it to tolerate some
ACK losses without retries. Additionally, Figure 10b shows
that, although most of TCP’s retransmissions are explained by
timeouts, a significant portion were triggered in other ways
(e.g., duplicate ACKs). In contrast, CoAP and CoCoA rely
exclusively on timeouts, which has intrinsic limitations [143].

With exceptionally high packet loss rates (>15%), CoAP
achieves higher reliability than TCP, because it “gives up”
after just 4 retries; it exponentially increases the wait time
between those retries, but then resets its RTO to 3 seconds
when giving up and moving to the next packet. In contrast,
TCP performs up to 12 retries with exponential backoff. Thus,
TCP backs off further than CoAP upon consecutive packet
losses, witnessed by the smaller retransmission count in Fig-
ure 10b, causing the application-layer queue to overflow more.
This performance gap could be filled by parameter tuning.

We also consider an ideal “roofline” protocol to calculate a
fairly loose lower bound on the duty cycle. This ideal proto-
col has the same header overhead as TCP, but learns which
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Figure 11: Radio duty cycle of TCP and CoAP in a lossy
wireless environment, in one representative trial (losses are
caused by natural human activity)

packets were lost for “free,” without using ACKs or running
MMC. Thus, it turns on its radio only to send out data and
retransmit lost packets. The real protocols have much higher
duty cycles than the ideal protocol would have (Figure 10c),
suggesting that a significant amount of their overhead stems
from determining which packets were lost—polling the par-
ent node for downstream TCP ACKs/CoAP responses. This
gap could be reduced by improving OpenThread’s MMC pro-
tocol. For example, rather than using a fixed sleep interval of
100 ms when an ACK is expected, one could use exponential
backoff to increase the sleep interval if an ACK is not quickly
received. We leave exploring such ideas to future work.

8.2.3 Performance in Lossy Conditions
We compare the protocols over the course of a full day in our
testbed, to study the impact of real wireless interference asso-
ciated with human activity in an office. We focus on TCPlp
and CoAP since they were the most promising protocols from
the previous experiment. To ensure that TCPlp and CoAP
are subject to similar interference patterns, we (1) run them
simultaneously, and (2) hardcode adjacent TCPlp and CoAP
nodes to have the same first hop in the multihop topology.

Improving Queue Management. OpenThread’s queue man-
agement interacts poorly with TCP in the presence of inter-
ference. When a duty-cycled leaf node sends a data request
message to its parent, it turns its radio on and listens until it re-
ceives a reply (called an “indirect message”). In OpenThread,
the parent finishes sending its current frame (which may re-
quire link retries in the presence of interference), and then
sends the indirect message. The duty-cycled leaf node keeps
its radio on during this time, causing its radio duty cycle to in-
crease. This is particularly bad for TCP, as its sliding window
makes it more likely for the parent node to be in the middle of
sending a frame when it receives a data request packet from
a leaf node. Thus, we modified OpenThread to allow in-
direct messages to preempt the current frame in between
link-layer retries, to minimize the time that duty-cycled leaf
nodes must wait for a reply with their radios on. Both TCP
and CoAP benefitted from this; TCP benefitted more because
it suffered more from the problem to begin with.

Power Consumption. To improve power consumption for
both TCP and CoAP, we adjusted parameters according to

Protocol Reliability Radio DC CPU DC
TCPlp 99.3% 2.29% 0.973%
CoAP 99.5% 1.84% 0.834%
Unrel., no batch 93.4% 1.13% 0.52%
Unrel., with batch 95.3% 0.734% 0.30%

Table 7: Performance in the testbed over a full day, averaged
over multiple trials. The ideal protocol (§8.2.2) would have a
radio DC of≈ 0.63%–0.70% under similarly lossy conditions.

the lossy environment: (1) we enabled link-layer retries for
indirect messages, (2) we decreased the data request timeout
and performed link-layer retries more rapidly for indirect
messages, to deliver them to leaves more quickly, and (3)
given the high level of daytime interference, we decreased the
MSS from five frames to three frames (as in §8).

Figure 11 depicts the radio duty cycle of TCP and CoAP for
a trial representative of our overall results. CoAP maintains
a lower duty cycle than TCPlp outside of working hours,
when there is less interference; TCPlp has a slightly lower
duty cycle than CoAP during working hours, when there
is more wireless interference. TCPlp’s better performance
at a higher loss rate is consistent with our results from §8.2.2.
At a lower packet loss rate, TCP performs slightly worse
than CoAP. This could be due to hidden terminal losses; more
retries, on average, are required for indirect messages for TCP,
causing leaf nodes to stay awake longer. Overall, CoAP and
TCPlp perform similarly (Table 7).
8.2.4 Unreliable UDP
As a point of comparison, we repeat the sense-and-send exper-
iment using a UDP-based protocol that does not provide relia-
bility. Concretely, we run CoAP in “nonconfirmable” mode, in
which it does not use transport-layer ACKs or retransmissions.
The result is in the last two rows of Table 7. Compared to
unreliable UDP, reliable approaches increase the radio/CPU
duty cycle by 3x, in exchange for nearly 100% reliability.
That said, the corresponding decrease in battery life will be
less than 3x, because other sources of power consumption
(reading from sensors, idle current) are also significant.

For other sense-and-send applications that sample at a
lower rate, TCP and CoAP would see higher reliability (less
application queue loss), but UDP would not similarly benefit
(no application queue). Furthermore, the power consumption
of TCP, CoAP, and unreliable UDP would all be closer to-
gether, given that the radio and CPU spend more time idle.

8.3 Event Detection Application Scenario
Finally, we consider an application scenario where multiple
flows compete for available bandwidth in an LLN. One such
scenario is event detection: sensors wait until an interesting
event occurs, at which point they report data upstream at a
high data rate. Because such events tend to be correlated,
multiple sensors send data simultaneously.

Nodes 12-15 in our testbed simultaneously transmit data
to the EC2 instance (Figure 1), which measures the goodput

922    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

CoAP

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

CoCoA

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

TCP

Figure 12: CoAP, CoCoA, and TCP with four competing flows

of each flow. We use the same duty-cycling policy as in §8.2.
We divide each flow into 40-second intervals, measure the
goodput in each interval, and compute the median and quar-
tiles of goodput across all flows and intervals. The median
gives a sense of aggregate goodput, and the quartiles gives a
sense of fairness (quartiles close to the median are better).

Figure 12 shows the median and quartiles (as error bars) as
the offered load increases. For small offered load, the per-flow
goodput increases linearly. Once the aggregate load saturates
the network, goodput declines slightly and the interquartile
range increases, due to inefficiences in independent flows
competing for bandwidth. Overall, TCP performs similarly
to CoAP and CoCoA, indicating that TCP’s congestion
control remains effective despite our observations in §7.3
that it behaves differently in LLNs.

9 Conclusion
TCP is the de facto reliability protocol in the Internet. Over
the past 40 years, new physical-, datalink-, and application-
layer protocols have evolved alongside TCP, and supporting
good TCP performance was a consideration in their design.
TCP is the obvious performance baseline for new transport-
layer proposals. To warrant adoption, novel transports must
be much better than TCP in the intended application domain.

In contrast, when LLN research flourished two decades
ago, LLN hardware could not run full-scale TCP. The original
system architecture for networked sensors [68], for example,
targeted an 8-bit MCU with only 512 bytes of memory. It
naturally became taken for granted that TCP is too heavy
for LLNs. Furthermore, contemporary research on TCP in
WLANs [27] suggested that TCP would perform poorly in
LLNs even if the resource constraints were surmounted.

In revisiting the TCP question, after the resource constraints
relaxed, we find that the expected pitfalls of wireless TCP
actually do not carry over to LLNs. Although naïve TCP in-
deed performs poorly in LLNs, this is not due to fundamental
problems with TCP as were observed in WLANs. Rather, it
is caused by incompatibilities with a low-power link layer,
which likely arose because canonical LLN protocols were
developed in the absence of TCP considerations. We show
how to fix these incompatibilities while preserving seamless
interoperability with other TCP/IP networks. This enables a
viable TCP-based transport architecture for LLNs.

Our results have several implications for LLNs moving
forward. First, the use of lightweight protocols that emu-
late part of TCP’s functionality, like CoAP, needs to be

reconsidered. Protocol stacks like OpenThread should sup-
port full-scale TCP as an option. TCP should also serve as a
benchmark to assess new LLN transport proposals.

Second, full-scale TCP will influence the design of net-
worked systems using LLNs. Such systems are presently
designed with application-layer gateways in mind (§3). Using
TCP/IP in the LLN itself would allow the use of commodity
network management tools, like firewalls and NIDS. TCP
would also allow the application-layer gateway to be replaced
with a network-layer router, allowing clients to interact with
LLN applications in much the same way as a Wi-Fi router
allows users to interact with web applications. This is much
more flexible than the status quo, where each LLN application
needs application-specific functionality to be installed at the
gateway [141]. In cases where a new LLN transport protocol
is truly necessary, the new protocol may be wise to consider
the byte-stream abstraction of TCP. This would allow the
application-layer gateway to be replaced by a transport-layer
gateway. The mere presence of a transport layer, distinct from
the application layer, goes a long way to providing interoper-
ability with the rest of the Internet.

Third, UDP-based protocols will still have a place in
LLNs, just as they have a place in the Internet. UDP
is used for applications that benefit from greater control
of segment transmission and loss response than TCP pro-
vides. These are typically real-time or multimedia applica-
tions where losing information is preferable to late delivery.
It is entirely seemly for some sensing applications in LLNs,
particularly those with similar real-time constraints, to trans-
fer data using UDP-based protocols, even if TCP is an option.
But TCP still benefits such applications by providing a reli-
able channel for control information. For example, TCP may
be used for device configuration, or to provide a shell for
debugging, without yet another reliability protocol.

In summary, LLN-class devices are ready to become first-
class citizens of the Internet. To this end, we believe that TCP
should have a place in the LLN architecture moving forward,
and that it will help put the “I” in IoT for LLN-class devices.

Acknowledgments
We thank the anonymous reviewers, including in prior submis-
sions, and our shepherd, Keith Winstein, for their invaluable
feedback. We are thankful to researchers in the BETS research
group, including Kaifei Chen, Gabe Fierro, and Jack Kolb,
for their feedback on early drafts of this paper, and to Prabal
Dutta and Sylvia Ratnasamy for their advice and discussion.
We also thank Albert Goto for his help with the LLN testbed.

This research is supported by the Department of Energy
Grant DE-EE0007685, California Energy Commission, Intel
Corporation, NSF Grant CPS-1239552, Fulbright Scholarship
Program, UC Berkeley, and NSF Graduate Research Fellow-
ship Program under Grant DGE-1752814. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    923



References
[1] Device management connect. https:

//www.arm.com/products/iot/pelion-iot-
platform/device-management/connect. Ac-
cessed: 2018-09-09.

[2] Java speaks CoAP. https://community.arm.com/
iot/b/blog/posts/java-speaks-coap. Accessed:
2018-09-09.

[3] MQTT and CoAP, IoT protocols. https:
//www.eclipse.org/community/eclipse_
newsletter/2014/february/article2.php.
Accessed: 2018-09-09.

[4] OpenThread. https://openthread.io/. Accessed:
2018-09-09.

[5] Software configuration guide, Cisco IOS re-
lease 15.2(5)ex (catalyst digital building series
switches). https://www.cisco.com/c/en/us/
td/docs/switches/lan/catalyst_digital_
building_series_switches/software/15-
2_5_ex/configuration_guide/b_1525ex_
consolidated_cdb_cg/b_1525ex_consolidated_
cdb_cg_chapter_0111101.html. Accessed: 2018-
09-09.

[6] Thread group. https://www.threadgroup.org/
thread-group#OurMembers. Accessed: 2018-09-11.

[7] What is Thread. https://www.threadgroup.org/
What-is-Thread#threadready. Accessed: 2018-09-
12.

[8] ZeroMQ. http://zeromq.org/. Accessed: 2019-01-
29.

[9] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock.
Host-to-host congestion control for TCP. IEEE Com-
munications Surveys & Tutorials, 12(3), 2010.

[10] M. M. Alam and C. S. Hong. CRRT: congestion-aware
and rate-controlled reliable transport in wireless sensor
networks. IEICE Transactions on Communications,
92(1), 2009.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In SIGCOMM. ACM,
2010.

[12] M. Allman. TCP byte counting refinements. ACM
SIGCOMM Computer Communication Review, 29(3),
1999.

[13] M. Allman. TCP congestion control with appropriate
byte counting (ABC). RFC 3465, 2003.

[14] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing
TCP’s loss recovery using limited transmit. RFC 3042,
2000.

[15] M. Allman, D. Glover, and L. Sanchez. Enhancing
TCP over satellite channels using standard mechanisms.
RFC 2488, 1999.

[16] M. Allman and V. Paxson. On estimating end-to-end
network path properties. ACM SIGCOMM Computer
Communication Review, 29(4), 1999.

[17] M. Allman, V. Paxson, and E. Blanton. TCP congestion
control. RFC 5681, 2009.

[18] M. P Andersen, G. Fierro, and D. E. Culler. System de-
sign for a synergistic, low power mote/BLE embedded
platform. In IPSN. ACM/IEEE, 2016.

[19] E. Arens, A. Ghahramani, R. Przybyla, M. P Ander-
sen, S. Min, T. Peffer, P. Raftery, M. Zhu, V. Luu, and
H. Zhang. Measuring 3D indoor air velocity via an
inexpensive low-power ultrasonic anemometer. Energy
and Buildings, 211, 2020.

[20] Atmel Corporation. Low Power, 2.4GHz Transceiver
for ZigBee, RF4CE, IEEE 802.15.4, 6LoWPAN, and
ISM Applications, 2014. Preliminary Datasheet.

[21] A. Ayadi, P. Maillé, and D. Ros. TCP over low-power
and lossy networks: tuning the segment size to mini-
mize energy consumption. In NTMS. IEEE, 2011.

[22] A. Ayadi, P. Maillé, D. Ros, L. Toutain, and T. Zheng.
Implementation and evaluation of a TCP header com-
pression for 6LoWPAN. In IWCMC. IEEE, 2011.

[23] A. Ayadi, D. Ros, and L. Toutain. TCP header compres-
sion for 6LoWPAN: draft-aayadi-6lowpan-tcphc-01.
Technical report, 2010. https://tools.ietf.org/
id/draft-aayadi-6lowpan-tcphc-01.

[24] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann,
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A Impact of Network Stack Design
As mentioned in §5, we made nontrivial modifications to
FreeBSD’s TCP stack to port it to each embedded operating
system and embedded network stack. Below we provide addi-
tional information about these changes, and about our imple-
mentations for platforms other than Hamilton/OpenThread.

A.1 Concurrency Model
GNRC and OpenThread (RIOT OS). RIOT OS provides
threads as the basic unit of concurrency. Asynchronous in-
teraction with hardware is done by interrupt handlers that
preempt the current thread, perform a short operation in the
interrupt context, and signal a related thread to perform any
remaining operation outside of interrupt context. Then the
thread is placed on the RIOT OS scheduler queue and is
scheduled for execution depending on its priority.

The GNRC network stack for RIOT OS runs each network
layer (or module) in a separate thread. Each thread has a
priority and can be preempted by a thread with higher priority
or by an interrupt. The thread for a lower network layer has
higher priority than the thread for a higher layer.

The port of OpenThread for RIOT OS handles received
packets in one thread and sends packets from another thread,
where the thread for received packets has higher priority [83].
The rationale for this design is to ensure timely processing of
received packets at the radio, which is especially important in
the context of a high-throughput flow.

To adapt TCPlp for GNRC, we run the FreeBSD implemen-
tation as a single TCP-layer thread, whose priority is between
that of the application-layer thread and the IPv6-layer thread.
To adapt TCPlp for OpenThread on RIOT OS, we call the
TCP protocol logic (tcp_input()) at the appropriate point
along the receive path, and send packets from the TCP proto-
col logic (tcp_output()) using the established send path. As

explained in Appendix A.2, we also use an additional thread
for timer callbacks in RIOT OS.

Given that TCP state can be accessed concurrently from
multiple threads—the TCP thread (GNRC) or receive thread
(OpenThread), the application thread(s), and timer callbacks—
we needed to synchronize access to it. The FreeBSD imple-
mentation allows fine-grained locking of connection state to
allow different connections to be serviced in parallel on differ-
ent CPUs. Given that low-power embedded sensors typically
have only one CPU, however, we opted for simplicity, instead
using a single global TCP lock for TCPlp.

BLIP (TinyOS). TinyOS uses an event-driven concurrency
model based on split-phase operations, consisting of an event
loop that executes on a single stack. For concurrency, TinyOS
provides three types of unique operations: commands and
events, which are executed immediately, and tasks, which are
scheduled for execution after all preceding tasks are com-
pleted. An interrupt handler may preempt the current func-
tion, perform a short operation in the interrupt context us-
ing asynchronous events and commands, and post a task
to perform any remaining computation later. To adapt the
thread-based FreeBSD implementation to the event-driven
TinyOS, we execute the primary functions of FreeBSD, such
as tcp_output() and tcp_input(), within tasks outside of
interrupt context. Because tasks in TinyOS cannot preempt
each other, we remove the locking present in the FreeBSD
TCP implementation.

A.2 Timer Event Management
Given that many TCP operations are based on timer events,
achieving correct timer operation is important. For example,
if an RTO timer event is dropped by the embedded operat-
ing system, the RTO timer will not be rescheduled, and the
connection may hang.

For a simple and stable operation, many existing embedded
TCP stacks, including the uIP, lwIP, and BLIP TCP stacks,
rely on a periodic, fixed-interval clock in order to check for
expired timeouts. Instead, TCPlp uses one-shot tickless timers
as FreeBSD 10.3 does [74], which is beneficial in two ways:
(1) When there are no scheduled timers, the tickless timers
allow the CPU to sleep, rather than being needlessly woken
up at a fixed interval, resulting in lower energy consump-
tion [83]. (2) Unlike fixed periodic timers, which can only
be serviced on the next tick after they expire, tickless timers
can be serviced as soon as they expire. To obtain these advan-
tages, however, an embedded operating system must robustly
manage asynchronous timer callbacks.

TinyOS has a single event queue maintained by the sched-
uler. The semantics of TinyOS guarantee that a task can exist
in the event queue only once, even if it is posted (i.e., sched-
uled for execution) multiple times before executing. There-
fore, the event queue can be sized appropriately at compile-
time to not overflow. Furthermore, TinyOS handles received
packets in a separate queue than tasks. This ensures that TCP
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Protocol Event Sched. User Library
ROM 21352 B 1696 B 5384 B
RAM (Active) 488 B 40 B 36 B
RAM (Passive) 16 B 16 B 36 B

Table 8: Memory usage of TCPlp on TinyOS. Our imple-
mentation of TCPlp spans three modules: (1) protocol im-
plementation, (2) event scheduler that injects callbacks into
userspace, and (3) userland library.

timer callbacks will not be dropped.

This is not the case for RIOT OS. Timer callbacks either
handle the timer entirely in interrupt context, or put an event
on a thread’s message queue, so that the thread performs the
required callback operation. Each network protocol supported
by RIOT OS has a single thread. Because a thread’s message
queue in RIOT OS is used to hold both received packets and
timer events, there is no guarantee when a timer expires that
there is enough space in the thread message queue to accept
a timer event; if there is not enough space, RIOT OS drops
the timer event. Furthermore, if a timer expires multiple times
before its event is handled by the thread, multiple events for
the same timer can exist simultaneously in the queue; we
cannot find an upper bound on the number of slots in the
message queue used by a single timer. To provide robust
TCP operation on RIOT OS, we create a second thread used
exclusively for TCP timers. We handle timers similarly to
TinyOS’ post operation, by preventing the message queue
from having multiple callback events of a single timer. This
eliminates the possibility of timer event drops.

A.3 Memory Usage: Connection State
To complement Table 3, which shows TCPlp’s memory foot-
print on RIOT OS, we include Table 8, which shows TCPlp’s
memory footprint on TinyOS.

A.4 Performance Comparison
We consider TCP goodput between two embedded nodes over
the IEEE 802.15.4 link, over a single hop without any border
router, as we did in §6.3. We are able to produce a 63 kb/s
goodput over a TCP connection between two Hamilton motes
using RIOT’s GNRC network stack. For comparison, we are
able to achieve 71 kb/s using the BLIP stack on Firestorm, and
75 kb/s using the OpenThread network stack with RIOT OS on
Hamilton. This suggests that our results are reproducible
across multiple platforms and embedded network stacks.
The minor performance degradation in GNRC is partially ex-
plained by its greater header overhead due to implementation
differences, and by its IPC-based thread-per-layer concur-
rency architecture, which has known inefficiencies [36]. This
suggests that the implementation of the underlying network
stack, particularly with regard to concurrency, could affect
TCP performance in LLNs.

uIP BLIP GNRC TCPlp
Flow Control Yes Yes Yes Yes
Congestion Control N/A No Yes Yes
RTT Estimation Yes No Yes Yes
MSS Option Yes No Yes Yes
OOO Reassembly No No Yes Yes
TCP Timestamps No No No Yes
Selective ACKs No No No Yes
Delayed ACKs No No No Yes

Table 9: Comparison of core features among embedded TCP
stacks: uIP (Contiki), BLIP (TinyOS), GNRC (RIOT), and
TCPlp (this paper)

B Comparison of Features in Embedded TCP
Implementations

Table 9 compares the featureset of TCPlp to features in embed-
ded TCP stacks. The TCP implementations in uIP and BLIP
lack features core to TCP. uIP allows only one unACKed
in-flight segment, eschewing TCP’s sliding window. BLIP
does not implement RTT estimation or congestion control.
The TCP implementation in GNRC lacks features such as
TCP timestamps, selective ACKs, and delayed ACKs, which
are present in most full-scale TCP implementations.

Benefits of full-scale TCP. In addition to supporting the
protocol-level features summarized in Table 9, TCPlp is likely
more robust than other embedded TCP stacks because it is
based on a well-tested TCP implementation. While seemingly
minor, some details, implemented incorrectly by TCP stacks,
have had important consequences for TCP’s behavior [111].
TCPlp benefits from a thorough implementation of each as-
pect of TCP.

For example, TCPlp, by virtue of using the FreeBSD TCP
implementation, benefits from a robust implementation of
congestion control. TCPlp implements not only the basic
New Reno algorithm, but also Explicit Congestion Notifica-
tion [52], Appropriate Byte Counting [12, 13] and Limited
Transmissions [14]. It also inherits from FreeBSD heuris-
tics to identify and correct “bad retransmissions” (as in §2.8
of [16]): if, after a retransmission, the corresponding ACK
is received very soon (within RTT

2 of the retransmission), the
ACK is assumed to correspond to the originally transmit-
ted segment as opposed to the retransmission. The FreeBSD
implementation and TCPlp recover from such “bad retrans-
missions” by restoring cwnd and ssthresh to their former
values before the packet loss. Aside from congestion control,
TCPlp benefits from header prediction [37], which introduces
a “fast code path” to process common-case TCP segments
(in-sequence data and ACKs) more efficiently, and Challenge
ACKs [116], which make it more difficult for an attacker to
inject an RST into a TCP connection.

Enhancements such as these make us more confident that
our observed results are fundamental to TCP, as opposed to
artifacts of poor implementation. Furthermore, they allow us

930    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



to focus on performance problems arising from the challenges
of LLNs, as opposed to general TCP-related challenges that
the research community has already solved in the context of
traditional networks and operating systems.

C Derivation of TCP Model
This appendix provides the derivation of Equation 1, the
model of TCP performance proposed in §7.4.

We think of a TCP flow as a sequence of bursts. A burst is
a sequence of full windows of data successfully transferred,
which ends in a packet loss. After this loss, the flow spends
some time recovering from the packet loss, which we call a
rest. Then, the next burst begins. Let w be the size of TCP’s
flow window, measured in segments (for our experiments in
§7.3, we would have w = 4). Define b as the average number
of windows sent in a burst. The goodput of TCP is the number
of bytes sent in each burst, which is w ·b ·MSS, divided by the
duration of each burst. A burst lasts for the time to transmit
b windows of data, plus the time to recover from the packet
loss that ended the burst. The time to transmit b windows
is b ·RTT. We define trec to be the time to recover from the
packet loss. Then we have

B =
w ·b ·MSS

b ·RTT+ trec
. (3)

The value of b depends on the packet loss rate. We define a
new variable, pwin, which denotes the probability that at least
one packet in a window is lost. Then b = 1

pwin
.

To complete the model, we must estimate trec and pwin.
The value of trec depends on whether the retransmission

timer expires (called an RTO) or a fast retransmission is per-
formed. If an RTO occurs, the total time lost is the excess time
budgeted to the retransmit timer beyond one RTT, plus the
time to retransmit the lost segments. We denote the time bud-
geted to the retransmit timer as ETO. So the total time lost due
to a timeout, assuming it takes about 2 RTTs to recover lost
segments, would be (ETO−RTT)+2 ·RTT = ETO+RTT.
After a fast retransmission, TCP enters a “fast recovery”
state [17, 66]. Fast recovery requires buffer space to be effec-
tive, however. In particular, if the buffer contains only four
TCP segments, then the lost packet, and three packets after-
ward which resulted in duplicate ACKs, account for the entire
send buffer; therefore, TCP cannot send new data during fast
recovery, and instead stalls for one RTT, until the ACK for the
fast retransmission is received. In contrast, choosing a larger
send buffer will allow fast recovery to more effectively mask
this loss [122].

As discussed in §7.3, these two types of losses may be
caused by different factors. Therefore, we do not attempt to
distinguish them on basis of probability. Instead, we use a very
simple model: trec = ` ·RTT. The constant ` can be chosen
to describe the number of “productive” RTTs lost due to a
packet loss. Based on the estimates above, choosing ` = 2
seems reasonable for our experiments in §7 which used a
buffer size of four segments.

To model pwin, we assume that, in each window, segment
losses are independent. This gives us pwin = 1− (1− p)w,
where p is the probability of an individual segment being lost
(after link retries). Because p is likely to be small (less than
20%), we apply the approximation that (1− x)a ≈ 1−ax for
small x. This gives us pwin ≈ wp.

Applying these equations for trec and pwin, along with some
minor algebraic manipulation to put our equation in a similar
form to Equation 2, we obtain our model for TCP performance
in LLNs, for small w and p:

B =
MSS
RTT

· 1
1
w + `p

(4)

Equation 1, stated in §7.4, takes `= 2, as discussed above.
Generalizing the model. In §8, we generally use a smaller
MSS (3 frames) than we used in §7. Furthermore, duty-
cycling increases the RTT. It is natural to ask whether our
conclusions in §7, on which the model is based, still hold in
this setting. With a sleep interval of 100 ms, we qualitatively
observed that, although cwnd tends to recover more slowly
after loss, due to the smaller MSS and larger RTT, it is still
“maxed out” past the BDP most of the time. Therefore, we
expect our conclusion, that TCP is more resilient to packet
loss, to also apply in this setting.

One may consider adapting our model for this setting by
choosing a larger value of ` to reflect the fact that cwnd re-
covers from loss less quickly due to the smaller MSS. It is
possible, however, that one could derive a better model by
explicitly modeling the phase when cwnd is recovering, sim-
ilar to other existing TCP models (in contrast to our model
above, where we assume that the TCP flow is binary—either
transmitting at a full window, or in backoff after loss). We
leave exploration of this idea to future work.

D Anemometry: An LLN Application
An anemometer is a sensor that measures air velocity. Ane-
mometers may be deployed in a building to diagnose problems
with the Heating, Ventilation, and Cooling system (HVAC),
and also to collect air flow measurements for improved HVAC
control. This requires anemometers in difficult-to-reach loca-
tions, such as in air flow ducts, where it is infeasible to run
wires. Therefore, anemometers must be battery-powered and
must transmit readings wirelessly, making LLNs attractive.

We used anemometers based on the Hamilton platform [19],
each consisting of four ultrasonic transceivers arranged as ver-
tices of a tetrahedron (Figure 13). To measure the air velocity,
each transceiver, in turn, emits a burst of ultrasound, and the
impulse is measured by the other three transceivers. This
process results in a total of 12 measurements.

Calculating the air velocity from these measurements is
computationally infeasible on the anemometer itself, because
Hamilton does not have hardware floating point support and
the computations require complex trigonometry. Measure-
ments must be transmitted over the network to a server that
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(a) Anemometer (b) Hamilton-based PCB (bottom and top)

Figure 13: Hamilton-based ultrasonic anemometer

processes the data. Furthermore, a specific property of the
analytics is that it requires a contiguous stream of data to
maintain calibration (a numerical integration is performed
on the measurements). Thus, the application requires a high
sample rate (1 Hz), and is sensitive to data loss. A protocol for

reliable delivery, like TCP or CoAP, is therefore necessary.

We note that the 1 Hz sample rate for this application is
much higher than the sample rate of most sensors deployed in
buildings. For example, a sensor measuring temperature, hu-
midity, or occupancy in a building typically only generates a
single reading every few tens of seconds or every few minutes.
Furthermore, each individual reading from the anemometer
is quite large (82 bytes), given that it encodes all 12 mea-
surements (plus a small header). Given the higher data rate
requirements of the anemometer application, we plan to use a
higher-capacity battery than the standard AA batteries used
in most motes. The higher cost of such a battery is justified
by the higher cost of the anemometer transducers.

932    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Comb Decoding towards Collision-Free WiFi

Shangqing Zhao, Zhe Qu, Zhengping Luo, Zhuo Lu, Yao Liu

University of South Florida, Tampa FL 33620.

Abstract
Packet collisions happen every day in WiFi networks. RT-

S/CTS is a widely-used approach to reduce the cost of colli-

sions of long data packets as well as combat the hidden ter-

minal problem. In this paper, we present a new design called

comb decoding (CombDec) to efficiently resolve RTS colli-

sions without changing the 802.11 standard. We observe that

an RTS payload, when treated as a vector in a vector space,

exhibits a comb-like distribution; i.e., a limited number of

vectors are much more likely to be used than the others due to

RTS payload construction and firmware design. This enables

us to reformulate RTS collision resolution as a sparse recov-

ery problem. We create algorithms that carefully construct

the search range for sparse recovery, making the complexity

feasible for system design and implementation. Experimen-

tal results show that CombDec boosts the WiFi throughput

by 33.6% – 46.2% in various evaluation scenarios.

1 Introduction

CSMA/CA is fundamental for WiFi to coordinate multiple

nodes to access the wireless channel. RTS/CTS is a widely-

used mechanism in WiFi, which uses short RTS packets for

fast collision inference, transmission path check as well as

combating the hidden terminal problem [5]. In many early

WiFi products, RTS/CTS was disabled due to the concern of

overhead [32]. With the substantial increase of data demand

in recent years, WiFi data packets become longer and longer,

and today’s WiFi devices send an RTS packet when the size

of a data packet exceeds a given threshold. The threshold is

usually set to around 2,300 bytes [1, 4, 6, 7, 9] to balance the

performance and the overhead. RTS/CTS is also used in ad-

vanced WiFi functionalities, such as beamforming and MU-

MIMO [5]. In addition, global RTS/CTS [41,45,64] has also

been proposed for cross-technology communications.

The essence in the RTS/CTS mechanism is to trade a small

cost of the RTS collision for a potentially large cost of data

collision. In this paper, we revisit the RTS collision prob-

lem and present the comb decoding (CombDec) system to

resolve RTS collisions without changing the 802.11 standard

and thus improve the wireless channel utilization as well as

the network throughput.

The observation behind designing CombDec is that the

data payload of an RTS packet, when treated as a vector in a

vector space, exhibits a comb-like distribution. Specifically,

the RTS content consists of 160 bits, which leads to 2160 pos-

sibilities. We find that the standard-structured data fields in

RTS actually result in at most around 221 possible contents

in today’s WiFi networks. Therefore, the probability distribu-

tion of such contents will exhibit a comb-like shape: only up

to 221 out of 2160 contents having non-zero probabilities.

As a result, we reformulate the RTS collision problem as a

weighted sum problem: we consider the received signal due

to an RTS collision is the sum of all 221 RTS contents trans-

mitted at the same time, but with different channel weights.

An RTS content has a non-zero channel weight if it is actu-

ally transmitted, and zero weight otherwise. Then, resolving

the collision is equivalent to solving for the channel weight

for each RTS content. The key observation to solve the prob-

lem is that a vast majority of the 221 channel weights should

be zeros because a collision involves only a few RTS pack-

ets in a real-world network. In other words, the vector that

includes all channel weights is sparse, which opens a path to

use sparse recovery [18, 19, 47] to resolve RTS collisions.

One significantly challenging issue around collision res-

olution based on sparse recovery is the computational com-

plexity because we start from around 221 possibilities of RTS

signals to resolve a collision. To cope with this issue, we an-

alyze how a key RTS data field, Duration (that specifies the

time duration an RTS packet reserves), is constructed in state-

of-the-art 802.11 firmware. A comprehensive set of 802.11ac

packet traces are also collected to understand the distribu-

tion of Duration in various scenarios. It is found that to-

day’s firmware imposes extra restrictions on Duration and

is biased towards a limited number of value selections, and

the distribution of Duration in real-world packets is highly

uneven and patterned. Based on this observation, CombDec

is designed with two key components: (α, β)-construction
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and γ-decimation, which adaptively narrow down the search

range in sparse recovery to a set of only hundreds of potential

RTS signals, making system design of collision resolution

practical for WiFi networks.

We implement CombDec in a 20-node network testbed,

and evaluate it in different scenarios. Experimental results

demonstrate that our design has both direct and indirect im-

pacts on today’s WiFi systems and setups.

Direct Impact: Today’s WiFi devices usually adopt a conser-

vative RTS threshold (i.e., around 2300 bytes), which results

in 30% - 45% data transmissions initiated by RTS (according

to our packet trace collection and analysis). By directly using

CombDec with current RTS settings, we find via experiments

that CombDec is able to decode 98% of two-RTS collisions

and improve the network throughput by up to 23.3%.

Indirect Impact: CombDec offers a new capability of decod-

ing RTS collisions and in fact encourages changing today’s

WiFi setups for more RTS transmissions. Therefore, by re-

ducing the RTS threshold to zero and letting every device al-

ways send RTS before data (indicating that most collisions in

the network become RTS collisions), CombDec significantly

improves the network throughput by up to 46.6% in experi-

mental evaluations.

The design of CombDec is the first systematic work to-

wards resolving RTS collisions in WiFi networks. It is non-

invasive and redefines the role of the RTS functionality and

pushes WiFi towards a collision-free environment.

2 Motivation and Design Intuition

In this section, we introduce the motivation and key idea of

reformulating the problem of packet collisions.

2.1 Packet Collision and Resolution

We use a noise-free, flat-fading uplink scenario as a simple

motivating example: Alice and Bob send their packets to the

AP at the same time. Alice’s and Bob’s packets consist of

L time-domain baseband symbols, represented by vectors1

xA ∈ X and xB ∈ X , respectively, where X ⊂ CL×1 denotes

the set of all possible baseband symbol vector for xA and xB,

and CL×1 is the L-dimensional complex vector space.

Then, the received signal at the AP can be written as

y = hAxA + hBxB, (1)

where hA,hB ∈C (C denotes the complex plane) are the chan-

nel gains from Alice and Bob to the AP, respectively.

If we look at the collision (1) and assume that Alice’s and

Bob’s signals go through similar channel conditions to the

AP, Alice’s or Bob’s signal will have an SNR around 0dB

due to mutual interference. Simply given (1), the AP is less

1Throughout this paper, a vector is by default a column vector instead of

a row vector, unless otherwise specified.

likely to recover Alice’s or Bob’s signal due to two major

reasons.

• If the AP adopts a traditional decoding design, it cannot

decode a signal with SNR around 0dB, because an acceptable

SNR is usually 10dB or above [29] for WiFi.

• Although multi-user detection [59] has been developed

as a vital solution to decode multiple user’s signals, this tech-

nique in general requires that users employ distinct spread

spectrum codes [60] to differentiate themselves at the signal

level. Nonetheless, there is no such code design in WiFi.

Apparently, additional information is needed to resolve the

collision (1). Our key observation is that the RTS packet for-

mat itself provides valuable information for collision resolu-

tion in a WiFi network.

2.2 Anatomy of RTS in WiFi

The RTS/CTS mechanism lets a sender reserve the channel

by sending an RTS packet first. Once the receiver replies with

a CTS packet, the sender transmits the data packet. The RTS

packet specifies a network allocation vector (NAV), which is

the total time duration it wants to reserve, including the time

durations of the CTS, the data and the ACK.

The data payload in an RTS packet consists of 20 bytes or

160 bits, and we denote it as an RTS data vector b ∈ [0,1]160,

where [0,1]160 is the space for all vectors with length 160,

whose element is either 0 or 1. At the PHY layer, the data

vector b is interleaved, coded and modulated into a signal

vector x ∈ X , where X is the set of all values of x. These

processes together can be denoted as a one-to-one function

mapping f : [0,1]160 → X , which converts the RTS data vec-

tor b to the RTS signal vector x = f (b). As f is one-to-one

correspondence, |X | = 2160 (| · | denotes the cardinality, or

the number of elements, of a set).

We observe that all RTS data vectors in [0,1]160 are not

equally probable in the real world because all data fields in

RTS are well structured and specified.

• FrameControl contains 2 bytes specified in 802.11.

• Duration is the 2-byte NAV in microseconds. The last

bit is set to 0 and thus it holds up to 215 values.

• RA and TA (6 bytes each) are the destination and source

addresses, respectively. As today’s WiFi is widely used for

Internet access, stations communicate mostly with the AP.

The AP knows that RA in an RTS packet sent to it is its own

address and TA should be the address of one of its stations.

Suppose that a dense network can support 26 stations (e.g.,

Linksys EA8500 firmware supports up to 51 stations [11])

and the number of possible values of TA in RTS is 26.

• FCS (4 bytes) is for error detection and relies on other

data fields. It provides no additional information.

Thus, from the AP’s perspective, the number of RTS data

vectors of interest is 215 (from Duration) × 26 (from RA/TA)

= 221 in the full RTS vector space [0,1]160. As a result, the
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Figure 1: Example: distribution of RTS signal vectors.

number of RTS signal vectors of interest is also 221 in the sig-

nal vector space X with |X | = 2160. If we index all vectors

in X from 1 to 2160 and measure via the probability distribu-

tion how each vector is likely to be seen in the real world, we

will obtain a comb-shaped distribution similar to the example

shown in Figure 1. We call an RTS signal vector a tooth vec-

tor if the probability that it can be seen at the AP is positive.

Although the index goes from 1 to 2160 in Figure 1, the num-

ber of tooth vectors should be no less than 221 according to

our analysis. The comb-shaped distribution is in evident con-

trast to the traditional decoding assumption (also illustrated

in Figure 1) that all potential values of a signal vector are

equally probable [31]. This opens a door for us to go beyond

traditional decoding to resolve RTS collisions.

2.3 Idea of Collision Resolution

Based on the observation from Figure 1, we present the basic

idea regarding how to resolve an RTS collision.

2.3.1 Problem Reformulation

Denote by M = {mi}i∈[1,M] (M = |M |) the set of tooth vec-

tors. Define the comb matrix M = [m1,m2, · · · ,mM] (i.e.,

each column in M is a tooth vector). The AP can pre-

construct the comb matrix M by inserting all possible RTS

to M to form the columns. The AP’s goal is to find exactly

which ones in M are actually involved in the collision.

Mathematically, we reformulate the collision problem to

an equivalent one: assume that all tooth vectors in M are

transmitted to the AP, but they go through different wireless

channels. In particular, the tooth vectors involved in the ac-

tual collision go through the wireless channels with realis-

tic channel gains, but those not involved in the collision go

through the channels with zero channel gains. For example,

in Figure 2, Alice, Bob and other users have different tooth

vectors. The received signal y is considered as the sum of all

these tooth vectors weighted by different channel gains. The

channel gain weight of a tooth vector is the realistic channel

gain if it is indeed transmitted, and zero otherwise. If Alice’s

transmitted signal is m1, the channel gain weight g1 for m1

is the real channel gain between Alice and the AP, and the

weights for the rest of Alice’s tooth vectors are all zeros (e.g.,

g2 = 0 as Alice transmits m1 not m2). As such, the received

Alice               Bob             Other users

m1      m2     �     �     �     �     �     �

received signal y

channel gain 
weight vector g

comb 
matrix M

�             � 

 (realistic 
channel gain)       

g2=0g1 ... ... ... ... ... ...

... ...

Figure 2: Reformulation of network collision.

signal y can be reformulated as

y=
M

∑
i=1

migi = [m1,m2, · · · ,mM]︸ ︷︷ ︸
comb matrix M

[g1,g2, · · · ,gM]︸ ︷︷ ︸
channel gain weight vector g

T , (2)

where g is called the channel gain weight vector and ·T de-

notes the matrix transpose. Based on (2), collision resolu-

tion is equivalent to solving for unknown g given y and M.

Then, the tooth vectors actually involved in the collision cor-

respond to non-zero elements in the solved g.

2.3.2 Solution based on Reformulation

There are two key observations on the reformulation in (2).

• The unknown channel gain weight vector g is sparse

in a real-world network because of two reasons: (i) There

is no self-collision. As shown in Figure 2, if Alice sends a

tooth vector m1, we have g1 6= 0; and any other tooth vector

belonging to Alice will have a zero channel gain weight (e.g.,

g2 = 0) since there is no way Alice transmits both m1 and

m2. (ii) Because of the random backoff in WiFi, a collision

is likely caused by only several users transmitting at the same

time. Thus, g should include only several non-zero elements.

• The comb matrix M should exhibit a nearly random

matrix property. Each tooth vector mi in M is mapped from

an RTS data vector through interleaving and error-correction

coding. Their main purpose is to scramble and re-map all bits

into a larger bit space in a (nearly) random way such that the

error-correction performance approaches the random coding

performance in Shannon’s capacity [24].

Given the sparse property and nearly random matrix prop-

erty, the channel gain weight vector g should be recovered

with high probability by L1-norm minimization according to

the theory of compressive sensing [26, 28, 38]. Thus, resolv-

ing an RTS collision leads to the following optimization.

Given: comb matrix M and received signal y,

Objective: gsolution = argmin‖g‖1, subject to y = Mg,
(3)

where ‖g‖1 is the L1-norm of g (i.e., ‖g‖1 = ∑gi∈g |gi|).
The theoretical framework lays out a promising path to-

wards resolving RTS collisions. Although the L1-norm min-

imization in (3) can be solved by many efficient algorithms
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[17–19, 27, 62], directly applying (3) to collision resolution

incurs an unbearable cost because the comb matrix M con-

sists of up to 221 = 2,097,152 tooth vectors according to our

initial analysis in Section 2.2. Thus, significant challenges

exist to make collision resolution meaningful and practical.

3 Construction of Comb Matrix

The initial step towards our CombDec design is to find a way

to reduce the size of the comb matrix M (that can include 221

tooth vectors) for a low-cost solution. In this section, we ana-

lyze the 802.11 standard, firmware and packet traces to show

that there is a feasible way to significantly reduce the size

of 221. Then, we design two algorithms, (α,β)-construction

and γ-decimation, to reduce 221 to only a few hundreds, while

maintaining the high performance for collision resolution.

The use of (α,β)-construction and γ-decimation clears the

major hurdle towards system implementation.

3.1 Standard and Firmware based Analysis

As aforementioned in Section 2.2, M consists of 221 tooth

vectors because of Duration and RA/TA fields in RTS. The

Duration field specifies the 15-bit NAV in microseconds

with 215 = 32,768 potential values, which largely contribute

to the size of M. 802.11 specifies that the NAV is computed

as one data packet duration, plus one CTS, one ACK, and

three SIFS durations. Given a network setup, SIFS, CTS and

ACK durations are usually fixed (e.g., SIFS is fixed to be 16

µs in 802.11ac at 5GHz). Thus, the value space of the NAV

depends dominantly on the value space of the time duration

of a data packet. In 802.11, the time duration of a data packet

is bounded by aPPDUMaxTime, the maximum time duration

of a data packet (in µs), and indirectly bounded by aPSDU-

MaxLength, the maximum payload length of a data packet

(in bytes). As aPPDUMaxTime for 802.11ac is 5,484µs, the

space size of the NAV is reduced from 32,768 to at most

5,484 in the 802.11ac network.

Today’s WiFi chipsets may still avoid transmitting a long

packet (close to 5,484µs) due to the cost consideration or

hardware limitations. Hence, drivers implement their own

packet length constraints on a data packet, which is usu-

ally less than the standard-defined aPSDUMaxLength or aP-

PDUMaxTime. We perform comprehensive code analysis on

WiFi drivers and find that different vendors indeed pose dif-

ferent constraints on their own chipset, further limiting the

value selection of the NAV. The detailed firmware analysis

can be found in Appendix A.

As a result, we can leverage these constraints to further re-

duce the value space of the NAV in RTS. However, many

WiFi drivers (in particular 802.11ac ones) are still propri-

etary and distributed in the binary form. It is not practical to

study every WiFi chipset/firmware and optimally minimize

the value space of the NAV in RTS packets. In what follows,

Lib. Lab Apt. Air. Conf. Hot.

Scenario

40

60

80

100

D
at

a 
P

ro
te

ct
ed

 b
y

 R
T

S
 (

%
)

Packet Length < 2300 bytes

Packet Length > 2300 bytes

Figure 3: Percentages of data packets protected by RTS.

we analyze real-world packet traces to develop a generic way

to narrow down the value space.

3.2 Packet Trace based Analysis

The key to reducing the size of the comb matrix is through

shrinking the value space of NAV in RTS. We have shown

that a WiFi driver can restrain the value space of NAV. More-

over, implementation-dependent rate control and data aggre-

gation in proprietary WiFi drivers are not likely to produce

uniformly distributed NAV values, but may be more biased

towards certain selections and yield a NAV distribution sim-

ilar to Figure 1. Our objective is to collect massive packet

traces to understand the NAV distribution. Then, we create

generic algorithms to select those NAVs that are the most

likely to be seen for constructing the comb matrix M.

The first step towards understanding the NAV distribution

in real-world RTS packets is to collect a substantially large

number of packet traces for analysis. As no set of 802.11ac

packet data is publicly available, we conducted our own mea-

surements and collected in total 1.3 TB packet trace data with

2.33 billion packets in realistic environments2, including (i)

a public library (65.21 GB), (ii) three academic conferences

(31.14 GB), (iii) five residential communities (65.69 GB),

(iv) three major-brand hotels (109.48 GB), (v) four major

US airports (88.5 GB), (vi) a university research lab (938.81

GB). The library, conference, and airport data traces were

measured only within the business hours (i.e., 9am–5pm).

Figure 3 shows the the percentages of data packets that

are protected by RTS among all data packets collected in dif-

ferent scenarios. Although a typical RTS threshold is set to

around 2300 bytes [1, 4, 6, 7, 9], we see from Figure 3 that

data packets of less than 2300 bytes are still likely to be pro-

tected by RTS. For example, in the hotel scenario, 78.55%

data packets are initiated by RTS even when their lengths

are less than 2300 bytes. Moreover, around 70% - 90% data

packets of over 2300 bytes are protected by RTS in different

scenarios. Overall, we observe from Figure 3 that RTS is still

2Note that the payloads of all data packet were removed after the collec-

tion to avoid the privacy concern.
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Figure 4: Distribution of NAVs from (a) the airport dataset,

and (b) all Belkin devices in all datasets.

intensively used in today’s Wi-Fi networks.

Looking into the NAV values in RTS packets, we observe

that these values are unevenly distributed. For example, Fig-

ure 4(a) shows the NAV distribution of RTS packets in the

airport dataset, which reveals that many NAV values (partic-

ularly around 230 µs) are much more likely to be observed

than the others. The NAV distribution also depends on a

WiFi driver. For example, Figure 4(b) plots the distribution

of the Belkin WiFi driver measured from RTS packets sent

by Belkin devices (recognized by MAC addresses) in all

datasets. The figure shows that the distribution is quite pat-

terned, indicating that the driver has several NAV levels to

construct payloads. We observe uneven or patterned distri-

butions in all datasets and offer a more detailed analysis in

Appendix B.

Thus, if we only choose the most likely NAV values (in-

stead of all possible values) to construct the comb matrix M,

the size of M should be substantially reduced. In addition,

our design should not be device/firmware specific. For exam-

ple, it may be possible to select NAV values based on the

pattern of Belkin devices in Figure 4(b). But this method is

too cumbersome because we have to examine the behaviors

of all different WiFi devices. Our strategy is to use an online

algorithm that actively computes the NAV distribution of a

device, and then selects the most likely NAV values from the

computed distribution to construct the comb matrix M.

3.3 The (α,β)-Construction Algorithm

To select the most likely NAV values to construct M, a node

(either the AP or a station) should store the distribution of the

NAV values in RTS packets from every other node in a net-

work. In addition, the node should keep updating the storage

to account for nodes joining or leaving the network. To this

end, we propose the (α,β)-construction algorithm running at

individual nodes to construct M.

3.3.1 Algorithm Design

For a node that runs the algorithm, it records the frequency

(i.e. the number of appearances) of a NAV value in RTS pack-

Alice                          Bob                               Other users

m1    m2     �     �     �     �     �     �     �      �     �  

�             � 

NAV NAV NAV

frequency frequency frequency
     �                                 

� 
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reconstructed RTS signal vectors as tooth vectors in comb matrix M

select the α 
most likely 
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every minute: 
reduced all 
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Local storage: updated whenever an RTS packet arrives

Figure 5: (α,β) construction running at the AP.
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Figure 6: Different collision scenarios in Alice’s view.

ets transmitted by every other node in the network. When a

new RTS packet with a NAV value is decoded, the node will

increase the frequency of that NAV value by one in its local

storage. There are two key factors α and β in the algorithm.

• Coverage factor α: For every other node in the network,

the algorithm selects the α NAV values with the highest fre-

quencies to form the tooth vectors and the comb matrix.

• Forgetting factor β: The algorithm decreases the fre-

quencies of all NAV values by β every minute. The minimum

frequency is always set to be zero. And if the frequencies

of all NAV values associated with a node become zero, the

node’s information will be all removed from the storage as it

is considered no longer active or out of the network.

The (α,β)-construction algorithm works differently for

the AP and stations. Figure 5 shows how it works at the AP:

the AP stores the frequency of each possible NAV value from

each station. When a collision happens at the AP, it knows the

collision must be due to at least two stations (which could

be Alice, Bob, or others) transmitting to it. Thus, the AP se-

lects the α most likely NAV values from Alice, constructs

an RTS data vector using each of these values, together with

Alice’s MAC address as TA and its own MAC address as

RA, then maps each RTS data vector by function f (includ-

ing interleaving, error-correction coding, modulation, IFFT)

in Section 2.2 to a signal vector (which is a tooth vector in

the comb matrix M). Then, the AP repeats the same process

for Bob and all other stations to finally obtain the full M.

A station’s construction of the comb matrix differs from

the AP. For example, as shown in Figure 6, Alice observes a

collision (a) when two other stations Bob and Carol are trans-

mitting to the AP, (b) when one other station Bob is transmit-

ting to the AP and at the same time the AP is transmitting

to a third station Carol, or (c) when the AP is transmitting to

Alice while Bob and Carol are transmitting to the AP. In all

three cases, collision resolution is only meaningful for Alice

in case (c) because the collision in case (c) includes the AP’s
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Table 1: Miss rate and average size of M.

α=600 Miss rate Ave. # of # of tooth

β=10 nodes vectors in M

Library 6.9 % 12.8 7680

Conferences 3.6 % 11.6 6960

Apartments 1.5 % 6.5 3900

Hotels 0.7 % 10.3 6180

Airports 8.8 % 18.8 11280

Lab 5.7 % 6.3 3780

signal intended for Alice. Even when Alice successfully re-

solves cases (a) and (b), Alice only knows that there is no

signal of interest and then stops. Therefore, the construction

is sufficient for Alice as long as case (c) can be resolved by

Alice. According to case (c), a station should construct the

comb matrix by using RTS signal vectors from the AP to it-

self and other RTS signal vectors from other stations to the

AP. The construction process is similar to Figure 5.

3.3.2 Selections of (α,β) and Cost Evaluations

The size of the resultant comb matrix M depends on both α
and β. In particular, α is the number of tooth vectors from one

node, and β in fact determines how many nodes will be used

in constructing M because (i) all frequencies are decreased

by β every minute and (ii) a node will be removed from the

construction when all its frequencies become zero. The algo-

rithm with a larger β forgets nodes faster, thereby reducing

the number of nodes used for constructing M.

The performance of (α,β)-construction can be evaluated

by the miss rate, defined as the probability that when an RTS

packet arrives at a node, M constructed by the algorithm at

the node does not include the NAV value in the RTS packet.

A large α and a small β are able to reduce the miss rate, but

at the same time increase the size of M, incurring more cost.

Our objective is to find the pair of (α,β) to balance the

miss rate and the complexity for general WiFi scenarios. To

this end, we simulate a WiFi network in each of the packet

datasets, replay all collected packets to simulate RTS arrivals

at each node, and measure the miss rate of the algorithm with

different values of α and β. Table 1 shows one selection of

(α,β)=(600,10) for all scenarios that achieves a good bal-

ance between the miss rate and the size of M (measured by α
multiplying the average number of nodes used for construct-

ing M). We can see that all miss rates are below 9% with

around 4,000–12,000 tooth vectors in M.

3.4 The γ-Decimation Algorithm

Through 802.11 standard analysis, firmware analysis, packet

trace analysis and (α,β)-construction, we have dramatically

shrink the size of M from the initial 2,097,152 tooth vectors

to 12,000 or fewer vectors. All these push the optimization in

(3) to the practice. However, finding the L1-norm minimiza-

tion with 12,000 vectors in (3) still incurs a substantial cost.

We propose γ-decimation to further reduce such a cost while

maintaining the high performance.

Denote by M the number of tooth vectors in M constructed

by (α,β)-construction. The basic idea of the γ-decimation

algorithm (γ > 1 is called decimation rate) is to select, based

on the received signal vector y, M/γ vectors out of all M tooth

vectors in M to form a decimated comb matrix M′.

The design intuition is that the received signal y contains

only several tooth vectors in M that we aim to find out. If we

compute the correlation between y and each tooth vector mi

in M, defined as C(y,mi) = ‖mH
i y‖2 (·H denotes conjugate

transpose and ‖ · ‖2 denotes the L2-norm), we then obtain

M correlation values. Due to the property of correlation, we

should observe a high correlation value if a tooth vector is

indeed included in y, and a low correlation value otherwise.

However, due to channel noise and limited length of tooth

vectors, some tooth vectors not in y may also exhibit high

correlation values. But it is not necessary to exactly identify

which tooth vectors with high correlation values are indeed

in y at this stage, γ-decimation just chooses M/γ tooth vec-

tors that have the highest correlation values to form the dec-

imated comb matrix M′. It is very likely that tooth vectors

involved in the collision are included in M′ as long as M/γ
is sufficiently large. We provide theoretical analysis for the

performance of γ-decimation and show that all RTS signals

involving a collision will survive the decimation and be in-

cluded in M′ with high probability in Appendix C.

As a result, the final comb matrix for (3) is constructed

as follows: (i) (α,β)-construction constructs the comb ma-

trix M with M tooth vectors (this steps ensures a low miss

rate), (ii) γ-decimation decimates M into the decimated comb

matrix M′ with only M/γ tooth vectors (this steps ensures

that tooth vectors involving the actual collision are preserved

with high probability), and (iii) the decimated comb matrix

M′ is used in (3) for collision resolution to finally identify

which tooth vectors are included in the collided signal y.

To make (3) feasible for today’s systems, M′ should have

only hundreds of tooth vectors. As (α,β)-construction main-

tains up to around 12,000 vectors (shown in Table 1), the

decimation rate γ should be around 12 or more.

3.5 Complexity Analysis

In the following, we estimate the computational complexity

and storage complexity of CombDec.

3.5.1 Computational Complexity

We evaluate CombDec’s complexity by comparing it with

a benchmark, which is the complexity to decode a typical

802.11 data packet with 40MHz bandwidth, 3/4 convolu-
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tional coding, and 64QAM. We describe the major computa-

tional operations involved in the benchmark and CombDec.

• The benchmark complexity is proportional to the data

payload length, denoted by N bytes. Decoding a data packet

requires the FFT and Viterbi algorithms. The packet contains

0.0247N OFDM symbols plus 4 PHY headers symbols. The

FFT on each symbol requires 64 log(128) complex multipli-

cations and 128log(128) complex additions [10]. In addition,

the Viterbi algorithm incurs 4K(10.67N+252) real additions

and 2K(10.67N+252) real comparisons, where K is the con-

straint length of convolutional code [12].

• In CombDec, suppose (α,β)-construction maintains M

tooth vectors of length L, the correlation of the received sig-

nal with each of the tooth vector in γ-decimation needs a

total of ML complex additions and multiplications. Among

all correlation values, selecting the M/γ largest values incurs

M + M log(M)/γ comparisons by using the max heap tree

approach [3]. The complexity of L1 minimization depends

on an iterative algorithm and is bounded by the cubic poly-

nomial complexity [62]. In order to estimate an exact com-

putational cost, we use simulations to run the primal-dual

interior-point algorithm [47] to solve the L1-norm minimiza-

tion in M/γ tooth vectors and compute the average numbers

of additions, multiplications and comparisons.

As the complexity involves different types of operations,

including additions, multiplications and comparisons. We

need to have a unified cost utility metric to measure the over-

all costs of CombDec and the benchmark. We use the number

of general CPU cycles as the utility metric [2]. In particular,

one real addition or comparison is counted as one cycle and

one multiplication is 4 cycles [2]; and a complex operation

is 4 times the number of cycles incurred by its real counter-

part [10]. Note that an algorithm or a computational opera-

tion can be specifically optimized on a particular signal pro-

cessing software or hardware platform. Our estimation using

CPU cycles is not intended to be exactly accurate for an im-

plementation platform, but serves as an approximate way to

demonstrate what computational complexity level CombDec

is at when compared with the benchmark.

Figure 7 shows the total numbers of cycles incurred by

CombDec and the benchmark. In Figure 7, we let (α,β)-
construction form M = 12,000 tooth vectors to accommo-

date the airport scenario in Table 1 and set a typical constraint

length K = 7 in the Viterbi Algorithm. It is observed from

Figure 7 that choosing γ to be in [20, 50] leads to the com-

plexity of CombDec roughly equivalent to decoding a packet

with 1000–3000 bytes, which makes CombDec ready for sys-

tem implementation.

3.5.2 Storage Complexity

CombDec also incurs a storage cost. First, CombDec for a

device must store the frequency of each NAV value for any

other active device in the network. The cost of storing all

NAV frequencies is equal to the NAV space size multiplying

the average number of active devices. There are 5,484 pos-

sible NAV values in 802.11ac and around 18.8 active nodes

under (α,β) construction for the airport scenario (shown in

Table 1). Hence, the storage cost is 5484 × 18.8 × 1 = 101

KB when the frequency value is a one-byte integer. Second,

after γ-decimation, all tooth vectors should be stored for L1-

minimization. The storage cost is the number of tooth vectors

multiplying the length of a tooth vector. When γ ∈ [20,50],
the number of decimated tooth vectors in the airport scenario

is 240 to 600. If a typical RTS packet is transmitted at 12

Mbps (4 64-subcarrier OFDM symbols) and the element in

tooth vector is a 4-byte complex number, the length of a tooth

vector is 64×4×4= 1 KB. Thus, the cost of storing all these

tooth vectors is in the range of [240,600] KB.

Overall, the major storage cost is around [341, 701] KB.

This cost is also reasonable for today’s WiFi systems. For

example, Qualcomm’s 802.11ac chipset IPQ4018 has an on-

chip memory of 256 MB [50] and related APs cost as low as

tens of dollars [8, 13].

4 CombDec System Design

The (α,β)-construction and γ-decimation algorithms pave

the way for a feasible system solution to (3). In this section,

we present CombDec system design. We first introduce the

system architecture, then describe each key component.

We design CombDec as an independent decoder in addi-

tion to the traditional 802.11 decoder. Figure 8 shows four

major components in CombDec: the prologue module, (α,β)-

construction, γ-decimation, collision resolution, and the epi-

logue module. As shown in Figure 8, CombDec is triggered

only when decoding of either the PHY header or the PHY

payload fails. In the following, we present the designs of in-

dividual CombDec Components.

The Prologue Module: The prologue module does all pre-

processing before collision resolution.

Combining Multi-path Signal Components: The received

signal may include a number of multi-path components with

different time offsets. To improve the performance of Comb-

Dec under multi-path fading, we use the maximum ratio com-

bining (MRC) [31] to combine the multi-path signal com-

ponents. Specifically, denote by s(n) the n-th time-domain
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symbol in the received signal. Based on the 802.11 packet

preamble, we use a matched filer [32, 58] to detect the time

offset and estimate the channel gain of each signal compo-

nent. Given K components found, we use the MRC [31] to

coherently sum all K time-shifted copies of s(n) and obtain

s′(n) = ∑K
k=1 h∗ks(n+δk), where k-th component having time

offset δk and channel gain hk, and h∗k is the complex conju-

gate of hk. Note that signal components may be from differ-

ent senders in a collision, CombDec does not differentiate

them in the prologue module.

Collision Recognition and Early Stop: Next, CombDec de-

cides if s′(n) can be potentially resolved. There are three

types of collisions: RTS-only, RTS-data (involving at least

one RTS packet and one data packet), and data-only colli-

sions. CombDec will stop if the collision belongs to data-

only collision. Note that the recognition does not need to be

100% accurate, it simply provides a way to exclude obvious

data-only collisions that cannot be resolved by CombDec.

In WiFi networks, the beginnings of collided packet trans-

missions are roughly aligned because of CSMA/CA (if we

do not consider the hidden terminal problem). Thus, we mea-

sure the time durations of different power levels of the re-

ceived signal to identify the type of a collision. According

to 802.11, the data rate for RTS is selected by a station from

a limited set of basic rates defined by the AP (e.g., 12 Mbps

and 24 Mbps are widely observed in our packet traces). Thus,

a RTS time duration can be measured by a very limited num-

ber of OFDM symbol durations, e.g., 3 (or 4) OFDM symbol

durations for 24 (or 12) Mbps. We record the time duration li,

from the beginning of the signal s′(n), to the position in s′(n)
where the i-th signal power change happens and is larger than

a threshold ∆. When the power level reaches the noise floor,

we stop and obtain a set of time durations L = {li}i∈[1,|L|].

We consider a collision as (i) RTS-only if each value in L is

close to one of the RTS durations corresponding to the ba-

sic rate set defined by the AP, (ii) RTS-data if one value is

close to an RTS duration and any other value is not close to

any of the RTS durations, and (iii) data-only otherwise. Fig-

ure 9(a) shows an example of RTS-only collision, where two

measured time durations occupy 3 and 4 OFDM symbol du-

rations, respectively, which is recognized as the collision of

two RTS packets with different rates.

The Collision Resolution Module: The prologue module
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Padding in comb matrix construction.

outputs either RTS-only or RTS-data signals for collision res-

olution, (α,β) construction will construct every tooth vectors

for the comb matrix. As devices in a network may use dif-

ferent basic rates to transmit RTS packets (leading to differ-

ent lengths of tooth vectors), CombDec zero-pads the shorter

tooth vectors with higher data rates to form the complete

comb matrix M used for collision resolution. Figure 9(b)

shows an example of constructing the comb matrix M by

zero-padding shorter tooth vectors. Then, M is γ-decimated

to M′, which is used in the primal-dual algorithm [47] that

solves the L1-minimization in (3). Note that if a collision is

RTS-data, the module resolves the collided RTS signal vec-

tors by treating any data signal as the noise, and then leaves

the potential decoding of data for the epilogue module.

The Epilogue Module: The collision resolution module

yields a small set of potential RTS signal vectors involved in

the collision, denoted by R . There are still important ques-

tions left: (i) Which RTS in R a receiver should choose to

reply with CTS? (ii) Can we decode the data in the presence

of an RTS-data collision? (iii) Moreover, we also need an er-

ror detection mechanism to ensure the collision is correctly

resolved because errors may happen in CombDec. We first

describe how CombDec chooses data or RTS. The AP and

stations have different decision making processes.

Decision Making at AP: The AP observes a collision when

multiple stations transmit to the AP at the same time.

• Choosing the RTS with the largest NAV: if the col-

lision is RTS-only, the AP chooses the RTS of the largest

NAV to reply with CTS. Note that we intend to maximize the

channel utilization in this way. A more advanced policy (e.g.,

considering the utilization and fairness) can be designed and

adopted going beyond the main scope of this paper.

• Choosing data over RTS: If the collision is RTS-data,

the AP first decodes all RTS packets in the collision resolu-

tion module, then proceeds to decode the data. If the data

is successfully decoded, the AP chooses data over RTS and

sends back the ACK to the sender of the data. This is because

data packets are usually longer than RTS packets. Giving pri-

ority to data should improve the channel utilization.

Decision Making at Stations: A station observes a colli-

sion when multiple other nodes (either other stations or the

AP) transmit at the same time. As shown in Figure 6(c), a
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station only cares about the AP’s signal transmitted to it.

• If R includes an RTS vector from the AP to the station,

the collision is due to the AP transmitting to the station and

at the same time at least one other station transmitting to the

AP, the station always sends CTS to the AP.

• Otherwise, there is no RTS in R intended for the station.

If the collision is RTS-data, the station proceeds to decode

the data because the data may be intended for it; otherwise,

the station stops.

Error Checking and Data Decoding: Once a decision is

made (choosing RTS or data), we must ensure there is no er-

ror with the chosen RTS or we must proceed to decode the

data. How to proceed with error checking and data decod-

ing? We find that a traditional 802.11 receiver, as shown in

Figure 8, already has a PHY payload decoder with the cyclic

redundancy check (CRC) mechanism. Thus, we should lever-

age the existing architecture to perform the decoding and er-

ror checking to minimize the complexity of CombDec.

As a result, if CombDec decides to act on a particular RTS

signal or to decode a data signal, it uses interference cance-

lation to remove all other signals from the collided signal.

Specifically, if a decision is to decode the data, CombDec

removes all RTS signal vectors in R from the received sig-

nal s′(n) and write the resultant signal as s′c(n) = s′c(n)−

∑
|R |
i=1 ri(n)gi, where ri(n) and gi are the n-th element and the

channel gain weight of the i-th RTS tooth vector in R , respec-

tively. Similarly, if the decision is to act on the j-th RTS vec-

tor (i.e., choose the j-th RTS in R to reply with CTS), Comb-

Dec removes all other RTS tooth vectors from the s′(n) and

the resultant signal becomes s′c(n) = s′c(n)−∑
|R |
i=1,i6= j ri(n)gi.

Finally, the signal s′c(n) goes from CombDec into the tradi-

tional PHY payload decoder, which performs decoding and

error checking, then passes the correct RTS or data to the

MAC layer for protocol processing (e.g., replying with CTS).

In addition, the MAC address and data rate information of a

correct RTS packet is stored and its NAV value is also up-

dated in (α,β)-construction as shown in Figure 8.

5 Evaluation

In this section, we evaluate the performance of CombDec.

We first introduce the experimental setups, then measure the

performance benefits CombDec brings to WiFi networks.

5.1 Setups

Testbed Implementation: We have implemented the pro-

totype of CombDec on 20 USRP X310/300 devices. Each

device is equipped with two UBX-160 daughterboards and

two VERT 2450 antennas. We implement a basic 802.11ac

PHY-MAC architecture with 20-MHz settings: 64 OFDM

subcarriers (including 48 data subcarriers), BPSK, QPSK,

16QAM, and 64QAM modulations, Alamouti code based
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Figure 10: Environment for experiments.

MIMO, and convolutional coding at the PHY layer, and CS-

MA/CA scheme with an initial contention window size of

8 [5] at the MAC layer. Control packets including RTS, CTS,

and ACK are also implemented.

Experimental Settings: We aim to measure the performance

of CombDec in a realistic indoor environment inside a cam-

pus building shown in Figure 10. Network nodes are placed

at various locations and transmit packets whose contents are

generated according to our collected 802.11ac packet traces.

Note that we do not implement the 256QAM modulation

as we found no single packet using a data rate associated

with 256QAM in all collected packet traces. This does not

severely affect the performance evaluation since 256QAM is

intended only for very high SNR conditions.

We use the following default settings for experiments (un-

less otherwise specified): (i) all nodes are saturated; i.e., they

always have packets to transmit; (ii) α=600, β=10, and γ=20

for CombDec; (iii) the airport dataset is used to generate

packets as it represents the most crowded condition in all

datasets; (iv) all nodes have the same transmit power.

Evaluation Metrics: We use the following metrics to evalu-

ate the real-time performance of CombDec.

• Success probability of collision resolution is defined as

the probability that CombDec recovers exactly all collided

RTS signals. The recovery will be considered as a failure if

CombDec recovers only a subset of collided RTS signals or

mis-identifies an RTS signal not involved in the collision.

• Normalized throughput (or utilization efficiency), is de-

fined as the percentage of the time duration on the wireless

channel that is used to deliver data packets. An ideal net-

work should have a normalized throughput of 1. However,

control signals (e.g., RTS/CTS) and collisions deteriorate the

throughput. We aim to show how much channel utilization ef-

ficiency CombDec can improve via resolving RTS collisions.

• Throughput gain ratio, defined as the ratio between the

increased normalized throughput from traditional 802.11 de-

coding to CombDec and the normalized throughput under tra-

ditional decoding. Throughput gain ratio can directly reflect

how CombDec improves the network performance.

5.2 Success Probability

We first evaluate the success probability of CombDec for

collision resolution. In this evaluation, multiple nodes only
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data collisions.
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Figure 18: Throughputs with

different α and γ.

transmit RTS packets to the AP placed at location 0 in Fig-

ure 10, where the success probability is measured.

Impact of Number of Transmissions: We evaluate Comb-

Dec’s ability to resolve collisions due to two and more trans-

missions. To this end, we place multiple transmitters at lo-

cation 1, which send RTS packets at the same time to the

AP at location 0. Figure 11 shows the success probabilities

that the AP resolves the collision under 2–6 transmitters. The

success probability is computed for every 1,000 packets re-

ceived. It is noted from Figure 11 that as the total number

of received packets at the AP increases, CombDec gradually

gains the NAV information in RTS packets, and thus the suc-

cess probability also increases and finally remains stable. It

is also observed that CombDec is able to resolve 98% of two-

node collisions and 86% of three-node collisions. The perfor-

mance degrades when the number of transmitters increases.

However, a collision caused by 5 or more WiFi nodes is much

less frequent because of the random backoff in CSMA/CA.

Values of α and β: We evaluate the impacts of α and β on

the success probability. We place two nodes at location 1 that

transmit RTS packets at the same time to the AP at location 0.

Figure 12 shows that as α goes from 200 to 600, the success

probability increases from 0.28 to 0.98; and further increase

of α will not substantially improve the success probability.

Figure 13 shows the impact of β on the success probabil-

ity. We observe that when β increases from 10 to 60 (i.e.,

CombDec forgets the history faster), the success probability

reduces from 0.98 to 0.77. From both figures, we can see

that the uniform selection of α = 600 and β = 10 yield very

high performance for the airport scenario, and accordingly

are also suitable for other less crowded scenarios.

Value of γ: We adopt the same setup in Figure 13 to evaluate

the impact of γ. Figure 14 illustrates that gradually increasing

γ does not severely decrease the success probabilities. For

example, when γ becomes 30, the success probability reduces

to 0.831. This indicates that adjusting γ can smoothly balance

the performance and the implementation cost.

Impact of Zero-Padding: In each of our packet datasets, we

find that a majority of RTS packets are transmitted at the

same data rate; however, RTS packets with different rates

do exist. These packets have different lengths of 2, 3, or 4

OFDM symbols. Therefore, a minority of collisions involv-

ing RTS packets with different rates. CombDec uses zero-

padding to solve this issue as discussed in Section 4. We mea-

sure the ability of CombDec to resolve such a type of colli-

sions. Hence, we place two nodes at location 1 sending RTS

packets with different lengths to the AP. Figure 15 shows

that the success probabilities remain approximately the same

when RTS packets have different lengths in a collision. From

Figure 15, we conclude that CombDec has no difficulty in re-

solving this type of collisions.

RTS-Data Collisions: CombDec also attempts to resolve an

RTS-data collision via canceling the RTS signal from the

received signal and then performing decoding. To evaluate

such an ability, we place one node (node 1) at location 1 to

send RTS to the AP, and place another node (node 2) at one
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located networks.
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of other network.

of locations 1–8 to send data to the AP for the first round

of experiments, and then let node 1 send data and node 2

send RTS for the second round. The first and second rounds

represent the scenarios in which the receiving power of RTS

is greater than and less than that of data, respectively. We

consider the collision is resolved when both RTS and data

packets are decoded successfully. Figure 16 depicts the suc-

cess probability of collision resolution as node 2’s location

changes. The figure shows that generally, the success prob-

ability is higher when the receiving power of RTS is higher

than that of data. This is because CombDec first treats any

data packet as the noise to recover any RTS packet from the

receiving signal. The results demonstrate that CombDec, pri-

marily designed to handle RTS-only collisions, is capable of

resolving RTS-data collisions in some scenarios.

5.3 Network Performance Evaluation

We then evaluate the benefits of CombDec for the network

performance. Note that it is impossible to measure the net-

work performance with CombDec under different setups at

the same time because the resolution of a collision directly

affects follow-on network dynamics. We have to measure

the performance under different setups over non-overlapping

measurement periods. Therefore, we conduct experiments

during off-business hours to minimize the impact of environ-

mental factors on different measurement periods.

5.3.1 Single Network Scenario

We first consider a single-network scenario: 12 nodes are

placed at locations 0–11, in which the AP is at location 8,

as shown in Figure 10. The network does not run in the MU-

MIMO mode (i.e., the AP does not transmit data via MU-

MIMO to multiple stations in the downlink). The RTS thresh-

old is set to be 2,300 bytes for all nodes (i.e., RTS is triggered

only when a data packet to be transmitted has a length over

2,300 bytes). The value of 2,300 is typical for today’s WiFi

products (e.g., the default value in Cisco APs is 2347 [9]).

Throughput Improvement: Figure 17 demonstrates the

comparisons of normalized throughputs under traditional

802.11 decoding and CombDec. Note that the throughput

performance is always measured at the AP. We can see that

CombDec is able to uniformly boost the performance of

traditional 802.11 decoding. For example, the normalized

throughput for the airport scenario increases from 0.43 to

0.53, leading to a throughput gain ratio of (0.53 - 0.43)/0.43 =

23.3%. In all different scenarios, we observe that the through-

put gain ratio under CombDec is 11.6%–23.3%.

Improvement by Tuning α and γ: We aim to find if we

can improve the performance by tuning α and γ, which are

important factors to balance the performance and complexity.

Figure 18 shows the normalized throughputs for various α
and γ values in the airport scenario. The figure shows that

keeping increasing α and decreasing γ do not always lead to

evident improvement. For example, when α goes from 600

to 800 and γ decreases from 20 to 10, the throughput under

CombDec only increases from 0.491 to 0.494.

Improvement by Reducing RTS Threshold: It is still pos-

sible to further improve the network performance. Our ob-

servation is that traditionally, an RTS collision is considered

not resolvable; therefore, many WiFi devices are conserva-

tive to set the RTS threshold. The transmission of a data

packet triggers an RTS transmission only when its data size

is greater than the threshold. In all previous experiments, the

threshold is set as a typical value of 2,300 for today’s net-

works. Now CombDec has the capability of decoding RTS

collisions; therefore, it can be beneficial to encourage more

RTS transmissions by reducing the threshold. Figure 19 com-

pares the normalized throughputs under traditional 802.11

decoding and CombDec for different RTS thresholds. The

figure shows that reducing the threshold generally decreases

the throughput performance under traditional decoding; how-

ever and interestingly, it substantially boosts the performance

under CombDec. The best case for traditional decoding is

to set the threshold as 2000–2500, resulting in a normalized

throughput of 0.456. By contrast, the best case for Comb-

Dec is to remove the threshold and let everyone always send

RTS before data, yielding a higher throughput of 0.657. The

throughput gain ratio is computed as (0.657-0.456)/0.456 =

44.08%. This encouraging result shows that CombDec has

an immediate impact on today’s practice of setting the RTS
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threshold, and significantly reducing this threshold can push

WiFi towards a collision-free environment.

5.3.2 Collocated Networks

Next, we place a new network close to the single network

used in previous experiments. In the new network, 8 nodes

are placed at locations 12–19 and the AP is at location 15,

as shown in Figure 10. The two networks use the same fre-

quency and thus interfere with each other. We call the APs in

the original and new networks AP 1 and AP 2, respectively.

Figure 20 shows the throughput performance under differ-

ent settings in the airport scenario. In Figure 20, the one-

network performance is the performance measured at AP 1

in the previous single-network scenario (without the new net-

work); and the two-network performance is measured as the

average of the throughputs measured at AP 1 and AP 2. We

can observe from Figure 20 that when the new network is

placed, the throughput performance degrades due to mutual

interference. CombDec still performs better than traditional

802.11 decoding. In the two-network scenario, the best case

for CombDec is setting the RTS threshold to 0 (which is also

beneficial to solving the hidden terminal problem), yielding

a throughput of 0.579; and the best case for traditional decod-

ing has a throughput of 0.396. The throughput gain ratio is

thus (0.579 - 0.395)/0.395 = 46.6%, which is also a substan-

tial throughput improvement. Figure 21 compares the best

case throughput performance between CombDec (removing

the RTS threshold) and traditional coding (setting the thresh-

old to 2,300) in different scenarios. It can be seen that the

throughput gain ratio of CombDec is 33.6% – 46.2%.

As discussed in Section 3, CombDec is designed to only

store information of its own network. In the two-network sce-

nario, it is possible to enhance the performance of CombDec

by letting (α,β)-construction store the information (includ-

ing MAC addresses, NAVs, and RTS rates) of the other net-

work. Figure 22 shows that storing other network informa-

tion can further yet slightly improve the throughput perfor-

mance of CombDec with a fairly large α.

6 Related Work

Interference Cancelation and Mitigation: In the literature,

successive interference cancelation (SIC) has been proposed

to decode collisions by using either pre-coded signatures or

different receiving powers [15, 33, 35, 36, 39, 40, 53, 66]. The

time offsets in different packet collisions (e.g., in the pres-

ence of hidden terminals) has also been leveraged to resolve

collisions [32, 42, 63]. In addition, interference cancelation

was widely studied in the full-duplex mode [20,22,23,56,66].

In cross-technology communication, corrupted packets may

also be decoded by detecting the interference type [21,37]. A

number of studies have also proposed interference alignment

and nulling with or without channel state information [43,46].

These approaches cannot be readily adapted to regular WiFi

scenarios considered in this paper, where RTS packets col-

lide at the beginning of each transmission.

Multi-user Detection: CombDec is related to multi-user

detection that attempts to decode multiple users’ signals

from the overlapped signal [25, 44, 61]. In cellular networks,

CDMA has been widely used to assign distinct spread spec-

trum codes to different users [60]. However, there is no such

code design in RTS packets. Constructive interference [25]

is able to receive multiple synchronized transmissions. Nev-

ertheless, it requires all packets have the same content, which

is impossible for RTS signals. The work in [51] applied the

time division technique to the byte level such that multiple

users can share the same packet. This method needs a strict

coordination among all users. A multi-user system is built

in [44] through sharing multiple channels to users who are

allowed to duplicate the signal into these channels. Applying

these designs to WiFi requires modification of the standard;

in contrast, CombDec is a non-invasive design.

Improving WiFi Performance: Substantial efforts have

been devoted to improving the WiFi link performance [14,

16,30,34,48,49,55,57,65]. For example, [14,30,57] focused

on optimizing the user selection algorithm in MU-MIMO

and [16, 54, 65] aimed to improve the beamforming related

techniques. Different algorithms were also investigated to im-

prove the rate adaptation in WiFi [34, 49]. Recently, a rapid

picocell switching has also been proposed for wireless transit

networks [55]. CombDec is orthogonal to these studies that

aim to improve WiFi performance in different aspects. We

show that CombDec makes it possible to resolve RTS colli-

sions and pushes WiFi towards a collision-free environment.

7 Conclusion

This paper provides a systematic study to resolve RTS col-

lisions in WiFi networks. Our core contribution is a new

decoding system CombDec that uses (α,β)-construction, γ-

decimation and sparse recovery to resolve RTS collisions.

CombDec does not require changing the 802.11 standard

and redefines the role of the RTS functionality in WiFi. We

show via system implementation and extensive evaluation

that CombDec has a beneficial impact on WiFi networks and

substantially improves the throughput performance by 33.6%

– 46.2% in various scenarios.
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APPENDIX A

We analyze popular WiFi drivers and AP firmware to un-

derstand these practical constraints: (i) Linux kernel drivers:

ath9k (Qualcomm/Atheros 802.11n chipsets), brcmsmac

(Broadcom 802.11n chipsets), and iwlwifi (Intel 802.11n/ac

chipsets); (ii) 802.11ac AP firmware in Linksys EA8500,

EA9500, TP-Link AC1200, C5400, and AD7200.

In particular, ath9k allows the maximum length of a

data payload to be either 8,192 or 65,535 bytes (aPSDU-

MaxLength for 802.11n is 65,535) based on its version num-

ber (as shown in Listing 1); brcmsmac uses the maximum

duration of 5,000 µs (aPPDUMaxTime for 802.11n is 10,000

µs) (as shown in Listing 2); iwlwifi allows the maximum

duration to be 4,000 µs (aPPDUMaxTime for 802.11ac is

5,484), as the excerpted code shown in Listing 3. In addition,

Linksys EA8500, EA9500, andTP-Link AC1200, C5400 and

AD7200 share the same code: the maximum length of a data

payload is 65,535 bytes (aPSDUMaxLength for 802.11ac is

4,692,480)(as shown in Listing 4).

Listing 1: Source code in Qualcomm/Atheros ath9k

(802.11n)

/* hw.h */
...
#define ATH_AMPDU_LIMIT_MAX (64 * 1024 - 1)
...
/* hw.c */

...
if (AR_SREV_9160_10_OR_LATER(ah) ||

AR_SREV_9100(ah))
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;

else
pCap->rts_aggr_limit = (8 * 1024);

...

Listing 2: Source code in Broadcom brcmsmac (802.11n)

/* ampdu.c */
...
/* max dur of tx ampdu (in msec) */
#define AMPDU_MAX_DUR 5
...

ampdu->dur = AMPDU_MAX_DUR;
...

Listing 3: Source code of Intel iwlwifi (802.11ac)

/* mvm/constants.h */
...
#define IWL_MVM_RS_AGG_TIME_LIMIT 4000
...
/* mvm/rs.c */
...

lq_cmd->agg_time_limit =
cpu_to_le16(IWL_MVM_RS_AGG_TIME_LIMIT);

...

Listing 4: The same source code in Linksys

EA8500/EA9500 and TP-Link AC1200/C5400/AD7200.

/* include/linux/ieee80211.h */
...
/*
Maximum length of AMPDU that the STA can receive.
Length = 2 ^ (13 + max_ampdu_length_exp)-1 (octets)
*/
enum ieee80211_max_ampdu_length_exp {

...
IEEE80211_HT_MAX_AMPDU_64K = 3

};
...
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APPENDIX B

Our comprehensive data collections capture WiFi packet

traces under a diversity of traffic load conditions over long

time periods. For each transmitter in the packet traces, we

compute the NAV distribution in its RTS packets. We find

that the NAV distribution is highly patterned or uneven in

its value space. Figure 23 shows the NAV distributions of

top five devices that send the largest numbers of RTS pack-

ets in different measurement environments. We observe from

Figure 23 that each device’s NAV values almost concentrate

in the small value regions. For example, in the lab scenario,

92.1% NAV values in RTS packets from device 3 is 156.

We also notice that, interestingly, WiFi devices from the

same manufacturer (identified by their MAC addresses) do

exhibit similar NAV distribution in their RTS packets. Fig-

ure 24 illustrates the distributions of all NAV values in RTS

packets transmitted by devices from 15 common manufac-

turers. It is seen from Figure 24 that the distributions exhibit

different patterns by manufacturers, mainly due to their dis-

tinct firmware designs. Similar to Figure 23, Figure 24 shows

the NAV distributions are highly uneven and patterned with

a small number of NAV values much more likely to show up

in RTS packets than the others.

In addition to NAV, we also measure the data rates of RTS

packets. Figure 25 depicts the distribution of RTS dta rates

in different environments. We can see that a large number of

devices adopt 12 Mbps and 24 Mbps data rates to send RTS.

Furthermore, in the conference and hotel scenarios, most de-

vices even only use the 24 Mbps data rate.

Based on the packet trace analysis, if we select the NAV

values that are most likely in RTS packet from each device to

construct the comb matrix M, we should be able to decrease

the size of M at the cost of a small performance penalty.

APPENDIX C

Performance of γ-decimation: For the tooth vector set M =
{mi}i∈[1,M], where M = |M | and mi ∈ C

L×1, γ-decimation

selects M/γ tooth vectors with largest correlation values to

form a new comb matrix. Denote by M ′ the set consisting of

these selected M/γ tooth vectors by γ-decimation. Without

loss of generality, we assume the collided signal y contains

the first S tooth vectors, i.e., m1, · · · ,mS. In this section, nota-

tions are summarized as follows: (i) o(1) denotes a function

that converges to 0 as L → ∞; (ii) E(·) and Var(·) denote the

expectation and variance operators, respectively; (iii) for a

complex number m, m∗ is the complex conjugate of m, and

|m| is the magnitude of m. Now we state the following theo-

rem to show the performance of γ-decimation:

Theorem 1 Define event A as the event that m1, m2, · · · , ms

are all selected by γ-decimation in M ′. Then, it holds that

P(A) = 1−o(1) (i.e., event A happens with high probability).

Proof: We first normalize the correlation between comb

matrix M and the received vector y. From (2), we have

z =
1

L
MH y

=
1

L




mH
1 m1 mH

1 m2 · · · mH
1 mM

mH
2 m1 mH

2 m2 · · · mH
2 mM

...
...

...
...

mH
Mm1 mH

M−1m2 · · · mH
MmM







g1

g2
...

gM


 .

(4)

Let z = [z1,z2, · · · ,zM ]H . It holds that ∀zi ∈ z,

zi =
1

L

M

∑
s=1

gsm
H
i ms =

1

L

M

∑
s=1

L

∑
k=1

gsm
∗
i,kms,k. (5)

Because each tooth vector mi has the random property by

coding, for any entry m j,i ∈ mi, we have E(m j,i) = 0 and let

E(|m j,i|
2) = σ2.

Since tooth vectors m1,m2, · · · ,mS are the ones to be re-

solved, we know the first S members in g are not zeros. De-

fine Y as

Y =
M

∑
m=S+1

1{|zm|>h}, (6)

denoting the number of false alarms (i.e., noise exceeding

the threshold), where h is a threshold, and 1{|zm|>h} is the

indicator function defined as

1{|zm|>h} =

{
1, if |zm|> h

0, otherwise.
(7)

To evaluate the performance of γ-decimation, we define an-

other event

B =

(
S⋂

s=1

{|zs|> h}

)
⋂

{Y ≤ (γM− S)},

where the first part denotes that the correlation values z1, z2,

· · · ,zS are all above the given threshold h and the second part

indicates that there are at most (γM − S) other correlation

values above h. If event B happens, m1, m2, · · · , mS will be

selected by γ-decimation and thus event A must happen. This

means P(A|B) = 1 and P(A) ≥ P(B). Therefore, according

to Fréchet inequalities, we obtain

P(A)≥ P

((
S⋂

s=1

{|zs|> h}

)
⋂

{Y ≤ (γM− S)}

)

≥ P

(
S⋂

s=1

{|zs|> h}

)
−P(Y > (γM − S)).

(8)

From (8), we need two steps to finish the proof:

• Step 1: prove P
(⋂S

s=1{|zs|> h}
)
= 1− o(1).

• Step 2: prove P(Y > (γM − S)) = o(1).
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Figure 23: NAV distributions at different locations.

2000 4000 6000
0

0.05

0.1

Cisco

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.05

0.1

Arris

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.2

0.4

Asus

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.5

1

Amazon

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.05

0.1

Apple

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.05

0.1

AzureWave

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.2

0.4

Belkin

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.5

Dlink

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.05

0.1

Huawei

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.05

0.1

Hon Hai

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.5

Intel

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.05

0.1

Liteon

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.1

0.2

Murata

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.1

0.2

Samsung

NAV

D
is

tr
ib

u
ti

o
n

2000 4000 6000
0

0.5

1

TPlink

NAV

D
is

tr
ib

u
ti

o
n

Figure 24: NAV distributions of different vendors.

Step 1:

By Fréchet inequalities, we have that

P

(
S⋂

s=1

{|zs|> h}

)
≥

S

∑
s=1

P(|zs|> h)− (S− 1). (9)

According to Cantelli’s inequality [52], for 1 ≤ s ≤ S, we

have the probability

P(|zs|> h)≥ 1−
Var(|zs|)

Var(|zs|)+ (h−E(|zs|))2
. (10)

Next we derive E(|zs|) and Var(|z2
s |) respectively. Because

1 ≤ s ≤ S, without loss of generality, we consider the first

element z1. From (5), by leveraging Lemma 1, we have

E(|z1|) = E(
1

L
g1mH

1 m1 +
1

L

S

∑
s=2

gsm
H
1 ms) = g1σ2, (11)

and

E(|z1|
2) = E


 1

L2

(
mH

1

S

∑
s=1

gsms

)2



=
1

L2
E

(
S

∑
s=1

L

∑
k=1

gsm
∗
1,kms,k

S

∑
s′=1

L

∑
k′=1

gs′m
∗
1,k′ms′,k′

)

=
1

L2

S

∑
s=1

L

∑
k=1

S

∑
s′=1

(
L

∑
k′=1,k′ 6=k

gsgs′E(m
∗
1,kms,k)

×E(m∗
1,k′ms′,k′)+ gsgs′E(m

∗
1,kms,km∗

1,kms′,k)
)
.

= g2
1σ4 +

1

L
Ξ1,

(12)
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Figure 25: RTS data rate distributions.

where

Ξ1 =

(
g2

1(E(|m1,k|
4)−σ4)+E((m∗

1,k)
2)E(m2

1,k)
S

∑
s=2

g2
s

)
.

From (11) and (12), we obtain the variance of z1 as

Var(|z1|) = E(|z1|
2)− (E(|z1|))

2 =
1

L
Ξ1. (13)

Replacing (13) into (10), we have

P(|z1|> h)≥ 1−
Ξ1

Ξ1 +L(h− gsσ2)2
. (14)

Then, (9) can be rewritten as

P

(
S⋂

s=1

{|zs|> h}

)
≥ 1−

S

∑
s=1

Ξs

Ξs +L(h− gsσ2)2

≥ 1− S
Ξmax

Ξmax +L(h− gmaxσ2)2
,

(15)

where Ξmax = max{Ξs}s∈[1,S], and gmax = max{gs}s∈[1,S].

When L → ∞, the probability converges to 1.

Step 2:

Letting y = γM− S, by Markov’s inequality, we have

P(Y > y)≤
1

y
E(Y ), (16)

then from (6), we have

E(Y ) = E

(
M

∑
m=S+1

1{|zm|>h}

)
=

M

∑
m=S+1

P(|zm|> h). (17)

According to Chebyshev’s inequality, we can obtain

P(||zm|−E(|zm|)|> h)≤
Var(|zm|)

h2
. (18)

Next, we derive E(|zm|) and Var(|zm|). Without loss of gen-

erality, we consider the last element zM . Similarly, we have

E(|zM|) =
1

L
E

(
S

∑
s=1

L

∑
k=1

gsm
∗
M,kms,k

)
= 0, (19)

and

E(|zM|2) =
1

L2
E

(
S

∑
s=1

L

∑
k=1

gsm
∗
M,kms,k

)2

=
1

L2

S

∑
s=1

L

∑
k=1

S

∑
s′=1

gsgs′E(m
∗
M,kms,km∗

M,kms′,k)

=
1

L

S

∑
s=1

g2
sE((m

∗
M,k)

2)E(m2
s,k).

(20)

Let ΨM = ∑S
s=1 g2

sE((m
∗
M,k)

2)E(m2
s,k), then we can obtain

Var(|zM |) = E(|zM|2)− (E(|zM|))2 =
1

L
ΨM. (21)

Replacing (19) and (21) into (18), we have

P(|zM |> h)≤
ΨM

Lh2
. (22)

Thus (17) can be rewritten as

E(Y )≤
M

∑
m=S+1

ΨM

Lh2
≤ (M− S− 1)

Ψmax

Lh2
, (23)

where Ψmax = max{Ψm}m∈[S+1,M]. Finally,

P(Y > y)≤
1

y
E(Y )≤

(M− S− 1)Ψmax

Lyh2
. (24)

When L → ∞, P(Y > y) converges to 0, which completes the

proof. �
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Lemma 1 Given tooth vectors mi and m j, for all mk,i ∈
mi and ms, j ∈ m j satisfying E(mk,i) = E(ms, j) = 0 and

E(|mk,i|
2) = E(|ms, j|

2) = σ2, the following two statements

are true: (i) if i 6= j, E( 1
L

mH
i m j) = 0 and E(| 1

L
mH

i m j|
2) =

1
L

σ4; (ii) if i = j, E( 1
L

mH
i mi) = E( 1

L
mH

j m j) = σ2 and

E(| 1
L

mH
i mi|

2) = 1
L
(L− 1)σ4 + 1

L
3σ4.

Proof: Let z = 1
L

mH
i m j =

1
L ∑L

k=1 m∗
i,km j,k.

For statement (i), since E(mi,k) = E(m j,k) = 0, we have

E(
1

L
mH

i m j) = 0.

Furthermore, as we know E(|mi,k|
2) = E(|ms,k|

2) = σ2, we

can obtain

E(|
1

L
mH

i m j|
2) =

1

L2
E

(
L

∑
k=1

m∗
i,km j,k

L

∑
q=1

m∗
i,qm j,q

)

=
1

L
σ4

(25)

For statement (ii), it is easy to know that

E(
1

L
mH

i m j) = E(
1

L
mH

i mi) = σ2

and

E(|
1

L
mH

i mi|
2) = E

(
1

L

L

∑
k=1

m∗
i,kmi,k

)2

=
1

L2
L(L− 1)σ4 +

1

L2

L

∑
k=1

E(|mi,k|
4)

=
1

L
(L− 1)σ4 +

1

L
3σ4.

(26)

Therefore, we complete the proof. �
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Abstract
Network configuration verification enables operators to en-
sure that the network will behave as intended, prior to de-
ployment of their configurations. Although techniques rang-
ing from graph algorithms to SMT solvers have been pro-
posed, scalable configuration verification with sufficient pro-
tocol support continues to be a challenge. In this paper,
we show that by combining equivalence partitioning with
explicit-state model checking, network configuration verifi-
cation can be scaled significantly better than the state of the
art, while still supporting a rich set of protocol features. We
propose Plankton, which uses symbolic partitioning to man-
age large header spaces and efficient model checking to ex-
haustively explore protocol behavior. Thanks to a highly ef-
fective suite of optimizations including state hashing, partial
order reduction, and policy-based pruning, Plankton success-
fully verifies policies in industrial-scale networks quickly
and compactly, at times reaching a 10000× speedup com-
pared to the state of the art.

1 Introduction

Ensuring correctness of networks is a difficult and critical
task. A growing number of network verification tools are tar-
geted towards automating this process as much as possible,
thereby reducing the burden on the network operator. Verifi-
cation platforms have improved steadily in the recent years,
both in terms of scope and scale. Starting from offline data
plane verification tools like Anteater [19] and HSA [13], the
state of the art has evolved to support real-time data plane
verification [15, 12], and more recently, analysis of configu-
rations [6, 5, 7, 1, 25].

Configuration analysis tools such as Batfish [6], ERA [5],
ARC [7] and Minesweeper [1] are designed to take as input a
given network configuration, a correctness specification, and
possibly an “environment” specification, such as the maxi-
mum expected number of failures, external route advertise-
ments, etc. Their task is to determine whether, under the
given environment specification, the network configuration

will always meet the correctness specification. As with most
formal verification domains, the biggest challenge in con-
figuration analysis is scalability. Being able to analyze the
behavior of multiple protocols executing together is a non-
trivial task. Past verifiers have used a variety of techniques
to try to surmount this scalability challenge. While many of
them sacrifice their correctness or expressiveness in the pro-
cess, Minesweeper maintains both by modeling the network
using SMT constraints and performing the verification us-
ing an SMT solver. However, we observe that this approach
scales poorly with increasing problem size (4+ hours to
check a 245-device network for loops, in our experiments).
So, this paper addresses the following question: Can a con-
figuration verification tool have broad protocol support, and
also scale well?

We begin our work by observing that scalability chal-
lenges in configuration verification stem from two factors
— the large space of possible packet headers, and the pos-
sibly diverse outcomes of control plane execution, particu-
larly in the presence of failures. We believe that general pur-
pose SAT/SMT techniques are not as well equipped to tackle
these challenges as domain-specific techniques specifically
designed to address them. In fact, these challenges have been
studied extensively, in the domains of data plane verification
and software verification. Data plane verification tools an-
alyze the large header space to determine all possible data
plane behaviors and check their correctness. Software veri-
fication techniques explore the execution paths of software,
including distributed software, and identify undesirable ex-
ecutions that often elude testing. Motivated by the success
of the analysis algorithms in these domains, we attempted
to combine the two into a scalable configuration verification
platform. The result — Plankton — is a configuration ver-
ifier that uses equivalence partitioning to manage the large
header space, and explicit-state model checking to explore
protocol execution. Thanks to these efficient analysis tech-
niques, and an extensive suite of domain-specific optimiza-
tions, Plankton delivers consistently high verification perfor-
mance.
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Feature Batfish BagPipe ARC ERA Minesweeper Plankton
All data planes, including failures # # G# #   
Support beyond specific protocols  # #    
Soundness when assumptions hold    G#∗   
∗ For segmentation policies only

Figure 1: Comparison of configuration verification systems

Our key contributions are as follows:

• We define a configuration verification paradigm that com-
bines packet equivalence computation and explicit-state
model checking.

• We develop optimizations that make the design feasible
for networks of practical scale, including optimizations to
reduce the space of event exploration, and techniques to
improve efficiency of exploration.

• We implement a Plankton prototype with support for
OSPF, BGP and static routing, and show experimentally
that it can verify policies at practical scale (less than a
second for networks with over 300 devices). Plankton out-
performs the state of the art in all our tests, in some cases
by as much as 4 orders of magnitude.

2 Motivation and Design Principles
Configuration verifiers take as input the configuration files
for network devices, and combine them with an abstraction
of the lower layers — the distributed control plane, which ex-
ecutes to produce data plane state, and the forwarding hard-
ware that will use that state to process traffic. They may ad-
ditionally take an environment specification, which describes
interactions of entities external to the network, such as pos-
sible link failures, route advertisements, etc. Their task is to
verify that under executions enabled by the supplied config-
uration and environment, correctness requirements are never
violated. Configuration verifiers thus help ensure correctness
of proposed configurations prior to deployment.

Figure 1 illustrates the current state of the art in configura-
tion verification. As the figure shows, only Minesweeper [1]
can reason about multiple possible converged data plane
states of the network (e.g., due to topology changes or con-
trol plane non-determinism), while also having the ability to
support more than just a specific protocol, and maintaining
soundness of analysis. All other tools compromise on one
or more key features. ARC [7], for example, uses graph al-
gorithms to compute the multiple converged states enabled
by failures, but only for shortest-path routing. As a result it
cannot handle common network configurations such as BGP
configurations that use LocalPref, any form of recursive rout-
ing, etc. The reason for the mismatch in Minesweeper’s
functionality in contrast to others is that it makes a dif-
ferent compromise. By using an SMT-based formulation,
Minesweeper is able to achieve good data plane coverage
and feature coverage, but pays the price in performance. As
experiments show [2], Minesweeper scales poorly with net-
work size, and is unable to handle networks larger than a
few hundred devices in reasonable time. Our motivation for

Plankton is simple — can we design a configuration verifi-
cation tool without compromising scale or functionality?

Achieving our goal requires tackling two challenges:
packet diversity and data plane diversity. Packet diversity,
which refers to the large space of packets that needs to be
checked, is easier to handle. We leverage the notion of Packet
Equivalence Classes (PECs), which are sets of packets that
behave identically. Using a trie-based technique similar to
VeriFlow [15], we compute PECs as a partitioning of the
packet header space such that the behavior of all packets in
a PEC remains the same throughout Plankton’s exploration.
A more interesting aspect of PECs is how to handle depen-
dencies across PECs without compromising performance. In
Plankton, this is done by a dependency-aware scheduler de-
signed to maximize independent analysis (§ 3.2).

Data plane diversity refers to the complexity of check-
ing every possible converged data plane that an input net-
work configuration may produce. It is the task of the control
plane model to ensure coverage of these possible outcomes.
Simulation-based tools (the best example being Batfish [6])
execute the system only along a single non-deterministic
path, and can hence miss violations in networks that have
multiple stable convergences, such as certain BGP configu-
rations. ARC’s graph-based approach accounts for possible
failures, but can support only shortest-path routing. In order
to overcome these shortcomings, Minesweeper, the current
state of the art in terms of functionality, uses an SMT solver
to search through possible failures and non-deterministic
protocol convergence, to find any converged state that rep-
resents a violation of network correctness.

A key intuition behind our approach is that the generic
search technique employed by SMT solvers makes the core
of the configuration verification problem much more diffi-
cult than it has to be. Network control planes operate using
simple algorithms which can not only be easily modeled in
software, but can also find a protocol’s outcome much more
quickly than general-purpose SMT solving. In fact, the com-
mon case is that the control plane computes some variant of
shortest or least-cost paths. To illustrate this point, we im-
plemented simple single-source shortest path solvers in SMT
(Z3) and a model checker (SPIN). The SMT formulation is
implemented as constraints on the solution, while the model
checker explores execution paths of the Bellman-Ford algo-
rithm; and in this simplistic case the software has determinis-
tic execution. The result is that the model checker approach
is similar to a normal execution of software, and is around
12,000× faster even in a moderate-sized fat tree network of
N = 180 nodes (Figure 2).

Of course, this is intentionally a simplistic, fully-

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

N=20
N=45
N=80
N=180

Time	taken	(Seconds)Model	Checker SMT

Figure 2: Comparison of two ways to compute shortest paths.
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deterministic case with simple implementations. The point is
that the model checking approach begins with a huge advan-
tage — so huge that it could explore many non-deterministic
execution paths and still outperform SMT. This leads to our
next key intuition: the effect of non-determinism is impor-
tant, but the amount of “relevant” non-determinism is lim-
ited. Networks can experience “relevant” non-determinism
like the choice of what failures occur, and protocol execu-
tion; as well as “irrelevant” non-determinism like message
timing that ultimately doesn’t affect the outcome. Configura-
tions and protocols are usually designed to keep the outcome
mostly deterministic, with non-deterministic branch points
ultimately leading to one or a small number of different con-
verged states.

Motivated by this intuition, we create a control plane
model that incorporates the possible non-deterministic be-
haviors, but we also implement optimizations so that when
the outcome of the executions is actually deterministic, the
“irrelevant” non-determinism is pruned enough that perfor-
mance is comparable to simulation. This model is ex-
haustively explored by SPIN, a model checker designed for
Promela programs. SPIN performs a depth-first search on
the state space of the program, looking for states that violate
the policy being checked. We further assist SPIN through op-
timizations that minimize the size of individual states, thus
making the traversal process more efficient. Thanks to these
two types of optimizations, Plankton achieves our goal of
scalable, general-purpose configuration verification.

3 Plankton Design
We now present Plankton’s design, illustrated in Figure 3.

3.1 Packet Equivalence Classes
The first phase in Plankton’s analysis is the computation of
Packet Equivalence Classes. As we discussed in § 2, Plank-
ton uses a trie-based technique inspired by VeriFlow. The
trie in Plankton holds prefixes obtained from the configu-
ration, including any prefixes that are advertised (explicitly
or automatically), any prefixes appearing in route maps, any
static routes, etc. Each prefix in the trie is associated with
a config object, that describes any configuration information
that is specific to that prefix. For example, consider Fig-
ure 4, which illustrates a highly simplified example where
the prefixes 128.0.0.0/1 and 192.0.0.0/2 are being
advertised over OSPF in a topology with 3 devices. The trie
holds three config objects — the default, and one for each
advertised prefix.

Once the trie is populated, Plankton performs a recur-
sive traversal, simultaneously keeping track of where the
prefix boundaries define division of the header space. For
each known partition, it stores the most up-to-date network-
wide config known. When the end of any new prefix
is reached, the config object that is associated with it is
merged with the network-wide config for the partition that

FIBBGP OSPF

Agents

Model Checker

Network Model

PolicyDependency­
aware Scheduler

Config Initial
Topology

Check Pass?Violating Event
Sequence No Policy HoldsYes

 Equivalence Class 
Computation

Figure 3: Plankton design

denotes the prefix. In our simple example, the traversal pro-
duces three classes defined by ranges — [192.0.0.0,
255.255.255.255] with two nodes originating prefixes,
[128.0.0.0, 191.255.255.255] with only one ori-
gin, and [0.0.0.0, 127.255.255.255] without any
node originating any prefix. As the example shows, each
PEC-specific configuration computed this way will still in-
clude information about the original prefixes contributing to
the PEC. Storing these prefixes may seem redundant. How-
ever, note that even within a PEC, the lengths of the prefixes
that get advertised or get matched in route filters play a role
in decision making.

3.2 Dependency-aware Scheduling
It is tempting to believe that Packet Equivalence Classes
could be analyzed fully independently of each other, and that
an embarrassingly parallel scheme could be used in the ver-
ification process. While this is indeed true sometimes, there
can often be dependencies between various PECs. For exam-
ple, consider a network that is running iBGP. For the various
peering nodes to be able to communicate with each other,
an underlying routing protocol such as OSPF should first es-
tablish a data plane state that forwards packets destined to
the devices involved in BGP. In such a network, the manner
in which OSPF determines the forwarding behavior for the
device addresses will influence the routing decisions made
in BGP. In other words, the PECs that are handled by BGP
depend on the PECs handled by OSPF. In the past, configu-
ration verification tools have either ignored such cases alto-
gether, or, in the case of Minesweeper, modeled these classes
simultaneously. Specifically, for a network of with n routers
running iBGP, Minesweeper creates n+ 1 copies of the net-
work, searching for the converged solution for the n loop-
back addresses and also BGP. Effectively, this turns the veri-
fication problem into one quadratically larger than the origi-
nal. Given that configuration verification scales significantly
worse than linearly in input size, such a quadratic increase in
input size often makes the problem intractable.

Plankton goes for a more surgical approach. Once the
PECs are calculated, Plankton identifies dependencies be-
tween the Packet Equivalence Classes, based on recursive
routing entries, BGP sessions, etc. The dependencies are
stored as a directed graph, whose nodes are the PECs, and
directed edges indicate which PECs depend on which others.
In order to maximize parallelism in verification runs across
PECs, a dependency-aware scheduler first identifies strongly
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Figure 4: Packet Equivalence Class computation
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dency Graph

connected components in the graph. These SCCs represent
groups of PECs that are mutually dependent, and hence need
to be analyzed simultaneously through a single verification
run. In addition, if an SCC is reachable from another, it in-
dicates that the upstream SCC can be scheduled for analysis
only after the one downstream has finished. Each verification
run is a separate process. For an SCC S, if there is another
SCC S′ that depends on it, Plankton forces all possible out-
comes of S to be written to an in-memory filesystem (S will
always gets scheduled first). Outcomes refer to every possi-
ble converged state for S, together with the non-deterministic
choices made in the process of arriving at them. When the
verification of S′ gets scheduled, it reads these converged
states, and uses them when necessary.

Minesweeper’s technique of replicating the network
roughly corresponds to the case where all PECs fall into a
single strongly connected component. We expect this to al-
most never be the case. In fact, in typical cases, the SCCs
are likely to be of size 1, meaning that every PEC can be
analyzed in isolation, with ordering of the runs being the
only constraint∗. For example, Figure 5 illustrates the de-
pendency graph for a typical case where two PECs are being
handled in iBGP on a network with 4 different routers. The
only constraint in this case is that the loopback PECs should
be analyzed before the iBGP PECs can start. In such cases,
Plankton’s keeps the problem size significantly smaller, and
maximizes the degree of parallelism that can be achieved.

When a PEC needs the relevant converged states of past
PECs for its exploration, the non-deterministic choices may
need to be coordinated across all these PECs. In particu-
lar, consider the choice of link failures: if we hypothetically
executed one PEC assuming link L has failed and another
PEC assuming L is working, the result represents an invalid
execution of the overall network. Therefore, our current
prototype matches topology changes across explorations. A
second class of non-deterministic choices is protocol non-
determinism. In our experiments, we have not seen cases
of protocol non-determinism that requires matching across
PECs. OSPF by its nature has deterministic outcomes, but
on networks which have non-determinism in their internal
routing (e.g., non-deterministically configured BGP for in-
∗An example where the SCCs are bigger than one PEC is the contrived

case where there exists a static route for destination IP A whose next hop is
IP B, but another static route for destination IP B whose next hop is IP A.

ternal routing) and where message timing is correlated across
PECs (e.g., via route aggregation), the system would need to
coordinate this non-determinism to avoid false positives.

3.3 Explicit-state Model Checker
The explicit state model checker SPIN [9] provides Plankton
its exhaustive exploration ability. SPIN verifies models writ-
ten in the Promela modeling language, which has constructs
to describe possible non-deterministic behavior. SPIN’s ex-
ploration is essentially a depth-first search over the possible
states of the supplied model. Points in the execution where
non-deterministic choices are made represent branching in
the state space graph.

Plankton’s network model is essentially an implementa-
tion of the control plane in Promela. Our current implemen-
tation supports OSPF, BGP and static routing. Recall from
§ 3.1 that Plankton partitions the header space into Packet
Equivalence Classes. For each SCC, Plankton uses SPIN to
exhaustively explore control plane behavior. In order to im-
prove scalability, Plankton also performs another round of
partitioning by executing the control plane for each prefix
in the PEC separately. This separation of prefixes is helpful
in simplifying the protocol model. However, it does limit
Plankton’s support for route aggregation. While features
such as a change in the routing metric can be supported, if
there is a route map that performs an exact match on the ag-
gregated prefix, it will not apply to the more specific routes,
which Plankton models. Once the converged states of all rel-
evant prefixes are computed, a model of the FIB combines
the results from the various prefixes and protocols into a sin-
gle network-wide data plane for the PEC.

In what follows, we present Plankton’s network model that
will be executed by SPIN. We will initially present a simple,
unoptimized model, which is functionally correct but has sig-
nificant non-determinism that is irrelevant to finding differ-
ent converged states. Subsequently, in § 4, we discuss how
Plankton attempts to minimize irrelevant non-determinism,
making the execution of the deterministic fragments of the
control plane comparable to simulation.

3.4 Abstract Protocol Model
To define a control plane suitable for modeling real world
protocols such as BGP and OSPF, we look to the technique
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used by Minesweeper wherein the protocols were modeled
as instances of the stable paths problem. Along similar lines,
we consider the Simple Path Vector Protocol [8], which was
originally proposed to solve the stable paths problem. We
first extend SPVP to support some additional features that
we wish to model. Based on this, we construct a protocol
we call the Reduced Path Vector Protocol, which we show to
be sufficient to correctly perform model checking, if we are
interested only in the converged states of the network. We
use RPVP as the common control plane protocol for Plank-
ton. We begin with a brief overview of SPVP, highlighting
our extensions to the protocol. Appendix A contains the full
details of the protocol and our extensions.

3.4.1 SPVP and its extension

SPVP is an abstract model of real-world BGP, replacing the
details of BGP configurations with abstract notions of im-
port/export filters and ranking functions. For each node n
and peer n′, the import and export filters dictate which ad-
vertisements (i.e. the advertiser’s best path to the origin) n
can receive from and send to n′, respectively. The ranking
function for n dictates the preference among all received ad-
vertisements. These notions can be inferred from real-world
configurations.

We slightly extend the original SPVP [8] to support more
features of BGP. The extensions are as follows: we allow for
multiple origins instead of a single one; the ranking function
can be a partial order instead of a total one to allow for time
based tie breaking; and to be able to model iBGP, we allow
the ranking function of any node to change at any time during
the execution of protocol.

It is well known that there are configurations which can
make SPVP diverge in some or all execution paths. How-
ever, our goal is only to check the forwarding behavior in the
converged states, through explicit-state model checking. So,
we define a much simpler model that can be used, without
compromising the soundness or completeness of the analy-
sis (compared to SPVP).

3.4.2 Reduced Path Vector Protocol (RPVP)

We now describe RPVP, which is specifically designed for
explicit-state model checking of the converged states of the
extended SPVP protocol.

In RPVP, the message passing model of SPVP is replaced
with a shared memory model. The network state only con-
sists of the values of the best known path of each node at
each moment (best-path). In the initial state, the best path
of all nodes is ⊥, except origins, whose best path is ε. At
each step, the set of all enabled nodes (E) is determined (Al-
gorithm 1, line 5). A node n is considered enabled if either i)
the current best path p of n is invalid, meaning that the next
hop in p has a best path that is not a prefix of p.

invalid(n) , best-path(best-path(n).head) 6= best-path(n).rest

Algorithm 1 RPVP
1: procedure RPVP(:)
2: Init : ∀n ∈N −Origins.best-path(n)←⊥
3: Init : ∀o ∈Origins.best-path(o) = ε
4: while true do:
5: E← {n ∈N | invalid(n)∨∃n′ ∈ peers(n).can-updaten(n′)}
6: ifE = ∅ then:
7: break
8: end if
9: n← nondet-pick(E)

10: if invalid(n) then
11: best-path(n)←⊥
12: end if
13: U ← best({n′ ∈ peers(n)|can-updaten(n′)})
14: n′← nondet-pick(U)
15: p← importn,n′ (exportn′,n(best-path(n′)))
16: best-path(n)← p
17: end while
18: end procedure

Or ii) there is a node n′ among the peers of n that can
produce an advertisement which will change the current best
path of n. In other words, n′ has a path better than the current
best path of n, and the path is acceptable according to the
export and import policies of n′ and n respectively.

can-updaten(n′) , better(importn,n’(exportn’,n(best(n′)),best(n))
Where bettern(p,p′) is true when path p is preferred over

p′ according to the ranking function of n.
At any step of the execution, if there is no enabled node,

RPVP has reached a converged state. Otherwise a node n
is non-deterministically picked among the enabled set (line
9). If the current best path of n is invalid, the best path is
set to ⊥. Among all peers of n that can produce adver-
tisements that can update the best path of n, the neighbors
that produce the highest ranking advertisements are selected
(line 13). Note that in our model we allow multiple paths
to have the same rank, so there may be more than one el-
ements in the set U . Among the updates, one peer n′ is
non-deterministically selected and the best path of n is up-
dated according to the advertisement of n′ (lines 14-16). By
the end of line 16, an iteration of RPVP is finished. Note
that there are no explicit advertisements propagated; instead
nodes are polled for the advertisement that they would gen-
erate based on their current best path when needed. The
the protocol terminates once a converged state for the tar-
get equivalence class is reached. RPVP does not define the
semantics of failure or any change to the ranking functions.
Any topology changes to be verified are made before the pro-
tocol starts its execution and the latest version of the ranking
functions are considered.

A natural question is whether or not performing analysis
using RPVP is sound and complete with respect to SPVP.
Soundness is trivial as each step of RPVP can be simulated
using a few steps of SPVP. If we are only concerned about
the converged states, RPVP is complete as well:

Theorem 1. For any converged state reachable from the ini-
tial state of the network with a particular set of links L fail-
ing at certain steps during the execution of SPVP, there is an
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execution of RPVP with the same import/export filters and
ranking functions equal to the latest version of ranking func-
tions in the execution of SPVP, which starts from the initial
state in which all links in L have failed before the protocol
execution starts, and reaches the same converged state. Par-
ticularly, there is a such execution in which at each step, each
node takes a best path that does not change during the rest
of the execution.

Proof. The proof can be found in the Appendix.

Theorem 1 implies that performing model checking us-
ing the RPVP model is complete. Note that RPVP does not
preserve all the transient states and the divergent behaviors
of SPVP. This frees us from checking unnecessary states as
we are only interested in the converged states. Yet, even
the reduced state space has a significant amount of irrele-
vant non-determinism. Consequently, we rely on a suite of
other domain-specific optimizations (§ 4) to eliminate much
of this non-determinism and make model checking practical.

Note that our presentation of RPVP has assumed the that
a single best path is picked by each node. This matches
our current implementation in that we do not support multi-
path in all protocols. In a special-case deviation from RPVP,
our implementation allows a node running OSPF to main-
tain multiple best paths, chosen based on multiple neighbors.
While we could extend our protocol abstraction to allow
multiple best paths at each node, it wouldn’t reflect the real-
world behavior of BGP which, even when multipath is con-
figured, makes routing decisions based on a single best path.
However, such an extension is valid under the constrained fil-
tering and ranking techniques of shortest path routing. Our
theorems can be extended to incorporate multipath in such
protocols. We omit that to preserve clarity.

3.5 Policies
We primarily target verification of data plane policies over
converged states of the network. Similar to VeriFlow [15],
we don’t implement a special declarative language for poli-
cies; a policy is simply an arbitrary function computed over
a data plane state and returning a Boolean value. Plankton
implements a Policy API where a policy supplies a callback
which will be invoked each time the model checker generates
a converged state. Plankton gives the callback the newly-
computed converged data plane for a particular PEC, as well
as the relevant converged states of any other PEC that the
current PEC depends on. Plankton checks the callback’s re-
turn value, and if the policy has failed, it writes a trail file
describing the execution path taken to reach the particular
converged state.

Our API allows a policy to give additional information to
help optimize Plankton’s search: source nodes and interest-
ing nodes. We define two converged data plane states for a
PEC to be equivalent if their paths from the source nodes
have the same length and the same interesting nodes are in

the same position on the path. Plankton may suppress check-
ing a converged state if an equivalent one (from the perspec-
tive of that policy) has already been checked (§ 4.2 and § 4.3
describe how Plankton does this). If source and interesting
nodes are not supplied, Plankton by default assumes that all
nodes might be sources and might be interesting.

As an example, consider a waypoint policy: traffic from
a set S of sources must pass through firewalls F . The pol-
icy specifies sources S, interesting nodes F , and the callback
function steps through each path starting at S and fails when
it finds a path that does not contain a member of F . As an-
other example, a loop policy can’t optimize as aggressively:
it has to consider all sources.

In general, this API enables any policy that is a function of
a single PEC’s converged data plane state. We have found
it simple to add new policies, currently including: Reach-
ability, Waypointing, Loop Freedom, BlackHole Freedom,
Bounded Path Length and Multipath Consistency [1]. We
highlight several classes of policies that fall outside this API:
(i) Policies that inspect the converged control plane state, as
opposed to the data plane: while not yet strictly in the clean
API, this information is easily available and we implemented
a representative example, Path Consistency (§5), which as-
serts that the control plane state as well as the data plane
paths for a set of devices should be identical in the converged
state (similar to Local Equivalence in Minesweeper [1]). (ii)
Policies that require multiple PECs, e.g., “packets to two des-
tinations use the same firewall”. This would be an easy ex-
tension, leveraging Plankton’s PEC-dependency mechanism,
but we have not performed a performance evaluation. (iii)
Policies that inspect dynamic behavior, e.g., “no transient
loops prior to convergence”, are out of scope just as they
are for all current configuration verification tools.

4 Optimizations

Although Plankton’s RPVP-based control plane greatly re-
duces the state space, naive model checking is still not ef-
ficient enough to scale to large networks. We address this
challenge through optimizations that fall into two major cat-
egories — reducing the search space of the model checker,
and making the search more efficient.

4.1 Partial Order Reduction

A well-known optimization technique in explicit-state model
checking, Partial Order Reduction (POR) involves exploring
a set of events only in one order, if the various orderings will
result in the same outcome. In general, precisely answering
whether the order of execution affects the outcome can be
as hard as model checking itself. Model checkers such as
SPIN provide conservative heuristics to achieve some reduc-
tion. However, in our experiments, this feature did not yield
any reduction. We believe this is because our model of the
network has only a single process, and SPIN’s heuristics are
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designed to apply only in a multiprocess environment. Even
if we could restructure the model to use SPIN’s heuristics,
we do not expect significant reductions, as evidenced in past
work [4]. Instead, we implement POR heuristics, based on
our knowledge of the RPVP control plane†.

4.1.1 Explore consistent executions only

To describe this optimization, we first introduce the notion of
a consistent execution: For a converged state S and a partial
execution of RPVP π , we say that π is consistent with S iff
at each step of the execution, a node picks a path that is equal
to it its best path in S and never changes it.

Readers may notice that Theorem 1 asserts the existence
of a consistent execution leading to each converged state of
the network, once any failures have happened. This implies
that if the model checker was to explore only executions that
are consistent with some converged state, completeness of
the search would not be compromised (soundness is not vi-
olated since every such execution is a valid execution). Of
course, when we start the exploration, we cannot know the
exact executions that are consistent with some converged
state, and hence need to be checked. So, we conservatively
assume that every execution we explore is relevant, and if we
get evidence to the contrary (like a device having to change
a selected best path), we stop exploring that execution.

4.1.2 Deterministic nodes

Even when there is the possibility of non-deterministic con-
vergence, the “relevant” non-determinism is typically local-
ized. In other words, after each non-deterministic choice,
there is a significant amount of essentially deterministic be-
havior before the opportunity for another non-deterministic
choice, if any, arises. (We consider it analogous to endgames
in chess, but applicable at any point in the protocol ex-
ecution.) However, this is obscured by “irrelevant” non-
determinism – particularly, ordering between node execution
that doesn’t impact the converged state. Our goal is to prune
the irrelevant non-determinism to reduce the search space for
Plankton’s model checker.

For an enabled node n in state S with a single best up-
date u, we say n is deterministic if in all possible converged
states reachable from S, n will have the path selected after
n processes u. Of course, with the model checker having
only partially executed the protocol, it is highly non-obvious
which nodes are deterministic! Nevertheless, suppose for a
moment we have a way to identify at least some determinis-
tic nodes. How could we use this information? At each step
of RPVP, after finding the set of enabled nodes, if we can
identify at least one deterministic enabled node, we choose
one of these nodes and instruct SPIN to process its update.

†Since we wish to check all converged states of the network, it can be
argued that any reduction in search space is essentially POR. But here, we
are referring optimizations that have a localized scope.

(More specifically, we pick one arbitrarily.) This avoids the
costly non-deterministic branching caused by having to ex-
plore the numerous execution paths where each one of the
enabled nodes is the one executed next. The following theo-
rem shows this is safe.

Theorem 2. Any partial execution of RPVP consistent with
a converged state can be extended to a complete execution
consistent with that state.

Proof. The proof can be found in the Appendix.

By definition, choosing any deterministic node as the sin-
gle node to execute next produces a new state that remains
consistent with all possible converged states reachable from
the prior state. Thus, Theorem 2 implies this determinis-
tic choice does not eliminate any converged states from be-
ing reachable, preserving completeness. Note that this op-
timization does not require the entire network to have one
converged state; it can apply at every step of the execution,
possibly between non-deterministic choices.

What remains is the key: how can we identify determin-
istic nodes? Perfect identification is too much to hope for,
and we allow our heuristics to return fewer deterministic
nodes than actually exist. We build heuristics that are spe-
cific to each routing protocol, prioritizing speed and simplic-
ity above handling atypical cases like circular route redistri-
bution.

For OSPF, our detection algorithm runs a network-wide
shortest path computation, and picks each node only after
all nodes with shorter paths have executed. We cache this
computation so it is only run once for a given topology, set
of failures, and set of sources.

For BGP, the detection algorithm performs the following
computation: For each node which is enabled to update its
best path, it checks whether there exists a pending update
that would never get replaced, because the update would
definitely be preferred over other updates that are enabled
now or may be in the future. To check this, we follow the
node’s BGP decision process, so if the update is tied for
most-preferred in one step it moves to the next. For each step
of the decision process, the preference calculation is quite
conservative. For local pref, it marks an update as the win-
ner if it matches an import filter that explicitly gives it the
highest local pref among all import filters. For AS Path, the
path length of the current update must be the minimum pos-
sible in the topology. For IGP cost, the update must be from
the peer with minimum cost. If at any node, any update is
found to be a clear winner, the node is picked as a determin-
istic node, and is allowed to process the update. If no node is
found that has a clear winner but there is a node that has ≥ 2
updates tied for the most preferred, then we deterministically
pick any one such node and have SPIN non-deterministically
choose which of the multiple updates to process. Figure 6 il-
lustrates these scenarios on a BGP network, highlighting one
sequence of node selections (out of many possible).
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Figure 6: Step-by-step choice of deterministic nodes (Each node
has a different AS number).

The detection algorithm may fail to detect some determin-
istic nodes. For instance, suppose node N is deterministic
but its import filter from neighbor M sets the highest lo-
cal pref for updates with a particular community attribute,
and M can never assign that attribute. Then the detection
algorithm will fail to mark N as deterministic. But success-
fully identifying at least one deterministic node in a step will
avoid non-deterministic branching at that step. As long as
this happens frequently, the optimization will be helpful.

Even if the decision on a node is ambiguous in a particular
state, the system will often make progress to a state where
ambiguities can be resolved. In the example above, once
M selects a path (and therefore will never change its path
as described in § 4.1.1), the detection algorithm no longer
needs to account for a possible more-preferred update from
it, and may then be able to conclude that N is deterministic.

4.1.3 Decision independence

If nodeA’s actions are independent of any future decisions of
node B and vice versa, then the execution ordering between
A and B does not matter. We check a sufficient condition
for independence: any route advertisements passed between
these nodes, in either direction, must pass through a node
that has already made its best path decision (and therefore
will not transmit any further updates). In this case, we pick
a single arbitrary execution order between A and B.

4.1.4 Failure ordering

As stated in § 3.4.2, the model checker performs all topol-
ogy changes before the protocol starts execution. We also
enforce a strict ordering of link failures, reducing branching
even further.

4.2 Policy-based Pruning
Policy-based pruning limits protocol execution to those parts
of the network that are relevant to the satisfaction/failure of
the policy. When a policy defines a set of source nodes
(§ 3.5), it indicates that the policy can be checked by ana-
lyzing the forwarding from those nodes only. The best ex-
ample for this is reachability, which is checked from a par-
ticular set of starting nodes. When an execution reaches a
state where all source nodes have made their best-path de-
cision, Plankton considers the execution, which is assumed
to be consistent, to have finished. In the cases where only a
single prefix is defined in a PEC, Plankton performs a more

aggressive pruning, based on the influence relation. Any de-
vice that cannot influence a source node is not allowed to ex-
ecute. With some additional bookkeeping, the optimization
can be extended to cases where multiple prefixes contribute
to a PEC, but our current implementation does not support
this. The optimization is also not sound when applied to
PECs on which other PECs depend. A router that does not
speak BGP may not directly influence a source node, but it
may influence the routing for the router IP addresses, which
in turn may affect the chosen path of the source node. So,
the optimization is not applied in such cases.

4.3 Choice of Failures

In addition to the total ordering of failures described in
§ 4.1.4, Plankton also attempts to reduce the number of fail-
ures that are explored, using equivalence partitioning of de-
vices as proposed by Bonsai [2]. Bonsai groups devices in
the network into abstract nodes, creating a smaller topology
overall for verification. Plankton computes Device Equiva-
lence Classes (DECs) similarly, and defines a Link Equiv-
alence Class (LEC) as the set of links between two DECs.
For each link failure, Plankton then explores only one repre-
sentative from each LEC. When exploring multiple failures,
we refine the DECs and LECs after each selection. Note that
this optimization limits the choice of failed links, but the ver-
ification happens on the original input network. In order to
avoid remapping interesting nodes (§ 3.5), they are each as-
signed to a separate DEC. Since the computed DECs can be
different for each PEC, this optimization is done only when
there are no cross-PEC dependencies.

4.4 State Hashing

During the exhaustive exploration of the state space, the ex-
plicit state model checker needs to track a large number of
states simultaneously. A single network state consists of a
copy of all the protocol-specific state variables at all the de-
vices. Maintaining millions of copies of these variables is
naturally expensive, and in fact, unnecessary. A routing de-
cision at one device doesn’t immediately affect the variables
at any of the other devices. Plankton leverages this property
to the reduce memory footprint, storing routing table entries
as 64-bit pointers to the actual entry, with each entry stored
once and indexed in a hash table. We believe this optimiza-
tion can be applied to other variables in the network state
too, as long as they are not updated frequently. Picking the
right variables to optimize this way, and developing more
advanced hash-based schemes, can be explored in the future.

5 Evaluation
We prototyped Plankton including the equivalence class
computation, control plane model, policy API and optimiza-
tions in 373 lines of Promela and 4870 lines of C++, ex-
cluding the SPIN model checker. We experimented with our
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prototype on Ubuntu 16.04 running on a 3.4 GHz Intel Xeon
processor with 32 hardware threads and 188 GB RAM.

We begin our evaluation with simple hand-created topolo-
gies incorporating protocol characteristics such as shortest
path routing, non-deterministic protocol convergence, redis-
tribution, recursive routing, etc. Among these tests, we in-
corporated examples of non-deterministic protocol execution
from [8], as well as BGP wedgies, which are policy viola-
tions which can occur only under some non-deterministic
execution paths. In each of these cases, Plankton correctly
finds any violations that are present.

Having tested basic correctness, we next evaluate perfor-
mance and compare to past verifiers. What sets Plankton
apart from tools other than Minesweeper is its higher data
plane coverage and ability to handle multiple protocols (Fig-
ure 1). We therefore compare primarily with Minesweeper
but also include ARC in some tests.

We also evaluated Bonsai [2], a preprocessing technique
that helps improve the scalability of configuration verifica-
tion, for specific policies. Bonsai could assist any configura-
tion verifier. We integrated Bonsai with Plankton, and exper-
imentally compare the performance of Bonsai+Minesweeper
and Bonsai+Plankton. However, it is important to study the
performance of these tools without Bonsai too: Bonsai’s net-
work compression cannot be applied if the correctness is to
be evaluated under link failures, or if the policy being evalu-
ated is not preserved by Bonsai.

Experiments with synthetic configurations
Our first set of performance tests uses fat trees. We con-
struct fat trees of increasing sizes, with each edge switch
originating a prefix into OSPF. Link weights are identical.
We check these networks for routing loops. In order to cause
violations, we install static routes at the core routers. In our
first set of experiments, the static routes match the routes
that OSPF would eventually compute, so there are no loops.
Then, we change the static routes such that some of the traf-
fic falls into a routing loop. Figure 7(a) illustrates the time
and memory consumed, using Plankton running on various
numbers of cores, and using Minesweeper. We observed that
under default settings, Minesweeper’s CPU utilization keeps
changing, ranging from 100% to 1,600%. In this experiment
and all others where we run both Minesweeper and Plankton,
the two tools produced the same policy verification results.
This serves as an additional correctness check for Plankton.
Bonsai is not used, because its currently available implemen-
tation does not appear to support loop policies.

As the results show, Plankton scales well with input net-
work size. The speed and memory consumption varies as
expected with the degree of parallelism. Even on a single
core, Plankton is quicker than Minesweeper for all topolo-
gies. For larger networks, Plankton is several orders of mag-
nitude quicker. On the memory front, even on 16 cores,
Plankton’s footprint is smaller than Minesweeper’s.

Encouraged by the good performance numbers, we scale

up to very large fat trees (Figure 7(b)). Here, Minesweeper
doesn’t finish even in 4 hours, even with a 500-device net-
work (in the case of passing loop check, even in a 245-device
network). So, we did not run Minesweeper on the larger net-
works. We run Plankton with a single CPU core only, to
illustrate its time-memory tradeoff: since the analyses of in-
dividual PECs are fully independent and of identical compu-
tational effort, running with n cores would reduce the time
by n×, and increase memory by n×. For example, in the
2,205-device network, Plankton uses about 170 GB per pro-
cess. Policies that check a single equivalence class are much
cheaper: for example, single-IP reachability finishes in sec-
onds or minutes even on the largest networks (Figure 7(b)).

Next, we test Plankton with a very high degree of non-
determinism. We evaluated a data center setting with BGP,
which is often employed to provide layer 3 routing down
to the rack level in modern data centers [17]. We config-
ure BGP as described in RFC 7938 [17] on fat trees of vari-
ous sizes. Furthermore, we suppose that the network opera-
tor intends traffic to pass through any of a set of acceptable
waypoints on the aggregation layer switches (e.g., imagine
the switches implement a certain monitoring function). We
pick a random subset of aggregation switches as the way-
points in each experiment. However, we create a “miscon-
figuration” that prevents multipath and fails to steer routes
through the waypoints‡. Thus, in this scenario, whether the
selected path passes through a waypoint depends on the or-
der in which updates are received at various nodes, due to
age-based tie breaking [16]. We check waypoint policies
which state that the path between two edge switches should
pass through one of the waypoints. Plankton evaluates vari-
ous non-deterministic convergence paths in the network, and
determines a violating sequence of events. Time and mem-
ory both depend somewhat on the chosen set of aggregation
switches, but even the worst-case times are less than 2 sec-
onds (Figure 7(c)). We consider this a success of our policy-
based pruning optimization: the network has too many con-
verged states to be verified in reasonable time, but many have
equivalent results in terms of the policy.

Experiments with semi-synthetic configurations
We use real-world AS topologies and associated OSPF link
weights obtained from RocketFuel [24]. We pick a random
ingress point that has more than one link incident on it. We
verify that with any single link failure, all destination pre-
fixes are reachable from that ingress. Here, Minesweeper’s
SMT-based search algorithm could be beneficial, due to the
large search space created by failures. Nevertheless, Plank-
ton performs consistently better in both time and memory
(Figure 7(d)). Both tools find a violation in each case. The
time taken by Plankton with 16 and 32 cores are often iden-
tical, since a violation is found in the first set of PECs. Note

‡This setup is convenient for practical reasons, as our current Plankton
prototype implementation does not support BGP multipath.
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Figure 7: Plankton experiments. Bars and lines/points denote time and memory consumption, respectively.

that in this experiment and the next, we did not use Bon-
sai, because (i) it cannot be used for checks involving link
failures, and (ii) the topology has hardly any symmetry that
Bonsai could exploit.

To evaluate our handling of PEC dependencies, we config-
ure iBGP over OSPF on the AS topologies. The iBGP pre-

fixes rely on the underlying OSPF routing process to reach
the next hop. We check that packets destined to the iBGP-
announced prefixes are correctly delivered. It is worth not-
ing that this test evaluates a feature that, to the best of our
knowledge, is provided only by Plankton and Minesweeper.
Thanks to the dependency-aware scheduler, Plankton per-
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forms multiple orders of magnitude better (Figure 7(e)). This
is unsurprising: Minesweeper’s approach of duplicating the
network forces it to solve a much harder problem here, some-
times over 300× larger.

Integration with Bonsai
We integrated Plankton with Bonsai to take advantage of
control plane compression when permitted by the specific
verification task at hand. We test this integration experi-
mentally by checking Bounded Path Length and Reachabil-
ity policies on fat trees running OSPF. The symmetric nature
of fat trees is key for Bonsai to have a significant impact. We
measure the time taken by Plankton and Minesweeper, after
Bonsai preprocesses the network. Plankton still outperforms
Minesweeper by multiple orders of magnitude (Figure 7(f)).

Comparison with ARC
Having evaluated Plankton’s performance in comparison
with Minesweeper, we move on to comparing the perfor-
mance of Plankton and ARC. ARC is specifically designed
to check shortest-path routing under failures, so we expected
the performance to be much better than the more general-
purpose Plankton, when checking networks compatible with
ARC. We check all-to-all reachability in fat trees and AS
topologies running OSPF, under a maximum of 0, 1 and 2
link failures. Similar to Minesweeper, ARC’s CPU utiliza-
tion ranges from 100% to 600% under default settings. We
allocate 8 cores to Plankton. Plankton is multiple orders of
magnitude faster in most cases (Figure 7(g)).§ This is gen-
uinely surprising; one reason that may explain the observa-
tion is that ARC always computes separate models for each
source-destination pair, whereas Plankton computes them
based only the destination, when verifying destination ad-
dress routing. Nevertheless, we do not believe that there is
a fundamental limitation in ARC’s design that would pre-
vent it from outperforming Plankton on the networks that
can be checked by either tool. Interestingly, while ARC’s
resiliency-focused algorithm doesn’t scale as easily as Plank-
ton for larger networks, its performance actually sometimes
slightly improves when the number of failures to be checked
increases. Plankton on the other hand scales poorly when
checking increasing levels of resiliency. We do not find this
concerning, since most interesting checks in the real world
involve only a small number of failures. When we performed
these experiments with Minesweeper, no check involving 2
failures ran to completion except the smallest fat tree.

Testing with real configurations
We used Plankton to verify 10 different real-world configu-
rations from 3 different organizations, including the publicly
available Stanford dataset. We first check reachability, way-
pointing and bounded path length policies on these networks,
with and without failures. All except one of these networks
use some form of recursive routing, such as indirect static

§Our numbers for ARC are similar to those reported by its authors for
similar sized networks, so we believe we have not misconfigured ARC.

Experiment Optimizations Time Memory

Ring, OSPF, 4 nodes, 1 failure
All 343 µs 137.43 MB
None 1.56 ms 137.39 MB

Ring, OSPF, 8 nodes, 1 Failure
All 623 µs 143.22 MB
None 0.13 s 137.04 MB

Ring, OSPF, 16 nodes, 1 Failure
All 2.44 ms 137.89 MB
None 266.48 s 7615.57 MB

Fat tree, OSPF, 20 nodes
All 464 µs 551.73 MB
None > 5 min > 8983.55 MB

Fat tree, OSPF, 245 nodes
All 4.297 s 1908 MB
All but link failure opt. 64.97 s 72862 MB

AS 1221 iBGP
All 27.54 s 254.22 MB
All but deterministic node opt. 25.43 s 254.34 MB

Fat tree, BGP, 20 nodes
All 46 ms 137 MB
All but deterministic node opt. > 5 min > 6144 MB
All but policy-based pruning > 5 min > 6144 MB

Figure 8: Experiments with optimizations disabled/limited

routes or iBGP. We feel that this highlights the significance
of Plankton’s and Minesweeper’s support for such config-
urations. Moreover, the PEC dependency graph for these
networks did not have any strongly connected components
larger than a single PEC, which matches yet another of our
expectations. Interestingly, we did find that the PEC depen-
dency graph had self loops, with a static route pointing to a
next hop IP within the prefix being matched. It is also note-
worthy that in these experiments, the only non-determinism
was in the choice of links that failed, which substantiates
our argument that network configurations in the real world
are largely deterministic. Figure 7(h) illustrates the results,
which indicate that Plankton can handle the complexity of
real-world configuration verification.

In our next experiment with real world configs, we identify
three networks where Loop, Multipath Consistency and Path
Consistency policies are meaningful and non-trivial to check.
We check these policies with and without link failures. Fig-
ure 7(i) illustrates the results of this experiment. The results
indicate that the breadth of Plankton’s policies scale well on
real world networks. The Batfish parser, which is used by
Minesweeper, was incompatible with the configurations, so
we could not check these configs on Minesweeper (checking
the Stanford dataset failed after parsing). However, the num-
bers we observe are significantly better than those reported
for Minesweeper on similar-sized networks, for similar poli-
cies.

Optimization Cost/Effectiveness
To determine the effectiveness of Plankton’s optimizations,
we perform experiments with some optimizations disabled
or limited. Figure 8 illustrates the results from these exper-
iments. When all optimizations are turned off, naive model
checking fails to scale beyond the most trivial of networks.
The optimizations reduce the state space by 4.95× in smaller
networks and by as much 24,968× in larger ones.

To evaluate device-equivalence based optimizations in
picking failed links, we perform loop check on fat trees run-
ning OSPF under single link failure with the optimization
turned off. We observed a 15× reduction in speed, and a
38× increase in memory overhead, indicating the effective-
ness of the optimization in networks with high symmetry.
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Experiment No Bitstate Hashing Bitstate Hashing
180 Node BGP DC Waypoint (Worst Case) 202 MB 67 MB
320 Node BGP DC Waypoint (Worst Case) 428 MB 215 MB
AS 1239 Fault Tolerance (2 cores) 7.33 GB 4.52 GB
AS 1221 Fault Tolerance (1 core) 163.53 MB 60 MB

Figure 9: The effect of bitstate hashing on memory usage

In the next set of experiments, we measure the impact of
our partial order reduction technique of prioritizing deter-
ministic nodes (§ 4.1.2). We first try the iBGP reachability
experiment with the AS 1221 topology, with the detection
of deterministic nodes in BGP disabled. We notice that in
this case the decision independence partial order reduction
produces reductions identical to the disabled optimization,
keeping the overall performance unaffected. In fact, the the
time improves by a small percentage, since there is no detec-
tion algorithm that runs at every step. We see similar results
when we disable the optimization on the edge switches in our
BGP data center example. However, this does not mean that
the deterministic node detection can be discarded — in the
BGP data center example, when the optimization is disabled
altogether, the performance falls dramatically. The next opti-
mization that we study is policy-based pruning. On the BGP
data center example, we attempt to check a waypoint policy,
with policy-based optimizations turned off. The check times
out, since it is forced to generate every converged data plane,
not just the ones relevant to the policy.

SPIN provides a built-in optimization called bitstate hash-
ing that uses a Bloom filter to keep track of explored states,
rather than storing them explicitly. This can cause some false
negatives due to reduced coverage of execution paths. We
find that bit state hashing provides significant reduction in
memory in a variety of our test cases (Figure 9). According
to SPIN’s statistics our coverage would be over 99.9%. Nev-
ertheless, we have not turned on bitstate hashing in our other
experiments in favor of full correctness.

6 Limitations

Some of the limitations of Plankton, such as the lack of sup-
port for BGP multipath and limited support for route aggre-
gation, have been mentioned in previous sections. As dis-
cussed in § 3.2, Plankton may also produce false positives
when checking networks with cross-PEC dependencies, be-
cause it expects that every converged state of a PEC may co-
exist with every converged state of other PECs that depend
on it. However, such false positives are unlikely to happen
in practice, since real-world cases of cross-PEC dependen-
cies (such as iBGP) usually involve only a single converged
state for the recursive PECs. Our current implementation
of Plankton assumes full visibility of the system to be ver-
ified, and that any dynamics will originate from inside the
system. So, influences such as external advertisements need
to be modeled using stubs that denote entities which origi-
nate them. Plankton’s technique is not suited for detecting
issues in vendor-specific protocol implementations, a lim-
itation that all existing formal configuration analysis tools

share. As with most formal verification tools, one needs
to assume that Plankton itself is correct, both in terms of
the theoretical foundations as well as the implementation.
Correct-by-construction program synthesis could help in this
regard.

7 Related Work
Data plane verification: The earlier offline network verifi-
cation techniques [19, 13] have evolved into more efficient
and real-time ones (e.g., [15, 12, 10, 26, 3, 11]), including
richer data plane models (e.g., [21, 14]). These techniques
however, cannot verify configurations prior to deployment.

Configuration verification: We discussed the state of
the art of configuration verification in § 2, and how Plank-
ton improves upon the various tools in existence. Crystal-
Net [18] emulates actual device VMs, and its results could
be fed to a data plane verifier. However, this would not
verify non-deterministic control plane dynamics. Simulta-
neously improving the fidelity of configuration verifiers in
both dimensions (capturing dynamics as in Plankton and
implementation-specific behavior as in CrystalNet) appears
to be a difficult open problem.

Optimizing network verification: Libra [27] is a divide-
and-conquer data plane verifier, which is related to our
equivalence class-based partitioning of possible packets. The
use of symmetry to scale verification has been studied in the
data plane [22] and control plane (Bonsai [2]). We have dis-
cussed how Plankton uses ideas similar to Bonsai, as well as
integrates with Bonsai itself.

Model checking in the networking domain: Past ap-
proaches that used model checking in the networking do-
main have focused almost exclusively on the network soft-
ware itself, either as SDN controllers, or protocol implemen-
tations [4, 23, 20]. Plankton uses model checking not to ver-
ify software, but to verify configurations.

8 Conclusion and Future Work
We described Plankton, a formal network configuration ver-
ification tool that combines equivalence partitioning of the
header space with explicit state model checking of protocol
execution. Thanks to pragmatic optimizations such as partial
order reduction and state hashing, Plankton produces signif-
icant performance gains over the state of the art in config-
uration verification. Improvements such as checking tran-
sient states, incorporating real software, partial order reduc-
tion heuristics that guarantee reduction, etc. are interesting
avenues of future work.
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A Extended SPVP

In extended SPVP, for each node n, and for each peer n′ ∈
peers(n), rib-inn(n′) keeps track of the most recent adver-
tisement of n′ to n. In addition, best-path(n) keeps the best
path that n has to one of the multiple origins. Peers are con-
nected using reliable FIFO message buffers to exchange ad-
vertisements. Each advertisement consists of a path from the
advertising node to an origin. In each step (which we assume
is performed atomically) a node n takes an advertisement
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p from the buffer connected to peer n′, and applies an im-
port filter on it (importn,n′(p)). n then updates rib-inn(n′)
with the new imported advertisement. In our extension, we
assume that each node has a ranking function λ that pro-
vides a partial order over the paths acceptable by the node.
n then proceeds by updating its best-path to the highest
ranking path in rib-inn. If the best path in rib-inn have the
same rank as the current best path and that path is still valid,
best-path(n) will not change. If the best path is updated, n
advertises the path to its peers. For each peer n′, n applies
the export filter on the path (exportn,n′(best-path(n))) be-
fore sending the advertisement.

The import filter, the export filter, and the ranking func-
tions are abstract notions that will be inferred from the con-
figuration of the node. We make reasonable assumptions
about these notions (Appendix B). Attributes such as local
pref, IGP cost, etc. are accounted for in the the ranking func-
tion and the import/export filters.

If a session between two peers fails, the messages in the
buffer are lost and the buffer cannot be used anymore. We
assume that when this happens, each peer gets ⊥ as the ad-
vertised path. Additionally, to be able to model iBGP, in
extended SPVP we allow the ranking function of any node n
to change at any time during the execution of the protocol.
This is to model cases in which for example a link failure
causes IGP costs to change. In such cases we assume that
n receives a special message to recompute its best-path ac-
cording to the new ranking function.

The state of network at each point in time consists of the
values of best-path, rib-in, and the contents of the message
buffers. In the initial state S0, the best path of the origins
is ε and the best path of the rest of the nodes are ⊥ which
indicates that the node has no path. Also for any n,n′ ∈ V ,
rib-inn(n′) is ⊥. We assume that initially the origins put
their advertisements in the message buffer to their peers, but
the rest of the buffers are empty.

An (partial) execution of SPVP is a sequence of states π
which starts from S0 and each state is reachable by a single
atomic step of SPVP on the state before it. A converged
state in SPVP, is a state in which all buffers are empty. A
complete execution is an execution that ends in a converged
state. It is well known that there are configurations which can
make SPVP diverge in some or all execution paths. However,
our goal is to only to check the forwarding behavior in the
converged states, through explicit-state model checking. So,
we define a much simpler model that can be used, without
compromising the soundness or completeness of the analysis
(compared to SPVP).

B Assumptions

We make the following assumptions in in our theoretical
model.

• Both import/export filters return ⊥ if the filter rejects the
advertisement according to the configuration.

• All import filters reject paths that cause forwarding loops.
They also do not alter the path (unless the path is rejected).

• All export filters for each node n not rejecting an adver-
tisement, will append n at the end of the advertised path.
No other modification is made to the path.

• Path ⊥ has the lowest ranking in all ranking functions.
• The import/export filters never change during the execu-

tion of the protocol. Note that we do not make such as-
sumption for the ranking functions.
Note that these are reasonable assumptions with respect to

how real world protocols (especially BGP) work.

C Proof of Theorems

Proof of Theorem 1. For a complete execution
π = S0,S1, ...,Sc of SPVP and a state Si in that exe-
cution, for any node n, we say that n is converged in Si for
execution π iff n has already picked the path it has in the
converged state (Sc) and does not change it:

convergedπ(n,Si) ,
∀j.i≤ j ≤ c : best-pathSj

(n) = best-pathSc
(n)

It it clear that when a node converges in an state, it remains
converged (according to the definition above).

Lemma 1. In any complete execution π = S0,S1, ...,Sc
of SPVP, for any sate Si, for any two nodes n and n′,
if ∃l : n′ = best-pathSi

(n)[l] ¶ , and best-pathSi
(n′) 6=

best-pathSi
(n)[l :], there is a j (i < j ≤ c) such that

best-pathSj
(n) 6= best-pathSi

(n).

Proof. This can be shown by a simple induction on the
length of the prefix of the best path of n from n to up
to n′ (l). If l = 1 (i.e the two nodes are directly con-
nected) then either n′ will advertise its path to n and n
and will change its path or the link between n and n′

fails in which case n will receive an advertisement with
⊥ as the path (Section 3.4.1), which causes n to change
its path. Note that the argument holds even if the ranking
function of n or n′ changes. If l > 1, assuming the claim
holds for lengths less than l, for n′′ = best-pathSi

(n)[0],
either best-pathSi

(n′′) 6= best-pathSi
(n)[1 :] in which

case due to induction hypothesis the claim holds, or
best-pathSi

(n′′) = best-pathSi
(n)[1 :] in which case we

note that n′ = best-pathSi
(n′′)[l− 1], and since the length

of the path n′′ to n′ is less than l, by induction hypothesis
we know that eventually (i.e for a j > i) best-pathSj

(n′′) 6=
best-pathSj

(n)[1 :] and by induction hypothesis this will
lead to a change in the best path of n.

¶For a path P = p0,p1, ...,pn, we denote pi by P [i] and
pi,pi+1, ...,pn by P [i :].
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Corollary 1. For any complete execution π of SPVP , for any
node n, any node along the best path of n in the converged
state converges before n.

Now consider a complete execution π = S0,S1, ...,Sc of
SPVP. We will construct a complete execution of RPVP
with |N | steps (where N is set of all nodes) resulting in
the same converged state as Sc. We start with a topol-
ogy in which all the links that have failed during the ex-
ecution of SPVP are already failed. For any node n, we
define Cπ(n) = min{i|convergedπ(n,Si)}. Consider the
sequence n1,n2, ...,n|N | of all nodes sorted in the increas-
ing order of Cπ . Now consider the execution of RPVP
π′ = S′0,S

′
1, ...,S

′
|N | which starts from the initial state of

RPVP and in each state S′i, (a) either node ni+1 is the picked
enabled node and the node pi = best-pathSc

(ni+1)[0] is the
picked best peer, or (b) in case pi =⊥, nothing happens and
S′i+1 = S′i.

First, note that (modulo the repeated states in case b), π′

is a valid execution of of RPVP: at each state S′i (in case
a), ni+1 is indeed an enabled node since its best path at that
state is⊥ and according to corollary 1, pi has already picked
its path: Also pi will be in the set of best peers of ni+1
(line 13 in RPVP). Assume this is not the case, i.e there exists
another peer p′ that can advertise a better path. This means
that in Sc of SPVP, p′ can send an advertisement that is better
(according to the version of ranking functions in Sc) than the
converged path of ni+1. This contradicts the fact that Sc is a
converged path.

Second, note that S′|N | is a converged state for RPVP, be-
cause otherwise, using similar reasoning as above, Sc can
not be converged. Also it is easy to see that best-pathS′

|N|
=

best-pathSc

Finally, note that in π′, once a node changes its best path
from ⊥, it does not change its best path again.

Proof of Theorem 2. We begin by making two observations
about RPVP that are key to the proof:

• RPVP for a prefix can never converge to a state having loop-
ing paths.
• If a node u adopts the best path of a neighbor v, v will be
next hop of u.

Consider any converged state S. The theorem states that
any partial execution that is consistent with S can be ex-
tended to a full execution that leads to S. We prove the the-
orem by induction on the length of the longest best path in
S.
Base case: If in a network a converged state exists where the
best path at each node is of length 0, that means that each
node is either an origin or doesn’t have a best path for the
prefix. Since any execution apart from the empty execution

(where no protocol event happens) is not consistent with this
state, the theorem holds.
Induction hypothesis: If a converged state exists in a net-
work such that all best paths are of length k or less, then
any partial execution that is consistent with the converged
state can be extended to a full execution that reaches the con-
verged state.
Induction step: Consider a network with a converged state
S such that the longest best path is of length k+ 1. We
first divide the nodes in the network into two classes —
N , which are the nodes with best paths of length k or less,
and N ′, which are nodes with best paths of length k+ 1.
Consider a partial execution π that is consistent with S. We
identify two possibilities for π:

Case 1: Every node that has executed in π falls into N . In
this case, we define a smaller network which is the subgraph
of the original network, induced by the nodes in N . In this
network, the path selections made in S will constitute a
converged state. This is because in the original network, in
the state S, the nodes in N are not enabled to make state
changes. So, we can extend π such that we get an execution
π′ where nodes in N match the path selections in S. Now,
we further extend π′ with steps where each node in N ′ reads
the best path from the node that is its nexthop in S and
updates its best path. When every node in N has done this,
the overall system state will reach S.

Case 2: At least one node in N ′ has executed in π. In
this case, we observe that since π is consistent with S, by the
definition of a consistent execution, no node in the network
has read the state of any node in N ′. So, we can construct
an execution π′ which has the same steps as π, except that
any step taken by a node inN ′ is skipped. As in the previous
case, π′ can be extended to reach a converged state in the
subgraph induced by N . We extend π, first by using the
steps that extend π′, and if necessary, taking additional steps
at nodes from N ′ to reach S.
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Abstract
Network verification and configuration synthesis are promis-
ing approaches to make networks more reliable and secure
by enforcing a set of policies. However, these approaches re-
quire a formal and precise description of the intended network
behavior, imposing a major barrier to their adoption: network
operators are not only reluctant to write formal specifications,
but often do not even know what these specifications are.

We present Config2Spec, a system that automatically syn-
thesizes a formal specification (a set of policies) of a network
given its configuration and a failure model (e.g., up to two
link failures). A key technical challenge is to design a syn-
thesis algorithm which can efficiently explore the large space
of possible policies. To address this challenge, Config2Spec
relies on a careful combination of two well-known methods:
data plane analysis and control plane verification.

Experimental results show that Config2Spec scales to min-
ing specifications of large networks (>150 routers).

1 Introduction

Consider the task of a network operator who—tired of human-
induced network downtimes—decides to rely on formal meth-
ods to verify her network-wide configurations [4,14,22,30] or
to synthesize them automatically [5, 9, 10, 28, 29]. The opera-
tor quickly realizes that both verifiers and synthesizers require
a specification of the correct intended network-wide behavior.
A few generic requirements quickly come to mind: surely
she wants her network to ensure reachability. At the same
time, she realizes that her network does way more than just
ensuring reachability. Among others, it needs to enforce load
balancing for popular destinations, provide isolation between
customers, drop traffic for suspicious prefixes, and reroute
business traffic via predefined waypoints—all these under
failures and over hundreds of devices. Writing the precise
specification seems daunting, especially as most of it has been

∗Work done while at ETH Zürich.

homegrown over years, by a team of network engineers (some
of which do not even work there anymore).

This situation illustrates the difficulty of writing network
specifications. Akin to software specifications, formal spec-
ifications are hard to write (as hard as writing the program
in the first place [20]), debug, and modify [2, 21]. Yet, with-
out easier ways to provide network specifications, network
verification and synthesis are unlikely to get widely deployed.

Config2Spec We introduce Config2Spec, a system that auto-
matically mines a network’s specification from its configura-
tions and a failure model (e.g., up to k failures). Config2Spec
is precise: it returns all policies that hold under the failure
model (no false negatives) and only those (no false positives).

Challenges Mining precise network specifications is chal-
lenging as it involves exploring two exponential search spaces:
(i) the space of all possible policies, and (ii) the space of
all possible network-wide forwarding states. The challenge
stems from the fact that individually exploring each of the
search spaces can be prohibitive: a search for the true policies
is hard since they are a small fraction of the policy space,
while a search for the violated policies is hard since these
require witnesses (data planes), which are often sparse.

Insights Config2Spec addresses the above challenges by com-
bining the strengths of data plane analysis and control plane
verification. Data plane analysis enables us to compute the set
of policies that hold for a single data plane, thereby providing
an efficient way of pruning policies. On the other hand, con-
trol plane verification is an efficient way of validating that a
single policy holds for all the data planes. Config2Spec com-
bines the two approaches to prune the large space of policies
through sampling and data plane analysis and then, to avoid
the need of exploring all data planes, validating the remain-
ing policies with control plane verification. The key insight
is to dynamically identify the approach providing for better
progress. We design predictors which rely on past iterations
and the failure model to switch between the two approaches.
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Scalability While this approach scales, we identify three
domain-specific techniques to improve it even further. First,
to better utilize the pruning through data plane analysis, we
design a policy-aware sampler of data planes. We experimen-
tally show that our approach outperforms a random sampler:
with typically fewer samples, it leads to pruning substantially
more policies. Second, to reduce the number of queries posed
to the verifier, we group queries to the control plane verifier.
Third, we analyze the network topology to prune policies that
are physically not feasible due to poor connectivity of the
routers. For large networks and permissive failure models,
this technique makes the difference between Config2Spec
completing in few hours instead of days.

System We implemented Config2Spec, which leverages
two state-of-the-art data plane analysis and control plane ver-
ification tools, Batfish [13] and Minesweeper [4]. As the
implementation relies on these two tools, it is tied to configu-
rations and features supported by them. The approach itself,
is not limited to any specific type of configuration.

Config2Spec provides a substantial improvement over base-
lines that use each of the above tools in isolation (up to 8.3x
against the best baseline). Further, Config2Spec often mines
a precise network specification within an hour, and for large
networks (> 150 routers) within 2.7 hours (for OSPF config-
urations) or 13.7 hours (for BGP configurations). We also
illustrate that Config2Spec can handle real network configura-
tions by running it successfully on Internet2’s configurations.

Contributions Our main contributions are:

• A novel approach to automatically mine the specification
of a network by leveraging both data plane analysis and
control plane verification (§3).
• A dynamic predictor to decide which approach provides

for better progress (§4).
• A policy-aware sampler to find data planes that are likely

to prune more policies (§5).
• Policy grouping and topology-based trimming to reduce

the number of queries posed to the verifier (§6, §7).
• An end-to-end implementation and an extensive evalua-

tion across different topologies and baselines, showing
that Config2Spec scales to large networks and signifi-
cantly outperforms possible baselines (§8).

Novelty Several previous works [6, 7, 31] have looked into
mining a network’s specification by observing the content of
the data plane. All of these works are limited to reachability
policies and unlike Config2Spec, they either approximate the
specification or do not consider the impact of failures on the
specification. Concretely, they only produce the network’s
policies which hold when all links and routers are up. In
contrast, Config2Spec is able to mine precise network specifi-
cations for a given failure model.

5

1

4

3

2 p2

15
2

1

1

2

3

5

p1access-list 10 deny

p1

Figure 1: An OSPF network with five routers and two desti-
nations. An ACL at router 5 blocks traffic destined to prefix
p1, attached to router 1.

Usefulness In general, the network’s specification can be
used for many different applications, such as configuration
synthesis/verification and network management (e.g., analyz-
ing the effects of configuration changes). Further, having
the specification at hand allows network operators to check
whether the policies they intend to enforce are indeed en-
forced.

In multiple discussions, network operators confirmed that
a tool like Config2Spec is indeed useful. One operator
mentioned that the adoption of a new monitoring tool fell
through because it required the network’s specification to
detect flawed configuration changes. Another operator men-
tioned that having the network’s specification at hand would
greatly help them better understand their configurations that
accumulated over years. Especially, since short-term fixes to
problems that need immediate attention (e.g., congestion and
hardware problems) are often forgotten and persist even long
after the responsible engineer left the company. In addition,
the specification can be used to streamline network’s configu-
ration by refactoring it, while keeping the same specification.

2 Motivation and Problem Definition

Obtaining a specification for how a network behaves can be
useful in a variety of scenarios beyond network verification
and synthesis, including helping the operator identify unex-
pected behaviors and inconsistencies, as well as enabling a
smoother transition to (updated) configurations upon new re-
quirements. To define the problem of mining specifications,
we rely on two concepts: a network specification, composed
of a set of policies, and a failure model, specifying under
which failures the network specification should hold. We
next define these concepts and illustrate them on a running
example. Then, we introduce the network specification min-
ing problem and discuss several baseline approaches together
with their shortcomings, thus motivating our solution.

Running example Throughout the paper, we refer to the
example shown in Fig. 1. Here, we have a network that
consists of five routers and seven links. There are two host
networks, p1 and p2, attached to routers 1 and 2. All routers
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Policy Meaning

reachability(r, p) Traffic from r can reach p.
isolation(r, p) Traffic from r is isolated from p.
waypoint(r, w, p) Traffic from r to p passes through w.
loadbalancing(r, p) Traffic from r to p is load balanced

on at least two paths.

Table 1: Network policies (r and w are routers, p is a prefix).

are in the same OSPF area and the OSPF weights are depicted
on the links. An IP access control list (ACL) on the interface
from router 5 to 2 drops all packets destined to prefix p1.

Failure models A failure model consists of a symbolic envi-
ronment and a number k. The symbolic environment defines
which links are up or down, and which links may fail. Tech-
nically, a symbolic environment is a partition of the network
links L into three subsets Lup, Ldown, and Lsymbolic (i.e., given
Lup and Ldown, we can derive Lsymbolic = L \ (Lup ∪Ldown)).
The number k is a bound on the total number of links which
can be simultaneously down. A concrete environment is a par-
tition of the network links L into two subsets Lup and Ldown.
Namely, all links are fixed to a concrete state: up or down.
We say that a failure model with a symbolic environment LSE

up ,
LSE

down, LSE
symbolic and a bound k, captures a concrete environ-

ment with LCE
up and LCE

down if LSE
up ⊆ LCE

up , LSE
down ⊆ LCE

down, and
|LCE

down| ≤ k. Intuitively, a failure model captures all concrete
environments for which the links in LSE

up are up, the links in
LSE

down are down, and there are at most k links which are down.
For example, a failure model for our running example is

Lsymbolic = L (i.e., Lup and Ldown are the empty sets) and k = 1.
This model describes any concrete environment with at most
one link failure. There are eight concrete environments which
meet this failure model: one where no link is down, and seven
in which each of the links fails once. Another failure model
is Lup = {2-4}, Ldown = {2-5}, Lsymbolic = L\ (Lup∪Ldown),
and k = 2. This model describes any concrete environment
whose link between routers 2 and 4 is up, the link between 2
and 5 is down, and the rest may be up or down. Since k = 2,
another failed link is allowed in addition to 2-5. There are six
concrete environments that meet this failure model.

Network specification and policies A network specification
consists of a set of policies. A policy captures a specific
behavior in the network (e.g., reachability of two routers).
It is modeled with a predicate (a constraint) which, given a
concrete environment, evaluates to true if the policy holds for
that concrete environment, and false otherwise. For our run-
ning example, the reachability(5, p2) policy evaluates
to true for the concrete environment in which all links are up,
and to false for the concrete environment where all links are
down. We say a policy holds for a failure model if it holds
for all concrete environments captured by the failure model.

Sample #1

Data Plane Analysis

Initial Candidates Sample #2 Specification

…

Control Plane Verification

Initial Candidates Query #1 Result #1

✘

✓
…

Specification

Figure 2: Illustration of the baseline approaches.

For example, the policy reachability(5, p2) holds for the
failure model Lsymbolic = L and k = 1, but not for k = 3.

In our work, we focus on reachability, isolation, waypoint,
and load balancing policies (summarized in Table 1). The
reachability, isolation, and load balancing policies are defined
as predicates over a router r and a subnet in the network p.
These evaluate to true if, for the given concrete environment,
traffic from router r can reach the prefix p, is isolated from
p, or load balanced on at least two paths to p, respectively.
The waypoint policy is defined over two routers r and w, and
evaluates to true if, for the given concrete environment, traffic
from r destined to prefix p passes through w. We note that our
approach is extensible to any policy that is defined over the
forwarding state (e.g., equal length paths).

Problem definition We now define the problem of mining a
network specification:

Given a network configuration and a failure model, mine
the network specification, i.e., the set of all policies which
hold under the failure model.

For our running example and the failure model Lsymbolic = L
and k = 1 (modeling up to one link failure), the network
specification consists of the following policies:
reachability(1, p1), reachability(1, p2),
reachability(2, p1), reachability(2, p2),
reachability(3, p1), reachability(3, p2),
reachability(4, p1), reachability(4, p2),
reachability(5, p2), loadbalancing(4, p2).

Baseline solutions To address the above problem, one may
consider two baseline approaches: (i) data plane analysis and
(ii) control plane verification.

Data plane analysis Data plane analysis tools (e.g., [13, 17,
18]) enable reasoning of policies that hold for a certain con-
crete environment. Today, such tools are scalable enough to
reason about all of our considered policies within seconds or
minutes (mostly depending on the size of the network). Thus,
one could use such tools to mine a specification by iterating
over all concrete environments captured by the failure model,
computing a data plane for each (from the configuration), and
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analyzing them to infer the set of policies which hold for each
concrete environment. The solution is then the intersection of
all obtained policy sets. Fig. 2 (top) visualizes this approach.
Initially, every policy is a candidate which can be part of the
network specification (blue area). With every sampled data
plane, the set of policies that hold for it are computed (shown
in circle). These are then intersected with the policies of the
previous samples (dashed circles). At the end, the remaining
candidate policies are those that hold for all samples, and thus
form the network specification (green area). Unfortunately,
for large topologies or failure models with many concrete
environments, this approach does not scale (see §8.2).

Control plane verification Control plane verification tools
(e.g., [4]) enable checking individual policies for a given
failure model. Technically, this can be accomplished by sym-
bolically encoding the network, its configuration, the failure
model and a policy into a formula, and then checking the
satisfiability of this formula. Fig. 2 (bottom) visualizes this
approach. Initially, all policies are part of the set of candi-
dates of the specification. At every step, one policy (circle) is
picked and posed as a query to the verifier. The verifier either
returns that the policy holds (green) or shows a counterexam-
ple to disprove it (gray). In the end, every policy has either
been verified or disproved. As in data plane analysis, while
control plane verification tools scale to the policies that we
consider, enumerating all possible policies and checking them
one by one in the above manner is prohibitive (see §8.2).

3 Our Approach: Config2Spec

In this section, we first present our key insight of combining
the two baseline approaches from §2 and explain the reason-
ing behind it. Then, we provide an overview of the system
(details are provided in the following sections).

3.1 Key Insight

We address the problem of mining a network specification
by combining the baseline approaches and leveraging their
respective strengths: data plane analysis is efficient at pruning
policies, while control plane verification is efficient at validat-
ing policies. The key idea of our combination is to reduce the
space of policies by sampling forwarding states and pruning
policies using data plane analysis, and then running control
plane verification to verify a small set of remaining policies.

This combination works well because many policies which
do not hold are dense violations. That is, they are violated for
many of the concrete environments captured by the failure
model. For example, in our running example and the failure
model Lsymbolic = L with k = 1 (up to one failure), the policy
waypoint(3, 1, p2) only holds for the concrete environ-
ment in which all links are up, but the one from router 3 to
4. Thus, by sampling any other concrete environment (e.g.,

Ldown = {2-5},Lup = L\Ldown), and computing all policies
that hold for it, we can prune waypoint(3, 1, p2).

On the other hand, there are sparse violations, which are
policies that do not hold for the failure model, but are violated
only by very few concrete environments. For example, in
our running example and the same failure model, the policy
isolation(5, p1) is violated only by two concrete environ-
ments: (i) Ldown = {2-5},Lup = L\Ldown and (ii) Ldown = {1-
2},Lup = L \Ldown. Unless we check these particular envi-
ronments, this policy cannot be pruned by data plane analysis.
Thus, we prune sparse violations during the step of control
plane verification. Since the overall number of true policies
and sparse violations is often significantly smaller than the
number of concrete environments, control plane verification
is an efficient solution for this.

3.2 The Config2Spec System

We build on this insight to design Config2Spec (Fig. 3), which
takes as input the network configuration (of all devices) and a
failure model and outputs the network specification.

Config2Spec runs in a loop which dynamically switches
between the two approaches until the specification is mined.
To achieve this, Config2Spec relies on three main components:
(i) predictors, (ii) data plane analysis, and (iii) control plane
verification. In addition, Config2Spec maintains two sets of
policies, cands which overapproximates the specification,
and verified which underapproximates it. We next explain
these sets, the algorithm flow and the three components. We
provide the full algorithm of Config2Spec in Appendix A.

Cands and verified Config2Spec keeps two sets: (i) cands,
containing the current candidate policies, i.e., the policies
that are known to hold or have not been pruned yet, and
(ii) verified, containing the policies that are known to hold.
cands initially contains all possible policies (blue area in
Fig. 3), while verified is initially empty (green area in
Fig. 3). We note that in practice, to avoid storing all policies
in cands, only to prune many of them upon the first iteration
of data plane analysis, Config2Spec directly initializes cands
to the set of policies that holds for some concrete environment.

An invariant of the execution is that cands is a superset
of the network specification, i.e., it contains at least all the
policies that hold, while verified is a subset of it, i.e., it con-
tains only policies that hold. Config2Spec terminates when
these sets are equal – implying both equal the network speci-
fication – and then returns verified. Precision is ensured as
Config2Spec does not miss any policy thanks to the invariant
that verified contains only true policies (no false positives),
while cands cannot miss a true policy (no false negatives).

Flow At each iteration, Config2Spec checks if cands equals
verified. If so, it terminates. Otherwise, it checks two pre-
dictors to decide which approach is the more promising one
to pursue: data plane analysis or control plane verification.
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Figure 3: Config2Spec mines the specification from the network configuration and the failure model. It relies on three components:
predictors, data plane analysis, and control plane verification. It maintains two sets: cands, consisting of the current candidate
policies, and verified, consisting of the verified policies. During the execution, policies are removed from cands or added to
verified. When cands equals verified, both equal the network specification, and then verified is returned.

Predictors (§4) We design two predictors to heuristically
estimate which approach is likely to be more effective and
dynamically transition between them. The predictors consider
the execution times and the number of pruned and verified
policies. The first predictor checks the effectiveness of each
approach in classifying policies by measuring the time it
needs to classify a single policy. The second predictor esti-
mates the remaining time to mine the full specification.

Data plane analysis (§5) In every iteration of data plane
analysis, Config2Spec samples a concrete environment, com-
putes the policies that hold for it, and removes from cands
any other policy. To sample a concrete environment, it exe-
cutes PickCE, which employs a novel policy-aware sampler
to find a concrete environment likely to prune more policies.
Then, Config2Spec computes the data plane of that sample
via DPCompute, which relies on prior tools (e.g., [13]). Next,
it executes InferPol to compute all policies which hold for
this data plane, and updates cands accordingly. Finally, Con-
fig2Spec checks whether all data planes have been analyzed.
If so, it sets verified to cands, as the entire failure model
has been covered and the full specification has been mined.

Control plane verification (§6) In each iteration of control
plane verification, Config2Spec verifies a set of policies. For
this, Config2Spec first executes PickPolicies to pick the
next set of policies to verify. It then calls CPVerification,
which relies on prior tools (e.g., [4]). The verifier either
determines that all policies hold or returns a counterexam-
ple. In the former case, Config2Spec adds all the policies
to verified, while in the latter case Config2Spec removes
the ones violated by the counterexample from cands. Before
the first iteration of control plane verification, Config2Spec
invokes TopoTrim to reduce the verification overhead.

Topology-based trimming (§7) TopoTrim analyzes the
topology and the failure model to trim (i.e., prune) policies
which cannot hold regardless of the configuration (e.g., due to
a lack of connectivity). It relies on graph algorithms to prune
reachability, waypoint, and loadbalancing policies.

4 Config2Spec’s Predictors

In this section, we describe how Config2Spec dynamically
decides whether to run the data plane analyzer or the control
plane verifier. This decision relies on two predictors that cap-
ture the effectiveness of the approaches and the expected time
remaining. Accordingly, Config2Spec infers which approach
is more likely to make better progress. The predictors are:
(i) the Time-per-policy (TP) predictor, favoring the approach
more likely to classify more policies in a single execution, and
(ii) the Remaining-time (RT) predictor, favoring the approach
more likely to complete faster. If the predictors disagree on
the approach, Config2Spec runs the data plane analyzer, we
explain the reason for this choice shortly.

High-level behavior The predictors dynamically identify the
different stages of the algorithm. In the beginning, sampling
concrete environments is likely to provide the fastest progress,
as at this stage the dense policies have not been pruned yet.
Therefore, the TP predictor prefers data plane analysis ini-
tially. After most of the dense policies have been pruned,
sampling environments may not significantly decrease the
number of candidate policies anymore. At this point, the TP
predictor starts to prefer control plane verification. Thus, the
choice is then up to the RT predictor. It determines whether
Config2Spec switches to control plane verification. If running
data plane analysis for the remaining concrete environments
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is likely to be faster than running control plane verification on
the remaining unclassified policies, the RT predictor prefers
data plane analysis. Otherwise, it prefers control plane ver-
ification. This choice depends on the failure model: if it
captures a small number of concrete environments, enumer-
ating all of them can be faster than verifying the remaining
set of candidate policies. In our running example and the
failure model Lsymbolic = L and k = 1, this is the case. To con-
clude, the joint behavior of the predictors is to prefer control
plane verification whenever (i) there is a large number of con-
crete environments and (ii) most remaining policies are true
policies (i.e., part of the specification) or sparse violations.

Computation The predictors rely on statistics of the previous
runs. The TP predictor is implemented by tracking two times:
T T P

analysis and T T P
veri f y, which record the average time to classify

a single policy through analysis or verification (respectively).
For T T P

analysis, this time is computed by taking the ratio of the
execution time of the last run of the data plane analysis and
the number of policies which were pruned as a result of this
analysis. For T T P

veri f y, this time is computed similarly by taking
the ratio of the execution time of the last run of the verifier and
the number of policies which were classified by the verifier.
The latter number is one of the following. If the verifier proved
all policies hold, it equals the number of policies. Otherwise,
if the verifier returned a counterexample, this number equals
to the number of policies which were discovered as violations
(i.e., the counterexample violated them). The TP predictor
prefers the data plane analyzer if T T P

analysis < T T P
veri f y.

The RT predictor is implemented by tracking two (different)
times: T RT

analysis and T RT
veri f y, which record the execution time

of a single run of the analyzer and verifier (respectively). The
RT predictor prefers the data plane analyzer if the remaining
time of the analyzer, obtained by multiplying T RT

analysis with
the number of non-analyzed concrete environments is smaller
than the remaining time of the verifier, given by multiplying
T RT

veri f ier with the remaining number of unclassified policies.

Initialization To initialize T T P
veri f y and T RT

veri f y, Config2Spec
executes the verifier on M policy sets (in our implementa-
tion, M = 10). It then sets T RT

veri f y to the average execution
time of the verifier, and T T P

veri f y to the average ratio of exe-
cution time and policies verified or pruned. The estimates
T T P

analysis,T
RT

analysis are initially 0, to guide Config2Spec to begin
by data plane analysis. This captures our premise that initially
data plane analysis is likely to classify more policies (the
dense violations, which are the vast majority of the policies).

Windows To smoothen the behavior of the predictors, the
times are averaged over the last N runs of the analyzer or
verifier (in our implementation, N = 10).
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Figure 4: The policy graph is computed from the forwarding
graphs of a previously analyzed concrete environment and
guides us to an environment likely to prune more policies.

5 Data Plane Analysis

In this section, we present the key ingredients of running the
data plane analysis in Config2Spec: the selection of the next
concrete environment to analyze (PickCE), the computation
of the data plane for that environment (DPCompute) and the
inference of the policies from the data plane (InferPol).

5.1 Selection of Concrete Environments
At every iteration, one concrete environment is analyzed. The
choice of this environment has a great impact on the overall
runtime of the system. Thus, we design a sampling technique
to pick the next concrete environment to prune a large number
of policies from the set of candidates (cands). We call this
technique policy-aware sampling as the next environment is
picked based on the policy graph, a concept reflecting the
current set of candidate policies, which we describe next.

Policy graph The policy graph for a given concrete environ-
ment is a copy of the network topology, augmenting the links
with the number of policies that forward traffic along them.
We say a reachability(r,p) policy forwards traffic along
a link, if that link is part of a path in the forwarding graph of p
from r to p. We define it similarly for the other policies. The
policy graph allows us to identify the links on which large
numbers of policies depend. Thus, we can pick a concrete
environment in which these links are down. If the policies
indeed hold only thanks to these links, they will be discovered
as violations when analyzing this concrete environment.

We next define the policy graph. Given a network topol-
ogy, a configuration, and a concrete environment, the policy
graph extends the network topology with a mapping of links
to weights (integers). The weight of a link represents the
number of unclassified policies whose traffic is forwarded
along that link. The weight is computed from the forward-
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ing graphs of the concrete environment. Fig. 4 illustrates
the concept of the policy graph using our running exam-
ple (Fig. 1). Here, we are given an (already analyzed) con-
crete environment where all links are up, but the one between
routers 3 and 4 (Fig. 4a). In this example, there are two
destinations (p1 and p2) and hence two forwarding graphs
(Fig. 4b). For simplicity’s sake, consider the following unclas-
sified policies for destination p2: reachability(i, p2),
where i ranges over all five routers, and loadbalancing(4,
p2), which holds since router 4 has three paths to router 2
in the forwarding graph of p2. In this setting, the policy
graph (Fig. 4c) maps, for example, link 1-3 to 1 (as only
reachability(3, p2) depends on this link), link 2-5 to
3 (for reachability(4, p2),reachability(5, p2) and
loadbalancing(4, p2)), 1-2 to 4 (for reachability(1,
p2), reachability(3, p2), reachability(4, p2) and
loadbalancing(4, p2)), and 1-2 (which is down) to 0.

Policy-aware sampling Based on the idea of the policy graph,
we design a policy-aware sampler for PickCE. The policy-
aware sampler picks the next concrete environment to ana-
lyze based on the policy graph of the previously analyzed
concrete environment and the current set of unclassified poli-
cies (cands\verified). This is done by selecting the links
to add to Ldown based on a probability distribution propor-
tioned to the links’ weights in the policy graph. The links’
weights are computed by iterating over all unclassified poli-
cies (cands\verified) and counting, for each link, the num-
ber of policies that are forwarded along it. The probability
distribution is needed to avoid getting stuck: a deterministic
approach which adds the heaviest links to Ldown can result
in an oscillation between two concrete environments which
already have been analyzed (we observed this phenomenon
in practice). Adding non-determinism mitigates this issue,
and in case it cannot, PickCE resorts to returning a random
concrete environment which has not yet been analyzed. In
the beginning, Config2Spec starts by analyzing the concrete
environment in which all symbolic links are up.

For our running example and the policy graph in Fig. 4c,
it assigns the link 1-3 to the probability 1

14 , 2-5 to 3
14 , and

1-2 to 4
14 . Assuming the usual failure model (Lsymbolic = L

and k = 1), it then picks the next concrete environment by
choosing one link that is down based on the distribution. For
example, it picks the link 1-2 (Fig. 4d).

5.2 Analysis of a Concrete Environment

We now explain DPCompute and InferPol, which together
compute all policies that hold for a given concrete environ-
ment and configuration.

The DPCompute algorithm executes two steps. First, for
each router in the network, it computes the router’s forwarding
state. The forwarding state of a router is a list of destination
prefix and next hop pairs. A pair (p,w) in the forwarding state

of router r indicates that traffic reaching r for destination p
is sent to router w. Computing the forwarding state of the
routers is not trivial, however, there are solutions to efficiently
compute them (e.g., [13]).

In the second step, DPCompute builds from the routers’ for-
warding states the forwarding graphs. It builds one forwarding
graph for each equivalence class of destination prefixes (i.e.,
prefixes which can be captured via some prefix and have the
same forwarding graph). The forwarding graph of a prefix p
is a directed graph in which we have a link from router r to w
if, according to r’s forwarding state, traffic for p is sent to w.

From the forwarding graphs, InferPol computes the poli-
cies by leveraging graph algorithms. For reachability and
waypoint policies, it builds the dominator tree of all for-
warding graphs. A dominator tree is a tree rooted at the
destination of the forwarding graph. Its nodes are all routers
that have at least one path to the destination. A router a is
a child of a router b if (i) traffic from router a to the des-
tination must pass through router b and (ii) for any other
router c such that traffic from a must pass through it, traf-
fic from b must also pass through it. InferPol infers a
reachability(r, p) policy for every node r in the domina-
tor tree of p. It further infers waypoint(r,w,p) for all routers
r which are dominated by a waypoint w in the dominator tree
of p. For loadbalancing, it computes the shortest paths
in the network and infers loadbalancing(r,p) for routers
r with multiple paths of the same cost available to reach
destination p. For isolation, it infers isolation(r,p)
for every router r and prefix p for which it has not inferred
reachability(r,p).

6 Control Plane Verification

Here, we present the two ingredients of the control plane veri-
fication in Config2Spec: the selection of policies to verify next
(PickPolicies) and their verification (CPVerification).

CPVerification We begin with CPVerification, which
takes as input a set of policies, the network configuration and
the failure model. It checks whether all policies hold for any
concrete environment meeting the failure model (for the given
network configuration), or returns a counterexample.

Technically, the verifier symbolically encodes the configu-
ration and the failure model as logical constraints: ϕnet and
ϕ f model . The set of policies is encoded as a conjunction over
formulas encoding the policies: ϕpols =

∧
pl∈pols ϕpl . The

verifier checks the satisfiability of ϕnet ∧ϕ f model ∧¬ϕpols. If
it is unsatisfiable, then all policies in pols hold. If the formula
is satisfiable, then there is a counterexample, i.e., a concrete
environment captured by the failure model, which under the
given configuration violates ϕpols (i.e., at least one policy is
violated). While the challenge of verifying network policies
is not trivial, there are effective solutions (e.g., [4]).
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PickPolicies This procedure takes the set of candidate poli-
cies (cands) and verified policies (verified) and returns the
next set of policies to verify (from cands\verified). Since
verifying is computationally expensive, the goal is to mini-
mize the overall execution time of the verifier. By choosing a
set of policies which have a dependency, the overall execution
time of verifying them can be smaller than if they were veri-
fied one by one. Towards this goal, PickPolicies returns a
maximal set of policies with the same destination prefix p.

We pick p arbitrarily, as once Config2Spec chooses to run
the verifier, usually most policies are true policies.

Our grouping approach is always at least as good as verify-
ing the policies one by one. The reason is that at each query
to the verifier, at least one policy is classified. In the worst
case, only one policy is classified as violation (if the verifier
returned a counterexample which satisfies all policies but one).
In a better case, several policies are classified as violation. In
either of these cases, the violated policies are removed from
cands, while the other policies in the set remain in cands
(and will be verified in a later execution of CPVerfication).
In the best case, all policies are classified as true policies.
Namely, we can only gain from verifying multiple policies in
the same execution of the verifier. Further, our grouping is
maximal – grouping of policies with different prefixes is not
helpful, as each prefix has a different forwarding graph, and
so the verifier does not gain from grouping such policies.

7 Topology-based Trimming

In this section, we describe TopoTrim, a technique which
reduces the load on the control plane verification by analyz-
ing the failure model and the network topology. TopoTrim
classifies policies as violations if their minimal connectivity
requirements are not met under the given failure model.
TopoTrim is executed the first time Config2Spec chooses to

run the verifier. It relies on the insight that some policies can
be classified as violations directly from the network topology
and failure model. For example, consider the network in Fig. 1
and the failure model with Lsymbolic = L and k = 2 (i.e., up to
two link failures). We can infer that reachability(3, p1)
cannot hold as 3 can become disconnected from the rest of
the network if both links connected to it fail. For the same
reason, any waypoint or loadbalancing policy where 3 is
involved can be classified as violation.

To prune such policies, TopoTrim computes the (k+ 1)-
edge-connected components of the topology for a failure
model with k permitted failures. A (k+1)-edge-connected
component is a set of nodes which remain connected even
after removing any k edges. For example, for the network in
Fig. 1 and the same failure model (where k = 2), the following
routers are in a 3-edge-connected component: {1,2,4}.

There are efficient algorithms to compute (k + 1)-edge-
connected components, however they do not support links that
must be up or down (Lup or Ldown). To take these into account,

TopoTrim first removes from the topology all links in Ldown,
updates k to k− |Ldown|, and then, for each link in Lup, it
adds k additional links between the routers to simulate that
these routers are (k+ 1)-edge-connected. For example, for
Lup = {(1,3)}, Ldown = /0 and k = 2, it adds two more edges
between 1 and 3, so they are considered 3-edge-connected.

Based on this, TopoTrim classifies the following policies
as violations (which are thus removed from cands). The poli-
cies reachability(r,p) and loadbalancing(r,p), for
any router r and prefix p such that (r,rp) is not in a (k+1)-
edge-component, where rp is the router attached to p. The
policy waypoint(r,w,p) is classified as violation for any
routers r and w and a prefix p such that (i) (r,w) is not in a
(k+1)-edge-component or (ii) (w,rp) is not in a (k+1)-edge-
component, where rp is the router attached to p.

8 Experimental Evaluation

In this section, we evaluate Config2Spec on multiple topolo-
gies to address the following research questions:
RQ1 How does Config2Spec scale to realistic topologies?

We show that even for large networks with 158 routers
and 189 links, it completes within 2.7 hours for OSPF
configurations and 13.7 hours for BGP configurations.

RQ2 How does Config2Spec compare to the baselines? We
show it improves the best one by up to a factor of 8.3.

RQ3 How do the domain-specific techniques contribute to
Config2Spec? We show that (i) the policy-aware sam-
pler leads to smaller candidate sets by up to a factor of
2 compared to random, and obtains them with fewer
samples, and (ii) topology-based trimming and policy
grouping reduce the queries by up to a factor of 2’500.

RQ4 Can Config2Spec be run on a real network configura-
tion? We illustrate this on the Internet2 configuration.

Implementation Config2Spec is implemented in 5k lines of
Python and Java code.1 It computes the routers’ forward-
ing states (§5.2) using Batfish [13], and verifies policies us-
ing Minesweeper [4]. We extended Minesweeper with the
waypoint and loadbalancing policies. We note that while
our implementation supports only configurations and features
supported by these two third-party tools, our approach is not
limited to specific configuration types or features.

Config2Spec takes as input the routers’ configurations and a
failure model. It outputs all policies that hold for the provided
input. For large networks, we assume the network operator
provides a list of devices that act as waypoints (e.g., mid-
dleboxes). In our experiments, we simulate it by randomly
picking 20% of the routers to serve as waypoints.

Experiment setup To study how Config2Spec scales as a
function of the topology size, we picked three topologies
(small, medium, and large) from the Topology Zoo collec-

1Code is available at https://github.com/nsg-ethz/config2spec.

976    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/nsg-ethz/config2spec


Topology k Config Overall DPA CPV

BICS

1
OSPF 38.8 s 100% 0%
BGP 68.3 s 100% 0%

2
OSPF 228.8 s 30% 70%
BGP 1’341.2 s 85% 15%

3
OSPF 117.4 s 27% 73%
BGP 319.7 s 14% 86%

Columbus

1
OSPF 398.0 s 100% 0%
BGP 457.2 s 100% 0%

2
OSPF 1’328.1 s 18% 82%
BGP 6’772.0 s 17% 83%

3
OSPF 907.0 s 27% 73%
BGP 2074.1 s 18% 82%

US Carrier

1
OSPF 6’386.2 s 100% 0%
BGP 6’813.4 s 100% 0%

2
OSPF 10’528.4 s 15% 85%
BGP 49’151.0 s 6% 94%

3
OSPF 2’542.5 s 59% 41%
BGP 5’873.3 s 34% 66%

Table 2: Execution time of Config2Spec as a function of the
network topology, number of failures and configuration type.

tion [19]: BICS with 33 routers connected by 48 links, Colum-
bus with 70 routers and 85 links, and US Carrier with 158
routers and 189 links. We used NetComplete [10] to synthe-
size OSPF and BGP configurations using its path-ordering
specifications for 2, 4, 8 and 16 prefixes. For each configura-
tion type and topology, we generated 5 configuration sets.

For each set of router configurations, Config2Spec com-
putes all policies which hold, for all four policy types in
Table 1. We consider three failure models, where k is 1, 2,
or 3, and we fix Lup = Ldown = /0 and Lsymbolic = L (i.e., any
link can be up or down). The reported results are averaged
over these runs and the two configuration types (i.e., OSPF
and BGP). We ran all experiments in virtual machines with
32 GB of RAM and 12 virtual cores running at 2.3 GHz.

8.1 Scalability of Config2Spec

We begin by studying how Config2Spec scales to realistic
topologies. To this end, we ran experiments on all three
topologies and three failure models, and measured the time
Config2Spec spent on the data plane analysis part – in-
cluding PickCE, DPCompute (which invoked Batfish), and
InferPol – and the control plane verification part – includ-
ing PickPolicies and CPVerification (which invoked
Minesweeper). The other parts completed in negligible times
and were thus ignored (e.g., TopoTrim completed within five
seconds for US Carrier and less than a second for BICS).

Table 2 shows the overall execution time (Overall) and how
it is split between data plane analysis (DPA) and control plane
verification (CPV) as a function of the topology, the num-

Topology k Candidates Specification Percent

BICS
1 2’526.9 1’008.1 40%
2 2’504.4 304.0 12%
3 2’482.1 57.6 2%

Columbus
1 13’290.2 4517.1 34%
2 13’150.4 350.4 3%
3 13’271.0 27.2 0.2%

US Carrier
1 93’416.2 17’908.3 18%
2 85’021.0 702.8 0.8%
3 98’837.6 6.8 0.01%

Table 3: The number of candidate policies and the number
of policies in the specification Config2Spec returns. Percent
shows the fraction of the policies of all candidate policies.

ber of failures (k), and the configuration type (Config). For
example, for the US Carrier topology with k = 3 and OSPF
configurations, Config2Spec completed within 43 minutes,
where 59% of that time was spent on data plane analysis.

The results show that even for the US Carrier topology
with its 158 routers and 189 links, Config2Spec mined the
specification in a reasonable time (within 2.7 hours, for OSPF,
and 13.7 hours, for BGP). The results also demonstrate that
the runtime mainly depends on the network size, secondly on
the failure model, and lastly on the configuration type. This
is expected: the larger the network, the larger the set of candi-
date policies and the set of concrete environments (whose size
also depends on the failure model). In contrast to the effect of
the network size on the execution times, the permissiveness
of the failure model shows a different trend: execution times
increase from k = 1 and k = 2, but drop for k = 3. This is
thanks to the topology-based trimming (§7), which becomes
very significant for k = 3 (or higher values of k). For the eval-
uated topologies, most router pairs are not 4-edge-connected,
thus many policies are pruned. We provide more details on
trimming in §8.3. The results show also that for k = 1, Con-
fig2Spec only performs data plane analysis. This is because
the number of concrete environments is significantly smaller
than the number of candidate policies throughout execution,
leading the RT predictor to favor data plane analysis. Lastly,
results show that for BGP configurations, the execution time
is higher than for OSPF configurations. This is mainly due
to Minesweeper, for which we observe a five to ten times
increase in the verification time for BGP compared to OSPF.

Table 3 reports the number of candidate policies and the
number of policies in the specification, for each topology and
failure model, averaged across the different configuration sets
and the configuration types. The reported number of candi-
date policies is the number of policies that hold for the first
concrete environment picked by Config2Spec (Config2Spec
always begins with data plane analysis). We consider this set
as the initial set of candidates, rather than all instantiations
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Figure 5: Config2Spec compared to the baselines of data plane
analysis and control plane verification on grid topologies and
different failure models. The bars of DPAnalysis and k = 3
are cut, and their maximum value is denoted next to them.

of the four policy types (Table 1), as the latter contains many
policies which no concrete environment satisfies.

The results indicate that as the network size increases, the
number of candidate policies increases, while the specifica-
tion size (i.e., the number of policies that hold for all concrete
environments) significantly drops. This demonstrates the chal-
lenge of Config2Spec to search in the large space of candidate
policies for the small set of policies that hold.

8.2 Comparison to Baselines

We compare Config2Spec to the two baselines in §2: (i) a data
plane analysis approach, which enumerates all data planes to
infer the specification, and (ii) a control plane verification ap-
proach, which verifies the candidate policies one by one. As
neither of the baselines scales to the larger networks consid-
ered in the last section, in this experiment, we use three grid
topologies of sizes: 4 by 5, 5 by 5 and 6 by 5. We generated
five sets of OSPF configurations per topology and used the
failure model Lsymbolic = L with k ranging from 1 to 3.

Fig. 5 shows the execution time of each approach as a
function of the topology and failure model. For k = 2 and
k = 3, Config2Spec outperforms the baselines: the data plane
analysis by 10.2x on average and up to 41.0x, and the control
plane verification by 3.8x on average and up to 8.3x. For k= 1,
data plane analysis is faster than Config2Spec because of
Config2Spec’s setup time (i.e., the verification of few policies
when initializing the predictors’ times, see §4). Still, the
overhead of Config2Spec is small (data plane analysis was
faster on average by 24 seconds and by up to 37 seconds).

The results also show that both baselines have benefits. For
less permissive failure models, data plane analysis performs
better than control plane verification, whereas for permissive
failure models it is the other way around. This demonstrates
the advantage of the dynamic combination of Config2Spec.

8.3 Domain-specific Techniques

We next study how the domain-specific techniques improve
Config2Spec’s performance. We study the following aspects:
(i) how the policy-aware sampler (§5.1) helps reducing the
number of concrete environments Config2Spec analyzes, and
(ii) how topology-based trimming (§7) and policy grouping
(§6) decrease the number of queries posed to the verifier.

Policy-aware sampler We compare the policy-aware sam-
pler (called Policy-Aware) to a baseline which randomly picks
a new concrete environment (called Random). We compare
them by instantiating PickCE with each approach and running
Config2Spec on the Topology Zoo topologies with the failure
model Lsymbolic = L and k = 3, and with five sets of OSPF
configurations and five sets of BGP configurations.

Table 4 shows the results. The first four columns show,
for each approach, how many concrete environments were
analyzed before Config2Spec transitioned to the verifier, and
how many policies remained to verify (i.e., the percentage
of remaining policies out of the policies that hold for the
first sample). For example, for BICS, Policy-Aware required
on average 36.4 samples before Config2Spec switched to
verification, and at this point the size of the candidate policy
set was reduced to 36.5% of the initial policy set (i.e., the set
of policies which hold for the first sample).

Generally, the smaller the set of remaining policies (i.e., the
closer the candidate set to the network specification is), the
better. As a secondary goal, the number of analyzed concrete
environments should be relatively small. Results indicate
that Policy-Aware always obtains a better reduction in the
size of the candidate set compared to Random. They also
show that on average Policy-Aware typically required fewer
samples than Random. However, we note that in 6 out of
the 30 experiments, Random switched to verification before
Policy-Aware did. This is not because Random made better
progress. In contrary, the TP predictor decided to switch, as it
observed that the concrete environments picked by Random
were not effectively pruning policies anymore.

The next two columns of Table 4 provide more statistics.
We checked, for each experiment, the relative size of the
candidate sets for both approaches when Config2Spec with
Policy-Aware transitioned to verification. For example, in
one experiment using BICS, Policy-Aware transitioned to
verification after 32 samples, and at that point the number
of candidate policies was 970, while for Random, after 32
samples, there were 1’124 candidate policies, making the
ratio 86.3%. In Table 4, Cands Ratio shows the average over
the ten runs. We also checked how many additional samples
Random required to reduce the candidate policies to (at most)
the size obtained with Policy-Aware. For example, in that
experiment for BICS, Policy-Aware required 32 samples to
reduce the candidates to 970 policies, while Random required
43. Hence, Random needed 11 additional samples. In Table 4,
Added Samples shows the average of this number. The re-
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Policy-Aware Random Cands Added Policy-Aware Random
Topology Samples Candidates Samples Candidates Ratio Samples PickCE DPAnalysis PickCE DPAnalysis

BICS 36.4 36.5% 42.1 39.5% 89.7% 45.7 22.1 ms 1.4 s 0.5 ms 1.3 s
Columbus 71.0 16.6% 79.0 26.4% 60.5% 109.0 63.1 ms 8.3 s 0.7 ms 7.7 s
US Carrier 113.8 9.6% 122.1 18.6% 51.6% >500 358.2 ms 57.8 s 1.4 ms 51.6 s

Table 4: Comparison of the policy-aware sampler in PickCE (§5.1) and a random baseline. Samples is the number of samples
before Config2Spec switched to verifier. Candidates is the percentage of remaining candidate policies at that point. Cands
Ratio is the ratio of the candidate set sizes for Policy-Aware and Random when Config2Spec with Policy-Aware transitioned to
verification. Added Samples is the number of samples Random needed to reduce the candidate set to the size of the candidate
size with Policy-Aware. PickCE is the time to pick the next environment. DPAnalysis is the overall time to analyze a data plane.

sults indicate that Policy-Aware not only obtains a smaller
candidate set, but reaches it significantly faster.

The last four columns of Table 4 show execution times:
PickCE shows the execution time of the sampler, while DP-
Analysis shows the overall execution time of a single data
plane analysis (i.e., DPCompute and InferPol). Results show
that while Policy-Aware takes more time than Random (as
expected), the overhead is negligible compared to the overall
execution time of the data plane analysis.

Topology-based trimming and policy grouping We next
evaluate the topology-based trimming and policy grouping
in reducing the number of queries to the verifier. We ran the
experiments for the three topologies and the failure model
with k = 2 and k = 3 (for k = 1, Config2Spec only performs
data plane analysis §8.1). We measured how many queries
to the verifier each technique saved. In every experiment, we
recorded the number of policies Config2Spec had the first time
it transitioned to the verification. This number, denoted B (for
baseline), provides the number of queries to the verifier if
we did not use either technique. We also recorded how many
policies were pruned thanks to topology-based trimming. We
count each policy that has been pruned as one saved query
for the verifier, and denote the overall saved queries by T (for
trimming). Also, we recorded how many queries were posed
to the verifier (when employing policy grouping), and denote
the number of queries by G (for grouping).

Fig. 6 shows the percentage of remaining queries after
each optimization: B−T

B % for trimming and G
B % for policy

grouping. For example, for BICS and k = 2, trimming pruned
51.1% of the policies. Policy grouping saved 41.5% and re-
duced the overall queries to the verifier to 9.6%. Overall, the
reduction was 90.3%. The results show that the combination
of trimming and policy grouping can reduce the number of
queries to as little as 0.04%. Trimming is especially power-
ful for the larger topologies and for more permissive failure
models (k = 3). The policy grouping also significantly re-
duces the number of queries to the verifier. The best case is
for the largest network, where trimming reduced the number
of queries to 1.15% and then policy grouping reduced it to
0.04%, compared to the baseline.
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Figure 6: Reduction in the number of queries to the verifier
thanks to topology-based trimming and policy grouping.

8.4 Running Config2Spec on Internet2

Finally, we demonstrate that Config2Spec can handle real
configurations. For this, we took a publicly available configu-
ration of the Internet2 network from May 2015 [8]. For Bat-
fish to be able to parse this configuration, we had to remove
multiple lines from it. Mostly, these parts concerned log-
ging (e.g., system dump-on-panic;), anonymization left-
overs (e.g., Firewall Stanza Removed) and other (for our
purposes) irrelevant parts (e.g., bfd-liveness-detection
no-adaptation;). For Minesweeper to be able to verify
our queries, we had to remove parts of the BGP route-maps
(community-matches and empty prefix-list matches). This
does not affect the output, as we only mine the specification
for internal prefixes, since no external peers are connected. In
total, we had more than 90k lines of configuration. The topol-
ogy consisted of 10 routers and 18 links. For a failure model
with Lsymbolic = L and k from 1 to 3, Config2Spec required
32, 314, and 1’805 seconds to infer the network specification.
It consisted of 3’962, 3’405, and 3’339 policies. The high
number of policies, even for k = 3, stems from the fact that
the five routers on the east-coast almost form a clique.
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9 Related Work

In this section, we survey related work across five dimensions:
specification mining, data plane analysis, control plane verifi-
cation, network specification languages, and counterexample-
guided inductive synthesis.

Specification mining Our work is inspired by works on spec-
ification mining [1], where high-level specifications are auto-
matically inferred from low-level execution of programs. One
example is Daikon [11], which dynamically detects program
invariants (e.g., x 6= 0) by running the program and observing
the values the program computes. For computer networks,
Xie et al. [31] show how to compute the reachability spec-
ification for a given failure model based on the network’s
configuration. They compute the reachability upper bound –
all policies that hold for at least one concrete environment –
and lower bound – all policies that hold for all concrete envi-
ronments. To scale, only an approximation of the bounds is
computed. In contrast, Config2Spec computes the exact lower
bound of reachability, as well as other policies, and thereby
obtains a precise specification. Benson et al. [6] show how
to mine reachability policy units, a high-level abstraction of
pair-wise reachability, from network configurations for a sin-
gle concrete environment. Like Config2Spec, it relies on data
plane analysis. Unlike Config2Spec, failure models are not
supported. Other works [7, 15] assess the complexity of man-
aging the network and its overall health, i.e., the frequency
of performance and availability problems, by analyzing its
configurations.

Data plane analysis Config2Spec relies on a data plane an-
alyzer. Several works exist and they differ mostly in their
input. There are tools that require the forwarding state as
input [16–18, 23], and others that compute the forwarding
state from the network configuration [13]. These tools enable
to check various properties, such as reachability and isolation,
for the single forwarding state being analyzed.

Network verification Config2Spec also relies on a control
plane verifier. Several works offer solutions for network verifi-
cation, supporting different kinds of queries. Minesweeper [4]
relies on an SMT-solver, and is currently the most general
solution: it supports various properties (e.g., reachability,
loop-freedom, router equivalence) and multiple (interacting)
routing protocols. ERA [12] creates a unified control plane
model that mainly allows to reason about reachability proper-
ties under multiple routing protocols. ARC [14] constructs
an abstract graph representation of the data plane computa-
tion and supports various properties: reachability, isolation,
waypointing and control plane equivalence. Many other tools
focus on a single protocol such as Bagpipe [30].

Network specifications Many works introduce different net-
work specification languages, varying in their expressiveness.
Some allow to capture traffic classes at the path-level [3,5,27],

while others use a higher-level abstraction describing traffic
classes and high-level policies such as reachability and way-
pointing [24]. Despite the differences, Config2Spec’s output
can be used by other tools, such as NetKAT [3], whose lan-
guage can accommodate the policies we consider.

Counterexample-guided inductive synthesis (CEGIS)
CEGIS is a technique in program synthesis in which examples
guide the search for the target program [25, 26]. Technically,
from an initial set of examples (which may be empty), the
synthesizer proposes a candidate program consistent with the
examples, and introduces it to a validator. The validator ei-
ther confirms the candidate is the target program or returns
a counterexample. The counterexample is added to the set
of examples, guiding the synthesizer to look for a different
candidate. Config2Spec can be seen as a synthesizer looking
for (all) policies that hold for a given network configuration
and failure model. Like CEGIS, it is guided by examples
(the data planes) and a validator (the verifier). Unlike CEGIS,
Config2Spec looks for all valid policies (and not a single one).
This poses a greater challenge, both in terms of the search
space and the burden on the validator. To cope, Config2Spec
cleverly samples examples to prune the search space (without
the help of the validator), trims and groups policies to save
queries to the validator, and dynamically switches between
sampling and verifying to expedite the search.

10 Conclusion

We introduced Config2Spec, a scalable approach for mining
a network’s specification from its configuration and a failure
model. The key insight is to dynamically switch between data
plane analysis and control plane verification. To scale further,
we integrated three domain-specific techniques: (i) policy-
aware sampling to pick concrete environments which are
more promising for policy pruning, (ii) policy grouping to
group queries and thereby reduce verification overhead, and
(iii) topology-based trimming to prune policies infeasible for
the given topology and failure model. We evaluated Con-
fig2Spec on different topologies and against two baselines.
The results show that Config2Spec scales to large networks,
unlike the baselines, and that our domain-specific techniques
significantly contribute to the scalability.
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Algorithm 1: Config2Spec(conf, F )
Input : conf: The network configuration.

F : the failure model (i.e., Lup, Ldown, Lsymbolic, k).

Output :A specification: the set of all policies that hold for the
given configuration and failure model.

1 cands← allPolicies()
2 verified, prevEnvs, lastFwds← /0, /0, /0

3 T T P
veri f y,T

RT
veri f y← initVerificationTimes()

4 T T P
analysis,T

RT
analysis← 0,0

5 totalEnvs← ∑
k
j=0

(|Lsymbolic|
j

)
6 while cands 6=verified do
7 DP-RT← T RT

analysis · (totalEnvs−|prevEnvs|)
8 CP-RT← T RT

veri f y · |cands\verified|
9 if T T P

analysis < T T P
veri f y or DP-RT < CP-RT then

10 env← PickCE(F , cands\verified, prevEnvs,
lastFwds)

11 lastFwds, T RT
analysis ← DPCompute(env, conf)

12 pols = InferPol(lastFwds)

13 T T P
analysis← (cands\pols = /0) ? ∞ :

T RT
analysis

|cands\pols|
14 cands← cands∩pols
15 prevEnvs← prevEnvs∪{env}
16 if |prevEnvs| = totalEnvs then verified← cands

17 else
18 pols← PickPolicies(cands, verified)
19 cex, T RT

veri f y← CPVerification(pols, conf,F )
20 if cex =⊥ then
21 verified← verified∪pols

22 T T P
veri f y←

T RT
veri f y
|pols|

23 else
24 cands← cands\{p ∈ pols| cex violating p}

25 T T P
veri f y←

T RT
veri f y

{p∈ pols| cex violating p}

26 return verified

A Main Algorithm of Config2Spec

Here, we present the main algorithm of Config2Spec (Algo-
rithm 1). Our algorithm takes as input the configuration conf
and a failure model F consisting of Lup,Ldown,Lsymbolic and
k. It outputs all policies which hold for this setting. The algo-
rithm maintains the time estimates presented in §4 as well as
a few sets. We next present these sets and the initialization of
the time estimates, and afterwards the algorithm flow.

Main data structures The algorithm maintains four sets:
cands, verified, prevEnvs, and lastFwds.

The cands set contains all policies that are still candidates
for the network specification (i.e., unclassified policies and
verified policies). That is, it is a superset of the network spec-

ification. When the algorithm terminates, cands is exactly
the set of policies which hold. During the execution, policies
which are discovered as violations are removed from cands.
Initially, this set consists of all reachability, isolation, load
balancing, and waypoint policies. Although we focus on these
policies, our algorithm easily extends to any policy supported
by the data plane analyzer and control plane verifier.

The verified set is the set of all policies that the verifier
proved to be part of the network specification. That is, it is a
subset of the set of policies which hold. When the algorithm
terminates, verified is exactly the network specification.
During the execution, policies which are discovered as true
policies are added to it.

The prevEnvs set contains all previously analyzed con-
crete environments, while the lastFwds set contains the for-
warding graphs of the last analyzed concrete environment,
which is used to pick the next concrete environment.

Initialization of predictors’ times As discussed in §4, our
predictors rely on four time estimates: T T P

analysis, T T P
veri f ier,

T RT
analysis, and T RT

veri f y. These are initialized as discussed in §4,
where to initialize T T P

veri f y and T RT
veri f y, Config2Spec executes

the verifier on M policy sets by running M times Line 18–
Line 25, which are shortly explained.

Flow After initialization, Config2Spec runs in a loop which
terminates when verified equals cands, indicating that both
are equal to the network specification. At each iteration of
the loop, Config2Spec first computes the predictors to pick
between the data plane analyzer and the control plane verifier.
The TP predictor checks T T P

analysis < T T P
veri f y. The RT predictor

checks DP-RT <CP-RT , where DP-RT and CP-RT are the
remaining times of the analyzer and verifier.

If the data plane analysis is chosen to be executed (Line 10–
Line 16), Config2Spec invokes PickCE to pick the next con-
crete environment. It then calls DPCompute, to compute the
forwarding graphs, and InferPol, to compute all policies
from cands that hold for this environment. Afterwards, it
updates the time estimates T RT

analysis (to the execution time of
DPCompute) and T T P

analysis (to the execution time per policy
which was pruned in this iteration). Then, it retains in cands
only the policies that hold for the given environment and up-
dates prevEnvs with the new environment. Finally, it checks
whether there are still more concrete environments to analyze.
If not, then cands contains only true policies, and so it sets
verified to cands.

If the control plane verification is chosen (Line 18–
Line 25), Config2Spec picks a set of policies to ver-
ify via PickPolicies. It then calls the verifier via
CPVerification. The result is a counterexample cex, which
may be ⊥, to indicate that all policies hold, or a concrete en-
vironment if some of the policies are violated. If cex is ⊥, all
policies are added to verified and T T P

veri f y is set to the ratio
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of the execution time and all policies (since all have been
classified). If cex is not ⊥, then Config2Spec removes from
cands the policies which are violated by cex, and sets T T P

veri f y
to the ratio of the execution time and violated policies (since
only they are classified).

Correctness We next discuss the correctness of Con-
fig2Spec. First, Config2Spec is precise. That is, it returns
all policies which hold and only the policies which hold. The
correctness argument relies on the data plane analysis and
control plane verification being precise with respect to their
tasks: the data plane analysis returns all and only those poli-
cies which hold for the given concrete environment, while
the control plane verification returns a counterexample if and
only if some of the given policies do not hold. With this
assumption, we can prove the invariant that (i) cands always

contains the network specification (i.e., the specification is a
subset of it) and (ii) verified is always contained in the net-
work specification. Because the algorithm terminates when
these sets are equal, we get the guarantee.

Second, Config2Spec always terminates. For this, we rely
on the data plane analysis and control plane verification to al-
ways terminate. We then make the claim that at each iteration
either a new concrete environment is analyzed (guaranteed
by PickCE) or at least one policy is classified (guaranteed by
the control plane verification). Since the number of concrete
environments and policies is finite, at some point either all
policies are classified – at which point cands=verified and
the algorithm terminates – or all concrete environments have
been analyzed – at which point, Config2Spec sets verified
to cands (Line 16), thereby terminating the algorithm.
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Abstract
We present NEL (Network Error Logging), a planet-scale,

client-side, network reliability measurement system. NEL
is implemented in Google Chrome and has been proposed
as a new W3C standard, letting any web site operator col-
lect reports of clients’ successful and failed requests to their
sites. These reports are similar to web server logs, but
include information about failed requests that never reach
serving infrastructure. Reports are uploaded via redundant
failover paths, reducing the likelihood of shared-fate failures
of report uploads. We have designed NEL such that service
providers can glean no additional information about users or
their behavior compared to what services already have vis-
ibility into during normal operation. Since 2014, NEL has
been invaluable in monitoring all of Google’s domains, al-
lowing us to detect and investigate instances of DNS hijack-
ing, BGP route leaks, protocol deployment bugs, and other
problems where packets might never reach our servers. This
paper presents the design of NEL, case studies of real out-
ages, and deployment lessons for other operators who choose
to use NEL to monitor their traffic.

1 Introduction
Maintaining high availability is a matter of utmost impor-
tance for the operator of any popular web service. When
users cannot access a web service, this may not only result in
loss of revenue for the service provider but may also impact
the service’s reputation, causing users to shift to competing
services. Therefore, it is critical that a web service opera-
tor detect and react in a timely manner when its service is
inaccessible for any sizable population of users.

The primary challenge in doing so is that network traffic
faces many threats as it traverses the Internet from clients
to servers, most of which are outside the control of the ser-
vice operator. Rogue DNS resolvers can serve hijacked re-
sults [2], ISP middleboxes can surgically alter traffic [27],
bad router policy can silently drop packets [24], misconfig-
ured BGP can take entire organizations offline [1], and more.
Even though each of these issues is caused by systems that
are not under the web service operator’s control, the operator
must bear primary responsibility for detecting and respond-
ing to them.

To address this challenge, a range of approaches have been
developed over the years. For instance, server-side request
logs (e.g., the Apache web server’s access.log and error.log
files [31]) give fine-grained information about the success or
failure of each incoming request. After annotating these logs
with additional information, like the ISP or geographic loca-
tion of the end user, operators can identify when interesting
populations of end users are all affected by the same reliabil-
ity issues [5, 4]. Alternative approaches rely on a dedicated
monitoring infrastructure comprising a globally distributed
set of vantage points. These approaches either actively probe
the service to detect unreachability [6, 20] or passively mon-
itor BGP feeds to identify routing issues [7].

Unfortunately, these existing solutions suffer from two
fundamental limitations.

• First, they are typically capable of only detecting large,
systemic outages. For example, with server-side moni-
toring, a major problem (e.g., a global outage of a major
service, or a regional outage affecting a large enough re-
gion) might show up as a noticeable drop in total request
volume [28], but operators typically only learn of smaller
problems when users manually report them.1 These user
reports are often frustratingly vague, and collecting addi-
tional information from nonexpert users is next to impos-
sible, so investigation may take hours or even days.

• Second, and more importantly, existing approaches are in-
capable of precisely quantifying how many clients are af-
fected, if any. For example, active probing from dedicated
probing infrastructure can only probe from a handful of
locations relative to the number of real users, and probe
traffic is not always representative of what actual users ex-
perience (e.g., probers may not use real web browsers and
might receive different network configuration than actual
end users). Without knowing how many users are affected,
the operator is unable to judge whether it should prioritize
the troubleshooting of a detected problem over other on-
going issues that deserve its attention.

To overcome these challenges in detecting and scoping in-
stances of service unreachability, we need a system that (1)

1While sites like https://downdetector.com crowdsource such reports,
historically we have often only learned of problems via social media.
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passively monitors actual end user traffic to any target web
service; (2) has visibility into reliability issues regardless of
where on the end-to-end path they occur; and (3) requires lit-
tle to no custom engineering work on the part of the operator.

With these goals in mind, we have designed, implemented,
and deployed NEL (Network Error Logging). The key intu-
ition behind NEL’s design is that clients have ground truth
about their ability to access a web service. Therefore, NEL
leverages end users’ browsers to collect reliability informa-
tion about the service. NEL is implemented directly in
the browser’s network stack, collecting metadata about the
outcome of requests, without requiring any custom per-site
JavaScript instrumentation. The browser then uploads these
reports to a redundant set of collection servers, which aggre-
gates reports from users around the globe to detect and scope
network outages.

This paper describes our contributions, based on the fol-
lowing three tracks:

First, we present our solutions to the various engineering
and policy challenges that arise in using client-side data to
detect reachability issues. When clients are unable to talk
to a service, how do we still ensure successful collection of
unreachability reports from these clients? What should up-
loaded reports contain so that they aid in diagnosing and es-
timating the impact of outages? How do we prevent abuse of
the system, given that clients are free to upload fraudulent re-
ports and service operators can attempt to learn about clients’
reachability to other services? Our primary consideration in
answering these questions has been to preserve user privacy;
we ensure that NEL does not reveal more about clients than
what service operators would learn during normal operation.

Second, we describe our experiences in using NEL to
monitor reachability to Google’s services since 2014. In that
time, as we relay in Section 4, it has been instrumental in
detecting and mitigating a wide variety of network outages
including routing loops, BGP leaks, DNS hijacks, and proto-
col misconfigurations. In particular, without NEL, it would
have been hard, if not impossible, to estimate the number of
clients affected by each outage. Thus, NEL has proved in-
valuable in helping us identify which problems warrant im-
mediate investigation due to their large impact and which
ones we can afford to ignore or attend to later.

Third, after several years of experience with an initial im-
plementation that could only monitor Google services, we
describe our recent efforts to promote this capability as a new
proposed W3C standard [11]. Standardizing this work has
two benefits: (1) it allows all service operators to take advan-
tage of this new collection ability, and (2) it allows operators
to collect reliability data from any user agent that complies
with the standard, and not just Chrome.

NEL is not a panacea for painstaking problem detection
and diagnosis. It cannot report problems when clients are
completely disconnected from the network or cannot reach
at least one of a redundant set of collectors. It reports

Figure 1: Steps and entities involved in enabling a client to ac-
cess a web service.

only coarse-grained summaries about entire requests, and is
no substitute for lower-level network diagnostics like trace-
routes and packet captures. (For example, it can detect when
clients experience connection timeouts, but cannot tell you
much more about why.) Nonetheless, NEL has proven a
valuable tool for detecting and scoping network outages that
are invisible to other monitoring infrastructure.

2 Background and Motivation
We begin by listing several causes that may render a web ser-
vice inaccessible, solutions that exist to detect service reach-
ability problems, and the limitations of these solutions that
motivated us to develop NEL.

2.1 Causes of service inaccessibility

As Figure 1 shows, a typical communication between a client
and a web service offered over HTTPS involves the follow-
ing steps: the client performs a DNS lookup of the service’s
hostname, establishes a TCP connection to the IP address it
obtains, performs a TLS handshake with the server, and then
sends its HTTP request.2

Given these steps, a client may be unable to communicate
with a web service due to any of the following reasons:

• DNS failure: The client will be unable to execute any
of the subsequent steps if its attempt to resolve the ser-
vice’s hostname fails. This can happen either if the name-
server that the client uses is unresponsive, or if the service
provider’s DNS setup is misconfigured.

• DNS hijack: The client could get an incorrect IP address
in response to its DNS request if either the nameserver that
the client uses is compromised or if the client is compro-
mised to use a malicious nameserver.

• IP unreachability: When the client does get a correct IP
address, the Internet may be unable to route packets from
the client to that IP, either due to problems with BGP (e.g.,
misconfiguration or convergence delays) or because of ac-
tive blocking by network operators.

2Note that this only considers the user’s communication with a “front-
end” server. Modern services typically require many back-end service calls
to generate the final response, which are hidden behind the interaction with
the front-end server, and invisible to the client (and by extension, NEL).
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• Prefix hijack: Alternatively, if the prefix which contains
the IP address has been hijacked, the client’s requests
will be directed to servers not controlled by the service
provider. The client will hence be (hopefully) unable to
complete TLS connection setup.

• Faulty middlebox: When IP-level reachability between
the client and the service is functional, the client’s attempt
to connect to the service may still fail due to a misconfig-
ured or malicious middlebox enroute.

• Service faulty/down: Lastly, even if the client’s DNS
lookup succeeds and both IP-level and TLS-level connec-
tivity are unhindered, the client will be unable to access a
service that is down or misconfigured.

2.2 Existing solutions and limitations

To detect unreachability caused by the above-mentioned
problems, a wide range of solutions have been developed
over the years. This body of prior work falls broadly into
four categories.
Monitoring from distributed vantage points. A popular
approach is to monitor reachability from a dedicated set of
distributed vantage points. Solutions that use this approach
either actively probe services from devices that mimic real
clients [3, 6]—probing can either be at the application level
(e.g., in the form of HTTP requests) or at the routing level
(e.g., in the form of traceroutes)—or passively monitor BGP
updates (e.g., to detect prefix hijacks [22, 19]), or use some
combination of the two [20, 35]. Such approaches can de-
tect problems that have wide impact. Localized problems
are, however, likely to go unnoticed because a set of vantage
points typically cannot match the global coverage of a ser-
vice’s clients. Moreover, when unreachability is detected, it
is hard to estimate how many real clients are affected.
Monitoring service logs. To ensure broad coverage, ser-
vice providers can monitor their service’s usage either by an-
alyzing server-side logs or by augmenting pages on their site
with JavaScript that performs and uploads client-side mea-
surements (popularly referred to as Real User Monitoring, or
RUM for short [9]). With either strategy, operators must infer
reachability problems from the absence of traffic. Requests
from affected users will never arrive at the server and there-
fore are absent from server-side logs, whereas users unable
to fetch even the HTML of a web page will not execute any
JavaScript included on the page, even if cached. For any pop-
ulation of users, a significant drop in requests compared to
what is typically expected (given historical traffic volumes)
may indicate a reachability problem being experienced by
these users. The challenge here is: how to distinguish be-
tween localized reachability problems and intrinsic volatility
in traffic volumes? While traffic in aggregate across a large
population of users is typically fairly predictable (e.g., same
from a particular hour in a week to that hour next week), the
smaller the subset of users considered, the larger the unpre-

Data source Enable Detect Estimate #
timely localized of affected

detection outages clients

Distributed moni-
toring infrastructure

X ⇥ ⇥

Service logs X ⇥ ⇥
Backscatter traffic ⇥ ⇥ ⇥
User reports ⇥ X ⇥
NEL X X X

Table 1: Properties satisfied by different approaches for detect-
ing service reachability problems at scale.

dictability. As a result, drops in traffic volumes for small
populations of users are not adequate evidence for service
operators to take action.
Monitoring backscatter traffic. Similar limitations ex-
ist with solutions that rely on backscatter traffic—traffic that
clients send to unused portions of the IP address space—to
detect reachability issues [12]. Here too, one has to infer (for
example) censorship based on the absence of traffic. Conse-
quently, problems can be reliably detected only when they
are large in scope. Moreover, even when backscatter traffic
shows an absence of traffic from a large population, those
users likely cannot reach any IP address.
Leveraging user reports. An approach which can detect
localized problems, unlike the previous categories of solu-
tions, is to rely on complaints/reports from users. However,
such solutions are typically incapable of detecting reachabil-
ity problems in a timely, reproduceable, representative, and
consistent manner. For example, users in some regions may
be less likely to notify service operators about problems, due
to language or cultural barriers.

Table 1 summarizes the limitations of these existing solu-
tions. The overriding one, which motivated our development
of NEL, is the inability to accurately estimate how many

clients are currently affected by an outage. In our experi-
ence, a high confidence estimate of the scope of a problem
is the top criterion to warrant investigation by a service op-
erator. Lacking such data, it is hard to triage and prioritize
human effort to troubleshoot the large number of issues that
a service provider has to deal with at any point in time.

3 Design
This section presents the design of NEL, our browser-based
mechanism for collecting information about a web service’s
availability, as seen by its clients. By using the client as the
vantage point, the operator gains explicit information about
the impact of reliability problems, rather then having to esti-

mate the impact based on either the absence of traffic or by
extrapolating from a small set of clients.

Google has twice implemented the ideas behind NEL: first
as a proof of concept that could only monitor reachability to
Google properties, and again as a proposed public W3C stan-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    987



Confidental and proprietary

3. Failed HTTP request Web server

4. NEL report

NEL collector
Client

1. Successful
HTTP request

2. NEL activation

via HTTP response header

Figure 2: When a client successfully communicates with a ser-
vice, collection of client-side reports is activated via a NEL pol-
icy in the service’s response headers. The client reports the suc-
cess and failure of its subsequent requests to that service to col-
lectors referenced in the NEL policy.

dard [11] available to all service operators. Here, we focus
on the latter due to its general availability. We also summa-
rize important differences between the two implementations.

3.1 Approach and challenges

When stated at a high level, NEL’s approach is fairly sim-
ple and intuitive: clients upload reports summarizing their
ability to either successfully or unsuccessfully access target
services. In aggregate, such reports enable the provider to
piece together the ground truth as to how many, and which,
of its clients are unable to access its service.

Realizing this approach in practice requires us to answer
several questions:
• How do clients know which services to collect reliability

information about?
• What should clients include in reports they upload?
• In order to reliably report that information, where should

clients upload reports to?
Before describing our answers to these questions (sum-

marized in an illustration of NEL’s architecture in Figure 2),
we first list the properties required of such a system, which
motivate our design choices.

3.2 Security, privacy, and ethics

When designing NEL, we have to balance collecting enough
information to enable quick detection of reliability issues
versus satisfying the security and privacy expectations of
both service owners and their end users. There are four prin-
ciples in particular that we must follow:
1. We cannot collect any information about end users, their

device/user agent, or their network configuration, that the
server does not already have visibility into. That is, we
should not collect new information relative to existing
server logs; only existing information in a different place.

2. We can only collect information about requests that user
agents issue when users voluntarily access services on the
Web. We cannot issue requests in the background (i.e.,
outside of normal user activity), even though this prevents
us from proactively ascertaining service reachability.

3. End users can opt out of collection at any time, either
globally or on a per-site basis. Support for respecting opt-
outs must be implemented by NEL-compliant user agents,
so that users do not need to trust service providers for opt-
outs to take effect.

4. Modulo that end-user opt-out, it is only the site owner who
gets to decide whether reports are collected about a par-
ticular site, and if so, where they are sent. Third parties
(including browser vendors) must not be able to use NEL
to monitor sites that they do not control.

These principles have clear ramifications on the design of
the system, as we discuss below in our description of NEL’s
design; Table 2 provides a summary.

3.3 When do clients generate reports?

Configuration via response headers. How does a user
agent know which requests to collect reports about? An op-
erator needs a way to instruct client browsers to collect re-
ports about requests to services they control, along with any
configuration parameters about that collection.

HTTP response headers provide exactly what we
need: service operators insert policy configuration head-
ers (Report-To and NEL) into their outgoing responses; Fig-
ure 3(a) shows an example. The user agent’s network stack
intercepts these policy headers as part of the normal process-
ing of the response. NEL is limited to secure connections—
HTTPS connections with validated certificates—ensuring
that (in the absence of a subversion of the certificate trust
validation mechanism) third parties cannot inject NEL poli-
cies into the responses of servers not under their control.

If an attacker does somehow subvert connection security,
they could inject NEL’s HTTP headers and can obtain NEL
monitoring data. For example, a malicious or compromised
CDN provider could siphon NEL logs off to their own col-
lector. But such an attacker could obtain the same data by
other means (e.g., by injecting additional JavaScript).
Scope of activation. We need to ensure that client-side
collection of NEL reports does not allow third parties to col-
lect information about sites they do not control. The cleanest
way to do this is to follow the existing Same-Origin Policy
(SOP) [8], and to have report collection be scoped to the ori-
gin (domain name, scheme, and port) of the request. That is,
collection would be activated (or deactivated) for all requests
to an origin; any collection policy configured for origin A
would have no effect on requests to origin B, even if both
origins happen to be owned and operated by the same entity.

Note that NEL does not preclude user agents from gener-
ating NEL reports even when the user is in private browsing
mode. In such cases, any service’s server-side logs do re-
flect the user’s use of its service. NEL is simply collecting
the same information at the client and uploading it via re-
dundant paths to the same service provider. As we describe
later in this section, the contents of any NEL report ensure
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Goal Approach Refinements/Experience

Securely activate client-
side collection of reacha-
bility reports

• Include NEL policy header in HTTP responses
• Enforce Same-Origin Policy
• Limit to HTTPS connections

• With include subdomains option, one success-
ful communication with an origin suffices for a
user agent to start collecting (some) reports for
all subdomains of that origin

Ensure report content pre-
serves user privacy, yet
aids diagnosis

• Only include information that is visible to service
during normal operation

• Limited set of hierarchically organized error types

• Upload reports even for successful requests to
establish baseline request rate and to reduce
burstiness of collection workload

Enable secure and timely
collection of NEL re-
ports from clients

• Causes that can render collectors unreachable
should be disjoint from those that can affect the
service’s reachability

• Client downgrades report (removing sensitive in-
formation) if service’s IP address is not one from
which it has received NEL policy for this origin

• Specify weight and priority per collector to bal-
ance load and to enable failover across collectors

• Configurable sampling rates to reduce load on
both clients and collectors

• Host collectors on cloud infrastructure to deter
censorship of report collection

Table 2: Summary of the approach taken in NEL to address different design decisions, along with experience-based refinements.

that the service provider can glean no additional information
about its users than it can from its server-side logs.

Preventing DNS rebinding attacks. On its own, SOP is
not enough to prevent a malicious actor from using NEL to
learn about the reachability of origins that they do not con-
trol. Consider a rebinding attack, where an attacker who
owns bad.example wishes to learn about the availability of
good.example. They start by configuring DNS to resolve
bad.example to a server that they control (using a short TTL),
and getting an end user to make a request to bad.example.
The server returns a NEL policy instructing the user agent
to send NEL reports to a collector run by the attacker. They
then update DNS to resolve bad.example to good.example’s
IP address(es), and cause the user to make another request to
bad.example. Even though the request looks like it will go
to the original bad.example server, it will instead be routed
to good.example’s server; if there are any errors with the
connection, NEL reports about those errors will be sent to
the attacker’s collector. In this way, the attacker has been
able to collect error reports about good.example, even though
they do not own it. This kind of attack could also be used
to port scan an internal network, by repeatedly rebinding
bad.example to several different internal IP addresses.

NEL prevents such attacks by having user agents down-

grade the quality of a report when the server IP address that
a user agent contacts is not one from which it previously re-
ceived the NEL policy header for this origin. In this case,
instead of reporting whether the request succeeded or not
(and the error type if not), the report simply states that the
user agent’s DNS lookup yielded a different IP address. This
information is safe to report to the attacker, since it is infor-
mation that they already knew; and, because it relates to what
addresses bad.example resolves to, the attacker is actually
the legitimate party to deliver this information to. Note that
this can limit the utility of NEL’s reports for domains that
resolve to many IP addresses (e.g., CDNs).

Subdomain reports. A consequence of activating NEL via
headers in HTTP responses and enforcing SOP is that NEL

cannot help an operator discover a client’s inability to access
their service unless the client has successfully communicated
with the service at least once in the past. To minimize the
impact of this constraint on service providers, a NEL pol-
icy can include the include subdomains field, which tells the
user agent to collect and upload reports for both the origin as
well as all of its subdomains.

At first glance, this is a clear violation of SOP: there is no
guarantee that the web sites hosted at each subdomain are
owned by the same entity.3 To maintain our privacy proper-
ties, a user agent can only use an include subdomains policy
to report DNS errors about requests to a subdomain, since the
author of the policy has only been able to establish ownership
of that portion of the domain name tree. Subdomain reports
about successful requests, and about any errors that occur
during or after connection establishment, are downgraded to
reports only containing information visible in DNS. Such re-
ports suffice for the service provider to discover unreachabil-
ity due to DNS misconfiguration, e.g., the provider may have
forgotten to add a DNS entry for a new subdomain.

3.4 What do clients upload?

Report content. The most important part of a NEL re-
port (Figure 3(b) shows an example) is the type, which
indicates whether the underlying request succeeded or
failed. If the request succeeded, the report’s type will
be ok; if it failed, it will describe what error condition
caused the request to fail. The full set of predefined er-
ror types is given in the specification [11, §6]; exam-
ples include http.error, dns.name not resolved,
tcp.reset, and tcp.timed out. These predefined
types are categorized hierarchically, so that one can find, for
example, all TCP-related failures by looking for any type that
starts with tcp.

We have found it useful to collect NEL reports even for
successful requests, despite the fact that these requests also
show up in server-side logs. Reporting on successful re-

3Consider a PaaS cloud offering like Google App Engine, where inde-
pendent cloud applications are hosted at subdomains under appspot.com.
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Report-To: {
  "endpoints":  // Try to send reports to one of these URLs
    [{"url": "https://collector1.com/upload-nel"},
     {"url": "https://collector2.com/upload-nel"}],
  "group": "nel",  // The name of this group of endpoints
  "max_age": 300  // This set of collectors expires in 5 minutes
}
NEL: {
  "failure_fraction": 1,  // Report all failed requests
  "success_fraction": 0.25,  // Report 25% of successful requests
  "include_subdomains": false,  // Don’t report for subdomains
  "report_to": "nel",  // Report to a collector in this group (above)
  "max_age": 300  // This NEL policy expires in 5 minutes
}

[{
  "age": 60000,  // The report was 1 minute old when uploaded
  "type": "network-error",  // This is a NEL report
  "url": "https://example.com/about/",  // The URL the client requested
  "user_agent": "Mozilla/5.0",  // The client's User-Agent header
  "body": {
    "type": "tcp.timed_out"  // The connection timed out
    "phase": "connection",  // The request failed during handshake
    "server_ip": "203.0.113.75",  // The client tried to connect to this IP
    "sampling_fraction": 1.0,  // This report had a 100% chance of collection
    "protocol": "h2",  // The request was made using HTTP/2
    "method": "GET",
    "referrer": "https://example.com/",  // The HTTP Referer
    "elapsed_time": 45000,  // Lifetime of the request in milliseconds
  }
}]

(a) (b)

Figure 3: Examples of (a) a service’s use of NEL headers in its HTTPS response to activate report collection by a user agent, and (b)
a report uploaded by a user agent. Comments are not included in real headers and reports.

quests lets us directly compare error ratios from successful
and failed reports, without having to join the NEL logs with
server-side logs. Comparing successful reports to web server
logs also lets us estimate the relationship between NEL re-
port volumes and actual request volumes.

In addition to the type, NEL reports can only contain a
fixed set of additional information, as defined by the public
specification. This helps ensure that implementors do not ac-
cidentally include additional information that would violate
our desired privacy properties. In authoring the specifica-
tion, our primary constraint when determining which fields
to include is to ensure that every field in the report contains
information that the server can already see during its normal
processing of the request.

Given this constraint, NEL reports include basic infor-
mation about the request: URL (with user credentials and
fragment identifiers removed), HTTP request method (GET,
POST, etc.), application and transport protocol (HTTP/1.1,
HTTP/2, QUIC, etc.), User-Agent string, and referrer. The
reports also include the HTTP status code of the response, if
one was received, and how long the request took to complete.

Reports also contain the IP address of the server that the
user agent attempted to connect to. For most requests, this
is the public IP address of the service’s front-end server that
directly accepts incoming connections from end users. In-
clusion of this IP address in reports is crucial to enable de-
tection of DNS hijacking; though the error type in the report
may indicate successful TCP connection setup, the server IP
address mentioned in the report will not be one used by any
of a service’s front-end servers.

As mentioned above, there are several situations where a
NEL report is downgraded for privacy reasons; for instance,
when the server IP of the request is not one that the corre-
sponding NEL policy was received from. In these cases, any
privacy-sensitive fields are modified or removed from the re-
port, to maintain the property that the report only contains
information that the policy author already had access to. The
NEL specification [11] contains more detail about precisely
which fields are modified or removed, and when.
What do reports not contain? There are many details
about the client that we explicitly exclude from NEL reports,

even at the expense of hampering diagnosis. For example, if
a user agent is using a client-configured proxy server, the IP
address that the user agent attempts to connect to would be
the IP address of that proxy server. Since that proxy config-
uration is not intended to be visible to the server, we cannot
include the IP address in the report. Note that this restric-
tion only applies to proxies configured by the end user. If
their ISP is using a transparent proxy for all of its customers’
requests, any individual user agent won’t easily be able to
detect this. That means that the server IP reported by the
user agent will still be the actual address of the origin server,
while the client IP address seen by the server and any NEL
collectors will be the address of the transparent proxy.

Similarly, we cannot include the IP address of the DNS re-
solver that the client uses. For DNS-related network outages,
this would be useful information to collect, since it would
help the service owner determine whether a rogue or mis-
configured DNS resolver is at fault for an outage; however,
since this information is not visible to the server when pro-
cessing a request, we cannot include it in a NEL report.

NEL reports also do not include details about HTTP re-
quests that are immaterial to diagnosing reachability prob-
lems. For example, user agents exclude cookies and URL
parameters from reports. A NEL report does include the full
path that a request was issued for, not just the hostname to
which the request was issued. We have not found much use
for this information so far, but it may prove useful to an oper-
ator whose service configuration varies across different path-
names under the same origin.
Sampling rates. For high-volume sites, it is undesirable
to have clients generate NEL reports about every attempted
request, since that could double the number of requests a
client must make and would require the site’s collection in-
frastructure to be able to deal with the same full volume of
request traffic as the actual site. NEL allows service opera-
tors to define a sampling rate, instructing user agents to only
generate reports about a random subset of requests. More-
over, they can provide separate sampling rates for successful
and failed requests. Typically, one will want to configure a
very high sampling rate for failed requests, since those re-
quests are more operationally relevant and more important
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to collect as much information about as possible. The util-
ity of collecting reports for successful requests is largely to
estimate their total number, so lower sampling rates (e.g., 1–
10%) are typically sufficient. Each NEL report includes the
sampling rate in effect when that particular report was gen-
erated, which allows collectors to weight each report by the
inverse of its sampling rate when determining totals.

To reduce overhead, it may be tempting to adaptively vary
the sampling rate over time. However, the need to increase
sampling rates will arise precisely when an outage occurs.
At that point, it will be infeasible for the service provider to
update the NEL policy being used by affected clients.

Google uses a 5% sampling rate for successes and 100%
for failures. We chose these numbers based on our expe-
rience working with NEL: (1) we find a lower sampling
rate dilutes our data too much when examining small user
populations (e.g., when investigating outages in small ISPs),
and (2) we want a relatively consistent report traffic volume,
rather than massive spikes in load during major outages.

3.5 Where do clients upload reports to?

Once a user agent has generated reports about requests to
an origin, those reports must somehow be sent back to the
service operator’s monitoring infrastructure. To do this, the
service operator defines a set of collectors, giving an upload
URL for each one (see Figure 3(a)). Since the set of collec-
tors is defined in the NEL policy included in HTTP response
headers, service operators have full control over where NEL
reports about their origins are sent to.

User agents will periodically batch together reports about
a particular origin, and upload those reports to one of the
origin’s configured collectors. The report upload is a sim-
ple POST request, with the JSON-serialized batched report
content in the request payload.

Report uploads are subject to Cross-Origin Resource Shar-
ing (CORS) [32] checks. If the origin of the collector is dif-
ferent than the origin of the requests that the NEL reports de-
scribe, the user agent will perform a CORS preflight request
to verify that the collector is willing to receive NEL reports
about the origin. If the CORS preflight request fails, the NEL
report will be silently discarded. Reports are only uploaded
over HTTPS to prevent leaking their content to passive in-
network monitors.
Collector failure modes. For an operator to detect out-
ages in a timely manner, it is crucial that clients be able to
upload NEL reports even when they are unable to reach the
monitored service. This requires that the collection path dif-
fer from the request path in as many ways as possible. As
a consequence, not only must the collectors be hosted dif-
ferently than the monitored service, but it is desirable that
there be significant hosting diversity among those collectors.
Examples of the ways in which collectors might differ from
the monitored service include: different IP address (to learn
about the service’s IP being unreachable); different version

of IP (if IPv4 is reachable, but not IPv6); different AS num-
ber (to account for BGP/routing issues); different transport
protocol (e.g., for QUIC-specific problems); and different
hostname, registrar, and DNS server4 (if the service’s name-
server is unreachable). Later, in Section 4, we recount the
kinds of collector diversity that have proved to be most valu-
able in our experience.

Given the effort necessary to ensure that collectors for a
service do not share the same failure modes as the service it-
self, one may wonder whether the collectors could be used to
improve the availability of the service, beyond collecting ev-
idence of its (un)reachability. However, a NEL collector re-
quires significantly fewer resources than necessary to run the
monitored service. In particular, NEL collectors typically do
not need to make the same latency guarantees as interactive
web requests. Therefore, a service’s collection infrastructure
is unlikely to have the necessary capacity for an operator to
serve affected users from the collectors when these users are
unable to access the service normally.
Load balancing and failover. NEL enables service opera-
tors to define arbitrary load balancing and failover behavior
for their collectors. Inspired by the DNS SRV record [17],
a NEL policy can specify an optional weight and priority
for each collector. When choosing which collector to up-
load a report to, a user agent will randomly select a collector
from those with the smallest priority value, weighted by their
weight values. The user agent keeps track of whether up-
loads to a particular collector fail too frequently; if so, that
collector is marked as pending, and taken out of rotation.
This ensures that collectors with higher priority are only at-
tempted if all collectors with lower priority have failed. This
mechanism gives service operators maximum flexibility in
determining how to configure their collection infrastructure.

If all of the collectors are unreachable, the user agent will
retain the reports in memory for a small amount of time (typ-
ically 15 minutes). When this happens, it often indicates a
complete loss of connectivity on the part of the user. Dur-
ing this time, the user agent will continue attempting to de-
liver the reports (typically once per minute, with exponen-
tial backoffs). If the reports have still not been delivered
after several attempts, they are dropped. The short interval
ensures that we have visibility into temporary connectivity
losses, while not requiring much storage in the user agent.

Note that a NEL user agent will also upload reports sum-
marizing the success or failure of its attempts to upload a
NEL report to a collector; after all, attempts to upload NEL
reports are also HTTP requests. We refer to these as meta re-

ports. Such meta reports help a service provider detect prob-
lems that clients face in contacting its collectors. To prevent
infinite recursion, user agents generate meta reports only for
uploads of NEL reports that are not meta reports.

4Note that all of these must be different for the client to use a completely
different set of nameservers to resolve the collector’s hostname.
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Feature Domain Reliability NEL W3C standard
Adoption model Opt-in Opt-out
Activation time Browser start After first successful

request to an origin
Activation None HTTP response headers
overhead

Coverage Google origins Any HTTPS origin

Table 3: Comparison of the two implementations of NEL:
the version that monitors reachability from Chrome’s users to
Google’s services versus the W3C standard. The latter incurs
additional overhead to be generic.

Censorship resistance. Although we have found NEL use-
ful in detecting and investigating state-sponsored censorship,
NEL itself is not particularly resistant to censorship. An at-
tacker who can block access to an origin can also trivially
enumerate all NEL collectors for the origin, and block access
to those collectors. Service operators could try to introduce a
modicum of censorship resistance by hosting NEL collectors
in cloud providers, thereby tying the fate of report collection
to the cloud provider as a whole. An operator could also
make it harder for an adversary to identify all of its collec-
tors by returning different subsets of collectors to different
clients [34]; however, a NEL collector may be discernable
via network traffic analysis [14].
Report authenticity. Since NEL reports are generated by
user agents running on untrusted client devices, there is noth-
ing preventing clients from generating and uploading fraud-
ulent reports. A service provider can account for this chal-
lenge by only reacting to problems that affect a large enough
population of unique client IP addresses (typically dozens).
This measure ensures that a malicious entity can only cause a
service operator to react to fake outages if they control a large
number of client devices (e.g., a botnet operator). However,
making NEL robust to fraud in this manner comes with the
risk of minimizing the impact of an outage which affects a
few IP addresses shared by many client devices, e.g., when
many devices are behind a shared NAT.

3.6 Domain Reliability

Thus far, this section has described the public standard [11]
which is usable by all services and browsers, and available
in Chrome as of version 69. We also implemented these
ideas in an earlier proof-of-concept called Domain Relia-

bility, which could only monitor reachability from Chrome
users to Google services. There are some important differ-
ences between Domain Reliability and NEL (see Table 3).

• Since Domain Reliability was not generally available to all
service operators and only monitored Google properties,
it required users to explicitly opt in to report collection.
With NEL, any user agent which implements the standard
collects reports by default for origins which include NEL
policies in their responses. A user can opt out of NEL
either globally or on a per-origin basis.

• One consequence of NEL being opt-out is that its users
will represent a more uniform sample of a service’s user-
base. Because of this, we expect to more confidently gen-
eralize results from NEL to non-NEL clients.

• With Domain Reliability, the list of origins for which
clients generate reachability reports and the list of collec-
tors to which they upload these reports was hard-coded
into Chrome. Any updates to these lists were delivered
as part of Chrome’s regular update process, resulting in a
multiple-week lead time to push any monitoring changes
to our users. In contrast, with NEL, any web service gets
to bootstrap the origins to monitor and the collector do-
mains by including this information as headers in the ser-
vice’s HTTP responses. This allows monitoring changes
to be picked up immediately, with the cost of increased
overhead in client-server traffic.

• An implication of the previous point is that NEL can en-
able a client to upload reachability reports for a particu-
lar origin only after that client has successfully commu-
nicated with that origin at least once. Without doing so,
the client would neither know that it must generate and
upload reports for this origin, nor know which collectors
to upload these reports to. Because its configuration was
hard-coded in Chrome, Domain Reliability enabled mon-
itoring of a client’s reachability to Google’s services even
if that client had never successfully been able to commu-
nicate with any Google origin.

• Since Domain Reliability was only implemented in
Chrome, it could not reveal reachability issues faced by
users of other browsers. With NEL, a service can collect
reports from any HTTP client that implements the pro-
posed W3C standard [11].

• Because Domain Reliability’s configuration was encoded
in source code, we relied on the existing code review pro-
cess to ensure that the configuration adhered to our desired
security and privacy properties. Because this configura-
tion was restricted (by policy) to Google properties, we
did not have to downgrade Domain Reliability reports like
is needed for NEL in some situations; instead, we ensured
that Domain Reliability’s hard-coded policy prevented re-
ports from being sent at all in those situations.

4 Deployment Experiences
This section relays some of our experiences with the tech-
niques described in the previous section. In each case, data
alerted us to the presence of a problem and hinted at a
cause based on the population of users reporting that prob-
lem (i.e., the “shape” of the problem); however, these tech-
niques are most useful in concert with other network diag-
nostic tools that can dig deeper into specific problems and
provide “smoking gun” evidence of a particular cause.

Note that this section deals with Domain Reliability, the
initial prototype of these concepts that we developed to mon-
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$ traceroute X.Y.Z.33
                                              Loss%   Snt   Last   Avg  Best  Wrst StDev
  1.|-- ip1.isp.net                            0.0%   100    0.2   1.1   0.2  49.3   5.5
  2.|-- ip5.isp.net                            0.0%   100    6.1   8.3   4.5  12.4   2.3
  3.|-- ip6.isp.net                            0.0%   100    8.4   8.8   7.5  36.5   3.9
  4.|-- ip7.isp.net                            0.0%   100    7.6   9.2   7.6  18.2   2.8
  5.|-- ip8.isp.net                           99.0%   100  2671. 2671. 2671. 2671.   0.0
  6.|-- ???                                   100.0   100    0.0   0.0   0.0   0.0   0.0
  7.|-- ???                                   100.0   100    0.0   0.0   0.0   0.0   0.0
  8.|-- ip9.isp.net                           99.0%   100  7314. 7314. 7314. 7314.   0.0
  9.|-- ???                                   100.0   100    0.0   0.0   0.0   0.0   0.0
 10.|-- ???                                   100.0   100    0.0   0.0   0.0   0.0   0.0
 11.|-- ip10.isp.net                          99.0%   100  5179. 5179. 5179. 5179.   0.0
 12.|-- ???                                   100.0   100    0.0   0.0   0.0   0.0   0.0
 13.|-- ip11.isp.net                          99.0%   100  2722. 2722. 2722. 2722.   0.0
 14.|-- ???                                   100.0   100    0.0   0.0   0.0   0.0   0.0
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$ traceroute X.Y.Z.32
                                  Loss%   Snt   Last   Avg  Best  Wrst StDev            
  1.|-- ip1.isp.net                0.0%    10    0.2   0.2   0.2   0.3   0.0            
  2.|-- ip2.isp.net                0.0%    10    6.9   8.4   4.8  11.8   2.4            
  3.|-- ip3.isp.net                0.0%    10    7.7   8.3   7.5  10.7   1.1            
  4.|-- ip4.isp.net                0.0%    10   33.5  10.7   7.5  33.5   8.1            
  5.|-- ip1.google.com             0.0%    10   49.7  49.2  43.3  55.2   4.4            
  6.|-- ip2.google.com             0.0%    10   49.0  48.5  44.3  51.6   2.6            
  7.|-- ip3.google.com             0.0%    10   47.6  47.8  44.3  53.2   2.9            
  8.|-- X.Y.Z.32                   0.0%    10   48.9  49.8  45.9  58.7   4.6

(a) (b)

Figure 4: (a) Traceroute to the affected IP address appears to show a routing loop in the last-mile ISP, and (b) traceroute from the
same vantage point to an adjacent IP address exits the ISP within a few hops. Hostnames and IP addresses are anonymized.

itor traffic only to Google’s services. We have monitored
Google’s services with it since Chrome 38 in 2014 and are
currently migrating our monitoring to use NEL. Although
Domain Reliability and NEL are not qualitatively different,
Section 3.6 explains how one might expect our experiences
to differ once we fully migrate to NEL.

4.1 Unreachability of a single IP address

In December of 2018, Chrome clients started reporting fail-
ures of TCP connections and QUIC sessions made to a single
Google IP address. The problem affected all requests to that
IP from all users in every ISP in one country for the follow-
ing two weeks.

Further manual investigation revealed that traceroutes
from an affected host to that IP were failing inside a transit
ISP which dominates wired connectivity within that coun-
try. We also occasionally noticed IPs belonging to this transit
provider in high-TTL hops of the traceroute, suggesting that
packets were stuck in a routing loop in that ISP’s network
(see Figure 4). The problem was eventually resolved after
we contacted the ISP, although we never learned how they
presumably fixed it.

NEL was useful in this case in several ways.

• It let us quickly detect a problem we may have never no-
ticed otherwise. The impacted IP served content that is
visible to users but is not critical (e.g., thumbnail images),
which may be why we received no reports about this prob-
lem on social media, and why there was no visibility on
crowdsourced sites like downdetector.com.

• NEL was additionally helpful in confirming that the prob-
lem had gone away, particularly since the ISP never noti-
fied us that they fixed it.

• Diversity of our NEL collectors was trivially useful in this
case; a collector hosted on any IP other than the one im-
pacted could have successfully received report uploads.

Although other network monitoring tools could have
caught this problem (e.g., active probing of all serving IPs),
it would have been difficult to assess the scale of users im-
pacted or even to achieve dense enough probe coverage to
know how many ISPs were affected. It would have been
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Figure 5: AS 37252 leaked prefixes to its peers, which ultimately
misrouted traffic in several downstream ASNs. NEL quantified
the impact of the leak on users in those downstream networks.

even more difficult to feel confident that the problem had
been completely resolved.

However, NEL alone was not enough to diagnose this is-
sue because it gave no information about the location of the
problem other than the set of users affected. We needed other
tools, like traceroute, to identify which network links were
impacted and that most, if not all, of the Internet traffic in
that country transits through one ISP.

4.2 BGP leakage

On November 12, 2018, AS 37282 leaked its routing table
to its upstream providers. As shown in Figure 5, this leak
rerouted traffic destined for some Google prefixes, causing
packet loss for many of our users. The network operations
community noticed this incident and the media widely re-
ported on it.5

NEL saw this incident as an increase in connection time-
outs for the leaked prefixes. Although many other monitor-
ing tools had clear visibility of the leaked BGP routes [7],
NEL directly told us the incident’s impact on user traffic.
In some networks, NEL reported that nearly all requests to
these prefixes timed out. Moreover, diversity of our NEL
collectors was useful in this case, because we had collectors
running in IP prefixes not affected by the leakage.

5https://www.manrs.org/2018/11/route-leak-causes-major-
google-outage/
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On the other hand, NEL said nothing about the cause of
the outage other than perhaps that the problem was local-
ized to a specific set of prefixes. It would probably be most
valuable to overlay NEL data on existing BGP leak detection
tools, to distinguish relatively benign incidents of BGP leak-
age (i.e., that do not impact much traffic) from major events
like this one.

Note that BGP leaks that have no impact on the users of
Google’s services are likely since Google advertises and uses
different IP prefixes to serve its users in different parts of the
world. Hence, when an ISP erroneously advertises one of
our prefixes, this has no impact on users if this ISP operates
in a region far from where we use the affected prefix. NEL
helps us avoid troubleshooting such inconsequential prob-
lems, whose impact would otherwise have been hard to de-
termine only based on analysis of BGP data.

4.3 Malware-induced DNS hijacking

In February of 2018, NEL reported that users in a large ISP
were resolving several of our domains to non-authoritative IP
addresses belonging to a third-party cloud hosting provider.
Clients could still complete requests to these domains (i.e.,
most reports we received had type ok), suggesting the pres-
ence of a layer 3 proxy server. Although requests were suc-
cessful, this was still concerning because a proxy could re-
duce performance and reliability. We could not find reports
of the problem online or reproduce the issue ourselves from
our CDN infrastructure in the ISP.

We later discovered a rogue DNS resolver associated with
malware that was responding to DNS requests in much the
same way. We theorize that either (1) an ISP DNS server
had been compromised to resolve requests using the rogue
resolver, or (2) many machines and/or home routers in that
ISP had been similarly compromised.

This case highlights a key advantage of NEL over tradi-
tional active probing: NEL monitors actual user network
conditions and configurations, which can differ from those
of dedicated monitoring infrastructure. It can detect massive
problems that are simply invisible to other forms of moni-
toring. However, this case also highlights that NEL is not
necessarily very helpful in debugging problems; in this case,
since NEL does not report which DNS resolver clients use,
it did not help us make progress on the problem.

Note that collector diversity was unnecessary in this case
because requests to these hijacked domains still worked.
Nonetheless, NEL was helpful because it alerted us to the
presence of a proxy server associated with malware.

4.4 Protocol-specific problems

On March, 17, 2017, NEL observed that users were having
trouble connecting to Google services in two of our datacen-
ters in the United States and Europe. On closer inspection,

only clients using QUIC [23] were affected. This was cor-
roborated by reports from users.6

Our operations team traced the problem back to a bad
server configuration change, and mitigated it soon after. The
problem caused machines in the affected datacenters to drop
all traffic on established QUIC sessions. Although QUIC
clients transparently fall back to TCP when QUIC cannot es-
tablish a connection, that did not help in this case because
we only dropped packets after a connection was established.

This situation illustrates the value of black box traf-
fic monitoring; if operations teams only monitor specific
protocol-level metrics (e.g., number of connections estab-
lished), then there is a chance that those metrics do not tell
the whole story. NEL lets operations teams know whether
users’ connections are healthy end-to-end.

NEL collector diversity was useful in this case because
the problem was localized to a few datacenters; clients could
successfully upload NEL reports to other locations.

4.5 Monitoring of NEL report uploads
In addition to discovering network outages, we have also
leveraged NEL’s collection infrastructure to monitor previ-
ously unmonitored infrastructure. Other operators of NEL
collectors may do the same.

Domain Reliability monitors only Google’s first-party ser-
vices, but not customer-owned origins hosted on Google’s
cloud infrastructure. This is currently a blind spot in our
monitoring. Moreover, NEL will not allow us to monitor
customer-owned origins directly, since NEL’s privacy design
gives the customer, and not their cloud provider, control over
whether reports are collected and where they are sent.

To help ameliorate this limitation, in addition to our ex-
isting diverse set of NEL collectors, we run another set of
collectors hosted on our cloud infrastructure. As a result,
whenever a user makes a request to a Google service, the
user agent generates a NEL report and attempts to upload it
to one of our cloud collectors with a probability based on the
values of the weight fields in our NEL policy. The user agent
then generates and uploads a meta report about the upload of
the original report.

Although this technique does not grant us visibility into
problems affecting individual cloud tenants (e.g., a miscon-
figured tenant firewall), it at least lets us detect problems af-
fecting our entire cloud infrastructure, even if those problems
are localized to a small number of clients. For example, this
helped us quickly confirm that the BGP leak in Section 4.2
also impacted our cloud infrastructure.

One caveat to meta reports is that they are not represen-
tative. Any sampling rates defined in the NEL policy are
compounded for meta reports, making it more difficult to get
a large enough collection of meta reports to derive a statisti-
cally meaningful signal. Clients with unreliable connectivity
are more likely to attempt to send NEL reports, and to fail

6https://news.ycombinator.com/item?id=13892431
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doing so. So, we see higher baseline error rates for NEL
report traffic from such clients compared to the global set of
NEL reports. As a result, we cannot compare NEL error rates
for our cloud infrastructure and our non-cloud infrastructure;
but, trend analysis on meta reports remains useful.

5 Deployment Challenges
This section discusses several practical challenges we en-
countered when deploying NEL. Other web service opera-
tors are likely to encounter similar hurdles.

5.1 Collector diversity

As seen in some of our case studies (§4), diversity in the
deployment of collectors has been crucial to collect client
unreachability reports in a timely manner. For example, in
the BGP leak case, it was crucial that we had a collector in a
different prefix from those leaked.

While such diversity existed in Google’s infrastructure
even prior to our deployment of NEL, hosting collectors
across the globe, in multiple prefixes and AS numbers, and
supporting multiple IP versions is unlikely to be straight-
forward for an arbitrary web service. Therefore, to ease
the use of NEL by other web services, we envision public
cloud providers offering “NEL collectors as a service.” Like
Google, other large cloud providers also have a rich diversity
of global infrastructure that naturally lends itself for use as
NEL collectors.

5.2 Overhead

NEL increases network traffic for both clients and service
providers in two ways: 1) the additional header that the ser-
vice provider must include in its responses to clients’ HTTP
requests, and 2) reports that clients upload to NEL collectors.
Response header overhead. As shown in Figure 3, servers
must send two headers to activate NEL: NEL and Report-To.
Although exact sizes vary depending on the number of col-
lectors and the presence of non-default options, headers are
typically several hundred bytes long and are uncompressed
unless the client is using HTTP/2. Furthermore, there is cur-
rently no way for clients to tell the server whether they sup-
port NEL or already have activated NEL for an origin, so
servers typically include headers on all requests to all clients.
This could be particularly problematic when serving many
small objects, in which case NEL headers could constitute a
significant fraction of the total response size.

Service operators have several ways to curtail NEL’s
bandwidth usage. Operators could (1) only serve NEL on
a fixed fraction of responses, (2) try to predict which clients
support NEL based on their User-Agent header, or (3) only
serve NEL headers on HTTP/2 connections, under the as-
sumption that (due to NEL’s relatively young age) all clients
that support NEL also support HTTP/2.
Report upload overhead. NEL also incurs overhead when-
ever clients upload reports. Reports we receive from our

clients are 532 ± 34 bytes long; clients batch these into up-
loads that contain an average of 1.3 reports each. Clients
upload a batch of reports about an origin once per minute.

Clients pay additional bandwidth overhead for failed up-
loads: 1) Clients incur connection establishment overhead
multiple times as they retry an upload to different collectors,
and 2) each failed upload may itself generate a NEL report.

Service operators can control these overheads with sam-
pling rates in the NEL header. In particular, because most

requests succeed, the success fraction field can have a large
impact on total upload traffic. For example, over 90% of
requests to our services succeed and reports about those re-
quests do not contribute much to our ability to reason about
network outages other than by establishing proper baselines.
We set success fraction to 0.05, but success reports are still
almost 40% of our upload traffic.

5.3 Provisioning for bursty workloads

We could further reduce success fraction, but at a cost. Al-
though request failures are much rarer than successes, fail-
ures are very bursty. Major network outages can cause large
networks to send tens or hundreds of times more NEL re-
ports than they normally would. A service’s NEL collection
infrastructure must be provisioned to handle these cases or
risk data collection failing at exactly when it is most needed.

NEL client retry logic compounds this by causing clients
to retry uploads to collectors when they are overloaded. We
currently mitigate this by having our collectors always re-
turn HTTP 200, which prevents clients from retrying uploads
when the collection infrastructure is overloaded. If more ex-
plicit control is needed, the NEL specification requires user
agents to stop sending reports to a collector entirely when
that collector returns an HTTP 410 (Gone) response.

5.4 Application-layer retries

It can be tempting to compare error rates across different
kinds of applications, domains, and URLs. For example, one
might suspect that if one domain has four times the error rate
of another then something must surely be wrong with the for-
mer domain. Although this might be true, application-layer
retry logic could also explain the discrepancy.

For example, if a Web application makes a lot of AJAX
requests to example.com and retries those requests when

they fail, then the overall NEL error rate for example.com
will appear higher. This is because successive request fail-
ures are likely not independent; if a request fails once, it is
much more likely that a second request will also fail.

This logic also applies to user-initiated retries. If a par-
ticular request is more likely to elicit a retry (e.g., a browser
reload) from a user when it fails, that can also inflate the NEL
error rate. For example, a user may be more likely to retry
requests that are very important to them whereas they may
simply abandon more trivial requests.
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6 Future Work
End-to-end report encryption. As mentioned in Sec-
tion 5.1, one easy way operators can increase the likelihood
that clients can successfully upload NEL reports is to host
collectors in cloud providers. However, NEL clients cur-
rently assume that operators trust collectors and therefore do
not encrypt reports beyond uploading them using HTTPS.
If an operator does not trust a cloud, their only option cur-
rently is to use the cloud as a layer 3 proxy and terminate
HTTPS elsewhere. Future versions of NEL could encrypt
reports end-to-end (e.g., using PGP), which would decouple
collectors (which would see reports as opaque blobs) and re-
port analyzers (which could decrypt reports).
Automated triage. Individual NEL reports are rarely use-
ful; we derive utility from examining collections of reports
and identifying patterns in those collections. For example, if
we see many timeouts of requests to many IPs in a prefix, that
may indicate a problem with that entire prefix. We currently
look for problems in a manually curated set of dimensions
based on our past experience, but in the future could try to
automatically identify problematic user populations without
a priori knowledge of likely problems. Based on the “shape”
of a given problem (i.e., the distribution of different types of
NEL reports), we could attempt to automate triage of the
problem. For example, if we detect that all users in just one
ISP are having difficulty accessing a domain, then we could
automatically notify that ISP, since their network configura-
tion is a likely culprit.
Reducing overhead. Future versions of NEL might add
several mechanisms to reduce the overhead of NEL policy
headers. For example, we might let services specify NEL
policies in external URLs, using a mechanism like the pro-
posed Origin Policy [33] or Site-Wide HTTP Headers [26]
standards. By making their NEL policy object cacheable,
service providers can preclude clients from having to fetch
the policy from the external URL after every successful re-
quest. We may also let clients include request headers which
indicate when the server should send NEL policy headers,
using a mechanism similar to HTTP Client Hints [16]. This
would prevent servers from needlessly sending NEL headers
to clients that will ignore them.

7 Related Work
Earlier in Section 2, we reviewed prior work which shares
NEL’s aim of detecting and diagnosing service unreachabil-
ity. Here, we compare NEL to other systems which also rely
on client-side measurements.

There have been a number of previous client-side mea-
surement systems focused on one of the following goals:
continual collection of passive measurements [30], enabling
users to measure their network [21], or orchestration of mea-
surement campaigns [29, 25, 13]. All of these efforts aim
to gather measurements with the aim of compiling perfor-

mance distributions, characterizing middleboxes, measuring
network topologies, etc. Since none of this data needs to be
compiled in a timely manner, uploading via redundant paths
has been unnecessary in these efforts, unlike in NEL. More-
over, since the measurements gathered in these systems do
not contain application traffic, protecting user privacy has
not been a concern.

Windows Error Reporting (WER) [15] is most similar in
spirit to NEL in that it too uploads error reports gathered
at the client. WER does have to pay attention to privacy
by pruning crash reports before uploading them. However,
since uploaded crash reports are analyzed at a later point in
time [18], failover on the upload path was unnecessary in this
case too.

Odin [10] enables Microsoft to gather measurements from
their clients to their CDN. By incorporating active measure-
ment logic into client applications, Odin preempts concerns
regarding coverage associated with dedicated monitoring in-
frastructure. Like NEL, Odin too attempts to make report
uploading fault-tolerant via proxies in third-party networks.
Unlike NEL, since Odin only relies on measurements that it
actively issues, purging reports to protect privacy is not a sig-
nificant concern. Odin also cannot be used by services not
managed by Microsoft.

8 Conclusion
Despite the wide range of solutions available today to de-
tect and diagnose reachability issues over the Internet, ser-
vice operators lack an important capability: the ability to
quantify the number of clients affected by any particular out-
age. To fill this void, we presented NEL, which equips ser-
vice providers with timely collection of reachability reports
generated at the client. Incorporation of NEL’s techniques
into Chrome has proved invaluable over the last few years in
monitoring reachability to Google’s domains. Motivated by
our experience, we have proposed NEL as a W3C standard
to spur support for it in other user agents and to enable other
service providers to benefit from this capability.
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Abstract
Network verification to detect router configuration errors

typically requires an explicit correctness specification. Unfor-
tunately, specifications often either do not exist, are incom-
plete, or are written informally in English. We describe an
approach to infer likely network configuration errors without
a specification through a form of automated outlier detection.
Unlike prior techniques, our approach can identify outliers
even for complex, structured configuration elements that have
a variety of intentional differences across nodes, like access-
control lists, prefix lists, and route policies.

Given a collection of configuration elements, our algorithm
automatically infers a set of parameterized templates, model-
ing the (likely) intentional differences as variations within a
template while modeling the (likely) erroneous differences as
variations across templates. We have implemented our algo-
rithm, which we call structured generalization, in a tool called
SELFSTARTER and used it to automatically identify config-
uration outliers in a collection of datacenter networks from
a large cloud provider, the wide-area network from the same
cloud provider, and the campus network of a large university.
SELFSTARTER found misconfigurations in all three networks,
including 43 previously unknown bugs, and is in the process
of adoption in the configuration management system of a
major cloud provider.

1 Introduction

Router configuration errors are a major cause of network out-
ages [1, 17, 19, 30, 35, 37]. Accordingly, researchers have
developed a variety of techniques to automatically identify
such errors and/or to prove their absence. Techniques that
began in academic research [16, 23, 24, 29] have migrated to
industry via cloud vendors [2, 20], router vendors [3], and
startups [4]. However, these approaches have an important
practical limitation: users must provide an explicit, formal
specification of the network’s intended behaviors (e.g., reach-
ability requirements) [14, 18, 23, 29]. In practice, such spec-
ifications often do not exist, and when they do exist, they

tend to be informal, incomplete, and ambiguous. A few tools
do not require a specification [15, 16] but then are limited
to identifying generic configuration errors (e.g., forwarding
loops, duplicate IP addresses), independent of the network’s
particular policy intent.

In this paper, we develop an approach to identify network-
specific misconfigurations without a specification, through a
form of outlier detection. The bugs as outliers paradigm [13]
is natural for network configurations, since, by design, many
nodes’ configurations are intended to be highly similar to
one another (e.g., all nodes playing the same role in the net-
work). We refer to any logical unit of a configuration, such
as a BGP session configuration or access-control list, as a
segment. Given a set of configuration segments that are in-
tended to be similar, our goal is to automatically identify
likely misconfigurations and provide actionable feedback to
fix them.

Prior work in outlier detection (§ 8) for network config-
urations [12, 28] assumes that configuration segments are
intended to be exactly equivalent to one another. Such ap-
proaches can identify outliers in the simpler aspects of a
configuration, such as the set of DNS servers and the MTU
values on interfaces. However, exact equivalence is much too
strong an assumption for detecting useful outliers for com-
plex configuration segments like access-control lists and route
policies. Such segments often have a variety of intentional
policy differences across nodes (e.g., the treatment of local
hosts or services). Hence, outlier detection must be able to
distinguish intentional differences from ones that represent
likely errors.

We describe a general approach to outlier detection that ad-
dresses this limitation. Given a set of configuration segments,
our algorithm, which we call structured generalization, infers
one or more segment templates. Each template is a segment
definition that is optionally parameterized by various pieces
of data (e.g., the IP address used on a particular line). These
templates serve as a compact summary of the differences
across network policies and induce an equivalence relation on
the nodes: two nodes are considered “equivalent” if they are
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instantiations of the same template. In other words, we model
the (likely) intentional differences between nodes as varia-
tions within a template while modeling the (likely) erroneous
differences as variations across templates.

The key challenge is to infer templates that result in use-
ful equivalence relations. This requires a delicate balance
between templates that cover too few or too many configura-
tions. Parameterization is necessary to account for intentional
differences between segments. However, supporting arbitrary
parameterization would lead to overly-general templates that
mask important differences. Similarly, the ordering of some
configuration lines (e.g., consecutive permit lines in an ACL)
is semantically transparent. Hence, a single template should
admit such reordering. However, a single template that ad-
mits arbitrary reordering (e.g., arbitrary ACL permit and
deny lines) may result in masking semantic differences, thus
potentially hiding critical configuration errors.

Our structured generalization meets this challenge through
a novel two-level approach to matching segments with one an-
other. Sequence alignment is used to align blocks of segment
lines with one another, thereby admitting insertions and dele-
tions but ensuring that the order of blocks is respected. How-
ever, the similarity measure for this alignment employs bipar-
tite matching to match the lines within the blocks, thereby
admitting line reordering and also naturally inducing template
parameters wherever two matched lines differ. Our algorithm
is parameterized by the definition of blocks and the cost func-
tion for bipartite matching, which respectively control the
amount of reordering and parameterization. We also provide
instantiations of this generic algorithm for access-control lists,
prefix lists, and route policies.

We have implemented structured generalization in a tool
called SELFSTARTER. We applied SELFSTARTER to identify
configuration outliers in three different kinds of networks:
a large number of datacenters in a cloud provider network,
totaling on the order of O(10000) routers; the wide area net-
work (WAN) of a large cloud provider, containing hundreds of
routers; and the department routers of a large university cam-
pus network, containing ∼100 routers. In these networks, we
applied SELFSTARTER to three heavily-used segment types:
access-control lists (ACLs), which contain a sequence of
permit and deny lines that determine which packets to ac-
cept; prefix lists, which have a similar structure as ACLs and
are used to determine which route announcements to accept
during routing; and route policies, which flexibly match sets
of route announcements and update them in various ways
(e.g., to add a community tag).

For the datacenter, SELFSTARTER identified 1168 outliers,
of which 630 were investigated and all determined to be true
positives. For the wide area, SELFSTARTER identified 56
route policy outliers, of which 33 were investigated and all
were determined to be true positives. As SELFSTARTER
found new bugs that were previously unknown to operators,
it is in the process of being adopted in the configuration man-

agement process of the WAN. However, SELFSTARTER was
much less successful in identifying true positives for prefix
lists in the wide area; the reasons are explained in §6. For the
university network, SELFSTARTER identified 6 ACL outliers,
of which 3 were investigated and all were determined to be
true positives. SELFSTARTER’s metatemplates made it easy
for the network operators to quickly classify outliers as true/-
false positives and to remediate the actual misconfigurations.
Further, the templates that SELFSTARTER generated closely
matched any existing “golden” templates or configurations
for these networks.

We make the following contributions:
1. Automatic Template Inference: To our knowledge, we

are the first to propose the idea of automatic template
inference for network configuration segments and to
employ it to identify network misconfigurations (§2).

2. Structured Generalization: We present a novel algo-
rithm for automatic inference of parameterized templates
for network configuration segments that combines se-
quence alignment and bipartite matching in a two-level
structure to support controlled forms of parameterization
and reordering (§3 and §4).

3. Implementation: We have implemented structured gen-
eralization in a practical tool called SELFSTARTER (§5).

4. Evaluation: We describe our empirical evaluation of
SELFSTARTER on several large real-world production
networks, demonstrating that in most cases it generates
high-quality outliers with a low false positive rate (§6).

2 Using SELFSTARTER

We describe an example of SELFSTARTER’s output and its
use in finding misconfigurations in the campus network of
a large university. SELFSTARTER was given as input the
configurations of 106 building routers (one of the roles in
the network), along with a regular expression capturing the
name(s) of an access-control list (ACL) of interest used on
the routers.1 Given this input, SELFSTARTER automatically
inferred three templates, each of which is an ACL definition
that is parameterized by zero or more parameters.

Figure 1 shows SELFSTARTER’s output for this example.
Figure 1(a) shows a metatemplate, which is a concise repre-
sentation of the three inferred templates, highlighting their
commonalities and differences. A metatemplate is a sequence
of parameterized configuration lines. Capital letters like A and
B are parameters, representing values that differ across ACLs
that contain the corresponding line. The metatemplate is com-
plete: every line that appears in some ACL is represented by
a line in the metatemplate.

1We allow regular expressions instead of simple strings since some or-
ganizations append metadata to ACL names, so two ACLs with slightly
different names may still be intended to be similar.
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1 deny ip any 14.10.0.0 0.0.31.255

2 deny ip any 17.7.240.0 0.0.15.255

3 deny ip any 14.10.49.0 0.0.0.255

4 deny ip any 14.10.50.0 0.0.0.255

5 deny ip any 15.8.228.0 0.0.15.255

6 deny ip any 15.20.0.0 0.0.A.255

7 permit ip 15.B.C.D 0.0.E.F any

8 deny ip any any

(a) ACL Metatemplate

G 1
(88 ACLs)

G 2
(16 ACLs)

G 3
(2 ACLs)

(b) Groups
Figure 1: SELFSTARTER output for an ACL Regex in a university network. Groups 2 and 3 are confirmed to be anomalous.

Figure 1(b) identifies the three templates that SELFS-
TARTER inferred. Each column represents a group of nodes
that share a common template. Colors allow users to easily
see which lines of the metatemplate belong to each template.
For example, the template for the 88 ACLs in Group 1 con-
tains the metatemplate lines that are colored orange (vertical
bars) and gray (crosshatching), i.e., lines 1, 2, 6, 7, and 8.
Similarly, the template for Group 2 consists of lines 1-8, and
the template for Group 3 consists of lines 1-5, 7, and 8.

Though each of the example ACLs contains at most eight
lines, manually scanning the configurations from all 106
routers to find outliers would be onerous and error-prone.
Furthermore, partitioning the ACLs based on exact equiva-
lence would result in 53 different groups, since each building
has two routers with an identical ACL, but parameter values
differ from building to building. In contrast, SELFSTARTER’s
output makes it easy for network engineers to identify outliers
and to understand exactly how they differ from non-outliers.
Specifically, SELFSTARTER helps engineers to identify two
types of outliers, which we now describe.

Group Outliers. If SELFSTARTER produces multiple groups,
the network engineer can compare the templates for these
groups to decide whether one or more groups are misconfig-
ured. Groups that are relatively small in size are particularly
likely to be the results of misconfiguration. For example, in
Figure 1(b) the vast majority of the ACLs are in Group 1,
indicating that Groups 2 and 3 are suspect.

In fact, for this example, the network engineers have
confirmed that Groups 2 and 3 represent misconfigurations.
Group 3 erroneously omits line 6, allowing some flows that
should be denied. Further, both Groups 2 and 3 erroneously
include lines 3-5. While these lines used to be required to
prevent access to certain infrastructure servers, those servers
were phased out and the lines were supposed to be removed.
Further, some of the denied IP addresses had since been re-
assigned to servers that are intended to be accessible. Hence
these lines deny some flows that should be allowed.

Parameter Outliers. Structured configuration segments, like
ACLs, often differ across nodes. Hence, the ability to pa-
rameterize is critical for generating templates that identify
similarities without requiring exact equivalence. For each
parameter, SELFSTARTER maintains a mapping from nodes
to parameter values for the engineer to inspect.

A parameter error is present if some field in a line is sup-
posed to be constant across all the routers, but it is not. SELF-
STARTER guarantees that a parameter in some field of a line
in the metatemplate indicates that there must be at least two
different values for that field across the given configuration
segments. Thus, a parameter error is identified in the metatem-
plate by a field that contains a parameter instead of a constant.
In our example, out of the 104 ACLs that contain line 6, 94
use the mask 255 for parameter A, while 10 of them use the
mask 127. The network engineers confirmed that the 10 ACLs
are erroneous, permitting more traffic than intended.

SELFSTARTER is useful for finding errors and inconsisten-
cies in networks that are managed through manual creation
of individual node configurations. Perhaps surprisingly, we
have also found SELFSTARTER to be useful for networks that
employ forms of automation to manage configurations.

First, many network engineers employ configuration tem-
plates, with one parameterized template per role in the net-
work. This simplifies network management since node config-
urations can be created by instantiating the relevant template
with node-specific parameter values. For example, the univer-
sity network described above has a template for all building
routers. However, this network still suffered from multiple
misconfigurations identified by SELFSTARTER. The problem
is that node configurations tend to drift over time from their
original templates. Such template drift happens for several
reasons. First, operators often must manually edit a node’s
configuration, for example to quickly address a problem or to
perform maintenance of various kinds. Second, the templates
themselves get updated over time, and often operators are
relied upon to manually perform the necessary configuration
updates. Hence there is typically still considerable manual
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configuration in practice, which can easily lead to errors.
Second, some networks employ automated scripts to de-

ploy, update, and validate configurations consistently. In this
situation, SELFSTARTER is useful to protect against bugs in
the automation software itself. Automation may actually in-
crease the need for validation tools like SELFSTARTER, since
small errors in the automation can lead to large, network-wide
misconfigurations. The wide-area network (WAN) that we
analyzed employs automation scripts for various purposes,
and SELFSTARTER discovered misconfigurations that were
due to previously unknown script errors. Once reported, the
network engineers promptly confirmed and fixed the errors.

3 Structured Generalization

Our structured generalization algorithm takes as input a col-
lection of configuration segments and outputs a metatemplate
for these segments in the form shown in Figure 1. After an
overview of the key challenges, we present the generic algo-
rithm and then describe how it is instantiated for ACLs, prefix
lists, and route policies.

To provide high-quality outliers, the algorithm must be
given configuration segments that are intended to be similarly
structured. For example, it is common for routers to be par-
titioned into roles (e.g., border routers, core routers) and for
the routers within a role to be configured similarly. We rely
on the user to provide an appropriate set of configuration seg-
ments to be templated. In our experience (see §6), operators
know the roles in their network and can quickly identify the
segments that are intended to be similar, so this requirement
does not pose a large burden in practice.

3.1 Challenges
Suppose that we wish to create a metatemplate for the three
different configurations of the same ACL shown in Figure 2.
We use this example to illustrate the challenges that our algo-
rithm must address.

Consider the first two ACLs in Figure 2. Their first lines
are identical, so clearly they should be matched to one another.
However, their second lines differ — they apply to different
source IP addresses. A naive approach is to simply not match
these lines to one another. However, such an exact-matching
criterion is much too strong, as it is common for correspond-
ing ACLs to be similar but not identical across nodes, for
example to treat local addresses specially. Therefore, the
algorithm must be able to match non-identical lines to one
another. This requirement is met using parameterization. In
this example, we can introduce a parameter to represent the
third octet in the source IP address, indicating that this octet
differs in each ACL while the rest of the line is identical.

While limited parameterization is necessary, arbitrary pa-
rameterization would yield undesirable results. For example,
it would not be useful if the metatemplate matches a permit

ip access-list extended ACL1
1 deny udp host 0.0.0.0 any
2 permit tcp 17.12.11.0 0.0.0.255 any
3 deny icmp 17.12.11.0 0.0.0.255 any
4 permit ip 16.21.0.0 0.0.63.255 any
5 permit ip 17.12.11.0 0.0.0.255 any

ip access-list extended ACL2
1 deny udp host 0.0.0.0 any
2 permit tcp 17.12.13.0 0.0.0.255 any
3 deny icmp 17.12.13.0 0.0.0.255 any
4 permit ip 17.12.13.0 0.0.0.255 any
5 permit ip 16.23.0.0 0.0.63.255 any

ip access-list extended ACL3
1 deny udp host 0.0.0.0 any
2 permit ip 17.12.16.0 0.0.0.255 any
3 permit tcp 10.4.0.0 0.0.63.255 any

PERMUTATION

MATCHING 
BLOCKS

PARAMETERS

MISMATCH

ADDED LINES

Figure 2: Configurations of the ACLs matching the ACL*
regex from three different routers highlighting the challenges.

line with a deny line, as their behavior is not at all similar.
As a more subtle example, consider the last line in ACL3 in
Figure 2. This line is similar to the last line in ACL2. However,
since the two lines specify different protocols (tcp vs. ip), it
is unlikely that they are intended to serve the same function
in the ACLs. Hence, despite being similar, it may not make
sense to match these two lines. Therefore, there is a need
for an ability to specify different constraints on what can and
cannot be parameterized for different segment types.

Now consider lines 4 and 5 in ACL1 and ACL2. Line 4
in ACL1 is similar to line 5 in ACL2. To match these lines
to one another, the algorithm must support reordering of
configuration lines. Doing so requires a scoring metric to
determine which line pairs are the best matches. Such a
scoring metric also naturally handles missing lines, as in
ACL3, resulting in there being multiple options for how to
match the lines present in ACL3 to those in the other ACLs.

As with parameterization, allowing arbitrary line reorder-
ing would yield undesirable results. Specifically, reordering
a permit line and a deny line can, in general, change the
semantics of an ACL. Therefore, matching lines across ACLs
in a way that requires such a reordering can potentially mask
important differences between ACLs. Thus, as with param-
eterization, we need the ability to specify constraints on the
allowable reorderings for different segment types.

Our structured generalization algorithm, described below,
meets these challenges through a novel two-level approach.

3.2 Algorithm
The algorithm partitions segments into blocks of lines that
must not be reordered with one another and hence are matched
using sequence alignment. However, when matching two
blocks with one another, the algorithm employs bipartite
matching on their lines, thereby supporting line reordering
within blocks and also inducing parameters wherever two
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Algorithm 1 STRUCTURED GENERALIZATION

Input: S1, S2, . . . Sn - Sequence of segments to be templated
Output: Metatemplate for S1, S2, . . . Sn
1: Metatemplate T ← S1
2: for Si ←{S2, . . . ,Sn} do
3: Block sequence B1 ← GETBLOCKSEQUENCE(T )
4: Block sequence B2 ← GETBLOCKSEQUENCE(Si)
5: Alignment A← ALIGNSEQUENCES(B1 , B2 , MISMATCHSCORE)
6: T ← GENERATEMETATEMPLATE(A, B1 , B2)
7: end for
8: T ← MINIMIZEPARAMETERS(T )
9: return T

matched lines differ. The amount of reordering and parame-
terization are respectively controlled through a function that
partitions segments into blocks and a function that determines
edge weights for bipartite matching.

The structured generalization algorithm is shown in Algo-
rithm 1. The algorithm starts by treating the first segment S1
as the initial metatemplate (Line 1). It then iteratively com-
bines the current metatemplate with each remaining configura-
tion segment, one at a time, to produce the final metatemplate.

At each iteration the algorithm performs three main steps:
1. Block Generation: A block is a contiguous sequence

of lines within a segment that can be reordered with one
another. The GETBLOCKSEQUENCE function partitions
each segment into blocks (Lines 3 to 4) and is specific to
a particular segment type. For example, for ACLs the GET-
BLOCKSEQUENCE function partitions a segment into maxi-
mal sequences of lines that have the same action (permit or
deny). The block abstraction and corresponding GETBLOCK-
SEQUENCE function provide a natural way to admit reorder-
ings within a block while forbidding those across blocks.

2. Block Alignment and Line Matching: Blocks are
matched in the two block sequences B1 and B2. To prevent
cross-block reorderings, a standard sequence alignment al-
gorithm is employed at the block level (Line 5). Such an
algorithm finds a minimum-cost alignment between the two
block sequences, allowing gaps but not reorderings.

To meet the need to support within-block reorderings, our
algorithm leverages the fact that the sequence alignment al-
gorithm requires a function MISMATCHSCORE that provides
the cost of matching two blocks to one another.2 The MIS-
MATCHSCORE function is shown in Algorithm 2. The func-
tion first breaks the two blocks into lines, and then it performs
a minimum-weight bipartite matching between the two line
sequences using a standard matching algorithm, thereby sup-
porting line reordering. The function returns the score for the
best matching and also the matching itself.

The MISMATCHSCORE function uses another function,
LINESCORE, to assign weights to each edge in the bipar-
tite graph (between a pair of lines). This function is specific

2Sequence alignment algorithms also require a function to provide the
cost of introducing a gap; we use a simple metric for this cost based on the
size of the unmatched block.

Algorithm 2 MISMATCHSCORE

Input: {b1, b2} - Blocks to be matched
Output: A score for aligning b1, b2 and a matching between their lines
1: Line sequence L1 ← GETLINESEQUENCE(b1)
2: Line sequence L2 ← GETLINESEQUENCE(b2)
3: Score S, Matching M← MINIMUMWEIGHTBIPARTITEMATCHING(L1 ,

L2 , LINESCORE)
4: return S, M

to each type of segment and provides a flexible way to prevent
undesired line matchings and to prioritize among different
possible line matchings.

3. Parameterization: Once the two block sequences have
been aligned, the metatemplate is generated (Line 6). As
described above, for each pair of blocks that are aligned with
one another, the MISMATCHSCORE function also provides a
matching at the line level. For each pair l1 and l2 of matched
lines, the metatemplate includes their least general generaliza-
tion (lgg) [34]. Intuitively, this is simply a version of l1 where
a parameter is introduced in each field where it differs from l2.
For example, the lgg of the second lines in the first two ACLs
in Figure 1 is permit tcp 17.12.P.0 0.0.0.255 any,
where P is a new parameter.

As a final step, the number of parameters in the metatem-
plate is globally minimized (Line 8). Specifically, let P(S)
denote the value that parameter P takes in segment S. If two
parameters P0 and P1 in the metatemplate have the property
that P0(Si) = P1(Si) for each segment Si, then the parameters
are merged into a single parameter.

3.3 Instantiation for ACLs and Prefix Lists

This subsection discusses how the structured generalization
algorithm is instantiated for ACLs and prefix lists, which are
handled identically. Doing so requires providing specific GET-
BLOCKSEQUENCE and LINESCORE functions to the generic
algorithm above. The goal is to take advantage of the par-
ticular properties of ACLs and prefix lists to both allow for
flexible templating and ensure that generated templates are
actionable, i.e., they facilitate the identification of common
configuration errors.

The GETBLOCKSEQUENCE function partitions an ACL or
prefix list into maximal sequences of lines that have the same
action (permit or deny). This allows reorderings guaranteed
to have no behavioral effect. The notion of blocks can be
relaxed to admit more reorderings. For example, reordering a
permit line with a deny line does not change behavior when
the sets of packets that they handle are disjoint. However, in
practice, we have not encountered the need to support such
reorderings, so the extra complexity is not warranted.

The LINESCORE function for ACLs and prefix lists pro-
hibits matching lines that differ in either their action (permit
or deny) or protocol by returning an infinite weight. All other
differences (e.g., in source or destination IP addresses) are
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route-map static-to-bgp permit 10 route-map static-to-bgp permit 10
match ip address prefix-list inet match community campus
match community campus match ip address prefix-list inet
set origin igp set origin igp
set community X:65514 additive set community Y:65530 additive

route-map static-to-bgp permit 20
match ip address prefix-list bckp
set weight 0
set local-preference 150

route-map static-to-bgp permit 20 route-map static-to-bgp permit 30
match ip address prefix-list voip match ip address prefix-list voip

set weight 0
set metric 50 set metric 100

Permuted
lines

E
xt

ra
bl

oc
k

Extra command

Figure 3: Example: Two route policies.

allowed but are penalized by an increase in overall score.
Specifically, consider some field of the two lines that is al-
lowed to differ (e.g., the first octet of the source IP address). If
the lines agree on the value of this field, then the overall score
is unchanged. If one field contains a constant while the other
contains a parameter name (which must have been introduced
in an earlier iteration), then the overall score is increased by 1,
since an exact match is preferable. Finally, if the lines contain
different constant values in this field, then the overall score is
increased by 2, since a new parameter must be introduced in
order to match the lines, so either of the above two cases is
preferable. Despite its simplicity, this scoring function works
well across all of our experiments (§6).

§4 contains a detailed example of the structured general-
ization algorithm applied to the ACLs in Figure 2.

3.4 Instantiation for Route Policies
Route policies are flexible configuration segments used in sev-
eral contexts, including route redistribution filtering, policy-
based routing, and BGP policy implementation. A route
policy is defined as a sequence of route map clauses, each of
which contains an action (e.g., permit), a list of match lines,
and a list of set lines.3 The match lines provide a flexible way
to select route announcements of interest based on the route
attributes. The set lines then update matching announce-
ments (e.g., to add a particular community tag). Figure 3
shows two example route policies.

The GETBLOCKSEQUENCE function for route policies puts
each clause in one block, so the left and right route policies
in Figure 3 respectively contain two and three blocks. This al-
lows the match lines within a route map to be reordered with
respect to one another, and similarly for the set lines.4 Since
all match lines have to succeed for a route announcement to
match the route map, reordering them has no effect. In princi-
ple, reordering set lines can change behavior, specifically if
one set line reads a value that was updated by a previous set
line. In our experience, however, order dependence is rare:
we have encountered only one such situation (where the dele-

3Here we have used the syntax from Cisco IOS; the JunOS syntax from
Juniper uses different keywords but is semantically similar.

4Technically it also allows match and set lines to be reordered with one
another, but that is not syntactically legal so will never arise.

tion to a community attribute was followed by an addition).
Therefore we opted to allow reordering of set lines within
route maps to handle the common case properly.

The LINESCORE function for route policies allows two
lines to be matched in the bipartite matching only if they refer
to the same attribute of the route announcement. For example,
the match community campus line in the left route policy
of Figure 3 can only match against other match community
lines, and the following set origin igp line can only match
against other set origin lines.

With route policies it is common for match lines to refer
to prefix lists and access lists defined elsewhere in the con-
figuration. For example, the first match line in the left route
policy refers to the prefix list named inet. When scoring two
lines that refer to a named segment, we choose to perform
a shallow comparison that considers them to exactly match
if they refer to same-named segments. An alternative would
be to perform a deep analysis that ignores the names and
instead expands the definitions of these segments in order
to recursively compare them. From our experiments on a
large cloud provider network, we found that simple name
comparison works well, since the network names segments
identically across configurations. Further, if two same-named
segments do differ in their definitions, that will be caught
during metatemplating of those segments.

Figure 3 illustrates the best alignment of the two route poli-
cies, based on the GETBLOCKSEQUENCE and LINESCORE
functions described above. Specifically, the second clause
of the left policy is aligned with the third clause of the right
policy. That is the lowest-cost alignment since these route
maps match on the same-named prefix list announce and both
have a line to set the metric.

4 A Templating Example

This section describes how Algorithms 1 and 2 generate
a metatemplate for the three ACLs in Figure 2. Figure 4
shows ACL1 and ACL2 side by side; we use superscripts to
uniquely refer to each permit and deny line. The STRUC-
TURED GENERALIZATION algorithm designates ACL1 as the
initial metatemplate (Line 1) and iteratively incorporates ACL2
and ACL3 to produce the final metatemplate (Lines 2 to 7).

In the first iteration, the “Block Generation” step partitions
ACL1 (Line 3) and ACL2 (Line 4) into blocks. For ACL1, the
algorithm generates the block sequence B1 consisting of four
blocks — Da, Pa, Db, and Pb — where Da contains deny1,
Pa contains permit1, Db contains deny2, and Pb contains
permit2 and permit3. The algorithm generates an analogous
block sequence B2 for ACL2, with four blocks that we denote
Dx, Px, Dy and Py.

Next, in the “Block Alignment and Line Matching” step,
the algorithm uses the sequence alignment algorithm, which
in turn relies on the MISMATCHSCORE(b1, b2) function in
Algorithm 2. It turns out that the following alignment A is the
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denydeny1 udp hosthost 0.0.0.00.0.0.0 anyany denydeny3 udp host 0.0.0.00.0.0.0 anyany

permitpermit1 tcptcp 17.12.11.017.12.11.0 0.0.0.2550.0.0.255 anyany permitpermit4 tcptcp 17.12.13.017.12.13.0 0.0.0.2550.0.0.255 anyany

denydeny2 icmpicmp 17.12.11.017.12.11.0 0.0.0.2550.0.0.255 anyany denydeny4 icmpicmp 17.12.13.017.12.13.0 0.0.0.2550.0.0.255 anyany

permitpermit2 ipip 16.21.0.016.21.0.0 0.0.63.2550.0.63.255 anyany permitpermit5 ipip 17.12.13.017.12.13.0 0.0.0.2550.0.0.255 anyany

permitpermit3 ipip 17.12.11.017.12.11.0 0.0.0.2550.0.0.255 anyany permitpermit6 ipip 16.23.0.016.23.0.0 0.0.63.2550.0.63.255 anyany

ip access-list extended ACL1 ip access-list extended ACL2

Figure 4: Side by side comparison of ACL1 and ACL2

permit2

permit3

permit5

permit6

88

88

22

22

Figure 5: Bipartite graph of Pb and Py

deny udp host 0.0.0.0 any denydeny udp host 0.0.0.0 any

permit tcp 17.12.A.0 0.0.0.255 any

deny icmp 17.12.B.0 0.0.0.255 any

permit3,5 ip 17.12.C.0 0.0.0.255 any permitpermit7 ipip 17.12.16.0 0.0.0.255 any

permit2,6 ip 16.D.0.0 0.0.63.255 any permitpermit8 tcptcp 10.4.0.0 0.0.63.255 any

ip access-list extended ACL* ip access-list extended ACL3

Figure 6: Comparing the metatemplate for ACL1 and ACL2 with ACL3

permit3,5

permit2,6

permit7

permit8

11

∞∞
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77

Figure 7: Bipartite graph of last permit block

optimal alignment for the two sequences.

(Da,Pa,Db,Pb)

(Dx,Px,Dy,Py)

The single line in Da is matched with the single line in Dx,
and similarly for the next two pairs of blocks in the align-
ment. For the last pair of blocks (Pb, Py), the algorithm
constructs the bipartite graph shown in Figure 5 to determine
line matchings. The LINESCORE(l1, l2) function assigns the
edge weight of permit2 and permit6 as 2 since the lines dif-
fer in the second octet of the source IP, but the edge weight
of permit2 and permit5 is assigned as 8 since they differ in
four octets total across the source IP and source mask. There-
fore, the minimum weight matching (Line 3) matches permit2

with permit6 and permit3 and permit5, thereby performing
the allowable reordering.

The “Parameterization” step generates the metatemplate by
introducing parameters based on the produced sequence align-
ment and line matchings (Line 6). The resultant metatemplate
of ACL1 and ACL2 is shown on the left side in Figure 6. The
two ACLs have a common template; the line produced by
merging permit3 with permit5 is shown as permit3,5 in the
metatemplate, and similarly for permit2,6.

The next iteration incorporates ACL3. The metatemplate
from the first iteration and ACL3 are both partitioned into
blocks, and then these blocks are aligned in the same way as
described above. The best block alignment and line matching
are shown in Figure 6. As an example, the bipartite graph
constructed to calculate the MISMATCHSCORE of the last
block in each block sequence is shown in Figure 7. The edge
weight of permit3,5 and permit7 is 1 since there is already
a parameter in the metatemplate for the source IP address
octet where the two lines disagree. The LINESCORE function
gives the edge between permit3,5 and permit8 a score of ∞

since lines with different protocols cannot be matched. The
minimal-weight matching matches permit3,5 with permit7

and leaves lines (permit2,6 and permit8) unmatched. This

deny udp host 0.0.0.0 any

permit tcp 17.12.A.0 0.0.0.255 any

deny icmp 17.12.B.0 0.0.0.255 any

permit3,5,7 ip 17.12.C.0 0.0.0.255 any

permit2,6 ip 16.D.0.0 0.0.63.255 any

permit8 tcp 10.4.0.0 0.0.63.255 any

ip access-list extended ACL*

(a) Metatemplate of all three ACLs

G 1 G 2
(2 ACLs) (1 ACLs)

(b) Groups

ACL1: [A = 11, B = 11, C = 11, D = 21]

ACL2: [A = 13, B = 13, C = 13, D = 23]

ACL3: [C = 16]

(c) Router parameter value map

Figure 8: Result of templating ACL1, ACL2 and ACL3

example demonstrates the need to match blocks but also to
identify gaps due to missing/extra lines.

The resultant metatemplate for the three ACLs is shown in
Figure 8(a), the ACL groups are shown in Figure 8(b), and
the parameter-value map is shown in Figure 8(c). Finally, as
explained in §3.2, the algorithm can create more parameters
than necessary. For example, in Figure 8, parameters A, B
and C are redundant: for every router R that requires all of
these parameters, R instantiates the parameters with the same
value. Therefore, the parameter minimization step (Line 8)
merges A, B and C into a single parameter.5

5 Implementation

SELFSTARTER6 takes as input a set of router configurations
and a segment name or regular expression. It outputs a

5A degenerate case occurs when two parameters are never required to-
gether by any router; in that case we do not merge the parameters since they
are likely to be logically unrelated.

6https://github.com/SivaKesava1/SelfStarter
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metatemplate for all segments that match the given name or
regular expression, a partitioning of each segment into groups
that share a common template, and a parameter mapping for
each segment, as shown in Figure 8.

SELFSTARTER is written in Python. It uses PYBATFISH,7

a client for the BATFISH network configuration analysis
tool [16], to parse the raw vendor-specific configuration files
into BATFISH’s vendor-agnostic format. This format provides
a structured representation of the configuration data, and our
algorithm works directly on this representation. BATFISH can
parse many different configuration formats, including those
from Cisco, Juniper, and Arista, so in turn SELFSTARTER can
infer templates for segments from all of these vendors.

Our structured generalization algorithm uses a standard
algorithm for sequence alignment based on dynamic program-
ming, in order to align block sequences. Lines within a block
are matched using the Python library munkres, which im-
plements Munkres’ improvement on the standard Hungarian
matching algorithm to be (strongly) polynomial [25, 26, 33].
We also perform one major optimization over the algorithm.
Given the collection of segments to template, SELFSTARTER
first removes all duplicates from the collection — segments
whose representation in BATFISH’s format are identical to
that of some existing segment in the collection. Since there
are often subsets of the configurations in a role that are meant
to be exactly identical, this optimization can significantly im-
prove the efficiency of structured generalization by reducing
the number of calls to the expensive matching algorithms.

The order in which segments are considered for templating
can affect the final metatemplate and groups produced. Our
implementation uses a simple heuristic. The segments are
partitioned based on their line counts. The segments in the
largest partition (i.e., the partition containing the most seg-
ments) are templated first, choosing segments randomly from
that partition until it is empty. The remaining segment parti-
tions are then processed in order of decreasing partition size.
Intuitively this heuristic tries to template segments that are
likely to be outliers last, so that their impact on the templates
of other segments is minimized.

The structured generalization algorithm produces a
metatemplate in BATFISH’s vendor-agnostic format, but SELF-
STARTER must output the metatemplate in some vendor-
specific format in order to be understandable to network en-
gineers. Currently SELFSTARTER outputs metatemplates in
Cisco’s IOS format. This has been sufficient to get feedback
for our experiments (§6), since the majority of nodes use that
format, and it is similar enough to the other formats for the
engineers to understand the results. It would be straightfor-
ward to add pretty printers to output the metatemplate in other
vendor-specific formats in the future.

Given the results of the structured generalization algorithm,
SELFSTARTER finally produces the output visualization as

7https://github.com/batfish/pybatfish

shown in Figure 8. First the metatemplate lines are partitioned,
where two lines are placed in the same subset if and only if for
every segment, either both lines are in the segment or neither
is. Then a color is chosen for each subset, each inferred
template is mapped to the set of colors of its lines, and the
colored tables are created and output as HTML files.

6 Evaluation

To evaluate SELFSTARTER, we applied it to a collection of
datacenter networks from a large cloud provider, a wide area
network from the same cloud provider, and the campus net-
work of a large university. These networks differ widely in
their structure, scale, and management style. Yet SELFS-
TARTER identified misconfigurations in all of them; in two
of the three networks SELFSTARTER identified previously
unknown errors. Further, SELFSTARTER’s inferred templates
closely match any manually written templates that exist for
these networks. A dominant cause of the errors that SELF-
STARTER identified were planned configuration updates not
yet applied or inconsistently applied. We ran SELFSTARTER
on a 3.6 GHz quad-core machine with 32 GB of RAM.

Methodology: For each network, we obtained a snapshot
of the router configurations and partitioned them into roles
based on router names, sometimes with the help of the net-
work operator. We then parsed the configurations with BAT-
FISH and ran SELFSTARTER on the output once per triple,
where a triple is a tuple of a segment type (e.g., ACL), role
(e.g., the border routers), and segment name or regular ex-
pression (e.g., border-out-1). SELFSTARTER produces a
metatemplate for each triple.

Network Number
of routers

Number
of roles

Number
of triples

BATFISH
parsing time

SELFSTARTER
running time

Datacenter O(10000) O(1000) 25475 150 min 90 min

WAN O(100) O(100) 21011 14 min 20 min

Campus 106 1 6 2 min <2 min

Table 1: Networks’ parsing and running times

Table 1 shows the order of magnitude of each network in
number of routers and roles, along with the number of triples
on which we ran SELFSTARTER8 and the time for BATFISH
parsing as well as the total time to run on all triples.

We define a consistent triple to be one whose metatem-
plate consists of only a single group (i.e., all segments meet
the same template). Similarly, an inconsistent triple is one
for which SELFSTARTER generates a metatemplate with at
least two groups. We consider all inconsistent triples to be
group outliers, and we report the number of such outliers as
well as the number that are true/false positives, by comparing
with the ground truth (either a “golden” configuration or the

8For confidentiality, we cannot disclose the exact number of routers and
roles for the cloud provider.
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network operator). Perhaps surprisingly, this very coarse way
of identifying group outliers is quite effective in identifying
real errors in practice, as we show below.

We tried to automatically identify parameter outliers, where
a parameter value is considered an outlier if the value’s fre-
quency is below a threshold. We considered different thresh-
old functions – X% of max frequency, X% of average fre-
quency, etc. — and used an existing technique [28] to identify
a good threshold value by finding the point at which the num-
ber of outliers spikes as X is varied. However, in the cloud
provider networks nearly all parameter outliers that we inves-
tigated using this approach were false positives. The global
nature of the cloud provider networks makes it likely that
there will be many different parameter values, including some
used infrequently. Therefore, our experiments do not identify
parameter outliers for the cloud provider networks. For the
university network, the number of metatemplates and param-
eters was small enough for us to manually identify parameter
outliers and then validate them with the network operators.

6.1 Datacenter Networks
We applied SELFSTARTER to a large collection of production
datacenter networks, totaling tens of thousands of devices and
hundreds of millions of lines of configuration, from a cloud
provider. The datacenters are set up in a folded Clos topology
and run the eBGP routing protocol with private AS numbers,
as described in an RFC [27]. We obtained a snapshot of
device configurations from December 2018.

Ground truth: The configuration files for all network de-
vices are generated automatically from a set of hand-written
templates, which are kept up-to-date as “golden” templates.
The templates are parameterized, and a separate database
maintains the parameter values for each node (e.g., its list
of SNMP monitoring servers). Both the golden templates
and the parameters database are subject to periodic updates.
A software service automatically generates new per-device
“golden” configuration based on these updates and installs
them on the running devices. However, there are constraints
on when and how often it is appropriate to update a device.
For example, a device that is a single point of failure must be
updated only after customers that could be impacted are safely
transitioned. The software service takes these constraints into
account when updating the configurations.

We consider an inconsistent triple to be a true positive if
the configurations of at least one group of nodes that SELF-
STARTER identifies differ from their golden configurations.
Because of the software service that automates configuration
updates, we did not expect to (and indeed did not) find new
errors with SELFSTARTER. Rather, this experiment allows
us to objectively validate SELFSTARTER by comparing its
results with a well-maintained source of ground truth.9

9However, in principle SELFSTARTER can still be useful for this network,
to catch errors in the automation service itself.

Triples: Recall that a triple contains a segment type, role,
and segment name. Since each datacenter network defines
ACLs, prefix-lists, and route-policies, we include all three seg-
ment types in our triples. Each node’s name includes both the
name of the datacenter to which it belongs and its tier within
the datacenter (e.g., top-of-rack); we treat each (datacenter,
tier) pair as a unique role. Finally, for each segment type and
role, we create a triple for each unique segment name of that
type in the role, resulting in more than 20,000 triples.

Segment
Type

Consistent
Triples

Inconsistent Triples
Reported Investigated True positives

ACLs 9700 938 400 400

Prefix Lists 2954 0 - -

Route Policies 11653 230 230 230

Table 2: Datacenter Results

Results: SELFSTARTER identified 1168 group outliers
across the three segment types (Table 2), which is fewer than
5% of all triples. We investigated all 230 of the route-policy
outliers. We randomly selected 400 ACL outliers to inves-
tigate while ensuring that this subset contains at least one
triple for each different segment name that appears in the set
of outliers. All 630 outliers were determined to be true posi-
tives. Specifically, in all cases, at least one of the groups of
routers was correctly following the golden template and the
difference between configurations was due to a configuration
update had been applied to some, but not all, of the nodes
in the same role. As mentioned earlier, updates are delayed
for many reasons, so such differences are expected and are
eventually resolved by the software service.

6.2 Wide Area Network
The WAN we analyzed is one of the largest backbone net-
works in the world; it interconnects North America, South
America, Asia, Europe, Africa, and Oceania. The backbone
consists of hundreds of thousands of kilometers of fiber, hun-
dreds of routers, and millions of lines of router configuration.
The configurations for the routers are stored in a centralized
database, from which we obtained a June 2019 snapshot. All
routers are JunOS-based and use the flat-juniper configuration
language format.

Ground truth: The WAN does not employ explicit config-
uration templates. However, the network operators rely partly
on scripts to manage the network; the templates are implicit
in these scripts. Typically, each script performs one specific
task. As an example, a script configures a set of route policies
and verifies that they are consistent across a set of devices. In
effect, the equivalent of “golden” configurations described for
datacenters do not exist for the wide area. Thus, we asked the
network operators to help classify SELFSTARTER’s outliers
as true/false positives.
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Triples: We determined useful network roles using an it-
erative process. We initially divided nodes into roles based
on only their network functionality from their names — edge
routers, border routers, core routers, route reflector routers
and so on. As in the datacenter, we then created one triple for
each unique segment name, per segment type and role.

The initial results using this role scheme contained numer-
ous false positives. Upon consulting a network operator, we
immediately (within minutes) received the feedback that these
roles were too coarse-grained as well as guidance on how to
further refine the roles. The first refinement was to take into
account the operating environment of each node. For example,
two nodes, where one has external peering enabled and the
other does not, should not be considered to be in the same
role. Fortunately, we were able to utilize information in a file,
maintained by the operator, that lists the operating environ-
ment of each node. The second refinement was to take into
account geographic location. Routers have certain special-
izations based on geographical regions in order to meet local
policies such as government-specific privacy requirements.

In the end, the number of routers is only roughly 5× the
number of roles. In retrospect this makes sense for the WAN
due to its global spread. Devices necessarily have many policy
differences across regions, for instance based on local peering
relationships. Though our initial guess of roles was overly
coarse, it was trivial for the operator to immediately identify
the issue and provide refined role information.

The WAN defines ACLs, prefix lists, and route policies.
However, to date we only have feedback from the operators
about SELFSTARTER’s output for prefix lists and route poli-
cies; thus we omit ACLs from the results below.

Segment
Type

Consistent
Triples

Inconsistent Triples
Reported Investigated True positives

Prefix Lists 10042 166 138 7

Route Policies 10969 56 33 33

Table 3: WAN Results

Results: SELFSTARTER identified 222 inconsistent triples
(Table 3), which is ∼1% of all triples. All outliers that were
flagged as true positives were previously unknown and have
since been remediated by the operators. All 33 investigated
triples for route policies were verified as true positives by the
network operators. There were several different root causes.
Interestingly, one class of errors was due to bugs in the au-
tomation scripts. Specifically, a script that checks for the
existence of certain commands in a route policy acciden-
tally did not consider the order of these commands. Since
SELFSTARTER takes order into account, its metatemplate con-
tained multiple groups and hence identified ordering errors
that change the behavior and that the script missed. Another
class of errors, which caused five inconsistent triples, was
due to a spurious community tag being added to some route

announcements in a few routers.
SELFSTARTER was much less effective at finding real er-

rors in prefix lists, with only 7 out of 138 investigated triples
determined to be true positives. In 95 out of 138 triples, the
Juniper command apply-path is used to create a prefix list
by expanding an existing set of addresses defined elsewhere in
the configuration, such as the set of local IPs or NTP servers.
The seven true positives represented cases where there were
inconsistent sets of loopback interfaces defined on different
routers, and required cleanup. For the other 88 cases, the op-
erator informed us that it is expected that every router’s prefix
list will expand to a different set of IPs, and that they can
have different numbers of such addresses. For the remaining
prefix-lists, the operator informed us that those prefix-lists are
locally significant on every router and will always be different.
Since SELFSTARTER creates multiple groups whenever two
segments have different numbers of lines, this led it to report
these spurious inconsistent triples.

On the positive side, it was easy for the operator to quickly
understand SELFSTARTER’s output and identify these cases
as false positives. In fact, the total operator time to classify
all of SELFSTARTER’s results, for both prefix lists and route
policies, was under 30 minutes. Going forward, it would
be simple to allow operators to suppress errors reported for
segments/roles with well-known differences.

6.3 University Network

The university network consists of approximately 1000 de-
vices, including border routers that connect to external ISPs,
core routers that form the backbone, and building routers that
handle connectivity for individual buildings. We obtained a
snapshot from May 2019 of the network configurations.

Ground truth: Configurations in the network were created
using a mix of manual setup and templates. However, even
where templates exist, the configurations are still updated
directly over time to meet evolving policy needs, and the
original templates are not always kept up to date. Therefore,
we asked the network engineers to validate our results.

Triples: Node names include a two-letter abbreviation to
indicate the network role, for example cr for core routers and
br for building routers. We analyzed only the 106 building
routers in the network. This network role was chosen because
it is the most interesting one for our purposes – it is the only
role that contains many segments that are intended to be simi-
lar to one another. Specifically, the role contains six distinct
ACLs that appear in nearly all routers. ACLs account for
more than one third of the lines in these configurations. The
building routers do not contain prefix lists or route policies.

We ran SELFSTARTER with a regular expression for each
ACL rather than an exact name, since they have slightly dif-
ferent names in each router. Specifically, the name of each
router’s version of an ACL includes the router’s associated
building name and the date on which the ACL was created.
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ACL Pattern Number of ACLs
in largest group

Number of ACLs
in other groups

br_aux_mgmt_*_in_* 88 18
br_mgmt_*_in_* 82 24
br_wlan_mgmt_*_in_* 80 24
br_aux_mgmt_*_out_* 84 22
voip_*_in_* 61 22
voip_*_out_* 61 22

Table 4: May 2019 "br" router ACL results.

Results: Table 4 summarizes the results. For each ACL
SELFSTARTER identified one dominant group of nodes that
share a common template, along with one or more smaller
groups of nodes that have a different template. Hence non-
dominant groups potentially indicate misconfigurations.

To date the network engineers have provided feedback
on the first three ACLs in the table. In all three cases the
network engineers have confirmed that the group outliers that
SELFSTARTER identified are indeed misconfigurations: every
ACL that SELFSTARTER placed in a non-majority group has
at least one misconfiguration.

For example, the metatemplate and the groups that SELFS-
TARTER inferred for the first ACL regex in Table 4 was shown
in Figure 1. The 18 ACLs in Groups 2 and 3 include some old
deny lines. Initially, IP spaces 14.10.49.0/24, 14.10.50.0/24,
and 15.8.228.0/20 were allocated for infrastructure manage-
ment; thus access to them was restricted using deny lines
(ACL Lines 3 – 5). However, that allocation changed at some
point to 14.10.0.0/19 and 17.7.240.0/20; thus the intent was
to deny traffic to these new IP spaces (ACL Lines 1 – 2) and
remove the old deny lines. Because it is each department’s
responsibility to update the ACLs for their building routers,
some of the ACLs were not properly updated. The second and
third ACLs in Table 4 exhibited similar misconfigurations, all
of which were confirmed by the network engineers.

The network engineers have templates for these ACLs and
so we manually compared the template that SELFSTARTER
inferred for the dominant group with those templates for the
first three ACLs in Table 4. For the first two ACLs, SELFS-
TARTER’s template matches the network’s hand-written tem-
plates. Specifically, the templates are line-for-line identical,
except that in some cases SELFSTARTER’s template has a
concrete value where the golden template has a parameter.
For example, SELFSTARTER might learn that a particular line
uses IP address 1.2.3.A, since all segments agree on the first
three octet values, but the hand-written template treats the
entire IP address as a parameter.

For the third ACL, SELFSTARTER’s template for the domi-
nant group does not match the network’s template. Specifi-
cally, the network’s template has two additional permit lines
(one based on IP and another on ICMP). The network engi-
neers informed us that this template was indeed stale. This
shows that a possible use case for SELFSTARTER is to auto-

matically identify “template drift”.
Finally, we manually identified three parameter outliers in

the first ACL. Earlier we said that parameter A in line 6 (ACL
Line 6) of the metatemplate in Figure 1(a) was confirmed as a
misconfiguration. We also asked the network engineers about
parameters B and E (line 7). Both of these turned out to be
intentional differences. For example, in the case of parameter
E two building routers required more hosts than 255 and so
were allocated a larger IP space than the other routers.

7 Discussion

Our experience applying SELFSTARTER to real-world net-
works and interacting with the operators has led to several
observations, which we discuss here.

SELFSTARTER assumes that many router configurations
in a network are structurally similar to one another. Our
experiments largely bear out this assumption, since network
operators typically employ configuration templates or com-
mon guidelines to simplify the configuration of groups of
nodes. However, when this assumption does not hold, for
example in the prefix lists of the WAN that we analyzed, then
SELFSTARTER will not be as useful.

Our experimental evaluation indicates that SELFSTARTER
can be useful in different kinds of networks, which are man-
aged in different ways. Even where templates exist, they
can become stale over time as the running configurations
are updated. Even where automation exists, the automation
can be incomplete or itself be a source of errors. Because
SELFSTARTER takes as input only the final per-node configu-
rations, it provides a useful form of redundancy for validating
configurations, regardless of how they were created.

Finally, SELFSTARTER’s structural approach to outlier de-
tection means that it cannot determine the behavioral dif-
ferences between outliers and non-outliers. However, in our
experience a key advantage of SELFSTARTER is that its results
are very easy for operators to understand, precisely because a
metatemplate retains the structure of the original configura-
tion segments. All of the network operators with whom we
interacted were able to quickly decide whether an identified
outlier was a true or false positive.

8 Related Work

To our knowledge, ours is the first technique to automatically
infer templates for network configuration segments. We use
these templates to identify misconfigurations, so we compare
against other techniques for doing so.

Network Verification Network verification for the data
plane (e.g., [6,11,23,24,29,31,39]) and control plane (e.g., [7,
14–16,18]) models the semantics of the network, which allows
them to verify deep behavioral properties. However, they rely
on the user providing a formal specification, and otherwise
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are limited to checking generic properties like the absence
of loops. In contrast, SELFSTARTER leverages the structural
similarity of many router configurations to identify network-
specific errors without a specification, but SELFSTARTER
cannot map these errors to specific undesired behaviors.

Minesweeper [7] can verify functional equivalence of two
router configurations, which could be used to identify out-
liers. However, exact functional equivalence is much too
strong a criterion in general and so would lead to a high false
positive rate and make it harder to spot errors. For example,
partitioning the 88 ACLs of Group 1 from Figure 1, all of
which are correct, by functional equivalence would result in
44 groups, each of size 2. On the plus side, by modeling a
segment’s behavior Minesweeper can safely allow reorder-
ings that SELFSTARTER would spuriously flag, for example
swapping the order of unrelated permit and deny lines.

Outlier Detection for Network Configurations: El-Arini
and Killourhy [12] use a form of Bayesian inference to iden-
tify outlier configuration lines and demonstrate that the ap-
proach can find “lone commands,” lines that only appear once
in the given set of configurations. Le et al. [28] employ a data-
mining algorithm to infer association rules; configurations
that violate the rules are deemed outliers. These approaches
identify misconfigurations in settings of interface definition
and BGP sessions, including BGP route policies.

However, these approaches share two key limitations. First,
they can only find outliers based on exact equivalence. Specif-
ically, neither the approach of El-Arini and Killourhy nor the
inferred association rules of Le et al. can infer configuration
parameters, which is necessary to account for values that dif-
fer in expected ways across devices. Second, neither approach
takes into account the importance of line reorderings within
a configuration segment. Our structured generalization algo-
rithm overcomes both limitations: bipartite matching of lines
induces a natural form of parameterization, and sequence
alignment of blocks enforces ordering constraints.

Mining Configuration Policies: Benson et al. show how
to infer reachability policies for a network data plane [9]. Re-
cently, Birkner et al. show how to infer similar policies that
also take into account the control plane, ensuring that policies
hold even in the presence of failures [10]. These semantic
policies, which pertain to the end-to-end behavior of the net-
work, are orthogonal and complementary to SELFSTARTER’s
structural policies for network configurations.

Benson et al. also introduce metrics and techniques to
gauge the complexity of configurations [8]. Closest to our
work is their technique to infer network roles. Their algorithm
replaces field values with dummy entries — for example, IP
addresses with the string “IPADDRESS” — and then employs
an off-the-shelf clone detection tool [22] to find similar con-
figurations. Our structured generalization is similar in spirit
but provides several refinements necessary for template infer-
ence, including fine-grained support for parameterization and
reordering. However, their work is complementary to ours, as

we require the user to provide network role information.
Diagnosing Misconfigurations: Another line of work fo-

cuses on diagnosing the cause of misconfigurations. For
example, NetPrints [5] does this through a form of decision
tree learning, and PeerPressure [38] does this through a statis-
tical analysis. Unlike SELFSTARTER, these tools start from a
set of known or suspected misconfigurations, which the user
must supply. Further, these tools diagnose misconfigurations
in terms of a set of simple configuration features, while SELF-
STARTER leverages the full structure of the configuration
segments through template inference.

Automatic Differencing: Many algorithms exist for “diff-
ing,” for example, text comparison [32], clone detection [21,
22], and sequence alignment [36]. Our structured general-
ization algorithm combines some of these techniques in a
novel manner, based on our domain requirements. We em-
ploy bipartite matching at the line level to support permutation
and parameterization, but we introduce the block abstraction
and perform sequence alignment on blocks to restrict certain
reorderings while admitting insertions and deletions.

9 Conclusion

We presented an approach to identify misconfigurations in
complex configuration segments, such as ACLs and route
policies, without a specification. Such segments are typically
intended to be similar across nodes playing the same role, yet
they often have many intentional differences. We address this
challenge by automatically inferring templates, modeling the
(likely) intentional differences as variations within a template
and the (likely) erroneous differences as variations across
templates. Our structured generalization algorithm employs a
novel two-level matching technique to allow controlled forms
of parameterization and reordering within templates. To our
knowledge this is the first approach to automatic template
inference for network configuration segments.

Unlike the majority of work in network verification, which
reasons about the semantics of networks, SELFSTARTER’s
analysis instead reasons about the structure of their configu-
rations. While SELFSTARTER by design cannot understand
packet behavior, it makes up for this lack by providing concise,
actionable feedback directly in terms of the configurations.
As a result, it has helped operators find and fix previously
unknown network misconfigurations in three very different
types of networks: datacenter, WAN, and campus.
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Abstract
When designing, understanding, or optimizing a computer

network, it is often useful to identify and rank common pat-
terns in its usage over time. Often referred to as a network
traffic pattern, identifying the patterns in which the network
spends most of its time can help ease network operators’ tasks
considerably. Despite this, extracting traffic patterns from a
network is, unfortunately, a difficult and highly manual pro-
cess.

In this paper, we introduce tpprof, a profiler for network
traffic patterns. tpprof is built around two novel abstrac-
tions: (1) network states, which capture an approximate snap-
shot of network link utilization and (2) traffic pattern sub-
sequences,which represent a finite-state automaton over a
sequence of network states. Around these abstractions, we
introduce novel techniques to extract these abstractions, a ro-
bust tool to analyze them, and a system for alerting operators
of their presence in a running network.

1 Introduction
When designing, understanding, or optimizing a computer
network, it is often useful to identify common patterns in
its usage over time. Often referred to as a network traffic
pattern, identifying the patterns in which the network spends
most of its time can result in useful insights:

• All-to-all traffic, which might manifest as uniform utiliza-
tion of all paths between a set of application nodes, might
suggest the importance of bisection bandwidth and guide
future provisioning decisions.

• Chronic stragglers, where we expect all-to-all traffic but a
significant amount of time is spent with only a few flows
active, might suggest the need for better sharding and
mitigation techniques.

• Elephant flow dominance, in which utilization is domi-
nated by isolated path-level hotspots, might guide future
provisioning decisions.

• Finally, synchronized requests/responses, indicated by re-
peated bursts of cross-network communication all orig-
inating at a single node, might motivate changes in the
application or network architecture.

While there are a number of existing tools that capture
flow- and switch-level trends (e.g., heavy hitter analysis [68],
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Figure 1: tpprof’s visualizations for b common traffic pat-
terns and c the TPS score over time for a simple leaf-spine
topology, a. We describe these in more detail later, but in b,
states are heatmaps of common utilization patterns over the
network in a; darker is hotter. Subsequences are common tran-
sition patterns between the aforementioned states. These are
ranked by their frequency of occurrence and their cumulative
coverage of the profiled run, respectively. The subsequence
shows an all-to-all pattern: the network starts unutilized (left
state), becomes fully utilized (right state) for 10s of samples,
then returns. In c, tpprof is tracking three different known
traffic patterns. When the score of any of them crosses the
alerting threshold (twice in the figure), tpprof deduces that
the pattern has occurred in the network.

network tomography [28], or the vast array of network ana-
lytics suites on the market [1–6, 30]), identifying prevalent
network-level patterns typically requires a significant amount
of manual effort and specialized analyses. To determine the
presence of synchronized requests/responses, for instance, an
operator might need to instrument the start and stop times of
all flows in the system, correct for the time drift of different
machines, compute the cluster tendencies of the data (e.g.,
with a Hopkins statistic or heuristic), and distinguish it from
all-to-all traffic by examining the sources and destinations of
synchronized flows. To determine whether this pattern is a
particularly common one would require additional analyses.
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Our goal in this work is a tool for the automatic identifica-
tion of the most prevalent traffic patterns in a network. To that
end, we present the design and implementation of tpprof, a
network traffic pattern profiler.

Similar to traditional application profilers like gprof [27]
or Oprofile [22] that have helped programmers understand
and improve their software for decades, tpprof automati-
cally measures, extracts, and ranks common traffic patterns of
individual applications within running networks. It also facili-
tates the monitoring of known patterns so that, when specific
patterns appear in the network, the operator is informed. It
does both of these things without modifying applications and
without affecting existing network traffic—the only changes
we require are to switch monitoring configurations. Examples
of both of the above tools in action are shown in Figure 1.

Traffic patterns are, unfortunately, significantly more chal-
lenging to profile than applications. Traditional profilers ben-
efit from well-defined building blocks (functions or lines of
code) connected by well-defined call graphs. In contrast, net-
works offer little such structure: switch and link utilizations
are noisy and measured in real values (Bps); their evolution
over time is even less constrained. In the end, two different
instances of something as simple as all-to-all traffic will never
look exactly the same.

Thus, tpprof is built around two novel abstractions: (1)
network states, which capture an approximate snapshot of
a network’s device-level utilization and (2) traffic pattern
subsequences, which represent a finite-state automaton over a
sequence of network states. As hinted above, subsequences
serve as both output and input to our system: output in the case
of profiling an existing network, input in the case of specifying
a traffic pattern alert. In both cases, classification of network
states and sub-sequences is approximate and implemented
through specialized clustering techniques.

We implement and deploy tpprof to a small hardware
testbed in order to monitor and profile the traffic patterns of
real distributed applications like memcache, Hadoop, Spark,
Giraph, and TensorFlow. We demonstrate that, using tpprof,
we can find meaningful patterns and issues in their behav-
ior. Further, we demonstrate tpprof’s utility on larger and
more complex networks by profiling a trace taken from one
of Facebook’s frontend clusters. While our evaluation focuses
on data center networks (where interesting and impactful dis-
tributed applications are plentiful), tpprof and its techniques
generalize to arbitrary networks.

Specifically, this paper makes the following contributions:

• Novel abstractions for describing common traffic pat-
terns: We introduce two abstractions, network states and
traffic pattern subsequences, that together enable network
operators to easily describe and reason about common
traffic patterns. Network states capture similar configura-
tions of approximate utilization of a specific application
or set of applications running in a network. Subsequences
are then strings of states with bounded repetition that

summarize traffic pattern changes over time.
• Domain-specific algorithms for clustering and rank-

ing both network states and subsequences: Through
empirical analysis of a variety of application traffic pat-
terns, we identify and design algorithms that transform
a network trace into the building blocks of traffic pat-
terns. Specifically, we demonstrate through PCA and way-
point analysis of real application traffic that GMMs are
well-suited to capturing first-order similarities between
different network utilization patterns. In the case of subse-
quences, we create a domain-specific clustering algorithm
that extracts sequences that are both common and that
provide broad coverage of the measured network traces.

• A language and mechanism for expressing and fuzzily
matching known traffic patterns in observed traces:
Finally, to complement the above, we develop a simple
grammar for describing traffic patterns and introduce an
algorithm that automatically identifies approximate oc-
currences of known traffic patterns within network traces.
Our scoring engine outputs a confidence score that can be
used to generate alerts when known traffic patterns appear
in observed traces.

Taken together, tpprof is, to the best of out knowledge,
the first profiling tool for network-wide traffic patterns. Our
implementation is in Python and the code is open source.1

2 The Anatomy of a Traffic Pattern
We begin by introducing the definitions and abstractions on
which tpprof is built. First and foremost, we define the over-
all traffic pattern of a network as follows:

NETWORK TRAFFIC PATTERN — A function f (x, t) that rep-
resents, for an entire network N across a time span [t0, t1],
the utilization of device x ∈ N at time t0 ≤ t ≤ t1.

We also define, for each application in the network:

APPLICATION-SPECIFIC TRAFFIC PATTERN — fA(x, t),
equivalent to the network traffic pattern, but only account-
ing for a single application or set of applications, A.

For the purposes of our clustering and ranking algorithms, the
distinction is unimportant; unless otherwise specified, we use
‘traffic pattern’ to refer to both. Instead, the choice of whether
to filter by application is entirely the user’s (with the mech-
anisms in Section 4); Regardless, for a given network and
overall workload, we note that the traffic pattern of both the
network and its constituent applications will typically exhibit
predictable and repeated characteristics given a sufficiently
long measurement period. These patterns can occur over short
time spans of individual packets and flows, or over longer time
spans in the form of diurnal or weekday/weekend effects.

A contribution of this paper is the decomposition of traffic
patterns into a more convenient low-level primitive:

1https://github.com/eniac/tpprof.
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NETWORK SAMPLE — |N| real values that capture an ap-
proximate snapshot of f (x, t) for all devices x ∈ N, at a
particular time t, and averaged over the last t∆ seconds.

NETWORK SAMPLE SEQUENCE — A chain of network sam-
ples that sample f (x, t) over increments of t∆, where t∆ is
bounded by the measurement granularity of the system.

Any traffic pattern can be described in these terms. For the
network in Figure 1a, the all-to-all pattern in Figure 1b is
one example. Another is chronic stragglers, which we can
describe as a transition between two configurations, assuming
a load balanced network: (1) all switches at high utilization
and (2) only l1, l2 and s1 at high utilization; or the same but
replacing s1 with s2.

We can perform a similar exercise for all of the many (pos-
sibly application-specific) traffic patterns in the literature,
e.g., rack-level hotspots in data centers [24, 29, 44, 58], syn-
chronized behavior of distributed applications [9, 20, 67], and
stragglers in data-intensive applications [21, 41, 43]. We do
the same for the link- and switch-level traffic patterns that are
the focus of most existing automated profiling tools [1–6, 30].

While not necessarily the way these patterns were described
originally, sequences of network samples provide a general
primitive with which we can represent arbitrary patterns.

3 tpprof Design Overview
Our goal in this paper is the design and implementation of a
profiler for network and application-specific traffic patterns.
Our system, tpprof, is intended to identify traffic patterns,
rank them in prevalence, and assist network operators in mon-
itoring for their recurrence. Like other profiling tools, tpprof
is not intended to improve networks directly; rather, its fo-
cus is on assisting users with designing, understanding, and
optimizing them.

On that note, we take inspiration from traditional sampling
profilers like gprof [27], Oprofile [22], and Valgrind [48].
These profilers take an unmodified application and they peri-
odically sample system state (e.g., stack traces) to produce a
statistical profile of the target application. Early instantiations
solely sampled program counters; over time, they expanded to
capture trends in function utilization and call graph traversal.
tpprof uses a similar approach to construct profiles of

traffic patterns. To that end, network samples and sequences
of samples present an attractive substrate. In principle, a se-
quence of network samples create a statistical profile of an
application’s network utilization. Unfortunately, these sam-
ples are unlikely to ever repeat: small differences in applica-
tion processing time, workload, and background traffic can
cause substantive differences in traffic, as can slight noise
in the sampling frequency of the measurement framework.
Extracting patterns from raw samples is challenging.

Core abstractions. To address this challenge, we introduce
two additional abstractions:

Switch

Polling & Batching

Switch

Polling & Batching

Switch

Polling & Batching

Aggregator

Scoring 

Engine

Profile

Generator

Alerts Traffic Patterns

Figure 2: The overall architecture of tpprof. tpprof polls,
batches, and aggregates switch counters from the network.
These are fed into (1) a scoring engine that alerts on detection
of known patterns and (2) a profile generator that extracts
common traffic patterns from the gathered trace.

NETWORK STATE — A class of network samples defined by
a single, n-device network sample, S, and n variance val-
ues, v̄ such that S is a centroid of the multivariate normal
distribution with shape defined by v̄.

NETWORK STATE SUBSEQUENCES — A class of sequences
of network states that allows for bounded repetition of
states. A state subsequence can be represented as a regular
expression or finite state automata of network states.

Multiple network samples can be mapped to a single net-
work state and multiple sample sequences can be mapped to
a single state subsequence. These abstractions are tolerant to
noise by design: variations of link utilization from sample to
sample are smoothed by our method of extracting network
states; variations in the evolution of those samples over time
are smoothed by our method of extracting subsequences. The
precise construction of both of the above elements is described
in Sections 5.1 and 5.2.

Components. tpprof consists of three primary components:

1. A configurable sampling framework that periodically
samples the device-level utilization of a specified applica-
tion, set of applications, or the full network (Section 4).

2. A profiling tool for the automatic extraction and visualiza-
tion of the most common states and state subsequences
in the captured data (Section 5).

3. An alerting system that scores incoming traces against a
set of user-defined patterns using a fuzzy string search in
order to facilitate network automation (Section 6).

Of the above, only (1) affects the network itself; (2) and
(3) occur out-of-band. As such, the overhead of tpprof is
minimal: in the case of an non-application-specific traffic
pattern, little is required beyond an SNMP poller; application-
specific patterns only require simple iptables and switch
configuration changes on top of that.

Our current implementation leverages programmable
switches and a recently proposed network-wide monitoring
framework [63]. This provides slightly more control and ac-
curacy than an implementation based on top of traditional
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switches, but it is not a strict requirement; we detail both
approaches in Section 4.

Workflow. tpprof profiles production networks. A typical
workflow thus proceeds as follows. First, users specify three
configuration parameters: the start time a, the end time b,
and the sampling interval i. The network can optionally be
configured to track certain applications separately. Regardless,
a centralized service periodically polls the byte counters of
the entire network between time a and b, with interval i.

The centralized service will stream the data through a set
of scoring algorithms that quantify the prevalence of a set
of target patterns in the measured trace. If the score of the
trace exceeds a threshold for a given pattern, an alert will be
generated. By default, the measurement data is not stored.
This changes when users request a profile, i.e., a visualiza-
tion, of common traffic patterns in the network. In this case,
raw network samples are stored for a specified profiling dura-
tion for clustering and analysis. The resulting profile can be
used to construct additional pattern alerts or analyzed sepa-
rately. The remainder of this paper describes each of the three
components of tpprof in more detail.

4 Sampling Framework
tpprof’s sampling framework continually polls a custom set
of switch counters to capture traffic patterns. Most produc-
tion networks already implement some form of this—tpprof
can piggyback on these existing polling suites. tpprof is,
however, parameterized by at least two configuration options.

• Application filters: To profile application-specific traffic
patterns, users must provide a proper filter for the traffic
in question. In tpprof, this takes the form of iptables
rules. Any filter that can be expressed as an iptables
rule is allowed. Thus, multiple applications can be cap-
tured by a single filter and different flows from the same
application can be split into different filters by port, packet
type, etc. All traffic matching installed filters are marked
with a special set of bits, e.g., in the DSCP field of the
packet header. We term the value of these bits a filterid.

• Sampling interval: Users must also specify an interval,
t∆, at which tpprof’s sampling framework will poll all
devices in the network. This interval is common to the
entire system, so the network and all application-specific
traffic patterns will be read at this rate. Though this is a
user-defined value, we anticipate that it should be set to
the minimum value feasible for the target network without
incurring sample loss. We note that, because the raw data
is discarded after alert pattern matching, measurement
data storage capacity is not a bottleneck in tpprof.

4.1 Counter Implementation and Sampling
Network devices in a tpprof-enabled network track a set of
device-level application-specific byte counters corresponding

to the space of possible filterids. For every packet traversing
the switch, the counter associated with the specified filterid is
incremented by the size of the packet; all categories summed
will give the cumulative byte counter of the device. In this
design, the network is never reconfigured; instead, users asso-
ciate applications to filterids directly through the iptables
rules at every end host.
tpprof samples these counters at an interval of t∆ via a

recently proposed measurement primitive, Speedlight. For
brevity, we omit the details of its operation and refer inter-
ested readers to its non-channel-state variant [62, 63]. At a
high level, the primitive is that of a synchronized, causally con-
sistent snapshot of network-wide switch counters. Compared
to SNMP and other naïve poling tools, Speedlight provides
increased accuracy and low minimum sampling interval, both
of which are useful when profiling network traffic patterns.

Alternative implementations. We note that, at its core, the
only requirement of tpprof is for configurable counters and
a method to periodically poll all such counters in the network.
There are other implementations that satisfy this requirement.

For instance, most modern switches typically include sup-
port for configurable ACL entries with per-entry counters.
This approach has the advantage that it can be implemented
without end host cooperation. Class of Service (CoS) coun-
ters are similarly promising. Note that, if application-specific
tracking is not required, periodic SNMP polling is sufficient.

4.2 Batching and Aggregation
While it is possible to directly transmit polled counter results
to a centralized profiling service, the scale of measurement
data collected by tpprof necessitates careful handling. In
particular, there are two issues we must address: decreasing
overhead and handling sample loss.

For the first, to decrease the number of messages and the
overhead per sample, tpprof agents running on each network
device assemble results locally before shipping batches of
size B in the following format:

sampleBatch: {
switch: <SWITCH_ID>,
indexes: [i : <SAMPLE_ID> for i from 0 to B],
app1_bytes: [i : <BYTE_COUNT> for i from 0 to B],
...
appM_bytes: [i : <BYTE_COUNT> for i from 0 to B]}

indexes[k] and *_bytes[k] should correspond to a sin-
gle network sample. Gaps in the samples, e.g., from failures
or measurement packet drops, will manifest as gaps in the
indexes array. In these cases, tpprof attempts to interpolate
values by taking the difference between byte counters before
and after any gap and averaging the difference over the length
of the gap. If the device has rebooted or if it stays down for too
long, we will treat the device as ‘failed’ during the missing
measurement intervals. ‘Failed’ devices are excluded from
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Figure 3: Covariance explained by different numbers of PCA
dimensions. Dataset is a trace of utilization over 48 ToR
switches in a Facebook frontend cluster.

profiling and treated as wildcards during alerting. Note that
reboots are also excluded from interpolation as we do not
know how much traffic was sent before the counter was reset.

Storing data for profiling. While tpprof does not store raw
counter values in the common case, raw values are necessary
for generating profiles. Profiles are, therefore, executed on-
demand using the API:

start_profile(start, end, filter_id)

The duration of collection should be long enough to capture a
representative slice of behavior. In general, longer is better,
but this may be subject to limitations of sample storage space
and the user’s timeline. filter_id=−1 indicates the sum
of all application-specific counters.

5 The tpprof Profiling Tool
We first discuss how tpprof extracts and ranks traffic pat-
terns before delving into the scoring and alerting system in
Section 6. To that end, the output of the previous subsec-
tion (4.2) is a network sample sequence, i.e., a sequence of
n-device samples of network utilization. Using that, the out-
put of the tpprof profiler is a ranked list of network states
and a ranked list of state subsequences, as sketched by Fig-
ure 1b and demonstrated in Section 7. tpprof achieves this
using a pair of domain-specific clustering techniques that are
designed to capture first-order patterns in network traffic.

5.1 Network States

The first challenge in identifying meaningful traffic patterns
is the inherent noise present in a trace of network samples.
Small variations in workload, TCP effects, background traffic,
or any number of other factors mean that, most likely, no two
network samples will look exactly alike.

To de-noise the data, tpprof summarizes network samples
into a small number of distinct network states. We can natu-
rally frame this as a clustering problem, where the points to
be clustered are the n-element vectors representing network
samples. Clustering has been used to great effect in a number
of fields, from image segmentation to recommendation sys-
tems and anomaly detection; each of these has their own set

of challenges and associated clustering algorithms.
Network state extraction is no different in that regard. In

this work, we leverage empirical analysis of a variety of appli-
cations and traces to identify and design algorithms suited to
the domain. Applications observed include Hadoop, Giraph,
TensorFlow, Spark, Memcache, and a trace from a production
Facebook frontend cluster (see Section 7 for their details).

Dimensionality reduction. Before delving into tpprof’s
clustering algorithm, we note that, in general, networks
present a particular challenge to clustering because of their
high device counts. Profiling the ToRs of a 48-rack data center
cluster, for instance, might result in a 48-feature input vector,
which prior work has indicated might be too many dimensions
for typical distance metrics [17].

The general solution to this well known ‘curse of dimen-
sionality’ [15] is transforming the data into a lower dimen-
sional space before clustering. The simplest approach is to
cluster on only a subset of features. While this works in other
domains, it is not well suited for our problem because the load
on every device may be important. Instead, tpprof prepro-
cesses data with Principle Component Analysis (PCA) [25],
which derives a small set of features that are an orthogonal
linear transformation of the original features. Said differently,
PCA removes redundancies in the original data by creating
a new set of independent features that explain most of the
variability in the original data.

PCA is most effective when features are strongly corre-
lated, and there is good reason to believe that this is true in
our domain. Recent work [21] shows that network usage is
highly correlated, driven by the data-parallelism in distributed
systems [31, 65]. Analysis of the Facebook traffic trace ver-
ifies this: each ToR had strong and statistically significant
correlations (r > .7, p < .001) with an average of 3.25 other
ToRs. The applications we profiled showed similar results.

Figure 3 measures the effect of PCA on that data, gauged
by plotting number of PCA dimensions (i.e., features) versus
explained variance. All other traces we obtained showed sim-
ilar results. A value of 1 means that a PCA transformation
to K dimensions preserved all the information contained in
the original data with 48 dimensions. Even for this large and
complex trace, one dimension already explains over 80% of
the variance and two dimensions explain ∼85%. Striking a
balance between clustering efficacy and explained variance,
tpprof projects all data into 2D by default. This can be ad-
justed depending on the data.

Gaussian Mixture Models (GMMs) for sample classifi-
cation. tpprof clusters around typical network variations
through its use of GMMs. To demonstrate this effect, we con-
sider the 2D PCA projections described above and visualized,
for our set of profiled applications and traces, in Figure 4. To
help interpret points in the PCA space, we also plot network
load at 4 extreme waypoints along the convex hull of each
trace. We observe two general cluster shapes in the projected
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Figure 4: Network samples projected into a 2-dimensional PCA space. Cluster centers are marked with x’s. Shaped-markers map
points in the space to sample vectors [l1, l2, s1, s2] (see Figure 1a) or, for the Facebook trace, average utilization.

data: ‘rays’ and ‘clouds’.

• Rays, like the ones prominent in Figures 4a and 4c, are
typically associated with rising or falling utilization on a
set of highly correlated nodes. We can see this effect most
clearly in Figure 4c through the relationship between D,
♦, and �. Compare their utilizations with that of #.

• Clouds, like the ones in Figures 4b and 4g, typically char-
acterize samples that are similar in configuration, but sep-
arated by noise that offsets points by a small amount in all
directions of the PCA space. These clouds can be more or
less dense, depending on the coherence of the pattern. The
memcache variants, for instance, exhibit strong all-to-all
behavior, which manifests as dense clouds to the right of
the PCA plots.

Synchronized behavior and noise around a specific configu-
ration capture most of the key behavior in our empirical tests.
For these two types of clusters, GMMs are known to perform
well. GMMs model a cluster as a multivariate Gaussian with
independent parameters for each dimension of the data. This
independence provides the flexibility for clusters to fit both
types of clusters with arbitrary densities. We fit GMMs to
the data using the expectation-maximization algorithm from
Scikit-learn [51], which finds clusters that are each defined
by a centroid sample and a vector of per-feature variances.

Automated detection of cluster count. GMMs are defined
in terms of a fixed number of clusters, K. tpprof selects K
automatically by using a Bayesian Information Criteria (BIC)
score. Informally, a better (lower) BIC score means that a
specific clustering, if used as a generative function, is more
likely to produce the observed data.

We note, however, that BIC scores tend to improve as K
increases, but a high number of clusters can overfit the data.
To overcome this issue, we select a K value at which the
benefit gained by adding an extra cluster starts to diminish.

Finding such “elbows”, or points of maximum curvature, is a
common problem in machine learning and systems research.
We use the Kneedle method [56], a simple but general al-
gorithm based on the intuition that the point of maximum
curvature in a convex and decreasing curve is its local min-
ima when rotated θ degrees counter-clockwise about (xmin,
ymin) through the line formed by the points (xmin, ymin) and
(xmax, ymax). Specifically, we plot the BIC score versus K
and draw a line segment connecting the points for K = 2 and
a configured maximum of K = 10, which we set based on the
typical working set capacity of humans. The optimal value
of K is given by the point furthest from that line. Figure 5
shows the results of this analysis for the applications and
traces introduced above.

5.2 Network State Subsequences

Network state subsequences extend network states to capture
temporal patterns in traffic. Like states, subsequences require
compression of the the full sequence of samples taken during
the profiling run into a small set of representative patterns.
Unlike states, existing sequence-based clustering algorithms
are a poor fit for network traffic patterns.

To see why identifying and ranking network state subse-
quences is challenging, consider a strawman solution: take all
possible subsequences of the trace and count their frequencies,
e.g., the trace ABC would result in the following subsequences
{A×1,B×1,C×1,AB×1,BC×1,ABC×1}.

Challenge 1: (a) A5 =AAAAA versus (b) A5B . . .AAB . . .AAB
Intuitively, the interesting bit of sequence (a) is that there
is a long run of A’s. The strawman solution will instead
output that the most common subsequence and frequency
is the single state A× 5, followed by AA× 4, etc. With
the naïve approach, short subsequences will always take

1020    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-132.5K

-132K

-131.5K

-131K

BI
C 

sc
or

e 
(lo

we
r i

s b
et

te
r) Scores

elbow

(a) Hadoop terasort

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-85K

-84.5K

-84K

-83.5K

-83K

BI
C 

sc
or

e 
(lo

we
r i

s b
et

te
r) Scores

elbow

(b) Giraph

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-166K

-164K

-162K

-160K

-158K

-156K

BI
C 

sc
or

e 
(lo

we
r i

s b
et

te
r) Scores

elbow

(c) Alexnet

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-58K
-57.5K

-57K
-56.5K

-56K
-55.5K

-55K
-54.5K

BI
C 

sc
or

e 
(lo

we
r i

s b
et

te
r) Scores

elbow

(d) Spark

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-93K

-92K

-91K

-90K

-89K

-88K

-87K

-86K

BI
C 

sc
or

e 
(lo

we
r i

s b
et

te
r) Scores

elbow

(e) Memcache

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-90K

-89K

-88K

-87K

-86K

-85K
BI

C 
sc

or
e 

(lo
we

r i
s b

et
te

r) Scores
elbow

(f) Memcache imbalance

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

-60K

-50K

-40K

-30K

BI
C 

sc
or

e 
(lo

we
r i

s b
et

te
r) Scores

elbow

(g) Memcache straggler
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Figure 5: Selecting the number of clusters with Bayesian Information Criteria (BIC) and the elbow heuristic.

param stateSequence[# samples in the trace]: Full sequence of
network states.

param minFreq: The minimum number of subsequence
occurrences before it is counted as a ‘common’ subsequence.

1 Function getSubSequences:
2 for targetLength : len(stateSequence) to 2 do
3 maxStart← len(stateSequence)− targetLength
4 for start : 0 to maxStart do
5 end← start+ targetLength

/* Skip taken ranges */
6 if [start,end] contained in takenRanges then
7 continue

/* Add if it meets minFreq */
8 subseq← log10Merge(stateSequence[start:end])
9 if (# subseq observations)≥ minFreq then

10 Add (start, end) to takenRanges after loop
11 Increment subseqs[subseq]
12 else
13 Hold subseq until the threshold is reached
14 subsequenceCoverage← computeCoverage(subseqs)
15 totalCoverage← computeTotalCoverage(subseqs)
16 return subseqs, subsequenceCoverage, and totalCoverage

Figure 6: Pseudocode for finding common subsequences in a
sequence of network states.

priority; in fact, we can prove that subsequences will never
beat their member states. On the other hand, sequence (b)
demonstrates a case where it might be useful to be able
to observe the shorter subsequences. In this case, greedily
setting aside the A5 would miss the third occurrence of
AAB, which is arguably the more important pattern.

Challenge 2: XA39Y . . .XA40Y . . .XA41Y
The strawman solution also performs poorly with similar,
but not identical ranges. While it may find here that there
are long strings of As, or even that X is typically followed
by As, or that Y is typically preceeded by As, it will fail
to find that As are typically sandwiched between X and

Y . Variance in duration is common in networks, where
measurement timing, available capacity, and workload
size changes frequently.

Challenge 3: (AB)3(CDEFGHIJKLMNOPQRSTUV XY Z)2

Finally, we note that frequency itself is not an ideal
metric. Consider the above trace. The longer trace is
much rarer and more interesting, but a pure frequency
analysis will rank AB higher in importance.

tpprof’s subsequence extraction (outlined in Figure 6) ad-
dresses these challenges through a series of rules, which we
describe below. Line numbers reference Figure 6.

Only consider subsequences of length 2+ [Line 2]. While
knowing the most frequent single states is useful, the goal
of extraction is to capture patterns in traffic. We, therefore,
prune subsequences of length 1 from consideration and list
the relative frequency of single states separately.

Ignore strict subsequences [Lines 6–7]. To better summa-
rize cases like Challenge 1(a), we exclude any subsequence
that is wholly contained within another subsequence. We
implement this efficiently using two data structures: (1) taken-
Ranges, a list of existing subsequences sorted by start, and (2)
a heap-based index of the currently overlapping subsequences,
sorted by end (not shown).

Frequency threshold before a subsequence is counted
[Lines 9–13]. The above rule, applied directly, might pro-
duce a single subsequence encompassing the entire trace. To
account for this, we set a minimum frequency threshold, min-
Freq, before which the subsequence is not counted. We note
that a lower value of minFreq promotes the inclusion of longer
but sparser subsequences, while a higher value favors many,
shorter subsequences. tpprof automatically tunes this value
using the hyperopt library to optimize for ‘total coverage’, a
metric we describe at the end of this section.

Log10 repetition frequencies [Line 8]. To handle cases like
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Figure 7: tpprof profiles of memcache in three different environments (a–c), plus a profile of cross-traffic (d) active during c.

that of Challenge 2, common in network traces, we compress
repetitive states into the nearest power of 10. Doing so ignores
small differences in duration while still retaining the length’s
rough magnitude.

Coverage rather than frequency [Lines 14–15]. As evi-
denced in Challenge 3, differences in the length of subse-
quences and the ability of subsequences to overlap diminish
the utility of frequency as a way to reason about the rela-
tive importance of different subsequences. Instead, we pro-
pose coverage as a metric for ranking subsequences and for
hyperparameter-tuning minFreq. Coverage measures, for ei-
ther a single subsequence or the union of all subsequences,
the cumulative fraction of states in the stateSequence that are
included in at least one subsequence.

We encourage the reader to step through several short exam-
ples of network state sequences to see why the above rules
produce intuitive results.

5.3 Example Visualization: memcached

To tie the above discussion together and showcase the utility
of tpprof, we present to the reader several real profiles pro-
duced by the tpprof tool suite. See Section 7 for a description
of the hardware testbed used in these tests.

As a baseline, we first look at a memcache workload gen-
erated using the memaslap [7] benchmarking utility, running
in isolation. Each machine in the testbed was configured as
a memcache server with 64 B keys and 1024 B values. Gets
and sets were randomly generated from two machines—one
in each rack—with a ratio of 9:1. In this simple test, the two
memcache clients, every 6 s, will simultaneously begin per-
forming 290k get/set operations.We profiled this behavior,
collecting a total of 7000 network samples at a 50 ms interval.

Visualization structure. Figure 7a shows the tpprof profile
for this run. Like Figure 1b, heatmaps of network state are
at the top of the figure and the most common network state
subsequences are below. Each heatmap shows the centroid of
the sample clusters it represents. We add to this the state’s %

time (the amount of time the network spends in the state) as
well as its stability (the probability that the network, once in
the state, will stay there); states are sorted by % time.

For subsequences, we include the top three by coverage;
more can be generated on demand. Subsequences are depicted
with a series of points (representing states) connected by ar-
rows (denoting transitions between states). The points align
horizontally with the states they represent. Solid points ac-
companied with an O(x) label indicate an x–10x repetition of
that state. The number on the left of each subsequence is the
percentage of the trace that it covers. Note that coverage can
add to more than 100% due to overlapping subsequences.

Observations. We can observe several characteristics in Fig-
ure 7a. First, we can see that there are three states in which
the network spends its time. In the one that accounts for more
than half the trace, the network is unutilized. The other two
show different states of even leaf and even spine utilization,
indicating that the network is relatively balanced when it is be-
ing used. Note that the leaves of the network are consistently
hotter than the spines due to rack-internal communication.

As expected of the workload, the subsequences of the pro-
file show a trace composed of on-off periods of all-to-all
traffic. We can also deduce from the duration of repetitions
that the on and off periods both last on the order of seconds.
Further, we can infer that the network takes time to ramp
up/down from full utilization. This is inferred from the pres-
ence of the (L-to-R) 3rd state and the absence of direct transi-
tions between states 1 and 2. Ramp ups seem to be an order
of magnitude faster than ramp downs.
tpprof’s observations can inform network and application

changes. For example, if an operator were to see a similar
profile in practice, she could conclude that load balancing is
not an issue. Instead, a more promising approach would be
to either desynchronize traffic to spread out utilization over
time or augment the leaf switches with additional capacity.

5.3.1 Case Study #1: Detecting Load Imbalance

tpprof can also help to detect acute problems in networks. As
as a case study, we artificially introduced an ECMP miscon-
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〈signature〉 ::= { (〈target state set〉) ; 〈target sequence〉 }
〈target state set〉 ::= 〈target state〉 , 〈target state set〉

〈target state〉 ::= ~utilization

〈target sequence (P)〉 ::= 〈target state〉 | ~〈P〉
| 〈P〉∧〈P〉 | 〈P〉∨〈P〉
| 〈P〉∗ | 〈P〉{ min repetitions , max repetitions}

Figure 8: Definition of a traffic pattern signature.

figuration [69] into the network. Specifically, we configured
one of the ToR switches to only use the left spine; otherwise,
the workload is identical to Figure 7a. Figure 7b shows the
output of our tpprof’s Python-based visualizer. An operator
comparing this profile to that of the baseline would be able to
see the new and stark differences between the two spines in
all states with load, and conclude that ECMP was not doing
its job. While imbalance can also be due to elephant flows
and hash collisions, the fact that this happens consistently and
always with the same spine points to a structural issue.

5.3.2 Case Study #2: Debugging a Noisy Neighbor

As another case study, we use tpprof to debug an apparent
straggler in the system. In this experiment, we add a heavy
background flow between two hosts connected to the lower-
left leaf, l1. Figure 7c shows the profile in question. From this
profile, an operator can observe that, in 5–10% of samples,
there is a slight bias toward l1 while the other leaf is largely
un-utilized. These samples are summarized in the right two
network states. If the operator is expecting an even all-to-all
pattern like the one in Figure 7a, these states would lead her
to suspect that a task in the system is straggling.
tpprof’s ability to profile concurrent applications indepen-

dently can also help to diagnose this issue. In particular, she
can view the profile of non-memcache traffic present during
the same profiling period. In this case, tpprof would provide
her with Figure 7d, which clearly shows a competing flow or
set of flows within l1.

6 Traffic Pattern Scoring
The tpprof components described in prior sections allow
users to profile their networks and find prominent traffic pat-
terns. In many cases, after finding certain patterns, users are
likely to want to know if (or when) they occur in the future.
The tpprof traffic pattern scoring engine solves this problem.
The key challenge is designing both a language that makes
it simple for users to specify pattern signatures and also an
algorithm efficient enough to detect those patterns in realtime.

Traffic pattern signatures. A traffic pattern signature de-
scribes the approximate spatial and temporal characteristics
of a traffic pattern. It is defined by the grammar in Figure 8
and has two components.

• A set of target network states describe the approximate
samples that are likely to be observed during the traffic

Target state set S1 S2 S3

Target pattern (P) (S1)* (S3) (S1)

S1 S3 S1 accept 
state

start 
state

Figure 9: An example traffic pattern signature that detects a
synchronized all-to-all burst.

pattern. These can be generated from prior profiling runs
or manually specified.

• A target subsequence, written as a regular expression, that
estimates how the network transitions between the target
states during the pattern.

As an example, Figure 9 illustrates a signature to detect a
synchronized all-to-all burst of traffic in our example topology.
The target states in the signature are: S1, 0% utilization on all
links; S2, 50% utilization on all links; and S3, 100% utilization
on all links. The signature’s target subsequence is, thus, one
in which the network is in S1 before transitioning to S3 (i.e.,
high, all-to-all utilization) and immediately going back to S1,
signaling a quick end to the all-to-all utilization.

Scoring signatures. tpprof’s Traffic Pattern Score (TPS)
algorithm quantifies a signature’s prominence in a network
sample sequence by finding and scoring subsequences that are
similar to it. This amounts to a streaming fuzzy string search.
Figure 10 illustrates the scoring algorithm for the all-to-all
signature in Figure 9, while Figure 11 provides psuedocode
of our streaming implementation. There are three steps.

1. State matching: The TPS algorithm first maps each in-
coming sample to the most similar target state, transform-
ing the stream of samples into an intermediate stream.

2. Pattern matching: It then scans the intermediate stream
for the target subsequence using a finite automata [34].
A match occurs when the automaton reaches an accept
state, at which point it is executed in reverse to identify
the start point of the longest matching subsequence.

3. Match scoring: A match indicates that the exact target
subsequence has been found in the intermediate stream;
however, how this relates to the underlying sample stream
is unclear. Thus, the final step is to score match strength
by calculating the average similarity between the two
streams during the subsequence.

Writing signatures. There are two sources for signatures.
First, they can be automatically generated by the profiler, from
the network state subsequences it identifies. This allows the
TPS algorithm to automatically identify future reoccurrences
of events identified with the tpprof profiler.

Second, users can manually write signatures that charac-
terize the most important attributes of a traffic pattern. Since
TPSes use a fuzzy algorithm, patterns do not need to be ex-
act. Instead, they can be defined programmatically. With the
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Figure 10: Matching and scoring a sample trace against the
all-all signature in Figure 9.
1 signature← (targetStates,regexp)
2 Function TPSGrep(signature, sampleStream):
3 Initialize matchStream
4 compile_patterns(matchStream)
5 scoreBuf←[]
6 offset← 0
7 for each (sample, timestamp) in trafficPattern do
8 /* Identify most similar target state.*/
9 stateSymbol← nearestNeighbor(sample,targetStates)

10 similarity← |netState− sample|
11 /* Track scores for up to BUF_LIM of the last samples. */
12 scoreBuf.append(score)
13 if len(scoreBuf)>BUF_LIM then
14 scoreBuf.pop()
15 offset← offset+1
16 /*Invoke HyperScan to update stream. */
17 (begin,end) = scan(matchStream, stateSymbol)
18 /*If a match occurred, calculate and emit a score. */
19 if end 6= NULL then
20 emit sum(scoreBuf[begin-offset:end-offset]

Figure 11: The streaming TPS algorithm.

three primitives described below, users can express simple
but powerful signatures.
• State definition, e.g., (x:v, y:u), which defines a state

with switch x having utilization v and switch y having
utilization u.

• Set assignment, e.g., X:v. This sets every switch x ∈ X to
utilization value v.

• Iteration (over sets or switches) e.g., {(x:v) for x ∈
X}, which defines a set of states: one state for each switch
in X, defining that switch to utilization value v.

Table 1 lists five example signatures written with these
primitives. We evaluate them later in Section 7.3.

7 Implementation and Evaluation
tpprof is implemented in Python/C++ as a standalone ser-
vice that aggregates samples, profiles them, and scores them
for the presence of known traffic patterns, as described in
the previous sections. Each of the profiles shown in this sec-
tion are real outputs of tpprof, generated programmatically

Pattern Signature State Definitions

Short all-all S∗1S2{1,10}S1 {S1}=N:0.0,{Ss}=N:0.5
Long all-all S∗1S2{10,100}S1 {S1}=N:0.0,{Ss}=N:0.5

Hotspots (S1|S2|S3|S4){10,100} {S1, ..., S4}={(x:1.0, -x:0.0)
for x ∈ N}

Imbalance S∗1|S∗2 {S1,S2}={(x:1.0, -x:0.0)
for x ∈ (s1, s2)}

Stragglers (S1|S2|S3)
∗S3 {S1,S2,S3}={(l1:v, -l1:0.0)

for v ∈ (0.1,0.01,0.0)}

Table 1: Traffic pattern signatures for a leaf-spine network N
with spines (s1, s2) and leaves (l1, l2).

using Python and Matplotlib 3.1.1. The requisite counters
and polling/batching components that run on each device are
implemented in P4 and Python, respectively. Traffic Pattern
Scoring is implemented in C++ using hyperscan [34].

Hardware testbed. To verify the utility of tpprof and its
outputs, we used it to profile and score the traffic patterns of
real applications running on a small hardware testbed consist-
ing of a Barefoot Wedge100BF-32X programmable switch
connected to six servers with Intel(R) Xeon(R) Silver 4110
CPUs via 25 GbE links. The testbed is configured to emu-
late a small leaf-spine cluster like the one in Figure 1a. To
implement this network, we split the Wedge100BF switch
into 4 fully isolated logical switches. Each logical switch runs
ECMP to balance load across paths.

Application workloads. On our hardware tested, we profile
four popular networked applications, in addition to the mem-
cache evaluation in Section 5.3:

1. Hadoop running a TeraSort [11] benchmark workload
with 5B rows of data. Our Hadoop instance ran version
2.9.0 with YARN [12] on 10 mappers and 8 reducers
spread across the 5 servers (and 1 master).

2. Spark’s GraphX [13] running a connected components
benchmark workload with 1.24M vertices. We ran Spark
2.2.1 with Yarn on 5 servers (and 1 master).

3. Giraph [10] running a PageRank synthetic benchmark
workload with 120,000 vertices and 3,000 edges on each
vertex. We used 23 workers in total across our 6 servers.

4. TensorFlow running the AlexNet [38] image processing
model with 1 server managing parameters and 5 workers.
We used ILSVRC 2012 data for training.

Unless otherwise specified, these applications were run in
the presence of background TCP traffic derived from a well-
known trace of a large cluster running data mining jobs [8].
Profiles are of of the target application only.

Large-scale trace. To augment our small testbed, we also
profile packet traces of 48 Top-of-Rack switches from three of
Facebook’s production clusters: a frontend cluster, a database
cluster, and a Hadoop cluster. As the datasets are sampled
by a factor of 30,000, we divide the timestamps by 30,000
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Figure 12: Profiles of more complex applications running with realistic background traffic.

to obtain an approximate representation of a full trace. Note
that multiplying traffic by 30,000 would have given a more
accurate distribution, but resulted in artificially stable patterns.

7.1 Profiling More Complex Applications
To evaluate how tpprof’s algorithms deal with more complex
applications, we profile each of the application workloads we
introduced earlier in this section. These applications all ran in
the presence of background traffic, but we only show profiles
of the application-specific traffic.

From the resulting profiles in Figure 12, we can see that,
for the most part, the network was only lightly utilized during
these tests. In Hadoop and Spark, for instance, the network
spent > 96% of the time in a unutilized, indicating that our
particular testbed tends to be CPU-bound. Giraph is the no-
table exception, spending about equal time utilized and not.

The states reveal some interesting behavior of the appli-
cations. For Hadoop and TensorFlow, we see heavy skew in
spine utilization, but not to a consistent spine. This likely
indicates the presence of a few large flows that dominate the
network and sidestep ECMP’s flow-level balancing. We also
see in these two workloads a slight bias toward the lower-left
switch. This is due to task placement: for Hadoop, that switch
is home to the controller and name server; for TensorFlow, it
holds both the chief worker and the parameter server.

7.2 Profiling Large Production Networks
tpprof is able to profile more complex networks as well. To
demonstrate this, we run tpprof’s profiler over large-scale
traces of the combined traffic for three production Facebook
clusters and show the output in Figure 13. We separate the
states and subsequences for readability.

Figure 13a shows the profile for the frontend cluster. As
in the original paper describing this trace (Figure 5 of [54]),
we can observe a clear split between the average utilization
of cache, multifeed, and web servers. States A–C show mem-
cache at full utilization, webservers at low utilization, and
varying levels of multifeed traffic. Diverging from the origi-
nal paper, we find an additional network state (occurring 3.8%
of the time) in which the multifeed server utilizations spike.
The stability of this state indicates that this may manifest as

Signature Accuracy Precision Recall

Straggler 0.943 0.867 0.720
Imbalance 0.936 1.000 0.868

Table 2: Classification performance of signatures in the mem-
cached testbed.

small, but intense and correlated bursts. Subsequences further
show frequent transitions between states A and B, with state
C representing a short-lived relative lull in multifeed traffic.

Figure 13b and Figure 13c show the profiles of a database
and Hadoop cluster, respectively. Notably, the database cluster
is very uniform and stable across the trace, indicating a steady
workload and good load balancing properties. The Hadoop
profile is also notable in that it diverges substantially from
the averaged results in Figure 5 of the original paper, which
showed balanced utilization across racks. While the traffic
is balanced across longer timescales, our results match more
closely with their more granular findings of on-off periods
and significant variance at medium timescales.

7.3 Efficacy of the TPS Module
We showcase Traffic Pattern Scores by demonstrating how
they can help answer an important question: is my network
performing poorly due to load imbalance or stragglers? For
this, we use the straggler and network imbalance signatures
from Table 1 to diagnose issues in the memcache deploy-
ment from Section 5.3. We run the deployment in baseline,
noisy neighbor, and ECMP misconfiguration scenarios. We
then generate labeled network sample traces by manually
identifying the precise time windows during which each un-
desired behavior occurred. Finally, we run tpprof on each of
the traces and compare signature scores against ground truth
scores calculated from sample labels.

Figure 14 plots the rolling average of ground truth and
signature scores in each of the three scenarios. The signature
scores are highly correlated with the ground truth. Table 2
lists the classification performance. Both signatures have high
accuracy and precision, with slightly lower recall—a desir-
able tradeoff in an alerting system. We note that tpprof’s
per-scenario precision and recall are 100%: no signature’s
score is high in the baseline scenario; only the straggler sig-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    1025



States State Subsequences
A B C D

% time:
stability:

67.9%
91.6%

A
16.9%
51.0%

B
11.4%
65.2%

C
3.8%
95.9%

D
O(100)9.6%

cover:

O(10)
O(1)8.0%

O(10)
O(1)

O(10)
7.0%

O(1)
O(10)6.1%

O(1)
O(1)

O(10)
5.0%

O(10)

O(1)
5.0%

O(10)4.7%

O(10)

O(1)
O(1)

O(10)

4.3%

O(10)
O(1)4.0%

O(1)
O(1)

O(10)

4.0%

1
ToR

s
48

(a) Frontend Cluster

States State Subsequences
A B C

% time:
stability:

93.9%
94.6%

A
5.4%
6.7%

B
0.7%
95.2%

C
O(10)

O(10)
40.6%
cover:

O(10)

O(10)

O(1)

23.7%

O(10)

O(1)

O(10)

17.7%

O(1)

O(10)

O(1)

16.7%

1
ToR

s
48

(b) Database Cluster

States State Subsequences
A B C

% time:
stability:

46.6%
91.6%

A
30.5%
93.1%

B
22.9%
74.6%

C
O(10)31.1%

cover:

O(10)20.5%

O(1)13.5%

O(1)11.9%

O(1)11.9%

O(1)
O(1)8.6%

O(1)
O(1)8.4%

O(1)8.2%

O(1)8.1%

O(100)7.0%

1
ToR

s
48

(c) Hadoop Cluster

Figure 13: tpprof profile of three 48-rack Facebook clusters. Figures include both (1) a collection of states (A–D) organized
as a 1×48 heatmap, and (2) a list of the most common state subsequences. Letters map between the two representations.
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Figure 14: Signature scores for memcache in a baseline configuration, with noisy neighbors, and with an ECMP misconfiguration.

Filter count 0 128 256 512 1024
CPU Util (%) 0.44 0.65 0.84 1.18 1.77

Table 3: tpprof’s iptables CPU utilization.

nature’s score is high in the noisy neighbor scenario; and
only the imbalance signature’s score is high in the ECMP
misconfiguration scenario.

7.4 Overhead and Performance of tpprof

Finally, tpprof is designed for efficiency and minimal over-
head. Only two components in the sampling framework can
potentially impact traffic: sample collection and iptables
tagging. Analytically, snapshots of all ports on a 128 port
switch at a 50 ms interval generate only 0.1 Mb/s of mea-
surement data. As Table 3 shows, the iptables rules used to
construct application-specific profiles also have low overhead.

In addition to measuring overhead, we also benchmark the

Hyperscan [34]-based TPS scoring engine, which operates
online in parallel with the network. Specifically, we measure
average CPU load while operating on the Facebook trace.
Figure 15 shows single-core CPU load. It increases linearly
with number of signatures, but even in this large network with
100 signatures and a 50 ms sampling frequency, average load
for real-time processing is only around 10%.

8 Related Work

Traffic pattern inference. We note that the concept of
a network traffic pattern is not novel. Many prior works
have both identified and used traffic patterns to great ben-
efit [20, 29, 40, 54, 55, 67]. Unfortunately, these insights have
typically been limited to situations were the pattern can be
measured at a single link/device [40,55,67,68] or have been a
result of property-specific analyses, often with a large dose of
manual effort [16, 20, 29, 54]. The goal of tpprof is instead
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Figure 15: Signature vs CPU Load

the automatic extraction and ranking of common patterns
from running networks.

Network monitoring and visualization tools. We also ac-
knowledge the vast array of existing network monitoring and
visualization tools, both commercial [1–5, 26, 37, 49, 52] and
academic [30, 45, 47, 57, 61, 68]. We lack sufficient space
to discuss them all, but one worth mentioning is Cisco’s re-
cent Tetration platform [52]. Among other features, Tetration
can extract the control flow of a distributed application by
clustering hosts based on the partners with which they com-
municate. Other work has attacked similar problems [36].
To the best of our knowledge, tpprof is the first tool that
extracts common network-wide traffic patterns, rather than
application-level communication patterns or packet/flow-level
behavior. Broadly speaking, tpprof operates at a higher-level
of abstraction than these existing systems.

Wee note, however, that tpprof is compatible with some
infrastructure monitoring frameworks like Nagios [37] that
collect monitoring data from across the network. By default,
none of these provide the same abstraction as tpprof, but
many allow custom measurement configurations and plugins,
of which tpprof could be one.

Application performance profilers. Our work draws inspi-
ration from a long history of work in application performance
profiling [19, 22, 27, 46, 53, 60, 64]. Some of which are even
able to profile distributed applications [32, 33, 42, 50]. While
tpprof borrows its approach from the subset of these that
profile stochastically, it does this for traffic patterns, which
have their own unique set of challenges.

Anomaly detectors. Our alerting mechanisms are related to
prior work in anomaly detection. Compared to unsupervised
anomaly detection [18,66], however, tpprof provides a much
more accurate and fine-grained detection method. Compared
to traditional profiling-based anomaly detection in which a
user provides a ‘correct’ trace and the system determines
whether the current system diverges [39, 59], tpprof can
distinguish between different anomalies and does not require
the user to obtain a correct trace. More generally, tpprof’s
scoring engine presents a natural, declarative interface for
the user tell the detector, via traffic pattern signatures, the
approximate characteristics of relevant traffic patterns.

Clustering and compression. Finally, we note that our tech-
niques for compressing network states borrow from or are

related to the rich literature on clustering and compres-
sion [14, 23, 25, 35]. Our network state extraction techniques,
in particular, leverage existing algorithms. The contribution of
this work is instead the choice and tuning of these clustering
algorithms to the domain of network traffic pattern analysis.

9 Discussion
Other metrics. While we focus on utilization in this paper,
we note that tpprof easily extends to any metric collectable
from the network. These include simple extensions like packet
counts to more advanced metrics like buffer depth and high-
water marks. As these metrics are generally correlated with
utilization, we anticipate that tpprof’s techniques will extend
intrinsically, but we leave an exploration of these extensions
to future work.

Canned reactions. We also note that the ability of tpprof’s
scoring engine to distinguish different traffic patterns presents
an attractive substrate for building network-level reactions
to different traffic patterns. This can also work in reverse:
tpprof can identify common patterns for which operators
should pre-compute reactions. We leave an investigation of
this class of applications to future work as well.

10 Conclusion
We present tpprof, a network traffic pattern profiler. Just
as tools like gprof made it easy for programmers to design,
understand, and optimize their programs, tpprof does the
same for profiling the utilization of large networks. tpprof
leverages recent advancements in programmable networks
and network-wide measurement to capture packet-accurate
snapshots of utilization over time. On top of that, tpprof
builds user-centric profiling, visualization, and automation
tools. tpprof is agnostic to the application set running over
the network and can profile networks in situ, making it an
ideal fit for multi-tenant or transit networks. We profile several
classic applications in order to demonstrate its utility.
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Abstract
Wireless protocol design for IoT networks is an active area
of research which has seen significant interest and devel-
opments in recent years. The research community is how-
ever handicapped by the lack of a flexible, easily deployable
platform for prototyping IoT endpoints that would allow for
ground up protocol development and investigation of how
such protocols perform at scale. We introduce tinySDR, the
first software-defined radio platform tailored to the needs of
power-constrained IoT endpoints. TinySDR provides a stan-
dalone, fully programmable low power software-defined radio
solution that can be duty cycled for battery operation like a
real IoT endpoint, and more importantly, can be programmed
over the air to allow for large scale deployment. We present
extensive evaluation of our platform showing it consumes as
little as 30 uW of power in sleep mode, which is 10,000x lower
than existing SDR platforms. We present two case studies by
implementing LoRa and BLE beacons on the platform and
achieve sensitivities of -126 dBm and -94 dBm respectively
while consuming 11% and 3% of the FPGA resources. Finally,
using tinySDR, we explore the research question of whether
an IoT device can demodulate concurrent LoRa transmissions
in real-time, within its power and computing constraints.

1 Introduction

Recent years have seen development of numerous wireless
protocols for Internet of Things (IoT) devices. In addition
to longtime standards such as Bluetooth and Zigbee, a num-
ber of new protocols including LoRa, Sigfox, NB-IoT and
LTE-M have been developed that achieve long ranges of more
than a few kilometers. Due to the lack of a de-facto standard,
this space remains an active area of research for both indus-
try and academia. The rapid advances in this space however
present practical challenges for researchers: each of these
protocols requires a dedicated radio chipset to evaluate, and
these proprietary solutions often leave little room for protocol
modification. The academic community is therefore severely

Figure 1: TinySDR Hardware Platform. It has two antenna ports for
running IoT PHY and MAC protocols at 2.4 GHz and 900 MHz. This image
is the actual size of the platform on printed paper.

handicapped by the lack of a flexible platform, as even a
complex multi-radio prototype cannot adapt to evaluate new
protocols or even customize existing solutions. The current
ecosystem therefore discourages researchers from investigat-
ing the important questions that arise when scaling up IoT
networks, and more importantly taking a systematic approach
to developing new protocols from the ground up.

Ideally, we would like a large scale IoT network testbed
with the flexibility to run any IoT protocol at the PHY and
MAC layers. Further, since many of these IoT testbeds can
span hundreds of endpoints across a large campus or even
a city, we need the ability to push changes to the PHY and
MAC layers, using simple over-the-air software updates. This
would allow for performance comparisons on a single testbed
to investigate the trade-offs between existing standards as
well as showcase the advantages of an entirely new custom
protocol. Moreover, to make such a system representative
of real-world deployments, individual network nodes should
model the constraints of IoT endpoints. Specifically, these
devices should have appropriate power controls and options
to duty cycle transmissions, have an ultra-low power sleep
mode and also have interfaces to connect sensors. Finally, the
ability to run these endpoints on batteries would also allow for
flexibility of deployment in spaces without dedicated power
access, or even in mobile scenarios.

Realizing this vision however is challenging with exist-
ing software defined radio (SDR) platforms. Specifically, we
require an SDR for the flexibility of implementing differ-
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Platform Sleep
Power Standalone OTA Cost Max BW

(MHz)
ADC
(bits) Frequency Spectrum (MHz) Size (cm)

USRP E310 [7, 17] 2820 mW 3 7 $3000 30.72 12 70∼6000 6.8×13.3
USRP B200mini [6, 12] N/A 7 7 $733 30.72 12 70∼6000 5×8.3

bladeRF 2.0 [1, 17] 717 mW 3 7 $720 30.72 12 47∼6000 6.3×12.7
LimeSDR Mini [2, 3, 25] N/A 7 7 $159 30.72 12 10∼3500 3.1×6.9

Pluto SDR [18] N/A 7 7 $149 20 12 325∼3800 7.9×11.7
µSDR [9, 10, 30] 320 mW 3 7 $150 40 8 2400∼2500 7×14.5
GalioT [5, 63] 350 mW 3 7 $60 14.4 8 0.5∼1766 2.5×7

TinySDR 0.03 mW 3 3 $55 4 13 389.5∼510, 779∼1020, 2400∼2483 3×5

Table 1: Comparison Between Different SDR Platforms. Costs are based on sale prices for commercial products without a public bill of materials (BOM)
and published BOM prices for research prototypes. OTA refers to over-the-air programming capabilities.

ent PHY protocols; but there is currently no SDR platform
that meets the requirements of IoT endpoints (see Table 1).
Existing SDR systems consume large amounts of power for
transmitting data, do not support ultra-low power sleep modes,
require wired infrastructure and often a dedicated computer
and furthermore, are expensive. More importantly, none of the
existing SDR platforms support over-the-air programming to
update PHY or MAC protocols. Finally, IoT devices prioritize
power consumption and communication range and hence use
limited radio bandwidth — LoRa, Sigfox, NB-IoT, LTE-M,
Bluetooth and ZigBee use only 500 kHz, 200 Hz, 180 kHz,
1.4 MHz, 2 MHz and 2 MHz respectively. In contrast, exist-
ing SDR platforms focus on achieving high performance in
terms of bandwidth because they are tailored to the needs of
gateway devices and not for IoT endpoint devices.

Driven by a need for such a platform in our own research,
we design tinySDR as shown in Fig. 1, the first SDR platform
tailored to the needs of IoT endpoints. TinySDR provides an
entirely standalone solution that incorporates a radio front-
end, FPGA and microcontroller for custom processing, over-
the-air FPGA and microcontroller programming capabilities,
a micro SD card interface for storage, ultra-low power sleep
modes and highly granular power management options to en-
able battery-powered operation. It is capable of transmitting
and receiving in both the 900 MHz and 2.4 GHz ISM bands,
supports 4 MHz of bandwidth which is sufficient for most IoT
protocols including Bluetooth, Zigbee, LoRa, Sigfox, NB-IoT
and LTE-M, and can achieve the high sensitivities of com-
mercial solutions such as LoRa chips [24]. Additionally it
includes multiple analog and digital I/O options for connect-
ing sensors.

Designing such an SDR platform required addressing mul-
tiple systems, architecture, power and engineering challenges:

• Low-power hardware architecture. Achieving a small
form-factor, low-power SDR requires a minimalist design
approach that can satisfy the real-time needs of IoT proto-
cols and ensure flexibility at the PHY and MAC layers. To
do this, we exploit recent advances in small, low-power mi-
crocontrollers, FPGAs and flash memory to pick the right
components for our platform (see §3.1). We use a low-power
FPGA to run the PHY layer while the microcontroller runs the
MAC protocols as well as handles the I/O operations between
the FPGA, radio, memory and sensor interfaces (see §3.2).

• Efficient power management. Achieving highly granular
power management needed for battery-powered operation
and enabling ultra-low power sleep modes requires shutting
down parts of SDR when not in use. This is important for IoT
endpoints that perform duty-cycled operations and require an
ultra-low power sleep mode to achieve a long battery life. This
presents a design tradeoff between the complexity of toggling
the power of each hardware component ON and OFF, and the
cost of additional circuitry to do so. We address this challenge
in §3.3 and achieve sleep power as low as 30 µW.
• Over-the-air SDR programming. Enabling a truly scal-
able system requires the ability to update the PHY and MAC
layers on the platform, over-the-air, in a testbed deployment.
This however also introduces the challenge of over-the-air
FPGA and microcontroller programming as well as commu-
nicating these updates robustly to each device in the network
while minimizing power consumption and network utilization.
We use a dedicated wireless backbone subsystem complete
with a MAC protocol and its own flash memory to program
both the microcontroller and FPGA. Additionally we lever-
age compression and low-power decompression algorithms
to minimize network downtime during the updates (see §3.4)

Fig. 2 shows the power consumption of the radio module
in tinySDR compared to existing SDR platforms. We evaluate
tinySDR’s performance by presenting case studies of two
common protocols: LoRa and BLE beacons, and also evaluate
tinySDR in a campus-testbed of 20 devices.

• LoRa modulation and demodulation use 4% and 11% of
the FPGA resources respectively and achieve a sensitivity of
-126 dBm for 3.12 kbps, which is similar to an SX1276 [24]
LoRa chip with the same configuration. Further, the FPGA
supports real-time modulation and demodulation of all LoRa
spreading factors from 6 to 12. A LoRa MAC implementation
on our MCU is also compatible with the The Things Network.
• TinySDR supports 2.4 GHz BLE beacon transmissions.
The full baseband packet generation on the FPGA uses 3% of
its resources. The platform can perform frequency hopping
with a delay of 220 us and achieves a sensitivity of -94 dBm
which is comparable to the commercial BLE chipsets [21].

Finally, we present a case study of how the unique capa-
bilities of tinySDR could be used to answer new research
questions. Recent work has explored techniques to enable
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concurrent transmissions in LoRa networks [44, 47]; however
these solutions were prototyped on USRPs and it is unclear
if IoT endpoints can decode concurrent transmissions in real-
time within their power and resource constraints. We imple-
ment a custom decoder on tinySDR to demonstrate for the first
time that IoT endpoints can receive concurrent transmissions.

Contributions. To summarize, we design the first SDR
platform tailored to the needs of IoT endpoint devices. By
making careful design and architectural choices, our platform
achieves low power, supports IoT protocols at both 900 MHz
and 2.4 GHz and has computation resources to do on-board
processing. We present a highly granular power management
scheme that enables duty-cycled operation and 10,000x lower
power sleep modes. We also develop the first over-the-air
SDR programming capability to support PHY and MAC up-
dates in a wireless testbed. We characterize and evaluate our
platform with case studies of LoRa and BLE beacons. Finally,
we present a research exploration of concurrently receiving
multiple LoRa transmissions on our SDR platform.

Platform availability. TinySDR’s hardware schematics
and software are available at:

https://github.com/uw-x/tinysdr

2 SDR Requirements for IoT Nodes

To motivate the need for tinySDR and inform our design de-
cisions, we begin by identifying the key requirements for an
IoT endpoint. These include 1) operation in the 900 MHz and
2.4 GHz bands, 2) low power operation which requires the
ability to transition to ultra-low power sleep mode, 3) stan-
dalone operation which requires an on-board control unit to
duty cycle the radio, 4) over-the-air programming capabili-
ties for large scale IoT testbeds, 5) low cost per node, and 6)
at least 2 MHz bandwidth to support IoT protocols includ-
ing LoRa, SIGFOX, LTE-M, NB-IoT, ZigBee and Bluetooth.
While there are a number of commercially available SDRs
such as the USRP, BladeRF, Pluto SDR, and LimeSDR [1, 3,
7, 31, 36] on the market and SDR research prototypes such as
WARP, Argos, SORA, SODA, KUAR, Tick, µSDR, OpenMili,
and GalioT [40,41,43,46,55–58,60,63,64,66–68,70,72,73],
all of them are designed as gateway devices and do not satisfy
many of the above constraints. Here, we analyze the shortcom-
ings of these platforms in the context of these requirements.

• Low power operation and sleep mode. Fig. 2 compares
the power consumption of the radio module alone in existing
SDR platforms, since each one has different peripherals. We
find that most SDR platforms consume 200-300 mW in re-
ceive mode, but a lot more power when transmitting. While
this may be acceptable for a gateway devices that are more
often receiving, typical IoT endpoints do the opposite and are
required to transmit data like sensor information. Moreover,
real IoT nodes spend a very short time transmitting before
transitioning to ultra-low power sleep modes. Although IoT
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Figure 2: Radio Module Power Consumption for Each Platform. The
TX output power of each radio module is shown on top of it.

radios often consume tens to hundreds of milliwatts of power,
the key to achieving long battery lifetimes is exploiting their
microwatt power sleep modes. Table 1 shows that none of the
other platforms can benefit from duty cycling as they consume
more power in sleep mode than tinySDR does when transmit-
ting; tinySDR’s microwatt power consumption in sleep mode
enables dramatic power savings with duty cycling.
• Standalone operation and cost. We observe that some of
these platforms do not allow for standalone operation, i.e.,
they cannot be used in a testbed deployment without an exter-
nal computer. Among the ones that do, the Embedded USRP
and bladeRF cost $700 or more per unit making large scale de-
ployments expensive. µSDR allows for standalone operation
but only operates at 2.4 GHz and cannot support protocols
like LoRa. GalioT [63] uses the low cost RTL2832U radio [5]
connected to a Raspberry Pi computer which allows for stan-
dalone operation, however it does not support 2.4 GHz band.
Moreover, this platform is receiver only and cannot be used
to prototype a typical IoT node that transmits data.
• Over-the-air (OTA) programming. As shown in Table 1,
all existing SDR platforms rely on wired interfaces for pro-
gramming. This means that even if one of these systems were
connected to a battery, running an experiment would require
either tethering each one to a wired network or individually
programming them. An OTA programming system is crucial
to realizing the goal of a large scale wide area testbed as with-
out it, researchers have to decide between limiting themselves
to deployment scenarios with wired infrastructure that are not
representative of real IoT use cases or traveling over kilometer
distances to update individual nodes for each minor protocol
modification, which would be unmanageable at scale.

3 TinySDR Platform

We first describe our design choices for the different compo-
nents of our hardware shown in Fig. 3 and explain the inter-
faces between them. Next we present the power management
module which enables our ultra-low-power sleep mode. Fi-
nally, we describe our over-the-air update protocol including
decompression algorithms and over-the-air reprogramming.

3.1 Hardware Design

We seek to minimize power consumption and cost while of-
fering the flexibility of an SDR to process raw samples.
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3.1.1 Designing the Software Radio

The core block on our platform is the software-defined radio,
a programmable PHY layer that processes and converts bits
to radio signals and vice versa. We begin by explaining our
choices for the primary components of an SDR which are a
radio chip that provides an interface for sending and receiving
raw samples of an RF signal as well as an FPGA that can pro-
cess these signals in real time. We then discuss the supporting
peripherals for these devices such as a power amplifier (PA)
to boost the output of the radio chip and non-volatile memory
for the FPGA to read and write data from.

Choosing a radio chip. We begin by choosing a radio chip
as its specs define the requirements for the FPGA and other
blocks. Our primary requirement is that the chip supports
reading and writing raw complex I/Q samples of the RF signal.
As shown in Table 2, current SDR systems use I/Q radio chips
that are designed to cover a multi-GHz spectrum and have
high ADC/DAC sampling rates to support large bandwidth.
For example, the AD936x [17] series which is used in USRP
and Pluto SDR can transmit up to 3.8 GHz and supports
sampling rates as high as tens of MHz. Each of these specs
such as wide bandwidth, low noise, and high sampling rate
represent fundamental trade offs of power for performance,
and therefore these chips consume watts of power. Moreover,
some of these radio chips costs more than $100.

We instead take a different approach: identify the minimum
required specs and find a radio that supports them. Specifi-
cally, a radio chip for an IoT platform must be able to operate
in at least the 900 MHz and 2.4 GHz ISM bands, have 4 MHz
of bandwidth, while otherwise minimizing power and ideally
costing less than $10. We analyze all of the commercially
available radio chips that provide baseband I/Q samples and
list them in Table 2, where only the AT86RF215 supports all
of our requirements. In addition to its lower cost and support
for both frequency bands, it also consumes less power than
the MAX2831 and the SX1257. Moreover, the AT86RF215
integrates all the necessary blocks including an LNA, pro-
grammable receive gain, automatic gain control (AGC) and
low pass filter, ADC on the RX chain, as well as a DAC and
programmable PA with a maximum power of 14 dBm on the
TX side. In terms of noise, the RF front-end has a 3-5 dB
noise figure which is even better than the noise figure of the
front-end used in Semtech SX1276 LoRa chipset, suggesting
it should be able to achieve long range performance. It con-
sumes 5x less power than the radios used on other SDRs as
shown in Fig. 2 and has built in support for common mod-
ulations such as MR-FSK, MR-OFDM, MR-O-QPSK and
O-QPSK that can save FPGA resources or power by bypass-
ing the FPGA entirely.

Picking an FPGA. Now that we have chosen a radio chip,
the next step in our design process is to find an FPGA that
can interface with it. Aside from minimizing power and cost,
we would also like to maintain a small form factor and short

Table 2: Existing Off-the-Shelf I/Q Radio Modules.
I/Q Radio Frequency (MHz) RX Power (mW) Cost

AD9361 [17] 70∼6000 262 $282
AD9363 [18] 325∼3800 262 $123
AD9364 [12] 70∼6000 262 $210

LMS7002M [25] 10∼3500 378 $110
MAX2831 [10] 2400∼2500 276 $9

SX1257 [35] 862∼1020 54 $7.5

AT86RF215 [20]
389.5∼510
779∼1020
2400∼2483

50 $5.5

wake-up time. Although flash-based FPGAs are capable of
fast wake-ups, they are more expensive compared to SRAM-
based FPGAs with the same number of logic elements. We
use LFE5U-25F [33] FPGA from Lattice Semiconductor for
baseband processing which is SRAM-based and has 24k logic
units. This chip provides a greater number of look up tables
(LUTs) than the FPGAs on the Pluto SDR and LimeSDR
mini, and at a lower cost. Moreover, it is significantly cheaper
than the flash-based FPGA used in uSDR [56].

Adding a power amplifier (PA). AT86RF215 only sup-
ports a maximum transmit power of 14 dBm which is tradition-
ally used by IoT radios but is less than the 30 dBm maximum
allowed by the FCC. To provide flexibility, we add optional
PAs. Given the high cost and power requirements of wide-
band PAs that could operate at both 900 MHz and 2.4 GHz
we instead select two different chips: the SE2435L [23] for
900 MHz and SKY66112 [28] for 2.4 GHz. Our 900 MHz
PA supports up to 30 dBm output power, and the 2.4 GHz PA
can output up to 27 dBm. Both chips also include an LNA for
receive mode and a built in circuit to bypass either of these
components for power savings. In receive mode, we can either
pass the incoming signal through the LNA and then connect
it to the radio or completely bypass the LNA and connect
the signal directly. The maximum bypass current is 280 uA
and the sleep current of both power amplifiers is only 1 uA.
In transmit operation we can pass the signal through the PA
and amplify the signal or turn off the PA and pass the signal
directly to the antenna for transmit power < 14 dBm.

Picking the microcontroller. We use a microcontroller to
control all the individual chips and toggle all of these power
saving options. In addition to having a low sleep current
it must be able to support multiple control interfaces, have
enough memory resources to support IoT MAC protocols and
also be able to run a decompression algorithm for our OTA
system. We select the MSP432P401R [27] a 32-Bit Cortex
M4F MCU which meets all of our requirements with less
than 1 uA sleep current, has 64 KB of onboard SRAM and
256 KB of onboard flash memory. In addition to controlling
the I/Q and backbone radio parameters, and reprogramming
of the FPGA, the MCU performs the important function of
power management. It is responsible for toggling ON and OFF
the power amplifiers, as well as performing power-gating by
turning ON and OFF different voltage regulators in §3.3.
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Figure 3: TinySDR System Block Diagram. A complete system diagram showing all of the components of tinySDR. This includes the software radio
consisting of the radio, amplifiers, and FPGA, OTA programmer which uses a LoRa radio and flash memory to store programs, and a power managment system
with the flexibility to turn off power consuming components. Each of these subsystems are controlled in software running on the MCU.

3.1.2 Designing OTA Update Hardware

While the above discussion enables a small, low power, low
cost SDR for easy deployment, FPGAs and microcontrollers
typically require a wired interface for reprogramming. There
are two options for enabling wireless reprogramming: i) using
the existing I/Q radio and FPGA and ii) using a dedicated
wireless communication chipset. We chose the second option
since it provides a fail-safe mode for updating the firmware.
Moreover, a dedicated wireless communication chipset would
consume less power compared to the first option.

OTA wireless chipset. A key question when designing
an OTA update system is, what wireless protocol should be
used? To support wide area networking, we focus on proto-
cols designed for long range operation. We analyze all of the
available long range protocols and select LoRa for our OTA
system for a number of reasons. First, LoRa receivers have a
high sensitivity which enables kilometer ranges. LoRa also
support a wide range of data rates from 11 bps to 37 kbps
which allows us to trade off rate for range depending on the
deployment scenario. Moreover, LoRa is becoming more and
more wide-spread in the US. We use the SX1276 Semtech
chipset [24] which is available for $4.5, minimizing cost.

Flash Memory. Our FPGA is SRAM based and does not
include on-chip non-volatile memory for storing program-
ming data. We instead store the firmware bitstream on a sepa-
rate flash memory chip. The FPGA programming bitstream
is 579 KB and the MCU programs require a maximum of
256 KB. We chose the MX25R6435F flash chip with 8 MB
memory. Although this is far more than the size required, it
allows tinySDR to store multiple FPGA bitstreams and MCU
programs to quickly switch between stored protocols without
having to re-send the programming data over the air.

3.2 Interfacing Between Blocks
3.2.1 Reading and Writing I/Q Samples

The AT86RF215 radio chipset samples baseband signals at
4 MHz with a 13 bit resolution for both I and Q. Operating at

Figure 4: I/Q Word Structure Used by I/Q Radio.

the full rate therefore requires an interface which can support
a throughput of over 100 Mbps without consuming a large
amount of power to meet our design objectives. To do this we
use low-voltage differential signaling (LVDS) [4] which is a
high-speed digital interface that reduces power by using lower
voltage signals but maintains good SNR by sending data over
two differential lines to reduce common mode noise.

Receiving serial I/Q data. Our system communicates over
LVDS to the FPGA in serial mode to transfer I/Q data with
a physical interface consisting of 4 I/O lines, pairs of which
are used to send data and clock signals. The radio outputs
32-bit serial data words at 4 Mwords/s using the format in
Fig. 4. Each data word starts with the I_SY NC pattern which
indicates the start of the I sample which we use for synchro-
nization. Next, it has 13 bits of I_Data followed by a control
bit. The same format follows for Q, beginning with a syn-
chronization pattern Q_SY NC and then 13 bits for Q_Data
and the final control bit. The required 128 Mbps data rate is
achieved using a 64 MHz clock provided by the radio oper-
ating at double data rate by sampling at both the rising and
falling edges of the clock. We implement an I/Q deserializer
on the FPGA to read the data which samples the input at both
the rising and falling edges of the clock, uses the I_SY NC and
Q_SY NC to detect the beginning of the data fields and loads
the I and Q values into 13 bit registers for parallel processing.

Transmitting I/Q samples. In TX mode we need to do
the opposite of the above sequence to convert from the paral-
lel representation on the FPGA to a serialized LVDS stream.
To do this, we use the FPGA’s onboard PLL to generate the
64 MHz clock signal. Next to create our double data rate out-
put signal that varies on both the positive and negative edges
of this clock signal using a dual-edge D flip-flop design [48]
resulting in the desired 128 Mbps data rate. We use this to
generate the same I/Q word structure described above.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    1035



3.2.2 Memory Interfaces

After reading the raw data from the LVDS lines using the I/Q
deserializer described above, we store the samples into a FIFO
buffer implemented using the FPGA’s embedded SRAM. We
implement a simple memory controller to write data to the
FIFO which generates the memory control signals and writes
a full data word on each cycle. The embedded memory can
run at rates significantly greater than 4 MHz meaning it is
not a limiting factor for real-time processing. The SRAM
can buffer up to 126 kB. The data stored in the FIFO can
then be sent to signal processing blocks to implement filters,
cryptographic functions, etc. or to non-volatile flash memory.
For flash memory, we use a micro SD card which enables
us to collect raw I/Q data and analyze the spectrum. The
micro SD card supports two modes: native SD mode and
standard SPI mode. In native SD mode, micro SD card’s
interface uses 4 parallel data lines to read/write data to/from
the micro SD card. This mode supports a higher data rate
compared to the SPI mode which only supports a 1-bit serial
interface. However, we implement SPI mode since it supports
the 104 Mbps data rate which we need to write data in real
time. This allows us to re-use the same, simpler SPI block for
multiple functions and save resources on the FPGA.

3.2.3 RF, Control and Sensor Interfaces

The AT86RF215 provides differential RF signals for both
900 MHz and 2.4 GHz and has an integrated TX/RX switch
for both. At 2.4 GHz, the differential signal is transformed to a
single-ended output using the 2450FB15A050E [8] balun and
fed to the SKY66112 [28] front-end with the bypassable LNA
and PA. Finally, after passing through a matching network,
the 2.4 GHz signal is connected to an SMA output.

On the 900 MHz side, the differential output of the
AT86RF215 is connected to 0896BM15E0025E [32] to con-
vert it to a single-ended output. This must be shared between
the backbone radio’s two separate RF paths for transmit
and receive and AT86RF215’s 900 MHz single-ended sig-
nal. We choose between them using a ADG904 [19] SP4T RF
switch. The single port side is connected to the SE2435L [23]
900 MHz front-end which is similar to the 2.4 GHz front-
end. The MCU communicates with the I/Q radio, backbone
radio, FPGA and Flash memory through SPI which it uses
to send commands for changing the frequency, selecting the
outputs, etc. It also has control signals for FPGA program-
ming, 900 MHz and 2.4 GHz front-end modules, RF switch
and voltage regulators for active power control. TinySDR sup-
ports common digital interfaces like SPI and I2C to communi-
cate with digital sensors and two analog to digital converters
(ADC) for interfacing with analog sensors. We leverage the
internal flash memory of the MCU (≈ 256 kB) and external
flash memory (≈ 8 MB) to store sensor data.

Table 3: Power Domains in TinySDR.
Component Voltage [V] Power Domain

MCU 1.8V V1
FPGA 1.1, 1.8, 2.5, Vlvds V2, V3, V4, V5

I/Q Radio 1.8< V5 <3.6 V5
Backbone Radio 1.8< V5 <3.6 V5

sub-GHz PA 3.5V V6
2.4 GHz PA 1.8, 3.0 V3, V7

FLASH Memory 1.8 V3
Micro SD Memory 3.0 V7

3.3 Power Management Unit

Next, we present the design of our power management unit
which seeks to maximize the system lifetime when running off
of a 3.7 V Lithium battery. To enable long battery lifetimes we
need to be able to duty-cycle our system and allow the MCU
to toggle each of the above blocks ON and OFF when they
are not in use. Further, different components have different
supply voltage requirements and we wish to provide each one
with the lowest voltage possible to minimize power usage.

Ideally we would want separate controllable voltage regula-
tors for each component in the system. However, having many
different regulators with individual controls significantly in-
creases the complexity, number of components, and price.
Moreover, it complicates the PCB design by requiring many
control signals and a multitude of power planes. Therefore,
there exists a trade-off between the granularity of power con-
trol and the price/complexity of a design. We outline the
supply voltages needed for each component and the power
domain supporting it in Table 3. Below, we show how we
group components to balance power and complexity.

• Power domain V1 (MCU). Since the MCU is the central
controller that implements power management, it needs to
be powered at all times and therefore has its own power do-
main. To minimize its sleep current we need to use a voltage
regulator with a low quiescent current. Although switching
voltage regulators have higher conversion efficiency when
active, they also have high quiescent currents so we instead
select the TPS78218 linear regulator.
• Power domains V2, V3, V4, V6 and V7. These power
domains provide power to blocks such as the FPGA, memory
blocks, and PAs. Since these components can all be turned off
when not operating, the voltage regulators for these domains
should have low shut-down current during sleep and high
efficiency when active. We therefore choose the TPS62240
which has a shutdown current of only 0.1 uA. It is highly
efficient and is rated to support the current draw required by
all components except the 900 MHz PA. To support this PA at
its maximum output power we use the TPS62080 switching
regulator which supports the required current.
• Power domain V5. V5 is a shared power domain for I/Q
radio, backbone LoRa radio and FPGA I/O bank. This power
domain is initially set to 1.8V to minimize power consump-
tion, however components such as the radio chips can require
higher voltage to achieve maximum output power. Therefore,
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Figure 5: LoRa Packet Structure.

in addition to high efficiency and low shut-down current like
the others, this domain should be programmable. To do this,
we use Semtech SC195ULTRT [15] which provides an ad-
justable output that can be set from 1.8 V to 3.6 V.

3.4 Over-the-Air Programming protocol

OTA AP and MAC protocol. To update a network of
tinySDR devices, we use an AP with a LoRa radio to com-
municate with each device sequentially. In order to propagate
updates throughout a testbed or to specific tinySDR nodes,
we design a MAC layer for the LoRa PHY. We pre-program
a timer on the MCU to periodically turn off the FPGA and
switch from IQ radio mode to the backbone radio to listen for
new firmware updates. If there is an update, the AP sends a
programming request as a LoRa packet with specific device
IDs indicating the nodes to be programmed along with the
time they should wake up to receive the update. Upon pro-
cessing this packet and detecting its ID, the tinySDR node
switches into update mode and sends a ready message to the
AP at the scheduled time. Then, the AP transmits the firmware
update as a series of LoRa packets with sequence numbers.
Upon receiving each packet, the tinySDR node checks the
sequence number and CRC. For a correct packet it writes the
data to its flash memory and transmits an ACK to indicate
correct reception. In the case of failure no ACK is sent and the
AP re-transmits the corrupted packet after a timeout. After
sending all the firmware data, the AP sends a final packet
indicating the end of firmware update which tells the tinySDR
node to reprogram itself and switch back to normal operation.

To maintain the OTA timing, we use a programmable
timer that operates with a 20 PPM low-frequency crystal
oscillator source. This will result in timing drift between the
tinySDR node and the AP over time. However, with each
update we compensate the error by sending the correct time
to the tinySDR.

Compressing and decompressing the bitstream. Our
system compresses data to reduce update times, however this
compression must be compatible with the resources avail-
able on tinySDR. We choose the miniLZO compression
algorithm [34], which is a lightweight subset of the Lem-
pel–Ziv–Oberhumer (LZO) algorithm. Our implementation
of miniLZO only requires a memory allocation equal to the
size of the uncompressed data. We perform compression on
the AP. The compression ratio of bitstream file varies based
on the content of the bitstream, and in the worst case the com-
pressed file could have almost the same size of the original
file. This would require a maximum memory allocation of
579 kB which we cannot afford on a low-cost MCU. Instead,
we first divide the original update file into blocks of 30 kB
that will fit in the MCU memory. Then we compress each

(a) LoRa Modulator

(b) LoRa Demodulator

Figure 6: LoRa Implementation Block Diagrams.

block separately and transmit them to the tinySDR node one
by one. Considering the LoRa radio takes more power than
the MCU, we immediately write the data to our dedicated
programming flash memory using an SPI interface.

After receiving all the data we turn off the LoRa radio and
decompress data. First, we allocate memory on the MCU’s
SRAM equal to the block size and load a block of data from
flash. Next, we perform decompression and write the data in
the allocated SRAM memory. Finally, we write the decom-
pressed data back to the flash beginning at the corresponding
address of the programming boot file. We repeat these steps
until we decompress the full firmware update.

Over-the-air FPGA programming. After storing uncom-
pressed programming data in flash memory, we program the
FPGA. We use the MCU to set the FPGA into programming
mode. When the FPGA switches to programming mode, it
automatically reads its firmware directly from the flash mem-
ory using a 62 MHz quad SPI interface and programs itself.
Reading from flash using quad SPI achieves programming
times of 22 ms which is similar to FPGAs with embedded
flash memory and results in minimal system down time. After
programming is complete, it resumes operation and begins
running the new firmware.

3.5 TinySDR’s Architectural Considerations

We design tinySDR to achieve three main goals: i) low-power
ii) low-cost and iii) over-the-air programmability. To do this,
we use a low-power I/Q radio with lower bandwidth sup-
port compared to previous platforms. Since this radio is op-
timized for low bandwidths and in turn low sampling rates,
it consumes less power during TX/RX operations. Previous
platforms [31, 56] use hardware architectures that support
high-bandwidth protocols such as Wi-Fi. However, we use
a low-power radio and build our hardware architecture for
IoT protocols around it. In addition, we design a power man-
agement system to be able to power cycle different parts of
tinySDR’s architecture in each operation to further reduce the
power consumption. To achieve this, we use an MCU chip
that enables full control of the tinySDR’s blocks and power
domains. We achieve minimum power consumption during
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sleep mode by turning off power-hungry components.
In contrast, previous architectures such as uSDR [56] use

an MCU integrated with an FPGA which forces the FPGA to
be always ON and increases the power consumption during
sleep mode. This is because uSDR is not designed for IoT
endpoints but for gateways and hence does not provide any
of the architectural optimizations required for the low-power
sleep operation required by IoT devices. Furthermore, by us-
ing a lower bandwidth radio and also a low-cost SRAM-based
FPGA, we minimize the cost compared to platforms such as
uSDR [56], Pluto SDR [31] and LimeSDR [2]. Finally, we
design tinySDR to operate completely standalone on battery
without the need for a wired connection to a network or a
computer. To do this, we design an OTA system on tinySDR
to be able to re-program the FPGA and MCU on tinySDR
wirelessly. This capability does not exist on prior SDR plat-
forms.

4 Case Studies: LoRa and BLE Beacons

4.1 LoRa Protocol with tinySDR
We choose LoRa as it is gaining popularity for IoT solutions
due to its long range capabilities. Since LoRa is a proprietary
standard, we begin by describing the basics of its modulation
and packet structure followed by the implementation details
of our modulator, demodulator and MAC protocol.

LoRa Protocol Primer. LoRa achieves long ranges by us-
ing Chirp Spread Spectrum (CSS) modulation. In CSS, data is
modulated using linearly increasing frequency upchirp sym-
bol. Each upchirp symbol has two main features: Spreading
Factor (SF) and Bandwidth (BW). SF determines the number
of bits in each upchirp symbol [44, 47, 69] and BW is the
difference between upper and lower frequency of the chirp
which together with SF determines the length of an upchirp
symbol. SF and BW trade data rate for range. Data is modu-
lated by 2SF cyclic-shifts of an upchirp symbol. The starting
point of the symbol in frequency domain, which is the cyclic
shift of the upchirp symbol, determines its value [16]. LoRa
uses SF values from 6 to 12 and BW values from 7.8125 KHz
to 500 KHz to achieve PHY-layer rates of BW

2SF ×SF .
Fig. 5 shows the LoRa packet structure which begins with a

preamble of 10 zero symbols (upchirps with zero cyclic-shift).
This is followed by the Sync field with two upchirp symbols.
Next, a sequence of 2.25 downchirp symbols (chirp symbol
with linearly decreasing frequency) indicate the beginning
of the payload. The payload then consists of a sequence of
upchirp symbols which encode a header, payload and CRC.

LoRa Modulator. Fig. 6a shows the block diagram of our
LoRa modulator. We use our FPGA to implement a LoRa
modulator in Verilog and stream data to AT86RF215 in I/Q
mode. The modulator begins with the Packet Generator mod-
ule which reads data either from FPGA memory for trans-
mitting fixed packets or from the MCU, as well as LoRa

Figure 7: Evaluation Testbed Map.

configuration parameters such as SF, coding and BW. This
module determines each symbol value and its corresponding
cyclic-shift. Next, the Packet Generator sends these param-
eters along with the symbol values to the Chirp Generator
module, which generates the I/Q samples of each chirp sym-
bol in the packet using a squared phase accumulator and two
lookup tables for sine and cosine function [69]. We then feed
these I/Q samples into an I/Q Serializer to stream them over
the LVDS interface to the I/Q radio. We generate the 64 MHz
transmission clock using internal PLL of the FPGA.

LoRa Demodulator. Fig. 6b shows the block diagram of
our LoRa demodulator. It begins by reading data from the I/Q
radio into the I/Q Deserializer module on the FPGA which
converts the serial I/Q stream to parallel I/Q for further signal
processing. Next, we run the data through a 14 tap FIR low-
pass filter to suppress high frequency noise and interference.
We store the filtered samples in a buffer implemented using
the FPGA’s memory blocks. To decode the data, we use the
Chirp Generator module from the LoRa Modulator described
above to generate a baseline upchirp/downchirp symbol, and
then we multiply that with the received chirp symbol using
our Complex Multiplier unit. The output of the multiplication
then goes to an FFT block implemented using a standard
IP core from Lattice. Finally the Symbol Detector scans the
output of the FFT for peaks and records the frequency of
the peak to determine the symbol value. To detect the chirp
type (upchirp/downchirp), we multiply each chirp symbol
with both an upchirp and downchirp and then compare the
amplitudes of their FFT peaks. The higher peak in the FFT
shows higher correlation which indicates the chirp type.

LoRa MAC Layer. To demonstrate that our LoRa imple-
mentation on tinySDR is compatible with existing LoRa net-
works such as the LoRa Alliance’s [26] The Things Network
(TTN) [38], we adopt their LoRa MAC design from TTN’s
Arduino libraries [39] and implement it on tinySDR’s MCU.
TTN uses two methods for device association; Over-the-air
activation (OTAA) and activation by personalization (ABP).
In OTAA, each node performs a join-procedure during which
a dynamic device address is assigned to a node. However, in
ABP we can hard-code the device address in the device which
makes it simpler since the node skips the join procedure. Our
platform can support both OTAA and ABP methods.
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Figure 8: TinySDR Single-Tone Frequency Spectrum.

Table 4: Different Operation Timing for TinySDR.
Operation Duration (ms)

Sleep to Radio Operation 22
Radio Setup 1.2
TX to RX 0.045
RX to TX 0.011

Frequency Switch 0.220

4.2 BLE Beacons with tinySDR

To demonstrate tinySDR’s 2.4 GHz capabilities we implement
Bluetooth beacons which are commonly used by IoT devices.

BLE Beacon Primer. We implement non-connectable
BLE advertisements (ADV_NON_CONN_IND) which are
broadcast packets used for beacons. These packets allow a low
power device to broadcast its data to any listening receiver
within range without the power overhead of exchanging pack-
ets to setup a connection. These packets have a bit rate of
1 Mbps in Bluetooth 4.0 or up to 2 Mbps in Bluetooth 5.0
and are generated using GFSK with a modulation index of
0.45-0.55. The GFSK modulation is binary frequency shift
keying (BFSK) with the addition of a Gaussian filter to the
square wave pulses to reduce the spectral width.

Generating a BLE Packet. Bluetooth advertisements con-
sist of 6-37 octets, beginning with fixed preamble and access
address fields indicating the packet type set to 0xAA and
0x8E89BED6 respectively. This is followed by the packet
data unit (PDU) beginning with a 2 byte length field and
followed by a manufacturer specific advertisement address
and data. The final 3 bytes of the packet consist of a CRC
generated using a 24-bit linear feedback shift register (LFSR)
with the polynomial x24 +x10 +x9 +x6 +x4 +x3 +x+1. The
LFSR is set to a starting state of 0x555555 and the PDU is
input LSB first. The final LFSR state after inputting the PDU
becomes the CRC. Data whitening is then performed over the
PDU and CRC fields to eliminate long strings of zeros or ones
within a packet. This is also done using a 7-bit LFSR with
polynomial x7+x4+1. The LFSR is initialized with the lower
7 bits of the channel number the packet will be transmitted
on, and each byte is input LSB first. We implement both these
blocks in Verilog on the FPGA.

Packet Transmission and MAC Protocol. From this bit-
stream, we need to generate the I/Q samples to feed to the
I/Q radio. First, we upsample and apply a Gaussian filter to
the bitstream. This gives us the desired changes in frequency
which we integrate to get the phase. We then feed the phase
to sine and cosine functions to get the final I and Q samples,

which are passed to I/Q serializer and sent to the I/Q radio.
BLE divides the 2.4 GHz band into channels, each spaced
2 MHz apart, but BLE beacons are only transmitted on three
advertising channels without carrier sense, typically in se-
quential order separated by a few hundred microseconds. This
sequence is re-transmitted every advertising interval [37].

5 Evaluation

We deploy a testbed of 20 tinySDR devices across our insti-
tution’s campus as shown in Fig. 7. To see if tinySDR meets
the requirements for IoT endpoint devices, we characterize its
power, computational resource usage, delays and cost when
operating in different modes and running different protocols.

5.1 Benchmarks and Specifications

Sleep mode power. Many IoT nodes perform short, simple
tasks allowing them to be heavily duty cycled which allows
them to achieve battery lifetimes of years. We design tinySDR
with this critical need in mind such that the MCU can actively
toggle on and off power consuming components such as the
radio, PAs, and FPGA to enter a low power sleep mode.

We do this by first turning off the the I/Q transceiver and
LoRa radios. To reduce the static power consumption of the
FPGA, we shut it down by disabling the voltage regulators
that provide power to its I/O banks and core voltage. Similarly,
we also turn off the PAs. Finally, we put the MCU in sleep
mode LPM3 running only a wakeup timer. The measured
total system sleep power in this mode was 30 uW.

The low sleep power allows for significant power savings,
but also introduces latency. Table 4 shows the time required to
wake up from sleep mode until the radio is active. Because we
can perform the I/Q radio setup in parallel with booting the
FPGA, the total wakeup time for RX and TX is 22 ms. The I/Q
radio setup takes 1.2 ms, so the wakeup time is dominated by
booting up the FPGA which itself takes 22 ms. We compare
this to a SmartSense Temperature sensor [14] and find that
tinySDR has only a 4x longer wakeup time even though it
requires programming unlike commercial products that use a
custom single protocol radio. Additionally many IoT devices
operate at low duty cycles waiting in sleep mode for seconds
or more making tinySDR’s wakeup latency insignificant.

Switching delays. We also measure the switching delays
for different operations on the I/Q radio as this is an im-
portant parameter for meeting MAC and protocol timing re-
quirements. Table 4 shows that it takes 45 µs and 11 µs to
switch from TX to RX mode and RX to TX mode respec-
tively. As we see later, this is sufficient to meet the timing
requirements of IoT packet ACKs and MAC protocols. Fur-
ther, the delay for switching between different frequencies
is only 220 us. To measure this number, we switch between
2.402 GHz, 2.426 GHz and 2.480 GHz. This switching de-
lay is again sufficient to meet the requirements of frequency
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Table 5: TinySDR Cost Breakdown for 1000 Units.
Components Price

DSP FPGA $8.69
Oscillator $0.9

IQ Front-End

Radio $5.08
Crystal $0.53

2.4 GHz Balun $0.36
Sub-GHz Balun $0.3

Backbone
Radio $4.5
Crystal $0.4

Flash Memory $1.6

MAC MCU $3.89
Crystals $0.68

RF
Switch $3.14

Sub-GHz PA $1.54
2.4 GHz PA $1.72

Power Management Regulators $3.7
Supporting Components – $4.5

Production Fabrication [22] $3
Assembly [22] $10

Total – $54.53
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Figure 9: Single-Tone Transmitter Power Consumption. We show the
total power consumption of tinySDR including I/Q radio, FPGA, MCU and
regulators at different transmitter output power. This is 15-16 times lower
power consumption than the USRP E310 embedded SDR.

hopping during Bluetooth advertising.
Transmitter performance. First, we implement a single-

tone modulator on the FPGA that generates the appropriate
I/Q samples and streams them over LVDS to the radio. We
connect the output to an MDO4104b-6 [11] spectrum analyzer
and observe a single tone, shown in Fig. 8, with no unexpected
harmonics introduced by the modulator.

Next we measure the end-to-end DC power consumption
of our system including the I/Q radio, FPGA, MCU and regu-
lators to see how it scales with RF output power. We vary our
radio output power while transmitting a single tone and use a
Fluke 287 multimeter to measure its DC power draw. Fig. 9
shows the power consumption of tinySDR for 900 MHz and
2.4 GHz operation. Interestingly, we observe the DC power
is constant at low RF power but increases as expected beyond
some RF power level. TinySDR consumes 231 mW when
transmitting at 0 dBm, and for comparison the end-to-end
power consumption of the USRP E310 is 16x higher under
the same conditions. Similarly tinySDR consumes 283 mW at
its 14 dBm setting while the USRP E310 is 15x higher. In ad-
dition, we measure the peak current consumption of tinySDR
while transmitting a single-tone on the I/Q radio. The peak
current consumption is 105 mA when tinySDR boots up the
FPGA and then starts transmitting using the I/Q radio. This
current is less than the maximum current supported by a typi-
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Figure 10: LoRa Modulator Evaluation. We evaluate our LoRa modula-
tor in comparison with Semtech LoRa chip.

cal LiPo 1200 mAh battery [13].
Cost. We also analyze the cost which is an important prac-

tical consideration for real world deployment at scale. Table 5
shows a detailed breakdown of cost including each compo-
nent as well as PCB fabrication and assembly based on quotes
for 1000 units [22], where the overall cost is around $55 each.

5.2 Evaluating the Case Studies

LoRa using tinySDR. We evaluate various different compo-
nents of tinySDR using LoRa as a case study.

LoRa modulator. To evaluate this, we use our LoRa mod-
ulator to generate packets with three byte payloads using a
spreading factor of SF = 8 and bandwidths of 250 kHz and
125 kHz which we transmit at -13 dBm. We receive the out-
put of tinySDR on a Semtech SX1276 LoRa transceiver [35]
which we use to measure the packet error rate (PER) versus
RSSI and plot the results in Fig. 10. We compare our LoRa
modulator to transmissions from an SX1276 LoRa transceiver.
The plots show that we can achieve a comparable sensitivity
of -126 dBm which is the LoRa sensitivity for SF = 8 and
BW = 125kHz configuration. This is true for both configu-
rations, which shows that our low-power SDR can meet the
sensitivity requirement of LPWAN IoT protocols.

LoRa demodulator. Next we evaluate our LoRa demodu-
lator on tinySDR. To test this, we use transmissions from a
Semtech SX1276 LoRa transceiver and use tinySDR to re-
ceive these transmissions. The LoRa transceiver transmits
packets with two configurations using a spreading factor of 8
and bandwidths of 250 kHz and 125 kHz. We record the re-
ceived RF signals in the FPGA memory and run them through
our demodulator to compute a chirp symbol error rate. Note
that the Semtech LoRa transceiver does not give access to its
symbol error rate, but since we have access to I/Q samples, we
can compute it on our platform. We plot the results in Fig. 11
as a function of the LoRa RSSI values. Our LoRa demodula-
tor can demodulate chirp symbols down to -126 dBm which
is LoRa protocol sensitivity at SF = 8 and BW = 125kHz.
Both the LoRa modulator and demodulator run in real-time.

Resource allocation. Next, we evaluate the resource utiliza-
tion of our LoRa PHY implementation on the FPGA. Table 6
shows the size for implementing the modulator and demodu-
lator on our FPGA using different SFs. Our LoRa modulator
supports all LoRa configurations with different SF with no
additional cost. However, in the LoRa demodulator, we need
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Figure 11: LoRa Demodulator Evaluation. We evaluate our LoRa de-
modulator by demodulating chirp symbols at different RSSI.

Table 6: FPGA Utilization for LoRa Protocol.
SF LoRa TX (LUT) LoRa RX (LUT)
6 976 (4%) 2656 (10%)
7 976 (4%) 2670 (10%)
8 976 (4%) 2700 (11%)
9 976 (4%) 2742 (11%)
10 976 (4%) 2786 (11%)
11 976 (4%) 2794 (11%)
12 976 (4%) 2818 (11%)

FFT blocks with different sizes to support different SF con-
figurations. This table shows that our FPGA has sufficient
resources to support multiple configurations of LoRa and still
leave space for other custom operations.

LoRa MAC. We implement the LoRa MAC based on TTN’s
Arduino libraries [39]. TTN protocol together with control
for the I/Q radio, backbone radio, FPGA, PMU and decom-
pression algorithm for OTA take only 18% of MCU resources.
Also, as shown in Table 4, our timings are well within the
requirements for LoRaWAN specifications [26].

We also measure the power consumption of our platform
for LoRa packet transmission and reception. LoRa packet
transmission with SF = 9 and BW = 500 kHz and radio out-
put power of 14 dBm consumes a total power of 287 mW
from which 179 mW is for the radio and the rest is from the
FPGA and MCU. LoRa packet reception consumes 186 mW
with radio taking 59 mW.

BLE using tinySDR. Next, we evaluate tinySDR using
BLE beacons as a case study. First, we measure the impact
of our BLE beacons transmitted from tinySDR using the TI
CC2650 [21] BLE chip as a receiver. We do this by configur-
ing tinySDR to transmit BLE beacons at a rate of 1 packet per
second. We transmit 100 packets and set the CC2650 BLE
chip to report bit error rate (BER). Fig. 12 shows the BER as
a function of the received RSSI as reported by the CC2650
BLE chip. The plot shows that we achieve a sensitivity of
-94 dBm. This is within 2 dB of the CC2650 BLE chipset’s
sensitivity, defined by a BER threshold of 10−3.

Next we evaluate the latency of our BLE implementation
as BLE beacons are typically transmitted in sequence by
hopping between three different advertising channels. We
measure the minimum time tinySDR takes to switch between
these frequencies by connecting its output to a 2.4 GHz en-
velope detector and using an MDO4104B-6 oscilloscope to
measure the time delay between transmissions. Fig. 13 plots
the envelope of three BLE beacons in the time-domain trans-
mitted on the different advertising channels and shows that
our system can transmit packets with as little as 220 us delay
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Figure 12: BLE evaluation. BLE beacons at different power levels.

between beacons. The corresponding result when a iPhone 8
transmits beacons is 350 us. Finally, generating BLE beacons
requires only 3% of the FPGA resources on the tinySDR and
it could run for over 2 years on a 1000 mAh battery when
transmitting once per second.

5.3 Over-the-Air Programming
An effective OTA programming system should both minimize
use of system resources such as power as well as network
downtime. Considering the time to reprogram the FPGA and
microcontroller from flash is fixed, the downtime for pro-
gramming a node depends on the amount of data sent and the
throughput which varies with SNR.

Raw programming files for our FPGA are 579 kB, how-
ever we compress our data using miniLZO. While the exact
compression ratio depends on FPGA utilization, our LoRa
program compresses to 99 kB and BLE to 40 kB. Our mi-
crocontroller programs for both LoRa and BLE are approx-
imately 78 kB and are both compressed to 24 kB. When
dividing the files into packets, we would ideally minimize
the preamble length and maximize packet length to reduce
overhead, however long packets with short preambles lead
to higher PER. We choose a preamble of 8 chirps and pack-
ets of 60 B which we find balances the trade-off of protocol
overhead versus range in our experiments.

To see the impact on a real deployment, we evaluate the
time required to program tinySDR nodes in our 20 device
testbed shown in Fig. 7. We set up a LoRa transceiver con-
figured with SF = 8, BW = 500 kHz and CodingRate = 6
connected to a patch antenna transmitting at 14 dBm as an AP
and measure the time it takes to program the tinySDR devices
at each location, according to our protocol. We transmit the
compressed FPGA and MCU programming data for LoRa and
BLE and plot the results as a CDF in Fig. 14. The plots show
that the LoRa FPGA requires an average programming time
of 150 s while BLE, FPGA, and MCU require 59 s and 39 s re-
spectively due to their smaller file size. Decompressing these
received files only takes a maximum of 450 ms. The variation
of the programming time between different nodes is caused
by the variation in the wireless channel and hence the number
of re-transmissions for each tinySDR node is different.

Our OTA programming system components, backbone ra-
dio and MCU, consume an average energy of 6144 mJ for
receiving a LoRa FPGA update and 2342 mJ for a BLE FPGA
update when using 14 dBm output power. Using a 1000 mAh
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Figure 13: BLE Beacons Signal. We show BLE beacon transmissions on
three advertising channels from tinySDR using an envelope detector.
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Figure 14: OTA Programming Time. We show CDF of OTA program-
ming time for programming LoRa and BLE implementations on tinySDR.

LiPo battery, we could OTA program each tinySDR node with
LoRa 2100 times and BLE 5600 times. Assuming OTA pro-
gramming of once per day, the average power consumption
would be 71 uW and 27 uW respectively for LoRa and BLE.

6 Research Study: Concurrent Reception

An SDR designed for IoT endpoints that can provide I/Q
transmission and reception capability opens up opportunities
for addressing multiple research questions in IoT networks.

In this section, we focus on the following question: Can a
low-power IoT endpoint device decode multiple concurrent
LoRa transmissions at the same time? LoRa supports long
range communication for IoT devices and is gaining popular-
ity as a low-power wide area networking (LPWAN) standard.
Supporting long ranges introduces new challenges since it
increases the probability of collisions in large scale city-wide
deployments. While recent works [44, 47] have explored the
feasibility of enabling concurrent LoRa transmissions, they
have been designed for decoding on a gateway-style USRP
device. In fact, most concurrent transmission techniques in
our community [44, 45, 52] have been prototyped on USRPs
and it is unclear if a low-power IoT endpoint device can de-
code concurrent transmissions in real-time within its stringent
power and resource constraints. TinySDR enables us to ex-
plore such questions and design MAC protocols for decoding
concurrent transmissions on IoT endpoints.

Using orthogonal LoRa codes. Here we explore a specific
way of enabling concurrent transmissions in LoRa: using
orthogonal codes. Specifically, to allow multiple LoRa nodes
to communicate at the same time, we exploit LoRa’s support
for orthogonal transmissions [16] which can occupy the same
frequency channel without interfering with each other. Two
chirp symbols are orthogonal when they have a different chirp
slope. For a chirp with a spreading factor of SF and bandwidth
of BW , the chirp slope is given by: BW 2

2SF [47].

Decoding concurrent transmissions on tinySDR. In or-
der to receive concurrent LoRa transmissions, tinySDR must
be able to demodulate LoRa upchirp symbols with differ-
ent slopes. Suppose we have two LoRa transmissions that
use different spreading factor and bandwidth configurations:
SF1,BW1 and SF2,BW2. To decode them concurrently, we
implement decoders similar to Fig. 6b for each chirp configu-
ration in parallel on our FPGA. Specifically, we first generate
a corresponding downchirp symbol for each configuration in
real-time using our chirp generator. Note that we generate
each chirp with its corresponding configuration on the FPGA
and we do not use pre-generated chirps on the FPGA. We
then correlate the received signals with their corresponding
downchirp symbols using time domain multiplication. After
correlation, we take the appropriate length FFT of the result.

Evaluation. We evaluate three key aspects of our design:
1) the platform’s effectiveness in decoding concurrent trans-
missions across a range of RSSI values, 2) the power con-
sumption at the endpoint device while decoding concurrent
transmissions and 3) the computational resources required.

We use two SX1276 LoRa transceivers as our transmitters
and set them to transmit continuously at two different settings:
they both use a spreading factor of SF = 8 but have two dif-
ferent bandwidth setups, BW1 = 125kHz and BW2 = 250kHz.
We set the two to send random chirp symbols. The tinySDR
platform decodes these two concurrent transmissions and
computes the chirp symbol error rate for each transmission.
We evaluate two scenarios: 1) when the two transmitters have
a similar power level at the receiver, 2) fix the power of one
of the transmitters and increase the power of the other one.

Fig. 15a shows the results when the two transmissions
have similar power at the receiver. We lose around 2 dB and
0.5 dB sensitivity for concurrent demodulation of LoRa con-
figurations with BW1 = 125kHz and BW2 = 250kHz. This is
because while in theory the two chirps are orthogonal, in prac-
tice, the chirps are created in the digital domain with discrete
frequency steps which introduces some non-orthogonality.

Fig. 15b shows the results when the first LoRa transmitter
BW1 = 125kHz is received near its sensitivity of -123 dBm
and and the second LoRa transmitter changes its power. Here,
the chirp symbol error rate is affected when the other trans-
mission’s power is higher than -116 dBm. When two con-
current transmissions are present, one acts as an interferer
when decoding the other. The combined power of noise and
the interferer, PI,N , determines the error rate. When sweep-
ing the power of interferer, at first the PI,N is dominated by
noise and we should not see much effect on error rate. Then
at some point their power would be equal which results in a
3 dB increase of PI,N and hence 3 dB sensitivity loss after
which the error rate is determined by the interferer power.
This demonstrates the need for power control for concurrent
transmissions to be received on IoT endpoints.

Our parallel demodulation implementation, uses only 17%
of the FPGA resources. This concurrent demodulation imple-
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Figure 15: Orthogonal LoRa Demodulation Evaluation

mentation consumes 207 mW. Note that Semtech gateway
solutions such as the SX1308 [29] can receive multiple trans-
missions. But, to the best of our knowledge we are the first to
show that concurrent LoRa transmissions can be decoded on
an IoT endpoint while meeting its power and computational
requirements. This would have been difficult to do without
tinySDR.

7 Conclusion and Research Opportunities

This paper presents the first SDR platform specifically tailored
to the needs of IoT endpoints that can be used for large scale
IoT network deployments. The goal of tinySDR is to provide
a platform that can catalyze research in IoT networks.

Research on PHY/MAC protocols. TinySDR presents an
opportunity for researchers to avoid the time consuming en-
deavor of building their own custom hardware and instead fo-
cus on PHY/MAC protocol innovations across the stack: What
is the trade-off between packet length and overall throughput?
Are there benefits of rate adaptation? What about concur-
rent transmissions from IoT devices? One could also create
multi-hop IoT PHY/MAC innovations, which have not been
explored well given the lack of a flexible platform.

Research on IoT localization. TinySDR could also be
used to build localization systems as it gives access to I/Q
signals and therefore phase across the 2.4 GHz and 900 MHz
bands, which forms the basis for many localization algorithms
[62]. One could also explore distributed localization solutions
that combine the phase information across a distributed set of
sensors to create a large MIMO sensing system.

Machine learning on IoT devices. The FPGA on
tinySDR opens up exciting opportunities [42] for exploring
machine learning algorithms on-board. This would allow re-
searchers to explore trade-offs between the power overhead
of running an on-board classifier versus sending data to the

cloud. This could also enable use of high bandwidth sensors
such as cameras and microphones where the power bottleneck
may be communication rather than sensing.

Low power backscatter readers. Recent work on ambi-
ent backscatter [51, 53, 54, 59, 71] aims to achieve ultra-low
power communication for IoT devices. Many of these propos-
als require either a single-tone generator [54] or a custom re-
ceiver to decode the backscatter transmissions [49, 50, 61, 65].
TinySDR can be used as a building block to achieve a battery-
operated backscatter signal generation and receiver.

Better programming interface and protocols. In addi-
tion to IoT research opportunities, we can also improve our
platform in multiple ways. TinySDR currently requires users
to write Verilog or VHDL to program the FPGA and C code
for programming the microcontroller. Future versions can
incorporate a pipeline to use high level synthesis tools or inte-
grate with GNUradio for easy prototyping. Further, tinySDR
uses a simple MAC protocol for programming with a focus
on using minimal system resources to allow for other custom
software; however we could explore modified MAC protocols
that simultaneously broadcast the updates across the network
to reduce programming time.
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Abstract
To reduce transmit power, increase throughput, and improve

range, radio systems benefit from the ability to direct more
of the transmitted power toward the intended receiver. Many
modern systems beamform with antenna arrays for this
purpose. However, a radio’s ability to direct its signal is
fundamentally limited by its size. This limitation is acute on
IoT and mobile devices, which are small and inexpensive, but
even access points and base stations are typically constrained
to a modest number of antennas.

To address this problem, we introduce RFocus, which
moves beamforming functions from the radio endpoints to
the environment. RFocus includes a two-dimensional surface
with a rectangular array of simple RF switch elements. Each
switch element either lets the signal through or reflects it. The
surface does not emit any power of its own. The state of the
elements is set by a software controller to maximize the signal
strength at a receiver, with a novel optimization algorithm
that uses signal strength measurements from the receiver. The
RFocus surface can be manufactured as an inexpensive thin
“wallpaper”. In one floor of an office building (at MIT CSAIL),
our prototype improves the median signal strength by 9.5×
and the median channel capacity by 2.0×.

1 Introduction

Many radio systems use directional or sectorized antennas and
beamforming to improve the throughput or range of a wireless
communication link. Beamforming ensures that a larger frac-
tion of transmitted energy reaches the intended receiver,while
reducing unintended interference. A radio with many antennas
spread densely over a large area can fundamentally beamform
better than a smaller radio [1, 4]. However, there are many
practical challenges to making radio systems with large
antenna arrays. First devices such as IoT sensors and handhelds
must be small in size. Second, connecting each antenna in an
array to full-fledged radio transmit/receive circuitry increases
cost and power. Third, large, bulky systems are hard to deploy,
even in infrastructure base stations or access points.

To address these challenges and achieve the equivalent
of a large number of antennas, we propose RFocus. RFocus

includes a software-controlled surface placed in the environ-
ment, made up of thousands of simple switching elements.
RFocus also has a controller that configures each element so
that the surface, as a whole, directs a signal from a transmitter
to a receiver without any signal amplification (i.e., no extra
power) or knowledge of the locations of the transmitter or
receiver. This approach moves the task of beamforming from
the transmitter to the surface. Any device in the vicinity of the
surface can reap the benefits of RFocus without itself being
large or consuming additional energy.

The RFocus surface is made up of thousands of simple el-
ements organized in a rectangular array. To reduce cost and
energy, each element is a single simple 2-way RF switch. Each
element in the RFocus surface can be in one of two states. When
“on”, the element reflects the signal; otherwise, the signal passes
through. Each receiver periodically sends measurements of
the received signal strength to the RFocus controller. The con-
troller uses these to configure the elements on the RFocus sur-
face to maximize the received signal strength. This optimiza-
tion has two steps: a training phase, where the controller config-
ures test states on the surface and monitors the changes in the
reported measurements to collect data, and an optimized phase
where the controller uses this data to set the on/off state for
each element. RFocus can switch between optimized states to
maximize signal strength between different pairs of endpoints.

RFocus can work both as a “mirror” or a “lens”, with the
controller choosing the right mode. That is, radio endpoints
can be on the same side of the surface, or on opposite sides.

We have built an RFocus prototype with 3,200 inexpensive1

antennas on a 6 square-meter surface. This configuration may
well be the largest published number of antennas ever used
for a single communication link.

The controller’s optimization algorithm solves three key
challenges. First, indoor environments exhibit complex
multi-path, and the direct path may be blocked. Therefore
the optimal configuration might not correspond to directing
the signal along a single direction, but can depend on the
environment. Second, the effect of an individual element
on the channel is usually miniscule, and hence hard to
measure (§6.2.3). Third, the phase of a channel is hard to

1At scale, the cost of each element is a few cents.
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RFocus Surface
(mirror/lens)

Controller

Figure 1: RFocus is an electronically configurable mirror/lens
that focuses the transmitter’s signal on the receiver.

Figure 2: Our prototype of the RFocus surface.

measure when the signal is weak, due to carrier frequency
offset and radio-clock jitter. And last but not least, commodity
radio receivers usually don’t report phase.

The contributions of this paper include:

1. The RFocus controller, incorporating two key ideas. First,
it modulates all elements at once to boost the effect of
the RFocus surface on the channel, hence making the
change large enough to be measurable. Second, it relies
only on signal strength measurements, sidestepping
difficulties in measuring phase. We provide an analysis
of the algorithm under some assumptions, that suggests
that it finds a solution that is close to optimal.

2. Experiments, which show that in a typical indoor
office environment, RFocus achieves a median 9.5×
improvement in signal strength and 2.0× improvement in
channel capacity. Moreover, RFocus is robust to element
failure; even when one-third the elements fail, the relative
performance improvement does not plummet to 0, but
drops by 50%.

2 Related Work

Passive reflective surfaces to control incident radiation, called
“meta-surfaces” have been studied extensively by applied physi-
cists in the microwave, terahertz, and optical frequencies [2,

6–8, 13]. These works focus on hardware design to control
the incident radiation efficiently. Some of these metasurfaces
are configurable. Here, given the incident wave and desired re-
flected/transmitted wave direction(s), they develop algorithms
to determine good configurations, for example to create pro-
grammable holograms. Recently there has been interest in us-
ing metasurfaces, called “reconfigurable intelligent surfaces”,
to improve communication channels. Most papers explore the
idea with theory and simulation [12,17–19,28] except for a few
papers providing small-scale experimental results [11, 15, 29]
that evaluate channel improvement between one fixed pair of
endpoints that are close to each other and to the surface.

In prior work, the method to determine a good configuration
works by varying the state of the elements one at a time and
measuring its effect on the channel. This approach is linear
in the number of elements, but requires the receiver to be able
to accurately measure the impact of the change in a single
element. If the transmitter and receiver are very close to the
surface, the effect is measurable, but not otherwise because
the strength of the signal attenuates as at least 1/(dsdr)

2,
where ds and dr are the distances from the element to the
sender and receiver, respectively. For a large surface with
thousands of antennas, the effect becomes hard to measure
because some elements will necessarily be at long distances
from the transmitter or receiver §6.2.3. The reason is that the
size of each element is between one-quarter to one-half of
the wavelength of the signal (at 2.4 GHz, the wavelength is 15
cm), so thousands of elements require a surface area of a few
square meters, and at a distance of a few meters, measuring a
single-element change is inaccurate especially on commodity
radio receivers. Our algorithm overcomes this problem and
scales to larger surfaces by varying many elements at once and
boosting the signal strength changes being measured.

LAIA [16, 32] is a recent project that also achieves gains
at larger distances, but with a different setup and design from
RFocus. LAIA helps endpoints whose line-of-sight path is
blocked by a wall. LAIA elements collect radio energy from
one side of the wall, phase-shift them, and take them to the
other side of the wall via wires traversing holes in the wall.
Because they go through the wall with wires, individual LAIA
elements have a much larger impact on the channel than RFo-
cus elements, allowing LAIA to function with fewer elements
than RFocus, and without RFocus’s optimization algorithm.

Another line of related work improves wireless coverage
by analyzing the indoor space, and custom-designing a
3D reflector for that space. When 3D-printed and placed
behind an access point (AP), the reflector reflects energy in
specific directions to maximize signal strength at previously
uncovered areas [5,33]. Once deployed, this reflector has a low
operational cost because it is just a passive metal-coated object.
But a new reflector needs to be designed for each new location
and whenever the space changes or the AP is moved or a new
AP is added. Moreover, a single solution has to be designed
for all pairs of endpoints, whereas RFocus dynamically and
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automatically configures a new pattern for each pair.
RFocus can be thought of as a phased array [25, 26] that

uses the air instead of transmission lines to distribute signals
from the transmitter to the antennas. We believe this allows
larger antenna arrays to be deployed more ubiquitously. Trans-
mission lines tend to be expensive and bulky. Even PCB-trace
transmission lines, which are easy to manufacture, depend
on properties of the dielectric and cannot be manufactured as
a paper-thin sheet. This is unlike the wires used in RFocus,
which are digital and do not carry high-speed signals. Due
to its simplicity, RFocus can be readily incorporated into the
environment (§7). On the other hand, for the same number of
antennas, RFocus achieves a lower gain than phased arrays
because it doesn’t harness all of the transmitted energy (§7).

Digital Light Processors (DLPs) and Digital Micromirror
Devices (DMDs) [22, 23, 27] are micro-electro-mechanical
systems (MEMS) devices that have a large array of small
(microns or smaller) mirrors on a single silicon chip. The
mirrors can be toggled between two angles, controlling which
ones reflect light onto the object, and which reflect it elsewhere.
They are used for steering lasers and in display projectors.
RFocus could be thought of as a DMD for radio.

Range extenders increase signal strength at the receiver.
However, by rebroadcasting signals, they increase interference
and reduce transmission opportunities. By precisely focusing
energy already available, RFocus decreases interference while
increasing signal strength. That said, RFocus complements
range extenders and both could be used together if necessary.

Reconfigurable antennas [10] and reflectarray antennas [14]
have RF switches and phase shifters, which allow them to
dynamically change their characteristics such as operating
frequency, input impedance, and directionality. These
approaches modify an antenna to improve characteristics. By
contrast, RFocus leaves the transmit and receive antennas
unmodified, instead modifying the environment to improve
communication for all nearby devices. Additionally, like
phased arrays, it is difficult to use wires to scale to a large
number of radiating elements.

3 Background

3.1 System Model and Notation
In most environments, there are multiple paths between a
sending and receiving antenna. For a narrow-band signal, the
effect of each path can be represented by a complex number.
The net effect of the channel is the sum of the effects of all the
paths. A subset of the paths pass via each of the N elements on
the RFocus surface. Denote the contribution of the elements
by c1,...,cN . We combine all the paths not going via RFocus
into one complex number cE (E for environment). The net
channel, h, is equal to cE+∑

N
i=1αici, where αi represents the

amplitude change and phase shift introduced by element i.
RFocus controls the channel, h, by adjusting αi. cE and ci

are functions of the path lengths. αi depends on three factors:
the state of the ith element and its neighbors; the shape of the
antennas composing the element, and the angles at which the
path enters and leaves the ith element. Since the elements are
passive and lack power, |αi|≤1.

Maximizing |h|maximizes the received signal strength. The
maximum possible value of |h|, the sum of several complex
numbers, is the sum of the magnitudes of the summands:

|hmax|= |cE |+
N

∑
i=1
|ci| (1)

This maximum is achievable if we had full control over
each αi by setting αi=

cE
|cE |

c∗i
|ci| , where c∗i denotes conjugation.

Unfortunately, we do not have full control over αi. Each
element can only be on or off. If we assume that αi is a
function of only the ith element’s state and not its neighbors
(we validate this assumption with experiments in §6.2.1), then
we can write the channel as

h=hZ+h·b=hZ+
N

∑
i=1

h(i)b(i) (2)

Here b(i)∈{0,1} denotes whether the ith element is off or
on; hZ is the channel when all elements are off; and h(i) is the
effect of turning the ith element on. Here, we have folded the
complexities of αi into ci to get h(i). We in prove in §5.2 that
having the ability to set any |b(i)|≤1 (i.e., fine-grained control
over the phase) instead of only 0 or 1 gives only a factor-of-π
advantage in optimizing |h|.

3.2 How Size Helps Communication
To get a qualitative understanding of the benefits of RFocus,
we use some well known results from physics. First, RFocus
can only control the portion of transmitted energy that falls
on it. This is given by the solid angle, Ω, subtended by the
surface on the transmitter. The Abbe diffraction limit tells us
how well the surface can focus the energy at the receiver. If the
surface modulates the incident energy perfectly, the spot onto
which the energy is focused will have an area a proportional to
λ2
(

1+4 d2

A

)
, where A is the area of the RFocus surface and d is

the distance of the receiver from it [20]. Thus a fraction Ω/(4π)
of the transmitted energy is now spread over an area≈a, and
hence peak energy will be proportional to Ω/a. RFocus works
best when either the transmitter or the receiver is close to the
surface, and therefore Ω is large (as a rule of thumb, about
3 meters for a surface 2-3 meters in length/width). Note, the
Abbe diffraction limit is only an approximate result.

A/d2 is proportional to the angle subtended by the surface
on the receiver. There are two regimes depending on how
large this angle is. If the radio is far away from the surface (i.e.
d2�A), then a ∝∼d2/A and energy falls as AΩ/d2. This is still
a 1/d2 fall, but the constant is improved by a factor of AΩ. If
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Figure 3: A simulation of how signal strength (brighter is
higher) is distributed when an antenna array tries to maximize
signal strength at the target point. The antennas are on the top
horizontal line (red). With four antennas the signal quickly
begins to diffuse. The 100 antennas subtend a large angle at
the target, and are hence able to focus energy there, avoiding
attenuation due to spreading.

the radio is closer, then d2∼A, and the first term dominates.
In this regime, a can be made quite small, on the order of a few
λ2. Hence almost all of the transmitted energy can be incident
on the receiver.

In traditional beamforming, A is typically small, hence
d2 � A and we are always in the first regime where the
signal experiences a 1/d2 attenuation as it spreads out. The
difference between the two regimes is illustrated in Figure 3.

4 Optimization Algorithm

The RFocus controller uses measurements from the radio
endpoints to maximize signal strength at the receiver. In
this section we first describe the challenges in measuring
changes in the channel, and why we rely only on RSSI
measurements (§4.1). Then we describe our algorithm (§4.2)
before giving a preliminary theoretical analysis showing that
it converges to a near-optimal solution (§4.3).

4.1 Measuring the Channel

A direct, but naive, method: When all the elements are
turned off, the channel is hZ , by definition. Ideally, to measure
each h(i), we could turn just the ith element on, and measure
the difference from hZ . But this change is usually too feeble
to measure because an element is just a small piece of metal
lying somewhere in the environment (§6.2.3). In many cases,
we cannot statistically tell the difference between an element
being on or off, even with hundreds of samples. This is also the
reason why gradient descent to find an optimal configuration
is untenable.

Boosting the signal. Each h(i) may be small, but all the
elements together can have a large effect. To make the change
measurable, we generate several configurations of the surface
by randomly choosing the state of each element. If we vary
N elements, the change in the channel will have an expected
magnitude of O(h̄

√
N) (due to the central limit theorem),

where h̄ is the average magnitude of h(i). This gives us a
O(
√

N) boost in amplitude (and O(N) boost in signal strength)
over flipping just one element.

Challenges in measuring phase. One might consider a
method that would measure the (complex) channel for many
random configurations of the surface, and solve the linear
equations to obtain all the h(i). But this is difficult because it
needs to measure changes in the phase of the channel, which
commodity wireless devices don’t provide. More importantly,
the change in the channel, even after this O(

√
N) boost,

remains small. Measuring small changes in phase is hard
because the clocks of the transmitter and receiver are never per-
fectly synchronized, leading to carrier frequency offset (CFO)
and jitter in phase measurements. Correcting for CFO over
long periods of time is non-trivial, since CFO drifts over time.

Using RSSI. Our method uses only signal-strength mea-
surements, ignoring phase information altogether. RSSI is not
always an absolute metric, and may vary due to automatic-gain
control changes or temperature changes at the amplifier. Hence
we measure RSSI of a test state relative to a baseline state; e.g.,
to the all-zeros state where all elements are turned off. We call
this quantity the RSSI-ratio.

4.2 RFocus’s Optimization Algorithm

Algorithm 1 The majority voting algorithm (described below)
procedure MAJORITYVOTE([b1,...,bK ], RSSI)

// RSSI[ j] gives the measured RSSI-ratio for state b j
b⊥← blank-vector . The final optimized state
m←MEDIAN(RSSI)
for i :=0 to N do

VoteOn←0, VoteOff←0
for j :=0 to K do

if
(b(i)

j ==1 and RSSI[ j]>m) or

(b(i)
j ==0 and RSSI[ j]<m) then

VoteOn←VoteOn+1
else

VoteOff←VoteOff+1
b(i)
⊥ ←(VoteOn>VoteOff)

return b⊥

Given the measured RSSI-ratio for a set of K random con-
figurations, the idea is to compare the RSSI-ratio of each mea-
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surement to the median value: if the RSSI-ratio when the ith

element is on (off) is higher than the median, then we add a vote
for the element to be on (off) in the optimized configuration.
The ith element’s optimized state is the state that received more
votes for that element. Algorithm 1 gives the pseudo-code for
how the controller determines the optimized state for each bit, i.

We use the median instead of the mean of the RSSI-ratio
samples because it is more robust to one-shot noise, which may
occur due to people moving or amplifier changes. We expect
this algorithm to be robust to element failure and occluded
elements, since elements’ states are determined independently
of each other. We evaluate how the received signal strength
of the optimized configuration degrades with element failures
in Section 6.4.

4.3 Theoretical Analysis
We show that if each h(i) is small and the collection has
uniformly-distributed phases, the optimization algorithm will
find a near-optimal solution with high probability.

4.3.1 Assumptions

The proof relies on the following assumptions:

Assumption 1. The phases of h(i) are uniformly distributed
random variables in (−π,π].

This is reasonable because the paths to different elements
are of different lengths, so all phases are equally likely to
be represented. To remove any spatial correlations, we can
randomize the indices of h(i).

Assumption 2. For uniformly random b, |b · h| � hZ with
high probability.

The average of h(i) is 0 when phases are uniformly random.
Hence, assumption 1 implies that for uniformly random b,
|h·b| is O( 1√

N ∑
N
i=1

∣∣∣h(i)
∣∣∣) due to the central limit theorem.

Though |h·b| is small for random b, an optimal assignment
to b can cause |h ·b| be large relative to |hZ |, since it will be
O(N) times bigger than the average |h(i)| (see theorem 2). On
the other hand, for random |b|, |h · b| is only O(

√
N) times

bigger than the average |h(i)|.

Assumption 3. |h(i)| is bounded above by a constant, even
as N→∞.

With this assumption,
∣∣∣h(i)

∣∣∣�∑
N
j=i

∣∣∣h( j)
∣∣∣, capturing the intu-

ition that, since all elements are small, there is no dominating el-
ement. Many elements must contribute to create a large effect.

Note that an RFocus element is only half a wavelength long
when on. This implies that, individually, an element cannot
be very directional [9]. Hence, the reflections are not specular.
Rather, each element diffracts waves to a wide range of angles.
Hence, we would expect all the h(i) to have a similar (likely,

hZ

Re

Im
h(1)h(2)

h(3)

h(4)

h(5)

h(6)
h(7)

h(8)

Figure 4: hZ and the h(i) in the complex plane. To maximize
signal strength, we should pick the h(i) in the shaded region
and remove the others.

small) magnitude. However, acting together, the elements
form a large structure which which c which and can beconfig-
ured to achieve directionality (§3.2). In addition, we assume
that equation 2 is accurate, which we later verify experimen-
tally (see §6.2.1). Our analysis is in the limit where the number
of elements and the number of measurements go to infinity.

4.3.2 Proof Outline

Consider hZ and h(i) on the complex plane as shown in Figure 4.
The signal strength is |hZ+∑ih(i)b(i)|2. If all the elements are
turned on, the h(i) interfere destructively with each other. To
increase signal strength, we should eliminate this destructive
interference. To do so, we should pick a half-plane (the dotted
line), turn on all elements on one side of it and turn the others off.
We show in Lemma 1 that the optimal solution takes this form.

Next, if the phases of h(i) are randomly distributed, it
doesn’t matter which half-plane we pick; they will all produce
roughly the same |b·h| (Lemma 2). Hence, we can maximize
alignment with hZ by picking the half-plane perpendicular to
it (pictured in the figure).

The controller needs to determine for each element i if h(i)

is aligned with hZ . Or equivalently, whether ℜ(h(i)h∗Z) > 0
where ℜ(·) denotes the real component of a complex number
and ∗ denotes complex conjugation. The algorithm takes
advantage of the fact that if ℜ(h(i)h∗Z)>0, the signal strength
is slightly more likely to be higher than the median signal
strength when h(i) is turned on (Theorem 1).

4.3.3 A Near-Optimal Solution

We show that all the chosen h(i) in an optimal solution lie on
one side of a line in the complex plane, formalized as follows:

Lemma 1. Under assumptions 2 and 3, let bOPT be an
optimal state assignment. Then, b(i)

OPT = 1 if and only if
ℜ(h(i) ·H(bOPT )

∗)>0, where H(b)=hZ+h·b.
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Proof. If this were not the case, we could flip b(i)
OPT to get

|H(bOPT )−b(i)
OPT h(i)+

(
1−b(i)

OPT

)
h(i)|

=
∣∣∣H(bOPT )+

(
1−2b(i)

OPT

)
h(i)
∣∣∣

≥|H(bOPT )|

(3)

To prove the last inequality, note∣∣∣H(bOPT )+
(

1−2b(i)
)

h(i)
∣∣∣2−|H(bOPT )|2

=
∣∣∣(1−2b(i)

)
h(i)
∣∣∣2+2ℜ

((
1−2b(i)

)
h(i) ·H(bOPT )

∗
)

≈2ℜ((1−2b(i))h(i) ·H(bOPT )
∗)

≥0

(4)

The second-last approximation follows because |h(i)| is
bounded and hence |h(i)| � hZ ≤ |H(bOPT )|. The last
inequality holds if our condition on b(i)

OPT is not satisfied.
If so, the solution can be improved, which contradicts our
assumption that bOPT is optimal.

The next lemma states that the solution pictured in Figure 4
is close to optimal with high probability as the number of
elements N→∞.

Lemma 2. Let bOPT be the optimal assignment that maximizes
|hZ+h·b| and b⊥ be such that the ith component b(i)

⊥ =1 if and
only if ℜ(h(i) ·h∗Z)>0. As N → ∞, if assumptions 1 and 3 hold,
then |H(bOPT )|/|H(b⊥)|<1+ε ∀ε>0, with high probability.

The proof is in Appendix A. We give the outline here. Let
bθ be the state such that b(i)

θ
=1 iff ℜ(h(i)e− jθ)>0. We show

that, since the phases of h are uniformly distributed, it does not
matter what θ we pick. That is, maxθ|bθ ·h| isn’t very different
from minθ|bθ ·h|. Hence, we can pick θ to be the phase of hZ
to prove the theorem.

4.3.4 Analysis of the Algorithm

We prove that Algorithm 1 finds the near-optimal solution
discussed in Lemma 2.

Theorem 1. Let assumptions 1, 2, and 3 hold. Then, as N→∞

and K→∞, the configuration returned by Algorithm 1 finds
a near-optimal solution.

Proof. According to Equation 2, when we randomly vary
b(i), h becomes a random variable, H, with mean hZ + S/2,
where S=∑

N
i=1h(i) is the sum of the contributions of the rest

of the elements. The S/2 term appears because we include
each element with probability 1/2. Figure 5(a) shows this
probability distribution. Consider an element i that hasn’t
yet been fixed. If we condition the probability distribution
on the ithelement being on, then the PDF shifts by h(i)/2 as

h Z

S/2
h(i)/2

(a) (b) ReRe

Im Im

h Z

S/2

Figure 5: (a) Shows the probability density function of the
channel when all bits are chosen uniformly at random. (b)
Shows the PDF conditioned on the ith bit being ‘on’. The
dashed circle is centered at the origin with radius |hZ +S/2|,
where S = ∑

N
i=1 h(i) . Depending on which side of the circle

hi takes the mean, the mean magnitude will be greater or lesser
than that of the unconditional PDF.

shown in Figure 5(b), because the ithelement’s value is fixed
in these samples (it shifts by h(i)/2 and not h(i) since we have
already included the other h(i)/2 in S/2). If we condition on
the element being off, then the mean shifts by−h(i)/2.

The central limit theorem implies that H/
√

N is Gaussian
as N→∞. Hence, if h(i)/2 (or−h(i)/2) shifts the mean to be
outside the circle, then when the element is on (or off) the
RSSI-ratio is more likely to be greater than the unconditional
mean. If h(i)/2 shifts the mean inside the circle, then the op-
posite holds. Here, we use assumption 2, which implies that H
isn’t shifted far from hZ+S/2. Hence, as K→∞, Algorithm 1
determines with confidence tending to 100%, whether the
conditional mean is inside or outside the circle, by looking
at RSSI alone. Note that mean equals median in this case.

Assumption 2 implies that |h(i)| � |hZ |. Thus, the mean
shifts outside the circle if and only if it shifts to the outer side
of the tangent line shown in figure 5. That is, b(i)

⊥ = 1 if and

only if ℜ

(
h(i) ·(hZ+S/2)∗

)
. But hZ +S/2≈ hZ , because of

assumption 2. Hence b(i)
⊥ = 1 if and only if ℜ

(
h(i) ·h∗Z

)
> 0.

From Lemma 2, we know that this produces a near-optimal
solution.

To a first order approximation, the RSSI-ratio is linear in
b.2 Hence linear regression is an alternative to majority voting.
Majority voting has three advantages. First,unlike linear regres-
sion,majority voting is robust to outliers. Second, it is conceptu-
ally and computationally simpler, which is particularly impor-
tant when the controller is an embedded device. Third,when the
votes for a particular element determine its value with high con-
fidence (say, >95%), it can be fixed for the rest of the training

2RSSI-ratio, |h/hZ | = |1 + b · h/hZ | ≈ 1 + ∑i ℜ(b(i)h(i)/hZ) because
|b·h|�hZ for random b and |1+x|≈1+ℜ(x) for small x.
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period. This allows the channel to be improved even before the
training ends. Fixing elements also removes the confounding
effect they have on determining values for other elements. An
earlier version of this paper used this idea [3]. However due to a
performance optimization (§6.1), we do not implement it here.

5 Antenna Array Design

We have made two key design choices in the physical design
of our antenna array. First, each element has only two states:
one that reflects the signal, another that lets it through. Second,
each element is half a wavelength tall and 1/10 of a wavelength
wide. In this section we explore the tradeoffs in these choices.

5.1 How Big Should Each Element Be?

An array with many small antennas gives better control over
the reflected signal, while one with fewer but larger antennas
is cheaper and simpler. If the inter-antenna spacing is larger
than half a wavelength, there will be grating lobes where the
signal is sent in directions other than the one desired [4].

Designing antennas that are much smaller than a wave-
length3 is challenging. Small antennas are either inefficient,
absorbing only a small fraction of incident energy, or they are
efficient only over a small bandwidth [21, 31]. Further, when
placed close to each other, antennas interact strongly with
each other in a way that is often hard to model.

Fortunately, a well understood result states that controlling
the reflected wave at a granularity finer than half a wavelength
gives only marginal benefits. Consider two infinite parallel
planes a distance d apart, separated by a homogeneous
medium. Variations in electric/magnetic fields in one plane
that are faster than once per wavelength, will have a negligible
effect on the fields on the other plane; it decays exponentially
with d [24]. Hence any fine-grained variations we introduce in
the surface will be lost as soon as the signal propagates a few
wavelengths in either direction. Thus we can design an array
with antennas comparable to a wavelength and still get most
of the benefits. Metasurfaces [6] may enable a more efficient
design, but that is out of scope of this work.

5.2 How Many States for an Element?

We chose elements that can be in only one of two states. But we
could have chosen a design that offers greater control. Ideally
we would be able to control the exact phase and amplitude
with which each element reflects its energy. In terms of our
model in equation 2, we would have been able to set any
b(i) ∈C,|b(i)| ≤ 1, instead of being restricted to b(i) ∈ {0,1}.
Denote the amount of energy that can be directed by the
surface in the two cases as hIDEAL and hREAL. In the ideal

3These are called “electrically small antennas”.

system, we would be able to align the phases of all h(i) to get
|hIDEAL|=∑i|h(i)|. We show here that |hREAL|≥|hIDEAL|/π.

Here |hREAL| and |hIDEAL| include only the signal due to the
surface (|h·b|) and not the rest of the environment (hZ). To max-
imize signal strength, we would need to align the phases with
hZ too. If we assume that phases are random (assumption 1),
we can also prove the result when |hREAL| and |hIDEAL| include
hZ . We discuss this as a corollary of lemma 3 in Appendix A.

Theorem 2. Under assumptions 2 and 3, |hREAL| ≥ |hIDEAL|
π

as N→∞.

Proof. Define A =
∫

π

−π ∑
N
i=1 |ℜ(h(i) · e− jθ)|dθ. ℜ(·) denotes

the real part of a complex number. The variable A expresses the
sum of components of h(i) along angle θ and integrates over
all θ. Each θ corresponds to a perpendicular to a half-plane,
as discussed before in Lemma 1. At least one of these, θ0,
corresponds to the optimal half-plane, wherein the optimal
solution contains all the h(i) such that ℜ(h(i) · e− jθ0) > 0.
These contribute h(i) toward hREAL. Thus,

|hREAL|≥
N

∑
i=1

max
{

0,ℜ
(

h(i) ·e− jθ0
)}
≥ 1

2

N

∑
i=1

∣∣∣ℜ(h(i) ·e− jθ0
)∣∣∣

(5)
The first inequality holds because the absolute value

(LHS) is greater than the real component (RHS). The second
inequality holds because otherwise we could have chosen
π + θ0 and obtained a better |hREAL|. Hence |hREAL| ≥
1
2 maxθ∈[π,π) ∑

N
i=1 |ℜ(h(i) · e− jθ)| ≥ 1

2
1

2π

∫
π

−π ∑
N
i=1 |ℜ(h(i) ·

e− jθ)| dθ= A
4π

, since the maximum is greater than the average.
Separately, we can rearrange the sum as A =

∑
N
i=1

∫
π

−π
|ℜ(h(i) · e− jθ)| dθ = ∑

N
i=1 |h(i)|

(∫
π

−π
|cosθ| dθ

)
.

The second step is possible, because cosθ expresses the dot
product of h(i) over a unit complex number with phase θ.
Since we are integrating over all angles, it doesn’t matter
which angle we start from. Now we can evaluate the integral
to get A = 4 ∑

N
i=1 |h(i)| = 4|hIDEAL|. Since |hREAL| ≥ A

4π
,

|hREAL|≥ |hIDEAL|
π

.

Alternate designs. We could design an alternate system
where b(i) ∈ {−1, 1} instead of b(i) ∈ {0, 1}. That is, the
elements either reflect signal directly or with a 180o phase
difference. In this case, we’d get a 2/π-approximation, which
is better than the 1/π factor we get now. This is because we
would have had max{ℜ(h(i) ·e jθ0),ℜ(h(i) ·e− jθ0)}, which re-
moves the 1/2 factor in equation 5. On the other hand, while
our setup can function as both a mirror and a lens (i.e. it can be
selectively transparent), this alternate design can only operate
as one of the two. A four-state system could potentially offer
the benefits of both, a good topic for future work.

5.3 Our Design
Our surface design consists of a panel of metal rectangles
of size λ/4× λ/10 as shown in Figure 6, where λ denotes
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Figure 6: Schematic of the design of our antenna array. This
array of rectangles continues in both directions.

the wavelength. They are connected by RF switches, which
determine whether or not the rectangles are connected (the
switches are placed off-center for practical PCB-design
reasons). This design works only for vertically polarized
radiation. It can be generalized to all polarizations by having
an identical copy perpendicular to this one.

There are two principles of operation. First, the rectangles
by themselves are small and hence interact weakly with
radiation. If the switches are all off, the surface would be semi-
transparent. However, when an RF switch is turned on, it joins
two rectangles to form a λ/2×λ/10 rectangle. This forms a
half-dipole antenna and interacts strongly with incident radia-
tion. We made the strips wide to support a wider bandwidth of
operation, since the width allows more modes of oscillation.

Second, if a plate of metal has small holes in it, then
radio behaves as if the holes weren’t there. This effect is
used in Faraday cages, such as those in microwave ovens.
A common rule-of-thumb says that the holes need to be
smaller than λ/10, the size of the gaps between rectangles.
When switches in adjacent columns are turned on, their
rectangles will behave as a continuous sheet of metal, rather
than individual columns, almost completely reflecting incident
waves. Because neighbors act in a simple way, we expect that
the neighbors’ state wouldn’t change the phase of the currents
induced in the rectangle, only the magnitude. Hence the linear
model in Equation 2 is approximately correct.

The above reasoning is merely the conjecture that motivated
our design. We conduct two experiments to partially validate it.
§6.2.1 demonstrates that the linear model is approximately cor-
rect, and §6.2.2 shows that the surface can significantly change
its opacity. Validating this design in an anechoic chamber
would offer more insights. We leave that for future work.

6 Evaluation

6.1 Experiment Setup

Our antennas are fabricated on custom printed circuit boards,
with 40 antennas per board. We mount 80 of these boards on
two frames and place it next to a wall in our lab. Since metal
would interfere with the antennas, the frames are partially built
from acrylic. The boards are connected in series with a single
SPI serial-to-parallel bus composed of shift registers, allowing
our Raspberry Pi controller to serially set the state of each
individual element.

To set element state, the controller pushes values through
the shift registers at 1 Mbit/s. Higher speeds are impeded by
distortion due to the long wires in our setup. Hence pushing a
new random state to the surface is the most time-consuming
part of measuring it. To alleviate this problem, instead of push-
ing 3200 bits for each state, we push just 8 bits at a time, which
shifts all the bits in the surface by 8 positions. Though the new
state isn’t completely fresh, each element still gets a new ran-
dom value that is independent of the previous one. If we were
to solve for h(i) from the system of linear equations, the mea-
surement matrix is still full rank. Hence we expect Algorithm 1
to work. This modification reduces the mean time to measure
a state from 7 ms to 0.22 ms. Better engineering will improve
performance further. To measure the channel, we use a USRP
programmable radio operating in the 2.4 GHz ISM band.

Measurement method. The results in the main evaluation
(Figures 10 and 11) are reported as the ratio of the signal
strength when RFocus is in its optimized state to the strength
when the surface is not present (i.e., it is physically removed,
not just set to off). We measure this ratio as follows. Let RI be
the improved signal strength, R0 be the signal strength when the
surface is in the all-zeros state (i.e. it is semi-transparent), and
RB be the baseline signal strength when RFocus isn’t present.
We separately measure RI/R0 and R0/RB and multiply them
to obtain RI/RB as desired.

After optimizing the state, we measure RI/R0 100 times
by repeatedly flipping between the two states every 5 ms and
calculating the mean improvement. We find that 1σ error is
< 2% in all cases. To measure R0/RB, we first measure R0.
Then we remove the surface and measure RB. We do this over
≈10 transmitter positions in a neighborhood around the orig-
inal point, and use the median R0/RB to correct RI/R0. The
median helps account for the systematic effects of the RFocus
surface. It ignores random fading effects that may occur since
the RFocus surface, people, or objects will have moved in the
meanwhile. The mean absolute correction we had to introduce
was 0.6 dB, while the maximum was 1.5 dB.
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Total prediction error Error due to noise
5.4% 2.0%

Figure 7: A linear model predicts the channel due to a state
with 5.4% accuracy. If the surface were perfectly linear, the
error would have been 2.0% due to noise. Hence the RFocus
is approximately, but not fully, linear.

6.2 Microbenchmarks
6.2.1 Linearity

Our analysis of the optimization algorithm (see §4.3) assumes
that the elements are not coupled with each other. Hence
we used a linear model formalized in Equation (2), where
h(i) are independent of the states of the other elements. We
wouldn’t expect elements that are far away from each other
(say, more than a wavelength) to couple strongly, especially
since the elements are flat and radiate perpendicularly away
from the surface. However, we packed the elements tightly to
more densely cover the surface and beamform more precisely.
We hypothesized that the non-linearity due to any resulting
coupling will be small (§5.3). We now test this hypothesis.

We prepare several random “test-triples” of states of the
form (bA,bB,bAB). Let (hA, hB, hAB) be the corresponding
channels. The states are drawn uniformly from the triples
where bA&bB=0 and bAB=bA|bB; here states are represented
as bit-strings and & and | are bitwise operators. That is, no
element is on in both bA and bB, and any element that is on
in either bA or bB is also on in bAB.

If the linear model in Equation (2) is correct, then
hA/hZ + hB/hZ − 1 = hAB/hZ . If an element’s effect on the
channel (h(i)) depends on whether its neighbors are on, this
relation will not hold, since many more pairs of neighbors
are on in bAB than in bA or bB. Since the neighborhoods are
substantially different, h(i) will be different for different states
if our assumption is wrong.

Hence, to test linearity, we measure
(|hA/hZ |, |hB/hZ |, |hAB/hZ |) for several random states
and test our ability to predict |hAB/hZ | given |hA/hZ |
and |hB/hZ | using the above relation. Using | · | doesn’t
invalidate the relation since for any random state X ,
hX/hZ = |1+∆hX/hZ | ≈ 1+ℜ(hX/hZ) since ∆hX� hZ . We
measure each state 100 times. If Equation (2) were correct,
the error in prediction due to measurement noise would
have been 2.0%. Our error is 5.4% as shown in Figure 7. We
conclude that although RFocus is not perfectly linear, the
nonlinearities are small. They are, however, large enough that
linear regression on |hX/hZ | doesn’t produce a good predictor.

6.2.2 Controllability and Bandwidth

We expect that the RFocus surface can control its opacity to
radio. To test this, we kept the surface in between two wide-
bandwidth directional (Vivaldi) antennas pointed at each other.
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Figure 8: The ability to control the surface’s opacity to radio
as a function of frequency. This also indicates RFocus’s
bandwidth of operation.

Number of active elements

Figure 9: Measurability of the effect random configurations of
the RFocus surface on the channel, as a random subset of them
are deactivated, for three representative transmitter locations.
It demonstrates why boosting (§4.1) is important for RFocus
to function.

Using a Vector Network Analyzer (VNA), we compare the
signal strength between the antennas when all the elements
are turned on to when they are all turned off. We expect that,
when the elements are all on, the surface will be much more
opaque to radiation, reflecting a large fraction of it. The ratio of
signal strength in these configurations is shown in Figure 8: it
is consistently greater than 6 dB between 1600 and 3100 MHz.
Hence, RFocus can change its opacity by over 75% over a large
bandwidth. The peak is closer to 3000 MHz, where the change
is well over 10 dB (90% control). But all of our other results are
in the 2450 MHz ISM band, in order to conform to FCC rules.
Frequency of operation can be tuned by scaling the sizes of the
components. (Antenna design is not the focus of this paper.)

The y-axis is cropped at−3 dB for clarity in showing our
frequency range of interest. The change falls after 3000 MHz
because our RF switch is only rated up to that frequency. At
<1500 MHz, the rectangles, even after joining, are too small
to interact with radiation.

6.2.3 Measurability

To find a good configuration, the controller needs to measure h.
However, the effect of each individual element, h(i), is tiny and
hard to measure. To aid measurement, we vary all elements
randomly and at once (§4.1). This gives us an O(

√
N) boost in
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Figure 10: Ratio (in dB) of signal strength without and without
the surface. The colored circles represent the improvement
when the transmitter was placed at those locations, with
the receiver and RFocus placed as shown. The CDF of
improvements are shown in Figure 11.

the change in the channel amplitude (O(N) in signal strength),
which is easier to measure. To experimentally study the effect
of this boost, we compute the Signal to Noise Ratio (SNR) of
the change in the channel due to a random state as a function
of the number of elements in the array. We artificially reduce
the size of our array, by deactivating a random subset of it.

We choose 165 different random configurations, and
measure the RSSI-ratio for each configuration≈1000 times.
The definition of “measurability SNR” is as follows. The
“signal” in SNR is the variance in the average RSSI-ratio across
all configurations, and the “noise” is the average variance in the
RSSI-ratio measurements within each individual configuration.
With the receiver and RFocus surface in the locations shown
in Figure 10, we place the transmitter at three representative
locations covering the full range of signal strengths.

Figure 9 shows the measurability SNR as a function of the
number of active elements for these points. We can see that
SNR is increases when more elements are varied. Note that
when only a few elements are varied, the SNR is very low. This
is why boosting the signal by varying all elements at once is
critical, especially when the transmitter is far from the receiver.

The impact of random configurations on the channel is
still small, because elements can interfere destructively.
An optimized state eliminates destructive interference and
produces an O(N) effect on the channel (O(N2) in signal
strength). Hence it produces significant gains in signal
strength, even though a random state has little impact.

6.3 Signal Strength Optimization
We placed the receiver and the RFocus surface at a constant lo-
cation as marked in Figure 10. Then we placed the transmitter
at various positions in an indoor environment (our lab), and ran
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Figure 11: CDF of Improvement in the signal strength and
channel capacity

the optimization algorithm to maximize signal strength at the
receiver. We measure the ratio of the improved signal strength
to the signal strength when the surface is physically removed.
We plot these on a map in Figure 10. The corresponding CDFs
are shown in Figure 11. RFocus provides benefits throughout
an entire floor of our building. The minimum, median and
maximum improvements across all locations are 3.8 dB, 9.5
dB, and 20.0 dB, respectively.

The five points with the highest improvement had among
the smallest unimproved RSSI. Further, they appear in
apparently random locations, which makes us postulate that
their unimproved RSSI is low due to fading, where destructive
interference drastically decreases signal strength. Due to its
size, RFocus is unlikely to suffer from fading at all its antennas.
Hence, RFocus provides significant benefits for weak channels
in such situations.

RFocus’s large area allows it to focus energy from the
transmitter to the receiver. This is particularly helpful when
the transmitters are power constrained, since even a “whisper”
will be “heard” clearly at the receiver. Yet, interference does
not increase because the transmit power isn’t increased. This
could enable a new regime of low-power, high throughput IoT
sensor devices. Whenever a sensor wants to transmit, it can ask
the controller to tailor the surface for that particular endpoint
(using a brief high-power transmission). Then it can make its
high-bandwidth transmission at low power. Since sensors tend
to be stationary, the same trained configuration can be used for
extended periods of time. We evaluate this scenario in 6.4.1.
Once trained, setting a state takes≈3 ms.

Alternately, radios can use the additional signal strength
to increase their channel capacity to obtain higher bitrates,
as shown in Figure 11. Channel capacity increases logarith-
mically with signal strength, and hence the improvement
decreases with increasing transmitting power. We set our
transmitter to the highest power level (≈20 dBm) and adjust
the receiver’s gain accordingly to avoid saturation.
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(a) Improvement for different frequencies, when RFo-
cus was optimized for 2480 MHz.
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(b) Improvement when some antennas are faulty and
flip randomly. Dotted line shows the best quadratic fit.
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Figure 12: To understand the trends as we vary different parameters, we plot the mean± standard deviation of the improvement
across all locations pictured in Figure 10. To normalize for differences in absolute improvement for different locations, we plot

I−1
Max(I)−1 . I is the ratio of the improved signal strength to the baseline strength. We normalize relative to the maximum improvement
(across all values of the parameter) for that location. Note: I=1 means no improvement. Hence we subtract 1 in our metric, so
that positive values denote an improved channel.

6.4 Understanding the Improvement

Neighboring frequencies. Our optimization algorithm
only seeks to improve the signal strength at a single frequency
(we leave generalizing to multiple frequencies as future work).
Nevertheless, we find that it also provides improvement in a
10 MHz neighborhood as shown in Figure 12(a). Multi-path
rich environments often have very different signal strength
for different frequencies, due to fading [30]. To maximize
gain, RFocus could preferentially improve frequencies with
the lowest signal strength.

In some cases the frequency that improved the most is
different from the target frequency. This could be because
that frequency had a much lower baseline signal strength in
the un-improved channel due to fading. Hence, the center
frequency doesn’t have a value of 1. Far away from the target
frequency, sometimes the signal strength decreases slightly
due to the surface.

Fault tolerance. RFocus is intended to be a large array of
inexpensive elements. Hence individual elements are expected
to fail, and the system must be robust to failure. To test this, we
artificially make a random subset of elements flip randomly,
and not as per the controller’s instructions, during both training
and testing. Figure 12(b) shows the improvement against the
number of ‘faulty’ elements.

Our model of the system suggests that the signal strength in-
creases quadratically with the number of elements (§3.2). This
is because each element contributes linearly to the channel am-
plitude, and the signal strength is the square of the amplitude.
Under this model, we expect the normalized mean plotted to
have the form αn2+βn,where n is the number of non-faulty ele-
ments, and (α,β) are constants. This is the best-fit line pictured.

Note that, this does not imply that gain increases quadrat-
ically with the area of the surface, since a larger surface will

have more elements that are far away from the source, and
hence a smaller h(i). In the above experiment, we don’t change
the distribution of h(i) since we disable a random subset of
elements. Hence, the quadratic model works.

Optimization speed. To understand the rate at which the op-
timization progresses, we plot the signal strength improvement
as a function of the training time/number of measurements. As
shown in Figure 12(c), 50% of the improvement occurs within
1 sec, with 4500 measurements and 90% improvement occurs
within 10 seconds. Note, RFocus has 3200 elements, and we’d
expect to need at-least 3200 measurements before the prob-
lem is well determined, even ignoring noise. RFocus exploits
additional measurements to contend with the fact that mea-
surements are noisy (§6.2.3). RFocus provides some (smaller)
benefit with fewer than 3200 measurements, since, at any point
in time, RFocus has a hypothesis state that it believes is optimal.

6.4.1 Stability Across Time

Once optimized, how long does an optimized state work? How
often do we need to re-optimize our state? To test this, we
keep our transmitter in our office on a typical workday, where
around 10 people work. We optimized the state at 10AM and
measured the improvement due to that state till 4PM that day.
The top graph in figure 13 shows this. The initial improvement,
shown as a dotted line, was 12.6 dB for about 3 minutes before
it increased (without re-optimizing the state) for the next≈20
minutes, and then decreased again. We also do a 100 second
experiment (in a different location), where two people walk
between the endpoints and the surface, intentionally trying
to block the direct paths. The bottom graph in figure 13 shows
this. Note, the people move only in the middle portion. At
other times, the improvement reverts to the baseline.

RFocus’s optimized state is robust to motion in the
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Figure 13: Improvement across time due to a state optimized
in the beginning of the time window. This shows that the
same optimized state can be used for a long time. The dotted
line shows the improvement immediately after the state was
optimized. Note the unit change in the x-axis (hours/seconds).
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Figure 14: Signal strength improvement when both transmitter
and receiver are at increasing distances from the surface. In
other experiments, the receiver stays close to the surface. The
radios endpoints are 2 m and 7m away from each other, in
front of the surface, on the same side.

environment. Since optimization takes only 1 to 10 seconds,
endpoints can benefit from RFocus for a large fraction of
time. RFocus does not support continuous motion and needs
to re-optimize the state if the endpoints move.

6.4.2 Moving both endpoints away from the surface

RFocus works best when either (or both) the transmitter and
receiver is close to the surface. Performance degrades when
both are moved away. Figure 14 shows that RFocus provides
benefits up to a few meters from either transmitter or receiver.
If ubiquitously deployed, such as on a wall, floor, or ceiling
in every room, RFocus allows small devices to realize the
benefits of a large antenna array. Alternately, surfaces could
be placed close to APs or embedded in building fixtures.

7 Discussion

Efficiency In theory, an N-antenna phased array can achieve
an N× gain in signal strength. RFocus achieves a median 10×

gain with 3200 antennas. RFocus suffers from two sources
of loss in efficiency. First, only a fraction of the transmitted
energy reaches the surface4. Second, RFocus can only direct
a fraction of the energy that reaches it. This can be improved
with better antenna design (§5.2) and metasurfaces [6].

RFocus’s gain is qualitatively different from that of a 10
antenna phased array. RFocus precisely focuses a fraction
of the transmitted energy, whereas the phased array coarsely
directs all of the transmitted energy. Hence, near the receiver,
RFocus’s beam is more spatially concentrated while the phased
array’s coarse beam will interfere with nearby endpoints.
Nevertheless, we believe these methods are complementary.
Phased arrays can direct signals toward RFocus, which can
then focus it precisely onto the receiver.

Wireless Controller In our prototype, elements are powered
and controlled with wires. This isn’t necessary. We envision
a design where each element is powered and controlled wire-
lessly, like a passive RFID tag. The controller acts like a RFID
controller that sets the state of each element. RFocus’s fault tol-
erance allows deployment with failure-prone RFID tags ( §6.4).

In such a setup, buildings could prefabricate their walls
with RFocus elements. Carpets and wallpapers could be sold
with RFocus elements already embedded in them. Users can
separately buy a controller to control and obtain the benefits
of the elements already present in the environment.

8 Conclusion

This paper presented RFocus, a system that moves beamform-
ing functions from the radio transmitter to the environment.
RFocus includes a two-dimensional surface with a rectangular
array of simple elements, each of which contains an RF switch.
Each element either lets the signal through or reflects it. The
state of the elements is set by a software controller to maximize
the signal strength at a receiver, using a majority-voting-based
optimization algorithm. The RFocus surface can be manufac-
tured as an inexpensive thin wallpaper, requiring no wiring.
Our prototype implementation improves the median signal
strength by 9.5×, and the median channel capacity by 2.0×.

Human Safety. Because RFocus doesn’t emit any energy
of its own, it does not increase the total radiation. It cannot
focus energy to an area smaller than the size of a wavelength,
since any device’s ability to focus energy to an area smaller
than a wavelength drops exponentially with distance from it.
Hence RFocus is no riskier than being near the transmitter.

Ethics Statement. This work raises no ethical concerns.

4In most of our experiments, RFocus subtends ≈ 0.4π steradian on the
receiver (equivalently, the transmitter). Hence it controls≈10% of the energy.
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A Proof of Lemma 2

First, we prove another intermediate result.

Lemma 3. Let bθ be the state such that b(i)
θ

= 1 iff
ℜ(h(i) ·e− jθ)> 0. If assumption 1 holds, then for any θ, the
expected value of h·bθ is e jθ

π
∑i|h(i)|.

Proof.

E[h·bθ]=∑
i

E[h(i)b(i)
θ
]=∑

i
E[e jθmaxℜ{0,h(i) ·e− jθ}]

=
e jθ

2 ∑
i

E[ℜ(h(i) ·e− jθ)]=
e jθ

π
∑

i
|h(i)|

Here, maxℜ compares the real component, and chooses
h(i) · e− jθ if its real component is positive. The second step
comes from our definition of bθ. The third step notes that
half of the values are expected to be non-zero and the sum
of the remaining values is expected to have a phase of 0,
and hence only the real part remains. For the final step, we
compute the expected magnitude of the real part of a complex
number with random phase in (−π/2,π/2], given by the factor
1
π

∫ π/2
−π/2cos(θ)dθ=2/π.

A corollary of this is that, if φ = Arg(hZ),
|E[hZ +h ·bφ]|= |hZ |+ 1

π
∑i|h(i)|. As discussed in §5.2, in an

ideal system where we can choose any b(i)∈C,|b(i)|≤1, the
optimal assignment achieves a signal strength of |hZ |+∑i|h(i)|.
This gives us the same 1/π bound on what our system can
achieve relative to the ideal when we account for hZ and are
willing to assume that phases are random (assumption 1).

Now, we restate and prove lemma 2 here.

Lemma 2. Let bOPT be the optimal assignment that maxi-
mizes |hZ+h·b| and b⊥ be such that the ith component b(i)

⊥ =1
iff ℜ(h(i) ·h∗Z)>0. If assumptions 1 and 3 hold, then as N→∞,
|H(bOPT )|/|H(b⊥)|<1+ε∀ε>0 with high probability.

Proof. We will argue that h·bθ is roughly the same as the ex-
pected value (with high probability) for any θ. For any ε>0 and
θ,φ∈(−π,π], let Aθ denote the event that Rθ=

|h·bθ|
|E[h·bφ]|

>1+ε.
We now show that for any ε > 0, the probability that
Maxθ∈(−π,π]|h·bθ|
|E[h·bφ]|

>1+ε goes to zero as N→0. Let p denote this

probability. Note, there are only N distinct values of bθ (say
for θ1,...,θN), since it only changes when we include/exclude
a new h(i). Hence we need to take a maximum over only N
values. Hence p is the probability that ∃i such that that Aθi

happens. That is, p=P[∪N
i=1Aθi ]≤∑

N
i=1P[Aθi ]=NP[Aθ], for

any θ, since the expression is symmetric in θ (note: we need
not assume Aθi are independent here). Let h̄ = ∑i |h(i)|/N,
be the mean of the magnitude individual components . Then
|E[h · bθ]| = Nh̄/π and Rθ = π

h̄ |∑
N
i=1 h(i) · b(i)

θ
|/N. From the

central limit theorem and lemma 3, we have

Rθ=
π

h̄

∣∣∣∣ h̄π+N (0,σ2/N)

∣∣∣∣= ∣∣∣1+ π

h̄
N (0,σ2/N)

∣∣∣
where σ is the standard deviation in b(i)

θ
h(i)cosθ for a random

θ and N is a symmetric complex normal distribution with
given mean and variance. Note, σ and h̄ are bounded as N→∞,
since assumption 3 tells us8 that h(i) is bounded. Hence
P[Aθ] = P

[
N (0,σ2/N)>εh̄/π

]
goes to zero as N → ∞ for

any ε > 0. p = NP[Aθ] also goes to zero as N → ∞, since
P[Aθ] decreases faster than 1/N. We can follow a similar
argument to show that for any ε > 0, the probability that
|Minθ∈(−π,π]h·bθ|
|E[h·bφ]|

<1−ε goes to zero. And hence for any ε′>0,

the probability that |E[h·bφ]|
|Minθ∈(−π,π]h·bθ|

>1+ε′ goes to zero.

Lemma 1 shows that ∃θ such that bOPT =bθ. Hence

H(bOPT )=Maxθ|hZ+h·bθ|≤|hZ |+|Maxθ(h·bθ)|

Also b⊥=bφ for φ=Arg(hZ). Hence

H(b⊥)= |hZ+h·bφ|= |hZ |+|h·bφ|≥|hZ |+Minθ|h·bθ|

The second step is true since the two terms have the same
phase as N→∞. Thus,

H(bOPT )

H(b⊥)
≤ |hZ |+Maxθ|h·bθ|
|hZ |+Minθ|h·bθ|

≤Maxθ|h·bθ|
Minθ|h·bθ|

=
Maxθ|h·bθ|

E[|h·b|]
E[|h·b|]

Minθ|h·bθ|
<1+ε

with high probability for any ε < 0. This proves the
theorem.
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Abstract
Autonomous vehicles need an accurate, up-to-date, 3D map to
localize themselves with respect to their surroundings. Today,
map collection runs infrequently and uses a fleet of special-
ized vehicles. In this paper, we explore a different approach:
near-real time crowd-sourced 3D map collection from vehi-
cles with advanced sensors (LiDAR, stereo cameras). Our
main technical challenge is to find a lean representation of a
3D map such that new map segments, or updates to existing
maps, are compact enough to upload in near real-time over a
cellular network. To this end, we develop CarMap,12 which
finds a parsimonious representation of a feature map, contains
novel object filtering and position-based feature matching
techniques to improve localization robustness, and incorpo-
rates a novel stitching algorithm to combine map segments
from multiple vehicles for unmapped road segments and an
efficient map-update operation for updating existing segments.
Evaluations show that CarMap takes less than a second to
update a map, reduces map sizes by 75× relative to compet-
ing strategies, has higher localization accuracy, and is able to
localize in corner cases when other approaches fail.

1 Introduction
Autonomous vehicles use a three-dimensional (3D) map of
the environment to position themselves accurately with re-
spect to the environment. A 3D map contains features in the
environment (§2), and their associated positions. As a vehi-
cle drives, it perceives these features using advanced depth
perception sensors (such as LiDAR and stereo cameras), then
matches these to features in the map, and using the feature
positions, triangulates its own position.

Maps need to be updated whenever there are significant
changes to the environment. Changes to the environment can
impact the set of features visible to a vehicle. For example,
road or lane closures due to construction or accidents, parked
delivery vans impeding traffic flow, parked vehicles on the
road-side, or closures for sporting events can cause the set
of features in the map to be different from the set of features
visible to the vehicle. This impacts feature matching, and
can reduce localization accuracy. Figure 1 quantifies this in
a simple scenario. In the image on the left, a street has been
closed due to an accident. With an outdated map, a car is

1https://github.com/USC-NSL/CarMap
2Video demo

Figure 1: If short timescale events like traffic accidents (left)
are not updated in maps, a vehicle cannot localize itself (blue
line) because it cannot match the scene with the map. On the
other hand, vehicles with updated maps (red line) can localize
themselves accurately.

unable to position itself; an updated map is necessary for
accurate positioning.

Keeping this map up to date can be tedious. Today, large
companies (e.g., Waymo [56], Uber [14], Lyft [12], Here [31],
Apple [6], Baidu [7], Kuandeng [11], Mapper [5]) employ
fleets of vehicles equipped with expensive sensors (LiDAR,
Radar, stereo cameras) and GPS devices. For instance, Apple
Map [1] uses vans equipped with a high-precision GPS device,
4 Lidar Arrays, and 8 cameras beside other equipment for
capturing mapping data. These vehicles scan neighborhoods
periodically with a frequency determined by cost consider-
ations, which could be up to several thousand dollars per
kilometer [4]. The scan frequency determines the timescale
of environmental changes captured by the map [2]. To capture
these changes, vehicle fleets have to continuously traverse
the mapped area at very fine timescales [8], which can be
prohibitively expensive.

In this paper, we take a first step towards answering the
question: What techniques and methods can ensure near real-
time updates to 3D maps? The most promising architectural
approach to this question, which we explore in this paper,
is crowd-sourcing.3 In this approach, which leverages the
increasing availability of depth perception sensors in vehicles,
each vehicle, as it drives through a road segment, uploads map
updates in near real-time over a cellular network to a cloud
service. The cloud service, which acts as a rendezvous point,
applies these updates to the map and makes these updates
available to other vehicles.

Given today’s cellular bandwidths, this architecture is most
suitable for a class of 3D maps in which landmarks are sparse

3Incentives for crowd-sourcing are beyond the scope of this paper. Waze
has successfully employed crowd-sourcing from vehicles, by providing a
navigation service and CarMap can use similar techniques.
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features in the environment. Even so, today’s feature-based
3D maps of the kind generated by Simultaneous Localiza-
tion and Mapping (SLAM) algorithms require an order of
magnitude higher bandwidth than cellular speeds (§2).
Contributions. Our first contribution (§3) is to identify the
most parsimonious representation of feature maps. SLAM
feature maps preserve a large number of features, even tran-
sient ones, and build indices to enable fast and effective fea-
ture matching. We show that it is possible to preserve fewer
features, and reconstruct the indices, without impacting local-
ization accuracy while reducing map size significantly.

Because our lean map representation throws away informa-
tion, we have had to re-think feature matching. Our second
contribution leverages the observation that, unlike robots,
cars have approximate position information (e.g., from GPS).
Thus, instead of using statistics of features alone for match-
ing, we also use position information to enable a more robust
feature search, leading to improved localization accuracy.

Vehicles will use feature maps over longer time-scales than
SLAM maps used by robots,4 so we must avoid including
features (e.g., from parked cars, or pedestrians) that may
disappear over those time-scales. We observe that seman-
tic segmentation algorithms can identify such features. Our
third contribution is a robust resource-aware algorithm that
incorporates the semantics of objects in the scene to perform
dynamic object filtering.

Updates to a map can be of two kinds: map segments rep-
resenting a previously unseen road segment, and map diffs
representing a transient in a previously-mapped road segment.
Our last contribution is a collection of algorithms for map up-
date: a fast and efficient map diff algorithm which generates
compact diffs and can integrate these quickly into the map,
and a robust map segment stitching algorithm that reliably
identifies areas of overlap between the map segment and the
existing map, and uses features within the overlapped region
to transform the segment into the existing map’s coordinate
frame of reference.

We have embodied these contributions in a system called
CarMap. Using experiments on an implementation (§4) of
CarMap built upon the top-ranked visual open-source SLAM
algorithm [41], and real traces as well as traces from a game-
engine simulator [27] we show that (§5): CarMap requires
75× lower bandwidth than competing algorithms; it can gen-
erate a map update, disseminate it to a participating vehicle,
and integrate the update into the vehicle’s map in less than a
second; its localization accuracy is better than state-of-the-art
SLAM algorithms especially when a map is used in dramat-
ically different conditions (e.g., denser traffic) than when it
was collected; it can localize a vehicle in some cases when
other competitors cannot, such as when a map obtained from
one lane is used in another lane in a multi-lane street; its com-

4In a robot, SLAM algorithms perform mapping and localization si-
multaneously. For vehicular use, a SLAM map is collected once, updated
intermittently, and used often.

Feature extraction and tracking Feature map
Figure 2: Localization using a feature based map. The picture
on the left shows the features in an image, and the picture on the
right shows the feature map generated for an area. Features are
color-coded by the type of object those features belong to.

putational overhead is comparable to, and sometimes better
than competing strategies; and its feature labeling achieves up-
wards of 95% accuracy in distinguishing static from non-static
objects even when the underlying segmentation algorithms
have lower accuracy.

2 Background and Motivation

SLAM Principles. SLAM represents a map by a set of land-
marks and their associated positions [19]. As a vehicle tra-
verses the environment, its sensors (LiDAR, cameras) contin-
uously generate measurements of the environment. SLAM
continuously outputs (a) detected landmarks, and (b) the cur-
rent pose (position and orientation) of the vehicle. It does this
by using maximum a posteriori (MAP) estimation [42], find-
ing the landmark position and vehicle pose that best explain
the observed measurements.

Feature-based Maps: Terminology. SLAM maps can con-
tain either feature-based landmarks (extracted from cam-
eras [41] or LiDAR [57, 58]) or dense representations such
as image frames [28] and occupancy grids [54]. In this paper,
we explore crowd-sourcing feature-based maps (Figure 2),
leaving denser representations for future work5. A feature is a
lower-dimensional representation of some high-dimensional
entity in the environment (e.g., a leaf on a tree, or a part of
a letter on a roadside sign), and is represented by a feature
signature. Features are usually extracted from LiDAR or cam-
era frames. For storage efficiency, SLAM implementations
store features from approximately every k frames (so called
keyframes), for small k. These implementations associate
each feature in a keyframe with a relative 3D position with
respect to that keyframe. They extract landmarks for the
feature-based map from a subset of these features; we call
these map-features. Maps have a single coordinate frame of
reference, and map-features have 3D positions relative to the
map’s coordinate frame of reference.

SLAM Practice. Practical SLAM implementations are com-
plex (Figure 3) because they have to deal with sensor and
estimation errors. We briefly describe SLAM components

5Which map technology a vehicle uses is generally proprietary informa-
tion, but we conjecture, based on anecdotal evidence that lower levels of
autonomous driving [43] or vehicles that use stereo cameras will use feature-
based maps [9] for cost reasons, while higher-end fully-autonomous vehicles
with LiDAR will use denser maps.
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Figure 3: Components of feature-based map generators.

here, and introduce additional background in later sections.

Feature matching. Feature matching (or data association) is
the process of matching features in the current frame with
features seen in one or more keyframes in the map. SLAM im-
plementations match features in a number of different ways:
e.g., image feature matching uses the similarity of image sig-
natures (feature descriptors), and LiDAR 3-D features use
feature geometry. Matching is a crucial building block for
identifying map-features (as described below). SLAM imple-
mentations contain two data structures to speed up feature
matching. A map-feature index associates map-features to
keyframes they occur in. A feature index can search for the
keyframe whose features most closely match the features in a
given frame.

Pose estimation. This component contains algorithms that
estimate the pose of the vehicle. As a vehicle traverses an en-
vironment, it first extracts features from each frame received
from its sensor. Then, the vehicle matches the extracted fea-
tures with those extracted in the last frame. At this point, the
vehicle knows (a) the pose estimate in the previous frame, (b)
the positions of the matched features in the previous frame
and the current frame. It then uses MAP estimation [42] to es-
timate the current pose of the vehicle. If the feature matching
step does not return enough features to estimate pose accu-
rately, the vehicle uses the feature index to search the entire
map for keyframes containing features matching those seen
in this frame, a step called relocalization.

Map augmentation. Pose estimation can estimate the 3D
positions of features in each keyframe. It adds some of these
features as map-features, but only after filtering transient
features (those that do not occur across multiple frames [41,
58]) or dynamic features (e.g., features that belong to moving
vehicles) whose position is not stable across frames.

Error minimization. This component minimizes the error
accumulated in the feature map. Local error minimization
rectifies error accumulation in successive frames using, for
example, extended Kalman filters for LiDARs and bundle ad-
justment [55] for cameras. When vehicles visit a previously-
traversed part of the environment, a loop closure algorithm
finds matches between features in the current frame and fea-
tures already in the map, then reconciles their position esti-
mates (while also correcting positions of features discovered
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Figure 4: Architecture and workflow of CarMap

within the loop), thereby reducing error.
Challenges. CarMap faces four challenges.
Map size. CarMap could simply upload, over the cellular
network, a SLAM map to the cloud, but these maps, which
include map-features, keyframes, and the two indices, can be
large. A 1 km stretch of our campus generates a 1.5 GB map.
A car traveling at 30 kph would require a sustained bandwidth
of 100 Mbps, well above achievable LTE speeds [3].6 Our
first challenge is to find a lean map representation that fits
within wireless bandwidth constraints.
Environmental dynamics. CarMap maps are meant to be used
over a longer timescale than SLAM maps used by robots, so
they must be robust to environmental dynamics. For example,
if a map includes features from a parked car that has since
moved, localization error can increase.
Effective feature matching. As in SLAM, CarMap relies heav-
ily on accurate feature matching for pose estimation, relocal-
ization, and loop closure. However, because CarMap’s lean
map has less information than SLAM’s, its feature matching
accuracy can be lower, so CarMap must use a fundamentally
different strategy.
Fast map-updates. CarMap must devise fast algorithms to (a)
stitch additions to the map received from vehicles traversing a
previously unmapped road segment (decentralized SLAM al-
gorithms [29] have a similar capability but differ significantly
in the details, §6), (b) generate and incorporate changes to the
map from temporary obstructions.

3 Design of CarMap
Architecture and Workflow. As vehicles traverse streets
(Step 1, Figure 4), they derive lean representations of feature
maps using a map segment generator that runs on the vehicle
(Step 2, §3.1). To this representation, CarMap applies a
dynamic object filter to improve robustness to environmental
dynamics (Step 3, §3.3). CarMap then determines whether
this is a new map segment (not available in its own base map).
If so, it uploads the entire map segment, else it uploads a

6With standard compression techniques (e.g., gzip [26]) the sustained
bandwidth is approximately 60 Mbps. Moreover, gzip compression adds
latency: it takes approximately 25 seconds to compress a 500MB map
collected over 4 minutes.
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map diff (Step 4) to a cloud service. The cloud service runs
a stitcher to add a new segment to the map, or a patcher to
patch the diff into the existing map (Step 5, §3.4).

A vehicle receives, from the cloud service, segments or
diffs contributed by other vehicles (Step 6), reconstructs the
complete map, and uses it for localizing the vehicle (Step 7,
§3.5). Diff generation, stitching, patching, and reconstruction
use a position-based feature index for feature matching (§3.2),
resulting in high feature matching accuracy.

The on-vehicle compute resources needed to run map gen-
eration, matching, diff generation, and reconstruction are
comparable to those provided by commercial on-vehicle com-
puting platforms like the NVIDIA Drive AGX [13]. CarMap
uses (a) cloud storage as rendezvous for map updates from
vehicles, and (b) cloud compute to integrate map updates. Ex-
tensions to this architecture to use road-side units for storage
and processing are left to future work.

3.1 Map Segment Generator
The Problem. As a vehicle traverses a street, it produces map
segments. The map segment generator must find the leanest
representation of the map that respects cellular bandwidth
constraints while permitting accurate localization.

As discussed in §2, a complete map contains four distinct
components: (A) map-features, (B) features associated with
every keyframe, (C) a map-feature index that associates map-
features with keyframes used to generate the map-features
(recall that a map-feature is one whose position is stable
across several keyframes), and (D) a feature index that finds
the most similar keyframe to the current frame. Uploading
the complete map is well beyond cellular bandwidths (§2).

Map-features Keyframe features

Map-feature index Feature index

A B

C D

Figure 5: Dependencies between map components

CarMap’s Approach. Consider Figure 5 in which an arrow
from B to A indicates that B is needed to generate A. Thus,
for example, map features are generated from keyframe fea-
tures. Similarly, to generate the map-feature index, we need
both map-features and keyframe features.

From this figure, it is clear that all other components can
be generated from keyframe features. Thus, in theory, it
would suffice for CarMap to upload only the keyframe fea-
tures, thereby reducing the volume of data to be uploaded.
Unfortunately, this does not provide significant bandwidth
savings. For a 1 km stretch of a street on our campus (§2), the
keyframe features require 400 MB. At 30 kmph, this would
require an upload bandwidth of 26.67 Mbps, still above nom-
inal LTE speeds. At higher speeds, CarMap would require
proportionally greater bandwidth since the vehicle covers

more of the environment (§A.3, Figure 19).

A Lean Map. CarMap uses a slightly non-intuitive choice
of map representation: the map-features alone. Each map-
feature contains the feature signature, the 3D position in
the map’s frame of reference, and the list of keyframes in
which the map-feature appears. In §5, we show that this
representation permits real-time map uploads.

Reconstruction. However, to understand why this is a rea-
sonable representation, we describe how one can reconstruct a
full SLAM map from these map-features. Map-features have,
associated with them, a list of keyframes in which they appear.
From these, we can generate keyframe features (a sequence
of keyframes and features seen in those keyframes). From
these keyframe features, it is possible to generate the feature
index and the map-feature index, resulting in the complete
SLAM map. §3.5 presents the details.

However, the CarMap map contains only map-features
whereas a SLAM map contains all features seen in every
keyframe. These fewer features can potentially impair feature
matching accuracy. To address this, CarMap employs a better
feature search strategy.

3.2 Robust and Scalable Feature Matching

Background. Feature matching is a crucial component in
feature-based localization, and determines both the robustness
of feature matching as well as scalability. Feature matching
requires two operations: given a frame F , (a) find keyframes
with the most similar features, and (b) given a feature f in F
and a keyframe K, find those map-features m in K that are
most similar to f . The first operation is used in relocalization
and loop closure, and the second operation is used for these
two tasks as well as fine-grained pose estimation (§2).

Similarity matching. Both of these operations use similarity
matching techniques. For example, if a feature is represented
by a vector, then, the most similar feature is one closest by
Euclidean distance to this feature. Similarly, if a frame F can
be represented by a signature in a multi-dimensional space,
then the most similar keyframe K is one that is closest by
some distance measure.

Scaling similarity matching. To derive scalable feature match-
ing, many SLAM implementations arrange keyframe features
in fast data structures. We have used the term feature index in
§3.1 to describe these data structures. In practice, implemen-
tations construct multiple indices.

To ground the discussion, we take a concrete example from
a popular visual SLAM [41] implementation. This implemen-
tation discretizes the space of features into hypercubes, and
represents each hypercube by a word. For example, if a fea-
ture f is represented by a vector < 1,5>, and the hypercube
has a side of 10 units, then, f falls into the hypercube defined
at the origin. Suppose the hypercube is assigned the word “0”.
Then, any feature f ′ that is assigned “0” (i.e., falls into the
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same hypercube) is close in feature space to f .

Search indices. The two feature matching operations can
be implemented in scalable fashion using this word-based
discretization. The first operation uses an inverted index I
that maps each word to all the keyframes that it appears in.
To find a keyframe closest to a given frame F , we can use the
following algorithm. (i) Map each feature f in F to a word wf .
(ii) For each wf in F , find all keyframes K associated with
wf in I. (iii) Take the intersection of all keyframes across all
words wf , then find those keyframes whose word histogram
is most similar to F . The second operation requires a word
search tree per keyframe K that maps a given wf to those
features in K that are closest to wf in feature space.

The Problem. While these data structures work well for in-
door robot navigation in relatively static environments, they
can fail in more dynamic environments for outdoor vehi-
cles. For example, keyframe word histogram matching can
fail when a map’s keyframe K was collected from an unob-
structed view, while frame F , taken at the same position, had
a car in front of it which obscured many of the features in K.
As another example, consider a map of a 2-lane street where
the map was taken from the right lane, but the vehicle using
the map is on the left lane; in this case, a feature’s signature
may change if perceived from a different 3D position and
orientation and hence result in a mismatch if the matching is
based on feature similarity. In these cases, feature matching
can result in false positives: a keyframe K far from the ve-
hicle’s current position may better match the current frame
F than the correct match K′ because features at completely
different locations in a frame may look visually similar (e.g.,
features from trees of the same species).

CarMap’s Approach. To address these problems, instead
of searching all keyframes in the map, CarMap searches
for matches in the vicinity of the vehicle’s current position.
CarMap relies on a vehicle’s GPS position to scope the search.
However, GPS is known to be erroneous, especially in highly
obstructed environments [40], so CarMap searches over a
large radius around the current GPS position (in our experi-
ments, 50 m, larger than the maximum error reported in [40]).

Keyframe matching. Specifically, in addition to using the in-
verted index and word histogram similarity to find matching
keyframes in the base map, CarMap maintains a global k-d
tree [16] of keyframes and uses it to search for all keyframes
in the map within a given radius. Then, to localize a vehicle
with a frame F in a given map, CarMap uses the GPS coordi-
nates of the vehicle to get all keyframes within a large radius
around the GPS position. It then finds the subset of these
keyframes that most closely resemble F based on histogram
matching. If it cannot find any resembling keyframes, then
CarMap uses the keyframes closest to the vehicle’s GPS coor-
dinates. For each keyframe K in this subset, CarMap tries to
find, for each feature f in F , the closest matching feature in
K. To do this, it first performs a coordinate transformation to

find the position of f in the map, assuming that F is at K’s
position, and then performs feature matching.
Feature matching. Based on the position hints of the features,
CarMap also maintains another global k-d tree of map fea-
tures, which partitions 3-D space into different regions to
find all features in the map that are closest (by position) to a
given feature f . Then, for each feature f in frame F , CarMap
finds all map-features that are spatial neighbors, and uses fea-
ture similarity to identify the matching features. Using these
matching features, it can perform pose estimation. CarMap
then attempts to refine this pose estimate by searching nearby
(in position) map-features for additional feature matches.

3.3 Dynamic Object Filter
Background. As a vehicle traverses an environment, it en-
counters three types of objects: a) static, b) semi-dynamic,
and c) dynamic objects. Static objects are those that are at
rest when perceived by the vehicle and are likely to stay in
the same position for a long time e.g., roads, buildings, traffic
lights, and traffic signs. Dynamic objects are those that are in
motion when perceived by the vehicle e.g., moving vehicles
and pedestrians. Semi-dynamic objects are those that have
the ability to move but might not be in motion when perceived
by the vehicle e.g., parked vehicles, construction trucks.
The Problem. SLAM algorithms contain techniques to esti-
mate whether a feature belongs to a dynamic object or not;
if it does, that feature is not used in the map (§2). However,
for a system designed for vehicles like CarMap, this is in-
sufficient. These techniques work only if the majority of the
scene is static and fail in highly dynamic environment (as
we show in §5). Similarly, unlike SLAM, CarMap maps are
intended to be re-used over longer time scales, during which
the environment might change significantly. If a map contains
a feature f , say, belonging to a semi-dynamic object such as a
parked car which has moved away by the time a vehicle uses
that map (before another vehicle has contributed a map diff),
keyframe matching and feature matching might fail.

Figure 6: Semantic segmentation of an image while driving.

CarMap’s Approach. To counter this, CarMap uses seman-
tic segmentation to classify the whole scene into static and
(semi-)dynamic objects. Semantic segmentation can be per-
formed on camera data as well as LiDAR data, and refers to
the task of assigning every pixel/voxel in a frame a semantic
label (Figure 6), such as “car”, “building” etc. In addition to
motion analysis (§2), CarMap leverages these semantic labels
to determine whether to add features to the map.

Specifically, CarMap extracts features (Figure 4) and uses
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semantic segmentation to label each point/pixel in the frame.
It then associates each feature with the corresponding seman-
tic label of the particular pixel(s) that the feature covers. As
a result, when a feature is generated, besides its feature sig-
nature and 3D position, CarMap also appends a semantic
label to it. If the semantic label belongs to a dynamic or
semi-dynamic7 object (e.g., car, truck, pedestrian, bike etc.),
CarMap does not add it to the map.

To detect moving objects we could have used background
subtraction, but CarMap needs the ability to also detect semi-
dynamic objects (e.g., parked cars). Object detectors can
generate loose bounding boxes for semi-dynamic objects,
which can result in incorrect matches between features and
their corresponding objects.
Challenges. Semantic segmentation poses two challenges in
practice. First, it is prone to errors, especially at the bound-
aries of different objects. For example, a state-of-the-art
segmentation tool, DeepLabv3+ [20], has an iIoU8 score of
62.4% on a semantic segmentation benchmark (CityScapes
[23]). Second, it uses deep convolutional neural networks that
are computationally very expensive (e.g., DeepLabv3+ runs
at only 1.1 FPS on a relatively powerful desktop equipped
with an NVIDIA GeForce RTX 2080 GPU).
Robust labeling. To tackle the first challenge, CarMap tracks
feature labels across multiple frames and uses a majority vot-
ing scheme for deriving robust labels. Consider a feature
f that is detected and tracked in multiple keyframes (only
these features are likely to be added as map-features). In each
keyframe, we determine the semantic label associated with the
f . Instead of labeling each feature with its semantic label, we
perform a coarser classification, determining whether that la-
bel belongs to a static (road surface, traffic signals, buildings,
and vegetation etc.) or a non-static (cars, trucks, pedestrians)
etc. This coarser classification overcomes boundary errors in
segmentation: even if the segmentation algorithm identifies
a pixel as belonging to a building when it actually belongs
to a tree in front of the building, because both of these are
static objects, the pixel would be correctly classified as static.
CarMap then does a majority voting across these coarser la-
bels to determine whether f is static or non-static. In §5, we
show that this approach results in high classification accuracy.
Resource usage. Semantic segmentation CNNs can run at
low frame rates. However, CarMap only needs to determine
the label of a feature when creating map-features. These
are assessed at keyframes, so, segmentation needs only be
applied at keyframes. Depending on the vehicle’s speed,
SLAM algorithms [41] can generate keyframes at 1-10 frames
per second. In §5, we explore a resource/accuracy trade-off:
running slightly less accurate, but lower resource intensive

7For brevity, we use the term dynamic object filter for this capability, but
it can detect semi-dynamic objects as well.

8The IoU (intersection over union) metric is biased towards classes cov-
ering a large image area. Hence, for autonomous driving, the iIoU metric is
preferred which is fairer towards all classes.
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Figure 7: When adding a new region to the base map, the vehicle
uploads the whole map segment (above). For updating a existing
map segment, CarMap generates a map diff containing new map
features (below, new map features marked in blue).

CNNs still gives acceptable performance in our setting. When
segmentation cannot run on every keyframe, we mark the
missed keyframe’s features as unlabeled.

3.4 Map Updater

Map Diffs. When a vehicle traverses a segment that exists in
its own map, CarMap generates a compact map diff to report
newly discovered map features.

The Problem. CarMap may discover new features for two
reasons. In Figure 7, if the feature map were constructed from
the top image, a vehicle traveling through the same region at
a later time (bottom image) might see new features previously
occluded by the bus. Moreover, sparse SLAM algorithms are
designed to capture only a small portion of all the features
in the environment to ensure real-time operation, so a new
traversal may discover additional features (Figure 7).

CarMap’s Approach. A map diff compactly represents the
newly discovered features. To explain how CarMap generates
a map diff, consider a vehicle V , traversing a road segmentRA

at time t1, having an on-board map segment MA of the same
area from an earlier time t0. CarMap loads the on-board map
segment MA into memory and marks all map elements (map-
points and keyframes) as pre-loaded elements in the map.
As the vehicle V traverses RA, it localizes itself in the map
segment MA. At the same time, for every feature froad the
vehicle perceives, it uses CarMap’s robust feature matching
(§3.2) to query and match it against features fA present in the
map segment MA in the same spatial vicinity. If the match
is successful, that means the feature is already present in the
map. If not, it is a new feature. This yields a set of features
fdiff and keyframes Kdiff that have been introduced in the
time interval δt= t1− t0. The vehicle uploads this diff map
to the cloud service. The cloud service’s patcher receives this
and patches these map elements (fdiff and Kdiff ) into the
base map. It also sends out the patch to all vehicles so that
they can update their base maps.

Removing features no longer visible is tricky because those
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Figure 8: CarMap stitching together two feature maps. The
highlighted regions represent overlapped sub-segments.

features could be, for example, occluded by a parked vehicle.
It is, however, important to do this in practice (e.g., features
from objects present during a transient road closure). We are
currently working on a robust algorithm for this.
Map Segment Stitching. When it traverses a previously
unseen road segment, CarMap uploads the map segment to a
map stitcher in the cloud.
The Problem. CarMap’s stitcher adds map segments (§3.1)
received from vehicles into its base map (Figure 8). CarMap
must address three challenges while stitching a map segment
into a base map. It must efficiently find potential regions of
overlap between two map segments. The stitcher only has
access to map-features at keyframes whereas SLAM algo-
rithms preserve all features in each keyframe; feature match-
ing can potentially be more difficult in CarMap. To scale well,
CarMap must incrementally add new map segments to the
base map without recomputing the whole map.
CarMap’s Approach. Algorithm A.1 depicts the stitching
algorithm. Suppose we have two map segments, the new
incoming map segment Ms and the base map Mb. To stitch
Ms with the base map Mb, CarMap first reconstructs (lines 4-
5) (§3.5) the two map segments (Rb,Rs). Then, it uses (line 6)
fast feature search (§3.2) to find the sub-segments (sequences
of keyframes) that overlap (Ob,Os). It then applies (line 7)
feature matching between these sub-segments and uses these
matches to compute the coordinate transformation matrix
between Ms and Mb. It uses this matrix to transform Ms into
Mb’s coordinate frame of reference (lines 8-9). Finally, it
removes duplicate features observed in both segments. §A.1
describes some of the details of this algorithm.

3.5 Reconstruction
Map Segment Download. Before a vehicle enters a street, it
retrieves a map segment from the cloud service. This segment
uses the lean representation described in §3.1.
Reconstruction Details. CarMap places map-features into
keyframes, and adds them to the k-d tree structures. It then
generates word histograms and per-keyframe word search
trees as in SLAM. To do this, it must compute the 2D and 3D
positions of each map-feature in the associated keyframe (re-
call that a map-feature’s position in a map segment is with re-
spect to the map’s frame of reference). To reconstruct the posi-

tion of a given map-feature f in a keyframe k, Pf

(
k
)
, CarMap

uses the global 3D position of the map-feature Pf

(
O
)
, the

respective keyframe’s position PK

(
O
)

and rotation matrix
RK

(
O
)

to perform an inverse transformation:
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k
)
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O
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(
0
)
−PK

(
0
)}]

(1)

4 Implementation of CarMap
Software we use. We have implemented CarMap by mod-
ifying a visual SLAM algorithm, ORB-SLAM2 [41], the
top-ranked open-source visual odometry algorithm for mono,
stereo, and RGB-D cameras in the KITTI vision-based bench-
marks [30] for self-driving cars. At least one other visual
SLAM implementation [45] has a very similar implementa-
tion structure, so CarMap can be ported to it. It should also
be possible to incorporate CarMap ideas into LiDAR SLAM
implementations, but we have left this to future work.

For semantic segmentation, we use MobileNetV2 [51], a
light-weight version of DeepLabv3+ [20] designed for mobile
devices. We use OpenCV [18] for image transformations, the
Point Cloud Library (PCL) [50] for point cloud operations,
and the C++ Boost library [52] for serializing and transferring
the map files over the network.
Our Additions. On top of these, we have added a number
of software modules necessary for the six components de-
scribed in §3. CarMap reuses the feature extraction, index
generation, and similarity-based feature matching modules in
ORB-SLAM2 (ORB-SLAM2 is 9620 lines of C++ code), but
even so, it requires approximately 15,000 additional lines of
C++ code. §A.2 discusses these additions in detail.

5 CarMap Evaluation
In this section, we evaluate (a) real-time end-to-end latency of
map update using experiments and (b) the localization accu-
racy of CarMap using trace-driven simulation. We then report
on microbenchmarks for its lean map representation, feature
map stitching, segmentation, and spatio-temporal robustness
in localization, using both synthetic and real-world traces.

5.1 Methodology
Traces. For our end-to-end accuracy evaluations, we
use 15 km of stereo camera traces that we curated using
CarLA [27], the leading simulation platform for autonomous
driving supported both by car manufacturers and major play-
ers in the computing industry. CarLA can simulate multiple
vehicles driving through realistic environments — the simula-
tor has built-in 3D models of several environments including
freeways, suburban areas, and downtown streets. Each vehicle
can be equipped with stereo cameras or LiDAR sensors, and
the simulator produces a trace of the sensor outputs as the cars
drive through. When curating our CarLA traces, we model
a stereo camera with the same properties (stereo baseline,
focal length etc.) used in the KITTI dataset. When evaluating
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Figure 9: End-to-end latency results for
CarMap’s map update operation enables
real-time map updates (average end-to-end
latency is approximately 0.6 seconds.)

0 4 8 12 16
Vehicle driving time (minutes)

0

2

4

6

En
d-

to
-e

nd
 la

te
nc

y 
(s

ec
on

ds
)

Vehicle to cloud time
Reconstruction time
Stitching time

Cloud to vehicle time
Average E2E latency

Figure 10: End-to-end latency for
CarMap’s map stitch operation. The
stitch operation, on average, takes approxi-
mately 2.0 seconds for unmapped regions.
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Figure 11: Vehicle map uploads for map
stitch and update operations. Map updates
reduce required bandwidth by 2x as com-
pared to stitching map segments.

CarMap, we only extract the left and right images from the
modeled camera after which we process the frames like we
would for a real-world camera. We do not extract depth or
segmentation labels from CarLA but instead generate them
using ORB-SLAM2’s stereo matching and a segmentation
CNN respectively.

For some of our microbenchmarks, we also used 22 km of
real-world traces from the KITTI odometry benchmark [30].
The KITTI benchmark traces only have a single run for each
route, but for our end-to-end evaluations, we need one run
to build the map, and another to use the map for localization.
This is why we use traces from CarLA.

Finally, to validate real-time map updates (§5.2), we used
8 km of stereo camera data from our campus.
Metrics. For most evaluations, we are interested in end-to-
end latency, localization accuracy, and map size. To calcu-
late localization accuracy, we build a map for a region and
then localize another vehicle that drives in the same region
using that map. In this case, the localization error is the aver-
age translational/localization error (used in KITTI odometry
benchmark [30]) between the ground truth position of the
vehicle and its estimated position, averaged over the whole
trace. In some experiments, we also measure compute times
for various operations. These measurements were taken on
an Alienware laptop equipped with an Intel i7 CPU running
at 4.4 GHz with 16 GB DDR4 RAM and an NVIDIA 1080p
GPU with 2560 CUDA cores.
Scenarios. For the end-to-end accuracy experiments, we gen-
erate CarLA traces to mimic three different kinds of driving
conditions: a) suburban streets (light traffic and some parked
vehicles), b) freeway roads (dense traffic), and c) downtown
roads (dense traffic, with parked vehicles on both sides). For
each of these, we generate traces for a static scene (no traffic),
and for a dynamic scene (with traffic). This allows us to eval-
uate maps built for one kind of scene (e.g., static), but used in
another (e.g., dynamic).
Comparison. In all these evaluations, we compare the perfor-
mance of: a) maps generated by ORB-SLAM2, b) a stitched

map generated by QuickSketch [15], and c) a stitched CarMap
map. QuickSketch is a competing approach to map crowd-
sourcing that does not attempt near real-time map updates.
In QuickSketch, map segments are raw stereo camera traces,
and the stitching algorithm feeds new map elements from the
camera trace into an existing base map generated by ORB-
SLAM2. QuickSketch uses ORB-SLAM2’s relocalization
and feature matching components. We repeat each experiment
three times and report the average values.

5.2 Near Real-Time Map Updates
Methodology. To measure end-to-end latency of map up-
dates, we drove a vehicle for 16 minutes (8 km) equipped
with an Alienware laptop tethered to a phone with an LTE
connection. The laptop sends map updates to a remote server
which runs CarMap’s diff integration and stitching operations,
then sends the map updates back to the vehicle. The end-
to-end latency includes: update generation and transmission
on the sender, update processing on the cloud, and update
transmission and integration on the receiver. We conducted
two experiments.
Map Diffs. In the first experiment, we measure end-to-end
latency when all updates are in the form of map diffs (i.e., the
vehicle drives through a previously mapped area). CarMap
generates map diffs every 10 s. As Figure 9 shows, the aver-
age end-to-end latency for CarMap’s map update operation
is 0.6 s9. Update transmission times dominate the cost, since
diff integration is fast (§3.4).
Map Segment Stitching. In the second real-time experiment,
we measure the end-to-end latency when all updates are in
the form of map segments (i.e., the vehicle drives through a
previously un-mapped area). As before, CarMap generates
map segments every 10 s; in this case, however, the cloud
service needs to perform an expensive stitch operation (§3.4).

The overall end-to-end latency for map segment updates
in CarMap (Figure 10), although about 3.2× more than map-

9As an aside, vehicles rely on these maps only to localize themselves, not
for safety-critical operations (for which they use their sensors).
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updates, is still only 2.1 seconds on average. Two factors
contribute to a higher end-to-end latency. First, map segments
are about 2-4× larger than map diffs (Figure 11). Second,
they require about 10× more computation than map updates.
Map update integration is only 50 ms whereas the partial
reconstruction (§A.1) and stitching take nearly 500 ms. Even
so, transmission and reception times dominate.

In summary, in CarMap, map updates can be made avail-
able to other vehicles in under a second. Even in the rare
event that a vehicle traverses an un-mapped road segment,
map updates can be made available in about 2 s.

5.3 End-to-End Localization Accuracy
We now demonstrate that CarMap has comparable or better lo-
calization accuracy than ORB-SLAM2 and QuickSketch [15]
for three different scenarios: static scene, dynamic scene, and
multi-lane localization.
Static Scene Maps. In this scenario, we build a map from
a static scene with no dynamic or semi-dynamic objects (a
static-map). We then use this map to localize a vehicle that
drives in: a) the same static scene (resulting in a static-trace),
and b) the same scene with parked and moving vehicles (re-
sulting in a dynamic-trace). Figure 12 shows the average
error and map sizes for each scheme and scenario. (We show
the error distributions in Figure A.9 and Figure A.11).

In all three environments (suburbia, downtown, and free-
way), the localization error for the static-trace in the static-
map shows that CarMap is able to localize as accurately as
ORB-SLAM2 even though the map sizes are 23-26× smaller.
Similar results hold for CarMap when compared against re-
cent map crowdsourcing work, QuickSketch. This is because
CarMap preserves all map-features that contribute most to-
wards accurate localization.

However, for the dynamic-trace on the static-map, CarMap
has nearly 28× better localization accuracy than ORB-
SLAM2 and Quicksketch. These differences arise from two
features in our scenarios: traffic, and the presence of parked
cars, which impact localization accuracy in different ways.

To understand why, consider a dynamic-trace on a suburban
street. If the location or number of parked cars in the dynamic-
trace are different from those in the static-map, the signature
of the observed frame (its word histogram) is different in
the trace than in the map. Because ORB-SLAM2 relies on
word-histogram matching for re-localization, it fails to find
the right keyframe candidates to localize. In contrast, because
CarMap filters features belonging to parked cars, the vehicle
in the suburban street sees similar features as in the map, and
can re-localize more accurately.

Now consider a dynamic-trace on the freeway, in which
a vehicle’s view can be obscured by other vehicles, so it is
unable to observe many of the features in the map. This causes
ORB-SLAM2’s word histogram matching to fail. CarMap
uses all keyframes within a 50 m radius of its current position,
so it always has keyframe candidates to search from. Even

when histogram matching succeeds, ORB-SLAM2 uses per-
keyframe word search trees that can result in false-positive
feature matches. CarMap uses feature position based search to
avoid this. In this scenario, moreover, ORB-SLAM2 believes
features belonging to vehicles moving in the same direction
to be stable (since their relative speed is near zero), makes
them map-features and uses them to track its own motion.
CarMap’s dynamic object filter avoids this pitfall.

Dynamic Scene Maps. In this scenario, we build a map
from a dynamic scene (a dynamic-map) and then use the map
to localize in a dynamic- or static-trace. Figure 13 summa-
rizes the results from this experiment (Figure A.10 plots the
distribution of mapping errors).

The results for the dynamic-map are more dramatic than
those for the static-map. CarMap’s map is 15-36× smaller
than ORB-SLAM2’s or QuickSketch’s map. Despite this,
these two approaches fail to localize (denoted by∞) on static-
traces in downtown and suburban streets. In the static-trace,
very few of the perceived features appear in the dynamic-map,
and relocalization fails completely. CarMap does well here
because it filters out all cars (parked or moving). For the
dynamic-trace, its accuracy is nearly 50× better than ORB-
SLAM2 and QuickSketch. CarMap’s accuracy is lowest for
the downtown dynamic-trace (with a 5% translational error)
in which parked and moving cars obscure a lot of features in
the map, resulting in fewer matches.

Multi-Lane Localization. In this set of experiments, we
consider a somewhat more challenging case, for each of our
scenarios: building a map by traversing one lane of a multi-
lane street (4 freeway lanes, or 2 lanes in the suburban and
downtown streets), and then trying to localize the vehicle
in each of the remaining lanes. As before, we build both
static-maps (Figure 14) and dynamic-maps (Figure 15).

For the freeway static-map, ORB-SLAM2 cannot localize
beyond the second lane, while CarMap can localize across all
four lanes. For the dynamic-map, a more challenging case,
CarMap can localize one lane over, but ORB-SLAM2 and
QuickSketch cannot localize at all (denoted by ∞). In all
these cases, ORB-SLAM2’s search strategy fails because its
keyframe search relies on the vehicle’s perspective being the
same as the map’s perspective: in these experiments, that
assumption does not hold. CarMap, by contrast, matches
features by position not perspective, so is much more robust.

Similar results hold for suburban and downtown streets:
ORB-SLAM2 and QuickSketch are unable to localize, but
CarMap is able to localize in all cases, with low error.

In §A.4, we show that CarMap’s mapping accuracy, which
measures the inherent error introduced by mapping, is com-
parable to ORB-SLAM2.

5.4 Other Performance Measures

Map Sizes in Real-World Traces. §5.3 shows that CarMap’s
maps are lean relative to competing strategies, but these are
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Figure 12: Mapping error and map sizes for
a static-map used with static- and dynamic-
traces, for each scenario. ∞ indicates that the
scheme was not able to localize at all.

Figure 13: Mapping error and map sizes for a
dynamic-map used with static- and dynamic-
traces, for each scenario. ∞ indicates that the
scheme was not able to localize at all.

Figure 14: Mapping error (%) for
multi-lane localization in static environ-
ments using maps collected from one
lane in other parallel lanes.

Figure 15: Mapping error (%) for multi-
lane localization in dynamic environments
using a map collected from one lane in
other parallel lanes. CarMap is robust to
spatio-temporal changes.

Figure 16: Mapping errors (m) for stitch-
ing map segments from different traffic
conditions. CarMap is robust to temporal
changes because: a) removes dynamics,
and b) robust feature search.

Figure 17: Semantic segmentation accuracy
for different DCNNs. By classifying labels
into static and dynamic objects, the segmen-
tation accuracy for all DCNNs is above 96%.

for synthetically generated traces. Figure 18 shows the map
sizes for the 11 real-world KITTI sequences. Across all se-
quences, CarMap reduces map size 20×. About 20% of
this savings comes from removing the reconstructible in-
dices (the No Index column), and another 60% from remov-
ing keyframe-features after generating the indices (the No
Keyframe-features column).

As a vehicle travels faster, feature maps capture more
data from the environment and generate data at a higher rate.
We validate this in Figure 19 by calculating the bandwidth
requirements of all 11 KITTI traces. Maps generated by
ORB-SLAM2 and the No-Index approach are impractical
at all speeds for LTE wireless upload and impractical for
LTE download at speeds over 40 kph. The No Keyframe-
features alternative is impractical for LTE upload at speeds
over 60 kph. CarMap requires less than 3 Mbps up to 80 kph
(the highest speed in the KITTI traces). Similar results hold
for CarLA-generated traces (§A.3).

Other factors determine map size, including visual richness
of the environment, lighting, weather etc. CarMap’s map size
should still be an order of magnitude smaller than competing
approaches; future work can validate this.

Localization Time. CarMap’s accuracy comes at the cost of
a slightly higher per-frame localization time. During local-
ization, CarMap’s feature search adds overhead. To quantify
this, we built a map from a very large trace with 4541 frames
and then tried to localize in the same trace. ORB-SLAM2 has
a per-frame localization cost of 0.023 s, while CarMap’s is
only marginally higher (0.033 s).

Map Load Time. When it receives a map segment, CarMap
needs to read the segment from disk, reconstruct the keyframe
features, and the indices. Figure 20 quantifies the total cost
of these operations (called the map load time) for each of the
11 KITTI sequences. The load times for other alternatives are
normalized by those for CarMap.

Interestingly, except for sequences 00, 01 and 06, load
times for CarMap are less than ORB-SLAM2 (on average,
0.95×). For most sequences, CarMap’s load time is lower
than ORB-SLAM2 because the latter’s map is large enough
that the time to load it from disk exceeds CarMap’s reconstruc-
tion overhead. Other alternatives (No Index and No Keyframe-
features) have large maps and high reconstruction overhead.
When CarMap’s reconstruction cost is (marginally) higher
than ORB-SLAM2, it is because the corresponding scenes
have a dense map-feature index, leading to a slightly higher re-
construction cost. (See §A.5 for details). Denser map-feature
indices are found in environments with keyframes that have a
large number of common map-features (e.g., freeways). We
have verified both these observations (equivalent map-load
times and slightly higher load times for dense map-feature
indices) for CarLA sequences.

Loop Closure. Loop closure is an important component of
SLAM systems. For the KITTI dataset, we have verified that,
even though its maps contain only map-features, CarMap can
perform all loop closures that ORB-SLAM2 can.

5.5 Robustness

Robust Feature Matching. We compare CarMap’s feature
matching performance to that of ORB-SLAM2’s native fea-
ture matching approach (we use ORB-SLAM2’s default pa-
rameters for matching). For this, we build a map segment
for a static trace and then use that trace to localize: a) the
same static trace, b) a static trace from a parallel lane, c) a
dynamic trace from the same lane, and d) a dynamic trace
from a parallel lane. We collect the trace using CarLA on a
freeway, and use two metrics: a) feature matching ratio (the
percentage of map-features matched in the current trace), and
b) localization error (m).

Figure 21 shows that for all scenarios, robust feature match-
ing is able to find more matches and hence results in lower
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Figure 21: CarMap’s robust feature matching finds more features
in different conditions and thus localize better than ORB-SLAM2.

Figure 22: Mapping error (m) for multi-lane stitching. CarMap’s
stitching algorithm uses a more robust feature search based on
position hints to stitch map segments two lanes apart where com-
peting strategies fail (∞ shows an unsuccessful stitch operation.)

localization error as compared to ORB-SLAM2’s feature
matching. The base case (static-map used by a static trace)
shows that normal feature matching fails to detect 30% of the
features even though the same trace is used for mapping and
localization. The introduction of dynamic objects reduces the
feature matching ratio because features are occluded by vehi-
cles and hence cannot be detected even with robust matching.

Making Semantic Segmentation Robust. CarMap makes
segmentation robust by voting across multiple keyframes, and
using a coarser static vs. non-static classification. Figure 17
shows CarMap’s overall accuracy, for three different versions

of DeepLabv3+. These DNNs are the DeepLabv3+ trained on
the CityScape dataset pre-trained, a fined tuned DeepLabv3+
trained on the KITTI dataset and a light-weight version of
DeepLabv3+ (MobileNetv2) for mobile devices. The third
column shows that CarMap achieves upwards of 96% accu-
racy if we apply segmentation to every keyframe. Semantic
segmentation, by itself, achieves only 70% accuracy in label
assignment (second column).

The first column shows the frame rate these DNNs run
at. The frame rate needs to be fast enough to process every
keyframe, or at worst, every other keyframe (at which seg-
mentation accuracy drops to about 85%, and below which it
drops to unacceptable levels, §A.7). In the KITTI dataset, the
average across the 11 sequences is 3.17 keyframes per sec-
ond, well within the rate of the MobileNetv2 version. One of
these sequences runs at 10 keyframes per second, so for this
sequence MobileNetv2 would process every other keyframe.
For more dynamic scenes, it might be necessary to devise
faster semantic segmentation techniques, and we expect the
vision community will make advances in this direction.

Multi-Lane Stitching. CarMap can stitch map segments
collected from different lanes. For this experiment, we collect
traces from four parallel lanes on a freeway in CarLA. Using
each of these four traces as base maps, we try to stitch map
segments from other lanes into it, then evaluate the mapping
error for the new maps. Figure 22 shows the absolute mapping
errors (in meters) for these stitched map segments. The first
column shows the lane used to collect the base map and
the last four columns show the absolute mapping error of a
stitched map with each of these lanes. The∞ sign represents
a failure to stitch segments from the two lanes.

Although QuickSketch’s base map has 20× more features
than CarMap and it localizes a stereo camera trace in that
base map instead of another map segment (CarMap), it cannot
stitch two lanes away. On the other hand, CarMap’s stitching
algorithm uses robust feature matching (§3.2) and can stitch
map segments collected two lanes away (e.g., map segments
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from lane 1 and lane 3). CarMap’s robustness comes purely
from using position hints to find the set of key-frames to
match, and to find matching map features, while QuickSketch
uses ORB-SLAM2’s built-in matching methods (in this ex-
periment, we do not compare against ORB-SLAM2 because
it does not contain a map stitch operation).

Stitching in Different Traffic Conditions. Besides being
robust to spatial changes, crowdsourced map collection and
update requires robustness to temporal changes as well (e.g.,
changes in traffic during different times of day). To evaluate
this, we collect stereo camera traces from CarLA in suburban
and downtown areas in the same environment during different
traffic conditions (no traffic and heavy traffic). Using these
traces, we evaluate the ability of the mapping schemes to
stitch these map segments by comparing their mapping error.

Figure 16 shows that QuickSketch is unable to stitch be-
cause it fails to relocalize a trace in different traffic conditions
(§5.3). This, again, is because its stitching is solely based on
appearance-based matching whereas CarMap uses position
hints as well to make its stitching more robust. By contrast,
CarMap is able to stitch map segments collected across differ-
ent traffic conditions. We evaluate the sensitivity of stitching
accuracy to the degree of map segment overlap in §A.6.

6 Related Work

Decentralized SLAM. Decentralized SLAM systems [24]
leverage multiple agents to run SLAM in unknown environ-
ments. CarMap can be considered an instance of decentral-
ized SLAM [22] with some differences. In decentralized
SLAM, the agents (robots) have limited compute-power and
only run visual odometry [29]. This leads to inaccurate local-
ization whereas vehicles in CarMap localize more accurately
because they run both mapping and localization. Decentral-
ized SLAM sends all keyframe features to a central collector
which performs all mapping operations [53] whereas CarMap
only sends map-features to a cloud service to ensure real-time
map exchanges. Similarly, in decentralized SLAM, the col-
lector finds overlap between maps of different agents using
the histogram word approach, does not remove environmental
dynamics and hence is not robust like CarMap. Decentralized
SLAM [47] uses features from a single keyframe overlap to
compute the transformation matrix whereas CarMap is more
robust and uses features from multiple keyframes.

Visual SLAM. Although we have implemented CarMap on
top of ORB-SLAM2 [41], our study of other SLAM systems
shows that it can be easily ported to other keyframe-based vi-
sual SLAM algorithms like S-PTAM [45]. In future work, we
can extend CarMap to group features into higher-dimensional
planes [32] to further improve localization accuracy. As wire-
less speeds increase, it might be possible to design over-the-
air map updates for dense mapping systems like [38] using
techniques similar to ours. We have left this to future work.

Long Term Mapping. Our implementation uses traditional

computer vision-based features (ORB [49]) to build the map,
but these can be replaced with better, more stable CNN-based
features [25]. After running a feature extractor, CarMap uses
motion tracking and semantic segmentation to select stable
features to build the map. Mask-SLAM [33] proposes a simi-
lar dynamic object filter to CarMap but CarMap uses majority
voting and robust labeling to account for limited on-board
computational resources and boundary segmentation errors.
Other approaches [17, 34] remove dynamic features from mul-
tiple maps collected along the same trace using background
subtraction. Even the most static features are not persistent
for larger timescales. Future work for longer timescale map-
ping can integrate CarMap with a persistence filter presented
in [48] that estimates the life period of a feature based on
an environmental evolution model. CarMap benefits from
map-element culling techniques [35] that scale maps sizes
by the scale of the environment rather than the number of
miles driven. Mobileye [10] crowdsources collecting 3D
maps for vehicles using monocular cameras whereas CarMap
is designed for 3D sensors like LiDARs, and stereo cameras.
Vehicle Sensing and Communication. LiveMap [21] uses
GPS and monocular cameras to automate road abnormality
detection (e.g., pothole detection). With its depth perception
capabilities, CarMap can more accurately position roadside
hazards. AVR [46] extends vehicular vision using feature
maps and would benefit from CarMap. Although the band-
width requirements for CarMap are within the LTE speeds
today, it can benefit from systems [36] that schedule redun-
dant transmissions over multiple networks. Recent work in
object detection on mobile devices [39] introduces a fast ob-
ject tracking method that can be used in CarMap to enable
faster segmentation. For stitching map segments from ru-
ral, unmapped regions, CarMap can benefit from [44] which
enables autonomous navigation in such areas.

7 Conclusion
CarMap enables near real-time crowd-sourced updates, over
cellular networks, of feature-based 3D maps of the environ-
ment. It finds a lean representation of a feature map that
fits within wireless capacity constraints, incorporates robust
position-based feature search, removes dynamic and semi-
dynamic features to enable better localization, and contains
novel map update algorithms. CarMap has better localization
accuracy than competing approaches, and can localize even
when other approaches fail completely. Future work can ex-
plore LiDAR sensors, mapping over timescales in which even
relatively static features can disappear, dense map represen-
tations, infrastructure-based sensing for map updates in low
vehicle density areas, and automated update of semantic map
overlays (accidents, available parking spots).
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A Appendix
A.1 Map Stitching Details
Algorithm A.1 describes the details of the stitching algorithm.
The following two paragraphs discuss two key aspects of
stitching.
Finding Overlap. To find potential regions of overlap,
CarMap uses two strategies. When the cloud service re-
ceives the new map segment Ms, it uses the GPS positions
and word-histograms associated with Ms to coarsely find
potentially overlapping keyframes in the base map Mb. For
this, CarMap reconstructs all the data structures in Mb and
only word-histograms and keyframe-features of Ms using the
methods described in §3.5.

Then, CarMap finds a finer-grained overlap Ob and Os

(granularity level of map-points) between Ms and Mb. For
this, CarMap uses the reconstructed keyframe features of
Ms. For each keyframe ks in Os, it uses the k-D tree to find
all features (§3.2) in Ob that match features in ks, instead
of only matching features belonging to the two overlapping
keyframes ks and kb. At the end of this process, there is a
pairwise matching of features between Ob and Os.

Input : Base map Mb and new map segment Ms

Output: Stitched base map M ′b
1 if Mb is empty then
2 M ′b←Ms;
3 else
4 Rb← Reconstruct(Mb);
5 Rs← PartialReconstruct(Ms);
6 Ob,Os← FindOverlap(Rb,Rs);
7 Tbs← FindTransform(Ob, Os);
8 M?

s ← Tbs ∗Ms;
9 M ′b← Merge(Mb, M?

s);
10 end

Algorithm A.1: Stitching Algorithm

Computing the transformation matrix. In the next step,
CarMap computes the transform (translation and rotation)
to re-orient and position Ms in Mb. To do this, it finds the
keyframe ks from the new map segment with the maximum
number of matched features from the previous step. Then
it uses a perspective n-point (PnP [37]) solver to derive the
coordinate transformation matrix, then transforms each map
feature in Ms to Mb’s frame of reference. After the transfor-
mation, CarMap removes all the duplicate map-features in
the overlapping region Ob of the resulting base map M ′b that
originated as a result of the transformation.

A.2 Implementation Details
The following paragraphs describe how we have implemented
CarMap components on top of ORB-SLAM2.
Map segment generator. This component takes the output
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of ORB-SLAM2 (which includes map-features, keyframe
features, and the two indices), and simply strips all other
components other than the map-features. We have also added
the ability to periodically transmit complete map segments.
On the receiver, we added a module to reconstruct (§3.5)
the keyframe features from the received lean map, and re-
generates the indices.
Fast feature search. For this, we added the k-D tree data
structure, and associated code for manipulating the tree and
searching in the tree, and re-used ORB-SLAM2 code for
re-positioning a feature in a keyframe.
Stitcher. Stitching functionality does not exist in ORB-
SLAM2. For stitching maps, we wrote our own modules
for ORB-SLAM2. We also added support for finding over-
lapped keyframes and computing the transformation matrix.
Map updater. We wrote our own module for map updates. At
the vehicle, our map update module uses a fast feature search
for finding differences in the two feature sets (environment
and base map). At the cloud, the module integrates these
differences into the base map.
Dynamic object filter. We added a dynamic object filter to
the mapping component of ORB-SLAM2 which invokes se-
mantic segmentation and applies majority voting to decide
the label associated with each map feature.
Map exchange. We added another module to allow the ex-
change of map segments, map updates, and the base map
between the vehicles and the cloud service.

A.3 Bandwidth Requirements
Map Size with Change in Speed. As a vehicle’s speed in-
creases, it sees more features and hence generates larger maps.
As such, we generated CarLA traces in which we increased
the speed of the vehicle while keeping time constant. The
goal of this experiment is to see if CarMap’s maps can stay
within the wireless bandwidth limits at different speeds. Fig-
ure A.1 shows that CarMap’s maps are well below the wireless
bandwidth limits today by a large margin and this is not true
for competing strategies. ORB-SLAM2 and the No index
approach’s maps cannot be uploaded over current wireless
networks at all speeds and cannot be downloaded for speeds
greater than 10 kmph. The No keyframe-features approach is
also infeasible for LTE upload for speeds over 15 kmph. We
also validated this in Figure 19 for real-world traces from the
KITTI dataset.
Bandwidth Savings with Map Updates. In this section, we
evaluate the ability of CarMap’s update operation to reduce
the amount of bandwidth required to update the base map. For
these experiments, we collected traces from the same area in
CarLA in three different traffic conditions i.e., static with no
parked vehicles, semi-dynamic with only parked vehicles and
dynamic with both parked and moving vehicles. We build a
map for each traffic condition and then measure the amount of
bandwidth required to update the existing map with features
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Figure A.1: Bandwidth requirements for mapping schemes at
different speeds in CarLA. The bandwidth required to upload
CarMap maps are well below the LTE upload limits.

Figure A.2: Bandwidth requirements for map updates in CarMap
under different traffic conditions

from a different set of conditions. The baseline we compare
is with the map stitch case in which we would upload the
whole map segment to the cloud service and the cloud service
would only add the new map elements to the map.

The results from the experiment (Figure A.2) show that,
given a base map of the area, map updates can reduce the
amount of bandwidth required to integrate new features in
the base map by 4-10× compared to sending the whole map
segment (75× savings as compared to QuickSketch and ORB-
SLAM2). This happens because the map update only sends
new features whereas the map stitch sends the whole per-
ceived map segment.

A.4 Mapping Accuracy
In this section, we evaluate how CarMap’s reduced map sizes
affect localization accuracy. For this experiment, we use all
11 real-world traces from the KITTI dataset. We generate
maps for each of these traces, use them as base maps and
localize the same trace in these maps. We compare the gen-
erated trajectory with the ground truth positions. Figure A.3
shows the average localization error divided by the length
of the whole sequence for all the KITTI sequences. Even
though CarMap reduces map sizes by a factor of 20, it is
able to localize as accurately as ORB-SLAM2 in almost all
KITTI sequences because: a) it preserves the most important
map elements (map-features), and b) robust feature matching.
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Figure A.3: Localization error for CarMap over all KITTI se-
quences. Even though CarMap uses 20X fewer features in its
map, its localization error is almost the same as ORB-SLAM2.

Figure A.4: Mapping accuracy of mapping schemes with vary-
ing distance, averaged over all KITTI sequences. The overall
localization error decreases over longer distances and CarMap’s
localization error is almost the same as ORB-SLAM2’s

Figure A.8 shows the error distribution of CarMap is similar
to ORB-SLAM2, and QuickSketch for a map built from, and
used in the first KITTI sequence, despite reducing map sizes
by a factor of 20.

An important property of a map is to able to localize accu-
rately over long distances. To study how CarMap’s localiza-
tion accuracy changes with the mapped area, we calculate the
average translational error at different distances (i.e., 50m to
5km) for all 11 KITTI sequences. We average these errors on
all KITTI sequences and report the numbers in Figure A.4. As
distance increases, the average translational error decreases
and CarMap does as well as ORB-SLAM2 in almost all cases.
The reason for this, as mentioned in §3, is that although
CarMap removes keyframe-features, the robust feature match-
ing (§3.2) makes up for the 20x fewer features with better
matching.

A.5 Map Reconstruction
CarMap reduces map size by trading off compute for storage.
The map load time for CarMap consists of the time to load
the map from disk and the reconstruction time. After loading
the map into memory, CarMap reconstructs two indices and
infers the 2D and 3D position of map-features in keyframes
(§3.5). Even so, as shown in Figure 20, except for sequence
00, 01 and 06, the load times for CarMap are less than the
ORB-SLAM2 baseline (on average, 0.95×).

Figure A.5 shows the breakdown of the various map ele-
ments that contribute to map reconstruction time for all 11
KITTI sequences. In all sequences, reconstructing the feature-
index takes around 40% of the overall reconstruction time.
This, however, is still 2-4x less than the reconstruction time
for keyframes that contain keyframe-features (in other map-
ping schemes) instead of just map-features. Calculating the
2D and 3D positions of map-features also takes an average
35% of the overall reconstruction time. The main reason for
higher load times (Figure 20), as compared to ORB-SLAM2,
in some cases (sequence 00, 01, and 06) is because of the vari-
ability map-feature index (orange bar) reconstruction times.
The map-feature index is a graph that relates map-points to
keyframes they were detected in. Hence, for environments
like highways where the scene stays relatively constant, this
graph is denser and so the reconstruction costs for the map-
feature index are relatively greater. On the other hand, for en-
vironments where features change quickly e.g., narrow streets,
the map-feature index reconstruction times are lower because
these graphs are not as dense. For instance, the feature-index
reconstruction for sequence 00 (captured in narrow-streets) is
approximately 3x greater than sequence 01 (captured on the
highway).

A.6 Map Stitching Evaluation
In this section, we evaluate the ability of CarMap to accu-
rately stitch map segments collected from different spatial
and temporal conditions. We compare CarMap against two
other map stitching schemes: progressive relocalization and
QuickSketch. In progressive relocalization, as opposed to
CarMap (one-shot stitching), we relocalize every keyframe
from the incoming map segment instead of using the global
transformation matrix. QuickSketch can only stitch a stereo
camera trace with a QuickSketch generated map segment. So,
for stitching, QuickSketch loads the QuickSketch map as a
base map and then stitches by localizing the stereo camera
trace in it.

We evaluate two metrics for stitching: mapping error, and
stitching time. After stitching two map segments, we localize
a trace in the stitched map and calculate the absolute transla-
tional error (m) for each frame. Mapping error is the mean
of the translational errors over the whole trace. The stitching
time is the amount of time required to do the whole stitch
operation of two map segments.
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Figure A.5: Breakdown of reconstruc-
tion time for CarMap across all KITTI
sequences
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Figure A.6: Semantic segmentation accuracy at
different frame rates. If CarMap segments every
other keyframe, classification accuracy is 85%.
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Figure A.7: Computational overhead of
stitching. Even map segments as large as
1000 keyframes can be stitched in under 7
seconds.
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Figure A.8: For a map built,
and used from a real-world
trace (KITTI Trace 00) 80% of
CarMap’s mapping errors are
less than 0.4% with respect to
the length of the trace.
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Figure A.9: For a map built,
and used in a static trace col-
lected from CarLA, 75% of the
mapping errors for CarMap are
less than 0.2% with respect to
the length of the trace.
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Figure A.10: For maps built,
and used in CarLA’s dynamic
environments, CarMap has a
maximum error of 2%. ORB-
SLAM2 and QuickSketch have
maximum errors of 90%.
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Figure A.11: For CarLA maps
built from static, and used in dy-
namic environments, CarMap
has a max error of 4%. ORB-
SLAM2 and QuickSketch have
maximum errors of 90%.

Figure A.12: Mapping error (m) with different overlapping re-
gions. CarMap can stitch with fewer overlapping frames than
QuickSketch and 30x faster than progressive relocalization.

Stitching Overlap. In the first experiment, we evaluate
the mapping error and stitching time of the three mapping
schemes as a function of the overlap between the two map seg-
ments. For this, we take a single stereo camera trace and split
it into two traces with different overlaps. Figure A.12 shows
that QuickSketch fails to stitch when the number of overlap-
ping frames between the two map segments is less than 10
frames (1 second). This is because it is not able to find enough
feature matches between the two map segments. On the other
hand, CarMap can find enough feature matches even though

it uses 20x fewer features due to its robust feature matching
(§3.2). The mapping accuracy remains relatively constant
irrespective of the amount of overlap because CarMap only
needs to localize a single keyframe in the base map for a
successful stitch operation. Although the mapping error of
progressive relocalization is identical to CarMap, it takes ap-
proximately 30x more time to stitch the same area. In the
stitch operation, localizing a keyframe in the base map is the
most expensive operation. CarMap intelligently localizes a
single keyframe in the base map and then uses a transforma-
tion matrix to shift the remaining map elements. On the other
hand, progressive relocalization localizes all keyframes in the
base map and hence takes a much longer time. So, as the size
of the incoming map segment increases, the stitching time for
progressive relocalization will increase significantly.

Stitching Overhead. To study the overhead of stitching, we
take a KITTI trace and split it into two map segments (with
a few overlapping frames). In doing so, we mark one as the
base map and the other as the incoming map segment. We
keep the size of the base map constant and vary the size of the
incoming map segment. Figure A.7 shows that the stitching
time increases with the size of the incoming map segment.
It also shows that for map segments containing as many as
1,000 keyframes (15 MB), stitching takes only 7 seconds.
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A.7 Semantic Segmentation
In this experiment, we evaluate the object label and class
(static, and dynamic) estimation accuracy of CarMap against
the frame rate of semantic segmentation. For this experiment,
we generate stereo camera traces from CarLA. We segment
these images with MobileNetV2. For ground truth, we use
CarLA’s own semantic segmented images.

Figure A.6 plots the accuracy of segmentation in CarMap
using majority voting at different frame rates. We start by
running segmentation every keyframe and evaluate till run-
ning segmentation every 10 keyframes. In the KITTI dataset,
the average keyframes inserted per second is 3.17 and the
worst case is 10 keyframes per second. The worse case cor-
responds to running segmentation every 2 keyframes i.e., a
class accuracy of 86% with CarMap using MobileNetv2 in a
majority voting scheme.
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Abstract – We present the design and implementation
of RF-EATS, a system that can sense food and liquids
in closed containers without opening them or requiring
any contact with their contents. RF-EATS uses passive
backscatter tags (e.g., RFIDs) placed on a container, and
leverages near-field coupling between a tag’s antenna
and the container contents to sense them noninvasively.

In contrast to prior proposals that are invasive or re-
quire strict measurement conditions, RF-EATS is non-
invasive and does not require any calibration; it can ro-
bustly identify contents in practical indoor environments
and generalize to unseen environments. These capabil-
ities are made possible by a learning framework that
adapts recent advances in variational inference to the RF
sensing problem. The framework introduces an RF ker-
nel and incorporates a transfer model that together al-
low it to generalize to new contents in a sample-efficient
manner, enabling users to extend it to new inference tasks
using a small number of measurements.

We built a prototype of RF-EATS and tested it in
seven different applications including identifying fake
medicine, adulterated baby formula, and counterfeit
beauty products. Our results demonstrate that RF-EATS
can achieve over 90% classification accuracy in scenar-
ios where state-of-the-art RFID sensing systems cannot
perform better than a random guess.

1 Introduction

The networking community has recently witnessed a
surge in research that uses wireless signals for sensing
liquid and food properties [25, 21, 66, 77]. This research
is motivated by a desire to develop low-cost, ubiquitous
solutions for food safety sensing by leveraging pervasive
networking technologies. In contrast to traditional food
sensing solutions which rely on expensive equipment in
specialized labs, these new proposals aim to make food
safety sensing accessible to lay consumers. This can help
avoid widescale future health hazards like the Chinese
baby milk scandal [43], the Flint water crisis [70], and
the recurring alcohol poisoning problem which results in
hundreds of cases of blindness and death every year [32].

Despite initial steps made toward this vision [21, 77,
66], existing proposals still have fundamental limita-

tions that make them too invasive and/or impractical
for lay consumers. Specifically, they either require users
to extract liquid samples and place them in specialized
containers (which often involves a complex calibration
process) [21, 77, 56], or they can only operate cor-
rectly a single lab setup under strict measurement con-
ditions [66, 25]. These limitations make it difficult for
consumers to use such systems for testing products for
contamination or counterfeiting before purchasing and
outside pre-calibrated lab environments.

The goal of this paper is to develop a noninvasive,
zero-calibration system for wireless sensing of food and
liquids in practical environments. Such a system would
enable consumers to test food and liquids without open-
ing their containers and in different environments: super-
markets, grocery stores, or homes. Our system will rely
on off-the-shelf RFIDs (Radio Frequency IDentifiers),
similar to those used in some past proposals [25, 66].
RFIDs cost few cents each, and they have been widely
adopted by the industry as barcode replacements for bil-
lions of items (including food products). This makes
them ideal candidates for low-cost and ubiquitous food
sensing. Moreover, our recent research has demonstrated
that an RFID’s signal changes when it is placed on con-
tainers filled with different liquids due to near-field cou-
pling between the RFID’s antenna and material inside the
container [25]. However, similar to earlier wireless pro-
posals, this RFID-based approach could not generalize to
new environments.

The difficulty in extending wireless food sensing to
different environments is that radio signals are not only
impacted by the content of a container but also by the en-
vironment where the measurement is made. Fig. 1 illus-
trates this challenge by showing three experimental trials
in two different setups. Each setup consists of a wire-
less reader that measures the RFID’s signal and extracts
the channel response. This response is impacted by two
factors: the content inside the container (due to the near-
field coupling) and the measurement environment which
encompasses the location of the container with respect
to the reader as well as the reflections off different ob-
jects in the environment (due to the propagation of the
RFID’s wireless signal before it reaches the reader). As
a result, if either the environment or the content proper-
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(a) First Environment (E1) (b) Second Environment (E2)

(c) Authentic in E1 (d) Authentic in E2 (e) Fake in E2
(f) Learning Results

Figure 1: RF-EATS senses food and liquids noninvasively across different environments. The figure shows how RF-EATS uses unmodified
RFID stickers placed on authentic and fake alcohol-filled bottles to sense their contents noninvasively in two different environments shown in (a)
and (b). (c)-(e) plot the RFID’s wideband response from three experimental trials. Because the environment significantly impacts the measured
RFID response, the frequency spectra of (d) and (e) look closer than (c) despite that (c) and (d) are from authentic alcohol bottles while (e) is from
a fake alcohol one. (f) plots the classification output of RF-EATS’s learning model (after dimensionality reduction), where each point represents a
different experimental trial. The plot shows that trials with authentic alcohol collected across different environments are clustered together, while
those with fake alcohol are in a different cluster. This shows that RF-EATS can correctly classify contents despite the environmental changes.

ties change, the response changes (see the bottom row of
Fig. 1). This is why prior proposals require calibrating
or constraining the measurement conditions, limiting the
practicality and generalizability of their designs.

We present RF-EATS,1 an RFID-based sensing sys-
tem that is robust to environmental variations and that
generalizes well to unseen environments. At the core of
RF-EATS’s design is a neural learning model that can
learn RF features due to a container’s content and discard
those resulting from extraneous environmental changes.
For example, if the system is trained to detect adulterated
baby formula in a lab environment, it still has high detec-
tion accuracy in a supermarket-style setup with dense en-
vironmental multipath (reflections) from metal shelving
and other items on the aisles.

A fundamental challenge in training any neural learn-
ing model (including for image or text classification
tasks) arises from the need for very large datasets. This
challenge is exacerbated in our context due to the limited
availability of RF datasets for sensing. A naive solution is
to collect an extensive dataset that covers various indoor
environments and use it in training. However, such an
approach is time-consuming, inefficient, and incapable
of generalizing to unseen environments.

To efficiently generalize to different environments,
RF-EATS builds on recent advances in variational au-
toencoders [53, 33] and adapts them to RF sensing tasks.
These models are typically used to generate realistic syn-
thetic data (e.g., images of faces of humans who do
not exist). Instead, RF-EATS employs them to gener-
ate a large number of realistic multipath-affected data

1RF-EATS stands for RF-based Environment-Agnostic Transfer-
able Sensing.

from a small number of real-world measurements. To do
so, it introduces a multipath kernel function, which al-
lows it to (approximately) decompose the wireless chan-
nel into content-dependent and environment-dependent
features. Subsequently, RF-EATS can train an autoen-
coder to learn distributions of practical radio environ-
ments (i.e., reflections, position changes, etc.) by focus-
ing on the environment-dependent features. This allows
RF-EATS to emulate a large number of realistic measure-
ments and use them to train its neural classifier.2 In §3.1,
we describe this technique in detail and demonstrate how
its stochastic nature enables generalizing RF-EATS to
unseen environments.

It is desirable to extend RF-EATS’s learning frame-
work to new contents in a sample-efficient manner. For
example, if a model is trained to detect adulterated baby
formula, we would like to extend it to detect fake al-
cohol using a small number of alcohol measurements.
Said differently, we would like to harness the power of a
well-trained model on a large number of measurements
to achieve high accuracy on new tasks, without having
to train a new model from scratch. To do so, RF-EATS
employs transfer learning: it divides a multi-layered net-
work into common layers (shared by all tasks) and task-
specific layers. In order to learn a new task (e.g., detect-
ing fake alcohol), it can inherit the common layers from
a well-trained model (e.g., the baby formula model) and
only needs to retrain the task-specific layers. This further
reduces the number samples required to extend the model
to new contents, allowing RF-EATS to achieve near-

2In our evaluation, we demonstrate how this approach significantly
outperforms using the standard ray-tracing model for generating syn-
thetic multi-path environments [63].
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optimal accuracy even when the dataset from a new con-
tent is limited. We describe this model in details in §3.2.1
and show how the common layers can serve as a pre-
trained model for future classification tasks beyond those
described in this paper.

We implemented a prototype of RF-EATS on USRP
X310 software radios, and tested it with off-the-shelf
UHF (Ultra-High Frequency) RFIDs. We adapted a re-
cent wideband measurement technique which can extract
more than half a GHz of RF measurements from off-the-
shelf, passive RFIDs [40], thus providing a rich set of
features for classification. We evaluated it in seven dif-
ferent applications and with sixteen different contents in-
cluding: fake medicine, adulterated baby formula, con-
taminated alcohol, counterfeit perfume, wine aging, and
soda classification. In each of these applications, we
evaluated its ability to identify adulteration under stan-
dard contamination/adulteration levels reported in recent
cases [43, 32, 50, 17, 19].

Our results from 2048 experimental trials in 20 differ-
ent environments demonstrate the following:
• RF-EATS’s accuracy approaches 90% across most the

above applications even when tested in new and un-
seen environments. In contrast, the accuracy of a state-
of-the-art baseline [25] drops from 90%+ when eval-
uated in the same environment to a random guess in
unseen environments for half the applications.

• RF-EATS’s transfer model enables achieving near-
optimal accuracy with as little as four data samples,
demonstrating the importance of this model when the
dataset is limited.

• We show how RF-EATS’s autoencoder can be used as
an anomaly detector to generalize to contaminated or
counterfeit content even if it has not been trained on
the specific contaminant.

• RF-EATS’s accuracy is directly impacted by the di-
electric differences between the contents it wishes to
classify. We show some negative results including its
low accuracy in detecting fake extra-virgin olive oil
due to limited dielectric differences between fake and
authentic olive oil.

Contributions: RF-EATS is the first RFID-based sys-
tem that can noninvasively sense food and liquids in
closed containers and operate correctly in unseen envi-
ronments. It employs a variational autoencoder architec-
ture that can learn and generate realistic multipath envi-
ronments, and introduces a new kernel function that can
apply these generated environments to real data. It also
employs transfer learning to efficiently extend its sensing
capabilities to new liquids and food items. The paper also
contributes a prototype implementation and evaluation of
RF-EATS in practical environments.

It is important to note that RF-EATS’s performance is
directly impacted by the extent of dielectric differences

between contents it wishes to classify. This means that
if the dielectric differences are small (e.g., the olive oil
application), the accuracy degrades. This degradation is
likely to be mitigated as the dataset and learning mod-
els evolve. We also note that our evaluation focused on
demonstrating robustness to changes in the surrounding
environment while fixing the container’s material (e.g.,
glass or plastic) and shape. Despite these limitations,
RF-EATS marks an important step toward food and liq-
uid sensing in practical environments. More generally,
we hope that RF-based liquid and food sensing will fol-
low a similar trend in accuracy improvements as that wit-
nessed by vision and text learning tasks in recent years.

2 Background
Researchers have long recognized the need for moni-
toring food quality and safety. Most existing techniques
rely on measuring electrochemical and electrophysical
properties [42, 35, 65, 1]. The process involves extract-
ing food samples and placing them in direct contact
with chemical reagents and/or specialized sensing cir-
cuits (e.g. biotoxin sensors [15, 16, 27]) and is typically
done in specialized food labs.

Given the length of the food lab testing process, re-
cent proposals have considered building small sensing
circuits in hope of incorporating them inside food con-
tainers [72, 46, 62, 51, 37]. These proposals require de-
signing a customized sensor for every different type of
food or food property of interest [72, 62] or they require
coating existing circuits (e.g., LC circuits or RFIDs) with
different types of polymers to increase sensitivity to spe-
cific materials of interest [46, 51]. Moreover, many of
these sensors still require direct contact with food sam-
ples, which can lead to contaminating the food samples
and is erosive to their sensing interfaces [47, 76, 58].

The desire for ubiquitous and general purpose solu-
tions has led networking and mobile researchers to ex-
plore various mobile sensing modalities. These tech-
niques rely on different kinds of wireless signals to ex-
tract material properties such as the electric permittiv-
ity [66, 21, 23, 44, 78], surface tension [60, 71, 77], or
photo-acoustic signatures [57]. However, the reliance on
wireless signals makes these techniques highly sensitive
to measurement conditions; hence, the proposed systems
require isolating food samples of interest and placing
them in calibrated setups. This includes recent proposals
like LiquID [21], TagScan [66], and CapCam [77]. The
invasiveness of these approaches makes them unsuitable
for use by consumers before they purchase counterfeit or
contaminated food and liquid products. RF-EATS shares
the vision of this line of work but aims to develop a non-
invasive approach for food and liquid sensing.
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Figure 2: RF-EATS’s Learning Model.

3 Design

RF-EATS is a wireless system that can noninvasively
sense food and liquid products in closed containers with-
out opening them. It relies on cheap, passive UHF (Ultra-
High Frequency) RFID tags placed on the containers, and
exploits the near-field coupling between the RFID’s an-
tenna and the container’s contents. These RFIDs may ei-
ther be already affixed on the container by the manufac-
turer, or they may be attached as stickers to the container
as shown in Fig. 1.

Fig. 2 shows the overall system architecture. From the
hardware perspective (top left), it uses a modified RFID
reader capable of obtaining wideband channel measure-
ments [39, 25, 14] of unmodified RFID tags. The reader
sends a downlink signal which powers up a passive tag
and obtains the tag’s response. It performs standard chan-
nel estimation using the packet preamble, and uses the
channel estimates in training and classification.3 Note
that while our discussion focuses on a single tag, it can
be easily extended to any number of tags since it adapts
the standard EPC-Gen2 protocol.

RF-EATS can be used for various inference tasks (e.g.,
detecting adulterated baby formula, fake alcohol). Its
learning architecture consists of a neural network with
the following components, as shown in Fig. 2:
• Variational Multipath Autoencoder (§3.1): This com-

ponent takes as input a small number real-world chan-
nel measurements and outputs a large number of re-
alistic synthetic measurements. At the heart of this
component is a multipath kernel function that enables
learning representative distributions of RF environ-
ments while discarding the container contents’ impact.

• Feature Encoder (§3.2.1:) This component takes as in-
put real and synthetic data and extracts features for use
in classification. It consists of multiple layers, some of

3It relies on the channels not the IDs for the inference tasks.

(a) Line-of-sight environment (b) Multipath environment

Figure 3: Typical Ray-Tracing Channel Approximations.

which are shared among all classification tasks. These
layers may be reused as a pre-trained model for ex-
tending RF-EATS to new types of contents.

• Classifier (§4.1): The component takes as input the
features outputted by the feature encoder, and outputs
the classification results. While the variational autoen-
coder and part of the feature encoder are shared by all
tasks, this component must be retrained for each task.

The above three components together enable
RF-EATS to generalize to unseen environments (through
synthetic data from the autoencoder), expand to new
materials using small datasets (by leveraging the
shared layers of the feature encoder), and extend to
untested contaminants (by using the autoencoder as an
anomaly detector). The following sections explain these
components in details.

3.1 Variational Multipath Autoencoder

To achieve high accuracy with a neural learning model,
RF-EATS’s training dataset needs to be large and rep-
resentative of a variety of environments. Unfortunately,
collecting large datasets for every contaminant and ev-
ery multipath environment is an expensive and time-
consuming [28]. Further, even if we manage to collect
such datasets, there would remain unseen environments
which the model may not be able to generalize to.

Below, we describe how RF-EATS overcomes this
challenge by leveraging a stochastic generative model
based on variational autoencoders. The model enables
it to generate realistic synthetic data for use in training,
which increases its accuracy despite limited datasets and
enables it to generalize to unseen environments.

3.1.1 The Multipath Kernel

RF-EATS’s generative model needs to realistically cap-
ture different aspects of an RFID’s measured channel
response. Fig. 3(a)-(b) depict common approximations
of the wireless channel. In line-of-sight scenarios, the
RFID’s wireless signal arrives on a direct path to the
reader’s antenna; in multipath-rich environments, the sig-
nal arrives on multiple paths (after bouncing off various
reflectors) which linearly combine at the receiver. Math-
ematically, the RFID’s channel h at a given frequency k
is typically approximated as [63]:
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hk =

N∑
i=0

aie
−j2πfkτi (1)

where ai and τi are the amplitude and time delay of the
ith path, fk is the kth frequency, and N is the total num-
ber of paths.

This standard approximation is problematic for
RF-EATS’s learning tasks because of two main reasons:
1) it ignores the impact of the RFID’s antenna gain and
2) it ignores scattering and diffraction phenomena of ra-
dio signals. The first approximation is particularly detri-
mental since it prevents capturing the impact of the con-
tainer’s content on the antenna (more specifically, the
impact of the content’s dielectric ε). The second one is
also problematic as it results in less representative chan-
nel distributions.4 While it is possible to overcome these
shortcomings by solving Maxwell’s equations [64], this
is undesirable since it requires precise modeling of the
geometry and materials in the environment, making it
practically and computationally expensive [61].

To truthfully represent the RFID’s measured response,
we would like RF-EATS’s generative model to embrace
the complexity of the wireless channel. The model must
incorporate both the impact of the content dielectric (on
the antenna gain) and that of the wireless signal propa-
gation (due to reflection, scattering, and diffraction). We
can achieve this by expressing the overall channel as a
product of the gain G(ε, k) and the propagation P (k)
characteristics as follows:

hk = G(ε, k) · P (k) (2)

We make the following remarks:
• First, one might wonder why the presence of other

nearby objects does not impact the RFID’s antenna
gain (i.e., why it only affects the propagation factor
P (k)). To answer this question, we note that the elec-
tromagnetic interaction of antennas with different ob-
jects in the environment depends on the distance be-
tween the antenna and the objects [29]. If an object
is in the near-field (i.e., within one wavelength5), it
“couples” with the antenna and impacts its gain. If the
object is in the far-field (i.e., larger than two wave-
lengths), it impacts the propagation P (k). This is why
RF-EATS incorporates the impact of container con-
tents into the gain while absorbing environmental mul-
tipath into the propagation factor.6

• If the location and multipath environment are fixed,
then any change in the measured channel hk can be
attributed to the gain G(ε, k) and thus be used directly

4In §4.4, we empirically compare against the standard ray-tracing
model and show that RF-EATS significantly outperforms it.

5In the UHF ISM band, the wavelength is about 30 cm. It becomes
significantly smaller in liquids due to the impact of the dielectric.

6This approximation works well in practical because near-field
backscatter power decays as 1/d4.

Figure 4: Output of Multipath Kernel Function.

to infer the contents. Indeed, this is why past proposals
for wireless food sensing required fixing and/or cali-
brating their setup but are unable to generalize to dif-
ferent multipath environments.

• Similarly, if the content of a container is fixed, then
any change in the measured channel can be attributed
entirely to the multipath environment P (k). Let us say
that we measure the RFID’s channel in two scenarios:
one in a line-of-sight (LOS) controlled environment
with little to no multipath (hk,LOS), and another in a
multipath-rich environment (hk,MPATH ). The ratio of
these measurements is entirely dependent on the mul-
tipath environment and independent of a container’s
contents. Specifically:

hk,MPATH

hk,LOS
=
PMPATH(k)

PLOS(k)

We call this the multipath kernel function. For simplic-
ity, we approximate a multipath-free PLOS(k) ≈ 1.

To test that the multipath kernel indeed results in
content-independent features, we ran experimental trials
with fake and authentic alcohol in two environments rep-
resenting line-of-sight and multipath-rich settings similar
to those shown in Fig. 1. We computed the ratio of the
channel in multipath to that in line of sight, and plot the
output in Fig. 4. Since the channel is a complex number,
we plot the amplitude and phase of the ratios on sepa-
rate graphs, each as a function of frequency. The figure
shows that the ratio is indeed independent of the content
since the plots for authentic (red) and fake (blue) alco-
hol almost overlap for both magnitude and phase. This
indicates that the kernel function enables us to extract
environment-dependent content-independent features.

3.1.2 Training a Generative Model
Now that we have a mechanism to obtain environment-
dependent features from real-world measurements, we
can use them to train a generative model. The model
takes these measurements as input and generates a large
number of synthetic data representing different multipath
environments. While there are various kinds of genera-
tive models [55, 53, 33], RF-EATS employs variational
autoencoders (VAE) because they have the ability to gen-
eralize using a small input dataset. In what follows, we
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Figure 5: RF-EATS’s Variational Autoencoder.

describe these models at a high level and in the context
of our problem, and we refer the interested reader to [53]
for a more detailed exposition.

VAEs assume that the input features represent a much
lower dimensional space of latent variables. In the con-
text of our learning tasks, the wireless propagation fac-
tor is indeed caused by a small number of reflectors and
scatterers in the environment [34]. However, the reflec-
tors and scatterers change across different environments,
resulting in different channel responses. VAEs capture
this phenomenon by assuming that the latent variables
are randomly drawn from a normal distribution. Once the
underlying distributions are learned, RF-EATS can draw
new samples from them to generate synthetic data for
unseen multipath environments.

Fig. 5 shows the overall architecture of RF-EATS’s
variational autoencoder. The VAE takes as input the
channel ratios, each of which consists of a multi-
dimensional vector x1, x2, ..., xn, and outputs a recon-
struction of these features x̂1, x̂2, ..., x̂n. The model con-
sists of an encoder (which aims to compress these fea-
tures into latent variables z1, z2, ..., zm) and a decoder
(which aims to reconstruct the input from the latent vari-
ables). By compressing and decompressing the input,
the neural network aims to learn a representative lower-
dimensional distribution of the latent variables.

Formally, the purpose of training the VAE is to learn
the parameters of the neural network that can (1) min-
imize the reconstruction loss between the input x and
output x̂, and (2) model the underlying distribution of
the latent variables qθ(z|x) as a normal distribution. For-
mally, this can be achieved by minimizing the following
loss function [33]:
Li(φ, θ, xi) = KL(qθ(z|xi)||N (0, 1)) + L(x, x̂) (3)

where KL is Kullback-Leibler divergence, which is
a measure of the difference between two probability
distributions, N (0, 1) denotes the Gaussian with zero

mean and standard deviation of 1, and L represents the
L2 norm of the reconstruction loss in frequency domain.

The following points are worth noting:
• The VAE input and output are independent of the con-

tent. Hence, it can be trained on any container content
(or even on empty containers), and its output may be
used for any classification task as we explain below.

• Our discussion focuses entirely on the RFID’s chan-
nel and ignores the communication bits. This is pos-
sible because RF-EATS applies standard channel esti-
mation on the RFID packet’s preamble to extract the
channel. It also uses an out-of-band sensing technique
(described in §4.1) to obtain wideband estimates.

3.1.3 Embedding Dielectric Characteristics
Once the VAE has been trained, it can be used to gener-
ate synthetic multipath environments by randomly draw-
ing samples z from the latent distributions and passing
them through the decoder shown in Fig. 5. Note, how-
ever, that the VAE’s synthetic output cannot be directly
used to train a contamination classifier (i.e., we cannot
directly use it to train a fake alcohol classifier). This is
because output features are independent of the content.

In order to generate synthetic measurements that in-
corporate the impact of both the content and the prop-
agation environment, we need to apply the inverse of
the multipath kernel. Specifically, we need to measure
hk,LOS of an RFID placed on fake and authentic alcohol
bottles in line-of-sight settings, then multiply these mea-
surements by the output features of the VAE. Since the
generative model is capable of stochastically generating
different multipath environments, we only need a small
measurement dataset of hk,LoS to generate a large num-
ber of realistic channel measurements and feed them into
the classifier. Hence, the VAE model provides a large cor-
pus for training the classifier without requiring measure-
ments for every multipath environment and contaminant.

3.2 Extending to New Tasks and Compositions
In this section, we describe how we can efficiently extend
RF-EATS’s learning framework to new tasks and unseen
compositions or contaminants.

3.2.1 Transfer Learning to New Tasks

We would like to extend RF-EATS to new classification
tasks in a sample-efficient manner. For example, having
trained a classifier to detect fake alcohol using a large
dataset, we would like to extend it to detect adulterated
baby formula using a small number of samples. This
would enable expanding RF-EATS to new tasks using
a smaller number of measurements of the new content
of interest. To do so, RF-EATS employs transfer learn-
ing in order to transfer training knowledge from a well-
trained source domain (e.g., alcohol) to a new target do-
main (e.g., baby formula).
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Figure 6: RF-EATS’s Transfer Learning Model.

Fig 6 shows how this process works at a high level.
Recall that neural networks consist of multiple layers,
some of which are used for feature extraction or encod-
ing, while others are used for classification. The feature
extraction layers themselves may be further divided into
common layers and task-specific layers. The common
layers can be directly transferred as “frozen” layers F
from a well-trained classifier to the target domain. This
significantly reduces the number of parameters that need
to be learned for the new task, thus reducing the required
dataset size to achieve high accuracy.

Mathematically, each domain can be represented as
(Xs, ys) = {(xs,i, ys,i)}Ns

i=1

(Xt, yt) = {(xt,i, yt,i)}Nt
i=1

(4)

where Xs and ys are the observations and respective la-
bels of the source content domain, Xt and ys are the ob-
servations and labels of the target content domain, xi rep-
resents the complex channel estimate of one observation
over different frequencies, yi represents the label (e.g.
contaminated or not), Ns the number of samples in the
source content domain and Nt the number of samples in
the target content domain.

Assuming the latent space dimensionality is d, we can
represent the feature encoder and source/target classifier
as: F : Rn → Rd

Gs ◦ Fs : Rd → {0, 1, . . . , Cs}
Gt ◦ Ft : Rd → {0, 1, . . . , Ct}

(5)

where n comes from the dimension of the input data, and
Cs, Ct represent the number of classes in the source and
target content domains respectively.

After training the model on the source content domain,
we fix the weights of F . We then compute ŷt = Gt ◦
F2◦F (Xt) and minimize the standard cross-entropy loss

Algorithm 3.1 VAE-based Anomaly Sample Detection

Input: Anomalous data point xi, threshold α, trained
Encoder Eθ and Decoder Dφ

Output: Reconstruction probability PR
µz(i), σz(i) = Eθ(xi)
draw L samples from z ∼ N(µz(i), σz(i))
for l = 1 to L do
x̂(i,l) = Dφ(z(i,l))

PR(i) = 1
L

∑L
l=1 L (x, x̂(i,l))

if PR(i) > α then
xi is an anomaly

else
xi is not an anomaly

function Lt(yt, ŷt) = −
∑C
i=1 p(yt,i) log p(ŷt,i), where

yt,i and ŷt,i represent the actual and predicted label for
class i. Here, only the weights of F2 and Gt are updated,
while the weights of F remain intact.

3.2.2 Anomaly Detection for Unseen Compositions

So far, we have assumed that RF-EATS’s classifiers have
been trained on samples from all classes of interest, in-
cluding counterfeit and adulterated samples. However,
in many practical applications, we may not have access
to counterfeit or contaminated samples, or the composi-
tion/type of contaminant may be unknown.

We can generalize RF-EATS to deal with such situa-
tions by using its VAE as an anomaly detector [13, 41].
Recall that the VAE is trained to minimize the recon-
struction loss of the environment-dependent features.
Hence, if the input to the VAE encodes environment-
dependent features, we expect the reconstruction loss to
be low. On the other hand, if the input deviates from
the expected distribution, the reconstruction loss will be
high, indicating an anomaly.

To see how this can be used to detect counterfeit-
ing, consider the case of a manufacturer that creates a
database of hk,LOS measurements of the authentic prod-
uct. Subsequently, if we measure the channel hk,c of a
counterfeit product and apply the multipath kernel to it,
we obtain:

hk,MPATH

hk,LOS
=
PMPATH(k)

PLOS(k)
× G(ε′, k)

G(ε, k)

Notice how in such situations, the impact of the con-
tent does not cancel out upon applying the multipath ker-
nel, and the resulting ratio is not only dependent on the
environment P , but also on the content. Thus, if this ratio
is fed as input to the VAE, we expect a high reconstruc-
tion loss since the sample deviates from the learned dis-
tribution. In contrast, if the sample were authentic, the
ratio will be dielectric-free and the reconstruction loss
would be lower. Algorithm 3.1 summarizes the anomaly
detection algorithm using the variational autoencoder.
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4 Implementation and Evaluation
4.1 Implementation

Hardware. We implemented our design on USRP X310
and N210 software radios [11] by extending a two-
frequency excitation prototype [40]. The radios run the
EPC-Gen2 protocol and transmit two frequencies: one
high power frequency (10-31dBm) inside the UHF ISM
band and another low power sensing frequency which is
varied within 500-1000 MHz. At the sensing frequency’s
receiver, we employed a low-pass filter that eliminates
the impact of the power up frequency and added an
LNA to boost the received signal power. To reduce the
harmonics of transmission, we used a low-pass filter at
the output of the transmit USRPs. We also added anti-
aliasing low-pass filters at the input of the receive US-
RPs. The received signal is sampled (digitized) and sent
over Ethernet to a computer for offline processing.

Software. RF-EATS’s software package was imple-
mented in MATLAB and python. The transmitted query
requests the extended RFID preamble, and the receiver
averages 50 RFID responses to boost the signal-to-noise
ratio (SNR). The receiver decodes the response and
performs standard channel estimation using the packet
preamble. It repeats this process over 26 frequencies,
separated by 20 MHz across RF-EATS’s 500 MHz fre-
quency span. This results in RF-EATS’s feature vectors
which include amplitude, phase, and correlation across
frequencies. The multipath kernel was applied by divid-
ing the multipath-affected data by line-of-sight measure-
ment data (hk/hk,LoS). The number of datapoints used in
training the classifiers is much larger than the number of
measurements due to this combinatorial relationship.

To ensure the reliability of the channel measurements
(i.e., that the channel estimates were not significantly dis-
torted by noise or interference), we computed the corre-
lation at each frequency k as:

corrk =
∑
t

ytp
∗
t /

√∑
t

|yt|2
∑
t

|pt|2 (6)

where pt is the known preamble of the RFID packet
and yt is the received signal. We discarded points that
had very low (≤0.6). We used the python implementa-
tion of the PyTorch and Keras package [49] to implement
RF-EATS’s classifier and refiner.

Transfer Learning Classifier. The classifier was imple-
mented as a fully-connected network with 3 hidden lay-
ers. Dropout and batch normalization layers were added
to minimize overfitting. We used the Adam optimizer
and set learning rate = 1e-4, beta1=0.9, beta2=0.999,
dropout rate=0.2.

Variational Autoencoder. The encoder and decoder
were implemented as fully-connected networks with 3
hidden layers each. The dimension of latent variable was

Content Samples Content Samples

Pure Alcohol 218
Baby Formula
(uncontaminated) 95

Diluted Alcohol
(10% water) 218

Baby Formula
(Contaminated) 94

Tainted Alcohol
(10% methanol) 218

Extra Virgin Olive
Oil (unadulterated) 80

Coke 218
Extra Virgin Olive
Oil (adulterated) 79

Pepsi 218 Wine (2009) 77
Diet Coke 116 Wine (2012) 76
Real Perfume 102 Fake Medicine 68
Counterfeit Perfume 103 Real Medicine 68

Table 1: Number of Samples per Material

set to 16. We used the Adam optimizer and set learning
rate = 1e-7,beta1=0.9, beta2=0.999, dropout rate=0.2.

4.2 Dataset & Applications

We tested RF-EATS in 7 different applications and col-
lected 2,048 data samples in total. The applications
demonstrate the generality of the technique to important
real-world tasks. Below, we describe these applications,
their motivations, and how their corresponding composi-
tions were obtained. The dataset is detailed in Table 1.

• Tainted Alcohol and Diluted Alcohol. Tainted alco-
hol is an ongoing problem in many developing world
countries including China, Indonesia, Iran, Turkey, In-
dia, and Mexico [32]. Alcohol is tainted by mixing it
with cheaper methanol, and consuming it leads to hun-
dreds of cases of blindness and death every year. Stan-
dard tainting percentages range between 30-50%. In
order to stress-test for sensitivity, we prepared tainted
alcohol by removing 10% of the content of an authen-
tic bottle of GRAVES Grain Alcohol [8] and replacing
it with methanol.

• Adulterated Baby Formula. In 2008, the Chinese
milk scandal broke out after the hospitalization of
50,000 babies due to kidney damage [43]. Manufac-
tures had watered down baby formulas up to 83% and
mixed them with melamine CAS NO. 108-78-1 [24],
a compound used in making plastics. The purpose of
adding melamine (by manufacturers) was to conceal
dilution by artificially increasing protein levels. To
stress-test the sensitivity of our system, we prepared
adulterated baby formula by diluting a bottle of En-
famil NeuroPro Infant Formula - Ready to Use (8 fl
Oz) [6] with 50% water and mixing it with a higher
concentration of melamine (1g/L).

• Fake Medicine. Fake medicine is also a major chal-
lenge in many developing-world countries, leading
to dozens of fatalities every year [50]. A recent in-
cident involved fake cough medicine bottles, where
90% of the active ingredient was replaced with diethy-
lene glycol, a compound used in making antifreeze
agents [54]. To prepare such samples, we removed
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80% of the contents of a Tylenol bottle [3] and re-
placed it with diethylene glycol.

• Fake Extra-Virgin Oil. Recent studies have shown
that 69% of US-imported Extra Virgin Olive Oil has
been adulterated by mixing it with cheaper oils (e.g.
peanut oil) [26]. This can lead to health hazards for
consumers with (peanut) allergy. Standard adulter-
ation levels range between 70-80% [26]. We prepared
fake olive oil by removing 80% a bottle of GOYA Ex-
tra Virgin Olive Oil [7] and replacing it with peanut oil
from Planters 100% Pure Peanut Oil.

• Counterfeit Perfume. Counterfeit beauty products
are abound, leading Estee Lauder to confiscate over
2.6 million counterfeit items in 2016 alone [17]. Many
such products are sold online. We purchased an au-
thentic Chanel perfume (COCO MADEMOISELLE -
Eau de Parfum) directly from the supplier (160$) and
a knock off for $40 from an online retailer.

• Wine Fraud. Wine fraud takes many forms. A com-
mon one involves selling consumers wine vintages
that are dated to earlier years, artificially inflating their
price [19]. We purchased wine vintages of Castalia
Pinot Noir from two different years: 2009 and 2012.

• Soda Brand. Counterfeit soft drinks are marketed
under common brand names [4]. While it was dif-
ficult for us to purchase counterfeit soft drinks, we
tested RF-EATS’s ability to classify between common
brands: Coke, Pepsi, and Diet Coke.

4.3 Evaluation
Environments & Setup. We evaluated RF-EATS in 20
environments in total including supermarket-style se-
tups with dense metal shelving, kitchens (with sinks and
fridges), open lab spaces, offices, hallways and corri-
dors, dining table settings, etc. These environments were
fully furnished with tables, chairs, and computers. Peo-
ple walked around during our measurements, and various
wireless technologies were present (LTE, WiFi, Blue-
tooth, etc.). Fig. 1 shows two sample setups, one repre-
senting an open lab space and another emulating a su-
permarket environment.7 In each experimental trial, a
container with an RFID was placed within 10-20 cm
distance and -45°-45° from RF-EATS’s antennas. The
device powers up the RFID and captures its response.
Across our trials, we varied the measurement conditions
by changing the location of the container and the num-
ber, location, and kinds of objects/reflectors around it.
Note that even though the RFID is relatively close to
RF-EATS’s antennas,8 the richness of the multipath en-
vironment significantly impacts the measured response.

7Most of our trials (aside from the line-of-sight measurements) were
performed outside the clean open space environments.

8Beyond such distance, it is difficult to power up an RFID on liquid-
filled containers.

RFIDs. We performed our experiments with a variety
of commercial off-the-shelf passive UHF RFIDs, includ-
ing the Alien ALN-9640 Squiggle [2] and Smartrac [59]
tags. Each tag costs around 5 cents.

Ground-truth. To measure the ground truth dielectric
constant, we used a vector network analyzer, the Agi-
lent Technologies E8362B PNA Network Analyzer [5]
(price∼$20,000), and connected it to an N1501A di-
electric probe [9]. We measured the dielectric constants
across 500-1000 MHz frequency range for each content.

Baselines. Our baseline evaluation focused on non-
invasive proposals (i.e., we avoided past systems that
are invasive or require isolating liquid samples, e.g., [21,
77]). We implemented the following baselines:
• RFIQ (Gradient Boosting) [25]: We implemented

RFIQ’s gradient boosting tree model. We set eta =
0.3, max depth = 3, subsample = 0.5, and
num boost round = 128.

• VAE with a Ray-Tracing Model: We implemented
a VAE that is trained on an analytical ray-
tracing model. Specifically, rather than collecting
hk,MPATH/hk,LOS in a data-driven fashion, we mod-
eled it using the following equation:

hk,MPATH

hk,LOS
=

∑
i

aie
−j2πfkτi (7)

where ai and τi are the amplitude and time delay of the
ith path, and fk is the kth frequency. This model allows
us to generate a large number of synthetic multipath
environments and use them in training.

• Simple Neural Network: We also implemented a 3-
layer fully-connected neural network, which has the
same structure with RF-EATS’s neural network (but
without the transfer learning and VAE components).

We note the following additional points:
• Across our evaluation, the dataset was divided into a

training, testing, and validation sets, all mutually ex-
clusive, i.e., none of the containers or measurements
used in one of these sets was present in any other sets.

• We trained the VAE using measurements taken from
an RFID placed on empty containers. Recall that the
VAE is content-agnostic and general.

• Similar to standard machine learning approaches, we
extensively explored the space of hyper-parameters
and scaling functions in our training process.

4.4 Results

4.4.1 Overall Performance

We would like to evaluate RF-EATS’s overall perfor-
mance in two different regimes: the first involves training
and testing in the same environment, while the second in-
volves training in one environment and evaluating in all
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(a) Training and testing in the same environment.

(b) Training in one environment and testing in other environments.

Figure 7: Overall Performance (a) and (b) plot the accuracy for each
of the applications with different experimental regimes.

other environments. In the first regime, the dataset from
all environments was mixed and divided into mutually-
exclusive training and testing sets. The split-ratio is 80%
training and 20% testing for both RF-EATS and the state-
of-the-art baseline, RFIQ.9

Fig. 7 plots the accuracy for each of the applications in
both regimes, and compares them to each of the baselines
described in §4.3. We make the following remarks:

• When trained and tested in the same environment,
most models achieve high accuracy (≥90%) across all
applications. In such scenarios, RF-EATS matches or
exceeds the performance of the baselines.

• When testing in new and unseen environments, the ac-
curacy of all the baselines drop significantly, some to
a random guess. On the other hand, RF-EATS’s accu-
racy remains around or above 90% for six out of the
eight applications, and above 83% for all the appli-
cations. Its median improvement over a simple neu-
ral network is 15.1%, over RFIQ is 26.5%, and over
the ray-tracing model is 29.0% across these applica-
tions. This shows that RF-EATS’s model can indeed
learn representative multipath distributions and gener-
alize to unseen environments.

• The neural network (VAE) trained with a ray-tracing
model achieves the worst performance. As discussed
in §3.1.1, this is because the ray-tracing model ignores

9Note that we experimented with different splitting ratios and found
that RF-EATS outperformed RFIQ irrespective of the split ratio.

Figure 8: Precision and Recall of Counterfeit Detection.

Figure 9: Accuracy vs Dielectric Differences.

important radio propagation characteristics. As a re-
sult, a VAE trained on such a model cannot capture
representative distributions and is significantly outper-
formed by RF-EATS’s approach which leverages the
multipath kernel.

Next, we would like to gain more insight into
RF-EATS’s performance as a counterfeit detector. In
counterfeit detection, it is important to understand the
impact of false postives and false negatives. The stan-
dard metrics for quantifying them are denoted by preci-
sion and recall [10]:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(8)

where TP is true positive, FP is false positive, and FN
is false negative. Fig. 8 shows the precision and re-
call, demonstrating that they are of the same order of
RF-EATS’s overall accuracy.10 Note that these metrics
are not reported for soda brand application since false
positives/negatives are not meaningful in that context.

Impact of Dielectric Difference on Accuracy. Next,
we would like to confirm that RF-EATS’s performance
depends on the dielectric differences between the con-
tents of interest. We measured the dielectric of the var-
ious contents using the ground truth probe described
in §4.3.11 Because the dielectric constant changes with
frequency, we computed the following dielectric distance
metric

∑L
i=1 L (DA,i, DB,i) where L is L2norm12 and

10The accuracy plotted in Fig. 7 can be expressed as:
(TP+TN)/(TP+TN+FP+FN).

11Our measurements are provided in Appendix A.
12Note that it is possible to use other distance metrics.
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(a) Partial Implementations (b) Performance across Applications (c) Accuracy for Larger Datasets

Figure 10: Micro-benchmarks The figure plots the median accuracy as a function of the training dataset for (a) partial implementations, (b) different
applications, and (c) large dataset sizes. Error bars indicate lowest and highest accuracy for different dataset splits between training and testing.

DA,i, DB,i are the dielectric constants at i-th frequency
component of samples A and B.

Fig. 9 plots the classification accuracy as a function of
the dielectric difference for each of the tasks. The figure
shows a log-linear relationship between the accuracy and
the dielectric differences. When the difference is over
200, RF-EATS achieves 90+% accuracy. The figure also
shows that the olive oil application has the lowest accu-
racy and lowest difference of 15. These results verify that
RF-EATS’s performance is directly impacted by extent
of dielectric differences between the contents of interest.

4.4.2 Micro-benchmarks
We would like to quantify the accuracy gains arising
from each of RF-EATS’s subcomponents. To do so, we
evaluated the accuracy of partial implementations of the
overall system: (1) a simple neural network,13 (2) with
the VAE (but no transfer learning), (3) with transfer
learning (but no VAE), (4) RF-EATS’s full architecture
with both the VAE and transfer learning. Similar to our
earlier evaluation, we trained on one environment and
evaluated on the rest. Additionally, when training the
transfer learning model on a given task (e.g., counterfeit
perfume), the source domain is obtained by training the
encoder on datasets from all the other tasks.

Fig. 10(a) plots the accuracy as a function of the size
of the training dataset for each of the above models. For
simplicity, the figure only plots results for the counterfeit
perfume application . For each dataset size, we randomly
chose samples from the database for training, while the
rest were used for testing. We repeated this experiment
ten times, each time randomly choosing a different sub-
set of samples. The figure plots the median accuracy, and
the error bars indicate the maximum and minimum accu-
racies across the ten iterations.

We make the following remarks:
• Each of the subcomponents contributes to the over-

all system performance. The improvement in accu-
racy from the transfer learning classifier over a sim-
ple neural network shows that the transfer classifier
has higher start point, and VAE has higher slope and

13We also experimented with networks consisting of more than three
layers, but they performed worse. This is likely due to overfitting to the
small datasets, so we do not report their results.

Figure 11: Impact of Bandwidth on Accuracy.

asymptote. This is because when the dataset is very
small, transfer learning allows extracting well-defined
general features and can contribute more to the overall
accuracy. However, when the data size becomes large
enough, the VAE has higher accuracy because of its
effectiveness in generalizing to unseen environments.

• The accuracy gains are more pronounced for smaller
datasets. Moreover, the overall system has a smaller
standard deviation in comparison to the simple base-
line. This result demonstrates the model’s ability to not
just improve accuracy but also reduce the dataset size
required for training.

• The accuracy of each of the models increases with the
dataset size. This holds true not only for the perfume
classifier but for all classification tasks as shown in
Fig. 10(b)-(c), and it is expected because more data
enables the learning model to better train its classifier.

Next, we would like to understand the impact of the
estimation bandwidth on RF-EATS’s accuracy. Recall
that our implementation uses two-frequency excitation
to sense an RFID’s response over a wide bandwidth. To
evaluate the impact of bandwidth on accuracy, we used
the same measurements from the experimental trials per-
formed earlier, but we only provided varying chunks of
bandwidths in training and testing the learning model.

Fig. 11 plots the accuracy on the y-axis as a func-
tion of the bandwidth for each of the classification tasks.
It shows that RF-EATS’s accuracy increases with band-
width for all of the tasks. In contrast, when using a band-
width that is constrained to the UHF ISM band (26MHz)
as with a standard RFID reader, the accuracies across
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Figure 12: Anomaly Detection

most tasks are close to a random guess. This demon-
strates the importance of wideband estimation for en-
abling RF-based food and liquid sensing.

4.4.3 Extending to Unseen Compositions
Finally, we would like to evaluate RF-EATS’s ability to
perform anomaly detection as per §3.2.2. To do so, we
trained the VAE on outputs of the multipath kernel ob-
tained from all datasets except the perfume dataset. Then,
we applied the multipath kernel to both the counter-
feit and non-counterfeit perfume. Specifically, we com-
pute hak,MPATH /hak,LoS and hak,MPATH /hak,LoS where

h
a/f
k,MPATH denotes the channel of authentic/fake per-

fume in multipath-rich environments, and hak,LOS de-
notes the line-of-sight channel of authentic perfume. The
detector is provided with samples of hak,LOS knowing
that they are authentic. We set L = 1000 in Algo-
rithm 3.1, resulting in 1,000 reconstruction loss values.

Fig. 12 shows the histogram of the reconstruction loss
of authentic (green) and fake (orange) perfumes. The fig-
ure shows that the average reconstruction loss of fake
(61.2) is significantly smaller than that of the authentic
(49.2) perfume. If we set the threshold value α to 56.7,
we would obtain 94% accuracy in counterfeit detection.

5 Other Related Work
(a) RF sensing. RF-EATS is related to a large and
emerging body of literature on using wireless signals
for sensing purposes, including shape-based object clas-
sification [75, 74], radio localization [73, 31], liquid
level sensing [18], and human sensing [12, 52, 30].
RF-EATS’s goal is orthogonal to these proposals and it
focuses on food and liquid sensing. It is worth noting
that while some of these proposals can generalize to new
multipath environments, their problem statement is fun-
damentally different than RF-EATS’s because the impact
of the dielectric and multipath is not linearly separable as
explained in §3.1.
(b) Use of Machine Learning in Wireless. Motivated
by recent advances in machine learning, wireless re-
searchers have adapted these advances to a variety of
communication and sensing tasks, including end-to-
end decoding [22], signal classification [48], localiza-
tion [45, 68, 67, 69, 36], imaging [79], physiolog-

ical sensing [80], and spectrum monitoring [38, 20].
RF-EATS is similarly motivated by recent advances in
learning; however, it focuses on the liquid sensing prob-
lem and introduces new contributions that allow it to ad-
dress domain-specific challenges.

Finally, prior work on human activity sensing has rec-
ognized the problem of generalizing RF learning mod-
els to different environments [28, 80]. Existing solu-
tions require collecting datasets for each activity and la-
bel across a large number of environments. In our con-
text, this would require collecting measurements for each
label/contaminant/class across a wide variety of envi-
ronments, significantly increasing the training and data
collection effort over RF-EATS’s approach. In contrast,
RF-EATS’s multipath kernel and transfer learning ap-
proach allow it to generalize to new environments and
sensing tasks in a sample-efficient manner.

6 Discussion & Conclusion
RF-EATS marks an important step toward ubiquitous,
low-cost food sensing using pervasive networking tech-
nologies. Our evaluation demonstrated RF-EATS’s abil-
ity to deliver important applications, its resilience to
changing indoor environments, and its efficiency in gen-
eralizing to new tasks and unseen environments.

RF-EATS’s design and evaluation can be extended in
multiple ways. First, while our evaluation focused on
changes in the radio environment (multipath reflections,
positions, etc.), the RFID measurements may also be im-
pacted by other environmental factors such as the shape
and material of the container itself or even the impact of
temperature changes on the dielectric. It may be possible
to extend RF-EATS’s VAE to similarly learn the distribu-
tions of such changes and enable it to generalize to these
environmental variables as well. We note that even with-
out generalizing the model to different container shapes
and materials, it can be used as-is in the context of coun-
terfeit detection (e.g., fake perfume) since such items are
typically designed to look very similar to the original
products (but have different contents). Another valuable
extension of RF-EATS is via miniaturization. Specifi-
cally, our current prototype is relatively bulky for direct
consumer use. However, the large size is primarily due to
the use of USRP software radios and log-periodic anten-
nas for flexibility of prototyping, and can be miniaturized
in future design iterations.

As the research evolves, we hope that it can continue
bringing low-cost food and liquid sensing closer to the
hands of lay consumers to help democratize food and
product safety solutions.
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A Dielectric Measurements

To ensure there is a detectable difference between the
real and contaminated/fake products, we measured the
dielectric constants of each of the materials. We used
the Keysight N1501A Dielectric Probe Kit and E8362B
PNA Network Analyzer. We calibrated the dielectric
probe with 20°C water and performed a linear sweep
from 500MHz to 1GHz, in steps of 1 MHz. The graphs
below plot the dielectric constants as a function of fre-
quency.
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B Results of Multiclass Classification

Fig. 13 plots the confusion matrix table for multiclass
classification between all the tested contents. Training
and testing regime performed in different environments
similar to Fig. 7(b). The different rows of the matrix rep-
resent the actual class of the samples, while the different
columns represent RF-EATS’s predicted class. The over-
all accuracy is 85.8%.

A Alcohol B Alcohol+Water
C Alcohol+Methanol D Coke
E Diet Coke F Pepsi
G Olive Oil H Olive Oil + Peanut Oil
I Baby Formula J Adulterated Baby Formula
K Perfume L Fake Perfume
M Medicine N Fake Medicine
O Wine (2009) P Wine (2012)

Figure 13: Confusion Matrix
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Abstract
RFID tag authentication is challenging because most ad-
vanced cryptographic algorithms cannot be afforded by pas-
sive tags. Recent physical-layer identification utilizes unique
features of RF signals as the fingerprint to authenticate a
tag. This approach is effective but difficult for practical use
because it either requires a purpose-built device to extract
the signal features or is sensitive to environmental condition-
s. In this paper, we present a new energy-related fingerprint
called Eingerprint to authenticate passive tags with commod-
ity RFID devices. The competitive advantage of Eingerprint
is that it is fully compatible with the RFID standard EPC-
global Gen2, which makes it more applicable and scalable
in practice. Besides, it takes the electrical energy stored in a
tag’s resistor-capacitor (RC) circuit as the fingerprint, which
is robust to environmental changes such as tag position, com-
munication distance, transmit power, and multi-path effects.
We propose a new metric called persistence time to indirect-
ly estimate the energy level in the RC circuit. A select-query
based scheme is designed to extract the persistence time by
flipping and observing a flag in the tag’s volatile memory.
We implement a prototype of Eingerprint with commodity R-
FID devices without any modifications to the hardware or the
firmware. Experiment results show that Eingerprint is able to
achieve a high authentication accuracy of 99.4% when three
persistence times are used, regardless of device diversity and
environmental conditions.

1 Introduction

Radio frequency identification (RFID) is gaining increasing
popularity in a wide range of applications, including ware-
house inventory [15–17, 34], object tracking [13, 24, 25, 27,
30], and supply chain [22], due to its compelling features,
dropping costs, and standardizations. Each RFID tag has a u-
nique digital identity to label tagged items, brings item intel-
ligence to our daily life, and allows the reach of the Internet

∗These authors contributed equally to this work

to include objects as diverse as retail products, library books,
debit cards, passports, driver licenses, car plates, and medical
devices. In general, the RFID tags fall into two categories:
active and passive. Active tags have their own power source
and remain active all the time. Compared with the passive
tags, they have more computational capabilities and longer
read ranges. However, the built-in power source makes them
bulky and expensive, which restricts these tags to high-end
applications. In contrast, passive tags do not have a built-in
power source and are powered by either induction or electro-
magnetic RF signals of the reader. They have limited compu-
tational capabilities and a lower read range than active tags.
In spite of these limitations, they are common due to their
low cost, small size, and longer life.

In recent years, with the proliferation of RFID systems,
the problem of RFID security has attracted increasing atten-
tion. A great number of authentication protocols have been
proposed to identify the authenticity of a tag [5, 8, 9, 19]. In
the nascent stage, the authentication protocols check only the
data (e.g., TID [4]) stored in a tag’s memory, which is vul-
nerable to counterfeiting attacks: Adversaries can easily re-
trieve the data from a genuine tag with a commercial reader
and forge a replica by filling its memory with the same data
as the genuine tag. To address this problem, some crypto-
graphic approaches are studied. By transmitting the cipher-
text rather than the plaintext, the communication channel be-
tween a reader and a tag is protected against eavesdropping.
However, this approach requires extra hardware components
to support high computation overhead, which greatly increas-
es the cost of a passive tag as well as reduces the communica-
tion range between the reader and the tag. Hence, it is rarely
used by most commercial passive tags.

Motivated by the above limitations, recent research has
shifted to physical-layer identification (PLI), which is com-
monly referred to as RF fingerprinting [10,11,20,33,35,36].
It is the process of identifying a device based on transmission
imperfections exhibited by its radio transceiver. The key ap-
peal of applying RF fingerprint for authentication is twofold.
First, RF fingerprints are unique and unpredictable, such that
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they can provide high security guarantees against various
protocol-layer attacks. Second, no upgrades of hardware or
firmware on existing systems are required, which makes it
scalable to the wide use of RFID systems. In spite of this ad-
vancement, however, PLI suffers from two problems. First,
most PLI-based solutions need a specialized device to detect
physical-layer signals, which cannot be deployed in commod-
ity RFIDs. Second, some work is not resistant to environmen-
tal or signal acquisition factors, e.g., RF phase values, a wide-
ly used metric for RF fingerprinting, heavily relies on the RF
channels. Two different measurements of the same tag are
very likely to give rise to different RF phases.

In this paper, we explore a brand-new fingerprint called
energy-related fingerprint (Eingerprint) to authenticate pas-
sive tags with commodity RFID systems. Eingerprint takes
the electrical energy stored in the tag’s circuit as the finger-
print, which is robust to environmental conditions, including
tag position, tag orientation, communication distance, trans-
mit power, and multi-path effects. The basic idea is that pas-
sive tags do not have any built-in power source and are ener-
gized by the electromagnetic RF signals issued by the read-
er. To ensure proper functioning, a tag needs to store some
electrical energy into its microchip, which is equivalent to a
resistor-capacitor (RC) charging circuit [38]. Due to manu-
facturing imperfection, no two tags could ever have exactly
the same RC circuit. If we can detect this difference, then we
are able to fingerprint each tag as desired.

However, this is not easy. Building the electronic test cir-
cuit to physically measure the RC circuit of each tag is in-
feasible because it destroys the tag’s structure and functions.
Instead, we use a new metric called persistence time to indi-
rectly reflect the RC circuit. The persistence time is the time
span from the initial supply voltage when the RC circuit is
fully charged decaying to a very low level that cannot afford
the tag to run properly, which heavily relies on the RC circuit
itself. In other words, if two RC circuits differ from each oth-
er, their persistence time is very likely to be different. On the
basis of this idea, we design a Gen2-compatible approach to
measure the persistence time based on a one-bit inventoried
flag of a tag (a one-bit register in a tag’s volatile memory).
The volatile memory requires power to maintain the stored
information. Once the power is cut off (or is lower than a
threshold), the stored data are quickly lost. By flipping the
inventoried flag and continuously observing its status with
Gen-2 compatible commands, we are able to extract the per-
sistence time of a tag. Afterwards, a t-test based model is
designed to validate the genuineness of the tag. In addition,
instead of individual fingerprinting, we propose a quick and
reliable scheme to deal with multiple tags in parallel, which
greatly improves the time efficiency of tag authentication.
The main contributions of this paper are threefold.

• We explore a new energy-related fingerprint called
Eingerprint to authenticate passive tags with commodity R-
FID devices. The competitive advantage of Eingerprint is

Figure 1: Alien Squiggle general-purpose RFID tag.

that it is fully compatible with the RFID standard, which
makes it more applicable and scalable for practical use. Be-
sides, it takes the electrical energy as the fingerprint, which
is robust to various environmental conditions.
• We propose a new metric persistence time to indirect-

ly indicate the energy level stored in a tag’s RC circuit. A
select-query based scheme is designed to measure the per-
sistence time by flipping and observing a flag in the tag’s
volatile memory.
• We implement a prototype of Eingerprint in a commer-

cial off-the-shelf RFID system with over 1000 tags. Exten-
sive experiments show that our fingerprinting system is able
to achieve a high accuracy of 97.3% and 99.4% when one
persistence time and three persistence times are used respec-
tively, without any changes to the hardware.

The rest of the paper is organized as follows. Section 2
overviews the fingerprinting model and proposes an energy-
related fingerprint. Section 3 proposes a Gen2-compatible
scheme to derive the fingerprint. Section 4 uses the finger-
print distribution to validate the genuineness of a tag. Sec-
tion 5 evaluates the performance of the fingerprinting system.
Section 6 introduces the related work. Finally, Section 7 con-
cludes this work.

2 Overview

2.1 Fingerprinting Model
Passive tags do not have any built-in power source and are
energized by the electromagnetic RF signals emitted by the
reader. In general, a passive RFID tag consists of two com-
ponents: the tag antenna and the microchip. As shown in Fig.
1, the microchip is usually placed right at the terminals of the
tag antenna. When the RF signals are received by the tag an-
tenna, the voltage developed on antenna terminals powers up
the chip for computing and modulating the backscattered sig-
nal. The passive tag can be equivalent to a resistor-capacitor
(RC) series circuit [38] that is composed of a resistor and a
capacitor.

As a result of manufacturing imperfection, no two tags
could ever have exactly the same microchip; the same idea
applies to the electronic components (the resistor and the ca-
pacitor). If we can detect the difference of these electronic
components among different tags, then we are able to fin-
gerprint each tag from the physical-layer perspective, which
forms the fingerprinting metric of this work. To achieve this
goal, an intuitive solution is to set up an electronic test circuit
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and measure each electronic component manually. This con-
cept works in theory but suffers from three problems in prac-
tice. First, a tag needs to be dissected (physically separating
the microchip from the antenna), which damages the tag’s
structure and function. Second, performing measurements in-
dividually and manually is time consuming, especially when
many tags need to be authenticated. Third, a purpose-built
electronic test platform is needed to measure the chip circuit,
which increases the cost of fingerprinting and is not scalable
in commercial use. Hence, a new fingerprint that is able to re-
flect the attributes of the electronic components is required.

2.2 Fingerprint: Persistence Time
Consider the RC circuit of the microchip. When the tag cap-
tures the energy from the RF signals issued by the reader, it
is actually an RC charging process. The equivalent charging
circuit is shown in Fig. 2(a), where a capacitor Cin in series
with a resistor Rin is connected across a DC battery supply
(the power is obtained from the RF signals). The capacitor
will gradually charge up through the resistor until the voltage
across it reaches the supply voltage of the DC battery, name-
ly, fully charged. According to the Gen2 standard, this charg-
ing process lasts for 2 ms at most. Afterwards, if we remove
the voltage source (e.g., turn off the reader) from the fully
charged circuit, the capacitor that is able to store the electri-
cal energy acts like a small battery and releases the energy
as required. This is referred to as an RC discharging process.
As shown in Fig. 2(b), the capacitor discharges through the
resistance in the opposite direction, which enables the tag to
compute and communicate with the reader. As the discharge
continues, the voltage goes down and there is less discharge
current across the circuit. When the voltage decays to a very
low level that cannot afford the tag to run properly, we say
that the tag is exhausted and out of function. Assume that the
initial supply voltage of the fully charged circuit is Vin and
the minimal voltage that is needed to drive a tag is V0. In the
discharging stage, we refer to the time span from the initial
supply voltage Vin decaying to the voltage threshold V0 as
persistence time, which can be derived as follows:

Tp = Rin×Cin× ln(
Vin

Vin−V0
), (1)

where Rin and Cin are the resistance and capacitance of the
microchip, respectively [38]. In Eq. (1), the V0 voltage thresh-
old is a constant when a tag chip is manufactured. For Vin, it
varies with the available input power and thus depends on the
energy captured by the tag antenna. This would be a variable
in different communication conditions, e.g., different com-
munication distances. To provide a stable voltage to the dig-
ital core, however, the commercial tag is required to carry a
low dropout regulator [38], which uses a voltage reference
block to produce a regulated and constant voltage Vin. Hence,
the persistence time relies on the four constants Rin, Cin, V0,

(a) Charging. (b) Discharging.

Figure 2: RC circuit of a tag’s microchip.

and Vin, which are determined by the hardware of a tag, re-
gardless of the environment factors, e.g., the communication
distance, the tag location, multipath effects. By measuring
the persistence time, we are able to figure out the difference
of tag chips. This forms the basic idea of our method.

The energy-based fingerprint has three competitive advan-
tages. First, any Gen2-compatible readers are able to mea-
sure the persistence time of a commodity tag with no need
for any modifications to the hardware or the firmware. Hence,
implementing and deploying the fingerprinting system is
easy in practice. Second, the persistence time not only ac-
curately reflects the RC circuit of the tag chip but is also
robust to the environment changes (e.g., the communication
distance, the tag location, multipath effects), which is a key
challenge for some PLI work [11, 28]). Third, a commercial
tag has several independent persistence times (different RC
circuits), which form different fingerprints to jointly authen-
ticate the tag, thus making it hard to counterfeit. In spite of
this advancement, measuring the persistence time of a tag is
not easy. Next, we first show the system architecture of our
approach and then detail how to obtain the persistence time
in a Gen2-compatible commodity RFID system.

2.3 System Architecture
In general, the workflow of the fingerprinting system consists
of three steps, which are shown in Fig. 3.

• EPC Identification: The reader interrogates a tag accord-
ing to the Gen2 protocol and checks whether the EPC (i.e.,
tag ID) is identical to the tag to be authenticated. If no, then
the tag is counterfeit. Otherwise, the system moves to the
second step.
• Fingerprint Extraction: This step aims to extract the per-

sistence time of the tag and treats it as the tag’s energy fin-
gerprint. Two key issues need to be solved. First, how can
the persistence time be measured with the commercial RFID
devices? Second, how can the time efficiency be improved
and how can the measurement of multiple tags be conducted
in parallel?
• Genuineness Validation: The system measures the per-

sistence time and validates it with the stored records in the
database. If it passes the authentication, then the tag is con-
sidered a genuine tag; otherwise, it is a counterfeit.
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Figure 3: The workflow of the fingerprinting system.

3 Fingerprint Extraction

3.1 Basic Idea
The basic idea of measuring the persistence time is to build
a fully charged RC circuit and then run the discharging op-
eration. This approach requires the following three steps. As
shown in Fig. 4, first, we turn on the reader and let it issue
the RF signals to energize the tag. Second, after the tag is
fully charged, we cut off the power by turning off the reader;
the discharging process starts. Third, after a period of time
Td , we check whether the tag is exhausted or not. By grad-
ually increasing the time period Td and repeating the above
three steps, we can find a maximum of Td that is guaranteed
to help the tag work properly. This maximum is actually the
persistence time to be measured.

Among above three steps, the first two, turning on and of-
f the reader, are easy to operate. However, examining when
the power of the tag is exhausted with a commodity RFID
system is challenging. To address this problem, we resort to
the volatile memory of a tag. Unlike non-volatile memory
(e.g., NAND flash and solid-state drives), the volatile mem-
ory requires power to maintain the stored information. Once
the power is cut off (or lower than a threshold), the stored
data are quickly lost. In the RFID standard Gen2, we find
a metric inventoried flag, which is a one-bit indicator in a
tag’s volatile memory. By flipping the inventoried flag and
checking its status continuously, we are able to know when
the power of the tag is exhausted. Next, we first introduce the
Gen2 protocol and then detail how to measure the persistence
time based on the RFID standard.

3.2 EPCglobal Gen2 Protocol
The EPCglobal Gen2 (Gen2) protocol is a worldwide UHF
RFID standard that defines the physical interactions and log-
ical operating procedures between the readers and tags [4].
On the basis of Gen2, we highlight the related functions that
we will be involved by Eingerprint below.

Tag Memory. Gen2 standard specifies that the tag memo-
ry is supposed to contain four distinct memory banks (page
44—51 in [4]). MemBank-0 is reserved for kill and ac-
cess passwords if encryption is implemented on the tag.
MemBank-1 stores the electronic product code (EPC), i.e.,
tag ID that is often referred to. MemBank-2 stores TID
that indicates the tag- and manufacturer-specific data at the

Figure 4: Basic idea of fingerprint extraction.

time of manufacture, which is permalocked and unchange-
able. MemBank-3 is user memory that allows customized
data storage. In this work, we need to visit the tag’s ID, so
MemBank-1 is used.

Sessions & Inventoried Flags. Gen2 requires the readers
and tags to provide four sessions (denoted as S0, S1, S2, and
S3). Tags in one of these sessions shall neither use nor modi-
fy an inventoried flag for a different session. This allows two
or more readers to use different sessions to independently in-
ventory a common tag population (in different time slots).
The inventoried flag is actually a one-bit indicator of a tag’s
volatile memory. The binary state of the inventoried flag is
denoted by A and B, respectively, where A is the initial state
as usual. The volatile memory requires power to maintain the
stored information. Once the power is lower than a thresh-
old, the stored data are quickly lost, that is, the inventoried
flag will flip to A when the power of the tag is exhausted, no
matter what the previous state is. According to Gen2, each
session corresponds to an independent inventoried flag that
needs different power levels to maintain its state, so the per-
sistence time of each inventoried flag is different. Table 1
shows the persistence periods of different sessions specified
by the Gen2 protocol. As we can see, when the tag is not en-
ergized, the persistence times of the inventoried flags in S2
and S3 are greater than 2 s. In contrast, the persistence time
in S1 varies between 500 ms and 5 s, and no persistence time
(always in A) is found for S0. This specification provides us
with three persistence times by using the inventoried flags in
S1, S2, and S3. Next, we take the inventoried flag in S1 as an
example to show how our fingerprinting system works; the
two other sessions can be used in the same way.

Select. Select is a mandatory command that is prior to each
inventory round. It allows a reader to choose a specific subset
of tags that participate in the subsequent inventoried round.

Table 1: Persistence time
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Aside from tag selection, the Select command can also assert
or deassert a tag’s selected (SL) flag, or set a tag’s invento-
ried flag to either A or B. These flags are used to determine
whether or not a tag may respond to a reader. Specifically, a
Select command consists six fields.
•MemBank, Mask, Length, Pointer. These four fields joint-

ly determine which tags are matching or not. MemBank spec-
ifies which memory bank is chosen for comparison. As afore-
mentioned, four memory banks are available, MemBank-0,
MemBank-1, MemBank-2, and MemBank-3, which are indi-
cated by 0, 1, 2, and 3, respectively. Pointer indicates the start-
ing position in the chosen memory bank. Length determines
the length of Mask, which is a customized bit string accord-
ing to the user demands. If Mask is the same as the string that
begins at Pointer and ends Length bits later in the memory of
MemBank, then the corresponding tag is matched.
• Target, Action. The field Target indicates the object that

Select will operate, which is either a tag’s SL flag or an inven-
toried flag in any one of four sessions. The sessions are spec-
ified by the Gen2 protocol to fit the case of exclusive read-
ing among multiple readers. Therefore, five different targets
can be chosen. The selection function is actually achieved by
masking the interested tags, setting the matching tags’ inven-
toried flags or SL flag to a specific state while not-matching
tags to opposite, and finally operating the tags with the same
flag state. How to set the inventoried flag and the SL fag is
determined by the Action field. As shown in Table 2, eight
actions are available, where matching and not-matching tags
set their inventoried flags to A or B. By combining Target
and Action, the reader is able to modify the state of the inven-
toried flags or the SL flag for a group of tags. For example,
when the Action is 0, the matching tags are set to A while the
not-matching tags are set to B. The term “do nothing” means
the tags keep their flags unchanged.

Query. Query command starts a new inventory round over
the tag subpopulation, which are chosen by the previous Se-
lect command(s). In the inventory round, the reader will carry
out a frame that consists of some time slots. Each “selected”
tag randomly picks one of these time slots and transmits its
tag ID to the reader in that slot. After a tag is queried by the
reader, it will invert its inventoried flag, i.e., from the state A
to B, or vice versa. Query includes three fields that we would
like to focus on.
• Session, Target. Similar to that in Select, this field Ses-

Table 2: Eight actions of Select.
Action Tag Matching Tag Not-Matching Abbr. 

000 assert SL or inventoried → A  deassert SL or inventoried → B  AB 

001 assert SL or inventoried → A  do nothing  A- 

010 do nothing deassert SL or inventoried → B  -B 

011 negate SL or (A→B, B→A) do nothing S- 

100 deassert SL or inventoried → B  assert SL or inventoried → A BA 

101 deassert SL or inventoried → B do nothing B- 

110 do nothing assert SL or inventoried → A -A 

111 do nothing negate SL or (A→B, B→A) -S 

 

sion in Query specifies one of the four sessions used in the in-
coming inventory round. The field Target determines which
tags will participate in the current inventory round, where 0
indicates the tags with the inventoried flag being A and 1 in-
dicates B.
• Sel. This field consists of two bits that determine which

tags respond to Query: 002 and 012 indicate all matching tags
in the previous Select command; 102 indicates tags with de-
asserted SL flag (∼ SL); and 112 indicates tags with asserted
SL flag (SL).

On the basis of the above Gen2-compatible functions, we
next detail how to jointly utilize the Select and Query com-
mands to measure the persistence time by using the state of
the inventoried flag. The method is called select-query based
measurement.

3.3 Select-Query based Measurement (SQM)
The basic idea is that when the internal energy of a tag is
exhausted, the inventoried flag will move back to the initial
state A for sure, regardless of its previous state. If we set
the tag’s inventoried flag to B and keep the RC circuit ful-
ly charged, then the time period from starting discharging to
the time when the inventoried flag turns to A can be treated
as the persistence time.

3.3.1 Design of SQM

To measure the discharging time, we need to jointly use the S-
elect command and the Query command. According to Gen2,
a Select command can be written as follows:

S( t︸︷︷︸
Target

,

Action︷︸︸︷
a , b︸︷︷︸

Membank

,

Pointer︷︸︸︷
p , l︸︷︷︸

Length

,

Mask︷︸︸︷
k ). (2)

To set a tag’s inventoried flag to B, the reader just needs to
broadcast a Select as follows:

Flag← BA: S(1,4,1,32,96, id), (3)

where t = 1 (0012) means the operating object is set to the in-
ventoried flag in session 1 (S1), a = 4 indicates that the inven-
toried flags of matching tags will be set to B, while those of
not-matching tags will be set to A, (b, p, l,k) = (1,32,96, id)
means the tag’s ID is the same as id is selected (matching).
Note that the first bit of the tag ID starts from the 32nd
bit (p = 32) in MemBank-1, because the first 32 bits are a
protocol-control (PC) word and the tag ID follows behind
the PC word. More details can be seen in [4].

By this means, the target tag is set to B. Now the question
is how long we can obtain a fully charged RC circuit. Gen2
specifies that the charging time should be no longer than 2
ms, which is much less than the time period (about 20 m-
s) for broadcasting a select command. In other words, once

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    1105



the select command in 3 is carried out, the target tag has the
inventoried flag being B and also the RC circuit being fully
charged.

Afterwards, we move to the discharging process by turn-
ing off the readers. Given that the tag cannot harvest energy
from the reader anymore, the stored electric energy is con-
sumed gradually. After a period of time Td for discharging,
the reader broadcasts a query command to check whether any
tag with the inventoried flag B exists. The query command is
as follows:

Query B : Q(Session = 1,Target = 1,Sel = 0). (4)

If a tag reply is received, it means that the persistence time of
this tag is longer than Td . In this case, we need to increase Td
by a small step ∆t and repeat the above select-query process
again. For the first time period Td that makes no tag reply,
it is treated as the persistence time to be measured. That is
because no tag reply means that the tag’s inventoried flag
has flipped to A since the power ran out. Note that, for the
session 1 (S1), since the persistence time is bounded between
500 ms to 5 s, we can initialize Td with 500 ms and increases
it gradually until no tag reply occurs.

3.3.2 Multiple Tags

So far, we have discussed how to obtain the persistence time
of a session for a single tag. In a practical scenario, however,
authenticating multiple tags at a time is common. One intu-
itive solution is to fingerprint each tag in sequence, one by
one. This works but suffers from high time latency. To make
SQM more efficient and scalable to the multi-tag case, we
need to deal with multiple tags in parallel.

An important observation is that broadcasting the select
and executing the query operation take only a few millisec-
onds; the majority of the time overhead comes from trying
the waiting period Td . If we can let multiple tags wait con-
currently, the execution time will decline sharply. Following
this idea, we first set all target tags’ inventoried flags to the
state B, instead of individually dealing with one tag at a time.
Afterwards, these target tags move to the discharging process
and the energy is consumed gradually. After a period of time
Td , we query the tags with flag B as is. If a tag does not re-
spond to the reader, its persistence time is Td . This process
repeats until all target tags are measured. In this way, the long
discharging process executes in parallel, which saves a large
amount of time overhead. For example, assume that we fin-
gerprint 10 tags in parallel. We can reduce the waiting peri-
ods by about 90%; the global authentication performance is
much better than the individual authentication performance.

Now the question is how to select a subset of tags and set
their inventoried flags to the state B. Assume there are n tags,
in which m tags are target tags. We can separate these m tags
from the entire tag set via m select commands. The selection
process is executed as follows. We first use the Action = BA

to select the first tag t1, i.e., t1’s inventoried flag is set to B
while others are A. Afterwards, for the ith tag ti, the Action is
set to B−. We use B− because this action will set the match-
ing tag ti to B accordingly but not change the settings of the
previous tags. The commands are shown below.

1⃝ t1← BA : S(2,a = 4,1,32,96, id1)

i⃝ ti← B− : S(2,a = 5,1,32,96, idi), i ∈ [2,m],
(5)

where idi represents the tag ti’s tag ID, a= 5 means the action
B−, which can be seen in Table 2. Besides, by investigating
commodity RFID readers through their data sheets and real
experiments, we find that these readers allow multiple selects
to be broadcast in one transmission, e.g., two by Impinj R420
[2] and four by ALR 9900+ and ALR F800 [1]. With this
function, we are able to fill several selects into a single one,
further saving the communication overhead.

3.4 Enhanced SQM
Although concurrently fingerprinting multiple tags can
sharply shorten the authentication time, a large gap still exists
between SQM and efficient authentication primarily because
that the process of increasingly adjusting the waiting time Td
is time-consuming. For example, assume a tag’s persistence
time is 3 s and the step length is 0.1 s. The waiting time Td
is initialized to 0.5 s and SQM needs to iteratively try 0.5 s,
0.6 s, 0.7 s, ..., 3.0 s. Summing up the overhead of each try,
we have the overall time cost 45.5 s. This time cost is fine for
some applications without real-time requirements. However,
in the applications such as access control systems, this time
is too long to be applicable for practical use.

The basic reason for the low time efficiency is that when
a waiting time Td is examined, we need to reset all tags and
retry the next one. A longer time is needed for checking. If
we can run the measurement within only one waiting time
window, the performance will be improved greatly. Through
extensive experiments, we find that the query command does
not charge the tag in the session S1. In other words, during
the discharging process, we are able to keep querying the
tags, with no need to turn off the reader. Once a tag is queried
by the reader, it will be recharged again.

3.4.1 Design of Enhanced SQM

With these features, the enhanced SQM measures the tag t1’s
persistence time as follows. First, similar to the basic SQM,
the reader broadcasts a select command (see Eq. (3)) with
action BA to set t1’s inventoried flag to B. After that, the dis-
charging process starts and the reader queries the tag with the
flag state being A. The query command is

Query A : Q(Session = 1,Target = 0). (6)

As shown in Fig. 5, during the discharging process, the in-
ternal circuit energizes the tag and keeps the inventoried flag
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B, so the reader cannot receive any response from the tag t1.
When the power level is too low to maintain the information
of the volatile memory, the inventoried flag moves back to the
initial state A. At that time, because the reader keeps query-
ing tags with A, the tag t1 satisfying this condition will reply
to the reader. By observing the time span from the start of
discharging to the tag reply, we are able to derive the persis-
tence time of the tag. Clearly, enhanced SQM does not need
to try different waiting times; only one time window is able
to measure the persistence time, which saves a great num-
ber of overheads. For example, consider the above tag with
3 s persistence time. Enhanced SQM results in great perfor-
mance improvement, reducing the time from 44.5 s to only 3
s, in comparison to the basic SQM.

After responding to the reader, the tag flips its inventoried
flag to B (according to Gen2); meanwhile, the RC circuit is
fully charged. With the reader continuing to query A, the tag
will reply after another persistence time. Hence, if we need
multiple measures of persistence time, we just need to record
each time interval between two adjacent tag responses, which
is shown in Fig. 5. In fact, we can also simplify the enhanced
SQM by removing the select command, that is, the reader di-
rectly enters the inventory stage. By keeping querying tags
with A, the reader is able to get each tag’s replies. The time
interval between any two adjacent tag replies is the tag’s per-
sistence time. In addition, enhanced SQM can be extended
to the multi-tag case, with no need for any modifications to
the measurement process.

3.4.2 Multiple Tags

In spite of advancements, the enhanced SQM faces a new
challenge in which the tags beyond the target tags might have
negative effects on the measurement of the persistence time,
especially when a great number of these tags exist. More
specifically, assume that the tag set is τ and τ′ ⊆ τ is a sub-
set of tags to be authenticated. The problem is that, when we
set the inventoried flags of τ′ to B with the select command,
the tags in τ− τ′ will be set to A. In the follow-up inventory
stage, the reader queries tags with flags being A; these tags
τ−τ′ will attend to respond. As a result, the tags in τ′ cannot
give a prompt reply when their flags move back to A due to
lack of energy. Setting τ− τ′ to B initially does not work ei-
ther because these tags will still reply to the reader after their
power level is lower than a threshold.

To address this problem, we resort to another indicator: SL
flag. As mentioned previously, the SL flag has two states de-
noted by SL and∼ SL. The reader can specify a set of tags in
one of the two states, which will participate in the inventory
round. The SL flag and the inventoried flag are independent
and can be jointly used to remove the interference of τ− τ′.
The solution is to set the target tags τ′ to SL while others
τ− τ′ to ∼ SL. In the inventory stage, we let only the tags
with SL participate in the response. By this means, even if

Figure 5: Enhanced SQM for obtaining the persistence time.

a tag in τ− τ′ is with the inventoried flag A, it has to keep
silent to the command of querying A. Specifically, assume
that τ′ = {t1, t2, ..., tm}. The reader broadcasts the select com-
mands as follows:

1⃝ t1← AB : S(t = 4,0,1,32,96, id1),

i⃝ ti← A− : S(t = 4,1,1,32,96, idi), i ∈ [2,m],
(7)

where Target being set to 4 (t = 4) means that the operating
object of the select is the SL flag. With the above select com-
mands, the SL flags of the tags in τ′ are asserted (SL), where-
as those of tags in τ− τ′ are deasserted (∼ SL). Afterwards,
we move to the inventory stage with the query command:

Query A & SL : Q(1,Target = 0,Sel = 3), (8)

where the fields Sel = 3 and Target = 0 mean that the read-
er queries only the tags with the inventoried flags being A
together with asserted SL. In such a context, only the target
tags of τ′ have the chance to reply; other tags in τ− τ′ are si-
lenced due to ∼ SL. For any target tag, by recording the time
interval between two adjacent replies, we can get its persis-
tence time, which is treated as the energy-related fingerprint.

3.5 Degree of Parallelism

Simultaneous authentication of multiple tags greatly saves
the time overhead. However, this is not free; it lowers the
sampling rate of each tag when measuring its persistence
time. That is because the read throughput of a reader model
(how fast the reader can read the tags) is usually fixed. More
tags correspond to reduced likelihood that a tag is read. A
low sampling rate means a low resolution of measured persis-
tence time, which further affects the authentication accuracy.
To address this problem, we can partition a tag set into sever-
al small subsets if a large number of tags are to be authenti-
cated. Afterwards, we deal with each subset of tags at a time.
The process of fingerprinting a subset of tags can be seen
in Section 3.3.2 (for SQM) and Section 3.4.2 (for enhanced
SQM). This process repeats until all tags are validated. Note
that the degree of parallelism is related to the read throughput
of a reader. High read throughput ensures that more tags can
be fingerprinted simultaneously. The degree of parallelism is
evaluated in Section 5.3.2.
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Figure 6: Gaussian distribution of persistence time.

4 Genuineness Validation

To validate the genuineness of a tag, we need to compare it-
s fingerprints under testing with those in the check-in stage.
In this work, we take the distribution of the persistence time
as the metric to perform the comparison. Intuitively, if a tag
under testing is genuine, then its persistence time should fol-
low the same distribution as its genuine records. Given a
newly measured set X ′ of the persistence time and a genuine
record X , the task of genuineness validation is reduced to ver-
ify whether X ′ and X follow the same distribution.

Now, we set up an RFID system that contains 1000 tags
with eight different models supplied by three leading RFID
companies: Alien [1], NXP [3], and Impinj [2]. For each tag,
we run the enhanced SQM to obtain at least 20 measures of
the persistence time. In Fig. 6(a), we randomly pick a tag
and plot its persistence time. As we can see, the persistence
time is likely to be a Gaussian distribution. We validate this
conclusion through a quantile-quantile (Q-Q) plot, which is
widely used to compare the similarity between two probabil-
ity distributions. If two compared distributions are similar,
then the points in the Q-Q plot will nearly lie on a line. As
shown in Fig. 6(b), we compare the persistence time with the
standard normal distribution. Clearly, the plots almost form
a straight line, suggesting that the persistence time follows a
Gaussian distribution.

In statistics, t-test is most commonly applied to determine
whether the means of two sets of data with Gaussian distri-
bution are significantly different from each other. Suppose
the recorded data X follows a Gaussian distribution N(µ,δ2)
and the data X ′ under testing follows a Gaussian distribution
N(µ′,δ′2). If the tag is a genuine tag, then µ′ and δ′2 are sup-
posed to be very close to µ and δ2, respectively. According
to t-distribution, the mean value X̄ ′ shall be

f (X̄ ′) =
X̄ ′−µ
δ/
√

n
. (9)

The t-test uses the significance level p as a threshold to de-
termine whether or not accept X̄ ′. The significance level p
belongs to the interval [0, 1] and is typically set to 0.05 or
less [23]. The setting of p will be discussed in Section 5.3.1.

Note that if the persistence time does not follow nor-
mal distribution, we can resort to a non-parametric test,

Figure 7: System deployment.

e.g., Wilcoxon rank-sum test, which is valid for both non-
normally distributed data and normally distributed data.

5 Implementation & Evaluation

In this section, we implement a prototype of Eingerprint in
a commodity RFID system. On the basis of this system,
we evaluate the performance of Eingerprint through exten-
sive experiments in terms of the robustness to environmental
changes and authentication accuracy.

5.1 System Deployment

The system setup is shown in Fig. 7. Two reader models,
ALR-F800 and ALR-9900+ supplied by Alien [1], are em-
ployed in our experiment without any modifications to the
hardware or the firmware. The reader is connected to a direc-
tional antenna (Laird S9028 [14], with a gain of 8.5 dBi) and
operates at around 920 MHz. Over 1000 tags with 8 tag mod-
els are used in total. The model ALN-9634 [1] is adopted
as the default in the experiments without explicit instruction-
s. The development software of the fingerprinting system is
Java, which adopts the Low-Level Reader Protocol (LLRP),
specified by EPCglobal in its EPC Gen2 standard, to com-
municate. The host computer is a laptop with an Intel Core
i5-8250U 1.8 GHz CPU and 8 GB RAM.

5.2 Impact of Environmental Factors

Resilience to environmental conditions is where Eingerprint
shines, which is a basis for practical use. In this subsec-
tion, we investigate the impact of environmental factors on
the measure of the persistence time, including the commu-
nication distance, tag orientation, communication frequency,
transmit power, and temperature. All results are evaluated
based on the inventoried flag in session 1 (S1) without ex-
plicit instructions. Similar conclusions can also be drawn in
session 2 (S2) and session 3 (S3).

Distance. The communication distance between a reader
and a tag is well known to have a great impact on the RF sig-
nals, e.g., RSSI or the phase value. To investigate the impact
of the distance on Eingerprint, we vary the distance d and
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Figure 9: Impact of tag orien-
tation.

observe the changes in CDFs of persistence times. In this ex-
periment, four distances are tested, where d1 =0.6 m, d2 =1.2
m, d3 =1.8 m, and d4 =2.4 m. As shown in Fig. 8, we can
see that the CDFs are very close to each other and the mean-
s of the persistence times under the four distances are 2.797
s, 2.801 s, 2.804 s, and 2.787 s, respectively. These positive
results demonstrate that the distance between a reader and a
tag has little effect on the energy-related fingerprint.

Tag orientation. In some existing RF-based work [10,35],
the authentication accuracy largely depends on the tag orien-
tation. In Fig. 9, we observe the persistence time of a tag un-
der different rotation angles, i.e., 0◦,30◦,60◦, 90◦. The means
of the measured persistence times are 2.817 s, 2.818 s, 2.814
s, and 2.814 s, respectively, corresponding to the four rota-
tion angles. Similarly, the consistent results indicate that our
energy-related fingerprint remains stable, regardless of the
tag’s rotation angles.

RF channels. A typical UHF reader has 16 channels work-
ing at 920—924 MHz ISM band. RF phase values, a wide-
ly used metric for RF fingerprinting, heavily rely on the R-
F channels. To examine whether the channel affects the sta-
bility of Eingerprint, we extract the persistence time from a
tag under four different channels, where channel1 = 920.625
MHz, channel2 = 921.625 MHz, channel3 = 922.625 MHz,
channel4 = 923.625 MHz. Fig. 10 shows the CDFs of the
persistence times under the four channels. The close results
demonstrate that the energy-related fingerprint is resistant to
the communication channel.

Transmit power. Next, we examine the effect of the trans-
mit power of the reader. In this experiment, we set the trans-
mit power to 30 dBm, 26 dBm, 22 dBm, and 18 dBm respec-
tively, and observe its impact on persistence time. As shown
in Fig. 11, the CDFs of the persistence times under different
transmit powers approach to each other. The positive results
demonstrate that the transmit power has little impact on the
energy-related fingerprint.

Temperature. In this experiment, we study the impact of
the temperature on the persistence time. Four temperatures
are investigated, three of which are close to each other (20
◦C, 21 ◦C, 22 ◦C) and another is much higher (30 ◦C). Fig.
12 shows the CDFs of the persistence time under these four
temperatures. As we can see, the three CDFs of temperatures
20 ◦C, 21 ◦C, 22 ◦C are similar, while that of 30 ◦C is differ-
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ent from the others’. This result indicates that the tempera-
ture has an impact on the persistence time. If the temperature
change is slight, the impact could be negligible. Otherwise,
we need to take the temperature into account if it varies con-
siderably. This accords with the theory as temperature could
affect the resistance and capacitance of electronic compo-
nents. In fact, it is a blessing in disguise to some extent: each
temperature corresponds to a fingerprint, which provides us
with more fingerprints and higher authentication accuracy.

On top of the above experiments, we draw the conclusion
that the energy-related fingerprint is resistant to various en-
vironmental conditions, including communication distance,
tag orientation, communication frequency, and transmit pow-
er, except for the temperature.

5.3 Authentication Performance
In the experiments, three widely used metrics are applied to
evaluate the authentication performance of Eingerprint, in-
cluding false acceptance rate (FAR), false rejection rate (FR-
R), and authentication accuracy. FAR indicates the likelihood
that the system will incorrectly accept a counterfeit. FRR in-
dicates the likelihood that the system will fail to accept a gen-
uine tag. For each experiment, we randomly pick two tags
from 200 tags and treat one of them as a genuine tag and the
other as a counterfeit. By checking whether each of them is
genuine or not, we can record the number of correct checks.
Repeating the above experiment 500 times, we derive the au-
thentication accuracy that is equal to the ratio of the number
of correct checks to the number of tests in total.

5.3.1 Significance Level

Eingerprint utilizes the significance level (threshold), denot-
ed by p, to determine whether a testing fingerprint is valid or
not. A large p is likely to reject a valid tag, leading to a high
FRR, while a small p cannot figure out friend (genuine tag)
or foe (counterfeit), increasing FAR. This dilemma requires a
proper value of p to balance FRR and FAR. We extract finger-
prints from 200 tags and respectively compute FRR and FAR
under various p, which ranges from 0.01 to 0.06. As shown
in Fig. 13, we set the value p to the value that corresponds
to the intersect point of the two curves of FRR and FAR, i.e.,
p = 0.03, which is used in the following experiments.
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5.3.2 Authentication Accuracy

We now compare the authentication accuracy of Eingerprint
with the state-of-the-art, including Butterfly [11], GenePrint
[10], spectral feature (SP) [35], and time interval error togeth-
er with the average base band power (TIE+ABP) [35]. Two
cases are taken into account. In case 1, the tags are registered
and authenticated at the same position. In case 2, the tags are
registered and authenticated in different rooms. As shown
in Fig. 14, all methods achieve a high authentication accu-
racy in case 1. However, the environmental changes in case
2 have a great impact on the performance of existing work.
For example, the accuracy of SP drops sharply from 100% to
37.6%. By contrast, Eingerprint is resistant to these changes;
the authentication accuracy in case 2 reaches 96.2%. Einger-
print is also more scalable than these approaches, which re-
quire a purpose-built device to measure the RF signals and
cannot be deployed in a commercial RFID system. Notably,
we just use one session to do the authentication. If more ses-
sions are taken into account, the accuracy will be further im-
proved, which will be shown next.

Selection of sessions. According to the Gen2 standard,
three sessions with different persistence times can be used
for tag authentication: session 1 (S1), session 2 (S2), and ses-
sion 3 (S3). As shown in Table 3, we increasingly use these
three sessions. The authentication accuracy improves as the
number of sessions increases. This result is intuitive because
more fingerprints reduce the probability that the system in-
correctly accepts a counterfeit. Using multiple sessions, how-
ever, increases the authentication time. Hence, it is a trade-off

Table 3: Accuracy with different sessions

S1 S1+S3 S1+S2+S3
Accuracy 97.3% 98.3% 99.4%
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Figure 16: Device diversity.

between the accuracy and the time efficiency.

Multiple tags. We now study the performance of Einger-
print when authenticating multiple tags concurrently. We ran-
domly choose 6, 8, 10, 15, 20, and 25 tags from 200 tags and
authenticate them concurrently. As shown in Fig. 15, FRR
sees a sharp rise as the number of tags increases because the
large number lowers the sampling rate of each tag, which fur-
ther lowers the resolution of the measured persistence time.
In other words, the same tag is likely to have some persis-
tence times apart from each other due to the low resolution,
which increases the probability that a genuine tag is reject-
ed. In contrast, the number of tags has a much lower impact
on FAR because the same tag still more easily has similar
persistence times than others even though the resolution is
low. In addition, we can see that our method has potential in
validating multiple tags in parallel. For example, when fin-
gerprinting 10 tags, the FRR is 7.2%, the FAR is 2.3%, and
the authentication accuracy is 95.2%. We assert that the de-
gree of parallelism is related to how fast a reader can read
tags. In this experiment, the read throughput of the reader is
about 150 tags/s. If a faster reader is adopted, then the degree
of parallelism could be higher.

Device diversity. In practice, using different devices to
register and validate tags is common. To study the impact of
device diversity, four readers are used, namely, three ALR-
F800 readers and an ALR-9900+ reader. In the experimen-
t, we first register 200 tags with an ALR-F800 reader and
then validate the tags with the other three readers. As shown
in Fig. 16, the authentication accuracy remains almost un-
changed, regardless of which reader is used. This experimen-
tal result shows that device diversity has little impact on the
performance of Eingerprint.

Tag model. We further study the performance of Einger-
print on different tag models. In the experiment, we test eight
tag models from three leading RFID tag providers, which are
Alien [1], NXP [3], and Impinj [2]. As shown in Table 4,
Eingerprint achieves a high authentication accuracy (>94%)
on all Alien and NXP tags. However, for Impinj tags, the ac-
curacy experiences a sharp drop. By checking the persistence
time, we find that the difference of persistence times of Im-
pinj tags is much smaller than that of the other two. Hence,
we recommend using Alien tags or NXP tags if tag authenti-
cation is required.
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6 Related Work

Existing studies on RFID authentication can be divided in-
to two categories: cryptographic-based approach [5, 8, 9, 18,
19, 32] and physical-layer identification (PLI) [6, 7, 10–12,
21, 26, 29, 31, 35–37, 40]. The former uses cryptographic
technique to protect the communication between reader and
tags against eavesdropping. However, existing cryptographic-
based approaches suffer from two limitations. First, some
cryptographic algorithms require high computation over-
head, which is too heavy to be afforded by a passive tag [8].
Besides, it increases the cost of a passive tag as well as re-
duces the communication range between a reader and a tag.
Second, some cryptographic-based methods are vulnerable
to protocol-layer attacks, such as reverse engineering, side-
channel, replay attack, and cloning [18, 32].

PLI is commonly referred to as RF fingerprinting, which
utilizes the physical-layer information to identify digital de-
vices. PLI has two advantages over cryptographic-based
methods. First, the feature from the physical layer is u-
nique and unpredictable, such that it can provide high secu-
rity guarantees against various protocol-layer attacks. Sec-
ond, no hardware or firmware upgrades on existing system-
s are required. Existing PLI work generally has three cate-
gories: location-based RF fingerprinting (LRF) [26, 31, 37],
transient-based and preamble-based RF fingerprinting (TPF)
[7, 10, 11, 29], and modulation error-based RF fingerprinting
(MEF) [6, 12, 35].

LRF takes the location information as the fingerprint to
authenticate a target, which works but strongly relies on the
target’s location. TPF fingerprints a device through the u-
niqueness of a certain fixed segment extracted from its tran-
sition signals and preamble signals [7, 10, 11, 29]. Since the
transient-based and preamble-based features are always de-
rived by spectral transformations, this approach is sensitive
to environmental changes [29, 39]. MEF fingerprints a de-
vice through the modulation errors caused by hardware im-
perfection, such as SYNC correlation [6], carrier frequency
offset [12], and time interval errors [35], which is channel-
robust but usually requires a purpose-built device (e.g., USR-
P) to acquire fine-gain signal features and is thus not scalable
to a commodity RFID system.

Table 4: Performance on different tag models

Company Chip Model Accuracy

Alien
Higgs 3 ALN-9634 97.3%
Higgs 4 ALN-9740 96.9%
Higgs EC ALN-9830 96.6%

NXP
Ucode G2iL MiniWeb 94.4%
Ucode G2iM AD-380iM 94.9%
Ucode 8 AD-238U8 94.2%

Impinj Monza 4 H47 77.8%
Monza R6 BLING 80.4%

7 Conclusion

In this paper, we propose a robust RFID authentication
scheme by using an energy-related fingerprint. The basic
idea is using the electric energy stored in a tag’s circuit rather
than RF signals as the fingerprint, which is resistant to the en-
vironmental changes. Directly measuring the tag’s circuit to
obtain the stored energy is impractical. Instead, we find an
equivalent metric, namely, persistence time, that can reflect
the circuit diversity indirectly. We design a Gen2-compatible
select-query method to measure the persistence time. After-
wards, we use a t-test based model to validate the genuine-
ness of a tag. We set up a prototype of the fingerprinting sys-
tem, and extensive experiment results show that our system
is able to achieve a high authentication accuracy of 99.4%,
regardless of environmental conditions and without any hard-
ware or firmware modifications.
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Abstract
Indoor localization has been studied for nearly two decades
fueled by wide interest in indoor navigation, achieving the
necessary decimeter-level accuracy. However, there are no
real-world deployments of WiFi-based user localization algo-
rithms, primarily because these algorithms are infrastructure
dependent and therefore assume the location of the access
points, their antenna geometries, and deployment orientations
in the physical map. In the real world, such detailed knowl-
edge of the location attributes of the access Point is seldom
available, thereby making WiFi localization hard to deploy. In
this paper, for the first time, we establish the accuracy require-
ments for the location attributes of access points to achieve
decimeter level user localization accuracy. Surprisingly, these
requirements for antenna geometries and deployment orienta-
tion are very stringent, requiring millimeter level and sub-10◦

of accuracy respectively, which is hard to achieve with manual
effort. To ease the deployment of real-world WiFi localiza-
tion, we present LocAP, which is an autonomous system to
physically map the environment and accurately locate the
attributes of existing wireless infrastructure in the physical
space down to the required stringent accuracy of 3 mm an-
tenna separation and 3o deployment orientation median errors,
whereas state-of-the-art algorithm reports 150 mm and 25o

respectively.

1 Introduction

Indoor navigation requires precise indoor maps and accurate
user location in these maps. Google, Bing, Apple or Open
Street Maps have made considerable progress towards pro-
viding precise indoor maps for notable locations like airports
and shopping malls [1–4]. On the other hand, there are two
decades of research on indoor localization using WiFi in-
frastructure that achieve decimeter accurate user locations
[22, 30, 37, 39, 50, 51, 53, 58, 59, 65–69]. Despite these in-
novations, we still cannot use our smartphones to navigate in
these indoor environments.

The key reason for this inability is the absence of the bridge
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Figure 1: Implementation of LocAP: (Left) An unknown
environment with unknown AP attributes where LocAP is
deployed. (Right) LocAP once deployed determines the AP
attributes in the physical map enabling triangulation based
user localization.

providing the context of the physical map to the user locations.
While there is recent work [8] that bridges this gap, it, like
other state-of-the-art localization algorithms [37, 59, 66], is
dependant on the accurate location attributes of the WiFi
access points (APs) in the physical maps of these airports and
malls. To understand what we mean by location attributes,
consider the setup shown in Figure 1(right). The smartphone
user is triangulated in an indoor environment by estimating
the angle subtended by the user at each of the access points.
This approach inherently assumes to have accurate knowledge
of each access point’s location and its deployment orientation
(the angle at which the access point is placed in the given
physical map). Further, to estimate the angle made by the user
with respect to an access point, the channel state information
(CSI) based WiFi localization algorithms need to know the
exact antenna placements on these access points.

One can endeavor to manually locate each of these access
points in the environment, but that would be labor-intensive,
time-consuming and even impossible sometimes because of
the following reasons. First, these access points (AP) are
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usually not easily visible; they may be located behind a wall
or pillar. Second, even if the AP is visible, most of the access
points are encased by the manufacturer, making it difficult to
know the exact information of the antenna placements on the
access point. Third and finally, even if we can estimate the
antenna placements on the access point from the datasheet
provided by the manufacturer1, the AP’s deployment orienta-
tion has to be carefully calibrated to the indoor maps within
an error of a few degrees. Thus, we need a system that can
help in accurate mapping of the existing WiFi infrastructure,
which does not involve any manual labor or time.

In this paper, we present LocAP, an autonomous and ac-
curate system to estimate access point location attributes –
access point location, antenna placements, and deployment
orientation. We call this process of predicting accurate ac-
cess point attributes as reverse localization. LocAP is the first
work to establish the requirements for reverse localization as
follows:
Accurate Access Point Locations: As shown in Figure 2a,
any error in AP location is translated to an error in the location
of the user. So, any error exceeding a few tens of centimeters
in access points’ location is going to adversely affect the
decimeter-level user localization. Thus, LocAP needs to locate
the access point accurate to within tens of centimeters.
Accurate Antenna Separation: Different APs have different
antenna placement configurations and the angle made by the
user is measured at the access point using the spacing between
antennas. So, any error in measuring antenna placements is
going to cause a rotation error at the user. For example, error
in antenna separation by 4 mm causes 12o of error in the angle
of user measured at the access point, which translates to up to
1 m of error for a user 5 m away from the access point. Thus,
LocAP needs to predict the antenna separation accurately to
within a few millimeters.
Accurate Deployment Orientation: Finally, the access
points can be placed in any orientation in the environment.
Any error in measurement of orientation directly translates to
the predicted angle subtended by the user at the access point.
Hence even 10o of error in deployment orientation causes up
to 90 cm of user location error for a user located just 5 m
away from the access point. Thus, LocAP should resolve the
deployment orientation of the access point accurate to less
than 10o of error.
Automation: LocAP’s goal is to require no manual effort
for the reverse localization, and achieve the stringent require-
ments discussed earlier. Furthermore, there should be zero
effort to associate these positions with the existing indoor
maps, ideally in an autonomous way.

LocAP achieves the aforementioned requirements and en-
ables automated and accurate reverse localization of the ac-
cess points. We achieve autonomy by deploying LocAP on
a bot retrofitted with a multi-antenna WiFi device used in

1Datasheets, though publicly available do not talk about antenna place-
ments or dimensions [6, 7, 17, 28, 47, 48, 57].
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Figure 2: LocAP’s Motivation: The user location is pre-
dicted wrong due to different errors in access point’s estimated
details. (a) Translation: Predicting the wrong location of the
AP. (b) Dilation: Predicting wrong antenna separation on the
access point results in an error in angle estimated,(θobs 6= θexp)
of the user. (c) Rotation: Predicting the wrong orientation of
the AP.

[8]. When deployed in a new environment, the bot first maps
the physical environment. Next, it associates with existing
AP infrastructure by collecting multi-antenna channel state
information, and pairing it with its predicted location in the
physical map as shown in Figure 1(left). LocAP uses this
information to build a database of the deployed WiFi infras-
tructure consisting of all the access point attributes meeting
our stringent accuracy requirements. This database of accu-
rate AP location attributes can then be used for decimeter
level user localization as depicted in Fig. 1(right)

The main technical contributions of LocAP to achieve the
above requirements can be summarized as follows:
cm-accurate Access Point Localization: We make an im-
portant observation that accuracy of triangulation based WiFi-
localization methods improves with an increasing number
of anchor points with known locations. In essence, creating
an array of 100’s of antennas measuring CSI at known loca-
tions achieves cm-level localization, which is not feasible in
practice2. To overcome this, LocAP leverages the CSI data
collected by the bot at 100’s of predicted locations, mimick-
ing 100’s of virtual antennas with known locations. However,
these predicted locations suffer from a varying amount of
inaccuracy. Hence, LocAP designs a weighted localization
algorithm, which weights each location-CSI data-point with
a uniquely defined confidence metric capturing the accuracy
of the predicted location.
mm-accurate Antenna Geometry Localization: We have
seen earlier that both mm-error in antenna separation and er-
ror in deployment orientation lead to in-accurate Angle of Ar-
rival (AoA) measurement at the access point, which impedes
user-triangulation. Thus, LocAP tackles antenna separation
and deployment orientation together by achieving millimeter-

2typical indoor settings are 1000-2000 sq. ft., which would imply deploy-
ing an antenna every 100 sq. ft.
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level accuracy in predicting the antenna geometry. The first
thought would be to use 1000’s of virtual antennas to achieve
cm-accurate localization [39] by locating individual antenna
geometry on the AP. But, this idea can only achieve accuracy
at the cm-level and will not suffice to achieve mm-level details
of the antenna geometry. Our key observation is to localize the
relative antenna geometry between two antennas, primarily
because the relative wireless channel between the two anten-
nas can be measured very accurately by measuring their phase
information. The phase information is measured at the carrier
frequency level (λ=60 mm equivalent to 360o ), hence even
phase measurement accurate to 10’s of degrees achieves 1-2
mm accuracy. However, this works for only relative antenna
separation d < λ

2 . LocAP designs a novel algorithm that uses
relative channel information across multiple bot locations
to solve for any antenna geometry, unrestricted by antenna
separation, to mm-level accuracy.
Automation – Augmenting the SLAM algorithms: To
avoid any manual labor and errors, LocAP is deployed on
a SLAM (Simultaneous Localization and Mapping) based
autonomous bot developed by us [8]. This bot provides us
with a physical map and the location and heading of the bot in
this physical map at all times. We pair these location-heading
measurements with the CSI collected by the mounted WiFi
device. However, even the best of SLAM algorithms report
the location to be in-accurate up to 10-20 cm, which can have
a detrimental effect on the AP location attributes. Therefore,
LocAP develops a confidence metric whose core idea to look
at the covariance of measurements across consecutive frames.

Further, the implementation of LocAP does not need any
modification at the existing access points, as it is deployed
on a custom made bot [8] that is mounted with a Quantenna
client. The Quantenna client readily reports the channel-state-
information (CSI) of the associated access point. We evaluate
LocAP in an indoor environment of 1000 sq ft area with multi-
ple off-the-shelf access points and 2 different antenna config-
urations – rectangular and linear3 We achieved the following
results satisfying the aforementioned accuracy requirements:
Relative Antenna Geometry Prediction: LocAP’s relative
reverse localization for the antenna separation has a median er-
ror of 3 mm (50× improvement), and a median error of 3o(8×
improvement) for deployment orientation, while state-of-the-
art achieves a median error of 150 mm and 25o respectively.
Access Point Localization: LocAP’s reverse localization of
the access points achieves a median localization error of 13.5
cm improving by 35% over the state-of-the-art WiFi localiza-
tion algorithms [37].
Case Study-User Localization: State-of-Art user localiza-
tion is deployed using the access point attributes measured
manually and with LocAP. We observe user localization er-
rors of 78 cm and 50 cm respectively, a decrease in the error
of about 36%.

3these configurations generalize the more generic antenna deployments
found on the commercial off the shelf WiFi access points.

2 Requirement and Motivation

It may seem natural that user localization algorithms [37, 53,
59, 67] could be sufficient for reverse localizing the access
point’s location attributes – location, antenna geometry and
deployment orientation. Surprisingly, it turns out that require-
ments for reverse localization of the access are stringent. To
define these requirements, we conduct empirical evaluations
from the standpoint on how various errors in AP attributes ad-
versely affect the state-of-the-art decimeter level localization
algorithms.

Our empirical setup contains four access points, each with 4
antennas, setup in a 25ft×30ft space. The user device is placed
at 100 different locations while the access points locate the
user using an algorithm similar to [37]. Specifically, we aim
to achieve decimeter-level localization accuracies for user
WiFi localization algorithms and thus set a hardbound that
no more than 50 cm median error for user localization can be
tolerated.
Error in the AP’s location Firstly, in the above-described
setup, we incrementally increase the error in all the access
points’ locations. Next, we estimate the user location for each
of these erroneous access point locations and calculate the
user localization error. In Figure 3a, we plot the median user
localization error across the access point errors reported. We
can see that if the access point locations have an error of more
than a few centimeters, the median localization error starts
to increase. From this, we can infer that the required level of
accuracy for the reverse localization of APs should be in the
order of centimeters.
Error in the antenna separation Second, AoA based local-
ization algorithms make use of the relative phase information
between two antennas. Earlier, we have seen that the rela-
tive antenna position has to be estimated accurately to have
exact measurements of angles. Even when the access point
positions are reported correctly, we can observe that the lo-
calization error increases with just a few millimeters of errors
in the reported relative antenna positions as shown in Figure
3b. This observation is intuitive because the relative antenna
distances are usually of the order of a wavelength of the trans-
mitted signal, which in the case of WiFi is 6cm. So, any error
which is greater than a few millimeters is going to make a
huge difference in the relative phase measured at the access
point.
Error in the Deployment Orientation Finally, the antenna
array can be oriented in any direction. It is also important to
know the exact deployment orientation of the antenna array.
Errors in this orientation will proportionately affect the an-
gle of arrival measurements made at the access points. We
observe that the greater the error in deployment orientation
prediction, the higher the median localization error becomes
as shown in Figure 3c. From this plot, we can see that even 7o

will degrade the median user localization accuracy to more
than 50 cm.
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Figure 3: Robustness of localization accuracy to Access Point (AP) location errors:(a) Shows that median localization error
increases with increase in error of estimated AP location.(b) Shows how median localization error increases with increase in error
of estimated antenna locations. (c) Shows how median localization error increases with increase in error of estimated antenna
deployment orientation.

In summary, we should locate the access point’s location
with less than 30 cm of error, the antenna separation within
5 mm of error and the deployment orientation to less than
7o of error. While these locations are typically mapped man-
ually by humans using specialized equipment like VICON
[55] or laser-based range finders [11], this process is time-
consuming, labor-intensive and error-prone. So, we need a
system that can accurately localize access points attributes
satisfying these stringent requirements. Note that the most
stringent requirements are the mm-accurate antenna separa-
tion and sub-7 degree deployment orientation. The state-of-
the-art [37, 39, 53, 67] localization algorithms can locate the
individual antennas to within a few 10 centimeters even by
deploying hundreds of AP’s in a given environment, which is
insufficient to determine the antenna geometry as per required
specifications established earlier in this section. Further, there
are relative localization algorithms [38, 61, 64] which track
the user’s location across contiguous observations few millim-
ieters apart. These ideas could potentially be used to find the
relative antenna geometry. But, these tracking algorithms
assume that the two relative locations are less than λ/2 apart
[6, 7, 17, 28, 47, 48, 57] but the antenna separations on most
access points are more than λ/2 apart, where there is an ambi-
guity that cannot be resolved. So, we design a system, LocAP,
which fulfills these requirements and locates the access points
and their antennas with the desired level of accuracy

3 Design

In this section, we present the design of LocAP. Recall that
our main goal is to autonomously determine access points’
location attributes within the reference coordinates of the
physical map to enable easily deploy-able WiFi-localization.
LocAP deploys a SLAM based autonomous bot developed
in [8] to map the environment. The autonomous bot provides
it’s location and heading with respect to the environment’s
map. Simultaneously, a four antenna WiFi device retrofitted

on the bot, connects with the existing WiFi infrastructure,
all the while reporting the CSI information at each instance.
Furthermore, to avoid changes to deployed AP infrastructure,
we perform all the processing on the bot. LocAP, therefore,
is provided with the location and orientation of the bot with
respect to the physical map and the CSI data from the WiFi
device on the bot, which connects with the existing WiFi
infrastructure. We design LocAP to use these inputs to provide
accurate access point attributes–location, antenna separation,
and deployment orientation with respect to the physical map.

First, we discuss how to achieve the cm-level accurate loca-
tion of the AP that also accounts for inaccuracies in reported
bot poses. Second, we present LocAP’s algorithm to estimate
the antenna separation and deployment orientation of all the
APs that needs to achieve the stringent requirement of mm-
level accuracy. In both of these scenarios, we assume we
have the CSI corresponding to the direct path and later in Sec-
tion 3.3 we discuss how we tackle the presence of multipath in
the environment and recover the direct path’s CSI. Finally, we
present the SLAM-based bot design, which does the best ef-
fort to provide the necessary measurements mentioned above.
But often, these measured poses are not accurate. So, LocAP
builds an algorithm which reports a confidence metric for each
measured pose. This confidence metric helps us surmount the
errors in the bot locations to calculate AP location attributes.

3.1 Locating the Access Point
In this subsection, we focus on identifying the position of one
of the access point’s antenna. This position of the antenna
would then be representative of the access point’s location
and we refer to this as the first antenna in the subsequent
text. Recall that the access point’s location has to be esti-
mated accurately to cm-level. A simple solution can be to
utilize the existing WiFi localization approaches to locate
one of the antennas on the access point, which would then
become the access point’s location. Unfortunately, state-of-
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Figure 4: First Antenna Localization: Gives an overview of
how triangulation from 10s of bot locations locates the access
point accurately to within few centimeters.

the-art localization algorithms only report decimeter level
location estimates. However, we make an interesting obser-
vation: these algorithms show increasing location accuracies
with an increase in the number of access points deployed in
an environment. In our scenario, we have a mobile bot which
collects CSI data from the deployed access point at multi-
ple anchors. This bot covers a large area setting up 100’s of
anchors which aids in cm-accurate first antenna localization.

Owing to this setup of LocAP, we can employ an angle of
arrival estimation algorithm similar to [37] and estimate the
direct path’s AoA, αbot

p for pth bot location (p = 1,2, . . . ,P).
We measure these AoA’s with respect to the bot’s local axis
(X’-Y’) corresponding to the first antenna’s transmission for
each bot location up = [up, vp]. To enable this AoA based first
antenna triangulation, we should also know the direction of
the bot’s heading (θp) with respect to the global axis (denoted
by X-Y in Figure 4), which is reported by the bot as mentioned
earlier. With (up,θp and αbot

p ) we can find the first antenna
location as an intersection of P lines:

Linep ≡ (y1− vp) = tan(90◦− (αbot
p +θp))(x1−up) (1)

Ironically, the AoA based triangulation accuracy is
bounded by the errors in the bot’s reports of its location,
(up,vp) and heading, θbot

p . Clearly, this creates a vicious un-
ending loop – to predict the antenna locations we need ac-
curate bot measurements and vice-versa to predict the bot’s
locations. To overcome this problem, we take advantage of
SLAM algorithms [21] to get accurate ground truth estimates
of the bot location and heading. Unfortunately, SLAM-based
bots do not have 100% confidence in all the location estimates
they report, forcing us to only cherry-pick the measurements
which we believe are accurate. Based on this intuition, we
design a confidence metric, wp ∈ [0,1] for each bot location
up. Further details on the design of the confidence metric are
discussed in Section 3.4. This confidence metric implies that
the bot is more confident with the reported pose the closer
it is to one. We thus implement a low-confidence rejection
algorithm, which rejects the measurements with confidences,
wp, in the lowest 20% (Using only b0.8×Pc lines).

We use these confidences in combination with the rest of
our b0.8×Pc line equations to define a weighted least squares
problem to optimally solve for the first antenna location as

follows:
min

x1
||W (Sx1− t)||2 (2)

where x1 = [x y]T is the first antenna location,
W = diag(w1,w2, · · · ,w0.8P) is the weight matrix,
S(p, :) = [cos(αbot

p + θp) − sin(αbot
p + θp)]

T and
t(p) = [up cos(αbot

p + θp) − vp sin(αbot
p + θp)]. Thus, we

estimate of the first antenna’s location x1 which corresponds
to the access points location.

3.2 Determining Antenna Separation and De-
ployment orientation

As described above, we can leverage the motion of the bot to
identify the accurate location of one antenna on the access
point. One might wonder if it is possible to apply this algo-
rithm iteratively to identify the location of each antenna on
the access point and hence recover the relative placement of
antennas. However, it is not so straightforward. In particular,
the geometry prediction needs to be an order of magnitude
more accurate than the location prediction. While it suffices
to measure the location of the access point to cm-level, the
geometry, i.e. the relative position of antennas, needs to be
mm-accurate. While combining across 10s of bot locations
provides antenna location accurate to cm-level, it does not ex-
tend to mm-accurate antenna geometry by combining across
100s or even 1000s of bot locations as shown in the prior art
[39]. This problem occurs owing to the asynchronous clocks
between the access point and the bot’s WiFi device when
measured at a single antenna at the access point.

To overcome this problem we make a key observation
- in contrast to the phase measured at one antenna on the
access point, the relative phase across two antennas is rid of
synchronization errors as they share the same clock. Further,
at WiFi 11ac’s 5GHz carrier frequency, a wavelength of 6 cm
corresponds to a phase difference of 2π radians. Empirically,
we have observed that we can easily resolve phase differences
up to π/18 radians (10o), which facilitates measurement of
the distance between two antennas with a resolution of 2 mm,
thus enabling us to locate the antenna geometry accurately
to within few millimeters. Hence, our first key insight is to
measure the relative antenna separations, di, and deployment
orientations, ψi, for all the NAP antennas on the access point
with respect to the first antenna (i = 2,3, . . . ,NAP).

Unfortunately, although the relative phase information can
resolve relative antenna separation to within 2mm, it cannot
resolve for antenna separations greater than λ/2. To further
understand this, consider an example scenario where the bot
is moving in a circular arc about the two-antenna access point
in steps of small angles as shown in Figure 5a. To avoid over-
crowding of subscripts, we consider a two antenna access
point and drop the access point’s antenna indexing, i. Similar
analysis can be performed pairwise on all the antennas on
the access point with respect to the first antenna. Now, to
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Figure 5: Estimating AoD from phase difference: (a) A sample case where the bot is in circular arc around the AP (b) Phase
difference ∆φ vs the orientation of the bot β assuming the deployment orientation of the AP, ψ = 0 (c) Slope d∆φ

dβ
vs the orientation

of the bot β when compensated for the orientation of the access point.

locate the second antenna with respect to the first antenna, we
analyze relative phase across these two antennas. We know
that for the bot’s location, up, the phase difference between
these two antennas corresponding to the direct path, ∆φp, can
be estimated as:

∆φp = mod
(

2πd
λ

sin(90◦− (βp−ψ)),2π

)
(3)

where, the parameters of interest ψ and d are antenna de-
ployment orientation (with respect to the X-axis) and antenna
separation respectively. βp is the angle subtended by the
bot’s location at the access point with respect to the global
X-axis. From the inset in Figure 5a, we can see that the angle
of departure from the AP is given by

α
AP
p = 90◦− (βp−ψ) (4)

and the extra distance travelled (represented by the red-dashed
segment) is given by d sin(αAP

p ). This extra distance travelled
induces the phase difference given in Equation 3. Thus, the
phase difference across two antennas can help us estimate
the antenna separation, d and deployment orientation ψ. To
better understand this relation, we plot ∆φp for all the bot
locations along the circular arc against the angle subtended
by the bot, βp, for various antenna separations d in Figure 5b.
From this plot we can see that for d ≤ λ/2, we have a unique
mapping between the phase difference, ∆φp, and the bot’s
location, but for d > λ/2 we have ambiguous solutions that
prevents us from estimating d and ψ. The ambiguity occurs
because the phase difference we measured is a modulus of
2π, which means for a given ∆φp, the actual phase difference
can be 2npπ+∆φp, where np is any positive integer. This
means we have three unknowns, (d,ψ,np) to solve for, given a
single phase difference value, ∆φp. Furthermore, even for each
additional bot location we have a new ∆φp+1 estimate, we also
add an extra unknown np+1 making it impossible to uniquely
solve for d and ψ. LocAP’s key insight is that, in contrast
to the phase difference ∆φp, the differential phase difference

with respect to the bot’s angle at the AP (βp) for optimally
small increments of βp, has a unique one-to-one mapping as
shown in Figure 5c. So, the second key observation we make
is that while the phase difference is not uniquely solvable for
d > λ/2, the differential phase difference is uniquely solvable.
Intuitively, two close bot positions will have the similar phase
wrap-around’s, and hence, taking the difference of the phase
differences, ∆φp2 −∆φp1 , can eliminate the ambiguity.

So far we have considered that the bot is moving along a
circular trajectory. In fact, LocAP does not restrict the bot’s
motion to a circular arc and can work with arbitrary motion,
as long as the CSI is measured regularly. To understand the
exact implementation of LocAP’s relative antenna geometry
prediction, we consider a more free-flow path as shown in Fig-
ure 6. Concretely, determining the relative antenna geometry
requires two parameters – the distance between antennas, d,
and the deployment orientation of the antenna array, ψ, as can
be seen from Figure 6. The bot moves to P distinct locations
along a pre-determined trajectory about the AP and collects a
series of P CSI measurements, Hp (p = 1,2, · · · ,P), while si-
multaneously reporting the bot’s locations, up. The bot makes
an angle βp with respect to the global X-axis. Next, for each
position of the bot, up, we evaluate the differential phase dif-
ference d∆φp

dβp
between the two antennas on the access point.

Differentiating Equation 3, we get

d∆φ

dβ
=−2πd

λ
cos(90◦− (β−ψ)) =−2πd

λ
sin(β−ψ) (5)

But, for incremental movements of the bot, the differential
phase difference in Equation 5 can be approximated as

d∆φp

dβp
≈

∆φp+1−∆φp

βp+1−βp
(6)

The bot traces P(> 3) positions as it moves, which enables
us to obtain the solution from an over-determined system of
equations, consequently reducing the noise level. Thus achiev-
ing highly accurate relative antenna position and orientation,
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Figure 6: Relative Geometry Prediction: Shows the same
setup as in Figure 5a with a two antenna AP making angle ψ

with the positive x-axis and the bot moving about the located
first antenna of the AP in an arbitrary path.

and thereby achieving millimeter-level accuracy for relative
antenna localization. Now to solve for (d,ψ) uniquely as an
over-determined system, it is easier to work with Cartesian
co-ordinates than polar coordinates. So, we fix the location of
the first antenna of the AP, the antenna on the left in Figure 6,
as (x1,y1) and represent the second antenna (x,y) defined in
the global coordinate system as:

(x,y) = (x1 +d cos(ψ),y1 +d sin(ψ))

We rewrite Equation (5) in terms of (x,y) as follows:

d∆φ

dβ
=

2π

λ
[−(x− x1)sin(βp)+(y− y1)cos(βp)] (7)

for p = 1,2, · · · ,P−1

Next, we represent these P set of linear equations in matrix-
vector form as follows,

A
[

x− x1
y− y1

]
= b (8)

where A is a (P−1)×2 matrix and b is a (P−1) sized column
vector defined as

A(p, :) =
[
−sin(βp) cos(βp)

]
(9)

b(p) =
λ

2π

∆φp+1−∆φp

βp+1−βp
, p = 1,2, . . . ,P−1 (10)

We further denote x =
[
x y

]T and x1 =
[
x1 y1

]T . We
estimate x to the following least squares problem:

min
x

||A(x−x1)−b||2 (11)

In this way we can uniquely solve for the cartesian coordinates
of the second antenna with respect to the first antenna.

Note that the two measurements {βp,∆φp} and {βp+1,
∆φp+1} should not be very close to avoid noise amplifica-
tion. On the other hand, the measurements should not be very

far apart to cause an error in the estimation of the deriva-
tive. A large separation between consecutive measurements
can increase the phase difference to more than 2π, thus cre-
ating discontinuities across the series of P measurements.
Our experiments suggest that around 5◦ of angular separation
(βp+1−βp) provides the best results for an antenna separation
in d = [0,4λ], where λ = 6cm is the minimum wavelength in
the 5GHz frequency band. We emphasize the estimated value
of ψ will be in the range of 0≤ψ≤ π because the orientation
of the antenna array can be defined uniquely in 0≤ ψ≤ π.

Generalizing Equation 11, we locate the relative loca-
tion of each antenna on the access point as xi = [xi yi]

T ,
where, i = 2,3, . . . ,NAP, where NAP is the number of anten-
nas on the AP. We finally find the antenna separations as
di =

√
(xi− x1)2 +(yi− y1)2, and the deployment orientation

as ψi = tan−1 yi−y1
xi−x1

, for all the antennas with respect to the
first antenna, x1. Thus, we accurately predict the location,
antenna separation and deployment orientation of the access
point.

3.3 Multipath

So far, in both Section 3.1 and Section 3.2, we have assumed
only one single path from the AP to the bot to solve for
the access point attributes. However, the environment creates
multipath which would cause the previous algorithms to fail
by distorting the phase measurements. We leverage multi-
path rejection algorithm from [37] to estimate the direction
of direct path for AP localization (Section 3.1) and build a
novel algorithm to recover direct path phases as required in
Section 3.2.

Recall from Section 3.1 that locating the first-antenna on
the AP requires direct path AoA information at the bot. How-
ever, the received signal at the bot is usually a mix of signals
arriving from different directions. We leverage multiple an-
tennas on the bot along with the channel information across
multiple subcarriers of the WiFi signal to identify the direct
path and isolate it from other paths similar to prior art [37].
As first step, we collect Nbot ×Nsub CSI-matrix (across Nbot
bot client’s antennas and Nsub subcarriers) as shown in Fig-
ure 7(a). We then apply 2D-FFT transform to estimate the
AoA and Time-of-Flight (ToF) for each arriving path to the
bot (Figure 7(b)). Finally, we estimate the direct path AoA
by observing the signal, which has the least ToF. Intuitively,
the direct path signal travels the shortest distance and thus
has the lowest ToF. Thus, we can use these direct path AoA
estimates to run our AP localization algorithm, as discussed
in Section 3.1.

Note, however, that the direct path AoA information is not
enough for estimating AP’s antenna geometry (Section 3.2).
In this case, our algorithm requires relative phase informa-
tion across multiple AP antennas corresponding to the direct
path signal. Our first insight is to estimate the direct path
channel individually for each AP antenna and use them to re-
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Figure 7: Multipath rejection: (a) Shows the measured
Nbot ×Nsub complex channel matrix. (b) We perform 2D
FFT based transform [9] to estimate the 2D AoA-ToF profile
within which we identify the direct path as the least ToF path.
(c) We then perform a windowing around this peak to obtain
direct path filtered AoA-ToF profile. (d) Finally, direct path’s
Nbot ×Nsub complex channel is estimated by performing a
2D-IFFT on the windowed AoA-ToF profile.

cover the relative phase information. We take the Nbot ×Nsub
CSI-matrix for a fixed AP antenna and estimate the AoA-ToF
profile using the same procedure as described in the previous
paragraph and Figure 7(a),(b). From [37], we know that the
direct path signal is concentrated around the first ToF peak
(in the AoA-ToF domain). So, our insight is to apply appro-
priate window function in the AoA-ToF domain to remove
the adulteration due to multipath (Figure 7(c)) and use this in-
formation to extract the channel corresponding to direct path.
Finally, to extract the direct path signal from this windowed
AoA-ToF profile, we perform 2D-IFFT on this windowed
signal, as shown in Figure 7(d). As we established before,
the same process can be repeated for each AP antenna to fi-
nally obtain accurate AP antenna geometries, as discussed in
Section 3.2.

3.4 Autonomous Bot and Confidence Metrics

In the following section, let us look more closely at the
confidence metric we mentioned in Section 3.1. We deploy
RevBot largely to automate our data collection pipeline and
further implementation details can be found in [8]. The key
pieces of data we need to collect are the bot’s pose informa-
tion (provided by SLAM algorithms), and time-synchronized
CSI estimates for each AP in the environment (provided by
an onboard access point). Unfortunately, the position and
heading reported by SLAM algorithms are not completely
error-free, and the measurements can be adversely affected by
the movement of the bot and the surroundings resulting in er-
rors from 20-25 cm. These particularly worse, low-confidence
measurements, need to be discarded to obtain accurate AP

geometry predictions. But, most SLAM algorithms do not
expose the accurate confidences of a particular reported pose.
Fortunately, we can manufacture a pseudo-confidence metric
by comparing the match of a current measurement with its sur-
roundings. We make these comparisons using 3D pointclouds
generated using an RGB-D camera. Pointclouds are to a 3D
space what pixels are to a 2D image – each point carries an
(x,y,z) coordinate and color information. We make the follow-
ing observation - by looking at the registration accuracy of the
point-clouds generated by consecutive pose measurements,
we can estimate the quality of the relative transformation in
question.

More concretely, let us consider two consecutive measure-
ment frames Fi and Fi+1. We determine the relative transfor-
mation Ti between the two frames by looking at their pose
estimates. Hence, Ti takes us from Fi to Fi+1. Furthermore,
from the RGB-D images captured at these frames, we can
generate point-clouds. By applying Ti to the point-cloud from
Fi, we get an estimate of Fi+1 and we can stitch these two
point-clouds together. If Ti is accurate, then we will get a
perfect overlap of these pointclouds over all the points visible
in both the frames. Based on this intuition, we use the covari-
ance matrix Vi as implemented by [16]. Now, this covariance
matrix accommodates all six degrees of freedom as found in
a 3D environment, three belonging to each direction of trans-
lation and three for each axis of rotation, hence Vi ∈ R6×6.
The first two diagonal elements give us the variance in the x
and y position and Vi[1,2] gives us the co-variance between x
and y. The variance in (x+y) tells us how much wiggle room
there is for the pose in question. Hence, the larger the wiggle
room, the less confident we are in our poses. Furthermore,
we observe that these variances vary in orders of magnitude,
and to linearize our confidence metric, we take the log of the
variance. We calculate the pseudo-confidence metric for Fi as

Ci = log(var(x+ y)) (12)
= log(var(x)+var(y)−2cov(x,y)) (13)

Finally, we normalize Ci, ∀i = 1,2, · · · ,P, between 0 and 1
to determine wi, which are confidences we use in Equation 2
used to filter out the low confidence bot locations.

4 Micro-benchmarks

Before evaluating LocAP’s performance, we must understand
how the error in the ground truth locations reported by the
autonomous bot is affecting the algorithm. We have utilized
the robot implementation described in [8], while replacing
the single antenna client Quantenna platform with a 4 antenna
linear array Quantenna station as shown in Figure 8a. For
that, we first estimate the bot’s location error and analyze its
effects on the accurate prediction of the location of the access
point and the relative antenna geometry on the access point.
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Figure 8: Accuracy of the bot’s ground truth movement:
(a) The bot we used for our experiments, a Turtlebot-2
equipped with a 4 antenna Quantenna board, LIDAR, RGB-
D camera. (b) Depiction on how bot’s error can effect the
relative antenna localization algorithm.

4.1 Error in Bot’s ground truth Location
Since, we are using the same bot setup described in [8] we
use the median localization error reported for the bot in their
experiments. We can observe that the median error ∆r is
around 6cm in this case. Further, we study the orientation
errors within the same setup. We find that the median error
∆β in orientation is 3◦.

Next, we quantify the effect of this error on the accuracy of
locating the access point and determining the relative antenna
geometry.

4.2 Effects of Bot’s Error
First, we estimate the location of the access point. For this
step, we use both the bot’s location and orientation. Hence,
we must look at the errors in both these measurements. We
observe that an error of ∆r in bot’s location error directly
corresponds to an error of ∆r in the access point’s location
prediction, which is 6cm in our scenario. Next, assuming an
orientation error of ∆β, we observe that the error will be R∆β

in the access point’s location, where R is the estimate of the
distance to the access point. Hence, the upper-bound on the
total error propagated will be ∆r+R∆β, which for an average
indoor distance of R = 5m would be 32cm.

Second, for the relative antenna location estimation, from
Figure 8b we can see that the error in bot’s location, ∆r,
translates to error in the angle estimated at the access point,
βi +∆βi, where approximately ∆βi =

∆r
R . Hence, we redefine

A from Equation 9 as A′ = A
[

1 ∆r
R

−∆r
R 1

]
, while b remains un-

changed. Thus we can re-write Equation 11, assuming x1 = 0,
as

min
x′
||A′x′−b||2 (14)

where x′ = x+∆x, and ∆x =
[
∆x ∆y

]T . Solving for ∆x
from the Equations 11 and 14, and simplifying by neglect-
ing higher order error polynomial terms we can see that
∆x = ∆r

R y, ∆y = ∆r
R x. We know that x = [x y]T is of the

order of few centimeters, while ∆r is of the order of few cen-
timeters and R of the order of few meters, which reduces
the whole expression for ∆x and ∆y to be of order of 1

10
th

millimeter, which is well within limits of the tolerance for
relative antenna localization. Thus we observe that the rela-
tive antenna geometry on the access points can be estimated
accurately to within few millimeters using LocAP and its
implementation on our autonomous system.

5 Evaluation

Now that we have seen all the components of LocAP, we eval-
uate LocAP’s performance in a real world deployment to see if
it has conformed to the stringent requirements we established
in Section 2. For this we have deployed our autonomous bot
in two different indoor environments, as shown in [8], that
span 1000 sq. ft. in area, and have 8 different access points de-
ployed at different locations, heights and orientation. Across
these 8 different access points, we have covered two standard
antenna geometries, linear and square antenna arrays, and cov-
ered 5 different antenna separations,{λ/2,λ,3λ/2,2λ,5λ/2},
where λ = 6 cm is the minimum wavelength in the 155 chan-
nel of the 5GHz frequency band. Throughout this experiment,
we collect CSI from multiple access points across space and
time which is used to implement LocAP. The ground truth for
all the evaluations are measured accurately with a commodity
laser range finder [11], that is accurate up to 1mm, after care-
fully marking the axes on the ground and labeling the 1000
sq ft space of experimentation. This entire process of labeling
the experimental space of 1000 sq ft takes a minimum of one
hour spent by a group of at least three people. While there
is two decades of CSI based WiFi localization, LocAP is the
first work to tackle the problem of reverse localization of the
WiFi access points and thus is compared with a state-of-the-
art AoA based user localization algorithm [37], SpotFi, which
combines data across multiple anchor locations.

With the given setup the overview of LocAP’s results are
as follows: LocAP achieves 5 cm of median localization error
for the first antenna localization utilizing the weighted least
squares formulation while a simple least-squares problem
achieves just 8 cm of median localization error. Further, the
relative geometry prediction algorithm of LocAP locates the
access points in this setup accurately with a median antenna
separation error of 3 mm and a median orientation error of 3o,
whereas the state-of-the-art localization algorithms achieve a
150 mm median error for antenna separation and 25◦ median
deployment orientation error as shown in Fgure 9.

A final case study of user localization with the updated
LocAP’s AP attributes showed a reduction of 28 cm in me-
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Figure 9: Single Antenna Localization accuracy: Shows the localization error of locating a single antenna on each AP (a) for
various bandwidths and (b) for various number of antennas on the client on the autonomous bot. (c) Antenna Separation: CDF
plot of error in measuring antenna separation across 8 different access point deployments. (d) Deployment Orientation: CDF
plot of error in measuring deployment orientation across 8 different Access point deployments. The black vertical lines in the
plots represent the requirements established in Section 2

dian user localization compared to the manual AP attribute
mapping.

5.1 AP Location accuracy

To evaluate the access point localization accuracy, we deploy
it in 8 different test scenarios across various heights of ac-
cess points, different locations, environments and distances
from the bot. To get a statistically accurate estimate of these
locations, we have collected the CSI corresponding to each
of these manually determined locations at 20 different time
instants. With this data, we have estimated the location of
each individual antenna on these access points using a least-
squares triangulation algorithms employing [37]. As shown
in Figure 9a, we find that the median error is 5 cm, well below
the established threshold. Unfortunately, manually measuring
locations takes hours of manual time and thus defeats the
purpose of LocAP.

Hence, we deploy LocAP on our autonomous platform
[8] that collects the same amount of data within 5 minutes.
We use the SpotFi algorithm [37] as a comparative baseline
model for the bot data. SpotFi assumes accurate ground truth
locations of the anchors unlike LocAP’s implementation that
smartly rejects anchor locations that are unreliable. We ob-
served that while the baseline model provides a median AP
localization error of 20.5 cm, our weighted least squares with
smart-rejection achieves 13.5 cm showing an improvement of
36% in AP localization.

Further, the bandwidth assumed for these initial results
is 80MHz, while the commodity WiFi access points hardly
operate at these bandwidths. These WiFi access points usually
use either 20MHz or 40MHz bandwidths. To mimic this, we
also collect CSI data with the same setup for both 40MHz
and 20MHz bandwidths. These CSI estimates have then been
utilized to test our algorithm at different WiFi bandwidths.
The CDF plot for variation of localization accuracy across
different bandwidths can be seen in Figure 9a. It is seen that
at higher bandwidths, the localization accuracy is marginally
better, while LocAP still attains centimeter-level accuracy for

localizing the access point.
The design of LocAP relies on the angles estimated from

the CSI data received. While the above-reported results are
for a 4-antenna station, a commodity off-the-shelf WiFi de-
vice does not always have 4 antennas. Hence, we performed
another experiment to observe the effect of change in the
number of antennas on LocAP. This was done by changing
the number of antennas present on the station mounted on the
mobile robot. The CDF plot for the localization error with the
increasing number of antennas can be seen in Figure 9a. The
localization accuracy increases with the increasing number of
antennas on the client mounted on the mobile robot. This is
evidenced by the lower median error observed with 3 antennas
present on the mobile robot as seen in Figure 9b. We further
observe that a 2 antenna WiFi device significantly hurts the
performance of LocAP. This performance degradation is be-
cause for a 2 antenna system, the multipath need to be at least
90o apart for the two different paths to be resolved.

5.2 Relative Antenna Geometry Accuracy

After the location of the first antenna of the AP is obtained,
LocAP finds the positions of the other antennas of the AP
relative to the first antenna. This is achieved by traversing
around the reverse localized antenna of the AP, as described
in Section 3.2. To test this algorithm, we deploy APs with
a linear antenna array and a square antenna array AP in the
two aforementioned environments. Similar to AP location
estimation, we have collected data for each antenna setup
at 40 different time instances to obtain statistically accurate
results. The relative antenna locations on these APs were
measured using LocAP and then compared with the ground
truth to get the relative antenna localization errors and the
deployment orientations. We further compare these results
with that derived by state-of-the-art localization algorithm,
SpotFi [37].
Relative Antenna Separation: We first measure the relative
antenna separation of all the antennas on the access point
with respect to the first antenna and the CDF plot for the
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Figure 10: User Localization accuracy: Shows the CDF
of localization accuracy after localizing the access points
with LocAP and compared with those results of the manually
labeled APs.

errors in relative antenna localization is shown in Figure
9c. We can see that the median error is about 3 mm for the
relative antenna localization of LocAP while the state-of-
the-art WiFi localization algorithm combined over multiple
bot locations and time instances achieves 20 cm of median
antenna separation error. Thus we show that LocAP achieves
millimeter-level accuracy and meets the 5 mm error threshold
set in Section 2 for predicting the antenna separation of the
access point.
Deployment Orientation: We also measure the deployment
orientation of all the antennas on the access point with respect
to the first antenna and the CDF plot for the errors in the de-
ployment orientation is shown in Figure 9d. We can see that
while the state-of-the-art localization algorithm has a median
error of 25◦, LocAP’s deployment orientation prediction algo-
rithm achieves a median orientation error of just 3◦, meeting
the 7◦ limit set in Section 2.

5.3 Case Study: User Localization
So far we have seen the performance of LocAP in accurately
predicting the access point attributes. We implement LocAP,
to enable CSI based indoor user localization. Further LocAP is
automated by deploying on a bot to remove any manual labor
and time or human errors. As discussed in Section 1, human
based measurements lead to high degree of errors, especially
in the antenna separation measurements that are needed to
be accurate to less than 5mm of errors, especially when the
antennas are housed in a casing whose datasheets provided
by the chip designers do not contain information regarding
the antenna placements on board [28, 47, 48]. Further, the
antenna placement is determined mostly by the manufacturer,
and the vast cardinality of the available vendors and their
models make it impossible to estimate the antenna geometry
from their datasheets, which also mostly do not discuss about
the antenna placements on board [6, 7, 17, 57]. Additionally,
deployment orientation has to be measured accurate to less

than 7◦ of error, which becomes extremely impossible for
manual measurements. While we have shown 3mm (<5mm)
error in predicting antenna separation and 3◦(<7◦) error in
orientation deployment predictions for LocAP. To verify the
effect of both LocAP mapped AP attributes and manually
mapped AP attributes on the state-of-the-art indoor WiFi lo-
calization algorithms [37, 53, 67], we have asked a group
of 25 people to measure the first antenna locations, relative
antenna separations and the deployment orientation of the ac-
cess points deployed in a realistic scenario. Users have been
provided with a laser range finder [11] and compass based
apps used in smartphones.

From these user measurements, we have observed that man-
ual mapping can make their best efforts to map the AP loca-
tions accurate with 21 cm median error , the antenna separa-
tion accurate to within 4 mm of median error, and a median
absolute error of about 13o in measuring the deployment ori-
entation of the access point.

We then deploy LocAP in a 1000 sq ft environment and
locate the 4 access points’ attributes. A moving user that
covers 300 different marked locations in this environment is
then localized using both the manually mapped and LocAP’s
mapped AP attributes and the corresponding CDF is shown
in Figure 10c. From this plot, we can see that while human
mapped AP attributes have a median localization error of 78
cm, LocAP’s AP locations achieve 50 cm median error. Thus
we can see that LocAP solves for the fundamental depen-
dency of CSI based user localization algorithms by accurately
predicting the AP attributes within the physical map.

6 Related Work

There has been significant work in the field of localization
and LocAP’s implementation work on reverse localizing the
access points is closely related to the work in the following
three fields:
Indoor Localization: Wide-scale deployment of WiFi based
infrastructure and WiFi chips on hand-held devices makes in-
door localization promising for various indoor navigation ap-
plications. There has been extensive research in WiFi based in-
door localization algorithms over the past two decades [10, 15,
22, 23, 30, 37, 39, 41, 43, 45, 51, 53, 58–60, 65–69, 72, 74].
While most of the initial work was based on the Received Sig-
nal Strength Information [10, 15, 45, 60, 74] these algorithms
do not achieve meter-level localization, or require extensive
fingerprinting to achieve desired decimeter-level localization.
Thus, most of the later work has been focused on CSI based
localization algorithms [22, 30, 37, 39, 51, 53, 58, 59, 65–69].
LocAP which leverages the idea of Angle of Arrival based lo-
calization. Some such algorithms which have been developed
in the past few years [37, 67] achieve decimeter-level local-
ization and extend it to achieve centimeter-level localization
accuracy. However, these WiFi based localization algorithms
assume the knowledge of the location of the AP to measure
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the user’s location with respect to the AP location. In con-
trast to the above work, LocAP builds a relative localization
technique which provides millimeter-level accuracy for the
antenna geometry on the AP. Furthermore, we also demon-
strate that LocAP can solve for the antenna separation values
larger than a single wavelength (λ).
Source Localization: Solving the problem of accurate knowl-
edge of the WiFi AP locations have been attempted for RSSI
based [26] and CSI based [54] systems. But these algorithms
do not achieve centimeter-level localization for APs, but solve
for the general regional mapping of these access points. These
works are limited by the available bandwidth and thus there
has also been significant work on ultra-wideband (UWB)
based localization [5, 13, 14, 18, 34, 46, 49] and anchor lo-
calization algorithms [12, 19, 20, 34–36]. But these UWB
systems require new infrastructure deployment. Similarly,
there has been significant work towards a beacon based local-
ization system [9, 29, 32, 33, 42, 52, 62, 63, 70, 71, 73] which
have been shown to achieve decimeter-level localization but
also need additional deployment of infrastructure. LocAP
solves the problems of exact WiFi access point localization
and exact antenna placements on WiFi Access Points.
Relative Localization: LocAP solves for millimeter-level ac-
curate antenna placements on any given WiFi access point by
borrowing and extending the principles from wireless track-
ing. Wireless tracking or relative localization is a well-solved
problem unlike localization, with reported accuracies up to
few centimeters and few millimeters [38, 61, 64]. Though
all of these algorithms would need the separation between
two consecutive locations to be tracked to be less than λ/2
distance apart, LocAP solves for relative localization of two
antennas that are at any arbitrary distance from each other,
including for distances greater than λ/2 apart. Thus LocAP
can enable high mobility tracking for indoor WiFi devices.
SLAM Automation: There has been exhaustive research con-
ducted in graph based SLAM algorithms [24]. In LocAP we
employ a SLAM based autonomous bot to report ground truth
and also design a metric to understand the confidence of the
bot for a given ground truth. Confidences for reported mea-
surements can be extracted from the marginal co-variances
of the nodes used to describe these variables and are used to
perform data association [27, 31, 44, 56]. Though these nu-
merical methods are valid, most of them are not implemented
on standard SLAM platforms, to the best of our knowledge.
Furthermore, commonly used frameworks [25, 40] do not
readily expose these marginal co-variances. We extend the
methods described in [16] as a proxy for these internal co-
variance metrics.

7 Conclusion and Future Work

We presented, LocAP, an automated reverse localization sys-
tem of the existing WiFi APs that was successful in achieving
the requirements for accurate localization of AP position,

antenna separation and deployment orientation. After the mo-
bile robot is allowed to traverse the unknown environment,
we have a map of the indoor environment and the reverse
localized positions of all the APs in this environment. If we
consider the map to be part of a coordinate system, we can
provide each access point with its coordinate in the environ-
ment, such that the AP becomes self-aware about its location.
When a new user enters this environment, and associates with
one of these APs, they can locate the user in turn almost
instantaneously relative to their position.

Using the mapping and reverse localization information,
we can provide accurate indoor localization and navigation
for large indoor environments. These accurate AP location
attributes aids many of the networking issues like user loca-
tion based smart hand-off, network load balancing utilizing
both AP locations and client locations and other networking
services based on AP and client locations. Further, with the
emergence of 5G and 11ad/ax wireless protocols, where direc-
tional beams become more and more important, these angle
of arrival estimates that are provided by LocAP, can be further
used to perform smart-beamforming at both the client and the
AP side.

In LocAP we have analyzed the 2D scenario when the
access point is in the same plane as the user to be located. In
a real world deployment the access point is placed at least
a meter above the user height thus subtending a non-zero
polar angle at the access point. This does not affect LocAP’s
algorithm on relative geometry prediction as the cartesian
co-ordinates defined absorb the polar angular term. Thus
unchanging the formulation of the relative antenna geometry
prediction algorithm enabling LocAP to perform accurately
under 3D deployments.
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