
USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  105

HARDFS: Hardening HDFS with Selective and Lightweight Versioning

Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S. Gunawi†,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison † University of Chicago

Abstract
We harden the Hadoop Distributed File System

(HDFS) against fail-silent (non fail-stop) behaviors that
result from memory corruption and software bugs us-
ing a new approach: selective and lightweight version-
ing (SLEEVE). With this approach, actions performed by
important subsystems of HDFS (e.g., namespace man-
agement) are checked by a second implementation of the
subsystem that uses lightweight, approximate data struc-
tures. We show that HARDFS detects and recovers from
a wide range of fail-silent behaviors caused by random
bit flips, targeted corruptions, and real software bugs.
In particular, HARDFS handles 90% of the fail-silent
faults that result from random memory corruption and
correctly detects and recovers from 100% of 78 targeted
corruptions and 5 real-world bugs. Moreover, it recov-
ers orders of magnitude faster than full reboot by using
micro-recovery. The extra protection in HARDFS incurs
minimal performance and space overheads.

1 Introduction
Large-scale distributed storage systems [26, 33, 42, 49]
are becoming a dominant platform for a variety of ap-
plications and services. These complex “cloud” systems
often run on clusters of thousands of unreliable commod-
ity machines and must handle all kinds of failures, while
preserving the integrity of user data and system meta-
data [18, 25, 26, 30, 38, 40]. Making these systems ro-
bust is challenging.

At the individual machine level, two common fail-
ure modes that these systems face are machine crashes
and disk failures. To deal with these failures, there is a
rich body of literature describing detection and recovery
mechanisms such as journaling [34], RAID [27, 45], and
redundant hardware [17]. With these advancements, fail-
stop machine and disk failures are no longer considered a
single point of failure in many of today’s cloud systems.

Many cloud systems are able to handle fail-stop fail-
ures, but they do face new challenges. First, the sys-
tems run at large scale [30, 38, 40]; thus, failures that
used to be rare (e.g., memory corruption) become more
frequent [12, 48]. Second, modern software is increas-
ingly complex, and thus software bugs are becoming
more common. If not handled properly, errors result-
ing from memory corruption and software bugs become

a single point of failure in today’s systems. Observa-
tions from real systems show that these failures can lead
to transient, non-deterministic errors, and make the sys-
tem exhibit fail-silent behaviors (e.g., send corrupt mes-
sages) rather than crashing; these fail-silent errors can
lead to data loss, unavailability, and prolonged debug-
ging effort [11, 12].

To effectively handle fail-silent errors, we propose
that distributed systems be built with selective and
lightweight versioning (SLEEVE). The goal of SLEEVE

is to detect silent faults in select subsystems of a target
system and to do so in a lightweight manner (with lit-
tle space and performance overhead). For example, a
developer can pick some important functionality (e.g.,
file-system namespace management) and protect that
functionality from fail-silent behaviors by developing a
second lightweight implementation of the functionality.
This approach essentially transforms a target system into
an efficient two-version form that can detect (and recover
from) fail-silent behaviors.

Using the SLEEVE approach, we harden the Hadoop
file system (HDFS) [49], which is similar in structure to
Google’s file system, GFS [33]. Although HDFS already
contains some mechanisms for detecting and recovering
from errors (e.g., replication and checksums), bugs have
been found in these mechanisms, and our experiments
show that HDFS is still susceptible to memory corrup-
tions. Thus, additional hardening to prevent data loss is
useful. We harden three pieces of HDFS functionality:
namespace management, replica management, and the
read/write protocol, creating three robust systems, called
HARDFS-N, HARDFS-R, and HARDFS-D, respectively.

We evaluate the effectiveness of HARDFS by inject-
ing random bit flips, corrupting targeted fields of impor-
tant data structures, and by reintroducing known bugs.
Our experimental results show that while HDFS silently
misbehaves in many cases, HARDFS effectively isolates
faulty behavior so that it remains within a single node. In
particular, HARDFS handles 90% of the fail-silent faults
that result from random memory corruption and cor-
rectly detects and recovers from 100% of 78 targeted
corruptions and 5 real-world bugs that we reintroduce
in our codebase. Since errors do not propagate to per-
sistent storage or other nodes, previously fail-silent er-
rors are transformed into fail-stop errors, enabling the
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use of standard recovery mechanisms such as failover,
single-machine reboot, or execution of fsck. Further-
more, HARDFS detection can often pinpoint corrupt data
structures, enabling micro-recovery that repairs small
portions of corrupted state. HARDFS is able to micro-
recover in seconds instead of rebooting over many hours.

This paper is structured as follows. First, we discuss
the SLEEVE approach and its usefulness for hardening
HDFS (§2). Next, we describe the HARDFS design (§3)
and our implementation (§4). We then measure the ef-
fectiveness and performance of HARDFS (§5), discuss re-
lated work (§6), and conclude (§7).

2 Extended Motivation
Modern software systems such as HDFS must deal with
memory corruption and software bugs that are becoming
more common. Therefore, we address a failure model
where in-memory data can contain wrong values due to
memory corruption and software bugs. If not handled
properly, these errors lead to fail-silent behaviors that are
hard to detect and can cause severe problems like data
loss and service unavailability. We assume that the sys-
tem is not malicious and that persistent storage is trusted.

Figure 1 illustrates some problems caused by fail-
silent behaviors. Figure 1a shows a normal correct be-
havior of HDFS; a client writes a file F and the HDFS

namenode replicates F’s data block, D, to two datanodes
(in 2-way replication). However, silent memory corrup-
tion such as a bit flip can take place (e.g., metadata F flips
to G in Figure 1b). In this case, the user will not be able to
read the file in the future. Subtle software bugs in HDFS

(§5.1.3) could also lead to silent data loss or corruption.
For example, in Figure 1c, a bug in the namenode silently
deletes F’s data blocks in a background task.

In this work, we attempt to address this question:
How should distributed storage systems such as HDFS

deal with fail-silent behaviors? Many approaches such
as Byzantine fault tolerance (BFT) [43], N-version pro-
gramming [14, 16], and the use of ECC memory have
been proposed. However, existing approaches either in-
cur high performance overhead, hardware cost, or engi-
neering effort (§6). In this paper, we propose a new ap-
proach: selective and lightweight versioning (SLEEVE).

2.1 Hardening HDFS with SLEEVE
The goal of the SLEEVE approach is to selectively pro-
tect some part of the target system against fail-silent be-
haviors and to do so in a lightweight manner (with little
space and performance overhead). Figure 1d illustrates
HARDFS, an HDFS system that employs the SLEEVE ap-
proach. The code of the HDFS system (which we call
the main version) implements the complete functional-
ity of the system. A developer can pick some important





















 













  









Figure 1: HDFS, corrupted HDFS, and HARDFS.

piece of functionality and create a “second version” of it,
a variant of 2-version programming. This second, selec-
tive, and lightweight version models the state and logic
of the main version. The model can detect misbehavior in
the main version and trigger appropriate responses. We
refer to systems that pair a complete main version with a
modeled second version as sleeved systems.

Sleeved systems watch inputs and outputs of the main
version (as illustrated in Figure 1d) to detect incorrect be-
haviors that deviate from the model. For example, mem-
ory corruption and software bugs in Figure 1b and 1c can
easily be detected; HARDFS will catch the read F error
and incorrect background data removal (rm D) as faulty
behaviors. After detecting faulty behaviors, a sleeved
system can perform an appropriate action, such as micro-
recovery, to transform faulty states (e.g., corrupt meta-
data in the main-version memory) into consistent states.
Thus, a sleeved system isolates faulty behavior within a
single node; faults are not propagated to persistent stor-
age or other nodes.

We have three requirements for hardening HDFS which
the SLEEVE approach satisfies: HARDFS should be effec-
tive at detecting and handling faults (§5.1), the additional
protection should incur minimal performance and mem-
ory overhead (§5.2), and hardening HDFS should require
reasonable engineering effort (§5.3).

2.1.1 Selective Versioning
While traditional N-versioning requires developers to re-
implement all the functionality of the specification, se-
lective versioning requires an additional version for only
the most important functionality. The idea is that some
functionality in the system is worth protecting more than
other functionality, for several reasons.

First, some components are more sensitive to bugs and
memory corruption. For instance, a bug in the HDFS

namespace or replica management could cause irrecover-
able data loss; a buggy transaction committed to the log
can make the system crash permanently; corrupt internal
state could make the system serve incorrect data. On the
other hand, bugs in maintaining system statistics may be
less harmful. Therefore, if one must prioritize, it is more
appropriate to protect bug-sensitive functionalities first.

Other potential candidates for applying the SLEEVE

approach are new or frequently-changed modules. Real-
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world cases have shown that code that does not change
frequently is relatively stable, and hence less likely to
contain bugs, while new or frequently-changed code is
more likely to be buggy [35, 53, 60].

Finally, some software systems already contain pro-
tection machinery for some modules. For example, HDFS

on-disk data is already protected with checksums and
replication [45, 57], and thus the second version could
just protect the exposed in-memory system metadata.

HARDFS hardens namespace management, replica
management, and the read/write protocol of HDFS.

2.1.2 Lightweight Versioning

With lightweight versioning, we avoid completely repli-
cating the state maintained by the main version. This
challenge particularly arises when a single node needs
to store a large amount of state. For example, the HDFS

namespace management could manage in-memory meta-
data of millions of files in one machine.

A naive approach for a 2-version system is to main-
tain the same amount of metadata in the second version
as the main version. Although simple, this approach is
unattractive because of its large memory overhead (po-
tentially 100%). When memory is scarce, this design
choice limits system scalability. For instance, doubling
memory overhead could reduce the maximum number of
files the system can manage [50]. Moreover, many sys-
tems may run on the same cluster (e.g., Hadoop MapRe-
duce [6], HBase [7], and HDFS), so doubling memory
overhead is undesirable.

We exploit compact encoding techniques to minimize
memory overheads. We have found that sleeved systems
can be organized to ask boolean questions (e.g., “Does
file F really exist?”); therefore, we can use efficient en-
codings that answer boolean questions. HARDFS uses a
Bloom filter to efficiently encode the file hierarchy for
our sleeved namespace management functionality (§3.3).

2.1.3 Recovery

Detecting faults that are normally silent is the primary
contribution of SLEEVE. Upon detection, a variety of
standard recovery techniques or tools can be used, such
as: restart, fsck, safemode or otherwise blocking danger-
ous actions, or failover.

In addition to simply detecting errors, SLEEVE can of-
ten pinpoint the problem, enabling sophisticated recov-
ery options, such as micro-recovery, a fast alternative to
full reboot. Fail-silent behaviors sometimes occur due
to state corruption; with a second version of the internal
state, the system can pinpoint and correct only the cor-
rupt state. With the available redundancy, a sleeved sys-
tem can initiate fast, fine-grained recovery as opposed to
slow, coarse-grained recovery. HARDFS always attempts
micro-recovery before resorting to full recovery (§3.5).

2.1.4 Soundness and Completeness
HARDFS is not sound: we do not attempt to guarantee
that HARDFS never triggers recovery action unnecessar-
ily. Like the main version, the second version is also
subject to anomalous bit flips and bugs. As long as re-
covery actions have a small cost, occasional false posi-
tives are acceptable. HARDFS is not complete: we do not
attempt to catch all faults with HARDFS. Our premise is
that faults are more dangerous in some subsystems than
others, and complete checking is not possible without a
formal specification of behavior regardless. Although
HARDFS fault detection is neither sound nor complete,
our experiments show that HARDFS is quite useful for
handling memory corruption and real software bugs (§5).

3 HARDFS Design
In this section, we describe our general approach to
designing HARDFS with SLEEVE. In §4, we describe
in detail how we implement the design to harden the
HDFS namespace management, replica management, and
the read/write protocol of datanodes with HARDFS-N,
HARDFS-R, and HARDFS-D respectively.

3.1 Node Models
Like GFS clusters [33], HDFS clusters consist of a sin-
gle master node and multiple worker nodes. The mas-
ter is responsible for file-system metadata, including the
namespace structure and the locations of block replicas.
File metadata is kept in memory for fast operation, but
for persistence and crash recovery, the master writes ev-
ery namespace update to an on-disk log. The workers
store block replicas on their local disks and keep block
information in memory. Metadata and data operations
are decoupled: while the master serves metadata opera-
tions, the workers serve read and write requests.

HDFS nodes can be described by a behavioral model:
nodes perform actions in response to events. Events oc-
cur when a node receives input messages from other sys-
tems or when periodic threads trigger work. The actions
a node performs include modifying the node’s memory
state, accessing persistent storage, and sending output
messages based on the current state. In HARDFS, sleeved
subsystems understand the behavioral model. A node is
considered faulty if it performs incorrect actions (i.e., ac-
tions that deviate from the model).

3.2 Hardened Subsystem Architecture
To harden a distributed storage system against incorrect
actions, we augment each node in the system with a
lightweight version that verifies node behavior. More
specifically, we “sleeve” each node by interposing on
message and file I/O without significantly changing the
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Figure 2: Sleeved systems architecture.

core implementation. With this approach, faulty behav-
iors are also isolated within a single node and not prop-
agated to persistent storage or other nodes. As depicted
in Figure 2, we use four major modules for each sleeved
subsystem: an interposition module, a state manager, an
action verifier, and a recovery module.

Interposition module: A sleeved system forwards all in-
put messages to the main version, and forwards the mes-
sages relevant to the hardened functionality to the state
manager. It also interposes on thread events to know
when a periodic thread is triggered. This interposition is
important because a periodic thread may trigger events
that change the state of the main version; the second
version must make equivalent changes to its own model.
HARDFS uses AspectJ [2] to interpose on events without
making major changes to the main version.

State manager: The state-manager module of HARDFS

does the bookkeeping necessary to describe and check
the data maintained in the main version. To be
lightweight, the state manager keeps the state of the hard-
ened functionality in encoded states. HARDFS encodes
states with Bloom filters, but a variety of data struc-
tures could be used for this purpose. Since encoding
techniques can incur high computational overhead dur-
ing updates, HARDFS employs a small “cache” of con-
crete states for objects being actively modified (e.g., the
metadata for a currently open file). State management is
further described in §3.3.

Action verifier: The action-verifier module detects
faulty actions of the main version with a set of micro-
checks. Using these checks, the sleeved system verifies
every action of the hardened functionality before it im-
pacts other components. We describe the challenges of
verifying actions in §3.4.

Recovery module: After a fault has been identified by a
sleeved system, the recovery module is triggered. Since
faulty behavior has been isolated within a single node,
recovery can be as simple as crashing and rebooting the
faulty node. However, rebooting can take a significant
amount of time; therefore, a sleeved system may option-
ally perform micro-recovery by semantically comparing
every state object in the main version with the secondary

version to recover only the corrupt objects. Recovery is
described further in §3.5.

3.3 State Manager Module
We describe how the state manager operates, specifically
how internal state is selected from the main version, de-
rived from incoming messages and actions, and encoded
in a lightweight manner.

3.3.1 Selective State Management
We selectively model a subset of the functionality and
state of the main version. For instance, to verify name-
space integrity (e.g., correct file hierarchy) and corre-
sponding operations (e.g., file creation and deletion),
HARDFS maintains directory entries without storing less
important information such as access and modification
times. State management is flexible: new informa-
tion can be added incrementally to meet current needs
(e.g., one could add permission information for security
checks if desired). HARDFS uses the same file formats for
on-disk structures as vanilla HDFS, so upgrading HDFS

to HARDFS or adding new memory state only requires a
restart; copying data to a new file system is unnecessary.

In addition to storing the selected state, HARDFS needs
logic for how state should be updated based on inter-
posed messages; this logic acts as the second version.
In order to implement this logic, we needed to under-
stand the semantics of various protocol messages. For
instance, for namespace management, upon a successful
file creation message, HARDFS adds the corresponding
file name to the maintained state.

Properly handling thread events that are periodically
triggered is also necessary to keep both versions syn-
chronized; if the second version were not aware of the
thread events, it could not verify actions triggered by the
threads. For example, when a periodic thread in the mas-
ter node wakes and detects dead workers, the master may
perform a block-replication action. The second version
must be aware of this transition in order to verify the re-
sulting actions correctly.

3.3.2 Lightweight State with Bloom Filters
We now discuss how our sleeved systems can manage
state in an efficient and lightweight manner. While there
are many ways to do this, in HARDFS, we use counting
Bloom filters [21]. A Bloom filter is a probabilistic data
structure that allows testing whether a data element is a
member of a set. It is space efficient: the overhead does
not depend on the state objects stored.

Our intuition for the use of Bloom filters is that sleeved
systems typically only need to answer boolean questions
(e.g., does file F exist?) rather than answering non-
boolean questions (e.g., what are all files under direc-
tory D?). Thus, a Bloom filter is a fitting solution for
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compressing file-system metadata. The challenges that
arise are dealing with non-boolean verification, excessive
CPU overhead, and false positives.

Dealing with non-boolean verification: Although us-
ing a Bloom filter is space efficient, one challenge is to
represent non-boolean information, in particular infor-
mation that changes and must be updated. For exam-
ple, consider the case where both the main and second
versions agree that file F is 100 bytes long. If a client
appends the file and the worker tells the master that F is
now 200 bytes long, then the second version must update
its state regarding F. However, the second version cannot
overwrite the old entry {F,100} previously stored in the
Bloom filter with a new entry {F,200}. Instead, it must
perform two operations: delete the old entry {F,100},
and then insert the new entry {F,200}. To delete the old
entry the second version must know the value of the old
entry, but Bloom filters cannot answer non-boolean ques-
tions (in this example, what is the current length of F?).

To deal with this, we use an ask-then-check technique.
That is, the secondary version asks a non-boolean ques-
tion of the main version to determine the previous value
for an entry before the main version’s event handler ex-
ecutes. Because the returned result cannot be trusted,
the second version then checks the previous value with
a boolean question to the Bloom filter. In the above ex-
ample, the secondary version first asks the main version
for the length of F (which is 100) and then checks via the
Bloom filter that F is indeed 100 bytes long. With this
verified and correct information, the secondary version
performs the deletion (we use a counting Bloom filter to
support this operation) and hence the overwrite.

Dealing with excessive CPU overhead: While Bloom
filters are space efficient, in some cases they can lead
to excessive CPU overheads. To remedy this problem,
HARDFS keeps a small “cache” of states being actively
modified in concrete form (in contrast to the compressed
form in the Bloom filter). In addition, HARDFS can op-
tionally keep all data in concrete form, trading space ef-
ficiency for less CPU overhead. In the future, we plan to
investigate policies for converting data between concrete
and compressed forms based on run-time measurements.

Dealing with false positives: The last challenge is the
presence of false positives from two sources: Bloom fil-
ters and corrupted state or bugs in the sleeved code it-
self. First, Bloom filters fundamentally can return false
positives [20]. A Bloom filter can “lie” that it contains
file F, when in fact it does not. Fortunately, the false
positive rate is relatively small and configurable. For in-
stance, the probability of a false positive in a Bloom fil-
ter with 10 hash functions and 32 bits per data element
is approximately 2 per million [31]. Doubling the num-

ber of bits per data element to 64 leads to a false positive
rate of 4 per billion; at this rate, a cluster processing 100
ops/second would experience about one false positive per
month. Second, the state maintained by the sleeved ver-
sion itself can be corrupt due to memory problems or
bugs. Fortunately, in crash-tolerant systems, false posi-
tives are benign from a correctness perspective because
they only result in unnecessary recovery. The only dan-
ger is the degenerate case where a Bloom filter always
generates a false positive for a particular element, result-
ing in repeated recovery. A small cache of concrete states
solves this problem; the recovery mechanism remembers
troublesome elements and pins them in the cache.

3.4 Action Verifier Module
The action verifier module detects incorrect actions per-
formed by the main version that relate to the properties
of interest. We classify incorrect actions into four types:
corrupt, missing, orphan, and out-of-order. We believe it
is important to detect all four types of incorrect actions.
In our study of the HDFS bug reports, we find that all
these types of incorrect actions occur [8].

The following sections describe the four types of in-
correct actions that could occur after a file creation re-
quest as illustrated in Figure 3. Figure 3a represents the
correct behavior of a file creation; here the file does not
exist, and thus the master accepts the request and writes
an appropriate transaction to its persistent operation log.

3.4.1 Corrupt Actions
The first type of incorrect action is a corrupt action. Con-
sider the scenario shown in Figure 3b where a client
sends a request to create a file F; if the file did not previ-
ously exist, then the request should be accepted. How-
ever, if the main version of the master behaves incor-
rectly (e.g., the in-memory pathname is corrupted), then
the main version will wrongly reject the request, while
the second version accepts.

However, when there is disagreement between the sec-
ondary and main versions, the secondary version cannot
be trusted to be the correct version. Thus, whenever dis-
agreement occurs for any of the actions described below,
the action verifier simply catches the incorrect action and
takes additional steps to resolve the problem. These steps
are described in more detail in §3.4.5.

3.4.2 Missing Actions
Missing actions represent the case where the main ver-
sion should generate a specific action but fails to do so.
For example, in Figure 3c, the master accepts the file
creation request but forgets to write the corresponding
transaction to the operation log.

To check for missing actions, the action verifier main-
tains an expected action list and generates expected ac-
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








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 
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



Figure 3: Types of incorrect actions.

tions for incoming requests or state changes that require
a certain action. For example, a write to the operation
log is expected to follow every accepted client-write.
Expected-action entries describe both the action the main
version should perform and when the action needs to be
performed. Many actions are expected to occur before
the main version’s event handler returns, but in some
cases, it is only possible to detect missing actions using
timeouts. For example, replication in HDFS is throttled,
so a namenode might not immediately send a replica-
tion command upon detecting an under-replicated block.
Waiting too long, however, is incorrect behavior that
could lead to data loss.

3.4.3 Orphan Actions

Orphan actions represent the case where the main version
performs unexpected actions. For instance, in Figure 3d,
the master node writes to the operation log that file F is
created although there is no origin for this request. To
detect orphan actions, the action verifier leverages the
expected action-list. Specifically, it signals an error when
the action has no match in the expected-action list.

Orphan actions also cover the case of duplicate ac-
tions. For example, consider the block re-replication pro-
cedure due to dead worker nodes. If the master sends too
many block re-replication commands, then the first re-
replication command will be considered correct, while
the subsequent ones will be considered orphans.

3.4.4 Out-of-order Actions

An action may depend on another one. For example, a
transaction creating a new file F (op2) cannot precede the
transaction making the parent directory D (op1). If the
main version executes op2 before op1 (as in Figure 3e),
the operation log will be corrupt, which may lead to se-
vere consequences such as data loss or the master crash-
ing permanently during checkpoint recovery. To address
this challenge, action dependencies are tracked. Track-
ing action dependencies is challenging and domain spe-
cific. We present a specific solution in §4.1.1.

3.4.5 Handling Disagreement

By detecting incorrect actions as explained above, the
action verifier can identify disagreements, but with only
two versions to compare, it cannot know which version

is wrong; therefore, the action verifier resolves disagree-
ments using domain-specific information and falls back
on the safety of recovery from trusted state.

As an example, consider the request originally shown
in Figure 3b, where the main and secondary versions dis-
agree about the success of a file creation. It is entirely
possible that the main version (correctly) rejected the re-
quest because a space quota was exceeded; if the second
version does not incorporate knowledge about space quo-
tas in its selective model, then it will (incorrectly) accept
the request. Thus, the action verifier cannot conclude that
the main version behaves incorrectly.

In several cases, we have found it much easier to im-
plement a simplified secondary version that naively ac-
cepts requests that the complete main version rejects. To
avoid false alarms in these cases, the action verifier ex-
amines the error code returned from the main version and
ignores disagreements when the secondary version is not
equipped to generate those cases. In the out-of-quota ex-
ample, the action verifier agrees with the main version
to reject the request and operation continues without re-
covery. Unfortunately, if the main version incorrectly re-
ports “out-of-quota”, HARDFS will not detect it. There is
a tradeoff: writing logic for more cases improves relia-
bility, but increases engineering effort.

For some situations, the action verifier needs a mecha-
nism to detect repeated disagreement. If a transient fault
causes disagreement, the same discrepancy will not reap-
pear after recovery, and normal operation will resume.
However, one of the versions may have a bug that causes
permanent disagreement. In this case, the developer is
notified, and policy determines how to proceed until the
code is fixed; entering HDFS safemode is one option
(safemode prevents all file and block modifications).

3.5 Recovery Module
Once the action verifier detects a failure, the recovery
module can apply many different techniques. One sim-
ple approach is crash and reboot (suitable for crash tol-
erant systems). A more fine-grained technique is micro-
recovery where the recovery module pinpoints and re-
covers only the corrupt state. In addition to doing repair,
the recovery module can also thwart destructive actions
to prevent fault propagation to other nodes. We discuss
the three techniques used by HARDFS below.
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3.5.1 Reboot

Crash and reboot is a safe mechanism to prevent the
propagation of corrupt state due to transient and non-
deterministic failures. Upon reboot, the main version
can safely reload its in-memory state from other trusted
sources, such as persistent storage or other nodes across
the network; the states of the secondary version are also
reloaded since it interposes on these inputs.

3.5.2 Micro-Recovery

When rebooting a node is expensive (e.g., rebooting a
master node may take hours [22]), a sleeved system can
instead quickly identify and repair only the corrupted
state. We call this technique micro-recovery (similar to
micro-rebooting [23]). In micro-recovery, when a fault
is detected, the node is frozen to prevent changes to the
system state. The recovery module then identifies the
corrupted state by semantically comparing the secondary
and main version state, and recovers it from a trusted
source (e.g., persistent storage).

For example, if the two versions disagree about the
length of a file F, then micro-recovery reconstructs just
F’s metadata from the checkpoint file and the operation
log on disk. These sources can be trusted for two reasons:
data is never written to them unless both versions agree,
and solutions for preventing and detecting corruption to
persistent storage are well known [15, 17, 19, 27, 34, 36,
41, 44, 45, 51, 52].

Disagreement can happen because of corruption in ei-
ther secondary or main version state (or both). Repair-
ing corrupt main version state is relatively easy because
the recovery module can overwrite the corrupt state “in
place”. Repairing encoded state in a Bloom filter is more
challenging. Consider a corrupted entry {F,374}, incor-
rectly indicating F is 374 bytes long. To repair the cor-
rupted entry, the recovery module must delete the en-
coded entry and insert the correct entry, but it does not
know that F’s length has been corrupted to 374. The so-
lution described in §3.3.2 does not work because there is
no entity that knows the corrupt value. Therefore, our so-
lution is to begin with an empty Bloom filter instance and
add entries as they are verified, either from main-version
state or persistent storage, without a full reboot.

If micro-recovery does not find any disagreement, it
means the detected faults might involve corruption in
non-hardened functionality or bugs in the software logic,
and thus the recovery module falls back to full reboot.
If recovery is continuously repeated, an error report is
generated as discussed in §3.4.5.

3.5.3 Thwarting Destructive Actions

Repairing a local node is of limited value if the faulty
node causes permanent damage to other nodes before

it recovers. HDFS workers send regular heartbeat mes-
sages to the master, and the master replies with messages
directing workers to perform various actions. Some of
these directives, such as “delete replica” or “decommis-
sion”, can cause irrecoverable data loss if misguided.

Our sleeved subsystems drop messages containing de-
structive directives if there is any disagreement between
the main version and the secondary model about the ob-
jects in question. Our policy here is conservative; it is
safer to potentially waste storage space than to risk delet-
ing data unintentionally.

4 Implementation
In this section, we describe the specific details of the
three HARDFS subsystems, HARDFS-N, HARDFS-R, and
HARDFS-D, which harden the HDFS namespace manage-
ment, replica management, and the read/write protocol
of datanodes, respectively.

4.1 Namespace Management: HARDFS-N

Namespace management is a critical functionality in
HDFS. The architecture of HDFS has a dedicated mas-
ter, the namenode, which stores all file-system metadata
in memory for fast operations. When the namenode ex-
ecutes a client request that changes the namespace, it
writes an appropriate transaction to the on-disk opera-
tion log before responding back to the client. Period-
ically, the namenode replays this operation log to pro-
duce an on-disk checkpoint file that contains the com-
plete namespace structure. HDFS splits files into 64MB
blocks, which are replicated across datanodes.

To protect namespace integrity, HARDFS-N guards the
in-memory namespace structures that are necessary for
reaching data: the file-tree hierarchy, file-to-block map-
ping, and block-length information. With this protection,
HARDFS-N detects namespace-related problems such as
accidental file truncations, unreachable directories, and
corrupt file-to-block mappings. When these problems
are detected by HARDFS-N, faulty actions are not propa-
gated to the client, persistent storage, or datanodes.

4.1.1 Maintaining State and Checking Actions
After interposing on incoming and outgoing messages,
HARDFS-N can update its state (both Bloom filters and
the expected-action list) and verify observed actions.
Its logic for updating state from incoming messages is
shown in Table 1. For example, in the first row of the ta-
ble, at the entry path of the request create(F), HARDFS-
N records this fact by calling insert(F) to the Bloom
filter. Table 1 can be seen as a concrete example of how
a developer programs a sleeved service.

HARDFS-N uses Bloom filters as a space-efficient data
structure for encoding the file namespace. Only three
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Message Logic of the secondary version
create(F)

client requests
NN to create
file F

Entry:

If exists(F) Then reject;

Else

insert(F);

generateAction(txCreate[F]);

Return: check response;

addBlk(F)

client requests
NN to allocate a
block to file F

Entry: F:X = ask-then-check(F);

Return:

B = addBlk(F);

If exists(F) & !exists(B) Then

X′ = X ∪ {B};
update(F:X, F:X′);

insert(B@0);

Else declare error;

blkRcvd(B,100)

DN informs NN
of received
100-byte block B

Entry:

B@L = ask-then-check(B);

update(B@L, B@100);

Return: check response;

complete(F)

client informs
NN of write
completion on
file F

Entry:

If exists(F) Then

SIZES = empty-list

F:X = ask-then-check(F);

for B in X:

B@L = ask-then-check(B);

SIZES.append(B@L);

generateAction(txClose[F,SIZES]);

Return: check response;

Table 1: SLEEVE for namespace management. The
table shows how the secondary version derives the semantics of
input messages from a client or datanode (DN) to the namenode
(NN), manages its state using Bloom filter APIs, and generates
expected actions. update(x1, x2) represents a delete(x1)

followed by an insert(x2); “Check response” means that the
secondary version compares returned results and handles dis-
agreement if any; F:B represents a mapping from file F to block
B; B@x indicates that block B is x bytes long. Multiple Bloom
filters (not shown) are used to encode different facts.

APIs are needed: insert(x), delete(x), and exists(x),
where x is a variable-length byte array.

To encode a file hierarchy, the most straight-forward
approach would be to perform insert("d/f") to indi-
cate that there exists a directory d with a child f. How-
ever, this scheme leads to inefficient performance if a di-
rectory has many entries and is frequently renamed [39].
Imagine there exist many entries d/f1, d/f2, d/f3, and so
on, and directory d is renamed to n; since Bloom filters
do not support overwrite (§3.3.2), the system would need
to perform many ask-then-check operations to delete all
d/* entries, and then insert all new n/* entries. Our so-
lution is to introduce another level of indirection (e.g.,
keyOf(d)/f). If the main version maintained a unique
inode number for each directory, we could just use that
information directly. Unfortunately, there is no such in-
formation. Instead, we use the hash code of the memory
address for the Java object that represents the directory.

To catch orphan, missing, and out-of-order actions,
HARDFS-N maintains an expected-action list. For ex-
ample, in the first row of Table 1, upon an incom-

ing create(F) request, a future action txCreate is ex-
pected. To detect out-of-order transactions, HARDFS-N

uses domain-specific knowledge. Specifically, a com-
pleted transaction (a successful txCreate(D)) implies
that the associated object (D) is committed to the on-disk
log and that subsequent child additions to D are also al-
lowed. With this knowledge, out-of-order transactions
can be detected (e.g., if txCreate(D/F) is sent to the disk
but txCreate(D) is still in the expected-action list).

4.1.2 Recovery

HARDFS-N could recover from detected errors by re-
booting the namenode and reconstructing all state. For
faster recovery, HARDFS-N attempts micro-recovery
first. Here, we describe further how corrupt states can
be recovered from persistent storage.

HARDFS-N repairs corrupted states in memory (e.g.,
bad F’s metadata) using states stored in the namenode’s
checkpoint file. Since we assume persistent storage
is trusted (§3.5.2), the checkpoint file is expected to
have “good” states. To obtain the latest checkpoint file,
HARDFS-N forces the namenode to start a checkpointing
process by replaying the operation log. However, HDFS

checkpointing is relatively slow and I/O-intensive: it re-
quires reading the old checkpoint file in its entirety, as
well as the operation log, before it can write out a new
checkpoint file. To optimize this, HARDFS-N avoids forc-
ing a checkpoint when possible. HARDFS-N first scans
the (relatively small) operation log to find the correct
values for any of the relevant corrupted state (e.g., F’s
latest metadata). If no relevant transactions are found,
HARDFS-N performs an efficient binary search on the
checkpoint file for the needed information; the check-
point file is already sorted based on pathname.

4.2 Replica Management: HARDFS-R

HDFS replica management involves the block-to-node
mapping structure for tracking the node locations and
number of replicas for every block. Since datanodes in a
cluster may arrive and leave at any time, a block can be
over- or under-replicated. Replica management ensures
that each block has the intended number of replicas by
sending deletion and regeneration commands to differ-
ent datanodes. When a block is created/regenerated, the
datanode sends a blkRcvd message to the namenode. Ev-
ery datanode also sends periodic blockReport messages
containing the list of blocks managed by that datanode.

HARDFS-R hardens the namenode replica manage-
ment functionality by protecting the integrity of block-
mapping states (e.g., no blocks will be accidentally
deleted and no incorrect block locations will be returned
to the client). Since many of the basics are similar to
HARDFS-N, we focus on the differences.
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4.2.1 Maintaining State and Checking Actions
HARDFS-R uses two Bloom filters to encode block-
to-node mappings and replica-count information with
simple formats such as insert(BlkID:NodeID) and
insert(BlkID:Count). For every block regenera-
tion/deletion command sent by the main version,
HARDFS-R performs various checks. For example, delet-
ing a block replica should not make the block under-
replicated; a regeneration command should only be per-
formed on a valid block.

HDFS uses a periodic thread to detect dead nodes.
When the thread is triggered, HARDFS-R is informed
(§3.3) so that it can replicate the functionality for block
accounting and manage its expected-action list (e.g.,
HARDFS-R expects to observe a block regeneration com-
mand if the block is under-replicated).

4.2.2 Recovery
HDFS namenode does not maintain block-to-node maps
in its persistent storage; therefore, full recovery is done
by requesting block mappings from all the datanodes
(specifically by requesting blockReport commands).
However, to perform micro-recovery on a corrupt block-
to-node mapping (either in the main or secondary ver-
sion), HARDFS-R only requests a block report from the
corresponding node. If micro-recovery fails (§3.5.2),
HARDFS-R falls back to full recovery.

4.3 Read/Write: HARDFS-D

Our final subsystem, HARDFS-D, hardens the datanode’s
metadata for reading and writing blocks. HARDFS-D can
detect data access problems such as returning incorrect
data or appending data at a wrong offset.

4.3.1 Managing State and Checking Actions
In each datanode, HARDFS-D protects two pieces of in-
formation: the list of blocks maintained by the data-
node and the length of each block. In an append-only
storage system such as HDFS, the block length is espe-
cially important since it defines the location of the next
write; a corrupt length could lead to accidental over-
writes. HARDFS-D uses two Bloom filters to protect the
information (e.g., insert(B) and insert(B,100)).

HARDFS-D verifies both disk and network actions.
First, HARDFS-D checks that all disk accesses performed
by the datanode are to the correct files and to the cor-
rect offsets. Second, HARDFS-D checks all outgoing net-
work messages to ensure that any local corruption does
not propagate to another datanode; this network check is
vital because writes are preformed in a pipelined fashion.

4.3.2 Recovery
A corrupted and faulty datanode can be recovered with
a simple reboot. Fortunately, because each block is typ-

Outcome HDFS HARDFS
No problem observed 728 460
Detect and reboot - 140
Detect and micro-recover - 107
Hang 22 16
Crash 133 268
Silent failure 117 9

(Corrupt pathname) 95 0
(Corrupt replication) 1 0
(Corrupt blocksize) 12 1
(Corrupt permission) 3 0
(Corrupt modification time) 6 8

Total 1000 1000

Table 2: Outcomes of random memory corruption.
ically replicated across multiple datanodes, rebooting a
datanode does not affect data availability. In addition, as
we will show in our evaluation, rebooting a datanode is
fast, taking only a few seconds (§5.2.3). Therefore, we
do not investigate micro-recovery for HARDFS-D.

5 Evaluation
We now evaluate HARDFS. Specifically, we present ex-
perimental results that answer the following questions:

• Is HARDFS effective at detecting and recovering
from fail-silent faults caused by memory corrup-
tion and real-world bugs (§5.1)?

• How much time and space overhead does the ad-
ditional bookkeeping incur? Does micro-recovery
substantially improve recovery time (§5.2)?

• Does hardening HDFS require a reasonable
amount of engineering effort (§5.3)?

5.1 Detection and Recovery
We evaluate the ability of HARDFS to detect faults and re-
cover using three sets of experiments. We first randomly
corrupt memory by injecting bit flips in the namenode’s
address space. To further understand the effect of such
corruptions, we perform memory corruptions that target
various fields in important data structures. Finally, we
reintroduce real bugs to the codebase and measure how
well HARDFS can prevent data loss.

5.1.1 Random Memory Corruption
We study how random memory corruptions affect the op-
eration of vanilla HDFS and HARDFS by injecting random
bit flips in the namenode’s address space. Specifically,
for each system we performed 1000 runs, each of which
involved: (1) creating 10,000 files, (2) injecting random
bit flips into the namenode’s writable address space, and
(3) recording if the system crashes or if stat() returns
unexpected metadata (i.e., a silent failure has occurred).

We focus on namenode corruptions because it is a sin-
gle point of failure in the system and has more potential
to propagate errors. Each bit has one chance in 50 mil-
lion of being flipped. With our injection methodology,
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both the main implementation and the secondary model
are subject to the random injections, so discrepancies can
arise when state in either is corrupted.

Table 2 summarizes the experimental results. With
HARDFS, the number of silent failures is reduced by a
factor of 10 (from 117 to 9) because the failures are
mostly detected and recovered (140 reboots and 107
micro-recovery instances). However, the JVM crashes
twice as often (because additional bookkeeping increases
the chance of pointer corruptions that lead to crashes).
All the crashes were due to dangling pointers, memory
protection errors, or illegal instructions. HARDFS trades
availability for correctness and data safety.

The breakdown of silent failures illustrates the result
of selective protection. In HDFS, corrupt pathnames are
most common (95 cases) followed by corrupt blocksizes
(12 cases). In contrast, the most common silent failure
for HARDFS is a corruption of the modification time (8
cases), which arises because we selectively chose not to
protect this inode field. For HARDFS, there is only one
dangerous failure, a corruption of blocksize; although
HARDFS protects this field, it is possible that either our
aggressive injections caused the logic checks to misbe-
have, or perhaps the same corruption happened to both
the main version and secondary model, leading to this
false negative. It is difficult to reproduce this case.

5.1.2 Targeted Memory Corruption

We also conduct targeted memory corruption because the
random memory corruption experiment gives us little in-
formation about which part of memory is corrupted and
its corresponding effect. To do this, we pick a field of
the namespace data structure (e.g., pathname, block ID,
etc.), change it to an unexpected value (e.g., from f0 to
f1), and run a simple workload (e.g., file creation).

Table 3 summarizes our experimental results. We see
that, despite employing on-disk replication, vanilla HDFS

is quite fragile to memory corruption (many × and � out-
comes). For instance, a block ID corruption can cause the
namenode to remove all replicas of a block; faulty trans-
actions can be written to the on-disk operation log, even-
tually leading to unsuccessful checkpoints and reboots;
corrupted states can propagate, leading to global corrup-
tion. HARDFS-N, on the other hand, correctly detects and
recovers from all of the 54 injected faults without propa-
gating the faults to the disk or other nodes.

We also investigate whether HARDFS-N can handle the
secondary version behaving incorrectly. Specifically, we
repeat the experiment in Table 3 where we corrupt the
pathname and the file-to-block mapping, but this time
within the Bloom filters. We find (not shown) that the re-
covery module successfully recreates HARDFS-N’s inter-
nal state by reconstructing a new instance of the Bloom
filter (as described in §3.5.2). The time to populate a new

HDFS HARDFS

Message P C S R B I G L P C S R B I G L

mkdir ×� ×� . . . . . .
√√

. . . . . .

create ×�a ×�b× × . . . .
√√√√

. . . .

append ×�c ×�c ×�c ×�×�c ×�c ×�b ×�b
√√√√√√√√

addBlk � � . � . . . .
√√

.
√

. . . .

blkRcvd . . . . . ×�b ×�b . . . . . .
√√

.

fsync ×�a . ×�c ×�×�c ×�c ×�b ×�c
√

.
√√√√√√

complete ×�a . ×�c ×�×�c ×�c ×�b ×�c
√

.
√√√√√√

delete ×� ×� . . ×�b ×�b . .
√√

. .
√√

. .

rename ×� ×� . . . . . .
√√

. . . . . .

setRep ×�a . . × . . . .
√

. .
√

. . . .

setTimes ×�a . . . . . . .
√

. . . . . . .

getInfo � � � � . . . .
√√√√

. . . .

getListing � � . . . . . .
√√

. . . . . .

getBlks ×�a ×� . . � � � � √√
. .

√√√√

Table 3: Namespace memory corruption experi-
ments. Corrupted metadata fields are: (P) pathname, (C)
child pointer, (S) default block size, (R) replication factor, (B)
block pointer, (I) block ID, (G) block generation stamp, and (L)
actual block length. Each cell presents the resulting actions
from the combination of input message (e.g., mkdir) and cor-
rupted internal state. Possible outcomes are: (×) faulty trans-
action, (�) incorrect response, (√) correct transaction and re-
sponse, (.) inapplicable. Footnotes: a the namenode fails to
reboot and crashes permanently; b data loss; c inconsistency.

Bug Year Priority Description
HADOOP-1135 2007 Major Blocks in block report wrongly

marked for deletion
HADOOP-3002 2008 Blocker Blocks removed during safemode
HDFS-900 2010 Blocker Valid replica deleted rather than

corrupt replica
HDFS-1250 2010 Major Namenode processes block report

from dead datanode
HDFS-3087 2012 Critical Decommission before replication

during namenode restart

Table 4: Software bugs.

instance of the Bloom filter is negligible: it takes only 2
seconds for a namespace of 200K files.

To measure the benefits of HARDFS-D, we corrupt
replica metadata during block reads and writes (not
shown). Although vanilla HDFS datanodes handle faults
better than the namenode in our last experiment, half
of the trials still resulted in data loss, corruption, or in-
correct responses. The data replication in HDFS is use-
less if corruption can spread. HARDFS-D, however, de-
tects faulty behaviors immediately and reboots the faulty
node. In every trial, the fault is isolated, operations con-
tinue successfully, and no data is lost or corrupted.

5.1.3 Real Software Bugs

In this section, we explore how well HARDFS handles
real software bugs. We chose five bugs from Hadoop and
HDFS bug repositories [5, 8]; Table 4 gives a summary.
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Figure 4: Performance: time, space, and recovery.
The bugs have the following characteristics: they affect
at least one of the subsystems we hardened, the bugs re-
ceived a rank “major” or greater, and the bugs result in
data loss under certain circumstances.

The bugs were discovered over a number of years,
ranging from 2007 to 2012. The older bugs tend to be
simple programmer oversights. For example, deletion of
valid blocks can be triggered by a poorly written loop
that processes block reports incorrectly [1], or because of
missing safemode checks [9]. The newer bugs tend to be
more subtle. For example, blocks could be deleted or un-
der replicated due to complex ordering of thread execu-
tions, messages, operator actions and failures [3, 4, 10].

For each bug, we made controlled modifications to
our codebase to reproduce it. We limited ourselves to
reintroducing the buggy code, injecting delays to reorder
events, and dropping messages. As these bugs lead to be-
haviors that deviate from the expected model, HARDFS

was able to detect the problem in each case and take ap-
propriate action. In one case, HARDFS was able to re-
store proper state by restarting the namenode, and in four
cases, HARDFS prevented data loss by simply thwarting
the destructive directives (§3.5.3).

5.2 Efficiency
We now evaluate the performance impact, space over-
head and recovery time of each HARDFS system. All ex-
periments were conducted in a cluster of 21 machines,
each having 8GB of memory and a 2.66GHz CPU.

5.2.1 Performance Impact
We evaluate the time overhead of HARDFS-N using the
namenode benchmark (NNBench) in the Hadoop distri-

bution (Figure 4a). This benchmark stresses many meta-
data requests by creating, renaming, and deleting files.
HARDFS-N imposes acceptable overhead: 4% or 8%,
with concrete state or Bloom filters, respectively.

In an experiment designed to stress HARDFS-R con-
taining heavy client write activity and significant back-
ground processing of block reports, we found that the
performance overhead of HARDFS-R is negligible.

Finally, to evaluate the performance of HARDFS-D, we
run the DFSIO benchmark with 3-way replication on a
cluster containing one dedicated namenode and 20 datan-
odes and measure the average throughput of read and
write operations. The results in Figure 4b show that the
overhead of HARDFS-D is negligible for both workloads.

5.2.2 Memory Overhead

We measure the memory allocated for the namenode in
both HDFS and HARDFS-N as the number of managed
files is varied. Figure 4c shows that concrete states in
HARDFS-N lead to memory overheads near 100%; this
accentuates the need for lightweight data structures such
as Bloom filters. As desired, the memory overhead of
HARDFS with Bloom filters is negligible (2.6%).

We measure the memory allocated for both HDFS and
HARDFS-D by varying the number of replicas a datanode
manages (Figure 4d). The space efficiency of Bloom fil-
ters makes the memory overhead of HARDFS-D less than
1%. Finally, HARDFS-R with Bloom filters incurs less
than 2% memory overhead (not shown).

5.2.3 Recovery Time

We measure the time for HARDFS-N to recover corrupt
states using three approaches: simple reboot, micro-
recovery, and optimized micro-recovery. Normal micro-
recovery creates a new checkpoint based on the last
checkpoint and the operation log; optimized micro-
recovery computes only the needed state by efficiently
scanning the log and last checkpoint (§4.1.2). Fig-
ure 4e summarizes the results. Although crash-and-
reboot works correctly, it is prohibitively expensive:
more than an hour is required to reboot a namenode man-
aging 1 million files; most of this time is spent processing
block reports from datanodes [22]. Fortunately, micro-
recovery is highly efficient and more than two orders of
magnitude faster. Our optimized version can recover cor-
rupted state in less than 10 seconds, even when the name-
node is managing 1 million files. Figure 4f shows similar
benefits of using micro-recovery for HARDFS-R.

HARDFS-D does not utilize micro-recovery, as a data-
node reboot is relatively quick. A datanode reboot in-
volves reading a block list from local disks and send-
ing the list to the namenode. In our experiments, it
takes about 2 seconds to reboot a datanode storing 40,000
blocks (around 2.5TB) of data (not shown).
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Subsystem HDFS HARDFS
Namespace management 10114 1751 (17%)
Replica management 2342 934 (40%)
Read/Write protocol 5050 944 (19%)
Others 13339 0 (0%)
Total 30845 3629 (12%)

Table 5: Engineering effort in lines of code.

5.3 Engineering Effort
Table 5 compares the effort of implementing HDFS

to the effort of hardening HDFS. By selecting three
key modules where correctness is most important, we
were able to focus our efforts on 57% of the codebase.
Our lightweight second versions are much smaller than
the original versions (17% to 40% of the main-version
sizes); overall, our changes only increase the codebase
by 12%. Although implemented in Java, HARDFS could
be implemented in declarative languages [13, 46] in or-
der to further reduce the engineering effort. We leave
that for future work.

6 Related Work
In this section we discuss related work on which HARDFS

is based and other approaches to addressing memory cor-
ruption and software bugs.

HARDFS is primarily based on two related works: N-
version programming (NVP) [14] and Micro-reboot [23].
Traditional NVP systems require high engineering effort
to develop multiple versions of a software system. In ad-
dition, coordinating different implementations often re-
quires complex machinery and incurs significant over-
head [16]. HARDFS reduces engineering costs by only
protecting select subsystems with redundant implemen-
tations. HARDFS minimizes overhead by making data
structures lightweight via lossy compression.

Lossy compression occasionally causes unnecessary
recovery due to error-detection false positives; we make
this acceptable by making recovery inexpensive with
Micro-reboot, which advocates that systems should
be designed with the ability to reboot partial compo-
nents [23]. Micro-reboot has been useful in other sys-
tems, allowing OS drivers and file systems to be restarted
without a full OS reboot [54, 55, 56].

A common way to address memory corruption is to
add detection machinery at the hardware and software
layer (e.g., using ECC memory and page checksums).
These approaches do not protect the system from bugs
introduced by complex software in many layers. An end-
to-end approach to handling corruption is provided by
PASC [29], a library that makes it easy for developers
to maintain two replicas of the main state and execute
the program logic twice on both replicas. PASC involves
minimal engineering effort since developers do not need
to implement the same functionality twice; however,

simply executing the same code twice makes the system
vulnerable to bugs in that code. Furthermore, keeping
two complete state replicas is costly.

One way to address bugs (but not memory corrup-
tion) is to perform offline testing driven by sophisticated
model checkers [37, 58, 59]. Model checking is comple-
mentary to SLEEVE. It is more desirable to find and fix a
bug during testing than to tolerate the bug during deploy-
ment; however, offline testing can only address bugs that
arise in the situations selected by the model checker’s
execution-exploration and state-exploration algorithms.
By contrast, SLEEVE performs checking in every situa-
tion that arises in deployment.

Some systems, like HARDFS, attempt to address both
bugs and memory corruption. Recon [32] interposes on
all disk writes by the file system, and prevents any writes
that would break fsck’s consistency rules. Although rel-
atively lightweight, Recon only checks for consistency,
not correctness in general. Byzantine Fault Tolerance
(BFT) [24, 43, 47] is a heavyweight solution which pro-
tects software systems from malicious behaviors like cor-
ruption, bad inputs, and wrong computation. Unfortu-
nately, BFT requires a high degree of replication (3f +1

replicas to tolerate f failures), does not handle cases
where the logic of the software is buggy, and may be
difficult to deploy (e.g., requires significant changes to
the HDFS replication policies [28]).

7 Conclusion
Distributed systems fail, and worse, sometimes they fail
silently. We propose SLEEVE, a new approach that en-
courages developers to harden their systems against fail-
silent behaviors with minimal engineering effort. Central
to our approach is the idea of building a lightweight ver-
sion that protects important components of the system.
Applying the SLEEVE approach, we harden HDFS and
show that it can detect and recover from a wide range of
fail-silent behaviors caused by memory corruptions and
software bugs. We hope that the SLEEVE approach can
be applied to distributed systems beyond HDFS.
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