Report From the CoalFace: Lessons Learnt Building A General-Purpose
Always-On Provenance System

Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, Andy Hopper
University of Cambridge, Computer Lab
{firstname.lastname } @cl.cam.ac.uk

Abstract

Over the past year we have implemented OPUS, an
always-on system for observed provenance capture in
user-space. In this paper we present some important
lessons for anyone hoping to implement a general pur-
pose provenance system operating at user-level. In par-
ticular, we highlight the problems and solutions associ-
ated with the explosion of interposition requirements at-
tributable to function variants, challenges in maintaining
semantic equivalence with POSIX and the importance of
deactivating function interception in response to runtime
errors. We also provide some insights on choosing the
right database to manage provenance data.

1 Introduction

For provenance to be useful to a broad range of poten-
tial users it must exist as a core component of mod-
ern systems. For the implementation of OPUS [1] our
always-on general purpose provenance system that runs
in user-space we chose to integrate with the runtime en-
vironment, collecting provenance from each process as it
runs. There are a variety of other approaches to prove-
nance and specific capture methods. With OPUS we fo-
cus mainly on data provenance and capturing provenance
for POSIX function calls.

In this paper we outline some of the lessons we have
learnt in building OPUS. While these are specific to our
implementation we advocate that the general principles
we outline are useful to others building runtime interpo-
sition systems. Specifically we cover function stems and
their growing numbers of variants, maintaining seman-
tic equivalence with POSIX, deactivating interposition in
case of errors and finally a discussion of storage systems.

2 OPUS

The rate of adoption of provenance systems is currently
very low amongst the user community. This is at-
tributable to the following reasons:

I. Users are reluctant to deploy systems that require
installation of a new kernel, kernel modules, stan-
dalone servers etc., as they consider the upfront in-
stallation and configuration cost as overhead.

II. Users think of provenance as insurance [4] since
there may not be an immediate necessity to use the

provenance data but there is an ongoing cost in-
curred in the form of an increase in time and space
requirements for the execution of applications.

III. Finally, users expect provenance systems to not be
application specific but be general enough to cater
to a wide variety of application types.

Based on these points our goal in the design of OPUS has
been to build a system that is fast, seamless, lightweight,
general purpose, always-on, implemented entirely in user
space and, implemented using easy to install and config-
ure components. Our vision is to enable provenance as a
first class construct of future computation systems.

2.1 General design of OPUS

The current implementation of OPUS targets applica-
tions running on GNU/Linux systems. A majority of ap-
plications running on Linux dynamically link with the
GNU C library and invoke functions in the library to
carry out process and I/O operations. OPUS leverages
the LD_PRELOAD feature provided by the runtime linker
to override the application’s symbol table and interpose
these C library function calls. We prefer this approach to
other user space interposition techniques such as ptrace
(used by CDE [2]) and FUSE (used by StoryBook [5])
since LD_PRELOAD has a lower overhead, requires no
extra components or setup and allows function call level
capture to be extended to arbitrary third party libraries.

OPUS has a modular design and consists of two ma-
jor components, a frontend and a backend. The frontend
is implemented as a library that captures function level
provenance metadata and immediately sends it to the
backend. The backend is divided into sub-components
that handle incoming connections, process provenance
metadata into objects and relations and a storage layer
that talks to an embedded graph database, Neod4;j !.

3 Lessons Learnt
3.1 Function Capture: Stems and Variants
We will be starting with the premise that we want to in-
terpose some of the functionality of the system C library.
Let us assume that we are interested in the files that a
program produces, we are likely then to want to capture
the open, close and write functions.

Continuing our example if we are interested in write
then we would also be interested in print f asitisjusta
more specialised version of write. Thus you will need



to construct a function to interpose printf, however
then you will also need another to interpose fprintf.
Then there are vprintf and vfprintf that take
a slightly different argument form. Also wprintf,
wfprintf, wvprintf and wvfprintf that take
wide char arguments. Figure 1 gives an example of how
such a tree of functions can be connected together. We
choose to refer to the function at the base of the tree that
relies on no other function a ‘stem’, the rest of the func-
tions in the tree are ‘variants’. As you can see the num-
ber of functions requiring interposition can quickly grow
when there are a lot of variant functions based off the
same stem function.

It would seem then that, even with this proliferation of
variants, we would still only need to interpose the stem
functions as eventually all of the variants will result in
calls to the stem functions. This is however not possible
due to the symbol attribute PROTECTED. PROTECTED
is used by library creators to stop their symbols acciden-
tally being masked by other libraries early in the load
order. When symbols are designated PROTECTED and
they are referenced locally in the library, these references
are computed at compile time, as opposed to the normal
procedure of resolving symbols at run-time. Due to this
compile time resolution we are not capable of interposing
intra-library calls meaning that even if a call to print f
eventually results in a call to write our interposition
function for write will not be triggered. Due to this
inability to interpose calls within a library we have to
interpose all of the variants for the stems that we are in-
terested in. Otherwise we will fail to intercept some of
the functionality we are interested in.

Lesson Learnt: Even trying to interpose only a small
amount of the functionality of the system libraries can
easily produce a rapidly growing number of functions
requiring interposition. The PROTECTED attribute re-
quires that all of the variants of a stem function must
be interposed.

3.2 The Utility of Templating Interposition
As we learned in the previous section, the number
of functions requiring interposition in a LD_PRELOAD

User Process | C Library Key: ~ _#T;Lr:’:;zgf:g;l[:al\
user-fn1 - = + = = = = > printf vprintf
user-fn2 - - - mmmmmo s mm e > vfprintf write
userfn3--t------------ > fprintf
_fprintf_chk fwrite_unlocked
I Variant Functions IFuSntz[iwon‘
Figure 1: A stem function and a group of its variants.

Also shows which calls to a function can and cannot be
interposed due to the PROTECTED attribute.

based system can quickly grow.

This is a problem as writing code for such a quantity
of functions by hand will quickly produce large problems
of maintainability. For instance the OPUS system inter-
poses 150 functions from the GNU C library, resulting in
approximately 12,000 lines of interposition code. Even
in a best case situation an interposition function will re-
quire at least 10 lines of code per interposed function as
a minimum.

Clearly an automated system is required. In the case
of OPUS we chose to use code generation by means of
templating. This allows us to maintain a single template
and a structured document storing all of the relevant in-
formation about a given function such as its name, ar-
guments and return value. A script then reads the struc-
tured document and fills out the template for each func-
tion substituting values where appropriate and including
or omitting code, depending on configuration.

This approach reduces the amount of code for each
interposition function from approximately 80 lines of C
to approximately 10 lines of structured YAML 2. This
also has the advantage that all of the interposition func-
tions are produced from the template meaning that we
can keep the code of all the interposition functions con-
sistent easily. Another advantage this approach provides
is that it allows for the system to be extended to new
libraries quickly and efficiently, requiring, in the worst
case that a supplementary template for the new library

be created. )
Lesson Learnt: Templating reduces the amount of de-

velopment effort required per interposition function,
reducing maintenance effort and allowing for easy ex-
tension of the set of interposed functions.

However there are still functions that do not template
well, this is usually due to the function having some side
effects that must be handled. For example signal re-
quires maintenance of some additional data structures
as described in section 3.3.2 or some of the variants on
exec are modified to persist the environment variables
that load OPUS. Even though these functions resist tem-
plating we still make use of techniques such as macros to
reduce the amount of code duplication.

3.3 Intricacies of POSIX execution

Interposing at the C standard library level imposes a
number of challenges. The primary challenge is in main-
taining semantic equivalence where, from an applica-
tion’s perspective, there should be no difference in the
behaviour expected from making a C library call with or
without interposition. In our implementation we attempt
to maintain semantic equivalence with POSIX 3 for all
standard C library functions being interposed. For most
standard library functions adding an interposition layer
does not alter the semantics of the function call since the
interposition function merely captures the passed argu-



ments, calls the underlying function in the library using
its address then records the functions return value and er-
rno value. However, for two cases vfork and signal,
adding an interposition layer breaks the semantics ex-
pected by the application for different reasons. These
are discussed below along with our solution.

3.3.1 Case 1: vfork

The POSIX standard presents us with computation ab-
stractions such as thread, process etc. The GNU C li-
brary provides us with functions that can be used to ma-
nipulate these computation abstractions. For example,
with the fork function call the specification states that
a child process can be created with a copy of its parent’s
resources (fds, memory, environment etc.). From an in-
terposition standpoint it is critical that we preserve this
semantic of program execution. OPUS implements this
by interposing the call to fork and within the interpo-
sition function calls the actual C library fork. OPUS
then collects all required provenance metadata and al-
lows both the parent and child process to continue execu-
tion. However, there are other functions such as vfork
that make it impossible to do this easily. vfork was in-
tended as an optimization of fork since it does not du-
plicate the parent’s address space, instead both the child
and parent share the same address space. The execution
of the parent process is suspended until the child either
execs another binary or terminates by calling exit.
On modern Linux systems applications no longer have to
use the vfork optimization since fork has been reim-
plemented using copy-on-write pages [3]. However, we
have observed that a number of programs such as bash,
gcc, make etc. still use vfork, hence OPUS has no
option but to interpose the function call.

Since the entire memory address space (including state
of the stack) is shared, the POSIX specification does not
allow the child process to return from the current func-
tion calling vfork as it will destroy the shared stack
frame. This makes interposition problematic since the
interposition function is basically a wrapper on top on
the C library vfork function. In fact, the standard C
library has the problem of preserving the stack frame as
well since the vfork library function is itself a wrap-
per for making the vfork system call. To solve this
problem the C library implementers have to break the
function call abstraction provided by their high level lan-
guage (in this case C) and implement the vfork func-
tion using assembly code. Within the assembly routine
the return address from the function is saved in a regis-
ter that is preserved across system calls. Thus when the
child process returns, even though the stack frame is de-
stroyed the parent process can still read the saved return
address from the register.

With the implementation of our interposition function
we have to take a similar approach and resort to assem-

bly code. Our initial implementation of vfork interpo-
sition used the C library approach of stashing the return
address in a register, however we found that it is archi-
tecture dependant and requires details about system call
calling conventions specific to the OS. Our current im-
plementation uses a small assembly routine to read the
return address and store it in heap memory. This ap-
proach has a higher overhead but makes the architecture
specific part of the code much smaller. One special case
that requires addressing is to not overwrite the return ad-
dress value in case of nested vfork calls. This is solved

by storing the return addresses in a user stack.
Lesson Learnt: When dealing with functions such as

vfork that are implemented as a close coupling be-
tween the architecture and high level standard, main-
taining semantic equivalence becomes difficult and can
result in having to provide architecture specific imple-
mentations of the interposition function.

3.3.2 Case 2: Signal handling

Capturing signalling events received by an application
can be valid provenance information especially in the
context where the signal causes the application to ter-
minate, either automatically because the signal was not
handled or manually where the application calls exit
within its handler. The OPUS frontend intercepts such
signalling events using a default signal handler and
records the occurrence of the event. OPUS then calls the
application’s signal handler if present. OPUS is aware of
the application’s signal handler as it interposes the signal
registration functions (signal and sigaction).

This approach, although viable, modifies the expected
behaviour of the signal registration functions. We found
that many programs in coreutils use signal registration
functions purely to determine the previous signal dispo-
sition (signal handle, masks and flags). The kernel main-
tains the current signal disposition for each signal and re-
turns it on query. Thus, by registering our (OPUS) signal
handler, we were causing the kernel to return an invalid
signal disposition from the application’s perspective. To
maintain semantic equivalence OPUS must be transpar-
ent to the application and provide the illusion that it does
not exist. OPUS achieves this by maintaining extra state
in memory which consists of a lookup table that stores a
mapping between a signal number and the current dispo-
sition. Hence, when the application queries the previous
signal disposition, OPUS can intercept the request and
return the correct data directly from the lookup table.

Although some of the functionality in the kernel has
been duplicated in our interposition library, the data (per
signal disposition) stored within OPUS is different from
what the kernel observes. This presents us with yet an-
other side-effect. If interposition is turned off due to a
runtime error or manually by the user, deactivating signal
interposition becomes complicated. We essentially need



to re-register all relevant signals and restore the state seen

by the kernel.
Lesson Learnt: Certain functions such as signal reg-

istration functions can store state internally. A naive
approach to interposing such functions may result in
unintended side effects since subtle semantics may be
overlooked. In order to maintain semantic equivalence
the interposition layer must be carefully implemented
to cover all cases.

3.4 Deactivating Interposition
While an interposition system is running it may en-
counter a situation that requires it to be deactivated; for
instance, an unreasonable amount of overhead is being
imposed on the users workflow and they would prefer
to continue without it. Alternatively, the system has en-
countered an error sufficiently severe that is cannot con-
tinue interposing but not severe enough to prevent the
interposed process from continuing. For example, in
OPUS we consider losing the ability to communicate
with the backend process to be in this category of error.
In these situations we need to find a way to deactivate
the interposition functions, however they are very tightly
integrated with the function resolution order once they
have been called at least once. Due to this property it
is very difficult to remove them as you would have to
rewrite the symbol addresses in the process procedure
linkage table, which, if done incorrectly, will render the

process incapable of calling those symbols.
Lesson Learnt: As LD_PRELOAD based interposition

cannot just be “turned-off” a system based on it should
include mechanisms to short-cut interposition func-
tions to their underlying calls as a core design factor.

3.5 Choice of storage system

We have described some of the major challenges faced
in implementing the frontend module of OPUS that deals
with provenance capture. In this section we will look at
the storage system in the backend and how its selection
can affect querying capabilities.

The OPUS backend receives raw provenance meta-
data that is analysed and converted into a directed graph
which is then persisted in a database on disk. In the ini-
tial implementation of OPUS the database used was Lev-
elDB*, aNoSQL key-value store that is schema-less, em-
bedded and allows us to model graphs fairly easily. We
found that these properties although useful for storage of
provenance data did not satisfy our query requirements
as the inherent limitation of LevelDB is the lack of sup-
port for indexes or query languages.

A user query to obtain the provenance of a given file or
process entity typically translates into locating a starting
node in the provenance graph and traversing the graph to
retrieve the required data. In order to achieve this with
LevelDB we have to manually create and maintain the
indexes (during storage) and write code in the application

layer to express traversals. This can become tedious and
inefficient. Therefore there is a necessity for a storage
system that provides the ability to index data and a query
language to express complex traversals.

Given this requirement, it may be tempting to use an
on disk relational database such as SQLite. However the
SQL language features supported by SQLite do not pro-
vide support for recursive queries and therefore have to
be implemented in the application layer. This has led
us to choose Neo4j, an embedded graph database that
allows us to model graphs naturally, create indexes au-
tomatically on node properties and provides a query lan-
guage (Cypher).

Lesson Learnt: Among existing data store models,

graph databases provide the best match for the func-

tional and data representation requirements of general
purpose provenance systems.

4 Conclusions

Interposition using LD PRELOAD is a viable method for
provenance capture. However the use of this method has
highlighted a number of interesting challenges. To build
a complete system these challenges have to be addressed
and we have shown that they can be solved by careful
thinking, planning and effort to implement correctly, if
not there can be functional repercussions.

We have also discussed the importance of choosing the
right storage system and how certain properties of the
storage system influence query capabilities.

Acknowledgements

We acknowledge Sherif Akoush, Lucian Carata, Oliver
Chick, George Coulouris and James Snee for their advice
on shaping this paper.

References

[1] BALAKRISHNAN, N., BYTHEWAY, T., SOHAN, R., AND HOPPER, A.
Opus: A lightweight system for observational provenance in user space. In
Proceedings of the 5th USENIX Workshop on the Theory and Practice of
Provenance (Berkeley, CA, USA, 2013), TaPP *13, USENIX Association,
pp. 8:1-8:4.

[2] Guo, P. J., AND ENGLER, D. Cde: Using system call interposition to
automatically create portable software packages. In Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference (Berkeley,
CA, USA, 2011), USENIXATC’11, USENIX Association.

[3] LOVE, R. Linux Kernel Development, Third Edition. Addison-Wesley Pro-
fessional, 2010, ch. Process Management.

[4] SELTZER, M. World domination through provenance. Presented at the 5th
USENIX Workshop on the Theory and Practice of Provenance.

[5] SPILLANE, R., SEARS, R., YALAMANCHILI, C., GAIKWAD, S., CHINNI,
M., AND ZADOK, E. Story book: an efficient extensible provenance frame-
work. In First workshop on on Theory and practice of provenance (Berkeley,
CA, USA, 2009), TAPP’09, USENIX Association.

Notes

"http://www.neodj.org/

2http: //yaml.org/spec/

3http: //pubs.opengroup.org/onlinepubs/9699919799/
*http://code.google.com/p/leveldb/


http://www.neo4j.org/
http://yaml.org/spec/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://code.google.com/p/leveldb/

	Introduction
	OPUS
	General design of OPUS

	Lessons Learnt
	Function Capture: Stems and Variants
	The Utility of Templating Interposition
	Intricacies of POSIX execution
	Case 1: vfork
	Case 2: Signal handling

	Deactivating Interposition
	Choice of storage system

	Conclusions

