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Abstract

A pressing demand emerges for storing extreme-scale time
series data, which are widely generated by industry and
research at an increasing speed. Automatically constraining
data storage can lower expenses and improve performance,
as well as saving storage maintenance efforts at the resource-
constrained conditions. However, two challenges exist: 1)
how to preserve data as much and as long as possible within
the storage bound; and, 2) how to respect the importance of
data that generally changes with data age.

To address the above challenges, we propose time-varying
compression that respects data values by compressing data
to functions with time as input. Based on time-varying
compression, we prove the fundamental design choices
regarding when compression must be initiated to guarantee
bounded storage. We implement a storage-bounded time
series store TVStore based on an open-source time series
database. Extensive evaluation results validate the storage-
boundedness of TVStore and its time-varying pattern of
compression on both synthetic and real-world data, as well as
demonstrating its efficiency in writes and queries.

1 Introduction

Time series databases are becoming the most popular type
of databases in recent years [2]. We are witnessing a grow-
ing demand for time-series-specific storage and processing
from many fields such as cluster monitoring [91], Internet
of Things [6], finances [80], medicine [51], and scientific
research [63]. In fact, the fast increasing volume of time series
data has placed an unprecedented requirement on computing
resources, especially storage space [6, 79].

An effective storage management strategy that can con-
strain the storage space is desirable and important for time
series databases. While large organizations can afford the
storage to hold the ever-growing time series data, small or
medium-sized entities prefer to strike a good balance between
data volume and storage cost [45]. Besides, storage space
is restricted in some specific deployments, e.g., real-time
monitoring at far remote sites [8, 19,78]. On the other hand,
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as the significance of time series data is highly correlated with
the age of the data [22,37,89], it is desirable to have a storage
management strategy that takes data ages into account [3,7].

Significant prior work has addressed the storage-control
problem by compression, which can be lossless or lossy. Loss-
less compression [10,33,57,71,73] preserves the complete
data, but its achievable upper bound on compression ratio [93]
might not be satisfactory for applications. Hence, time series
databases commonly control storage consumption by directly
discarding data older than a given time [43] or exceeding a
storage threshold [67]. But discarding historical data causes
a loss [94]. For example, historical data are crucial for long-
term observations and enabling new scientific knowledge
creation in the future [63]. Besides, time-based retention
policy might not bound the data volume in case of unevenly
spaced time series with unknown arrival intervals. Another
common approach is to exploit lossy compression [15,41,65],
which preserves partial data and trades off precision for space.
But existent approaches to lossless and lossy compression
are only best-effort about the final size of compressed data
size [13,24,99].

In this paper, we take a new approach towards controlled
storage space for time series stores. We consider the problem
of automatically bounding the storage of a time series store
by compression. To enable this, our key insight is that time
series data can be compressed losslessly or lossily according
to its importance, which is in turn related to its age, as users
commonly accept information loss on less important old
data [12,14,23,38,40]. We control the storage space by time-
varying compression, which compresses data in a sequence
of ratios defined by a time-dependent function. Inspired by
time-decayed windowing of stream processing [9, 22], our
design of time-varying compression takes the chunking-and-
varied-segmentation approach, accepting user-defined time-
dependent functions and fixed-ratio compressors.

To automatically bound time series storage by compression,
three fundamental challenges exist. The first is deciding when
to start the time-varying compression, i.e., the proper moment
when 1) it is not too late that the storage space is exceeded
during compression; and, 2) it is not too early that unnecessary
compression is applied to some recent data, for preserving
as much information as possible. The second challenge is
computing the proper compression ratio r, given which the
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sequence of compression ratios can be deduced using a time-
dependent function. » should not be too large to prevent
discarding information unnecessarily and meantime not be
too small to exceed the storage bound. The third challenge
is finding out how to run the time-varying compression, i.e.,
whether to compress data in an online stream processing
manner or in a batch processing manner. The goal is to reduce
computing resource consumption and improve performance.

To address these challenges, we propose TV Store, a storage-
bounded time series store built upon time-varying compres-
sion. TVStore can automatically and effectively bound the
time series storage even if data keep being ingested. We
implement TV Store by extending the storage engine of an
open-source time series database named Apache IoTDB [96].
Hence, all the database functions and operations remain
supported in TVStore. We evaluate TVStore in extensive
experiments based on synthetic data and real-world data.
Results validate the storage-boundedness of TVStore and
its time-varying pattern of compression. The compression
technique employed TV Store incurs low overhead compared
to its baseline. It is efficient in writes and reads, 3 x(25x)
and 35x(8.7x) faster than the state-of-the-art(state-of-the-
practice) related works [3,67] respectively. Under the same
conditions, TV Store can respond to queries with much lower
error rates in most cases than the related work.

In sum, we make the following contributions in this paper:
e We propose a time-varying compression framework

TVC, which can compress data by varied ratios complied
with a given time-dependent function that corresponds
to the age-varying importance of time series data.
We design a time series store TV Store that can automati-
cally run the time-varying compression framework TVC
at the proper time, effectively bounding the storage space
to a specific threshold while preserving data according
to the time-varying importance for applications. To the
best of our knowledge, TV Store is the first time series
store that can automatically bound its storage space by
time-varying compression patterns.

We implement TV Store based on an open-source time

series database', introducing a three-layer data reduction

scheme and exploiting a line generalization algorithm as
the fixed-ratio compressor for TVC.

* We run extensive experiments using synthetic and real-
world data to demonstrate the efficiency and advantage
of TVStore in comparison to three related time series
stores, as well as to validate its storage-boundedness and
time-varying pattern of compression.

L]

2 Background and Motivation
2.1 Why Constrain Storage

Time series databases are gaining an increasing popularity [1].
Rather than processing time series as streams and analyzing

Uhttps://github.com/thulab/TVStore
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Figure 1: Time series predictions by data compressed
in the time-varying (TV) vs. time-invariant (TI) manner.
Predictions lie in the gray area. TV-compressed data have
varied compression ratios for data at different ages, while
TI-compressed data have the same compression ratio at all
times. Both cases have the same overall compression ratio.

only once, mounting demands have emerged for keeping time
series data for future analysis [94]. But time series data are
generated at a growing speed that is outpacing the increase of
computing capabilities [17,79]. Many application scenarios
cannot afford enough computing resources such as storage and
network bandwidth to accommodate the processing needs for
time series data. Storage-bounding compression can enable
the control of storage cost.

Limited storage expense. Many medium or small entities
have to limit their expense on storage in their daily operations,
even though the public clouds have the capacity to keep all
their data [94]. As value is yet to be extracted from the huge
volume of time series data, it is desirable to automatically
keep as much data as possible within the storage constraint.

Sensors of a connected car can generate about 30 terabytes
(TB) of data per day [62,77]. Time series data is among the
major components of the generated data. To hold all the data
on such moving vehicles, large disks are installed. Since a
30TB disk can cost around $1200, a month’s worth of data can
fill up a 960TB disk, causing a cost of $30,000. This adds an
unrealistic amount to a vehicle’s price, but keeping as much
data as possible can enable valuable data analytics [77, 83].

Limited computing resources. In the oil and gas industry,
a typical offshore oil platform generates more than 1TB of
data [19] daily. But common data transmission via satellite
connection allows only a speed from 64 Kbps to 2Mbps
for these offshore oil platforms. If all data are transmitted
back for processing, it would take more than 12 days to
move 1 day’s worth of data to the processing backend [8].
Data compression is demanded for reducing data in both
transmission and storage.

Scientific research applications nowadays are producing
too much data to be stored or processed efficiently. For
example, cosmological simulations generate petabytes of data
per simulation run [34] and climate simulations generate
tens of terabytes per second [29]. Such large volumes of
data are imposing an unprecedented burden on storage and
computation. Data reduction is necessary to enable data
processing and analytics within a reasonable amount of
resource and time [92].
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Figure 2: Compression ratio sequences generated by a
function of the data age at time ¢ and ¢ + At, for reducing
different data volumes to the same size, i.e., 200 data chunks.
Data volumes increase with time.

2.2 Time-Varying Importance of Data

The importance of time series data changes along with time,
as reflected by applications’ favoring recent data over old
data [5, 18,31], or favoring some events at certain moments
over others [49,83]. Time-changing importance of data in fact
commonly exists in natural and scientific phenomena [75,
86, 98]. As a result, we have seen a plethora of research
on data series analysis and prediction considering the time-
changing pattern [9,22,36,37,89]. Figure 1 illustrates how the
importance of data varies with time in time series prediction,
which is widely used in applications [39,48,59,76,88]. Recent
data have dominant impact on the result of prediction, making
the time-varying compression outperform the common time-
invariant compression.

Time-changing importance of time series data can be
exploited to form time-varying compression. For important
data, we compress them losslessly or with a low ratio by lossy
compression. For unimportant data, we compress them by a
high compression ratio. As time series data can be identified
by timestamps, we use a time-dependent function to denote
the changing importance of data. Hence, the compression
ratios can also be deduced from the function. Time-varying
compression can suit users’ requirements on data analysis
well and save storage space to the most extent. As shown in
Figure 2, the power-law function 7 with B = 1 is used for
depicting time-changing importance of data and exploited to
define time-varying compression ratios in both graphs. As
data keep arriving, the compression at a later time reduces
more data to the same volume as that at an early time, but by
higher ratios as generated according to function 5.

2.3 Automatic Compression and Bounding

To meet the above requirements of time series applications,
we propose time-varying compression that respects the time-
varying importance of time series data. Furthermore, we
propose the design of a time series store that automatically
bounds the total storage space to effectively control costs. To
this end, compression must be initiated at proper moments
to cap the overall storage space, as data increase. The
compression ratios must be computed automatically, with
compressions initiated at proper moments. These moments
must be computed carefully such that users can keep data

to its highest precision as long as possible. We must deduce
the proper moments for compression initiation when 1) it
is not too late that the storage space is exceeded during
compression; and, 2) it is not too early that unnecessary
compression is applied to some recent data or that an
improperly high compression ratio is used. Besides, when
lossy compression is used, users would need the overall error
rates for understanding the data analysis results they could
expect. The error bound computation must evolve along with
time-varying compression. And, users are allowed to request
the removal of data with high error rates.

Challenges: As a result, two main challenges exist in
automatically bounding the time series storage by time-
varying compression: 1) how time-varying compression
can be executed on an ever-increasing volume of data and
with error bounds computed, when the compression ratios
keep changing as shown in Figure 2 (§3); and, 2) how to
automatically decide the conditions for running time-varying
compression such that storage space is always bounded but
not too much (§4).

3 Time-Varying Compression

Given a time series, time-varying compression (TVC) com-
presses it to an overall compression ratio no smaller than a
user-specified threshold ». TVC compresses data by the unit
of chunk, which is time series data within a time interval.
The compression ratios vary for different chunks according
to a time-dependent function r(¢)’s definition, where the
input ¢ is a data chunk’s age as relative to the most recent
timestamp of the time series. TVC enforces the compliance to
different compression ratios defined by r(¢). The benefits
of this compliance is that different r(¢) can be used for
various use cases [22]. Provided with properly designed r(z)
and compressor, TVC can even achieve functionally lossless
compression [54] for a long range of data.

The key challenge of time-varying compression is how to
continuously preserve the compliance with any r(t) definition,
when a data chunk’s age increases along with the data volume.
To address this challenge, TVC initiates rounds of compres-
sion on data chunks iteratively. Figure 3 overviews time-
varying compression in rounds. Later rounds of compression
must execute on differently compressed data. Two problems
must be tackled: 1) how to compute the correct sequence of
compression ratios to enforce the compliance to a given ()
(§3.1, §3.2); and, 2) what properties a compressor must have
to guarantee a feasible time-varying compression process,
besides the fixed-ratio requirement(§3.3).

3.1 Ratio Sequencing and Data Chunking

For an overall compression ratio 7, TVC first finds a se-
quence of compression ratios 71,77, ..., 7, defined by the time-
dependent function r(f). The average of the compression
ratio sequence ry,72,...,rx should approximate 7. The time-
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dependent function r(¢) produces a compression ratio when
given an integer ¢. Here, a smaller ¢ is a time interval closer
to the most recent time of a time series. Decay functions [3,
22,75] commonly used in time series analysis can be used for
r(t), e.g., exponential function (e™) and polynomial/powerlaw
function (¢P). r(t) can also be a constant function (C), but then
TVC degrades to a common lossless/lossy compressor.

We assume the data for compression is kept in the unit of
chunks, as time series stores commonly keep data in units
like chunk [96] or block [4,43]. TVC executes compression
by the unit of chunk. To guarantee that data are compressed
to the compression ratio sequence ry,72,...,7,, T VC groups
r; data chunks into the ith segment. Each segment is then
compressed to an output chunk. Hence, the ith chunk of the
compression output has a compression ratio r;, complying to
the definition of r(t).

Moreover, the compression ratio sequence must guarantee
that 1) all data chunks to be compressed are actually pro-
cessed; and, 2) the actual compression ratio is no smaller than
7 to avoid exceeding the storage bound. Hence, the sum of
compression ratios must be no smaller than the number m
of raw data chunks to be compressed. Besides, the average
of compression ratios must be no smaller than 7. We then
approximate 7 by the average of the smallest sequence of
ri,ra, ..., 1y that satisfy the following equations:

2k >m 1)
m/k>F 2

It is possible that no such sequence complied with r(z) is
found to satisfy both of the two equations, if | = r(1). Hence,
TVC allows the compression ratio sequence r; to be r(i),
with ry = r(k+i—1). But TVC requires that the sequence
r1,r2,...,rx is non-decreasing, which means that r(r) must
be a non-decreasing function. The condition is necessary to
avoid that some data chunks have a lower compression ratio
in later rounds, while they are compressed in a higher ratio
in a previous round. In fact, this condition naturally follows
from the fact that data are aging and must be compressed with
no lower ratios in later compression rounds.

3.2 Virtual Decompression and Compressions

TVC initiates a new round of compression when neces-
sary, e.g., when conditions for constraining storage are met
(discussed in Section 4). In rounds other than the first, the
compression is executed on differently compressed data. It
is difficult to compute the actual compression ratios based
on data chunks compressed to different ratios. But the actual
compression ratios are needed in enforcing the compliance to
the time-dependent function r(¢), according to equation (2).
To compute actual compression ratios, TVC adopts the
technique of virtual decompression. For the compression
round n, TVC does not compute the compression ratios
based on the compressed data from the last round. Rather,
given the data chunks to be compressed in round n, TVC

Compression r=r(i) r=r(i+1) ry=r(i+2) re=r(k+i-1)
ratios
Raw data | chunk; ‘ ‘ chunki; ‘ ...... ‘ chunkss; ‘ ..................... chunky, |
h / , X % -
| 1 / . ’ -
! I’ /, /l //
Dat(ﬂ ! . .,
. .
after (n-1)™ | chunk;;; | | chunkjy "‘ chunk, ‘ """"" ‘ chunkyq \
compression | ' , — % >
! ! / L’ L s virtual
: l’ )/ e R4 . e decompression
! 1 ! ad . e
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Figure 3: Time-varying compression in rounds. In each round,
data of different ages are compressed to ratios that change
according to a time-dependent function.

virtually decompresses them, by mathematical mapping, to
the original raw data chunks for computing the sequence of
compression ratios. Then, the conditions for ratio sequencing
are considered. Thanks to the chunk-based data unit, virtual
decompression can be supported by recording the number of
original raw data chunks in every compression round.

Virtual decompression enables the generation of a compres-
sion ratio sequence based on the original raw data even after
rounds of compression. Only by virtual decompression could
the compressed data always follow the time-dependent func-
tion r(¢)’s definition. Otherwise, data can only be compressed
following the exponentially decaying pattern, as compression
on compressed data leads to the multiplication of compression
ratios. This would limit the applications of TVC, as r(¢) can
only be an exponential function.

Algorithm [ presents the main algorithm of time-varying
compression for a time series. The input to the algorithm
includes the number of actual chunks to be compressed
and the target overall compression ratio 7. The algorithm
consists of three parts. The first two parts guarantee the two
conditions as specified by Eq. (1) and (2) while approximating
7 by r1,r,...,rr. The third part actually compresses the data
chunks by the ratio sequence.

In the first part of Algorithm 1, virtual compression is
applied to the actual data chunks such that the corresponding
number m of raw data chunks is obtained (line 2). According
to Eq. (1), an initial sequence of compression ratios is ob-
tained (line 4-8). As discussed above, the condition specified
by Eq. (2) is not necessarily satisfied, even if Eq. (1) is
met; and vice versa. Therefore, we refine the sequence to
satisfy both Eq. (2) (line 9-12) and Eq. (1) (line 13-17) by
approximation.

3.3 Compressor and Error Bounding

In a compression round, TVC compresses r; data chunks
by varied compression ratios into a single data chunk. To
guarantee that data in an output chunk are actually compressed
by the same compression ratio, we can have TVC decompress
all the input chunks and then apply the same compressor by
the same compression ratio. But two problems exist. First,
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Algorithm 1: Time-varying compression.
Input: m,: number of data chunks to be compressed;
7: overall compression ratio

ratioSeqQueue«— 0;

/* To ensure the condition of Eq.(l) */
m <—virtualDecompress(m,);

seqSum<—0, j«—0,i<-0;

while segSum< m do

j+=1;

seqSum+=r(j);

ratioSeqQueue.enqueue(r(j))

® 9 AW

end
/* To guarantee the condition of Eq.(2) */
9 while j-i+1>m/F do /] j—i+1=k for Eq.(2)
10 j+=1
1 seqSum+=r(j);
12 ratioSeqQueue.enqueue(r(f));
/* To approach Eq.(1)"s equality condition */
13 while segSum> m do
14 i+=1;
15 seqSum-=r(j);
16 ratioSeqQueue.dequeue();
17 end
18 end
/* To compress chunks by the ratio sequence */
19 while ratioSeqQueue.size> 0 do
20 ‘ compressOneChunk(ratioSeqQueue.dequeue());
21 end

as TVC takes iterative compression rounds, decompression
before compression is highly inefficient. Second, if lossy
compression is used, the decompressed data is imprecise.
Rounds of decompression and compression can lead to a high
deviation from the original data. A proper error bound on the
lossily compressed data is desirable to users.

To avoid the above two problems, TVC requires the
compressor to have the following three properties. First,
compression on previously compressed data does not require
decompression. Second, decompression on data compressed
multiple times works the same way as on data compressed
once. Third, the error bounds must be easily computed for
the rounds of compression. While these properties seem to
be restricted, proper approximation or representation models
for time series data [26, 44, 69] are feasible choices, e.g.,
piecewise linear approximation (PLA) [27,60, 87].

Among the various lossy compressors, PLA-based com-
pressors compress a time series by approximating it using line
segments. According to the related work [68], a line segment
built from two line segments is the same as the line segment
built from the original time series data, if line segments
are properly constructed. Decompression on data at any
round only needs to compute the linear function for a given
time. Moreover, the mean bias error (MBE) of PLA can be
computed easily even after rounds of compression. MBE is a
commonly used metric for evaluating approximations [64, 81,
82]. For the ith compression round, MBE; is the sum of round-
relative error MBE;_; ; in previous rounds, i.e., MBE; =
Z;ZIMBEJ;],]', where MBEJ',LJ' = %Zzzlxj_lvk —Xjk- Here,
xj x represents the decompressed value.

TVC accepts the specification of PLA compressors cur-
rently. TVC records the compression ratio and the error rate
for every data chunk. After rounds of compression, there
would be a time when some old data chunk has a high
compression ratio and thus a high error rate. Keeping data
at an extremely high error rate is no better than discarding
it. Therefore, TVC allows users to specify a compression
ratio 7,4y OF an error rate e,q.. 1 VC automatically discards
data compressed at a ratio higher than 7,4, or at an error rate
larger than e, If the compressor and the compression ratio-
defining function r() are properly chosen, TVC can achieve
functionally lossless compression [54] for a long range of data,
as well as supporting advanced analytical workloads [70].

4 TVStore: Automatic Storage Bounding

We propose TV Store that automatically bounds time series
storage to a user-provided size using TVC as data keep being
ingested. It allows users to set a recent data volume D, that
is not to be compressed. After reaching D,,, TVStore starts
the compression at a proper time to avoid overrunning the
storage bound or losing too much information. It monitors the
storage consumption and initiates a process of time-varying
compression when needed. Hence, three key design choices
are made here:

How to compress: Shall compression be applied continu-
ously to cold data in a batch-processing manner or hot
data in a stream processing way [3]?

What ratio to compress: Will all compression ratios be
feasible for storage bounding? If not, what is the proper
compression ratio interval?

When to compress: When would be the proper time to start
a TVC process that is neither too early to lose too much
data nor too late to exceed the storage bound?

4.1 Compression on Hot Data or Cold Data?

TVStore exploits time-varying compression to bound the
storage space. Compression can be applied to hot data as
stream processing does [3]. It can also be applied to cold
data in a batch processing mode. As TV Store targets resource
limited environments, it is desirable to reduce the number
of compression times and I/O accesses such that power
consumption, memory utilization, and processor utilization
can be reduced.

Consider the procedure of time-varying compression pre-
sented in Section 3. The compression ratios are equal to the
segment sizes, in terms of data chunk numbers. As data in
the largest segment is compressed the most times, it can be
shown that such a segment after multiple compression rounds
of TVC has a smaller number of compression times by cold-
data compression than by hot-data compression.

In a compression round, a sequence of k segment sizes of
r(t), t=i,...k+i—1is generated, as shown in Figure 3. Let
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F (k) be the compression times of the kth segment after this
compression. For the first round of compression on cold data,
k segments are compressed into k chunks, with F.(k) = 1.

As for hot data, in the compression round with the same
data volume, the kth segment must be compressed from
multiple smaller segment of chunks, since it continuously
compresses smaller chunks into larger chunks whenever
possible. To obtain the kth segment, we need segments with
sizes summarized to ry = r(k+i— 1), i.e.,

k+i—2
= X ar(t) 3)
1=j

Following Eq. (3), the compression times Fj (k) of the kth
segment is represented as follows:

k+i—2
Fyk)=1+4+ % aFy(t) 4)
t=j

As a result, F.(k) < Fy(k), i.e., F(k) has a smaller value in
cold-data compression than in hot-data compression.

For the latter rounds of cold-data compression, the kth
segment will also be compressed from segments with smaller
sizes. That is, Eq. (4) also applies to the latter rounds of
the cold-data compression case. However, when the nth
compression round is triggered, the largest segment &, will
be compressed from much smaller segments, the largest of
which is k,_1. Segments from k,,_; 4 1 to k,, do not exist until
the nth compression.

In comparison, the k,, segment of the hot-data compression
method must be compressed from segments having the largest
one equal to k, — 1. It can be shown that k,—1 < k, — 1 < kj,.
Considering Eq. (4), it follows that the cold-data compression
has a smaller number of compression times than the hot-data
compression. Hence, we have the following design principle.

Principle 1. For a given range of time series data and a
sequence of compression ratios, iterative compressions over
cold data can reduce the compression rounds as compared to
the continuous compression method on hot data.

The result of Principle 1 has two indications for the
design of TVStore: 1) TVStore should employ the cold-data
compression rather than the hot-data compression to have a
smaller number of disk I/Os; and, 2) TVStore can have higher
performance using the cold-data compression, as the duration
of and the cost of compression are smaller (§6.2 and §6.4).

4.2 Proper Compression Ratio Interval

A proper compression ratio is required to guarantee that
the storage bound will never be violated. To compute the
overall compression ratio, TV Store monitors the average read
throughput v, from the disk and the average write throughput
vy to the disk, as well as the ingestion throughput v; by
applications. Next, we describe how the proper compression
ratio interval can be deduced as a design choice.

Consider when compression is started for the first time. The
saved storage size AD by compression must be larger than the

ingested data volume D; in the whole compression process.
Let D, be the data volume to be compressed and read from
the disk. Let D,, be the data volume after compression and
written to the disk. AD is equal to the difference of D, and
D,,. Hence, we have the following equations:

AD =D, —D,, > D; &)

Here, D,, is decided by the original data volume D, and the
relative compression ratio r, i.e.,:

D, = lD, (6)

re
We assume that compression, reads and writes run concur-
rently for different time series. Reads take the most time. As a
result, the time to generate data volume D; is about the same

as that for reading D,. Thus, we have:

D; D i
S = 5 pi="'p, )
ViV Vr
Combining the above three equations, we have the following:
re> —" (8)
Ve — Vi

Eq. (8) points to the following two rules. First, the appli-
cation ingestion throughput must be lower than the disk read
throughput to enable the initiation of compressions. Second,
the difference v, — v; between the disk read throughput and
the application ingestion throughput is the throughput that the
disk allows for filling more data besides v;. The ratio between
v, and v, — v; is the lower bound on the ratio for compressing
the data read from the disk. That is, the following design
principle exists.

Principle 2. 7o avoid overrunning a storage bound, the
compression ratio r. for each round of compression must
be no smaller than vrvj o where v, is the average read
throughput from the disk and v; is the ingestion throughput by

applications.

Hence, we make the design choice in TV Store regarding
the compression ratio r. for each round of the iterative
compression by Principle 2.

The overall compression ratio 7 can be deduced based on
the round compression ratio r.. Since r, is greater than 1, 7
increases as compression rounds increase. If the user-specified
max compression ratio 7y, is reached and overly-compressed
data began to be deleted, then data will need to be deleted
in every later round. If deletion exists from the first round, it
will greatly reduce the efficacy of TVC. Hence, r. should be
at least smaller than r,,,, to avoid this case. Thus, we have a
loosely feasible range for r, i.e., [#_’vt, Fmax)-

When r. = Vrvjw and AD = D;, compression will be
initiated consecutively. This will not only reduce the system
performance but also wear out the storage device. If r. = 74y,
TVStore is not storing data with as much information as
possible. As a general rule, TVStore sets 7 to the average of
the two extremes, i.e., r, = %( Yt Foax)-

Vr—Vi
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4.3 Compression Initiation Time

TVStore initiates compression based on the monitored data
storage. Compression is initiated when the data volume
reaches a threshold D.. For a given bound D,, on the storage
space, TVStore must guarantee that D, is not exceeded at any
time during any of the compression rounds. The maximum
storage consumption in all compression rounds is the key to
decide the threshold D.. We first find out when this maximum
storage consumption is reached.

Figure 4 illustrates two compression rounds of TV Store.
Consider the first round of compression. The threshold D,
is the data volume that triggers the first compression round.
7y is the target compression ratio of this first round. The
meanings of D, D,, D,, D,,, and D; are given and illustrated
in Section 4.2 and Figure 4. v; and v, are the ingestion
throughput by applications and the average read throughput
from the disk respectively. The data D, to be compressed is
the difference between D, and D,, while D, and 7| decides
the written data D,, after compression, i.e.,:

D, =D.—D, )

Dw :Dr/Fl (10)

A peak of storage consumption occurs at the time right
before a compression round finishes, e.g., before 2 in
Figure 4. At that time, the original data for compression is
not deleted and the compressed data is written to the disk. Let
the first peak storage consumption be D, we have:

Dy=D,+D;+D,+D, (11)

According to Section 4.2, when compression rounds
follow one another consecutively, data is kept with the most
information, i.e., taking up the most storage space. Then,
we can deduce from the first compression round to the kth
compression round. Due to the limit of space, we leave out the
straight-forward deduction process. For the kth compression
round with the target compression ratio 7, the peak storage

consumption Dy, is:
1 v k=11 Vi
Di=D,+(14+—+—=)Dy+Di) L (=—+—) (12
Tk Vr x=2 Iy Vy

From Eq.(12), we can deduce two possible cases for the
maximum storage consumption. If ?1? + :Tl is no greater than
1, the maximum storage consumption is Dp; otherwise, it is
Dy.. From Section 4.2, we can deduce that i + :—: <1. As
a result, the maximum storage consumption occurs at the
first round of compression.

Thereupon, TV Store decides the compression initiation
time based on the maximum space consumption. That is, we
only need to guarantee that D; < D,,. With Eq.(11), we have:

Dy =D,+D;+Dy,+D, <D, (13)

Combining Eq.(7), Eq.(9), and Eq.(10), we deduce that:
i1
Do+ (= + - +1)(Dc=D,) < D, (14)

Hence, with Eq.(15) deduced from Eq.(14), the following
design principle stands.

Data
’ Recent data?ﬂ ’ Volume threshold D N Volume bound D,, volume
l — =

t1

i [Reduced data volume
AD
Compression :
e |
t2

Compression 7} _ Losslessly
rl finishes compressed data
t3

Newly ingested data D;

Compression
t4 | : -
r2 finishes
[0}
e Lossily compressed data D,, || Data D, to be compressed
E

Figure 4: Storage bounding processes of TVStore: 1) at 71,
compression round r1 starts when data volume reaches D,; 2)
when compression round r1 finishes at 2, storage space AD
is saved through compression; and, 3) compression round 72
starts at #3, when data volume reaches D, again. Data ingested
during compression is D;. Recent data D,, is not compressed
lossily. The upper bound D,, of data volume is never exceeded
at any time.

Principle 3. Let D, be the bound on the storage space and
D, be the recent data not to be compressed. Let v, be the
average read throughput from the disk and v; the ingestion
throughput by applications. Given the compression ratio 7 for
a compression round, the threshold D, of data volume to start
a compression must satisfy the following condition.

vi 1
D, < (DM—DO)/(V—'+;+1)+D0
r

15)

TVStore initiates compression rounds based on results
of Principle 3. Storage size and data volume monitoring
is needed in the implementation of TVStore such that
compression rounds can be initiated on time. Besides, the
proper collection of the average metrics v; and v, is equally
important to compute the initiation time.

5 Implementation of TVStore

We implement TVStore by extending an open-source time
series database (TSDB), Apache IoTDB. The system ar-
chitecture for TVStore is presented in Figure 5. TVStore
replaces the TSDB storage engine by the time-varying
compression/decompression storage engine. Ingested data
directly go to the underlying TSDB storage. A monitoring
thread runs in the background to automatically initiate time-
varying compression (§3) on data in the storage when
conditions are met (§4). Data are decompressed before being
returned to the query engine. Hence, all the database functions
originally supported by the TSDB remain supported. This
architecture also allows complex analysis functions, which
might be implemented in the query engine in the future, to be
supported directly.

The TVStore storage engine accepts user-defined com-
pressors for time-varying compression and time-dependent
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Figure 5: The architecture of TVStore: the filled components
are TVStore’s extensions over the time series database.

functions for compression ratios, as long as the corresponding
Java interfaces are complied with. We have implemented
a PLA-based compressor as the default compressor. While
exponential, power-law and constant functions are all sup-
ported as the time-dependent ratio functions, TV Store uses
the power-law function as the default. For time-varying
compression, TVStore allows users to set the upper bound
of storage space and the largest compression ratio permitted.
Data volume monitoring is added to the storage engine to
enable automatic storage bounding and to trigger time-varying
compression rounds. Besides, we collect average metrics v;
and v, by periodical monitoring and synopsis [21].

In the following section, we describe how the time-varying
compression/decompression storage engine of TV Store inte-
grates with the original TSDB. The choices for the compressor
are also discussed as part of the TV Store implementation. The
TVStore extension involves about 3000 lines of Java code.

5.1 Storage Engine Integration

In the implementation, the unit of data chunk is a data page in
Apache IoTDB, each of whose data files consists of multiple
data pages. When TVC compresses pages across multiple
files, the involved files will be merged and restructured. Like
the original IoTDB, TVStore keeps statistics and metadata on
time series, as well as compression ratios of pages.

TVStore adds one layer of lossy compression to the two
data-reduction layers of IoTDB. The resulting layers of data
reduction are illustrated in Figure 6. Data within a data
chunk are first compressed by the user-defined compressor.
Then, the encoding techniques are applied to timestamps and
values respectively. Encoding techniques include run-length
encoding [73], Gorilla encoding [71], and delta encoding [10].
Finally, general compression as LZ4 [20] and snappy [32]
is used to further reduce the overall size of stored data. The
latter two layers of data reduction are lossless compression.

Although TVStore can be implemented with other TSDB,
e.g., BtrDB [4] or InfluxDB [43], we have chosen Apache
IoTDB [96] because its storage format enables the co-location
of timestamps and values respectively within a data unit
such that different encoding methods can be used to reduce
data size. Besides, the structure, as well as the statistics and
metadata kept within each data file, facilitates the support of
TVC’s iterative compression procedures.

‘ Lossy Compression

e [ [T Tve ]
[ 7 ]

T1 ‘ n [ V1 ] [ Vn ]
Time Encodmg‘ ‘ Value Encoding

[T 1] e [T Va2 JVi] oo

l Lossless Compression

Figure 6: Layers of data reduction for one data chunk.

5.2 Fixed-Ratio Compressor/Decompressor

The time-varying compression of TVStore requires a fixed-
ratio compressor to be specified. In the implementation,
TVStore adopts a line generalization algorithm as the com-
pressor and uses linear interpolation for decompression.
Line generalization algorithms [95] commonly simplify one-
dimensional curves by repeated eliminations of visually
unimportant points, removing unnecessary details. They are
inherently PLA-based compressors [87]. The number of
preserved points can be set. Hence, the line generalization
algorithm can be used as a fixed-ratio compressor.
Specifically, TVStore leverages the line generalization
method LTTB (largest triangle three buckets) [85], which
is a variant of the widely accepted and used Visvalingam-
Whyatt (VW) algorithm [95]. As compared to other line
generalization algorithms, LTTB has much lower complexity.
It can compress data in almost a single pass, while preserving
visually important points like its counterparts. Simplicity and
data preservation are two key features that lead to our choice
of LTTB, as many users would naturally prefer storing real
data values [13,99], instead of approximate values.
Decompression exploits linear interpolation. Then, the
number of interpolated points between preserved points must
be decided. For evenly spaced time series with constant
spacing of observation times, the number of interpolated
points is computed based on time units. For unevenly spaced
time series, we assume important points over a data chunk
have a similar distribution as points between two important
points. Let p be the number of preserved points divided by
the number of the original points in a data chunk. As LTTB
mainly preserves significant points during compression, we

interpolate Ig((};‘i; points between every two preserved points.

6 Evaluation

To evaluate TV Store, we consider five questions:

1. Can TVStore bound the storage size as expected? (§6.2)

2. How does TVStore’s cold-data compression compare to
the hot-data compression?(§6.2)

3. Can time-varying compression compress data according
to a given time-dependent function? (§6.3)

4. How does compression influence TVStore’s perfor-
mance? (§6.4)

5. Can TVStore answer common queries within reasonable
error bounds? (§6.5)
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ratios of 20x/60x/100x. RRDtool has the same storage bounds as TVStore.

6.1 Evaluation Setup

Compared Time Series Stores: We compare TVStore with
three related time series stores. The first is the closest
state-of-the-art work SummaryStore [3], which continuously
computes predefined summaries on hot data for reducing
data to a target ratio. The second is RRDtool [67], which
bounds storage by deleting data when the storage quota is
reached. Specially designed for monitoring [61], RRDtool has
restrictions on aggregation operations, as well as timestamps
and their spacing. We tried our best to circumvent the restric-
tions to enable comparable evaluations. The last is Apache
[IoTDB [96], the baseline for the TV Store implementation.

Datasets:” We evaluate the time series databases on both
synthetic data and real-world data. We generate synthetic
data with different patterns, including data with even spacing
and that with uneven spacing by the Pareto distribution. We
also exploit two real-world datasets, which contain regularity
patterns and some random noise. One is the public REDD
dataset [50]. The other is a private dataset from one of
our users, denoted as the train-load dataset. REDD dataset
contains several weeks of low-frequency power data for 6
different homes, and high-frequency current/voltage data for
the main power supply of two of these homes. The train-load
dataset consists of the train load metrics for months. The
private dataset is desensitized for the evaluation purpose.

Workloads and configuration settings’: We exploit the
ingestion and the query workloads included in the open-
sourced SummaryStore project when testing synthetic work-
loads. Like SummaryStore’s evaluation, our evaluation uses
time series database as an integrated component in the
testing client, while using python interfaces for RRDtool.
We measure data storage by their final on-disk sizes. We
tune the parameters of both systems so that they achieve the
highest possible performance. The power-law function is used
as the windowing function for SummaryStore and the ratio
generation function for TV Store.

Environmental settings: We evaluate TVStore in two
different settings. The first is simulating the private cloud
environments of medium organizations, while the second is
evaluating cases for edge computing scenarios. Hardware
setup for the first setting includes 2x 12-core 2.2Hz Intel

2Data and workloads — https://github.com/thulab/TV Store-benchmark

tore) and hot data (SummaryStore).

Xeon E5-2650 CPUs, and 370GB DDR4 memory. The
operating system is Ubuntu 16.04.6 and the HotSpot Java
runtime version 1.8.0 is used. The second type has 32GB
memory and an 8-core CPU, providing a 5TB storage space
for the time series database.

6.2 Storage Bounding and Compression Cost

We first evaluate whether TVStore can effectively bound
its storage as data keep being ingested at a high speed, in
comparison to SummaryStore and RRDtool. We ingest each
time series store with STB data by 10 evenly-spaced synthetic
time series. We have not chosen a larger data volume because
SummaryStore cannot process more than this size under the
environmental settings. We carefully tuned the evaluations on
RRDtool to get the best performance, e.g., using rrdcached.
Besides, as RRDtool performs 20 faster given a row larger
than 4KB blocks than a row with a single column, we write
each time series into one file by putting 1000 consecutive
columns in one row.

In the ingestion process, we monitor storage consumption
by periodically inspecting the on-disk size of database files.
TVStore and SummaryStore are set to finally reduce the data
by ratios of 20x/60x/100x, while RRDtool and TV Store
have the same storage bounds. The changes of database
storage sizes and ingestion times are plotted in Figure 7. A
curve longer in the x-axis direction means a longer runtime
for the corresponding test.

Bounding: TVStore and RRDtool effectively bound their
data storage respectively, keeping storage below different
thresholds in all cases. The folds of the storage size curves
are key to the bounding for TVStore. They occur when
the compression process of TVC ends. SummaryStore has
also folds in its storage size curves, which occur due to the
continuous summarization on hot data for data reduction.

Compression cost: TVStore’s cold-data compression in-
volves fewer disk I/Os than SummaryStore’s iterative summa-
rization process, i.e., hot-data processing (§4.1), as reflected
by the fewer folds in TVStore’s storage size curves than
in SummaryStore’s. This result of Principle 1 is further
corroborated by the CDF of compression/merging times
for TVStore and SummaryStore in the 60x-compressed
case (Figure 8). We record the compression/merging times
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Figure 9: Visualization of data compressed by 100x: TVStore

keeps more information than the other systems.

by an extra counter in each window/chunk. The counter
is incremented by one for each compression/merging. If
multiple windows/chunks with different counter values are
merged/compressed, the largest counter is incremented and as-
signed to the resulting window/chunk. While SummaryStore
has windows merged about 70 times in the end, TV Store has
only data chunks compressed for 4 times. TVStore has much
fewer compression times thanks to its compression based on
cold data, instead of hot data, and to its chunking mechanism,
instead of point-level windowing.

6.3 Visualization of Compressed Data

We visualize the value patterns of compressed data to see
how information is preserved by different systems under the
same compression ratio. We experiment with real-world data,
the low-frequency REDD data by extending the dataset to
7.5TB. The extended REDD data has a time range of multiple
millennia. We visualize data at different ages, i.e., within
months, one century, and two millennia. Figure 9 presents the
visualization of the dataset.

TVStore and SummaryStore demonstrate time-varying
patterns, while RRDtool has the time-invariant curves. Sum-
maryStore and RRDtool keep aggregations only. Thus, only
the average values can be visualized for them. In comparison,
TVStore enables the visualization of the decompressed data
that is compressed by 1x, 11X, and 20X respectively.

TVStore can save storage costs by enabling a high-
fidelity overview of the whole range of data using only a
storage space as large as 1.5 percentage of the data volume
(Figure 9). RRDtool can only support similar visualization
on 1.5 percentage of the data for bounding storage by simple
deletion, or, have aggregated values too sparse to preserve
enough information. SummaryStore has only precise data for
recent times and highly different curves for historical times.

Under the same overall data reduction/compression ratio,
TVStore can restore data to almost the same as the original,
while RRDtool and SummaryStore cannot. The reasons are
twofold. First, the implementation of TV Store has exploited
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Figure 10: Ingestion latency: much shorter ingestion times
and lower latencies for TVStore than for other stores.
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Figure 11: 95-percentile query latencies : TVStore has lower
average latencies than SummaryStore and RRDtool in most

cases, except for three minute-length cases.

three-layer data reduction, while the other two stores apply
only general-purpose compressions. Hence, TV Store can have
a smaller ratio for and keep more data by its lossy compression
than the other two. Second, TVStore has adopted a line
generalization algorithm as the compressor, which performs
well at curve visualization. This result implies the importance
of choosing a good compressor.

6.4 Ingestion and Query Performance

Ingestion: As shown in Figure 7, TVStore has much higher
ingestion throughput than SummaryStore and RRDtool in all
cases, leading to shorter curves. In the 20 x-Compressed case,
TVStore ingests about 3 x and 25 x faster than SummaryStore
and RRDtool respectively, achieving a throughput of 766MB/s
or 47.8 million time-value points per second. RRDtool has in-
gestion times about the same length because we have achieved
its upper performance bound by writing 4K row blocks in
all cases. Exploiting cold-data compression is an important
reason for TVStore’s advantage over SummaryStore, while
insufficient compression and thus longer I/O time is a key
reason for RRDtool’s disadvantage.

The corresponding average ingestion latencies are demon-
strated in Figure 10, with IoTDB storing raw data and IoTDB
with two data reduction layers as the baselines. TVStore has a
write latency around /0ms per time-value point. Compared to
the baselines, TVStore’s compression process has little impact
on the normal processing of writes. While RRDtool has stable
and long latencies, SummaryStore has fluctuating latencies
because of summarizations on hot data. We can conclude
from the performance results that higher compression ratios
can effectively improve ingestion performance.

Query latencies: We evaluate queries on data at different
ages, i.e., minutes, days and months. Older data are com-
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Figure 12: TVStore on the edge: all 95-percentile query
latencies are within 2s on 365TB data compressed by 100x.

pressed at higher ratios than younger data. Aggregate queries
on different time lengths are issued. For each combination
of age and length, we issue 100 queries within random time
ranges and record the 95-percentile latencies. Our TV Store
implementation can answer queries 35 and 8.7 x faster than
SummaryStore and RRDtool respectively for the best case
(5.4s vs. 194s and 47s). Figure 11 presents the results.

TVStore has lower latencies than SummaryStore and
RRDtool in most cases, except for the last three cases of
minute-length queries. TVStore’s implementation co-locates
data for a single query. As compared to SummaryStore,
fewer data units need to be accessed for the same query by
TVStore. SummaryStore has to read data distributed across
on-disk storage for processing one query, leading to costly
random disk I/Os. As for the minute-length queries, while
SummaryStore only needs to retrieve some individual key-
value pair, TV Store still has to access and seek a data file for
results, leading to slightly higher latencies.

Query on the edge: We also evaluate the query per-
formance of TVStore under the edge-computing condition,
which is a typical application scenario for TVStore. The
second experimental setting (§6.1) is exploited. Using the
REDD dataset, we extend it to 365TB with 365 time series
that span century time and then compress it by 100 times.
We issue queries on data aging one year, one decade and
one century. The resulting query latencies are presented in
Figure 12. All queries can be responded within a 95-percentile
cold-cache latency of at most 2.7 seconds, even for the longest
length and on the oldest data.

6.5 Query Precision on Compressed Data

We evaluate whether TVStore can respond queries on the
lossily compressed data within reasonable error bounds,
as compared to the state-of-the-art work SummaryStore.
RRDtool is not evaluated as it does not support queries
approximating any time range that does not align with
intervals with precomputed aggregations. Here, we mainly
consider the commonly used aggregation queries, which are
the basics of many complex analytical operations.

Synthetic data: We first consider the evenly-spaced syn-
thetic data randomly generated at the 1000Hz frequency.
Both TVStore and SummaryStore reduce data by 100 times.
As they process count, max and min queries with almost
zero errors, we present only the 95-percentile error rates
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Figure 13: 95-percentile query errors on evenly-spaced
random time series reduced by 20/60/100 times: TV Store
(top two rows) vs. SummaryStore (bottom two rows). Sum-
queries are issued on data at different ages and lengths
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Figure 14: 95-percentile query errors on random time series
with Pareto-distributed spacings: TV Store (top two rows) vs.
SummaryStore (bottom two rows). Queries sum/count/max
are issued on data at different ages and lengths.

of sum queries in Figure 13. TVStore answers queries
almost precisely in all cases, except for queries with the
smallest length on the oldest data. The minor error rates for
such queries are mainly due to the high compression ratio
and the high requirements on data details. In comparison,
SummaryStore has non-zero error rates for queries with the
smallest length at all ages due to the summary-based approach
with only two data-reduction layers.

We also experiment on data with timestamps generated
according to the Pareto distribution (o0 = 1.2) and values
generated uniform randomly. Data are compressed by 100
times before querying. TVStore returns query results almost
precisely, with approximately zero 95-percentile error rates,
while SummaryStore occasionally has extremely high error
rates (e.g., le+04 in Figure 14). In comparison to SummaryS-
tore’s incapability in handling unevenly-spaced data, TV Store
properly compresses and decompresses the data by its point-
oriented compressor based on line generalization algorithms.
The results demonstrate the feasibility of error bounding by
TVC, if proper compressors are employed.

Real-world data: We test queries on the real-world dataset
of train load monitoring. The 6.6TB train-load dataset has
100 individual time series, each of which has about 4.5
billion points. We only evaluate TV Store on this dataset, as
SummaryStore cannot support simultaneous ingestions by this
number of time series streams. Data is compressed 100 times
before evaluation. The results are presented in Figure 15. In
most cases, TVStore answers queries with error rates below
2%. The error rates of a few max/min queries are slightly
higher, at about 1, due to the high compression ratios of the
corresponding old data, as well as the irregular patterns of the
real-world data.
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Figure 15: 95-percentile query errors on train-load data
by TVStore: queries sum/count/max are issued on data at
different ages and lengths.

6.6 Discussion

Our evaluations examine multiple commonly-used statistical
operations as supported by the query engine of IoTDB. As
high-level analysis operations are mainly implemented in the
query engine, TV Store can directly support such operations
when the corresponding query engine is used. In comparison,
some time series store requires prior knowledge on users
analysis requirements for each application [3]. Besides, as
TVC can be integrated with different fixed-ratio compressors
and time-dependent ratio functions, better support for learning-
based analysis is possible given carefully chosen compressors
and ratio functions [7,70]. We leave the choice and the design
of compressors and ratio functions for future work.

7 Related Work

Time series data compression. Lossless and lossy compres-
sion methods exist for time series data. Lossless compression
can reconstruct the original data accurately. For lossless
compression, specialized compressors for integer [10, 33,
55, 73] and for floating-point values [57, 71] outperform
general-purpose compressors [20,28,32,58,66]. It is common
practice that general-purpose compression is applied along
with specialized compressors [43,54,96] in time series stores.

Lossy compression can achieve a much higher compression
ratio than lossless compression by giving up partial informa-
tion. Compression by linear models or PLA (piecewise-linear
approximation) [13, 60, 87,99] has been extensively used in
practice for its simplicity. Line generalization algorithms can
be considered as variants of the PLA method and used for
time series compression [25,46,52,74,85,95]. More complex
models based on polynomials [30] or transformations [11, 16]
are also considered as compressor alternatives in model-based
time series stores [44,56], which select from a set of models to
compress time series with the least errors. Lossy compression
methods commonly optimize the compression ratio towards
specified error bounds, but it is difficult for users to set the
bounds beforehand for real-world data. Few research work
on compressors exists for optimizing error bounds towards a
given compression ratio.

Our time-varying compression framework TVC is or-
thogonal to the above compression methods. As long as a
compressor can compress data by a given ratio and satisfy
the three properties (§3.3), TVC can take advantage of it to
enable time-varying compression.

Time series stores. To manage the ever-increasing volume
of time series data, most time series stores either have a
native architecture to support a distributed deployment such as
InfluxDB [43], or exploit a distributed storage for scalability,
e.g., KairosDB [47] on Cassandra [53], TimescaleDB [90]
on PostgreSQL database [72], Druid [100] on HDFS [35],
BtrDB [4] on Ceph [97], Chronix [54] on Solr [84], and
Peregreen on an object store [94]. While data distribution
techniques are also applicable to TVStore, TVStore focuses
on data reduction and storage control.

Besides lossless and lossy compression, time series
databases commonly exploit the data retention policy to
reclaim storage space by removing data exceeding a time
period [42] or exceeding a storage quota, e.g., RRDtool [67],
for further storage reduction. ModelarDB [44] reduces
storage and query latency by time series approximation
models with user-defined error bounds. Some models can also
be exploited by TVC of TVStore. Adopting common stream
processing methods [17,21], SummaryStore [3] can reduce
storage to a specified ratio by keeping only data summaries,
if data analytical requirements are known beforehand for
each application. SummaryStore works only with a limited
set of summaries and cannot support data restoration.

In comparison, TVStore automatically bounds time series
storage by TVC. It requires neither prior knowledge on exact
retention time nor that on query workloads. TV Store enables
users to respect varied data significance by integrating a
chosen compressor and a time-dependent function for their
applications. It can support data restoration given properly
designed compressors/decompressors.

8 Conclusion

The fast increasing volume of time series data is outpacing the
increase of users’ affordable storage space. It is desirable to
have a time series database that can automatically control the
time series data storage, while preserving as much information
as possible and in a manner considering data ages, which
are correlated with data importance. To the best of our
knowledge, TVStore is the first time series store that achieves
this goal. Leveraging the proposed time-varying compression,
TVStore bounds the time series database storage by iterative
compressions that are initiated at rigorously chosen proper
times and ratios. Extensive evaluations based on synthetic and
real-world data validate the storage-boundedness of TV Store
and its time-varying pattern of compression. Besides, The
advantage and efficacy of TVStore are also demonstrated by
its superior performance over three state-of-the-art or state-
of-the-practice related works of time series store.
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