é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

TVStore: Automatically Bounding Time Series
Storage via Time-Varying Compression

Yanzhe An, Tsinghua University; Yue Su, Huawei Technologies Co., Ltd.;
Yuqing Zhu and Jianmin Wang, Tsinghua University

https://www.usenix.org/conference/fast22/presentation/an

This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.
February 22-24, 2022 « Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on
File and Storage Technologies
is sponsored by USENIX.

TVStore: Automatically Bounding Time Series Storage via
Time-Varying Compression

Yanzhe An', Yue Su?f Yuqing Zhu®'# Jianmin Wang!
ITsinghua University, 2Huawei Technologies Co., Ltd.

Abstract

A pressing demand emerges for storing extreme-scale time
series data, which are widely generated by industry and
research at an increasing speed. Automatically constraining
data storage can lower expenses and improve performance,
as well as saving storage maintenance efforts at the resource-
constrained conditions. However, two challenges exist: 1)
how to preserve data as much and as long as possible within
the storage bound; and, 2) how to respect the importance of
data that generally changes with data age.

To address the above challenges, we propose time-varying
compression that respects data values by compressing data
to functions with time as input. Based on time-varying
compression, we prove the fundamental design choices
regarding when compression must be initiated to guarantee
bounded storage. We implement a storage-bounded time
series store TVStore based on an open-source time series
database. Extensive evaluation results validate the storage-
boundedness of TVStore and its time-varying pattern of
compression on both synthetic and real-world data, as well as
demonstrating its efficiency in writes and queries.

1 Introduction

Time series databases are becoming the most popular type
of databases in recent years [2]. We are witnessing a grow-
ing demand for time-series-specific storage and processing
from many fields such as cluster monitoring [91], Internet
of Things [6], finances [80], medicine [51], and scientific
research [63]. In fact, the fast increasing volume of time series
data has placed an unprecedented requirement on computing
resources, especially storage space [6, 79].

An effective storage management strategy that can con-
strain the storage space is desirable and important for time
series databases. While large organizations can afford the
storage to hold the ever-growing time series data, small or
medium-sized entities prefer to strike a good balance between
data volume and storage cost [45]. Besides, storage space
is restricted in some specific deployments, e.g., real-time
monitoring at far remote sites [8, 19,78]. On the other hand,

Co-first author. Work done at Tsinghua University.
#The corresponding author (zhuyuging @tsinghua.edu.cn).

as the significance of time series data is highly correlated with
the age of the data [22,37,89], it is desirable to have a storage
management strategy that takes data ages into account [3,7].

Significant prior work has addressed the storage-control
problem by compression, which can be lossless or lossy. Loss-
less compression [10,33,57,71,73] preserves the complete
data, but its achievable upper bound on compression ratio [93]
might not be satisfactory for applications. Hence, time series
databases commonly control storage consumption by directly
discarding data older than a given time [43] or exceeding a
storage threshold [67]. But discarding historical data causes
a loss [94]. For example, historical data are crucial for long-
term observations and enabling new scientific knowledge
creation in the future [63]. Besides, time-based retention
policy might not bound the data volume in case of unevenly
spaced time series with unknown arrival intervals. Another
common approach is to exploit lossy compression [15,41,65],
which preserves partial data and trades off precision for space.
But existent approaches to lossless and lossy compression
are only best-effort about the final size of compressed data
size [13,24,99].

In this paper, we take a new approach towards controlled
storage space for time series stores. We consider the problem
of automatically bounding the storage of a time series store
by compression. To enable this, our key insight is that time
series data can be compressed losslessly or lossily according
to its importance, which is in turn related to its age, as users
commonly accept information loss on less important old
data [12,14,23,38,40]. We control the storage space by time-
varying compression, which compresses data in a sequence
of ratios defined by a time-dependent function. Inspired by
time-decayed windowing of stream processing [9, 22], our
design of time-varying compression takes the chunking-and-
varied-segmentation approach, accepting user-defined time-
dependent functions and fixed-ratio compressors.

To automatically bound time series storage by compression,
three fundamental challenges exist. The first is deciding when
to start the time-varying compression, i.e., the proper moment
when 1) it is not too late that the storage space is exceeded
during compression; and, 2) it is not too early that unnecessary
compression is applied to some recent data, for preserving
as much information as possible. The second challenge is
computing the proper compression ratio r, given which the

USENIX Association

20th USENIX Conference on File and Storage Technologies 83

sequence of compression ratios can be deduced using a time-
dependent function. » should not be too large to prevent
discarding information unnecessarily and meantime not be
too small to exceed the storage bound. The third challenge
is finding out how to run the time-varying compression, i.e.,
whether to compress data in an online stream processing
manner or in a batch processing manner. The goal is to reduce
computing resource consumption and improve performance.

To address these challenges, we propose TV Store, a storage-
bounded time series store built upon time-varying compres-
sion. TVStore can automatically and effectively bound the
time series storage even if data keep being ingested. We
implement TV Store by extending the storage engine of an
open-source time series database named Apache IoTDB [96].
Hence, all the database functions and operations remain
supported in TVStore. We evaluate TVStore in extensive
experiments based on synthetic data and real-world data.
Results validate the storage-boundedness of TVStore and
its time-varying pattern of compression. The compression
technique employed TV Store incurs low overhead compared
to its baseline. It is efficient in writes and reads, 3 x(25x)
and 35x(8.7x) faster than the state-of-the-art(state-of-the-
practice) related works [3,67] respectively. Under the same
conditions, TV Store can respond to queries with much lower
error rates in most cases than the related work.

In sum, we make the following contributions in this paper:
e We propose a time-varying compression framework

TVC, which can compress data by varied ratios complied
with a given time-dependent function that corresponds
to the age-varying importance of time series data.
We design a time series store TV Store that can automati-
cally run the time-varying compression framework TVC
at the proper time, effectively bounding the storage space
to a specific threshold while preserving data according
to the time-varying importance for applications. To the
best of our knowledge, TV Store is the first time series
store that can automatically bound its storage space by
time-varying compression patterns.

We implement TV Store based on an open-source time

series database', introducing a three-layer data reduction

scheme and exploiting a line generalization algorithm as
the fixed-ratio compressor for TVC.

* We run extensive experiments using synthetic and real-
world data to demonstrate the efficiency and advantage
of TVStore in comparison to three related time series
stores, as well as to validate its storage-boundedness and
time-varying pattern of compression.

L]

2 Background and Motivation
2.1 Why Constrain Storage

Time series databases are gaining an increasing popularity [1].
Rather than processing time series as streams and analyzing

Uhttps://github.com/thulab/TVStore

300

° --=-- Uncompressed
E 200f — Time-Invariant Compressed A ""'""'.'l“lr"hsl
< 100 AR GHERY
308
° ---- Uncompressed
=] 2007 — Time-Varying Compressed
= 100 ; i
0 4

2012-09 2012-12 2013-03 2013-06 2013-09 2013-12
Time

Figure 1: Time series predictions by data compressed
in the time-varying (TV) vs. time-invariant (TI) manner.
Predictions lie in the gray area. TV-compressed data have
varied compression ratios for data at different ages, while
TI-compressed data have the same compression ratio at all
times. Both cases have the same overall compression ratio.

only once, mounting demands have emerged for keeping time
series data for future analysis [94]. But time series data are
generated at a growing speed that is outpacing the increase of
computing capabilities [17,79]. Many application scenarios
cannot afford enough computing resources such as storage and
network bandwidth to accommodate the processing needs for
time series data. Storage-bounding compression can enable
the control of storage cost.

Limited storage expense. Many medium or small entities
have to limit their expense on storage in their daily operations,
even though the public clouds have the capacity to keep all
their data [94]. As value is yet to be extracted from the huge
volume of time series data, it is desirable to automatically
keep as much data as possible within the storage constraint.

Sensors of a connected car can generate about 30 terabytes
(TB) of data per day [62,77]. Time series data is among the
major components of the generated data. To hold all the data
on such moving vehicles, large disks are installed. Since a
30TB disk can cost around $1200, a month’s worth of data can
fill up a 960TB disk, causing a cost of $30,000. This adds an
unrealistic amount to a vehicle’s price, but keeping as much
data as possible can enable valuable data analytics [77, 83].

Limited computing resources. In the oil and gas industry,
a typical offshore oil platform generates more than 1TB of
data [19] daily. But common data transmission via satellite
connection allows only a speed from 64 Kbps to 2Mbps
for these offshore oil platforms. If all data are transmitted
back for processing, it would take more than 12 days to
move 1 day’s worth of data to the processing backend [8].
Data compression is demanded for reducing data in both
transmission and storage.

Scientific research applications nowadays are producing
too much data to be stored or processed efficiently. For
example, cosmological simulations generate petabytes of data
per simulation run [34] and climate simulations generate
tens of terabytes per second [29]. Such large volumes of
data are imposing an unprecedented burden on storage and
computation. Data reduction is necessary to enable data
processing and analytics within a reasonable amount of
resource and time [92].

84 20th USENIX Conference on File and Storage Technologies

USENIX Association

o15 -
© F i
4 Y
g1
(2]
9]
5 ° —— Attime t
§) ---- Attime t + At
0 500 1000 1500 O 50 100 150 200
Age Data Chunk Sequence Number

Figure 2: Compression ratio sequences generated by a
function of the data age at time ¢ and ¢ + At, for reducing
different data volumes to the same size, i.e., 200 data chunks.
Data volumes increase with time.

2.2 Time-Varying Importance of Data

The importance of time series data changes along with time,
as reflected by applications’ favoring recent data over old
data [5, 18,31], or favoring some events at certain moments
over others [49,83]. Time-changing importance of data in fact
commonly exists in natural and scientific phenomena [75,
86, 98]. As a result, we have seen a plethora of research
on data series analysis and prediction considering the time-
changing pattern [9,22,36,37,89]. Figure 1 illustrates how the
importance of data varies with time in time series prediction,
which is widely used in applications [39,48,59,76,88]. Recent
data have dominant impact on the result of prediction, making
the time-varying compression outperform the common time-
invariant compression.

Time-changing importance of time series data can be
exploited to form time-varying compression. For important
data, we compress them losslessly or with a low ratio by lossy
compression. For unimportant data, we compress them by a
high compression ratio. As time series data can be identified
by timestamps, we use a time-dependent function to denote
the changing importance of data. Hence, the compression
ratios can also be deduced from the function. Time-varying
compression can suit users’ requirements on data analysis
well and save storage space to the most extent. As shown in
Figure 2, the power-law function 7 with B = 1 is used for
depicting time-changing importance of data and exploited to
define time-varying compression ratios in both graphs. As
data keep arriving, the compression at a later time reduces
more data to the same volume as that at an early time, but by
higher ratios as generated according to function 5.

2.3 Automatic Compression and Bounding

To meet the above requirements of time series applications,
we propose time-varying compression that respects the time-
varying importance of time series data. Furthermore, we
propose the design of a time series store that automatically
bounds the total storage space to effectively control costs. To
this end, compression must be initiated at proper moments
to cap the overall storage space, as data increase. The
compression ratios must be computed automatically, with
compressions initiated at proper moments. These moments
must be computed carefully such that users can keep data

to its highest precision as long as possible. We must deduce
the proper moments for compression initiation when 1) it
is not too late that the storage space is exceeded during
compression; and, 2) it is not too early that unnecessary
compression is applied to some recent data or that an
improperly high compression ratio is used. Besides, when
lossy compression is used, users would need the overall error
rates for understanding the data analysis results they could
expect. The error bound computation must evolve along with
time-varying compression. And, users are allowed to request
the removal of data with high error rates.

Challenges: As a result, two main challenges exist in
automatically bounding the time series storage by time-
varying compression: 1) how time-varying compression
can be executed on an ever-increasing volume of data and
with error bounds computed, when the compression ratios
keep changing as shown in Figure 2 (§3); and, 2) how to
automatically decide the conditions for running time-varying
compression such that storage space is always bounded but
not too much (§4).

3 Time-Varying Compression

Given a time series, time-varying compression (TVC) com-
presses it to an overall compression ratio no smaller than a
user-specified threshold ». TVC compresses data by the unit
of chunk, which is time series data within a time interval.
The compression ratios vary for different chunks according
to a time-dependent function r(¢)’s definition, where the
input ¢ is a data chunk’s age as relative to the most recent
timestamp of the time series. TVC enforces the compliance to
different compression ratios defined by r(¢). The benefits
of this compliance is that different r(¢) can be used for
various use cases [22]. Provided with properly designed r(z)
and compressor, TVC can even achieve functionally lossless
compression [54] for a long range of data.

The key challenge of time-varying compression is how to
continuously preserve the compliance with any r(t) definition,
when a data chunk’s age increases along with the data volume.
To address this challenge, TVC initiates rounds of compres-
sion on data chunks iteratively. Figure 3 overviews time-
varying compression in rounds. Later rounds of compression
must execute on differently compressed data. Two problems
must be tackled: 1) how to compute the correct sequence of
compression ratios to enforce the compliance to a given ()
(§3.1, §3.2); and, 2) what properties a compressor must have
to guarantee a feasible time-varying compression process,
besides the fixed-ratio requirement(§3.3).

3.1 Ratio Sequencing and Data Chunking

For an overall compression ratio 7, TVC first finds a se-
quence of compression ratios 71,77, ..., 7, defined by the time-
dependent function r(f). The average of the compression
ratio sequence ry,72,...,rx should approximate 7. The time-

USENIX Association

20th USENIX Conference on File and Storage Technologies 85

dependent function r(¢) produces a compression ratio when
given an integer ¢. Here, a smaller ¢ is a time interval closer
to the most recent time of a time series. Decay functions [3,
22,75] commonly used in time series analysis can be used for
r(t), e.g., exponential function (e™) and polynomial/powerlaw
function (¢P). r(t) can also be a constant function (C), but then
TVC degrades to a common lossless/lossy compressor.

We assume the data for compression is kept in the unit of
chunks, as time series stores commonly keep data in units
like chunk [96] or block [4,43]. TVC executes compression
by the unit of chunk. To guarantee that data are compressed
to the compression ratio sequence ry,72,...,7,, T VC groups
r; data chunks into the ith segment. Each segment is then
compressed to an output chunk. Hence, the ith chunk of the
compression output has a compression ratio r;, complying to
the definition of r(t).

Moreover, the compression ratio sequence must guarantee
that 1) all data chunks to be compressed are actually pro-
cessed; and, 2) the actual compression ratio is no smaller than
7 to avoid exceeding the storage bound. Hence, the sum of
compression ratios must be no smaller than the number m
of raw data chunks to be compressed. Besides, the average
of compression ratios must be no smaller than 7. We then
approximate 7 by the average of the smallest sequence of
ri,ra, ..., 1y that satisfy the following equations:

2k >m 1)
m/k>F 2

It is possible that no such sequence complied with r(z) is
found to satisfy both of the two equations, if | = r(1). Hence,
TVC allows the compression ratio sequence r; to be r(i),
with ry = r(k+i—1). But TVC requires that the sequence
r1,r2,...,rx is non-decreasing, which means that r(r) must
be a non-decreasing function. The condition is necessary to
avoid that some data chunks have a lower compression ratio
in later rounds, while they are compressed in a higher ratio
in a previous round. In fact, this condition naturally follows
from the fact that data are aging and must be compressed with
no lower ratios in later compression rounds.

3.2 Virtual Decompression and Compressions

TVC initiates a new round of compression when neces-
sary, e.g., when conditions for constraining storage are met
(discussed in Section 4). In rounds other than the first, the
compression is executed on differently compressed data. It
is difficult to compute the actual compression ratios based
on data chunks compressed to different ratios. But the actual
compression ratios are needed in enforcing the compliance to
the time-dependent function r(¢), according to equation (2).
To compute actual compression ratios, TVC adopts the
technique of virtual decompression. For the compression
round n, TVC does not compute the compression ratios
based on the compressed data from the last round. Rather,
given the data chunks to be compressed in round n, TVC

Compression r=r(i) r=r(i+1) ry=r(i+2) re=r(k+i-1)
ratios
Raw data | chunk; ‘ ‘ chunki; ‘ ‘ chunkss; ‘ chunky, |
h / , X % -
| 1 / . ’ -
! I’ /, /l //
Dat(ﬂ ! . .,
. .
after (n-1)™ | chunk;;; | | chunkjy "‘ chunk, ‘ """"" ‘ chunkyq \
compression | ' , — % >
! ! / L’ L s virtual
: l’)/ e R4 . e decompression
! 1 ! ad . e
1 h ’ . . e
Data ! L /! . ‘ ’
t
after n [chunk; | chunk, | chunk, ‘ """ ’ chunky ‘
compression
t=1 t=2 t=3 e t=k
Recent time Historical time

Figure 3: Time-varying compression in rounds. In each round,
data of different ages are compressed to ratios that change
according to a time-dependent function.

virtually decompresses them, by mathematical mapping, to
the original raw data chunks for computing the sequence of
compression ratios. Then, the conditions for ratio sequencing
are considered. Thanks to the chunk-based data unit, virtual
decompression can be supported by recording the number of
original raw data chunks in every compression round.

Virtual decompression enables the generation of a compres-
sion ratio sequence based on the original raw data even after
rounds of compression. Only by virtual decompression could
the compressed data always follow the time-dependent func-
tion r(¢)’s definition. Otherwise, data can only be compressed
following the exponentially decaying pattern, as compression
on compressed data leads to the multiplication of compression
ratios. This would limit the applications of TVC, as r(¢) can
only be an exponential function.

Algorithm [presents the main algorithm of time-varying
compression for a time series. The input to the algorithm
includes the number of actual chunks to be compressed
and the target overall compression ratio 7. The algorithm
consists of three parts. The first two parts guarantee the two
conditions as specified by Eq. (1) and (2) while approximating
7 by r1,r,...,rr. The third part actually compresses the data
chunks by the ratio sequence.

In the first part of Algorithm 1, virtual compression is
applied to the actual data chunks such that the corresponding
number m of raw data chunks is obtained (line 2). According
to Eq. (1), an initial sequence of compression ratios is ob-
tained (line 4-8). As discussed above, the condition specified
by Eq. (2) is not necessarily satisfied, even if Eq. (1) is
met; and vice versa. Therefore, we refine the sequence to
satisfy both Eq. (2) (line 9-12) and Eq. (1) (line 13-17) by
approximation.

3.3 Compressor and Error Bounding

In a compression round, TVC compresses r; data chunks
by varied compression ratios into a single data chunk. To
guarantee that data in an output chunk are actually compressed
by the same compression ratio, we can have TVC decompress
all the input chunks and then apply the same compressor by
the same compression ratio. But two problems exist. First,

86 20th USENIX Conference on File and Storage Technologies

USENIX Association

Algorithm 1: Time-varying compression.
Input: m,: number of data chunks to be compressed;
7: overall compression ratio

ratioSeqQueue«— 0;

/* To ensure the condition of Eq.(l) */
m <—virtualDecompress(m,);

seqSum<—0, j«—0,i<-0;

while segSum< m do

j+=1;

seqSum+=r(j);

ratioSeqQueue.enqueue(r(j))

® 9 AW

end
/* To guarantee the condition of Eq.(2) */
9 while j-i+1>m/F do /] j—i+1=k for Eq.(2)
10 j+=1
1 seqSum+=r(j);
12 ratioSeqQueue.enqueue(r(f));
/* To approach Eq.(1)"s equality condition */
13 while segSum> m do
14 i+=1;
15 seqSum-=r(j);
16 ratioSeqQueue.dequeue();
17 end
18 end
/* To compress chunks by the ratio sequence */
19 while ratioSeqQueue.size> 0 do
20 ‘ compressOneChunk(ratioSeqQueue.dequeue());
21 end

as TVC takes iterative compression rounds, decompression
before compression is highly inefficient. Second, if lossy
compression is used, the decompressed data is imprecise.
Rounds of decompression and compression can lead to a high
deviation from the original data. A proper error bound on the
lossily compressed data is desirable to users.

To avoid the above two problems, TVC requires the
compressor to have the following three properties. First,
compression on previously compressed data does not require
decompression. Second, decompression on data compressed
multiple times works the same way as on data compressed
once. Third, the error bounds must be easily computed for
the rounds of compression. While these properties seem to
be restricted, proper approximation or representation models
for time series data [26, 44, 69] are feasible choices, e.g.,
piecewise linear approximation (PLA) [27,60, 87].

Among the various lossy compressors, PLA-based com-
pressors compress a time series by approximating it using line
segments. According to the related work [68], a line segment
built from two line segments is the same as the line segment
built from the original time series data, if line segments
are properly constructed. Decompression on data at any
round only needs to compute the linear function for a given
time. Moreover, the mean bias error (MBE) of PLA can be
computed easily even after rounds of compression. MBE is a
commonly used metric for evaluating approximations [64, 81,
82]. For the ith compression round, MBE; is the sum of round-
relative error MBE;_; ; in previous rounds, i.e., MBE; =
Z;ZIMBEJ;],]', where MBEJ',LJ' = %Zzzlxj_lvk —Xjk- Here,
xj x represents the decompressed value.

TVC accepts the specification of PLA compressors cur-
rently. TVC records the compression ratio and the error rate
for every data chunk. After rounds of compression, there
would be a time when some old data chunk has a high
compression ratio and thus a high error rate. Keeping data
at an extremely high error rate is no better than discarding
it. Therefore, TVC allows users to specify a compression
ratio 7,4y OF an error rate e,q.. 1 VC automatically discards
data compressed at a ratio higher than 7,4, or at an error rate
larger than e, If the compressor and the compression ratio-
defining function r() are properly chosen, TVC can achieve
functionally lossless compression [54] for a long range of data,
as well as supporting advanced analytical workloads [70].

4 TVStore: Automatic Storage Bounding

We propose TV Store that automatically bounds time series
storage to a user-provided size using TVC as data keep being
ingested. It allows users to set a recent data volume D, that
is not to be compressed. After reaching D,,, TVStore starts
the compression at a proper time to avoid overrunning the
storage bound or losing too much information. It monitors the
storage consumption and initiates a process of time-varying
compression when needed. Hence, three key design choices
are made here:

How to compress: Shall compression be applied continu-
ously to cold data in a batch-processing manner or hot
data in a stream processing way [3]?

What ratio to compress: Will all compression ratios be
feasible for storage bounding? If not, what is the proper
compression ratio interval?

When to compress: When would be the proper time to start
a TVC process that is neither too early to lose too much
data nor too late to exceed the storage bound?

4.1 Compression on Hot Data or Cold Data?

TVStore exploits time-varying compression to bound the
storage space. Compression can be applied to hot data as
stream processing does [3]. It can also be applied to cold
data in a batch processing mode. As TV Store targets resource
limited environments, it is desirable to reduce the number
of compression times and I/O accesses such that power
consumption, memory utilization, and processor utilization
can be reduced.

Consider the procedure of time-varying compression pre-
sented in Section 3. The compression ratios are equal to the
segment sizes, in terms of data chunk numbers. As data in
the largest segment is compressed the most times, it can be
shown that such a segment after multiple compression rounds
of TVC has a smaller number of compression times by cold-
data compression than by hot-data compression.

In a compression round, a sequence of k segment sizes of
r(t), t=i,...k+i—1is generated, as shown in Figure 3. Let

USENIX Association

20th USENIX Conference on File and Storage Technologies 87

F (k) be the compression times of the kth segment after this
compression. For the first round of compression on cold data,
k segments are compressed into k chunks, with F.(k) = 1.

As for hot data, in the compression round with the same
data volume, the kth segment must be compressed from
multiple smaller segment of chunks, since it continuously
compresses smaller chunks into larger chunks whenever
possible. To obtain the kth segment, we need segments with
sizes summarized to ry = r(k+i— 1), i.e.,

k+i—2
= X ar(t) 3)
1=j

Following Eq. (3), the compression times Fj (k) of the kth
segment is represented as follows:

k+i—2
Fyk)=1+4+ % aFy(t) 4)
t=j

As a result, F.(k) < Fy(k), i.e., F(k) has a smaller value in
cold-data compression than in hot-data compression.

For the latter rounds of cold-data compression, the kth
segment will also be compressed from segments with smaller
sizes. That is, Eq. (4) also applies to the latter rounds of
the cold-data compression case. However, when the nth
compression round is triggered, the largest segment &, will
be compressed from much smaller segments, the largest of
which is k,_1. Segments from k,,_; 4 1 to k,, do not exist until
the nth compression.

In comparison, the k,, segment of the hot-data compression
method must be compressed from segments having the largest
one equal to k, — 1. It can be shown that k,—1 < k, — 1 < kj,.
Considering Eq. (4), it follows that the cold-data compression
has a smaller number of compression times than the hot-data
compression. Hence, we have the following design principle.

Principle 1. For a given range of time series data and a
sequence of compression ratios, iterative compressions over
cold data can reduce the compression rounds as compared to
the continuous compression method on hot data.

The result of Principle 1 has two indications for the
design of TVStore: 1) TVStore should employ the cold-data
compression rather than the hot-data compression to have a
smaller number of disk I/Os; and, 2) TVStore can have higher
performance using the cold-data compression, as the duration
of and the cost of compression are smaller (§6.2 and §6.4).

4.2 Proper Compression Ratio Interval

A proper compression ratio is required to guarantee that
the storage bound will never be violated. To compute the
overall compression ratio, TV Store monitors the average read
throughput v, from the disk and the average write throughput
vy to the disk, as well as the ingestion throughput v; by
applications. Next, we describe how the proper compression
ratio interval can be deduced as a design choice.

Consider when compression is started for the first time. The
saved storage size AD by compression must be larger than the

ingested data volume D; in the whole compression process.
Let D, be the data volume to be compressed and read from
the disk. Let D,, be the data volume after compression and
written to the disk. AD is equal to the difference of D, and
D,,. Hence, we have the following equations:

AD =D, —D,, > D; &)

Here, D,, is decided by the original data volume D, and the
relative compression ratio r, i.e.,:

D, = lD, (6)

re
We assume that compression, reads and writes run concur-
rently for different time series. Reads take the most time. As a
result, the time to generate data volume D; is about the same

as that for reading D,. Thus, we have:

D; D i
S = 5 pi="'p,)
ViV Vr
Combining the above three equations, we have the following:
re> —" (8)
Ve — Vi

Eq. (8) points to the following two rules. First, the appli-
cation ingestion throughput must be lower than the disk read
throughput to enable the initiation of compressions. Second,
the difference v, — v; between the disk read throughput and
the application ingestion throughput is the throughput that the
disk allows for filling more data besides v;. The ratio between
v, and v, — v; is the lower bound on the ratio for compressing
the data read from the disk. That is, the following design
principle exists.

Principle 2. 7o avoid overrunning a storage bound, the
compression ratio r. for each round of compression must
be no smaller than vrvj o where v, is the average read
throughput from the disk and v; is the ingestion throughput by

applications.

Hence, we make the design choice in TV Store regarding
the compression ratio r. for each round of the iterative
compression by Principle 2.

The overall compression ratio 7 can be deduced based on
the round compression ratio r.. Since r, is greater than 1, 7
increases as compression rounds increase. If the user-specified
max compression ratio 7y, is reached and overly-compressed
data began to be deleted, then data will need to be deleted
in every later round. If deletion exists from the first round, it
will greatly reduce the efficacy of TVC. Hence, r. should be
at least smaller than r,,,, to avoid this case. Thus, we have a
loosely feasible range for r, i.e., [#_’vt, Fmax)-

When r. = Vrvjw and AD = D;, compression will be
initiated consecutively. This will not only reduce the system
performance but also wear out the storage device. If r. = 74y,
TVStore is not storing data with as much information as
possible. As a general rule, TVStore sets 7 to the average of
the two extremes, i.e., r, = %(Yt Foax)-

Vr—Vi

88 20th USENIX Conference on File and Storage Technologies

USENIX Association

4.3 Compression Initiation Time

TVStore initiates compression based on the monitored data
storage. Compression is initiated when the data volume
reaches a threshold D.. For a given bound D,, on the storage
space, TVStore must guarantee that D, is not exceeded at any
time during any of the compression rounds. The maximum
storage consumption in all compression rounds is the key to
decide the threshold D.. We first find out when this maximum
storage consumption is reached.

Figure 4 illustrates two compression rounds of TV Store.
Consider the first round of compression. The threshold D,
is the data volume that triggers the first compression round.
7y is the target compression ratio of this first round. The
meanings of D, D,, D,, D,,, and D; are given and illustrated
in Section 4.2 and Figure 4. v; and v, are the ingestion
throughput by applications and the average read throughput
from the disk respectively. The data D, to be compressed is
the difference between D, and D,, while D, and 7| decides
the written data D,, after compression, i.e.,:

D, =D.—D,)

Dw :Dr/Fl (10)

A peak of storage consumption occurs at the time right
before a compression round finishes, e.g., before 2 in
Figure 4. At that time, the original data for compression is
not deleted and the compressed data is written to the disk. Let
the first peak storage consumption be D, we have:

Dy=D,+D;+D,+D, (11)

According to Section 4.2, when compression rounds
follow one another consecutively, data is kept with the most
information, i.e., taking up the most storage space. Then,
we can deduce from the first compression round to the kth
compression round. Due to the limit of space, we leave out the
straight-forward deduction process. For the kth compression
round with the target compression ratio 7, the peak storage

consumption Dy, is:
1 v k=11 Vi
Di=D,+(14+—+—=)Dy+Di) L (=—+—) (12
Tk Vr x=2 Iy Vy

From Eq.(12), we can deduce two possible cases for the
maximum storage consumption. If ?1? + :Tl is no greater than
1, the maximum storage consumption is Dp; otherwise, it is
Dy.. From Section 4.2, we can deduce that i + :—: <1. As
a result, the maximum storage consumption occurs at the
first round of compression.

Thereupon, TV Store decides the compression initiation
time based on the maximum space consumption. That is, we
only need to guarantee that D; < D,,. With Eq.(11), we have:

Dy =D,+D;+Dy,+D, <D, (13)

Combining Eq.(7), Eq.(9), and Eq.(10), we deduce that:
i1
Do+ (= + - +1)(Dc=D,) < D, (14)

Hence, with Eq.(15) deduced from Eq.(14), the following
design principle stands.

Data
’ Recent data?ﬂ ’ Volume threshold D N Volume bound D,, volume
l — =

t1

i [Reduced data volume
AD
Compression :
e |
t2

Compression 7} _ Losslessly
rl finishes compressed data
t3

Newly ingested data D;

Compression
t4 | : -
r2 finishes
[0}
e Lossily compressed data D,, || Data D, to be compressed
E

Figure 4: Storage bounding processes of TVStore: 1) at 71,
compression round r1 starts when data volume reaches D,; 2)
when compression round r1 finishes at 2, storage space AD
is saved through compression; and, 3) compression round 72
starts at #3, when data volume reaches D, again. Data ingested
during compression is D;. Recent data D,, is not compressed
lossily. The upper bound D,, of data volume is never exceeded
at any time.

Principle 3. Let D, be the bound on the storage space and
D, be the recent data not to be compressed. Let v, be the
average read throughput from the disk and v; the ingestion
throughput by applications. Given the compression ratio 7 for
a compression round, the threshold D, of data volume to start
a compression must satisfy the following condition.

vi 1
D, < (DM—DO)/(V—'+;+1)+D0
r

15)

TVStore initiates compression rounds based on results
of Principle 3. Storage size and data volume monitoring
is needed in the implementation of TVStore such that
compression rounds can be initiated on time. Besides, the
proper collection of the average metrics v; and v, is equally
important to compute the initiation time.

5 Implementation of TVStore

We implement TVStore by extending an open-source time
series database (TSDB), Apache IoTDB. The system ar-
chitecture for TVStore is presented in Figure 5. TVStore
replaces the TSDB storage engine by the time-varying
compression/decompression storage engine. Ingested data
directly go to the underlying TSDB storage. A monitoring
thread runs in the background to automatically initiate time-
varying compression (§3) on data in the storage when
conditions are met (§4). Data are decompressed before being
returned to the query engine. Hence, all the database functions
originally supported by the TSDB remain supported. This
architecture also allows complex analysis functions, which
might be implemented in the query engine in the future, to be
supported directly.

The TVStore storage engine accepts user-defined com-
pressors for time-varying compression and time-dependent

USENIX Association

20th USENIX Conference on File and Storage Technologies 89

>

User-Defined Time-Dependent
Function for Compression Ratios

Time-Varying

Tlme Data Ingestor [--» Compression/Decompression [« Query Engine Cller_n
Series d Queries
Storage Engine

B

Storage-Bounded TSDB
with Lossless Compression

Figure 5: The architecture of TVStore: the filled components
are TVStore’s extensions over the time series database.

functions for compression ratios, as long as the corresponding
Java interfaces are complied with. We have implemented
a PLA-based compressor as the default compressor. While
exponential, power-law and constant functions are all sup-
ported as the time-dependent ratio functions, TV Store uses
the power-law function as the default. For time-varying
compression, TVStore allows users to set the upper bound
of storage space and the largest compression ratio permitted.
Data volume monitoring is added to the storage engine to
enable automatic storage bounding and to trigger time-varying
compression rounds. Besides, we collect average metrics v;
and v, by periodical monitoring and synopsis [21].

In the following section, we describe how the time-varying
compression/decompression storage engine of TV Store inte-
grates with the original TSDB. The choices for the compressor
are also discussed as part of the TV Store implementation. The
TVStore extension involves about 3000 lines of Java code.

5.1 Storage Engine Integration

In the implementation, the unit of data chunk is a data page in
Apache IoTDB, each of whose data files consists of multiple
data pages. When TVC compresses pages across multiple
files, the involved files will be merged and restructured. Like
the original IoTDB, TVStore keeps statistics and metadata on
time series, as well as compression ratios of pages.

TVStore adds one layer of lossy compression to the two
data-reduction layers of IoTDB. The resulting layers of data
reduction are illustrated in Figure 6. Data within a data
chunk are first compressed by the user-defined compressor.
Then, the encoding techniques are applied to timestamps and
values respectively. Encoding techniques include run-length
encoding [73], Gorilla encoding [71], and delta encoding [10].
Finally, general compression as LZ4 [20] and snappy [32]
is used to further reduce the overall size of stored data. The
latter two layers of data reduction are lossless compression.

Although TVStore can be implemented with other TSDB,
e.g., BtrDB [4] or InfluxDB [43], we have chosen Apache
IoTDB [96] because its storage format enables the co-location
of timestamps and values respectively within a data unit
such that different encoding methods can be used to reduce
data size. Besides, the structure, as well as the statistics and
metadata kept within each data file, facilitates the support of
TVC’s iterative compression procedures.

‘ Lossy Compression

e [[T Tve]
[7]

T1 ‘ n [V1] [Vn]
Time Encodmg‘ ‘ Value Encoding

[T 1] e [T Va2 JVi] oo

l Lossless Compression

Figure 6: Layers of data reduction for one data chunk.

5.2 Fixed-Ratio Compressor/Decompressor

The time-varying compression of TVStore requires a fixed-
ratio compressor to be specified. In the implementation,
TVStore adopts a line generalization algorithm as the com-
pressor and uses linear interpolation for decompression.
Line generalization algorithms [95] commonly simplify one-
dimensional curves by repeated eliminations of visually
unimportant points, removing unnecessary details. They are
inherently PLA-based compressors [87]. The number of
preserved points can be set. Hence, the line generalization
algorithm can be used as a fixed-ratio compressor.
Specifically, TVStore leverages the line generalization
method LTTB (largest triangle three buckets) [85], which
is a variant of the widely accepted and used Visvalingam-
Whyatt (VW) algorithm [95]. As compared to other line
generalization algorithms, LTTB has much lower complexity.
It can compress data in almost a single pass, while preserving
visually important points like its counterparts. Simplicity and
data preservation are two key features that lead to our choice
of LTTB, as many users would naturally prefer storing real
data values [13,99], instead of approximate values.
Decompression exploits linear interpolation. Then, the
number of interpolated points between preserved points must
be decided. For evenly spaced time series with constant
spacing of observation times, the number of interpolated
points is computed based on time units. For unevenly spaced
time series, we assume important points over a data chunk
have a similar distribution as points between two important
points. Let p be the number of preserved points divided by
the number of the original points in a data chunk. As LTTB
mainly preserves significant points during compression, we

interpolate Ig((};‘i; points between every two preserved points.

6 Evaluation

To evaluate TV Store, we consider five questions:

1. Can TVStore bound the storage size as expected? (§6.2)

2. How does TVStore’s cold-data compression compare to
the hot-data compression?(§6.2)

3. Can time-varying compression compress data according
to a given time-dependent function? (§6.3)

4. How does compression influence TVStore’s perfor-
mance? (§6.4)

5. Can TVStore answer common queries within reasonable
error bounds? (§6.5)

90 20th USENIX Conference on File and Storage Technologies

USENIX Association

600 20X Compressed 4, 60X Com‘pressed 100, 100X Compressed 1.0 : Tﬂ-
— /i i STE
) A ‘,;;';:: ~ il N »p@*
~ P A ulil}
g A 90 i 50 -‘17 Q0.5 /- SummaryStore,
2, 300 PV i ' @) —hTVStorw
S iy ' RRDtool »
a '/,f,’!"r':' A ---- SummaryStore *——-*‘*‘X'Xx
0 0 —— TVStore 0 0.0
0 200 400 500 970 0 135 270400 970 0 90 180 300 970 10° 1(_)1) 107
Time(min) Time(min) Time(min) Compression Times

Figure 7: Storage bounding on intensive writes. All time series stores are ingested Figure 8: CDF of compression/
with 5STB data. TVStore and SummaryStore have the same final overall compression merging times for cold data (TVS-

ratios of 20x/60x/100x. RRDtool has the same storage bounds as TVStore.

6.1 Evaluation Setup

Compared Time Series Stores: We compare TVStore with
three related time series stores. The first is the closest
state-of-the-art work SummaryStore [3], which continuously
computes predefined summaries on hot data for reducing
data to a target ratio. The second is RRDtool [67], which
bounds storage by deleting data when the storage quota is
reached. Specially designed for monitoring [61], RRDtool has
restrictions on aggregation operations, as well as timestamps
and their spacing. We tried our best to circumvent the restric-
tions to enable comparable evaluations. The last is Apache
[IoTDB [96], the baseline for the TV Store implementation.

Datasets:” We evaluate the time series databases on both
synthetic data and real-world data. We generate synthetic
data with different patterns, including data with even spacing
and that with uneven spacing by the Pareto distribution. We
also exploit two real-world datasets, which contain regularity
patterns and some random noise. One is the public REDD
dataset [50]. The other is a private dataset from one of
our users, denoted as the train-load dataset. REDD dataset
contains several weeks of low-frequency power data for 6
different homes, and high-frequency current/voltage data for
the main power supply of two of these homes. The train-load
dataset consists of the train load metrics for months. The
private dataset is desensitized for the evaluation purpose.

Workloads and configuration settings’: We exploit the
ingestion and the query workloads included in the open-
sourced SummaryStore project when testing synthetic work-
loads. Like SummaryStore’s evaluation, our evaluation uses
time series database as an integrated component in the
testing client, while using python interfaces for RRDtool.
We measure data storage by their final on-disk sizes. We
tune the parameters of both systems so that they achieve the
highest possible performance. The power-law function is used
as the windowing function for SummaryStore and the ratio
generation function for TV Store.

Environmental settings: We evaluate TVStore in two
different settings. The first is simulating the private cloud
environments of medium organizations, while the second is
evaluating cases for edge computing scenarios. Hardware
setup for the first setting includes 2x 12-core 2.2Hz Intel

2Data and workloads — https://github.com/thulab/TV Store-benchmark

tore) and hot data (SummaryStore).

Xeon E5-2650 CPUs, and 370GB DDR4 memory. The
operating system is Ubuntu 16.04.6 and the HotSpot Java
runtime version 1.8.0 is used. The second type has 32GB
memory and an 8-core CPU, providing a 5TB storage space
for the time series database.

6.2 Storage Bounding and Compression Cost

We first evaluate whether TVStore can effectively bound
its storage as data keep being ingested at a high speed, in
comparison to SummaryStore and RRDtool. We ingest each
time series store with STB data by 10 evenly-spaced synthetic
time series. We have not chosen a larger data volume because
SummaryStore cannot process more than this size under the
environmental settings. We carefully tuned the evaluations on
RRDtool to get the best performance, e.g., using rrdcached.
Besides, as RRDtool performs 20 faster given a row larger
than 4KB blocks than a row with a single column, we write
each time series into one file by putting 1000 consecutive
columns in one row.

In the ingestion process, we monitor storage consumption
by periodically inspecting the on-disk size of database files.
TVStore and SummaryStore are set to finally reduce the data
by ratios of 20x/60x/100x, while RRDtool and TV Store
have the same storage bounds. The changes of database
storage sizes and ingestion times are plotted in Figure 7. A
curve longer in the x-axis direction means a longer runtime
for the corresponding test.

Bounding: TVStore and RRDtool effectively bound their
data storage respectively, keeping storage below different
thresholds in all cases. The folds of the storage size curves
are key to the bounding for TVStore. They occur when
the compression process of TVC ends. SummaryStore has
also folds in its storage size curves, which occur due to the
continuous summarization on hot data for data reduction.

Compression cost: TVStore’s cold-data compression in-
volves fewer disk I/Os than SummaryStore’s iterative summa-
rization process, i.e., hot-data processing (§4.1), as reflected
by the fewer folds in TVStore’s storage size curves than
in SummaryStore’s. This result of Principle 1 is further
corroborated by the CDF of compression/merging times
for TVStore and SummaryStore in the 60x-compressed
case (Figure 8). We record the compression/merging times

USENIX Association

20th USENIX Conference on File and Storage Technologies 91

http://redd.csail.mit.edu/
https://github.com/ayvee/summarystore

1e5 Age:0 Age:century Age:2 millennia
Origin-ave
qu 2 SummaryStoretavg
S |
L W&& _\,,;—;,._-,a,,_ﬂ,.fk,,,\,li_ I Y s e T
le5
Origin-ave
o 2[—— RRDtool-alg
=)
2 1 |l
L v —i_J
le5
5/ Nere A
S o rjﬁ ‘
B k| k|l
Bl QREAEN] 11 BB
0 0.06 100.02 100.08 2000.02 2000.0

Years from Now
Figure 9: Visualization of data compressed by 100x: TVStore

keeps more information than the other systems.

by an extra counter in each window/chunk. The counter
is incremented by one for each compression/merging. If
multiple windows/chunks with different counter values are
merged/compressed, the largest counter is incremented and as-
signed to the resulting window/chunk. While SummaryStore
has windows merged about 70 times in the end, TV Store has
only data chunks compressed for 4 times. TVStore has much
fewer compression times thanks to its compression based on
cold data, instead of hot data, and to its chunking mechanism,
instead of point-level windowing.

6.3 Visualization of Compressed Data

We visualize the value patterns of compressed data to see
how information is preserved by different systems under the
same compression ratio. We experiment with real-world data,
the low-frequency REDD data by extending the dataset to
7.5TB. The extended REDD data has a time range of multiple
millennia. We visualize data at different ages, i.e., within
months, one century, and two millennia. Figure 9 presents the
visualization of the dataset.

TVStore and SummaryStore demonstrate time-varying
patterns, while RRDtool has the time-invariant curves. Sum-
maryStore and RRDtool keep aggregations only. Thus, only
the average values can be visualized for them. In comparison,
TVStore enables the visualization of the decompressed data
that is compressed by 1x, 11X, and 20X respectively.

TVStore can save storage costs by enabling a high-
fidelity overview of the whole range of data using only a
storage space as large as 1.5 percentage of the data volume
(Figure 9). RRDtool can only support similar visualization
on 1.5 percentage of the data for bounding storage by simple
deletion, or, have aggregated values too sparse to preserve
enough information. SummaryStore has only precise data for
recent times and highly different curves for historical times.

Under the same overall data reduction/compression ratio,
TVStore can restore data to almost the same as the original,
while RRDtool and SummaryStore cannot. The reasons are
twofold. First, the implementation of TV Store has exploited

100
80 RRDtool-20X
m = + + = RRDtool-60X
£ RRDtool-100X
<= 60 —=—=—=— SummaryStore-20X
5 P — — — SummaryStore-60X
S 40 A \\ — — - SummaryStore-100X
= AT \ IoTDB-raw
3 17 e 10TDB
20t o = - ——— TVStore-20X
L =T TVStore-60X
TVStore-100X
0 200 400 600 800 1000

Time(min)
Figure 10: Ingestion latency: much shorter ingestion times
and lower latencies for TVStore than for other stores.

200K Length:mon 30K Length:day 1K Length:min
g \
E‘ 100K 15K 0.5K
2
5

o

= = oLE £ i oL 8 : X
2%- 40 60 80 100 20 40 60 80 100 20 40 60 80
Compression Ratio(X) Compression Ratio(X) Compression Ratio(X)
—6o— SummaryStore-Age:mon -4 SummaryStore-Age:day —#— SummaryStore-Age:min
—A— RRDtool-Age:mon - RRDtool-Age:day —&— RRDtool-Age:min
—6- TVStore-Age:mon -+ TVStore-Age:day —*— TVStore-Age:min
Figure 11: 95-percentile query latencies : TVStore has lower
average latencies than SummaryStore and RRDtool in most

cases, except for three minute-length cases.

three-layer data reduction, while the other two stores apply
only general-purpose compressions. Hence, TV Store can have
a smaller ratio for and keep more data by its lossy compression
than the other two. Second, TVStore has adopted a line
generalization algorithm as the compressor, which performs
well at curve visualization. This result implies the importance
of choosing a good compressor.

6.4 Ingestion and Query Performance

Ingestion: As shown in Figure 7, TVStore has much higher
ingestion throughput than SummaryStore and RRDtool in all
cases, leading to shorter curves. In the 20 x-Compressed case,
TVStore ingests about 3 x and 25 x faster than SummaryStore
and RRDtool respectively, achieving a throughput of 766MB/s
or 47.8 million time-value points per second. RRDtool has in-
gestion times about the same length because we have achieved
its upper performance bound by writing 4K row blocks in
all cases. Exploiting cold-data compression is an important
reason for TVStore’s advantage over SummaryStore, while
insufficient compression and thus longer I/O time is a key
reason for RRDtool’s disadvantage.

The corresponding average ingestion latencies are demon-
strated in Figure 10, with IoTDB storing raw data and IoTDB
with two data reduction layers as the baselines. TVStore has a
write latency around /0ms per time-value point. Compared to
the baselines, TVStore’s compression process has little impact
on the normal processing of writes. While RRDtool has stable
and long latencies, SummaryStore has fluctuating latencies
because of summarizations on hot data. We can conclude
from the performance results that higher compression ratios
can effectively improve ingestion performance.

Query latencies: We evaluate queries on data at different
ages, i.e., minutes, days and months. Older data are com-

92 20th USENIX Conference on File and Storage Technologies

USENIX Association

3 Length:century Length:decade Length:year
K 2K X

0 s 1.5K

= 7 N X= = =
® / ’ - g

5 4 » o K %

year decade century year decade century year decade century

Age Age Age

—X - TVStore-Sum —— TVStore-Count TVStore-Max

Figure 12: TVStore on the edge: all 95-percentile query
latencies are within 2s on 365TB data compressed by 100x.

pressed at higher ratios than younger data. Aggregate queries
on different time lengths are issued. For each combination
of age and length, we issue 100 queries within random time
ranges and record the 95-percentile latencies. Our TV Store
implementation can answer queries 35 and 8.7 x faster than
SummaryStore and RRDtool respectively for the best case
(5.4s vs. 194s and 47s). Figure 11 presents the results.

TVStore has lower latencies than SummaryStore and
RRDtool in most cases, except for the last three cases of
minute-length queries. TVStore’s implementation co-locates
data for a single query. As compared to SummaryStore,
fewer data units need to be accessed for the same query by
TVStore. SummaryStore has to read data distributed across
on-disk storage for processing one query, leading to costly
random disk I/Os. As for the minute-length queries, while
SummaryStore only needs to retrieve some individual key-
value pair, TV Store still has to access and seek a data file for
results, leading to slightly higher latencies.

Query on the edge: We also evaluate the query per-
formance of TVStore under the edge-computing condition,
which is a typical application scenario for TVStore. The
second experimental setting (§6.1) is exploited. Using the
REDD dataset, we extend it to 365TB with 365 time series
that span century time and then compress it by 100 times.
We issue queries on data aging one year, one decade and
one century. The resulting query latencies are presented in
Figure 12. All queries can be responded within a 95-percentile
cold-cache latency of at most 2.7 seconds, even for the longest
length and on the oldest data.

6.5 Query Precision on Compressed Data

We evaluate whether TVStore can respond queries on the
lossily compressed data within reasonable error bounds,
as compared to the state-of-the-art work SummaryStore.
RRDtool is not evaluated as it does not support queries
approximating any time range that does not align with
intervals with precomputed aggregations. Here, we mainly
consider the commonly used aggregation queries, which are
the basics of many complex analytical operations.

Synthetic data: We first consider the evenly-spaced syn-
thetic data randomly generated at the 1000Hz frequency.
Both TVStore and SummaryStore reduce data by 100 times.
As they process count, max and min queries with almost
zero errors, we present only the 95-percentile error rates

20X 100X
S hr-T| 0 0 0 0 0 0 0 0
2
Smin-T| 0 0 0 0 0 0
S hrS| 0 0 0 0 0 0 0 0
2
SRLIRSY 0.008 | 0.006 | 0.007 | 0.007 | 0.008 | 0.006 | 0.007 | 0.006 [0.008 | 0.006 | 0.006 | 0.007
min hr day mon min hr day mon min hr day mon
Age Age Age

Figure 13: 95-percentile query errors on evenly-spaced
random time series reduced by 20/60/100 times: TV Store
(top two rows) vs. SummaryStore (bottom two rows). Sum-
queries are issued on data at different ages and lengths

Sum Count Max
":En hr-T| 0 0 0 0 0 0 0 0 0 0 0 0
Tmin-T| 0 | 0 | 0 | 0 o o 0o | o o o | o | o
£ hrs| o o001 0.006‘1e+04 MZeJroz‘aeJroz 0 0 0
[
CRUIREY 402 | 8e-+02| 30403 | 2e+03 [0.008 | 0.05 | 3e+01 2e+02 [16402 1e+02 | 10402 | 1e+02
min hr day mon min hr day mon min hr day mon
Age Age Age

Figure 14: 95-percentile query errors on random time series
with Pareto-distributed spacings: TV Store (top two rows) vs.
SummaryStore (bottom two rows). Queries sum/count/max
are issued on data at different ages and lengths.

of sum queries in Figure 13. TVStore answers queries
almost precisely in all cases, except for queries with the
smallest length on the oldest data. The minor error rates for
such queries are mainly due to the high compression ratio
and the high requirements on data details. In comparison,
SummaryStore has non-zero error rates for queries with the
smallest length at all ages due to the summary-based approach
with only two data-reduction layers.

We also experiment on data with timestamps generated
according to the Pareto distribution (o0 = 1.2) and values
generated uniform randomly. Data are compressed by 100
times before querying. TVStore returns query results almost
precisely, with approximately zero 95-percentile error rates,
while SummaryStore occasionally has extremely high error
rates (e.g., le+04 in Figure 14). In comparison to SummaryS-
tore’s incapability in handling unevenly-spaced data, TV Store
properly compresses and decompresses the data by its point-
oriented compressor based on line generalization algorithms.
The results demonstrate the feasibility of error bounding by
TVC, if proper compressors are employed.

Real-world data: We test queries on the real-world dataset
of train load monitoring. The 6.6TB train-load dataset has
100 individual time series, each of which has about 4.5
billion points. We only evaluate TV Store on this dataset, as
SummaryStore cannot support simultaneous ingestions by this
number of time series streams. Data is compressed 100 times
before evaluation. The results are presented in Figure 15. In
most cases, TVStore answers queries with error rates below
2%. The error rates of a few max/min queries are slightly
higher, at about 1, due to the high compression ratios of the
corresponding old data, as well as the irregular patterns of the
real-world data.

USENIX Association

20th USENIX Conference on File and Storage Technologies 93

le-2 le-2

A - A L0 A=A
1.0 .’ Ty 10) ‘,
.
S 4 ’ ’
= . . 0.5
05 ’ 05 ’ '
l. > T I‘
0.01B = m =D el Q0| e e e Q0B e m o
1 10 10% 10° 1 10 10? 10° 1 10 10? 10°
Age(yrs) Age(yrs) Age(yrs)

Length:103 yrs -~ Length:10% yrs --@-- Length:10 yrs - A - Length:1 yr

Figure 15: 95-percentile query errors on train-load data
by TVStore: queries sum/count/max are issued on data at
different ages and lengths.

6.6 Discussion

Our evaluations examine multiple commonly-used statistical
operations as supported by the query engine of IoTDB. As
high-level analysis operations are mainly implemented in the
query engine, TV Store can directly support such operations
when the corresponding query engine is used. In comparison,
some time series store requires prior knowledge on users
analysis requirements for each application [3]. Besides, as
TVC can be integrated with different fixed-ratio compressors
and time-dependent ratio functions, better support for learning-
based analysis is possible given carefully chosen compressors
and ratio functions [7,70]. We leave the choice and the design
of compressors and ratio functions for future work.

7 Related Work

Time series data compression. Lossless and lossy compres-
sion methods exist for time series data. Lossless compression
can reconstruct the original data accurately. For lossless
compression, specialized compressors for integer [10, 33,
55, 73] and for floating-point values [57, 71] outperform
general-purpose compressors [20,28,32,58,66]. It is common
practice that general-purpose compression is applied along
with specialized compressors [43,54,96] in time series stores.

Lossy compression can achieve a much higher compression
ratio than lossless compression by giving up partial informa-
tion. Compression by linear models or PLA (piecewise-linear
approximation) [13, 60, 87,99] has been extensively used in
practice for its simplicity. Line generalization algorithms can
be considered as variants of the PLA method and used for
time series compression [25,46,52,74,85,95]. More complex
models based on polynomials [30] or transformations [11, 16]
are also considered as compressor alternatives in model-based
time series stores [44,56], which select from a set of models to
compress time series with the least errors. Lossy compression
methods commonly optimize the compression ratio towards
specified error bounds, but it is difficult for users to set the
bounds beforehand for real-world data. Few research work
on compressors exists for optimizing error bounds towards a
given compression ratio.

Our time-varying compression framework TVC is or-
thogonal to the above compression methods. As long as a
compressor can compress data by a given ratio and satisfy
the three properties (§3.3), TVC can take advantage of it to
enable time-varying compression.

Time series stores. To manage the ever-increasing volume
of time series data, most time series stores either have a
native architecture to support a distributed deployment such as
InfluxDB [43], or exploit a distributed storage for scalability,
e.g., KairosDB [47] on Cassandra [53], TimescaleDB [90]
on PostgreSQL database [72], Druid [100] on HDFS [35],
BtrDB [4] on Ceph [97], Chronix [54] on Solr [84], and
Peregreen on an object store [94]. While data distribution
techniques are also applicable to TVStore, TVStore focuses
on data reduction and storage control.

Besides lossless and lossy compression, time series
databases commonly exploit the data retention policy to
reclaim storage space by removing data exceeding a time
period [42] or exceeding a storage quota, e.g., RRDtool [67],
for further storage reduction. ModelarDB [44] reduces
storage and query latency by time series approximation
models with user-defined error bounds. Some models can also
be exploited by TVC of TVStore. Adopting common stream
processing methods [17,21], SummaryStore [3] can reduce
storage to a specified ratio by keeping only data summaries,
if data analytical requirements are known beforehand for
each application. SummaryStore works only with a limited
set of summaries and cannot support data restoration.

In comparison, TVStore automatically bounds time series
storage by TVC. It requires neither prior knowledge on exact
retention time nor that on query workloads. TV Store enables
users to respect varied data significance by integrating a
chosen compressor and a time-dependent function for their
applications. It can support data restoration given properly
designed compressors/decompressors.

8 Conclusion

The fast increasing volume of time series data is outpacing the
increase of users’ affordable storage space. It is desirable to
have a time series database that can automatically control the
time series data storage, while preserving as much information
as possible and in a manner considering data ages, which
are correlated with data importance. To the best of our
knowledge, TVStore is the first time series store that achieves
this goal. Leveraging the proposed time-varying compression,
TVStore bounds the time series database storage by iterative
compressions that are initiated at rigorously chosen proper
times and ratios. Extensive evaluations based on synthetic and
real-world data validate the storage-boundedness of TV Store
and its time-varying pattern of compression. Besides, The
advantage and efficacy of TVStore are also demonstrated by
its superior performance over three state-of-the-art or state-
of-the-practice related works of time series store.

Acknowledgements

We sincerely appreciate the shepherding from Deniz Altin-
biiken. We would also like to thank the anonymous reviewers
for their valuable comments and input to improve our paper.
This work was supported by NSFC Grant (No. 62021002).

94 20th USENIX Conference on File and Storage Technologies

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Db-engines ranking of time series dbms. https://db-
engines.com/en/ranking/time+series+dbms, 2020.

Dbms popularity broken down by database
model-trend of the last 24 months. https://db-
engines.com/en/ranking_categories, 2021.

Nitin Agrawal and Ashish Vulimiri. Low-latency
analytics on colossal data streams with summarystore.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 647-664, 2017.

Michael P Andersen and David E Culler. Btrdb:
optimizing storage system design for time series
processing. In /4th USENIX Conference on File and
Storage Technologies (FAST 16), pages 39-52, 2016.

Florian M Artinger, Nikita Kozodi, Florian Wangen-
heim, and Gerd Gigerenzer. Recency: prediction with
smart data. In 2018 AMA Winter Academic Conference:
Integrating paradigms in a world where marketing
is everywhere, February 23-25, 2018, New Orleans,
LA. Proceedings, pages L-2. American Marketing
Association, 2018.

Hany Fathy Atlam, Robert Walters, and Gary Wills.
Internet of things: state-of-the-art, challenges, appli-
cations, and open issues. [International Journal of
Intelligent Computing Research (IJICR), 9(3):928-938,
2018.

Peter Bailis, Edward Gan, Samuel Madden, Deepak
Narayanan, Kexin Rong, and Sahaana Suri. Macrobase:
prioritizing attention in fast data. In Proceedings of the
2017 ACM International Conference on Management
of Data, pages 541-556, 2017.

Brad Bechtold. Beyond the barrel: how data and
analytics will become the new currency in oil and gas.
https://gblogs.cisco.com/ca/2018/06/07/beyond-the-
barrel-how-data-and-analytics-will-become-the-new-
currency-in-oil-and-gas/, 2018.

Albert Bifet and Ricard Gavalda. Learning from time-
changing data with adaptive windowing. In Proceed-
ings of the 2007 SIAM international conference on
data mining, pages 443-448. SIAM, 2007.

Davis Blalock, Samuel Madden, and John Guttag.
Sprintz: time series compression for the internet of
things. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2(3):1-23,
2018.

Peter Bloomfield. Fourier analysis of time series: an
introduction. John Wiley & Sons, 2004.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

A Bremler-Barr, E Cohen, H Kaplan, and Y Mansour.
Predicting and bypassing internet end-to-end service
degradations. In Proc. 2nd ACM-SIGCOMM Internet
Measurement Workshop. ACM, volume 10, pages
637201-637248, 2002.

EH Bristol. Swinging door trending: adaptive trend
recording? In ISA National Conf. Proc., 1990, pages
749-754, 1990.

Peter Burge and John Shawe-Taylor. Frameworks
for fraud detection in mobile telecommunications
networks. In Proceedings of the Fourth Annual Mobile
and Personal Communications Seminar. University of
Limerick. Citeseer, 1996.

Shubham Chandak, Kedar Tatwawadi, Chengtao Wen,
Lingyun Wang, Juan Aparicio Ojea, and Tsachy
Weissman. Lfzip: lossy compression of multivariate
floating-point time series data via improved prediction.
In 2020 Data Compression Conference (DCC), pages
342-351. IEEE, 2020.

Pimwadee Chaovalit, Aryya Gangopadhyay, George
Karabatis, and Zhiyuan Chen. Discrete wavelet
transform-based time series analysis and mining. ACM
Computing Surveys (CSUR), 43(2):1-37, 2011.

Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula.
Approximate query processing: no silver bullet. In Pro-
ceedings of the 2017 ACM International Conference
on Management of Data, pages 511-519, 2017.

Yi-Cheng Chen, Lin Hui, and Tipajin Thaipisutikul.
A collaborative filtering recommendation system with
dynamic time decay. The Journal of Supercomputing,
77(1):244-262, 2021.

Cisco. New realities in oil and oas: data management
and analytics. https://www.cisco.com/c/dam/en_-
us/solutions/industries/energy/docs/OilGasDigital
TransformationWhitePaper.pdf, 2017.

Yann Collet et al. Lz4 - extremely fast compression.
https://1z4.github.io/1z4/, 2011.

Graham Cormode, Minos Garofalakis, Peter J Haas,
and Chris Jermaine. Synopses for massive data:
samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 4(1-3):1-294, 2012.

Graham Cormode, Vladislav Shkapenyuk, Divesh
Srivastava, and Bojian Xu. Forward decay: a practical
time decay model for streaming systems. In 2009 IEEE
25th international conference on data engineering,
pages 138-149. IEEE, 2009.

USENIX Association

20th USENIX Conference on File and Storage Technologies 95

[23] Corinna Cortes and Daryl Pregibon. Giga-mining. In
KDD, pages 174-178, 1998.

[24] Sheng Di and Franck Cappello. Fast error-bounded
lossy hpc data compression with sz. In 2016
ieee international parallel and distributed processing
symposium (IPDPS), pages 730-739. IEEE, 2016.

[25] David H Douglas and Thomas K Peucker. Algorithms
for the reduction of the number of points required to
represent a digitized line or its caricature. Cartograph-
ica: the international journal for geographic informa-
tion and geovisualization, 10(2):112—-122, 1973.

[26] Frank Eichinger, Pavel Efros, Stamatis Karnouskos,
and Klemens Bohm. A time-series compression
technique and its application to the smart grid. The
VLDB Journal, 24(2):193-218, 2015.

[27] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel
Cecchet, Walid G. Aref, and Willy Zwaenepoel. Online
piece-wise linear approximation of numerical streams
with precision guarantees. Proceedings of the VLDB
Endowment, 2(1):145-156, August 2009.

[28] Facebook. Zstandard home page.
https://facebook.github.io/zstd/, 2017.

[29] Ian Foster, Mark Ainsworth, Bryce Allen, Julie Bessac,
Franck Cappello, Jong Youl Choi, Emil Constantinescu,
Philip E Davis, Sheng Di, Wendy Di, et al. Computing
just what you need: online data analysis and reduction
at extreme scales. In European conference on parallel
processing, pages 3—19. Springer, 2017.

[30] Erich Fuchs, Thiemo Gruber, Jiri Nitschke, and Bern-
hard Sick. Online segmentation of time series
based on polynomial least-squares approximations.

IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(12):2232-2245, 2010.

[31] Diksha Garg, Priyanka Gupta, Pankaj Malhotra,
Lovekesh Vig, and Gautam Shroff. Sequence and time
aware neighborhood for session-based recommenda-
tions: Stan. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 1069-1072, 2019.

[32] Google. Snappy home page.
http://google.github.io/snappy/, 2011.

[33

—_

Network Working Group. Rfc 3229: Delta encoding
in http. https://tools.ietf.org/html/rfc3229, 2002.

[34] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal
Finkel, Adrian Pope, and Katrin Heitmann. Hacc:

extreme scaling and performance across diverse
architectures. In SC’13: Proceedings of the Interna-

tional Conference on High Performance Computing,

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Networking, Storage and Analysis, pages 1-10. IEEE,
2013.

Hadoop. Apache hadoop distributed file system.
https://hadoop.apache.org/, 2020.

Peter MC Harrison, Roberta Bianco, Maria Chait, and
Marcus T Pearce. Ppm-decay: a computational model
of auditory prediction with memory decay. PLoS
computational biology, 16(11):e1008304, 2020.

Brian Hentschel, Peter J Haas, and Yuanyuan Tian.
General temporally biased sampling schemes for
online model management. ACM Transactions on
Database Systems (TODS), 44(4):1-45, 2019.

Brian Hentschel, Peter J Haas, and Yuanyuan Tian.
General temporally biased sampling schemes for
online model management. ACM Transactions on
Database Systems (TODS), 44(4):1-45, 2019.

Antony S Higginson, Mihaela Dediu, Octavian Arsene,
Norman W Paton, and Suzanne M Embury. Database
workload capacity planning using time series analysis
and machine learning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, pages 769-783, 2020.

Jie Huang, Fengwei Zhu, Zejun Huang, Jian Wan,
and Yongjian Ren. Research on real-time anomaly
detection of fishing vessels in a marine edge computing
environment. Mobile Information Systems, 2021, 2021.

Nathanael Hiibbe, Al Wegener, Julian Martin Kunkel,
Yi Ling, and Thomas Ludwig. Evaluating lossy
compression on climate data. In International
Supercomputing Conference, pages 343-356. Springer,
2013.

InfluxData. Influxdb data retention.
https://towardsdatascience.com/influxdb-data-
retention-f026496d708f, 2020.

InfluxDB. Influxdb home page.
https://www.influxdata.com/, 2020.

Sdgren Kejser Jensen, Torben Bach Pedersen, and
Christian Thomsen. Modelardb: modular model-based
time series management with spark and cassandra.
Proceedings of the VLDB Endowment, 11(11):1688—
1701, 2018.

Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A
Chien, Jihong Ma, and Aaron J Elmore. Good to
the last bit: data-driven encoding with codecdb. In
Proceedings of the 2021 International Conference on
Management of Data, pages 843-856, 2021.

96 20th USENIX Conference on File and Storage Technologies

USENIX Association

[46] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich,
and Volker Markl. M4: a visualization-oriented time
series data aggregation. Proceedings of the VLDB
Endowment, 7(10):797-808, 2014.

[47] KairosDB. Kairosdb home page.
https://kairosdb.github.io/, 2020.

[48] Zahra Karevan and Johan AK Suykens. Transductive
Istm for time-series prediction: an application to
weather forecasting. Neural Networks, 125:1-9, 2020.

[49] Hakkyu Kim and Dong-Wan Choi. Recency-based
sequential pattern mining in multiple event sequences.
Data Mining and Knowledge Discovery, 35(1):127—
157, 2021.

[50] J Zico Kolter and Matthew J Johnson. Redd: a
public data set for energy disaggregation research. In
Workshop on data mining applications in sustainability
(SIGKDD), San Diego, CA, volume 25, pages 59-62,
2011.

[51] Antti Koski, Martti Juhola, and Merik Meriste. Syn-
tactic recognition of ecg signals by attributed finite
automata. Pattern Recognition, 28(12):1927-1940,
1995.

[52] Sam Kumar, Michael P Andersen, and David E. Culler.
Mr. plotter: unifying data reduction techniques in
storage and visualization systems. Technical Report
UCB/EECS-2018-85, EECS Department, University
of California, Berkeley, May 2018.

[53] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35-40, 2010.

[54] Florian Lautenschlager, Michael Philippsen, Andreas
Kumlehn, and Josef Adersberger. Chronix: long term
storage and retrieval technology for anomaly detection
in operational data. In 15th USENIX Conference on
File and Storage Technologies (FAST 17), pages 229—
242, 2017.

[55] Daniel Lemire and Leonid Boytsov. Decoding billions
of integers per second through vectorization. Software:
Practice and Experience, 45(1):1-29, 2015.

[56] Chunbin Lin, Etienne Boursier, and Yannis Papakon-
stantinou. Plato: approximate analytics over com-
pressed time series with tight deterministic error
guarantees. Proceedings of the VLDB Endowment,
13(7):1105-1118, 2020.

[57] Peter Lindstrom and Martin Isenburg. Fast and efficient
compression of floating-point data. IEEE transactions

on visualization and computer graphics, 12(5):1245-
1250, 2006.

[58] Jean loup Gailly and Mark Adler. Gzip home page.
https://www.gzip.org/, 2003.

[59] Sidi Lu, Bing Luo, Tirthak Patel, Yongtao Yao, Devesh
Tiwari, and Weisong Shi. Making disk failure
predictions smarter! In /8th USENIX Conference on
File and Storage Technologies (FAST 20), pages 151—
167, 2020.

[60] Ge Luo, Ke Yi, Siu-Wing Cheng, Zhenguo Li, Wei
Fan, Cheng He, and Yadong Mu. Piecewise linear
approximation of streaming time series data with max-
error guarantees. In 2015 IEEE 31st International
Conference on Data Engineering, pages 173-184.
IEEE, 2015.

[61] Matthew L Massie, Brent N Chun, and David E Culler.
The ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing,
30(7):817-840, 2004.

[62] Chris Mellor. Data storage estimates
for intelligent vehicles vary widely.
https://blocksandfiles.com/2020/01/17/connected-car-
data-storage-estimates-vary-widely/, 2020.

[63] Angela P Murillo. Data at risk initiative: examining
and facilitating the scientific process in relation to
endangered data. Data Science Journal, pages 12-048,
2014.

[64] Jan Pawel Musial, Michael M Verstraete, and Nadine
Gobron. Comparing the effectiveness of recent
algorithms to fill and smooth incomplete and noisy
time series. Atmospheric chemistry and physics,
11(15):7905-7923, 2011.

[65] Rascha JM Nuijten, Theo Gerrits, Judy Shamoun-
Baranes, and Bart A Nolet. Less is more: on-board
lossy compression of accelerometer data increases
biologging capacity. Journal of Animal Ecology,
89(1):237-247, 2020.

[66] Markus F.X.J. Oberhumer. Lzo home page.
http://www.oberhumer.com/opensource/1zo/, 2008.

[67] Tobi Oetiker. Rrdtool: round robin database tool.
http://oss.oetiker.ch/rrdtool/, 2021.

[68] Themis Palpanas, Michail Vlachos, Eamonn Keogh,
and Dimitrios Gunopulos. Streaming time series sum-
marization using user-defined amnesic functions. /EEE
Transactions on Knowledge and Data Engineering,
20(7):992-1006, 2008.

USENIX Association

20th USENIX Conference on File and Storage Technologies 97

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Thanasis G Papaioannou, Mehdi Riahi, and Karl
Aberer. Towards online multi-model approximation
of time series. In 2011 IEEE 12th International
Conference on Mobile Data Management, volume 1,
pages 33-38. IEEE, 2011.

John Paparrizos, Chunwei Liu, Bruno Barbarioli,
Johnny Hwang, Ikraduya Edian, Aaron J Elmore,
Michael J Franklin, and Sanjay Krishnan. Vergedb:
a database for iot analytics on edge devices. In CIDR,
2021.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul
Cavallaro, Qi Huang, Justin Meza, and Kaushik Veer-
araghavan. Gorilla: a fast, scalable, in-memory time
series database. Proceedings of the VLDB Endowment,
8(12):1816-1827, 2015.

PostgreSQL. Postgresql home

https://www.postgresql.org/, 2020.

page.

AH Robinson and Colin Cherry. Results of a
prototype television bandwidth compression scheme.
Proceedings of the IEEE, 55(3):356-364, 1967.

Kexin Rong and Peter Bailis. Asap: prioritizing
attention via time series smoothing. Proceedings of
the VLDB Endowment, 10(11), 2017.

Ariel Rosenfeld, Joseph Keshet, Claudia V Goldman,
and Sarit Kraus. Online prediction of exponential
decay time series with human-agent application. In
Proceedings of the Twenty-second European Confer-
ence on Artificial Intelligence, pages 595-603, 2016.

Rohan Basu Roy, Tirthak Patel, Raj Kettimuthu,
William Allcock, Paul Rich, Adam Scovel, and Devesh
Tiwari. Operating liquid-cooled large-scale systems:
long-term monitoring, reliability analysis, and effi-
ciency measures. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture
(HPCA), pages 881-893. IEEE, 2021.

SAS. The connected vehicle: big data, big opportu-
nities. https://www.sas.com/content/dam/SAS/en_-
us/doc/whitepaper1/connected-vehicle-107832.pdf,
2021.

Mahadev Satyanarayanan. The emergence of edge
computing. Computer, 50(1):30-39, 2017.

Theo Schlossnagle, Justin Sheehy, and Chris McCub-
bin. Always-on time-series database: keeping up where
there’s no way to catch up. Communications of the
ACM, 64(7):50-56, 2021.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ah-
met Murat Ozbayoglu. Financial time series forecast-
ing with deep learning: a systematic literature review:
2005-2019. Applied Soft Computing, 90:106181, 2020.

(81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Zakhele Phumlani Shabalala, Mokhele Edmond
Moeletsi, Mphethe Isaac Tongwane, and Sabelo Mar-
vin Mazibuko. Evaluation of infilling methods for time
series of daily temperature data: case study of limpopo
province, south africa. Climate, 7(7):86, 2019.

Syed Ahsin Ali Shah, Wajid Aziz, Majid Almaraashi,
Malik Sajjad Ahmed Nadeem, Nazneen Habib, and
Seong-O Shim. A hybrid model for forecasting
of particulate matter concentrations based on mul-
tiscale characterization and machine learning tech-
niques. Mathematical Biosciences and Engineering,

18(3):1992-2009, 2021.

SIBROS. Smart data logging for connected vehicle
value creation. https://www.sibros.tech/post/smart-
data-blogging-for-connected-vehicle-value-creation,
2019.

Apache Solr. Open source enterprise search platform.
http://lucene.apache.org/solr, 2021.

Sveinn Steinarsson. Downsampling time series for
visual representation. Master’s thesis, 2013.

Joachim Stolze, Angela Noppert, and Gerhard Miiller.
Gaussian, exponential, and power-law decay of time-
dependent correlation functions in quantum spin
chains. Physical Review B, 52(6):4319, 1995.

Marco Storace and Oscar De Feo. Piecewise-linear
approximation of nonlinear dynamical systems. /EEE
Transactions on Circuits and Systems I: Regular
Papers, 51(4):830-842, 2004.

Rebecca Taft, Nosayba El-Sayed, Marco Serafini,
Yu Lu, Ashraf Aboulnaga, Michael Stonebraker, Ri-
cardo Mayerhofer, and Francisco Andrade. P-store: an
elastic database system with predictive provisioning.
In Proceedings of the 2018 International Conference
on Management of Data, pages 205-219, 2018.

Yinyan Tan, Zhe Fan, Guilin Li, Fangshan Wang,
Zhengbing Li, Shikai Liu, Qiuling Pan, Eric P Xing,
and Qirong Ho. Scalable time-decaying adaptive
prediction algorithm. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 617-626, 2016.

TimescaleDB. Timescaledb home
https://www.timescale.com/, 2020.

page.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the next generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1-14, 2020.

98 20th USENIX Conference on File and Storage Technologies

USENIX Association

[92]

(93]

[94]

[95]

[96]

Robert Underwood, Sheng Di, Jon C Calhoun, and
Franck Cappello. Fraz: a generic high-fidelity
fixed-ratio lossy compression framework for scientific
floating-point data. In 2020 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS),
pages 567-577. IEEE, 2020.

Sergio Verdu. Fifty years of shannon theory. IEEE
Transactions on information theory, 44(6):2057-2078,
1998.

Alexander Visheratin, Alexey Struckov, Semen Yufa,
Alexey Muratov, Denis Nasonov, Nikolay Butakov,
Yury Kuznetsov, and Michael May. Peregreen—modular
database for efficient storage of historical time series
in cloud environments. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 589—
601, 2020.

Maheswari Visvalingam and James D Whyatt. Line
generalisation by repeated elimination of points. The
cartographic journal, 30(1):46-51, 1993.

Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang,
Lei Rui, Jinrui Zhang, Rong Kang, Julian Feinauer,
Kevin A McGrail, Peng Wang, et al. Apache iotdb:

[97]

(98]

[99]

[100]

time-series database for internet of things. Proceedings
of the VLDB Endowment, 13(12):2901-2904, 2020.

Sage A Weil, Scott A Brandt, Ethan L Miller,
Darrell DE Long, and Carlos Maltzahn. Ceph: a
scalable, high-performance distributed file system.
In Proceedings of the 7th symposium on Operating

systems design and implementation, pages 307-320,
2006.

Steven R Wilkinson, Cyrus F Bharucha, Martin C
Fischer, Kirk W Madison, Patrick R Morrow, Qian Niu,
Bala Sundaram, and Mark G Raizen. Experimental
evidence for non-exponential decay in quantum
tunnelling. Nature, 387(6633):575-577, 1997.

George Edward Williams. Critical aperture conver-
gence filtering and systems and methods thereof, July
2006. US Patent 7,076,402.

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson
Ray, Gian Merlino, and Deep Ganguli. Druid: a
real-time analytical data store. In Proceedings of
the 2014 ACM SIGMOD international conference on
Management of data, pages 157-168, 2014.

USENIX Association

20th USENIX Conference on File and Storage Technologies 99

	Introduction
	Background and Motivation
	Why Constrain Storage
	Time-Varying Importance of Data
	Automatic Compression and Bounding

	Time-Varying Compression
	Ratio Sequencing and Data Chunking
	Virtual Decompression and Compressions
	Compressor and Error Bounding

	TVStore: Automatic Storage Bounding
	Compression on Hot Data or Cold Data?
	Proper Compression Ratio Interval
	Compression Initiation Time

	Implementation of TVStore
	Storage Engine Integration
	Fixed-Ratio Compressor/Decompressor

	Evaluation
	Evaluation Setup
	Storage Bounding and Compression Cost
	Visualization of Compressed Data
	Ingestion and Query Performance
	Query Precision on Compressed Data
	Discussion

	Related Work
	Conclusion

