
TVStore: Automatically Bounding Time-Series Storage

via Time-Varying Compression

Yanzhe An, Yue Su, Yuqing Zhu, Jianmin Wang

E-mail: zhuyuqing@tsinghua.edu.cn

Time Series Management: Popularity & Volume

• Increasing popularity of time series management from wide adoption of:
• Internet-of-Things devices, sensors; DevOps; Industrial 4.0

• Up-surging volume of data/information worldwide

 overwhelming volume of time series data
Zetabytes

Most popular:

Motivation 1: Limited Resources and Expenses

• Limited resources for applications:
• Limited satellite transmission bandwidth: 1TB/d for each oil platform at far sites

• Unprecedentedly paramount data from scientific data: cosmology or meteorology

• Limited expenses for users:
• Constrained expenses for increasing data volume: medium or small entities

• Increasing costs due to increasing data volume: autonomous vehicles

TSDB
Size

(800GB)

Cost(USD) Time of Range-Count Query: Secs (Error)

HDD SSD 100% 80% 2%

InfluxDB(4X) 200 $10 $118 1347(0) 1263(0) 27(0)

TVStore(100X) 8 $0.4 $4.8 1.8(0) 1.7(0.005) 0.7(0)

Cost saving by data compression at a high ratio

Motivation 2: Time-Varying Importance of Data

• The importance of time series data changes along with time.
• As reflected by applications’ favoring recent data over old data, or favoring some

events at certain moments over others

• A feature commonly existing in social, natural, and scientific phenomena

• E.g., price predictions for stock or cryptocurrency market

Bitcoin price history

Price predictions based on
historical time series

Faster and more accurate predictions on the same small volume of data

Our approach and related work

Our key insight and major approach:
• Time-varying compression compresses data complying with the importance of data.

• Automatically bounding storage by time-varying compression to reduce costs
• Run the time-varying compression framework at proper times

• TSDB (time series database) with time-invariant compression
• Lossless compression: limited compression ratio and volume reduction

• Lossy compression: fixed trade-off between storage and accuracy

• TSDB with bounded storage: losing all information on deleted data
• By retention policy with time-based deletion: InfluxDB

• By storage recycling in the round-robin way: RRDTool

• Recent work: SummaryStore keeps predefined time-decaying summaries, without bounding storage.

TVStore Overview

• Featured by time-varying de-/compression storage engine
• Other components remain consistent with the host TSDB

originally supported database functions can still be supported

① Compressing data in a time-varying manner

• By user-defined compression ratio and time-dependent function

② Bounding storage automatically

• To the user-specified storage size

Time-Varying Compression

• Key question

• How to compress according to a time-varying function efficiently,
as data keep being ingested?

Each piece of data must be compressed to different ratios at different times.

Compression and decompression take time.

• Key techniques

• Virtual decompression

• Map to the raw data size for
re-compression

Exempting the cost of
decompression

• Ratio compliance by approximation

Time-Varying Compression

recent
status

The number m of raw data chunks

m chunks

k chunks

historical
status

The target compression ratio

The number k of target data chunks

Raw data

Data
after nth

compression

Data
after (n-1)th

compression
… … …… chunkjk1chunkj21 chunkj31chunkj11

… chunkl21 …… chunkl31 ….……… chunklk1………chunkl11

……chunk1 chunk2 chunk3 chunkk

Recent time Historical time

Compression
ratios

t=1 t=2 ……t=3 t=k

r2=r(i+1) r3=r(i+2) rk=r(k+i-1)r1=r(i)

virtual
decompression

… …

……

Design choices for automatic bounding

• The automatic storage bounding process on fast data ingestion

Data
volume

Ti
m

e
Compression

r1 starts

Compression
r1 finishes

Compression
r2 starts

Compression
r2 finishes

t1

t2

Volume threshold Dc Volume bound Du

t3

t4

Reduced data volume
ΔD

Data Dr to be compressed

Recent data Do

Lossily compressed data Dw

Newly ingested data Di

Losslessly compressed
data

Design choices for automatic bounding

• Key questions
① How to compress?

• Compression on hot data or cold data

Fewer compression rounds & computation costs

② What ratio to compress?
• Proper compression ratio interval
Too large: losing information unnecessarily
Too small: exceeding storage bound

③ When to compress?

• Proper compression initiation time

Too early: losing information unnecessarily and involving unnecessary costs

Too late: exceeding storage bound

Design choices for automatic bounding

• Theoretical deductions on the decision and tight bounds:
① How to compress?

③ When to compress?

② What ratio to compress?

Cold data compression is better.

Experimental Settings

• Datasets

• Workloads

• Compared systems

• Hardware instances:
• Setting 1: two Intel Xeon E5-2650 CPUs, 370GB DDR4 memory

• Setting 2: 32GB memory and an 8-core CPU

Real-world datasets REDD public dataset (7.5TB) Train-load private dataset (6.6TB)

Synthetic datasets Uniform random (5TB) Poisson distribution (5TB) Pareto distribution (5TB)

SummaryStore RRDTool Apache IoTDB

Approximate time series store Round-robin time series DB Implementation baseline

Ingestion With compression ratios at 1X, 20X, 60X, 100X

Query
Aggregations (sum, avg, max, min) for data at Age(S) with
Length(S), S=(Mon/Millennia, Day/Century, Min/Recent)

Storage bounding & compression cost

• TVStore effectively bounds its storage with high ingestion performance.
• RRDTool bounds storage with low ingestion performance.

• SummaryStore does not support storage bounding.

• TVSTore requires fewer compression/merging times than SummaryStore.
• Incurring fewer disk I/Os and computation costs

• Cold-data compression is more efficient than hot-data compression.

Ingestion & query performances

• TVStore has much higher ingestion
throughput than SummaryStore
and RRDtool in all cases.

• TVStore’s compression process has
little impact on the normal
processing of writes.

• TVStore implementation can
answer queries 35X and 8.7X faster
than SummaryStore and RRDtool
respectively for the best case.

How data look in databases

• Time-varying pattern
• TVStore and SummaryStore demonstrate time-varying patterns,

while RRDtool has the time-invariant curves.

• Preserving much more information
• Under the same overall data

reduction/compression ratio,
TVStore can restore data to
almost the same as the
original, while RRDtool and
SummaryStore cannot.

Takeaways and future work

• Storage bounding is possible in ways other than directly discarding data.
• TVStore bounds storage GRADUALLY and AUTOMATICALLY.

• Data can be compressed according to a time-varying function.
• TVStore supports user-defined function in its time-varying compression framework.

• Future work
• TVStore supports plug-in time-varying functions.

 How to decide the best function for an application

• TVStore supports plug-in compressors.

How to decide the best compressor for an application

 Using learned models as lossy compressors

TVStore: Automatically Bounding Time-Series Storage

via Time-Varying Compression

Thank you!

Yanzhe An, Yue Su, Yuqing Zhu, Jianmin Wang

E-mail: zhuyuqing@tsinghua.edu.cn

Open-source: https://github.com/thulab/TVStore

