

TVStore: Automatically Bounding Time-Series Storage via Time-Varying Compression

Yanzhe An, Yue Su, Yuqing Zhu⊠, Jianmin Wang E-mail: zhuyuqing@tsinghua.edu.cn

Time Series Management: Popularity & Volume

- Increasing popularity of time series management from wide adoption of:
 - Internet-of-Things devices, sensors; DevOps; Industrial 4.0
- Up-surging volume of data/information worldwide
 - overwhelming volume of time series data

Intelligent Plotforms

Motivation 1: Limited Resources and Expenses

Limited resources for applications:

- Limited satellite transmission bandwidth: 1TB/d for each oil platform at far sites
- Unprecedentedly paramount data from scientific data: cosmology or meteorology

• Limited expenses for users:

- Constrained expenses for increasing data volume: medium or small entities
- Increasing costs due to increasing data volume: autonomous vehicles

Cost saving by data compression at a high ratio

TSDB	Size (800GB)	Cost(USD)		Time of Range-Count Query: Secs (Error)		
		HDD	SSD	100%	80%	2%
InfluxDB(4X)	200	\$10	\$118	1347(0)	1263(0)	27(0)
TVStore(100X)	8	\$0.4	\$4.8	1.8(0)	1.7(0.005)	0.7(0)

Motivation 2: Time-Varying Importance of Data

- The importance of time series data changes along with time.
 - As reflected by applications' favoring recent data over old data, or favoring some events at certain moments over others
 - A feature commonly existing in social, natural, and scientific phenomena
 - E.g., price predictions for stock or cryptocurrency market

Faster and more accurate predictions on the same small volume of data

Our approach and related work

➢Our key insight and major approach:

- Time-varying compression compresses data complying with the importance of data.
- Automatically bounding storage by time-varying compression to reduce costs
 - Run the time-varying compression framework at proper times
- TSDB (time series database) with time-invariant compression
 - Lossless compression: limited compression ratio and volume reduction
 - Lossy compression: fixed trade-off between storage and accuracy
- TSDB with bounded storage: losing all information on deleted data
 - By retention policy with time-based deletion: InfluxDB
 - By storage recycling in the round-robin way: RRDTool
- Recent work: SummaryStore keeps predefined time-decaying summaries, without bounding storage.

TVStore Overview

- Featured by time-varying de-/compression storage engine
 - Other components remain consistent with the host TSDB
 - → originally supported database functions can still be supported

- 1 Compressing data in a time-varying manner
 - By user-defined compression ratio and time-dependent function
- ② Bounding storage automatically
 - To the user-specified storage size

Time-Varying Compression

Key question

- How to compress according to a time-varying function efficiently, as data keep being ingested?
 - → Each piece of data must be compressed to different ratios at different times.
 - → Compression and decompression take time.

Time-Varying Compression

Key techniques

- Virtual decompression
 - Map to the raw data size for re-compression
 - → Exempting the cost of decompression

Ratio compliance by approximation

Design choices for automatic bounding

The automatic storage bounding process on fast data ingestion

Design choices for automatic bounding

Key questions

- 1 How to compress?
 - Compression on hot data or cold data
 - → Fewer compression rounds & computation costs
- ② What ratio to compress?
 - Proper compression ratio interval
 - → Too large: losing information unnecessarily
 - → Too small: exceeding storage bound
- 3 When to compress?
 - Proper compression <u>initiation time</u>
 - → Too early: losing information unnecessarily and involving unnecessary costs
 - → Too late: exceeding storage bound

Design choices for automatic bounding

- Theoretical deductions on the decision and tight bounds:
 - 1 How to compress? Cold data compression is better.

Principle 1. For a given range of time series data and a sequence of compression ratios, iterative compressions over cold data can reduce the compression rounds as compared to the continuous compression method on hot data.

3 When to compress?
$$D_c \le (D_u - D_o) / (\frac{v_i}{v_r} + \frac{1}{r} + 1) + D_o$$

Principle 3. Let D_u be the bound on the storage space and D_o be the recent data not to be compressed. Let v_r be the average read throughput from the disk and v_i the ingestion throughput by applications. Given the compression ratio \bar{r} for a compression round, the threshold D_c of data volume to start a compression must satisfy the following condition.

$$D_c \le (D_u - D_o) / (\frac{v_i}{v_r} + \frac{1}{r} + 1) + D_o \tag{15}$$

② What ratio to compress? $r_c \ge \frac{r_r}{v_r - v_i}$

$$r_c \ge \frac{v_r}{v_r - v_i}$$

Principle 2. To avoid overrunning a storage bound, the compression ratio r_c for each round of compression must be no smaller than $\frac{v_r}{v_r-v_i}$, where v_r is the average read throughput from the disk and v_i is the ingestion throughput by applications.

Experimental Settings

Datasets

Real-world datasets	REDD public dataset (7.5TB)		Train-load private dataset (6.6TB)	
Synthetic datasets	Uniform random (5TB)	Poisson distr	ibution (5TB)	Pareto distribution (5TB)

Workloads

Ingestion	With compression ratios at 1X, 20X, 60X, 100X
Query	Aggregations (sum, avg, max, min) for data at Age(S) with Length(S), S=(Mon/Millennia, Day/Century, Min/Recent)

Compared systems

SummaryStore	RRDTool	Apache IoTDB
Approximate time series store	Round-robin time series DB	Implementation baseline

• Hardware instances:

- Setting 1: two Intel Xeon E5-2650 CPUs, 370GB DDR4 memory
- Setting 2: 32GB memory and an 8-core CPU

Storage bounding & compression cost

- TVStore effectively bounds its storage with high ingestion performance.
 - RRDTool bounds storage with low ingestion performance.
 - SummaryStore does not support storage bounding.

- TVSTore requires fewer compression/merging times than SummaryStore.
 - Incurring fewer disk I/Os and computation costs
 - Cold-data compression is more efficient than hot-data compression.

Ingestion & query performances

- TVStore has much higher ingestion throughput than SummaryStore and RRDtool in all cases.
- TVStore's compression process has little impact on the normal processing of writes.

 TVStore implementation can answer queries 35X and 8.7X faster than SummaryStore and RRDtool respectively for the best case.

How data look in databases

- Time-varying pattern
 - TVStore and SummaryStore demonstrate time-varying patterns, while RRDtool has the time-invariant curves.

Preserving much more information

 Under the same overall data reduction/compression ratio, TVStore can restore data to almost the same as the original, while RRDtool and SummaryStore cannot.

Takeaways and future work

- Storage bounding is possible in ways other than directly discarding data.
 - TVStore bounds storage GRADUALLY and AUTOMATICALLY.
- Data can be compressed according to a time-varying function.
 - TVStore supports user-defined function in its time-varying compression framework.

Future work

- TVStore supports plug-in time-varying functions.
 - → How to decide the best function for an application
- TVStore supports plug-in compressors.
 - → How to decide the best compressor for an application
 - → Using learned models as lossy compressors

TVStore: Automatically Bounding Time-Series Storage via Time-Varying Compression

Open-source: https://github.com/thulab/TVStore

Thank you!

Yanzhe An, Yue Su, Yuqing Zhu⊠, Jianmin Wang E-mail: **zhuyuqing@tsinghua.edu.cn**

