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Time Series Management: Popularity & Volume
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* Increasing popularity of time series management from wide adoption of:
* Internet-of-Things devices, sensors; DevOps; Industrial 4.0

* Up-surging volume of data/information worldwide @

=» overwhelming volume of time series data |
The Rise of Zetabytes

Industrial Big Data

Trend of the last 24 months
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Motivation 1: Limited Resources and Expenses

* Limited resources for applications:
* Limited satellite transmission bandwidth: 1TB/d for each oil platform at far sites
* Unprecedentedly paramount data from scientific data: cosmology or meteorology

* Limited expenses for users:

* Constrained expenses for increasing data volume: medium or small entities
* Increasing costs due to increasing data volume: autonomous vehicles

Cost saving by data compression at a high ratio

Size Cost(USD) Time of Range-Count Query: Secs (Error)
TSDB
(800GB) HDD SSD 100% 80% 2%
InfluxDB(4X) 200 $10 $118 1347(0) 1263(0) 27(0)

TVStore(100X) 8 $0.4 $4.8 1.8(0) 1.7(0.005) 0.7(0)



Motivation 2: Time-Varying Importance of Data

* The importance of time series data changes along with time.

* As reflected by applications’ favoring recent data over old data, or favoring some
events at certain moments over others

» A feature commonly existing in social, natural, and scientific phenomena
* E.g., price predictions for stock or cryptocurrency market

Faster and more accurate predictions on the same small volume of data
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Our approach and related work

»0ur key insight and major approach:
* Time-varying compression compresses data complying with the importance of data.
e Automatically bounding storage by time-varying compression to reduce costs

* Run the time-varying compression framework at proper times

* TSDB (time series database) with time-invariant compression
* Lossless compression: limited compression ratio and volume reduction
* Lossy compression: fixed trade-off between storage and accuracy

* TSDB with bounded storage: losing all information on deleted data
* By retention policy with time-based deletion: InfluxDB
e By storage recycling in the round-robin way: RRDTool

e Recent work: SummaryStore keeps predefined time-decaying summaries, without bounding storage.



TVStore Overview

* Featured by time-varying de-/compression storage engine
* Other components remain consistent with the host TSDB
=>»originally supported database functions can still be supported

Time ) Time-Varying Client
. ¥ Data Ingestor [--* Compression/Decompression = Query Engine .
Series . Queries
Storage Engine

&

» Storage-Bounded TSDB
wssless Compression

@ Compressing data in a time-varying manner

* By user-defined compression ratio and time-dependent function
@ Bounding storage automatically
* To the user-specified storage size



Time-Varying Compression

* Key question

* How to compress according to a time-varying function efficiently,
as data keep being ingested?

=» Each piece of data must be compressed to different ratios at different times.

=>» Compression and decompression take time.
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Time-Varying Compression
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Design choices for automatic bounding
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* The automatic storage bounding process on fast data ingestion
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Design choices for automatic bounding
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* Key questions
@ How to compress?
* Compression on hot data or cold data recnt a0, | (Cvatume resras o)L (v b\:i‘li,j Volume
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1~ Reduced: data volume
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=>» Fewer compression rounds & computation costs
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(@ What ratio to compress?
* Proper compression ratio interval

<
=>»Too large: losing information unnecW
=>»Too small: exceeding storage bound
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* Proper compression initiation time

=>»Too early: losing information unnecessarily and involving unnecessary costs
=>»Too late: exceeding storage bound



Design choices for automatic bounding

* Theoretical deductions on the decision and tight bounds:
(@ How to compress? Cold data compression is better.

Principle 1. For a given range of time series data and a
sequence of compression ratios, iterative compressions over

cold data can reduce the compression rounds as compared to
the continuous compression method on hot data.

(@ What ratio to compress? |r. > ——

Vi ]
(® When to compress?|D. < (D, —D,)/(-*+—+1)+D,
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Principle 2. 7o avoid overrunning a storage bound, the
compression ratio r. for each round of compression must
be no smaller than 1‘—* where v, is the average read

Principle 3. Ler D, be the bound on the storage space and
D, be the recent data not to be compressed. Let v, be the
average read throughput from the disk and v; the ingestion
throughput by applications. Given the compression ratio F for
a compression round, the threshold D, of data volume to start
a compression must satisfy the following condition.
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throughput from the disk and v; is the ingestion throughput by
applications.
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Experimental Settings

* Datasets

Real-world datasets REDD public dataset (7.5TB) Train-load private dataset (6.6TB)
Synthetic datasets Uniform random (5TB) Poisson distribution (5TB)  Pareto distribution (5TB)

 Workloads

With compression ratios at 1X, 20X, 60X, 100X
Quer Aggregations (sum, avg, max, min) for data at Age(S) with
y Length(S), S=(Mon/Millennia, Day/Century, Min/Recent)
* Compared systems

SummaryStore RRDTool Apache loTDB

Approximate time series store  Round-robin time series DB Implementation baseline

* Hardware instances:
e Setting 1: two Intel Xeon E5-2650 CPUs, 370GB DDR4 memory
e Setting 2: 32GB memory and an 8-core CPU



Storage bounding & compression cost
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* TVStore effectively bounds its storage with high ingestion performance.

* RRDTool bounds storage with low ingestion performance.
 SummaryStore does not support storage bounding.
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Compression Times

* TVSTore requires fewer compression/merging times than SummaryStore.
* Incurring fewer disk I/Os and computation costs

e Cold-data compression is more efficient than hot-data compression.



Ingestion & query performances
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e TVStore has much higher ingestion ] —
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How data look in databases
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* Time-varying pattern
e TVStore and SummaryStore demonstrate time-varying patterns,
while RRDtool has the time-invariant curves.
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Takeaways and future work

&—--—
* Storage bounding is possible in ways other than directly discarding data.
* TVStore bounds storage GRADUALLY and AUTOMATICALLY.

* Data can be compressed according to a time-varying function.

» TVStore supports user-defined function in its time-varying compression framework.

* Future work
* TVStore supports plug-in time-varying functions.
=» How to decide the best function for an application
e TVStore supports plug-in compressors.
=2 How to decide the best compressor for an application
=» Using learned models as lossy compressors



TVStore: Automatically Bounding Time-Series Storage
via Time-Varying Compression

Open-source: https://github.com/thulab/TVStore

Thank you!
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