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Abstract
In this work, we design and implement a Stackable Per-

sistent memory File System (SPFS), which serves NVMM
as a persistent writeback cache to NVMM-oblivious filesys-
tems. SPFS can be stacked on a disk-optimized file system
to improve I/O performance by absorbing frequent order-
preserving small synchronous writes in NVMM while also
exploiting the VFS cache of the underlying disk-optimized
file system for non-synchronous writes. A stackable file sys-
tem must be lightweight in that it manages only NVMM and
not the disk or VFS cache. Therefore, SPFS manages all file
system metadata including extents using simple but highly
efficient dynamic hash tables. To manage extents using hash
tables, we design a novel Extent Hashing algorithm that ex-
hibits fast insertion as well as fast scan performance. Our
performance study shows that SPFS effectively improves I/O
performance of the lower file system by up to 9.9×.

1 Introduction
Non-volatile main memory (NVMM) has low access latency
and byte-addressability similar to DRAM but ensures non-
volatility of data similar to secondary storage. Intel’s DC
Persistent Memory module (DCPMM) is one of the first com-
mercialized NVMM products, which provides exciting per-
formance as storage class memory (SCM). Despite its short-
comings such as (i) latency higher than DRAM, (ii) band-
width lower than DRAM, (iii) high sensitivity to NUMA ef-
fects, and (iv) a larger media access granularity (i.e., 256-byte
XPLine), extensive research have been conducted to explore
the desirable features of DCPMM, i.e., persistency with much
lower latency than NVMe SSDs [7]. While the future of
DCPMM is uncertain in short term [31] due to the recent
Intel’s unfortunate decision to shut down its Optane business,
nevertheless, DCPMM has left various positive legacy, in-
cluding NVMM-aware file systems [24,37,39] and key-value
stores [11, 20, 21, 23, 34, 36]. Although such systems are still
in their infancy, they have shown the potential to significantly
∗Department of Electrical and Computer Engineering
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outperform legacy systems and thus, other types of NVMM
(e.g., MRAM and battery-backed DRAM) are likely to suc-
ceed DCPMM in the near future. However, the biggest weak-
ness of current developments such as MRAM and battery-
backed DRAM devices is their limited capacity. As such, for
the immediate future, small NVMMs are expected to be used
in conjunction with traditional storage devices. In this paper,
we present a file system that can be deployed with only a
relatively small amount of NVMM harnessing the benefits
of NVMM, while, at the same time, continuing to make use
of the underlying conventional file systems for block storage
devices.

Previous studies have attempted to develop monolithic file
systems that manage both NVMM and block device storage
and that determine which device to service the read and write
requests based on the I/O characteristics [24, 39]. However,
managing multiple storage device types with a single, mono-
lithic file system has its limitations. First, monolithic file
systems for tiered storage devices, such as Ziggurat [39] and
Strata [24], are hard to tailor for various combinations of mul-
tiple block device types. Second, developing a file system
from scratch takes considerable time and effort to mature
into a stable file system. Moreover, managing multiple tiered
storage devices adds even more complexity. Third, from a de-
ployment point of view, monolithic file systems cause a bit of
inconvenience as they are oblivious of existing file systems;
To deploy these systems in practice, a backup of the enormous
number of files managed by legacy file systems must first be
made, then the new NVMM and disk setting formatted, and
then the backup copied back.

In this paper, we advocate a modular approach through the
use of stackable file systems (aka overlay or union file sys-
tems) [9,14,29,38]. Specifically, we present SPFS (Stackable
PM File System), a stackable file system that can be deployed
with only a relatively small amount of NVMM, whose goal
is to absorb frequent small synchronous writes required to
maintain storage write order. For example, modern I/O stack
enforces log entries and commit marks to be flushed to durable
storage devices in serialization order such that recovery is pos-
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sible. For this, conventional file systems interleave small write
requests with expensive fsync() system calls, which leads to
performance degradation. The primary goal of SPFS is to let
NVMM absorb such synchronous small writes and reduce the
overhead of enforcing durability in block device file systems.

In addition, the NVMM-optimized (“upper”) SPFS file sys-
tem can be stacked on top of any other block device-optimized
(“lower”) file system x to provide a file system that is a union
of both. Such a modular approach allows SPFS+x file system
configurations that provide the best aspects of both NVMM
and conventional devices as well as file systems for these
devices. More specifically, aside from the performance bene-
fits aforementioned, higher stability as well as flexibility can
be attained. This is because we can exploit as the lower file
system, any mature file system, e.g., EXT4, XFS, or F2FS,
allowing delegation of large or asynchronous writes to the
lower file system that can benefit from the highly efficient
VFS cache. Furthermore, as SPFS is specifically designed and
implemented to absorb frequent small synchronous writes in
NVMM, its logic is simple and thus, easy to verify. Also,
our modular approach is easier to deploy than monolithic file
systems for tiered storage because SPFS can be stacked on
any production file system on the fly. This makes deploying
and taking advantage of NVMM simple.

In return for these advantages, stackable file systems may
double the file system management overhead as it is layering
two file systems. Therefore, a stackable file system must be
lightweight. To this end, SPFS manages file system metadata
in lightweight and efficient hash tables using a novel hashing
algorithm that supports efficient lookup as well as scans.

The main contributions of this study are as follows.

• We design and implement SPFS, a stackable file system
that allows any kernel file system x to reap the performance
of NVMM while requiring no changes to x.

• SPFS, and its resulting SPFS+x, allows leveraging of the
strengths of each storage device type, i.e., asynchronous
writes of the VFS cache (DRAM), synchronous small writes
of SPFS (NVMM), and various desirable features of disk-
optimized file systems (SSDs).

• SPFS manages all file metadata in hash tables that ensure
fast insertion and lookup. We also propose a novel Extent
Hashing algorithm to hash key ranges and support extents
in hash-based file mappings.

• Our performance study shows that SPFS+EXT4,
SPFS+XFS, and SPFS+F2FS improves the performance of
the lower file system by up to 9.9×.

The rest of this paper is organized as follows. In Section 2,
we present the background and motivation. In Section 3, we
present how SPFS profiles synchronous writes and steers them
to NVMM. In Section 4, we present how SPFS manages file
system metadata using hash tables. In Section 5, we evaluate
the performance of SPFS. In Section 6, we conclude the paper.

(a) Monolithic Tiered File System (b) Stackable File System

Figure 1: Comparison of Ziggurat and SPFS

2 Background and Motivation

2.1 Stackable File System
File systems often make tradeoffs for a specific type of storage
device [24]. For example, F2FS [25] is designed to accom-
modate the characteristics of NAND flash memory-based
storage devices. Leveraging the hardware properties of each
storage device has been studied for a long time. Such de-
velopments are expected to continue as evolution of storage
devices (e.g., ultra low latency NVMes, Zoned Namespace
SSDs, CXL devices, etc.) continues [5, 8, 15]. Therefore, we
question whether it is desirable to have one file system that
rules them all, and also question whether the effort of op-
timizing legacy block device-only file systems needs to be
duplicated for monolithic file systems for tiered storage as
well. For instance, Ziggurat does not use the well optimized
VFS cache. Instead, it implements its own proprietary page
cache as shown in Figure 1(a).

A stackable file system is a lightweight file system that runs
on top of another file system. It is often used to change the
behavior of the lower file system, e.g., encryption, access con-
trol, etc., without its own storage device (e.g., eCryptFS [16]),
or to combine two mount points into one to provide a single
file system image (e.g., UnionFS [14], OverlayFS [9], and
AUFS [29]), such that an immutable Docker container image
can be provided as a base and the upper level stackable and
mutable file system can overlay new files or directories on top
of the base. Wrapfs [38] is a small null-layer (i.e., template)
stackable file system from which one could implement a new
upper level file system. Wrapfs is an implementation of stack-
able vnode interface [30], which allows multiple vnodes to be
chained for a single file. Using the vnode chain, a stackable
filesystem can interact with the lower file system via VFS in-
terfaces (e.g. call_read_iter) or direct operation calls (e.g.
inode_operations.fiemap). With the vnode chain, stack-
able file systems can perform various functionalities, such as
encrypting/decrypting files or making copies of data blocks
in the upper level storage device to hide the data blocks in the
lower level file system.

Consequently, if NVMM is used as an intermediate layer
in the storage hierarchy, it is natural to design a stackable
file system for NVMM that can be layered on a variety of
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existing block device file systems instead of abandoning the
legacy block device file systems that have been improved for
decades. We believe there exists an unexplored opportunity
of layering file systems optimized for each storage device
as this allows one to easily get the most out of each storage
device type. However, a stackable file system needs to be
lightweight as layering two file systems may double the file
system management overhead. As such, we aim to design and
implement a lightweight hash-based stackable file system.

2.2 Steering Synchronous Writes
On spinning disk drives, the seek time may exceed the data
transfer time if writes are small [18,19]. Even on SSDs, it has
been reported that small random writes fail to leverage the
full device bandwidth because small random writes cause a
large number of invalid pages to be scattered and valid pages
are moved to different blocks via garbage collection. To miti-
gate such problems due to small writes, which we refer to as
the microwrite problem, various block device file systems, in-
cluding BetrFS [18,19] and VT-tree [32], have been designed
to absorb the small writes in a log-structured manner. Other
remedies such as preallocation [26], defragmentation [22,26],
and block layer I/O scheduling techniques [35] have also been
proposed. SPFS relies on these features of the conventional,
lower file systems to address the microwrite problem. We
believe handing the microwrite problems over to the DRAM
cache in the lower file system is the most effective solution
as it liberates SPFS to focus on the synchronization overhead
(i.e., order-preserving writes), which cannot be resolved by
the volatile DRAM cache.

Applications require synchronization mainly for two pur-
poses - durability and storage order [35]. However, enforcing
storage order by calling fsync() often results in frequent
small synchronous writes, which leads to significant perfor-
mance degradation because it prevents I/O parallelism [35].
SPFS steers this order-preserving synchronous writes to fast
and durable NVMM while leveraging the VFS cache of the
lower file system for buffered writes. As a stackable file sys-
tem, SPFS does not duplicate the VFS cache to avoid the
double copy problem [12].

Determining whether each write is synchronous or not is a
hard problem. Ziggurat [39] and HiNFS [12] use DRAM as a
write-back cache for buffered IO and determine if each write is
synchronous or not based on the write size and fsync interval
(Ziggurat) or based on the latency of each write (HiNFS),
respectively. Both approaches are eager in detecting write
types in that they determine the write type for each write.

In this work, we design and implement a lazy Sync Point
Profiler to determine which blocks are to be placed in NVMM,
or in DRAM or block device through the lower file system.
By default, SPFS forwards incoming writes to the fast VFS
cache first, then triggers block migration if certain conditions
are met. This lazy approach benefits more from low DRAM
latency, unlike the eager approaches of Zigurat and HiNFS.

2.3 Hash-based Global File Mapping
File mapping structures map logical offsets of a file to physi-
cal locations on the underlying device. In most traditional file
systems, file mapping tables are tree-structured indexes such
as extent trees and radix trees [28]. As the number and size
of files increase, the size of the file mapping structures also
increases. The resizing operation is particularly expensive in
tree-based indexes because any update to internal tree nodes
conflict with other concurrent operations that access different
leaf nodes. To mitigate this problem, traditional file systems
use per-file mapping structures to isolate concurrent accesses
to different files and reduce lock contention.

In contrast to conventional wisdom, Neal et al. [28] recently
show that as tree-based per-file mapping structures suffer from
multiple levels of indirection and more memory references, a
single hash table to manage global file mappings can be bene-
ficial in NVMM. HashFS, the file system that they propose,
requires a much smaller number of memory accesses than
tree-based mappings, and as such, the performance of global
hashing is shown to outperform per-file extent-trees and radix
trees [28]. However, still, there is an unresolved limitation in
hash-based global file mapping. That is, block hashing that
is employed in HashFS is not suitable for sequential I/Os be-
cause block hashing does not manage extents. Extent-based
file systems allow for files to be laid out contiguously on disk
space, making sequential I/O fast. Extents also significantly
reduce the amount of metadata by storing only two numbers,
the first block number and the number of blocks covered by
the extent. However, block hashing requires every block num-
ber in an extent to be canonically stored in its corresponding
bucket, which slows down sequential I/Os. In this work, we
develop a novel Extent Hashing algorithm to overcome these
limitations, which we describe in Section 4.2.

3 Design of SPFS
SPFS consists of four key components that allow SPFS to

be stacked with legacy file systems, as shown in Figure 1(b) -
(i) the Sync Point Profiler that steers order-preserving small
synchronous writes to NVMM, (ii) hash-based extent manage-
ment (extent table), (iii) hash-based free space management
(block bitmap table), and (iv) hash-based name resolution
(name2inode table).

In this section, we concentrate on the Sync Point Profiler
that determines which blocks are to be handled by SPFS and
placed in NVMM or by the lower file system to be placed
in conventional storage. The hash-based discussions are pre-
sented in Section 4.

3.1 File Block Placement Mode
Figure 2 shows the three file block placement modes sup-
ported in SPFS - standalone, bypass, and stacked modes. Note
that SPFS places NVMM next to DRAM and disks, rather
than in the middle of DRAM and block device hierarchy.
SPFS is the upper file system, but only manages NVMM,
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Figure 2: Three File Operation Modes
(a) Write Point Profiler (Ziggurat) (b) Sync Point Profiler (SPFS)

Figure 3: Write Point Profiler vs. Sync Point Profiler

letting the faster DRAM VFS cache be managed by the lower
file system.
Standalone mode: If a synchronous option (O_DIRECT,
O_SYNC) is specified for the open() system call or if SPFS
is used without a lower file system, all file blocks are placed
in NVMM as shown in Figure 2(a).

System administrators can also force the use of NVMM on
a per-directory basis via extended attribute or ioctl. That is,
for example, if there is a directory that stores transactional log
files or short-lived backup files, the administrator can specify
the directory to be used in standalone mode.
Bypass mode: If the synchronous option is not specified for
open(), NVMM is bypassed by default, placing the file in
the lower file system as shown in Figure 2(b). By bypassing
writes to the lower file system, read intensive workloads and
non-synchronous writes can benefit from the fast VFS cache.
Stacked mode: Figures 2(c), (d), and (e) show the Stacked
mode where both SPFS and the lower file system play roles as
particular blocks of files are placed in either NVMM or con-
ventional storage. If the Sync Point Profiler, to be described
in Section 3.2, decides to place a block in NVMM, SPFS gets
the file extent information using fiemap ioctl and prepares
the file mapping in NVMM. In preparing the file mapping,
SPFS does not yet physically migrate the extent as shown in
Figure 2(c), where the dashed rectangle represents the map-
ping for the file to be migrated. Physical migration is delayed
because the Sync Point Profiler makes the migration decision
when fsync() is called, i.e., the dirty blocks have already
been delegated to the lower file system, and they could have
been persisted to disk via periodic write-back of the lower
file system. Instead, the migration is deferred until the next
write such that read() benefits from the low latency of the
VFS page cache, as shown in Figure 2(d). Since there is no
need to move a migration target block to NVMM unless the
block is subsequently updated, physical migration is triggered
by subsequent write() calls, avoiding the double copy prob-
lem [12]. As shown in Figure 2(e), SPFS checks the file
mapping and writes blocks in NVMM if the file mapping indi-
cates that the file is mapped in NVMM. By nature of stackable
file systems, access to migrated blocks is serviced by the up-
per file system, that is, SPFS. Thus, the blocks in the lower
file system become invisible to the user. When the blocks
are actually migrated, the blocks in the lower file system are

erased via fallocate(). Later, if the entire file is migrated
to SPFS, the file is deleted from the lower file system.

3.2 Profiling Mechanism: Sync Point Profiler
Order-preserving small synchronous writes often lead to or-
ders of magnitude IOPS degradation [35] because it seri-
alizes potentially parallel activities. Such order-preserving
small synchronous writes need to be steered to fast NVMM
rather than slow block devices. Therefore, we devise a Sync
Point Profiler that monitors fsync() calls. Specifically, at
an fsync() call, if the previous fsync() call on the same
file is within a certain threshold and the amount of flushed
data is small, we consider this to be an order-preserving small
synchronous write. The rationale behind this is that if the
interval is short, there is a high probability that the fsync()
calls are made with intention to keep the storage order [35].
In contrast, if the interval is large, then even if the write size
is small, it is unlikely that applications are flushing writes in
continued sequence. Thus, these can be serviced by the slower
lower file system without much performance degradation. To
determine small, we do not take individual write sizes at the
point of writes, but take the total number of bytes written to
the lower file system at fsync(). The rationale behind this
is that large writes can benefit from disk bandwidth, and syn-
chronous writes to maintain storage order are usually small
(e.g., 4 KB WAL frames in DBMS). The default values in our
setting are 1 second for the interval and 4 MB for the size. We
take 4 MB as this is the value used in Ziggurat’s synchronicity
predictor’s policy [39], while 1 second was chosen as we ob-
serve the performance of SPFS is insensitive to the threshold
time unless it is set too small. In Section 5, we quantify the
performance effects of the profiler parameters.

Figure 3 highlights the key differences between the Zig-
gurat’s synchronicity and write size predictor and the SPFS
Sync Point Profiler. The example in Figure 3(a) where an
application issues four 3 MB small writes (A, B, C, and C’)
shows how Ziggurat makes its decision for each individual
write() (thus, Write Pointer Profiler) and eagerly persists
small writes according to its fast-first policy. Its write size
predictor will detect the first two writes, A and B, as small
and store them in NVMM. When fsync() is called, its syn-
chronicity predictor will detect the total number of bytes is
larger than 4 MB and treat the file as an asynchronous file.
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Nevertheless, A and B have already been flushed to NVMM.
The write size predictor also steers C into NVMM since it is
small. The second fsync(), however, considers the file as a
synchronous file as only 3 MB (C) was written. Consequently,
the next write C’ will also be written in NVMM. In conclu-
sion, we see that all writes are stored into NVMM. As we
will show later in Section 5, Ziggurat’s profiling method fails
to leverage faster DRAM and shows similar performance as
the NVMM-only file system NOVA because it aggressively
steers most writes to NVMM.

SPFS, on the other hand, makes block placement decisions
when fsync() is called. Using the same example as above,
Figure 3(b) shows how differently the SPFS profiler services
the writes. For A and B, they are initially written to the VFS
page cache allowing them to make use of the DRAM. Upon
the first fsync(), because the total write size is 6 MB, both
A and B are written to the block device via the lower file
system. Similarly, C is also written to the page cache. When
the second fsync() is called, the lower file system flushes
C from the cache to disk, but at the same time, SPFS detects
small synchronous writes and migrates its block mapping,
(not data blocks), to NVMM. When subsequent writes are
requested to some of the blocks of C (C’), these writes are
steered to NVMM and directly written onto.

3.2.1 Migration to Lower File system
Compared to Ziggurat, SPFS uses NVMM sparingly. How-
ever, when the NVMM space is running low, SPFS selects vic-
tim files and migrates them to the lower file system. Note that
the primary goal of SPFS is not to cache frequently accessed
files but to absorb order-preserving small synchronous writes.
Therefore, even if NVMM has free space, SPFS migrates a
file to the lower file system if its access pattern changes, e.g.,
if the access pattern is read intensive, demoting the file to the
lower file system can benefit from the VFS page cache.

SPFS uses a metric called Sync Factor to determine which
file’s recent I/O pattern is well suited for the criteria of order-
preserving small synchronous writes. The formula that calcu-
lates the Sync Factor (SF) at time t is given by

SFt = α ·weight(IO_type)+(1−α) ·SFt−1

where α is the attenuation factor (0 < α < 1), i.e., the formula
employs exponential moving average to attenuate the effect
of old file accesses. weight(IO_type) is a fixed positive value
if the current I/O at time t satisfies the Sync Point Profiler’s
condition. Otherwise it is zero, i.e., if a file is read-intensive
or updated in large units, its Sync Factor gradually decreases.
Sync Factor is maintained per file and updated only upon an
I/O request. Therefore, its computation overhead is negligible.

When the NVMM space is running low, SPFS migrates the
files with low Sync Factor back to the lower file system in the
background. Administrators can also set a hard limit on the
Sync Factor so that files can be migrated back to the lower
file system if their Sync Factors are lower than the hard limit,
even if NVMM has free space.

Figure 4: NVMM Space Layout for SPFS

4 Hash-based Block Management
While SPFS is a stackable file system, it is also a standalone
hash-based NVMM file system. As a file system, SPFS re-
quires file system metadata to be managed persistently, and
thus, metadata management overhead can be doubled. Since
the target workload of SPFS is synchronous I/Os to a large
number of small files, the conventional per-file mapping struc-
tures may waste storage space [28]. Therefore, similarly to
HashFS [28], SPFS manages file block mapping information
using global hash-based structures. Furthermore, SPFS re-
duces the size of the hash table by indexing extents, not blocks.
However, to the best of our knowledge, no efficient means of
hashing extents, i.e., range data, is known. To overcome this
limitation, we propose a novel Extent Hashing algorithm.

In this section, we describe hash-based free space manage-
ment (block bitmap table), hash-based extent management (ex-
tent table), and hash-based path-name resolution (name2inode
table) in SPFS.

4.1 Free Space Management
Using extents, SPFS effectively reduces the aggregate size of
file mapping metadata. The aggregate size of the file mapping
structures is particularly important for a lightweight stackable
file system because small mapping structures leave more
room for file data blocks. SPFS employs dynamic hashing
(in particular, CCEH [27]) to dynamically adjust the size of
the multiple hash tables and efficiently manage the NVMM
space. Specifically, if a hash collision cannot be avoided by
linear probing or cuckoo hashing, SPFS dynamically allocates
and assigns NVMM blocks to each hash table, namely, extent
table, block bitmap table, and name2inode table.

SPFS manages data blocks at the granularity of 4 KB but
metadata blocks at 256 bytes (also referred to as XPLine, the
unit of physical access to DCPMM) by default. This is to
reduce the waste of NVMM space as well as to avoid write
amplification on hardware, which can be caused by read-
modify-write operations. However, if we use small blocks,
which is 1/16 of the traditional block size, SPFS needs to
keep track of a 16× larger number of blocks, which leads to
high metadata management overhead. To reduce this over-
head, SPFS groups 16 contiguous free blocks into a cluster
of 4 KB and manages the locations of free clusters in the
cluster bitmap as in conventional file systems. For partially
used clusters, we manage the locations of free blocks using
block bitmap hash table and classical volatile segregated lists.
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(a) Block Hashing: O(B) Write, O(1) Read

(b) Extent Hashing: O(logB) Write, O(logB) Read

Figure 5: Block vs. Extent Hashing

Figure 4 shows the layout of physical NVMM space for
SPFS. The first 4 KBytes is the superblock that contains
various metadata including the file system magic number,
block/cluster/ inode size, the number of clusters, the number
of inodes, metadata for the three hash tables, etc. Then comes
the cluster bitmap, where each bit in the cluster bitmap indi-
cates whether all blocks in the corresponding cluster are free
or not. If any block in a cluster is in use, its corresponding bit
in the cluster bitmap is set to one. Since the cluster bitmap
uses one bit per cluster of 4 KB, the space overhead for the
cluster bitmap is no larger than that of traditional file systems
that manage free space at the granularity of 4 KB blocks.

The cluster bitmap does not indicate which blocks in a
cluster are free or in use. Hence, each partially used cluster
requires another metadata, the block bitmap, which is indexed
in the block bitmap table. When SPFS allocates some, but not
all, blocks in a cluster, it creates and inserts a block bitmap
into the block bitmap table. The block bitmap table is used
only for the clusters that are partially allocated. If a cluster
has no free block, which is a common case for files larger
than 4 KB, or if all blocks are free, which is also a common
case when the file system is initially formatted, no block
bitmap is needed in SPFS. To manage free blocks of partially
used clusters and serve memory allocation requests quickly,
SPFS manages volatile segregated lists constructed from the
persistent block bitmap table. For a block allocation request,
we select a segregated list based on the allocation request size.

4.2 Extent Hashing
SPFS indexes extents in a hash table called extent table. To
the best of our knowledge, SPFS is the first hash-based file
system that indexes extents using a hash table. HashFS [28],
the state-of-the-art hash-based NVMM file system that also
manages the file mapping information in a global hash table,
requires every block number to be canonically stored in its
corresponding bucket. That is, HashFS indexes blocks, not
extents, as illustrated in Figure 5(a). Therefore, HashFS not
only significantly increases the aggregate size of file mapping
structures, but it also slows down writes because writing an
extent of B blocks requires as many as B store instructions
and cacheline flushes.

In contrast to block hashing, our novel Extent Hashing

Figure 6: Searching Extent Hash Table

Algorithm 1 Insert(inode, cluster_num, len, extent)
1: if (len ≤ 0) return
2: current_key = hash(inode,cluster_num)
3: bucket = find_bucket(current_key)
4: /* e.g., bucket_array[current_key%NumBuckets] */
5: bucket.store(inode, extent)
6: if len = 1 then
7: return
8: else if cluster_num is odd then
9: stride_size← 1

10: else
11: if cluster_num != 0 then
12: T NZ← ffs(cluster_num)−1
13: stride_size← previous_pow_of_two(min(len, 1≪ TNZ))
14: else
15: stride_size← previous_pow_of_two(len)
16: end if
17: end if
18: Insert(inode, cluster_num + stride_size, len - stride_size, extent)

selects only a few buckets based on the binary representation
of cluster numbers, as shown in Figures 5(b) and 6. Extent
Hashing bounds the number of pointers for a given extent by
log2B, where B is the number of blocks in an extent.

The insertion and search algorithms of Extent Hashing are
presented in Algorithms 1 and 2. The algorithms are short
but they work with sophisticated bitwise operations such as
ffs and fls (find the first/last bit set in a key) operations.
Extent Hashing can be used with any hashing scheme in-
cluding static and dynamic hashing schemes with various
ad hoc optimizations such as linear probing, chaining, and
cuckoo hashing. However, for ease of explanation, we will
assume we are using static hashing and explain the insert and
search algorithms using a walk-through example shown in
Figure 6. In the example, we assume hash keys are of 4 bits,
and the hash function hash(inode, cluster_num) returns
cluster_num for ease of presentation. Note that Algorithms 1
and 2 can be implemented with any hash function and any
hash table implementation.

Insert: Suppose we insert a range of keys [1,12] ([00012,
11002]) as shown in Figure 6. Initially, we start with the first
key and store a pointer to the extent in its corresponding
bucket. In the example, we store a pointer in bucket 00012.
Then, we check how many consecutive zero bits are in the
postfix of the hash key of the current bucket, which we refer
to as TNZ (trailing number of zeros). I.e., TNZ is the number
of consecutive zeros in the binary representation with no
non-zero digits to the right of it. Since 00012 has no zeroes
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Algorithm 2 Search(inode, cluster_num, hash)
1: pos← cluster_num
2: mask← (1≪ fls(cluster_num)) − 1
3: while true do
4: key = hash(inode,pos)
5: bucket← find_bucket(key)
6: if bucket.contains(inode, cluster_num) then
7: return bucket.getExtent(inode, cluster_num)
8: end if
9: if pos = 0 then

10: break
11: end if
12: pos← pos & ((mask≪ffs(pos)) & mask)
13: end while

on the right side of the rightmost bit 1, its TNZ is 0. The
TNZ determines how many buckets to skip, i.e., the distance
between the current bucket and the next bucket where we
store the same pointer to the extent. We refer to this distance
as stride length, which is set to 2T NZ . In the example, since
TNZ is 0, the stride length is 20 = 1. Hence, we move to the
next bucket (00102) and store another pointer to the extent.

The hash key of the current bucket (00102) has one zero
after the rightmost bit 1. Hence, the TNZ is 1 and the stride
length is 2, i.e., (21). Therefore, we skip the next bucket and
move to the next next bucket (01002). Then, we store another
pointer there and check the next stride. Since the current TNZ
is 2, the stride length is 4. So, we move to bucket 10002
(01002+4). In bucket 10002, we have three consecutive zero
bits in the postfix. So, the stride length is 8 (23). However, the
next bucket offset (10002 +8) cannot exceed the range of the
given extent. Hence, we decrease the TNZ value one by one
(23 → 22) until the next bucket position is within the given
key range. Finally, we store another pointer in bucket 11002
(10002 +22), and the insertion is complete.

Although the extent size is 12, only 5 pointers are stored
in the hash table. If the size of a given extent is B, Extent
Hashing stores a maximum of 2× log2B pointers in the worst
case. In the best case, we store just one pointer in the hash
table. As such, we can significantly reduce the number of
pointers (from B to 2× log2B) compared to block hashing, in
particular, when the extent size is large.

Search: Although the extent hash table does not have a
pointer for each hash key, we can find the extent using any
hash key within the key range. The search algorithm shown in
Algorithm 2 works as follows. If a query searches for an extent
using a hash key k, whose binary number is (b1b2b3b4)2, we
first look up bucket[(b1b2b3b4)2]. If the bucket does not have
a pointer to the extent (i.e., a search miss occurs), it could
be because the current bucket is not the starting point of
a stride, not because the hash table does not contain that
data. Therefore, we need to compute the starting index of a
possible stride by flipping the trailing non-zero bits starting
from the rightmost one and moving left. Thus, assuming b4 is
a non-zero, the next bucket we look up is bucket[(b1b2b30)2].
If this bucket, again, does not have a pointer to the extent,

we continue in the said manner and look up, in sequence,
bucket[(b1b200)2], bucket[(b1000)2], and bucket[(0000)2].

For example, suppose a query searches for hash key 7
(01112) in the example shown in Figure 6. Then, we look
up bucket[01112] (step 1⃝), which will fail as it does not
have a pointer to the extent. Then, we search bucket[(0110)2]
(step 2⃝) and, finally, bucket[(0100)2] (step 3⃝), which has a
pointer to the extent.

The best-case complexity of this search algorithm is O(1),
but its worst-case complexity is not constant, but O(log2B)
where B is the number of buckets. That is, Extent Hashing
trades-off search performance for insertion performance.

Probabilistic Fast Lookup: To strike a balance between
insertion and search performance, we develop a fast lookup
optimization. This optimization keeps track of which stride
length is the most common and has each query first access
the bucket with the most common stride length. For example,
the most common stride length in Figure 5(b) is 4 due to
the pointers in bucket 0, 4, 8, and 12. Note that there is one
pointer with stride 1 in bucket 3, and there is also one pointer
with stride 2 in bucket 10. If a query searches for cluster 7
where the most common stride length is 4, the fast lookup
optimization searches bucket 4 (4 = 7 - (7%4)) before it
accesses bucket 7 and 6 following the search path in order.
The rationale behind this optimization is as follows. The
search algorithm requires each query to access the nearest
buckets in a log scale because the extent size is not known to
queries. However, it may result in unnecessary accesses to a
large number of buckets if the extent size is large. Therefore,
if the bucket corresponding to the most common stride length
is first checked, there is a chance of reducing the number of
bucket visits. Since the stride length increases in power of 2,
i.e., the number of different stride lengths is limited to log
scale, the overhead of keeping track of the common stride
length is not significant.

4.3 Path-name Resolution
SPFS manages directory entries in another hash table called

the name2inode table. The name2inode hash table stores
file/directory name and directory entry block number pairs
using the hash key generated from the VFS dentry, its parent
inode number, and the file name. Since SPFS indexes each
file/directory entry rather than the full file path, renaming a
directory does not affect other files in its sub-directories.

As a stackable file system, the name2inode hash table has
directory entries only if the directory has a regular file in
NVMM. Stacking files/directories in SPFS follows the stan-
dard conventions of stackable file systems [9, 14, 29, 38], i.e.,
i) if a given regular file name appears in both the upper and
lower file systems, then the lower file is hidden; ii) if a given
name is a directory, directory entries are combined; iii) if
a readdir request does not find a directory entry from the
name2inode hash table, SPFS forwards the readdir request
to the lower file system. The directory entry is stored in the
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name2inode table only when blocks are migrated from a lower
file system to SPFS, if it does not have one already.

One of the drawbacks of using a hash table is that directory
entries in the same directory are normally stored in differ-
ent buckets that causes problems to readdir. To resolve this
problem, SPFS provides two options. One is to add two per-
sistent pointers to each inode in the name2inode hash table
to construct a doubly linked list for the inodes in the same
directory. SPFS performs micro-logging (i.e., I/O operation-
level logging) when file metadata is updated because multiple
indexing structures need to be updated in a failure-atomic
manner. The other option is to construct a volatile readdir
index in DRAM when SPFS is mounted. The readdir index
is different from the dentry cache in that it manages the en-
tire structure of all directories in the file system regardless of
whether a directory is loaded or not. Therefore, the volatile
readdir index must be constructed when SPFS is mounted,
and it must be persisted as a persistent index when SPFS is
unmounted. Upon a system crash, we may lose updates in
the volatile readdir index unlike the persistent readdir chain.
To recover from system failures, the readdir index can be re-
constructed from scratch by scanning the name2inode hash
table. Although the second option increases the memory usage
slightly, the low DRAM latency helps improve performance
by up to 8% if the workloads are metadata-intensive (that
make extensive use of calls such as create, unlink, and
rename). For the performance study presented in Section 5,
we use the latter option.

4.4 Recovery
SPFS performs micro-logging when file metadata is updated
so that fsck can rollback uncommitted I/O operations. If a
system crashes while creating a file, fsck will look up the
name2inode hash table using the file name in the operation
log and delete its corresponding entry. It will also delete
the directory entry using the block number stored in the I/O
operation log. In addition, fsck will walk the directory tree
structure and perform a sanity check as in classic file system
recovery methods.

5 Evaluation
We implement SPFS 1 in Linux kernel 5.1 We validated the
reliability, robustness, and stability of SPFS using the POSIX
file system test suite [3] and the Linux Test Suite [2]. SPFS
passed both test suites successfully. In the following, we focus
only on the performance aspect of SPFS.

5.1 Experimental Setup
We run experiments on two testbed servers, one with DCPMM
and the other with NVDIMM-N. DCPMM server has dual In-
tel Xeon Gold 5215 processors (10 cores, 2.50 GHz), 128 GB
of DDR4 DRAM, 256 GB of Optane DCPMM (2×128 GB),

1The code is available at https://github.com/DICL/spfs.

Table 1: Filebench Workload Characteristics
Workload File Size R/W Size # threads R:W # files
Fileserver 128 KB 1024 KB 50 1:2 100K
Webproxy 16 KB 1024/16 KB 100 5:1 100K
Webserver 16 KB 1024/16 KB 100 10:1 100K

Varmail 16 KB 1024/16 KB 16 1:1 100K
OLTP 10 KB 2/2256 KB 200 20:1 10

Table 2: FIU Workload Characteristics
Workload Dataset Size Read Size Write Size fsync (%)
Moodle 54 GB 55 GB 31 GB 38.922

Usr1 161 GB 171 GB 8 GB 86.025
Usr2 1.5 GB 5 GB 1 GB 75.114

and a 2 TB Samsung 860 EVO mSATA SSD. The NVDIMM-
N server has dual Intel Xeon Gold 5218 processors (16 cores,
2.30 GHz), 192 GB of DDR4 DRAM, 16 GB Dell EMC
NVDIMM-N, and 512 GB Samsung 970 PRO NVMe SSD.
On the NVDIMM-N server, we evaluate SPFS in a virtual
environment (16 cores and 32 GB DRAM) using QEMU. De-
spite the future of DCPMM is uncertain, CXL Type 3 memory
devices that provide durability will work with the existing
PMDK (or OpenMPDK) ecosystem, and their latency will be
higher than that of DRAM (170∼250 nsec) [1]. Therefore, we
present the performance on the DCPMM server to evaluate
how SPFS performs with NVMMs slower than DRAM.

We first quantify the performance effect of Extent Hash-
ing, evaluate the performance of SPFS in standalone mode,
and compare SPFS against EXT4-DAX and NOVA on the
DCPMM server. Then, we quantify the performance effect of
each stackable design of SPFS. Finally, we deploy SPFS on
top of three popular Linux file systems, namely, EXT4, F2FS,
and XFS, and compare the performance of SPFS+x against
x and Ziggurat in both DCPMM and NVDIMM-N servers.
File systems are mounted with the default mount options on
top of the storage targeted by each design: (1) EXT4, F2FS,
and XFS: SSD, (2) NOVA (Copy-on-Write (CoW) mode),
EXT4-DAX, and SPFS in standalone mode: DCPMM (3)
SPFS+x in stacked mode and Ziggurat: DCPMM+SSD or
NVDIMM-N+SSD.

We run experiments using the Flexible I/O tester
(FIO) micro-benchmarks [6] and the Filebench macro-
benchmarks [33] as well as SNIA’s FIU Filesystem SysCall
Traces [10]. Tables 1 and 2 show the characteristics of the
Filebench and FIU Filesystem SysCall Traces workloads, re-
spectively. We also experiment with RocksDB [4] using the
YCSB benchmark [13].

5.2 Analysis of Extent Hashing
In the first set of experiments, we compare the performance of
file mapping structures - i) per-file ExtentTree, which is
implemented using the FAST and FAIR B+tree [17], ii) global
BlockHash (proposed and used in HashFS [28]), and iii)
global ExtentHash. Both global block hashing and Extent
Hashing are implemented on CCEH [27]. We evaluate the
performance of indexing using microbenchmarks.

In the experiments shown in Figure 7, we measure the
performance of indexing the extents that make up 8000 256-
MB files with varying extent sizes, i.e., the larger the extent
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Figure 7: Performance of File Mapping Structures

size, the fewer extents are indexed. Figure 7(a) shows the
average latency of inserting one extent to each index. As
the extent size increases, the insert latency of ExtentTree
and ExtentHash decreases because the index size decreases.
Specifically, when the extent size is 4 KB, the tree height is
4, but when the extent size is greater than 256 KB, the tree
height is reduced to 2.

Block hashing shows the worst insertion performance as
the extent size increases because the number of pointers to
index increases. Specifically, when the extent size is 4 MB,
it has to update and call clwb for as many times as 1024.
As such, its insertion latency is up to 906× higher than that
of ExtentTree. Extent Hashing shows the fastest insertion
latency because hash-based indexes updates fewer number of
cachelines than FAST and FAIR B+tree.

Figure 7(b) shows that when the extent size is smaller
than 128 KB, BlockHash outperforms ExtentTree and
ExtentHash due to its constant lookup cost. Note that,
ExtentHash accesses multiple buckets following the search
path described in Section 4.2. However, as the extent size
increases, ExtentTree benefits from the reduced index size,
making the performance of all indexes similar.
FastLookup denotes the performance of Extent Hashing

with the fast lookup optimization that we described in Sec-
tion 4.2. Fast lookup is an optimization affected by prob-
ability, but it finds an extent in O(1) with very high prob-
ability in the experiments. Therefore, FastLookup outper-
forms BlockHash, which suffers from a much larger number
of pointers in the hash table. We also observe in the experi-
ments with FIU Filesystem SysCall traces that the probability
of finding an extent in O(1) in Usr1 and Usr2 workloads is as
high as 60% and 98%, respectively.

5.3 Standalone Mode with DCPMM
We now compare the performance of SPFS in standalone
mode against NOVA and EXT4-DAX. We run the experi-
ments in DCPMM server because SPFS is not intended for
use in standalone mode for small NVDIMM-N. To evaluate
the performance effect of Extent Hashing, we faithfully im-
plemented the block hashing scheme as proposed in HashFS.
We denote the performance of SPFS with Extent Hashing
and block hashing as SPFS-EH and SPFS-BH, respectively.
Both SPFS-EH and SPFS-BH run in metadata mode, i.e., they
do not guarantee strong data consistency, but only metadata
consistency is guaranteed as in EXT4-DAX. SPFS-J denotes
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Figure 8: Performance in Standalone Mode (DCPMM)

the performance of SPFS-EH in journal mode, which logs all
data and metadata changes by copying the data into an undo
log region if the write size is smaller than 256 KB. If the write
size is larger than 256 KB, it performs CoW as in NOVA. We
set this threshold size to 256 KB because it conservatively
balances the logging overhead and fragmentation issue. If the
threshold size is smaller, it leads to fragmentation, i.e., extents
are frequently split because CoW allocates a new extent. If it
is larger, the logging overhead becomes non-negligible.

5.3.1 FIO Results
The FIO benchmark is used to evaluate sequential and random
read and write performance. Each workload accesses a 10 GB
file, and read/write sizes are set to 256KB and 4KB for sequen-
tial and random workloads, respectively. Figure 8(a) shows
the results. SPFS-EH shows up to 60% higher sequential write
throughput than SPFS-BH because block hashing requires
much larger metadata accesses. The sequential read through-
put of SPFS-BH is also 20% lower than SPFS-EH because
larger file mapping metadata adversely affects read perfor-
mance as well as write performance. For the same reason, the
random read and write throughput of block hashing is also
16% and 9% lower than that of Extent Hashing, respectively.
In particular, FIO allocates very large extents in advance re-
gardless of the type of workload, i.e., even for random I/Os.
Despite large extents, SPFS-BH indexes a large number of
individual blocks and the lookup performance deteriorates.

NOVA shows similar sequential read and write perfor-
mance with SPFS-EH. However, the random read and write
throughput of NOVA is 19% and 39% lower than that of SFPS-
EH because NOVA provides strong data consistency whereas
SPFS-EH supports only metadata consistency. With data jour-
naling enabled, SPFS-J shows similar write performance with
NOVA as both of them perform CoW. On the other hand,
SPFS-J shows 1.2× higher throughput than NOVA for ran-
dom reads because SPFS manages data blocks in units of
extents in DRAM while NOVA indexes write logs in units of
pages in DRAM.

As a stackable file system, SPFS does not have to enforce
strong data consistency if the lower file system does not re-
quire strong data consistency. Eliminating the logging over-
head, SPFS-EH shows up to 40% performance improvement
for the random write workload compared to NOVA. Since
EXT4-DAX also does not log data blocks, it shows higher
random write throughput than NOVA and SPFS-J. However,
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Figure 10: Performance Effect of Delegating I/O Requests to Lower File System

EXT4-DAX is consistently outperformed by SPFS-EH for all
FIO workloads. Furthermore, for sequential reads and writes,
EXT4-DAX is even outperformed by NOVA and SPFS-J de-
spite the fact that they guarantee stronger data consistency.
This is because NOVA and SPFS take advantage of CoW for
sequential I/O.

5.3.2 Filebench Results
Figure 8(b) shows the experimental results with the Filebench
workloads. For the Fileserver workload that creates, deletes,
reads, appends, and copy files in large I/O units, i.e., 1 MB for
reads and writes (copy) and 16 KB for appends, SPFS-J shows
5.7% higher throughput than NOVA (167.67 vs. 176.37) be-
cause SPFS-J benefits from the efficient extent-based meta-
data management, whereas NOVA replaces write logs in units
of pages in DRAM. EXT4-DAX shows the worst perfor-
mance because it suffers from the overhead of unconditional
block initialization. Unlike EXT4-DAX, NOVA and SPFS ini-
tialize the unwritten portion of the cluster only when needed.
SPFS-J and SPFS-EH show similar performance with the
Fileserver workload because it does not overwrite existing
blocks and the logging overhead is negligible. SPFS-BH has
16% lower throughput than SPFS-EH because the read and
write granularity of Fileserver workload is 1 MB and Extent
Hashing manages large extents more efficiently.

Webserver is a read intensive workload where each thread
opens, reads, and closes a file, and every 10th read operation
appends a small data to a log file. In this workload, SPFS-J
and NOVA show comparable performance.

The Webproxy and Varmail workloads create and delete
many small files in a single directory. In these two work-
loads, SPFS is outperformed by NOVA because SPFS fre-
quently allocates and deallocates blocks for directory entries,
and thus performs metadata journaling for file system con-
sistency, whereas NOVA appends directory entries in a log-
structured fashion and hides deallocation overhead via back-
ground garbage collection. As a result, NOVA shows up to
9% and 17% higher throughput than SPFS-EH for Webproxy
and Varmail, respectively. Efficient directory management
is of paramount importance in the native file system, but
the primary goal of SPFS is to serves NVMM as a persis-
tent writeback cache to NVMM-oblivious filesystems. There-
fore, directory management performance is not optimized.
We leave the directory management optimization for future

work. EXT4-DAX shows very poor performance for Var-
mail because of two reasons. One is the unconditional block
initialization problem mentioned earlier. The other reason is
because of additional memory copy overhead from metadata
journaling. This overhead is negligible in other workloads be-
cause journaling is done in the background. However, Varmail
calls fsync() frequently, which incurs metadata journaling
overhead thereby affecting the workload throughput.

The OLTP workload emulates database transactions at the
file system level. In this transactional workload, synchronous
writes affect file system throughput the most. Since all file
systems store synchronous writes in NVMM, they do not
show any meaningful difference. SPFS-BH shows only 2%
lower throughput than SPFS-EH because of small (i.e., 2 KB)
random reads/writes that rarely benefit from extents.

5.4 Quantification of Stackable Design
5.4.1 Parameters for Sync Point Profiler
In this section, we quantify how the profile interval and the
write size threshold for the Sync Point Profiler affects perfor-
mance using three FIU Filesystem SysCall Traces workloads.
We present the results on the NVDIMM-N server, but the
results on the DCPMM server are almost the same.

Figure 9(a) shows that the performance of SPFS is insen-
sitive to the profile interval unless it is set small (< 500ms).
Obviously, the interval between transactional writes can vary
across applications. Therefore, for the rest of the experiments,
we choose 1 second as the default. Figure 9(b) shows the
results as the write size parameter is varied (x-axis). It shows
that the replay time of the Moodle workload improves sig-
nificantly when the write size parameter is set to be equal or
larger than 1 MB because this workload has relatively large
1 MB synchronous writes. For Usr1 and Usr2, we see that
performance gradually improves as the write size increases,
but then remains relatively constant beyond 1 MB. Based on
these observations, we conservatively set the default write
size parameter to 4 MB - a sufficiently large value that was
also used as the default value in Ziggurat [39]. All results that
follow use this value.

5.4.2 Delegating I/O Requests to Lower File System
We now perform synthetic microbenchmark experiments to
validate our proposition that migrating files to NVMM does
not always guarantee better performance. That is, we analyze
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which types of I/Os benefit from promotion and when they
benefit from demotion.

Performance Effect of Delegation: As a stackable file
system, SPFS shines when synchronous and asynchronous
I/O workloads are mixed. To test various mixed workloads,
we use diomix, which is a synthetic workload generated from
a mix of two sequences of file operations, one for buffered
I/O (BIO) and the other for direct I/O (DIO), of the Fileserver
workload of Filebench, and whose ratio between BIO and
DIO can be controlled.

Figure 10(a) shows the results for diomix in DCPMM
server, as the DIO rate changes. We disable background demo-
tion to only quantify the effect of promotion. We observe that
the I/O throughput of Ziggurat is insensitive to the DIO rate
and that it fails to leverage the faster page cache in DCPMM
server, which leads to the same performance as NOVA. As a
result, they are consistently outperformed by SPFS+x, which
delegates BIO to EXT4, F2FS and XFS, and benefits from
the low latency of the page cache in DRAM. Note that EXT4,
F2FS, and XFS also benefit from the page cache, and when
there is no DIO, each file system shows 10%, 3%, and 1%
higher throughput, respectively, than its SPFS+x counterpart.
This is because of the overhead that comes from the stack-
able design. Specifically, SPFS+x looks up its name2inode
table just to find out it does not have the requested file. This
exemplifies the importance of indexing performance in SPFS.
We observe sharper and then continued performance decline
as the rate of DIO increases. Unlike EXT4, F2FS and XFS,
the throughput of SPFS+x show much smoother curves as
SPFS+x detects the I/O types and steers the BIOs to the lower
file system while absorbing the DIOs in DCPMM, benefiting
from the device aware stackable design of SPFS+x.

Figure 10(b) shows the results for the same diomix work-
load in NVDIMM server. Because the page cache of the
lower file system has the same access latency with NVDIMM,
SPFS+x does not benefit from delegating write requests to the
lower file system but suffers from its stackable design over-
head. Again, the performance of Ziggurat is similar to NOVA
as it aggressively steers most writes to NVMM. In contrast,
SPFS+x is designed to use NVMM conservatively and grad-
ually demote files in the background. We could not evaluate
Ziggurat for the case when NVMM is full as it crashes.

Performance Effect of Demotion: While promotion im-
proves write performance of the lower file system, it may de-
grade read performance when NVMM is slower than DRAM.
In the experiments shown in Figures 10(c) and 10(d), we
pre-populate file systems with 64 16 MB transactional log
files, i.e., SPFS stores them in NVMM, and run a synthetic
microbenchamrk that reads random blocks from those files.
In DCPMM server, the read throughput of EXT4 file system
is higher than SPFS+EXT4 because it eagerly copies all the
requested blocks to the page cache, whereas SPFS+x demotes
files, i.e., copies them from DCPMM to DRAM/disk in a lazy
manner. Specifically, SPFS+EXT4(PTTRN) demotes a file to
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the lower file system and copies to the page cache if the file
access pattern changes to be read-intensive. As more read
requests are processed, the Sync Factors of promoted files
decrease, and when they become lower than a hard limit set by
administrators, they are demoted to the lower file system such
that they can benefit from the page cache in DRAM. Thus,
read performance of SPFS+EXT4(PTTRN) improves over time
to a level similar to page cache performance. This result con-
firms the well-known fact that performance is improved by
placing frequently accessed data in the fastest memory, which
Ziggurat has neglected.

If such a hard limit on the Sync Factor is not set by
administrators, a file is not demoted to the lower file sys-
tem unless the NVMM space is running low (denoted as
SPFS+EXT4(SPACE). Therefore, SPFS+EXT4(SPACE) does
not demote files and read requests to those files suffer from
higher access latency of DCPMM. In contrast, demoting files
from NVDIMM to the page cache on the NVDIMM server
does not improve read performance, but counteracts it. As
a result, SPFS+EXT4(SPACE) shows the highest throughput
in NVDIMM server. In the default settings, background de-
motion is triggered when more than 80% of NVMM space
is used. When files are demoted to the lower file system in
the background, the foreground write throughput of SPFS+x
is reduced by up to 40% due to the limited bandwidth of
NVMM and also due to conflicting SPFS metadata updates.
To minimize performance interference, SPFS suspends the
background demotion while foreground processes perform
I/O, unless there are no free blocks in NVMM.

5.4.3 Stacking Overhead
As a stackable file system, SPFS places additional latency
on the lower file system in exchange for improving the per-
formance of small synchronous writes. In the experiments
shown in Figure 11, we breakdown the latency of read, write,
and fsync using a synthetic workload that performs random
reads and writes to 1 MB file that consists of a single extent.
SPFS+EXT4 denotes the read latency when the extent is not

found in SPFS and is read from the lower file system - EXT4.
The stacking overhead (i.e., the overhead to check whether
the corresponding extent has been migrated to NVMM or
not) accounts for 9.89%, and thus SPFS+EXT4 shows similar
latency with EXT4. SPFS denotes the read latency when the
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Figure 12: FIU Trace Replay Time S:SPFS, E:EXT4, X:XFS, F:F2FX, Z:Ziggurat

extent is in SPFS, i.e., NVMM. Due to the high latency of
Optane DCPMM, the read latency of SPFS is about 2.26×
higher than that of EXT4.

In Figure 11(b), the write latency of EXT4 (EXT4) is similar
to the write latency when the write is steered to NVMM
(SPFS(+EXT4)). That is, unless fsync is called, there is not
much difference in latency whether the write is steered to
DCPMM or the VFS cache. Migration denotes the latency of
the first write to an extent that the profiler decided to migrate
from the lower file system to SPFS. Migration has a high
latency, but it is a one time tax. Once migrated, subsequent
fsync calls will be replaced with nop..

Figure 11(c) shows the fsync latencies when SPFS by-
passes fsync to the lower file system and when it decides to
promote a file in the lower file system to SPFS. The promotion
overheads such as Fiemap and Profile account for 2.68%
and 0.01% of total latency.

5.5 Stacked Mode Performance Comparison
Finally, we run real world trace FIU and YCSB workloads and
compare the performance of SPFS in stacked mode (SPFS+x)
against file systems for large block devices, i.e., EXT4, XFS,
F2FS, and Ziggurat.
5.5.1 FIU Traces
Figure 12 shows the performance results using the FIU
Filesystem SysCall Traces [10]. For these experiments, we
measure the replay time on each file system as we submit the
file system operations from the traces in batches. Thus, for all
results for the FIU workloads, lower is better.

Although the FIU workload consists of traces from six
applications - Backup, Gsf-filesrv, Ug-filesrv, Moddle, Usr1,
and Usr2, the performance results of Backup (1.2 TB, 0.001%
fsync()), Gsf-filesrv (190 GB, 0.326% fsync()), and Ug-
filesrv (812 GB, 0.001% fsync()) are not presented because
Ziggurat crashes for those large FIU workloads not only in
NVDIMM but also in DCPMM servers and also because they
are not transactional workloads, i.e., fsync() calls account
for less than 0.3%. Even if we evaluated the performance
of Ziggurat by reducing the size of those workloads small
enough to fit in DCPMM, we observed that Ziggurat is out-
performed by EXT4, F2FS, and XFS, and SPFX+x because
Ziggurat fails to leverage the fast VFS cache. The perfor-
mance of SPFS+x (SPFS+EXT4, SPFS+F2FS, and SPFS+XFS)
is similar or slightly worse than that of x (EXT4, F2FS, and
XFS) for the workloads where fsync() calls are rarely made.

Without fsync() calls being made and steering writes to
NVMM, the added overhead of the stacked file system tends
to make SPFS+x perform worse than x.

With Moodle, Usr1 and Usr2, calls to fsync() are fre-
quently made. Therefore, EXT4, F2FS, and XFS suffer from
high synchronization overhead while SPFS+x and Ziggurat
eliminate this overhead by steering synchronous writes to
NVMM. Thus, for Moodle, SPFS+x reduces the trace reply
time in DCPMM server to only 14%, 15%, and 7% of the x
counterparts EXT4, F2FS, and XFS, respectively. Similarly,
for Usr1, SPFS+x shows 2×, 2.6×, and 2.8×, and for Usr2,
3.8×, 7.1×, and 6.5× faster trace replay times, compared to
the x counterparts EXT4, F2FS, and XFS, respectively.

Ziggurat also outperforms EXT4, F2FS, and XFS for the
Moodle, Usr1, and Usr2 workloads. Compared to Ziggurat,
read(), write(), and fallocate() are consistently faster
with SPFS+x. The write time of Ziggurat is higher than
SPFS+x because it profiles and steers each individual write to
NVMM while SPFS+x migrates them in a lazy manner, that
is, only at fsync() calls with intervals less than one second
and aggregate flush sizes less than 4 MB. For fallocate(),
Ziggurat spends a significant amount of time initializing al-
located blocks. However, SPFS creates files on the lower file
systems first, such that it benefits from the highly efficient
uninit and unwritten states (i.e., allocated and mapped but
uninitialized blocks) of the disk file systems, which prevents
applications from reading garbage blocks even if allocated
blocks have not yet been initialized. However, due to the
stacking overhead, open() is slower in SPFS+x than Ziggu-
rat. Also, fsync() and fdatasync() are faster with Ziggurat
because they are no-ops if previous writes were steered to
NVMM. Overall, due to faster write() and fallocate(),
SPFS+x is up to 1.44× and on average 1.16× faster than
Ziggurat in DCPMM server.

On the NVDIMM server, we could not run the Moodle
and Usr1 workloads with Ziggurat because their sizes are
larger than the NVDIMM size. For the Usr2 workload where
the average I/O size is 1.2 KB, Ziggurat steers most writes to
NVDIMM, and thus shows the performance of the in-memory
file system - NOVA and outperforms SPFS +x. Similar to the
results on the DCPMM server, SPFS+x improves the perfor-
mance of x by up to 9.9×, 2.4×, and 5.8× for the Moodle,
Usr1, and Usr2 workloads, respectively.
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5.5.2 RocksDB
Finally, we evaluate the performance of SPFS+EXT4, Ziggu-
rat, and EXT4 using RocksDB v.6.2.2. For the experiments
shown in Figure 13, we load the database with 4 million
1 KB records in the loading phase (Load) in the DCPMM
server. In the transactions phase, 4 million queries in uni-
form distribution are submitted in batches for each workload.
RocksDB offers various write options including whether to
call fsync() to flush dirty pages. Our experiments measure
YCSB throughput while varying the fsync() interval by en-
abling the setSync option for every 16 writes, 256 writes,
4096 writes, and so on, that is, in multiple of 16 increments.
Figure 13 shows the throughput results, which can be summa-
rized as follows.
EXT4: EXT4 performance improves as we increase the
fsync() interval. If fsync() is called often, EXT4 suffers
because of the slow block device. As fsync() is called less,
EXT4 benefits from the low latency of the page cache and
performance improves.
Ziggurat: Ziggurat performance is insensitive to the fsync()
interval. This is because Ziggurat profiles individual writes,
and as all writes are smaller than 4 MB, they are all steered
to NVMM resulting in the same performance as NOVA.
SPFS+EXT4: In contrast, SPFS+EXT4 considers the total
number of written bytes to be flushed by fsync(). Therefore,
if fsync() is called per every 4096 or fewer writes, SPFS
stores the 4 MB or smaller synchronous writes in NVMM
and significantly reduces the fsync() overhead. Thus, for
the Load workload, SPFS+EXT4 shows 7.7× and 1.6× higher
throughput than EXT4 when the fsync() interval is 16 and
256 writes, respectively. We observe all small WAL log files
are migrated to NVMM as expected, whereas all SSTable files,
which contain key-value records, are stored in the EXT4 file
system because its size (64 MB) is much larger than the pro-
filing threshold of SPFS (4 MB). Nonetheless, SPFS+EXT4
outperforms Ziggurat, which stores both WAL and SSTa-
bles in NVMM. This is because SPFS leverages DRAM,
NVMM, and SSD characteristics altogether, while Ziggurat
relies only on NVMM. If fsync() is called less frequently,
e.g., fsync() is called every 64K or 1M writes, SPFS+EXT4
stores all writes in EXT4 and benefits from the VFS cache
and periodic writebacks. Therefore, SPFS+EXT4 shows similar
performance with EXT4.

In the experiments shown in Figure 14, we measure YCSB

Load throughput on the NVDIMM server, varying the num-
ber of client threads while the fsync() interval is fixed to
256. Due to the frequent fsync(), EXT4 does not scale with
the number of client threads. However, the throughput of
SPFS+EXT4 increases up to 8 threads because it absorbs the
synchronous writes in NVDIMM. When the number of client
threads is 16, the throughput degrades because the number of
total threads (i.e., client and background compaction threads)
exceeds the number of available cores and memory contention
occurs. Note that SPFS+EXT4(D) denotes the performance of
SPFS+EXT4 when NVDIMM is full and the background de-
motion migrates files from NVDIMM to the lower file system.
Due to the performance interference, the demotion decreases
the throughput by up to 7%.

6 Conclusion
Managing two different storage devices with completely dif-
ferent properties in a single file system has practical limi-
tations. In this study, we designed and implemented SPFS,
a stackable file system for NVMM that exploits the perfor-
mance of NVMM for order-preserving small synchronous
writes and yet takes advantage of the faster DRAM cache as
well as the large capacity that legacy block device file systems
provide. In addition, SPFS manages all file system metadata
in dynamic hash tables that are built on Extent Hashing that
exhibits fast insertion as well as fast scan performance.

We perform extensive evaluations and compare SPFS with
state-of-the-art file systems. In standalone mode, SPFS shows
comparable performance to NOVA, while in stacked mode,
SPFS+x improves performance by up to 9.9× compared to
the lower file system x executing alone.
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