28

STEFAN BUTTCHER AND
CHARLES L.A. CLARKE

adding full-text
filesystem search
to Linux

IN THE PAST TWO YEARS, FULL-TEXT
desktop search systems have experienced
an amazing updraft. For Windows, there
now are about a dozen independent desk-
top search engines from which the user
can choose. For Linux, the situation is dif-
ferent; only a few desktop search systems
exist.

Stefan Biittcher received a Master’s degree in com-
puter science from the University of Erlangen,
Germany. Since 2004, he has been a Ph.D. student at
the University of Waterloo, Canada. His research
interests include all aspects of high-performance
search engines, especially index maintenance strate-
gies for dynamic text collection. Stefan is the main
developer of the Wumpus search engine.

sbuettch@plg.uwaterloo.ca

Charles Clarke is an Associate Professor in the School
of Computer Science at the University of Waterloo.
His research interests include information storage
and retrieval, software development tools, and pro-
gramming language implementation. Clarke
received his Ph.D. from the University of Waterloo in
1996. From 1996 to 1999 he was an assistant profes-
sor in the Department of Electrical and Computer
Engineering at the University of Toronto. He has also
held software development positions at a number of
computer consulting and engineering firms.

claclark@plg.uwaterloo.ca

;LOGIN: VOL. 31, NO. 3

In this article we report on experiences we had
while developing Wumpus, a full-text filesystem
search engine for Linux. We discuss major design
decisions and point out some changes that, from a
search engine developer’s point of view, need to be
made to the Linux kernel to support real-time
filesystem indexing and search.

The goal of our research efforts is the develop-
ment of a unified filesystem search engine that can
be used by multiple users and that can cover mul-
tiple storage devices, both local and network-wide
(local hard drives, USB sticks, NFS mounts, etc.).
Search results returned by the engine should
always be consistent with the current content of
the file system. Inconsistencies resulting from
recent file changes should have a lifetime of at
most a few seconds.

The vehicle we are using to reach that goal is the
Wumpus search engine, a hybrid filesystem search
and general-purpose information retrieval system.
Wumpus is free software, licensed under the
terms of the GNU General Public License, and is
available for download from the Wumpus Web
site, http://www.wumpus-search.org/. It is work in
progress and not yet suitable for everyday use as a
filesystem search engine.

Wumpus is a keyword-based search engine. It
supports state-of-the-art result ranking algorithms,
as well as structural queries (phrase queries and
near operators) and Boolean operators. Its back-
end index data structure is a set of inverted files.
Each inverted file realizes a mapping from terms
to their respective occurrences within the file sys-
tem. (For a thorough discussion of inverted files
and their advantages over alternative index data
structures, see Zobel et al. [4]). In conjunction,
the inverted files can be used to efficiently obtain
a list of all occurrences of a given term within the
file system. The result of a search query (e.g.,
“find the set of all files containing the given query
terms”) can then be produced by combining the
lists of all query terms in a straightforward way.



;LOGIN: JUNE 2006

When new files are created or existing files are modified, index information for the
new data is added to in-memory index buffers. Whenever the amount of these in-
memory data exceeds a certain threshold, they are written to disk, resulting in a new
on-disk inverted file. Several inverted files may exist in parallel and are merged in a
hierarchical fashion when it is appropriate to do so. This can be done very efficiently.
A detailed description of index maintenance strategies for dynamic text collections can
be found in the literature [2, 3].

When we started to develop our search engine, we had to make several major design
decisions. Among the most important were index locality decisions. In a typical Linux
installation, the file system will contain files belonging to more than a single user. It
will also span across multiple mount points, representing different storage devices.
These two aspects of filesystem search define two independent locality axes (the user
axis and the device axis, as shown in Table 1). We had to decide whether index infor-
mation should be stored locally or globally along each axis. Other locality axes, such
as the time axis, exist and also play a role in filesystem indexing, but the user and the
device axEs are the most important.

Device Axis
Local Global
Local A separate index for each user on each Per-user indices, each covering all
User device devices
Axis Device-specific indices, each containing A single index covering all users
Global data for all users and all devices

TABLE 1: THE TWO MAIN LOCALITY AXES IN MULTIUSER, MULTIDEVICE
FILESYSTEM SEARCH

User Axis: A Single, Global Index to Be Accessed by All Users

Most existing desktop search tools maintain per-user indices. Although this is accept-
able in single-user search environments, in pure desktop search environments (i.e.,
without the option to search the entire file system), and in environments with a small
number of users and very little interaction among them (as is the case in a typical
Windows system), it is not a good idea in a true multiuser filesystem search environ-
ment. Maintaining per-user indices, where each index only contains information about
files that may be searched by the respective user, leads to two types of problems:

= Redundancy: Many files (such as man pages and other documentation files) can
be accessed by all users in the system. All these files have to be independently
indexed for each user in the system, leading to a massive storage overhead in sys-
tems with more than a handful of users.

= Performance: If per-user indices are used, then even a single chmod or chown
operation can trigger a large number of disk operations, because the respective file
needs to be completely reindexed (or data need to be copied from one user’s index
to another user’s index) each time a user executes chown. Even in a system with
only two users, this can be exploited to realize a denial-of-service attack on the
indexing service.

The only solution to these problems is to use a single index that is shared by all users
in the system, instead of many per-user indices. This index is maintained by a process
with superuser rights that can add new information to the index when new files are
created and remove data from the index when files are deleted. chmod and chown
operations can then be dealt with by simply updating index metadata, without the
need to reindex the file content.

Of course, to guarantee data privacy, the global index, because it contains information
about all indexable files in the system, may never be accessed directly by a user.

ADDING FULL-TEXT FILESYSTEM SEARCH TO LINUX 29



30

Instead, whenever a user submits a search query, it is sent to the indexing service
(running with superuser rights). The indexing service then processes the query, fetch-
ing all necessary data from the index, and returns the search results to the user, apply-
ing all security restrictions that are necessary to make the search results consistent
with the user’s view of the file system, while not revealing any information about files
that may not be accessed by the user who submitted the query. The problem of apply-
ing user-specific security restrictions to the search results is nontrivial, but it can be
solved (see [1] for details).

Device Axis: Local, Per-Device Indices

When experimenting with various desktop search systems for Windows, we noticed
that most of them had problems with removable media. They either refused to index
data on removable media altogether, or they added information about files on remov-
able media to the index, but removing the medium from the system later on was not
reflected by the index, and search results still referred to files on a USB stick, for ex-
ample, even after the stick had been unplugged.

If index data are stored in a global, system-wide index, it is not clear how to deal with
removable media. Should the index data be removed from the index immediately after
the medium is removed from the system? If not, how long should the indexing service
wait until it removes the data? Should external hard drives be treated as removable
media?

The only solution to these problems is to maintain per-device indices. In Linux, for
instance, this means that each device (/dev/hda, /dev/hdb, etc.) will get its own local
index that only contains information about files on that particular device. Whenever

a device is removed from the file system, the indexing process associated with that
device is terminated. Whenever a device is added to the file system, a new indexing
process is started for the new device (or not, depending on parameter settings). Search
queries are processed by combining the information found in the individual per-device
indices and returning the search results, which may refer to several different devices,
to the user.

For network file systems such as NFS mounts, this means that the index is not kept
on the client side, but on the server that contains physical storage device. This re-
quires additional communication between the NFS server and the client during the
processing of a search query and is a potential bottleneck in situations where an NFS
server is accessed by a large number of clients and where many users want to search
for data on the server. Nonetheless, this is the only way to allow the index to be up-
dated in real time, as it is impossible for an NFS client to be informed of all changes
that take place in a remote file system.

Maintaining per-device indices also makes it possible to remove a storage device from
one computer system and attach it to another one without needing to reindex the files
stored on the device. Since the index is kept on the device itself, all index information
will immediately be available on the new system. As far as we know, the same
approach is followed by Apple’s Spotlight.

Filesystem Event Notification

;LOGIN: VOL. 31, NO. 3

To be able to fully implement this type of filesystem search framework, a comprehen-
sive filesystem event notification interface is needed so that the operating system ker-
nel can inform the indexing service about changes in the file system, that is, changes
to the content of a file or changes to its metadata, such as file name and access privi-
leges. Many operating systems provide system calls that allow a process to register for
changes in a certain part of the file system (usually a directory, or a subtree rooted at a



;LOGIN: JUNE 2006

given directory) and to receive notifications about all filesystem events affecting that
part of the file system.

In Windows, for example, an application can use the FindFirstChangeNotification
system call (and related functions) to register for a variety of filesystem events in a
given directory. The system call can also be used to register for changes in arbitrary
subdirectories of the given directory. The latter is called a recursive watch and is very
useful if one wants a process to monitor the entire file system.

THE TRADITIONAL LINUX NOTIFICATION SYSTEM: dnotify

In Linux, filesystem event notification had traditionally been realized through the dno-
tify interface. In dnotify, a process can register for changes to the contents of a particu-
lar directory by obtaining a handle to that directory and performing an fcntl system
call for the handle. Events will be sent to the process in the form of UNIX signals.

As soon as the process releases a handle, it will no longer be notified of changes in
the directory associated with it.

This approach has two major problems. First, the interface requires an application to
keep an open handle to each directory that is being watched for changes. For very
large file systems, with hundreds of thousands of directories, this is not feasible.
Second, it is not possible to register for recursive watches that include all subdirecto-
ries of the given directory. Again, for large file systems this is problematic. After a sys-
tem reboot, for example, the entire file system needs to be scanned to obtain a handle
to every directory. Depending on the size of the file system, this can take from several
minutes to several hours.

THE NEW LINUX NOTIFICATION SYSTEM: inotify

Since version 2.6.13 (August 2005), the Linux kernel supports a second event notifi-
cation interface, inotify. inotify is, for instance, used by the Beagle (http://www.gnome
.org/projects/beagle/) search system.

The new interface removes dnotify’s main shortcoming, the necessity of having an
open handle to every directory in the file system. With inotify, an application obtains
a handle to an inotify queue object and subsequently registers for event notification
for all directories in which it is interested. The queue handle can be treated like an
ordinary file handle, allowing synchronous and asynchronous I/O.

dnotify’s second main shortcoming, the necessity of scanning the entire file system
after a system reboot, is shared by inotify. Recursive watches are not supported. With
inotify, a process has to register for each directory separately. The rationale behind
this is that it allows file permission to be checked during the registration process; the
request can then simply be rejected if the process does not have sufficient access privi-
leges. If recursive watches were supported, this check would need to be performed at
notification time, potentially adding significant overhead to the notification system.
Unfortunately, inotify’s security model does not take into account the possibility of
access privileges being changed after a user obtains a watch for a directory. If the user
does have read permissions for a directory and is granted the right to watch the direc-
tory, but loses read permission for the directory later on, inotify will still notify the
user about changes in the directory.

The nonexistence of recursive watches in inotify introduces potential race conditions,
for example when files and directory hierarchies are extracted from an archive and
files are moved to other directories before the indexing service can register for changes
in the new directories. This adds additional complexity to the indexing system and
could have been avoided if recursive watches were supported.

ADDING FULL-TEXT FILESYSTEM SEARCH TO LINUX

31



32

;LOGIN: VOL. 31, NO. 3

SHORTCOMINGS OF THE EXISTING LINUX NOTIFICATION SERVICES

In addition to the absence of recursive watches, the existing filesystem
notification facilities of the Linux kernel lack a few other features that are
desirable for full-text filesystem search and imperative for the framework
we propose:

= Fine-grained file change notification: When the content of a file is
changed, inotify (and dnotify) rather laconically reports “file changed”
but does not elaborate on which exact part of the file is affected by the
change. Suppose a user has a large mailbox file, containing thousands
of messages, and a single message is appended to the existing file.
With inotify, the indexing service will have to guess that the change
was only an append operation, but it can never be sure without reread-
ing the entire file, which might take a long time, depending on the size
of the mailbox file. A more detailed notification message, including
the start and the end offset of the part of the file affected by the
change, is desirable. This feature is trivial to implement but will prob-
ably require a change of the current inotify interface to userspace
processes.

= Unmount request notification: Maintaining per-device indices requires
the indexing system to have open files on each mounted device. This
is imperative, as all index maintenance strategies for dynamic search
systems rely on the ability to buffer updates in memory and only per-
form physical index updates from time to time. As a consequence,
devices cannot be unmounted any more (“umount: device is busy”).
To be able to unmount a device, the indexing process for that device
needs to be terminated first. However, during the short period of time
between shutting down the indexing process and unmounting the
device, files can be changed. Those changes will never be detected by
the indexing system unless it performs an exhaustive scan every time a
device is added to the file system. To solve this problem, the operating
system needs to provide atomic unmount operations that can include
actions of userspace processes. Although this would probably require
major changes to the Linux kernel, it seems to be the only clean solu-
tion to the unmount dilemma.

AN EXPERIMENTAL SOLUTION: fschange

The problems discussed here are addressed by the experimental fschange
notification system. fschange is a patch for the Linux kernel and is avail-
able online (http://stefan.buettcher.org/cs/fschange/). After the kernel is
updated, it can be accessed by a userspace process through the proc file
system: /proc/fschange. In contrast to the existing notification interfaces
part of the Linux kernel, fschange does not require a process to register
for each directory individually. It provides a global view of the file system.
By reading from /proc/fschange, the process obtains information about all
changes taking place in the entire file system. Consequently, a process
needs to have superuser privileges to be allowed to read from the file.

Because fschange provides a global view, exhaustive disk scans after a
reboot or after mounting a new device are no longer necessary. Race condi-
tions stemming from the necessity to register for each directory individual-
ly are eliminated, too. In addition to filesystem indexing, the interface can
also be used by other types of applications (e.g., backup and file replica-
tion systems).



;LOGIN: JUNE 2006

fschange supports most of the message types provided by inotify, plus a
few others, such as mount notifications (needed to create a new indexing
process when a storage device is added to the system). When a file is
changed through a write or an mmap operation, fschange tells the user-
space process not only the name of the file that was changed but also the
start and end offset of the part of the file affected by the change.

The unmount problem discussed in the foregoing is addressed by provid-
ing two unmount events: UNMOUNT_REQ, indicating that a process
requested unmounting an active storage device and that the request was
rejected owing to open files for the device; and UNMOUNT, indicating
that a storage device was successfully unmounted. When the indexing ser-
vice receives a UNMOUNT_REQ notification, it terminates the process for
the storage device affected by the unmount, closing open files for that
device. In our prototype system, the umount system tool was modified in
such a way that it sends a sequence of unmount requests to the kernel
until the kernel reports a successful execution of the unmount operation
or until a time-out (usually a few seconds) is reached. This strategy does
not really solve the unmount dilemma, but at least it allows one to
unmount file systems without losing excessive amounts of index data,
which would otherwise be impossible.

Conclusion

We believe that a true filesystem search engine for Linux, providing each
user with a global view of the searchable file system, is badly needed. We
have outlined some important properties of such a search engine and dis-
cussed why it is difficult to implement a search engine with these proper-
ties, given the current support for filesystem notification provided by the
Linux kernel. We hope that some of the functionalities we suggest will be
added to the existing kernel services in the future, opening the way for
real-time filesystem search in Linux.

REFERENCES

[1] S. Buttcher and C.L.A. Clarke, “A Security Model for Full-Text File Sys-
tem Search in Multi-User Environments,” Proceedings of the 4th USENIX
Conference on File and Storage Technologies (FAST 2005), San Francisco,
U.S.A., December 2005.

[2] S. Buttcher and C.L.A. Clarke, “Indexing Time vs. Query Time Trade-
offs in Dynamic Information Retrieval Systems,” Proceedings of the 14th ACM
Conference on Information and Knowledge Management (CIKM 2005), Bre-
men, Germany, November 2005.

[3] N. Lester, A. Moffat, and J. Zobel, “Fast On-Line Index Construction by
Geometric Partitioning,” Proceedings of the 14th ACM Conference on Informa-
tion and Knowledge Management (CIKM 2005), Bremen, Germany, November
2005.

[4]]. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted Files versus Sig-
nature Files for Text Indexing,” ACM Transactions on Database Systems,
23(4):453-490, 1998.

ADDING FULL-TEXT FILESYSTEM SEARCH TO LINUX

33





