
12    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTED SYSTEMS

The Design and Implementation of Open vSwitch
B E N P F A F F , J U S T I N P E T T I T , T E E M U K O P O N E N , E T H A N J . J A C K S O N , A N D Y Z H O U ,
J A R N O R A J A H A L M E , J E S S E G R O S S , A L E X W A N G , J O N A T H A N S T R I N G E R , P R A V I N
S H E L A R , K E I T H A M I D O N , A N D M A R T I N C A S A D O

Open vSwitch is the most widely used virtual switch in cloud environ-
ments. Open vSwitch is a multi-layer, open source virtual switch
for all major hypervisor platforms. It was designed de novo for

networking in virtual environments, resulting in major design departures
from traditional soft switching architectures. We detail the advanced flow
classification and caching techniques that Open vSwitch uses to optimize
its operations and conserve hypervisor resources. These implementation
details will benefit anyone who uses Open vSwitch.

Virtualization has changed the way we do computing over the past 15 years; for instance,
many datacenters are entirely virtualized to provide quick provisioning, spillover to the
cloud, and improved availability during periods of disaster recovery. While virtualization
has yet to reach all types of workloads, the number of virtual machines has already exceeded
the number of servers and shows no signs of stopping [1].

The rise of server virtualization has brought with it a fundamental shift in datacenter net-
working. A new network access layer has emerged in which most network ports are virtual,
not physical [2], and the first hop switch for workloads, therefore, increasingly resides within
the hypervisor. In the early days, these hypervisor “vswitches” were primarily concerned
with providing basic network connectivity. In effect, they simply mimicked their ToR (top-of-
rack) cousins by extending physical L2 networks to resident virtual machines. As virtual-
ized workloads proliferated, the limits of this approach became evident: reconfiguring and
preparing a physical network for new workloads slows their provisioning, and coupling
workloads with physical L2 segments severely limits their mobility and scalability to that of
the underlying network.

These pressures resulted in the emergence of network virtualization [3]. In network virtual
ization, virtual switches become the primary provider of network services for VMs, leaving
physical datacenter networks with transportation of IP tunneled packets between hyper-
visors. This approach allows the virtual networks to be decoupled from their underlying
physical networks, and by leveraging the flexibility of general purpose processors, virtual
switches can provide VMs, their tenants, and administrators with logical network abstrac-
tions, services, and tools identical to dedicated physical networks.

Network virtualization demands a capable virtual switch—forwarding functionality must
be wired on a per-virtual-port basis to match logical network abstractions configured by
administrators. Implementation of these abstractions, across hypervisors, also greatly ben-
efits from fine-grained centralized coordination. This approach starkly contrasts with early
virtual switches for which static, mostly hardcoded forwarding pipelines had been com-
pletely sufficient to provide virtual machines with L2 connectivity to physical networks.

It was this context—the increasing complexity of virtual networking, emergence of network
virtualization, and the limitations of existing virtual switches—that allowed Open vSwitch
to quickly gain popularity. Today, on Linux, its original platform, Open vSwitch works with
most hypervisors and container systems, including Xen, KVM, and Docker. Open vSwitch

Ben Pfaff is a Lead Developer
of the Open vSwitch project.
He was a founding employee
at Nicira and is currently at
VMware. He received his PhD
from Stanford University in

2007. blp@cs.stanford.edu

Justin Pettit is a Lead Developer
on the Open vSwitch project.
He was a founding employee at
Nicira and previously worked
at three successful startups
focused on network security.

He received his master’s degree in computer
science at Stanford University. 
jpettit@cs.stanford.edu

Teemu Koponen was the Chief
Architect at Nicira before
joining VMware. Teemu
received his PhD from Helsinki
University of Technology in
2008 and ever since has been

indecisive enough to remain active within the
network research community while working for
the industry. He received the ACM SIGCOMM
Rising Star Award 2012 for his contributions
on network architectures. 
tkoponen@vmware.com

Ethan Jackson is a Staff
Engineer at VMware and a
researcher at UC Berkeley.
His primary focus is on SDN,
Network Function Virtualiza
tion, and high performance

software switching. ejj@ej2.org

Before joining the Open vSwitch
team, Andy Zhou worked on
many networking and network
security products using
multicore NPUs. His other
interests include embedded

system, kernel, and computer architectures.
He received his MSCS from Carnegie Mellon
University. azhou@nicira.com

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  13

also works “out of the box” on the FreeBSD and NetBSD operating systems, and ports to the
VMware ESXi and Microsoft Hyper-V hypervisors are underway.

In this article, we give a brief overview of the design and implementation of Open vSwitch
[4]. The key elements of its design revolve around the performance required by the produc-
tion environments in which Open vSwitch is commonly deployed, and the programmability
demanded by network virtualization. Unlike traditional network appliances, whether soft-
ware or hardware, which achieve high performance through specialization, Open vSwitch is
designed for flexibility and general-purpose use. It must achieve high performance without
the luxury of specialization, adapting to differences in platforms supported, all while sharing
resources with the hypervisor and its workloads. For a more complete description of Open
vSwitch and its performance evaluation, see our upcoming paper in the proceedings of the
USENIX NSDI ’15 conference [6].

Design
In Open vSwitch, two major components direct packet forwarding. The first, and larger,
component is ovs-vswitchd, a userspace daemon that is essentially the same from one oper-
ating system and operating environment to another. The other major component, a datapath
kernel module, is usually written specially for the host operating system for performance.

Figure 1 depicts how the two main OVS components work together to forward packets. It is
the kernel datapath module that receives the packets first, from a physical NIC or a VM’s
virtual NIC. There are then two possibilities: either ovs-vswitchd has given the datapath
instructions on how to handle packets of this type or it has not. In the former case, the
datapath module simply follows the instructions, called actions, which list physical ports
or tunnels on which to transmit the packet. Actions may also specify packet modifications,
packet sampling, or instructions to drop the packet. In the other case, where the datapath
has not been told what to do with the packet, it delivers it to ovs-vswitchd. In userspace, ovs-

vswitchd determines how the packet should be handled, then it passes the packet back to the
datapath with the desired handling. Usually, ovs-vswitchd also tells the datapath to cache
the actions, for handling similar future packets.

Jarno Rajahalme is part of the
Open vSwitch team at VMware
and has specialized in the OVS
flow classifier algorithms. He
received his doctor of science
in technology degree from

Aalto University in 2012, and is the author
or co-author of tens of patents and several
conference and journal papers.
jrajahalme@nicira.com

Jesse Gross works on the Open
vSwitch team at VMware where
he has led the development
of several protocols used for
network virtualization. Jesse
was also the original maintainer

of the kernel components of Open vSwitch in
Linux. He holds a degree in computer science
from Stanford. jgross@vmware.com

Alex Wang is a developer on
Open vSwitch. He received his
master’s degree in electrical
engineering from UC San Diego.
ee07b291@gmail.com

Jonathan Stringer hails from
New Zealand, where he studied
computer science specializing
in networks. He’s previously
been involved in SDN
deployments in New Zealand

and now actively works on the Open vSwitch
team at VMware. joe@wand.net.nz

Pravin Shelar is an Open
vSwitch developer. He is
currently the OVS kernel
module maintainer. His most
recent focus has been on
tunneling. pshelar@nicira.com

Keith Amidon has spent 20+
years building high performance
networks and networking
software for forwarding and
security. He managed the Open
vSwitch development team at

Nicira/VMware and recently co-founded a
stealth-mode network security startup.
keith@awakenetworks.com

Martin Casado is a Fellow
and the SVP and GM of the
Networking & Security Business
Unit at VMware. He was the
co-founder and CTO of Nicira
Networks. He received his PhD

from Stanford University where he remains a
Consulting Assistant Professor.
mcasado@vmware.com

Figure 1: The components and interfaces of Open vSwitch. The first packet of a flow results in a miss, and
the kernel module directs the packet to the userspace component, which caches the forwarding decision
for subsequent packets into the kernel.

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

14    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

Open vSwitch is commonly used as an SDN switch, and the main
way to control forwarding is OpenFlow [5]. It is the responsibil-
ity of ovs-vswitchd to receive OpenFlow flow tables from an
SDN controller, match any packets received from the datapath
module against these OpenFlow tables, gather the actions
applied, and finally cache the result in the kernel datapath. This
allows the datapath module to remain unaware of the particu-
lars of the OpenFlow wire protocol, further simplifying it. From
the OpenFlow controller’s point of view, the caching and separa-
tion into user and kernel components are invisible implementa-
tion details; in the controller’s view, each packet visits a series of
OpenFlow flow tables, and the switch finds the highest-priority
flow whose conditions are satisfied by the packet and executes
its OpenFlow actions.

Flow Cache Design
Algorithmic packet classification is expensive on general purpose
processors, and packet classification in the context of OpenFlow
is especially costly because of the generality of the form of the
match, which may test any combination of Ethernet addresses,
IPv4 and IPv6 addresses, TCP and UDP ports, and many other
fields, including packet metadata such as the switch ingress
port. This cost is amplified by the large number of flow tables
used by sophisticated SDN controllers: for example, VMware
NSX [3] uses about 15 classifications per packet at minimum.

Open vSwitch uses two strategies to maximize performance in
the face of expensive packet classification. The first strategy is
to optimize the classification itself, by refining the classification
algorithms and our implementations of them over time. The sec-
ond strategy is to perform fewer classifications through effective
use of caching. This section introduces the flow cache design,
and the following section delves into the details.

Open vSwitch’s kernel datapath initially cached microflows, that
is, each cache entry had to match on all of the fields supported
by OpenFlow. Microflow caching is very fine-grained: each
cache entry matches, roughly, one stream of packets in a single
transport connection. A microflow cache can be implemented as
a hash table, which allows the kernel module to be very simple.

Microflow caching is effective with the most common network
traffic patterns, but it seriously degrades when faced with large
numbers of short-lived connections. In such cases, many packets
miss the cache and must not only cross the kernel-userspace
boundary, but also execute a long series of expensive packet
classifications. In production, this kind of traffic can be caused
by port scans, network management tools, P2P applications,
malware, and other sources. None of these is common, but they
happen often enough that customers notice the issue.

To improve performance under those traffic patterns, we aug-
mented the microflow cache with a megaflow cache. The mega-

flow cache is a single flow lookup table that supports generic
matching, i.e., it supports caching forwarding decisions for
larger aggregates of traffic than connections through wildcard-
ing. The megaflow cache somewhat resembles a general-purpose
OpenFlow table, but it is simpler in two ways: it does not have
priorities, which speeds up packet classification because any
match is a “best match,” and there is only one megaflow table,
instead of a pipeline of them, so any packet needs only one clas-
sification rather than a series. In the common case, a megaflow
lookup remains more expensive than a microflow cache lookup,
so we retained the microflow cache as a first-level “exact-match
cache,” consulted before the megaflow cache. This reduces the
cost of megaflows from per-packet to per-microflow.

Caching-Aware Packet Classification
Open vSwitch uses a tuple space search classifier [7] for all of its
packet classifications, both kernel and userspace. To understand
how tuple space search works, imagine that all the flows in an
Open vSwitch flow table matched on the same fields in the same
way: for example, all flows match the source and destination
Ethernet address but no other fields. A tuple search classifier
implements such a flow table as a single hash table. If the con-
troller then adds new flows with a different form of match, the
classifier creates a second hash table that hashes on the fields
matched in those flows. With two hash tables, a search must
look in both hash tables. If there are no matches, the flow table
doesn’t contain a match; if there is a match in one hash table,
that flow is the result; if there is a match in both, then the result
is the flow with the higher priority. As the controller continues to
add more flows with new forms of match, the classifier similarly
expands to include a hash table for each unique match, and a
search of the classifier must look in every hash table.

As Open vSwitch userspace processes a packet through its
OpenFlow tables, it tracks the packet field bits that were con-
sulted as part of the forwarding decision. This technique con-
structs an effective megaflow cache from simple OpenFlow flow
tables. For example, if the OpenFlow table only looks at Ethernet
addresses (as would a flow table based on L2 MAC learning),
then its megaflows will also look only at Ethernet addresses. On
the other hand, if even one flow entry in the table matches on the
TCP destination port, tuple space search examines TCP destina-
tion port of every packet, so that every packet in, for example, a
port scan must go to userspace, and performance drops.

However, in the latter case, a more sophisticated classifier may
be able to notice cases where the match on TCP destination can
be omitted. Thus, after introduction of megaflows, much of our
performance work on Open vSwitch has centered around mak-
ing userspace generate megaflows that match on fewer fields.
The following sections describe improvements of this type that
we have integrated into Open vSwitch.

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  15

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

Tuple Priority Sorting
Lookup in a tuple space search classifier ordinarily requires
searching every tuple. Even if a search of an early tuple finds a
match, the search must still look in the other tuples because one
of them might contain a matching flow with a higher priority.
We improved on this by searching the hash tables from largest
to smallest maximum priority. Then a successful search can
often terminate early because the current match is known to be
higher-priority than any possible later match.

Staged Lookup
Even if a tuple includes many fields, a single field might be
enough to tell that a search must fail: for example, if all the flows
match on a destination IP that is different from the one in the
packet we are looking up, then it suffices to just examine the des-
tination IP field. The staged lookup optimization makes use of
this observation by adding to a generated megaflow only match
fields actually needed to determine that the tuple’s flows did not
match.

The tuple implementation as a hash table over all its fields made
such an optimization difficult. One cannot search a hash table
on a subset of its key. We considered other data structures, such
as tries or per-field hash tables, but these increased search time
or space requirements unacceptably.

The solution we implemented statically divides fields into four
groups, in decreasing order of traffic granularity: metadata (e.g.,
the switch ingress port), L2, L3, and L4. We changed each tuple
from a single hash table to an array of four hash tables, called
stages: one over metadata fields only; one over metadata and
L2 fields; one over metadata, L2, and L3 fields; and one over all
fields. A lookup in a tuple searches each of its stages in order.
If any search turns up no match, then the overall search of the
tuple also fails, and only the fields included in the stage last
searched must be added to the megaflow match.

Prefix Tracking
Flows in OpenFlow often match IPv4 and IPv6 subnets to imple-
ment routing. When all the flows that match on such a field use
the same subnet size, for example, all match /16 subnets, this
works out fine for constructing megaflows. If, on the other hand,
different flows match different subnet sizes, like any standard
routing table does, the constructed megaflows match the longest
subnet prefix: for example, any host route (/32) forces all the
megaflows to match full addresses. Suppose, for example, Open
vSwitch is constructing a megaflow for a packet addressed to
10.5.6.7. If flows match subnet 10/8 and host 10.1.2.3/32, one
could safely install a megaflow for 10.5/16 (because 10.5/16 is
completely inside 10/8 and does not include 10.1.2.3), but without
additional optimization Open vSwitch installs 10.5.6.7/32.

We implemented optimization of prefixes for IPv4 and IPv6
fields using a trie structure. If a flow table matches over an IP
address, the classifier executes an LPM lookup for any such field
before the tuple space search, both to determine the maximum
megaflow prefix length required, as well as to determine which
tuples can be skipped entirely without affecting correctness.

We also adopted prefix tracking for L4 transport port numbers.
This prevents high-priority ACLs that match specific ports from
forcing all megaflows to match the entire port field.

Cache Invalidation
The flip side of caching is the complexity of managing the cache.
Ideally, Open vSwitch could precisely identify the megaflows
that need to change in response to some event. For some kinds of
events, this is straightforward, but the generality of the Open-
Flow model makes precise identification difficult in other cases.
One example is adding a new flow to an OpenFlow table. Any
megaflow that matches a flow in that OpenFlow table whose pri-
ority is less than the new flow’s priority should potentially now
exhibit different behavior, but we do not know how to efficiently
(in time and space) identify precisely those flows. The problem is
worsened by long sequences of OpenFlow flow table lookups. We
concluded that precision is not practical in the general case.

To revalidate the cached flows, Open vSwitch has to examine
every datapath flow for possible changes. Each flow has to be
passed through the OpenFlow flow table in the same way as it
was originally constructed so that the generated actions can be
compared against the ones currently installed in the datapath.
This is time-consuming if there are many datapath flows or if
the OpenFlow flow tables are complicated. Older versions of
Open vSwitch were single-threaded, which meant that the time
spent reexamining all of the datapath flows blocked setting up
new flows for arriving packets that did not match any existing
datapath flow. This added high latency to flow setup for those
packets, greatly increased the overall variability of flow setup
latency, and limited the overall flow setup rate. Therefore, Open
vSwitch had to limit the maximum number of cached flows
installed in the datapath to around 1,000. When Open vSwitch
2.1 introduced multiple dedicated threads for cache revalidation,
we were able to scale the revalidation performance to match the
flow setup performance, as well as greatly increase the maxi-
mum kernel cache size, to about 200,000 entries.

Open vSwitch userspace obtains datapath cache statistics by
periodically (about once per second) polling the kernel module
for every flow’s packet and byte counters. The core use of data-
path flow statistics is to determine which datapath flows are
useful and should remain installed in the kernel and which ones
are not processing a significant number of packets and should
be evicted. Short of the table’s maximum size, flows remain in
the datapath until they have been idle for a configurable amount

16    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

of time, which now defaults to 10 seconds. Above the maximum
size, Open vSwitch drops this idle time to force the table to
shrink. The threads that periodically poll the kernel for per-flow
statistics also use those statistics to implement OpenFlow’s
per-flow packet and byte count statistics and flow idle timeout
features. This means that OpenFlow statistics are themselves
only periodically updated.

The above description covers the invalidation strategy of the
megaflow cache. The invalidation of the first-level microflow
cache (discussed in the Flow Cache Design section) is much
simpler. The kernel only opportunistically invalidates microflow
entries: when a microflow cache results in a miss and the mega-
flow cache is about to insert a new microflow entry, an existing
microflow entry is replaced if the entry hashes to a hash table
bucket already in use.

Conclusion
We described the design and implementation of Open vSwitch,
an open source, multi-platform OpenFlow virtual switch.
Open vSwitch has simple origins, but its performance has been
gradually optimized to match the requirements of multi-tenant
datacenter workloads, which has necessitated a more complex
design. Given its operating environment, we anticipate no
change of course but expect its design only to become more dis-
tinct from traditional network appliances over time.

References
[1] T. J. Bittman, G. J. Weiss, M. A. Margevicius, and P. Dawson,
“Magic Quadrant for x86 Server Virtualization Infrastruc-
ture,” Gartner, June 2013.

[2] Crehan Research Inc. and VMware Estimate, March 2013.

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, P. Ingram, E. Jackson, A.
Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B.
Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P.
Thakkar, D. Wendlandt, A. Yip, and R. Zhang, “Network Virtu-
alization in Multi-Tenant Datacenters,” in Proceedings of the
11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’14), Seattle, WA, April 2014.

[4] Open vSwitch: http://www.openvswitch.org, September
2014.

[5] OpenFlow: https://www.opennetworking.org/sdn-resources
/openflow, January 2014.

[6] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J.  Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K.
Amidon, and M. Casado, “The Design and Implementation
of Open vSwitch,” in Proceedings of the 12th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI ’15), Oakland, CA, May 2015.

[7] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classifica-
tion Using Tuple Space Search,” in Proceedings of the ACM
SIGCOMM ‘99 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, 1999.

The USENIX Store is Open for Business!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book, a USENIX or
conference shirt, or the box set from last year’s workshop? Now you can, via
the brand new USENIX Store!

Head over to www.usenix.org/store and check out the collection of t-shirts,
video box sets, ;login: magazines, short topics books, and other USENIX and
LISA gear. USENIX and LISA SIG members save, so make sure your membership
is up to date.

