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Open vSwitch is the most widely used virtual switch in cloud environ-
ments. Open vSwitch is a multi-layer, open source virtual switch  
for all major hypervisor platforms. It was designed de novo for  

networking in virtual environments, resulting in major design departures 
from traditional soft switching architectures. We detail the advanced flow 
classification and caching techniques that Open vSwitch uses to optimize  
its operations and conserve hypervisor resources. These implementation 
details will benefit anyone who uses Open vSwitch.

Virtualization has changed the way we do computing over the past 15 years; for instance, 
many datacenters are entirely virtualized to provide quick provisioning, spillover to the 
cloud, and improved availability during periods of disaster recovery. While virtualization 
has yet to reach all types of workloads, the number of virtual machines has already exceeded 
the number of servers and shows no signs of stopping [1].

The rise of server virtualization has brought with it a fundamental shift in datacenter net-
working. A new network access layer has emerged in which most network ports are virtual, 
not physical [2], and the first hop switch for workloads, therefore, increasingly resides within 
the hypervisor. In the early days, these hypervisor “vswitches” were primarily concerned 
with providing basic network connectivity. In effect, they simply mimicked their ToR (top-of-
rack) cousins by extending physical L2 networks to resident virtual machines. As virtual-
ized workloads proliferated, the limits of this approach became evident: reconfiguring and 
preparing a physical network for new workloads slows their provisioning, and coupling 
workloads with physical L2 segments severely limits their mobility and scalability to that of 
the underlying network.

These pressures resulted in the emergence of network virtualization [3]. In network virtual
ization, virtual switches become the primary provider of network services for VMs, leaving 
physical datacenter networks with transportation of IP tunneled packets between hyper-
visors. This approach allows the virtual networks to be decoupled from their underlying 
physical networks, and by leveraging the flexibility of general purpose processors, virtual 
switches can provide VMs, their tenants, and administrators with logical network abstrac-
tions, services, and tools identical to dedicated physical networks.

Network virtualization demands a capable virtual switch—forwarding functionality must 
be wired on a per-virtual-port basis to match logical network abstractions configured by 
administrators. Implementation of these abstractions, across hypervisors, also greatly ben-
efits from fine-grained centralized coordination. This approach starkly contrasts with early 
virtual switches for which static, mostly hardcoded forwarding pipelines had been com-
pletely sufficient to provide virtual machines with L2 connectivity to physical networks.

It was this context—the increasing complexity of virtual networking, emergence of network 
virtualization, and the limitations of existing virtual switches—that allowed Open vSwitch 
to quickly gain popularity. Today, on Linux, its original platform, Open vSwitch works with 
most hypervisors and container systems, including Xen, KVM, and Docker. Open vSwitch 
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also works “out of the box” on the FreeBSD and NetBSD operating systems, and ports to the 
VMware ESXi and Microsoft Hyper-V hypervisors are underway.

In this article, we give a brief overview of the design and implementation of Open vSwitch 
[4]. The key elements of its design revolve around the performance required by the produc-
tion environments in which Open vSwitch is commonly deployed, and the programmability 
demanded by network virtualization. Unlike traditional network appliances, whether soft-
ware or hardware, which achieve high performance through specialization, Open vSwitch is 
designed for flexibility and general-purpose use. It must achieve high performance without 
the luxury of specialization, adapting to differences in platforms supported, all while sharing 
resources with the hypervisor and its workloads. For a more complete description of Open 
vSwitch and its performance evaluation, see our upcoming paper in the proceedings of the 
USENIX NSDI ’15 conference [6].

Design
In Open vSwitch, two major components direct packet forwarding. The first, and larger, 
component is ovs-vswitchd, a userspace daemon that is essentially the same from one oper-
ating system and operating environment to another. The other major component, a datapath 
kernel module, is usually written specially for the host operating system for performance.

Figure 1 depicts how the two main OVS components work together to forward packets. It is 
the kernel datapath module that receives the packets first, from a physical NIC or a VM’s 
virtual NIC. There are then two possibilities: either ovs-vswitchd has given the datapath 
instructions on how to handle packets of this type or it has not. In the former case, the 
datapath module simply follows the instructions, called actions, which list physical ports 
or tunnels on which to transmit the packet. Actions may also specify packet modifications, 
packet sampling, or instructions to drop the packet. In the other case, where the datapath 
has not been told what to do with the packet, it delivers it to ovs-vswitchd. In userspace, ovs-

vswitchd determines how the packet should be handled, then it passes the packet back to the 
datapath with the desired handling. Usually, ovs-vswitchd also tells the datapath to cache 
the actions, for handling similar future packets.

Jarno Rajahalme is part of the 
Open vSwitch team at VMware 
and has specialized in the OVS 
flow classifier algorithms. He 
received his doctor of science 
in technology degree from 

Aalto University in 2012, and is the author 
or co-author of tens of patents and several 
conference and journal papers. 
jrajahalme@nicira.com

Jesse Gross works on the Open 
vSwitch team at VMware where 
he has led the development 
of several protocols used for 
network virtualization. Jesse 
was also the original maintainer 

of the kernel components of Open vSwitch in 
Linux. He holds a degree in computer science 
from Stanford. jgross@vmware.com

Alex Wang is a developer on 
Open vSwitch. He received his 
master’s degree in electrical 
engineering from UC San Diego.  
ee07b291@gmail.com

Jonathan Stringer hails from 
New Zealand, where he studied 
computer science specializing 
in networks. He’s previously 
been involved in SDN 
deployments in New Zealand 

and now actively works on the Open vSwitch 
team at VMware. joe@wand.net.nz

Pravin Shelar is an Open 
vSwitch developer. He is 
currently the OVS kernel 
module maintainer. His most 
recent focus has been on 
tunneling. pshelar@nicira.com

Keith Amidon has spent 20+ 
years building high performance 
networks and networking 
software for forwarding and 
security. He managed the Open 
vSwitch development team at 

Nicira/VMware and recently co-founded a 
stealth-mode network security startup.  
keith@awakenetworks.com

Martin Casado is a Fellow 
and the SVP and GM of the 
Networking & Security Business 
Unit at VMware. He was the 
co-founder and CTO of Nicira 
Networks. He received his PhD 

from Stanford University where he remains a 
Consulting Assistant Professor.  
mcasado@vmware.com

Figure 1: The components and interfaces of Open vSwitch. The first packet of a flow results in a miss, and 
the kernel module directs the packet to the userspace component, which caches the forwarding decision 
for subsequent packets into the kernel.
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Open vSwitch is commonly used as an SDN switch, and the main 
way to control forwarding is OpenFlow [5]. It is the responsibil-
ity of ovs-vswitchd to receive OpenFlow flow tables from an 
SDN controller, match any packets received from the datapath 
module against these OpenFlow tables, gather the actions 
applied, and finally cache the result in the kernel datapath. This 
allows the datapath module to remain unaware of the particu-
lars of the OpenFlow wire protocol, further simplifying it. From 
the OpenFlow controller’s point of view, the caching and separa-
tion into user and kernel components are invisible implementa-
tion details; in the controller’s view, each packet visits a series of 
OpenFlow flow tables, and the switch finds the highest-priority 
flow whose conditions are satisfied by the packet and executes 
its OpenFlow actions.

Flow Cache Design
Algorithmic packet classification is expensive on general purpose 
processors, and packet classification in the context of OpenFlow 
is especially costly because of the generality of the form of the 
match, which may test any combination of Ethernet addresses, 
IPv4 and IPv6 addresses, TCP and UDP ports, and many other 
fields, including packet metadata such as the switch ingress 
port. This cost is amplified by the large number of flow tables 
used by sophisticated SDN controllers: for example, VMware 
NSX [3] uses about 15 classifications per packet at minimum.

Open vSwitch uses two strategies to maximize performance in 
the face of expensive packet classification. The first strategy is 
to optimize the classification itself, by refining the classification 
algorithms and our implementations of them over time. The sec-
ond strategy is to perform fewer classifications through effective 
use of caching. This section introduces the flow cache design, 
and the following section delves into the details.

Open vSwitch’s kernel datapath initially cached microflows, that 
is, each cache entry had to match on all of the fields supported 
by OpenFlow. Microflow caching is very fine-grained: each 
cache entry matches, roughly, one stream of packets in a single 
transport connection. A microflow cache can be implemented as 
a hash table, which allows the kernel module to be very simple.

Microflow caching is effective with the most common network 
traffic patterns, but it seriously degrades when faced with large 
numbers of short-lived connections. In such cases, many packets 
miss the cache and must not only cross the kernel-userspace 
boundary, but also execute a long series of expensive packet 
classifications. In production, this kind of traffic can be caused 
by port scans, network management tools, P2P applications, 
malware, and other sources. None of these is common, but they 
happen often enough that customers notice the issue.

To improve performance under those traffic patterns, we aug-
mented the microflow cache with a megaflow cache. The mega-

flow cache is a single flow lookup table that supports generic 
matching, i.e., it supports caching forwarding decisions for 
larger aggregates of traffic than connections through wildcard-
ing. The megaflow cache somewhat resembles a general-purpose 
OpenFlow table, but it is simpler in two ways: it does not have 
priorities, which speeds up packet classification because any 
match is a “best match,” and there is only one megaflow table, 
instead of a pipeline of them, so any packet needs only one clas-
sification rather than a series. In the common case, a megaflow 
lookup remains more expensive than a microflow cache lookup, 
so we retained the microflow cache as a first-level “exact-match 
cache,” consulted before the megaflow cache. This reduces the 
cost of megaflows from per-packet to per-microflow.

Caching-Aware Packet Classification
Open vSwitch uses a tuple space search classifier [7] for all of its 
packet classifications, both kernel and userspace. To understand 
how tuple space search works, imagine that all the flows in an 
Open vSwitch flow table matched on the same fields in the same 
way: for example, all flows match the source and destination 
Ethernet address but no other fields. A tuple search classifier 
implements such a flow table as a single hash table. If the con-
troller then adds new flows with a different form of match, the 
classifier creates a second hash table that hashes on the fields 
matched in those flows. With two hash tables, a search must 
look in both hash tables. If there are no matches, the flow table 
doesn’t contain a match; if there is a match in one hash table, 
that flow is the result; if there is a match in both, then the result 
is the flow with the higher priority. As the controller continues to 
add more flows with new forms of match, the classifier similarly 
expands to include a hash table for each unique match, and a 
search of the classifier must look in every hash table.

As Open vSwitch userspace processes a packet through its 
OpenFlow tables, it tracks the packet field bits that were con-
sulted as part of the forwarding decision. This technique con-
structs an effective megaflow cache from simple OpenFlow flow 
tables. For example, if the OpenFlow table only looks at Ethernet 
addresses (as would a flow table based on L2 MAC learning), 
then its megaflows will also look only at Ethernet addresses. On 
the other hand, if even one flow entry in the table matches on the 
TCP destination port, tuple space search examines TCP destina-
tion port of every packet, so that every packet in, for example, a 
port scan must go to userspace, and performance drops.

However, in the latter case, a more sophisticated classifier may 
be able to notice cases where the match on TCP destination can 
be omitted. Thus, after introduction of megaflows, much of our 
performance work on Open vSwitch has centered around mak-
ing userspace generate megaflows that match on fewer fields. 
The following sections describe improvements of this type that 
we have integrated into Open vSwitch.
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Tuple Priority Sorting
Lookup in a tuple space search classifier ordinarily requires 
searching every tuple. Even if a search of an early tuple finds a 
match, the search must still look in the other tuples because one 
of them might contain a matching flow with a higher priority. 
We improved on this by searching the hash tables from largest 
to smallest maximum priority. Then a successful search can 
often terminate early because the current match is known to be 
higher-priority than any possible later match.

Staged Lookup 
Even if a tuple includes many fields, a single field might be 
enough to tell that a search must fail: for example, if all the flows 
match on a destination IP that is different from the one in the 
packet we are looking up, then it suffices to just examine the des-
tination IP field. The staged lookup optimization makes use of 
this observation by adding to a generated megaflow only match 
fields actually needed to determine that the tuple’s flows did not 
match.

The tuple implementation as a hash table over all its fields made 
such an optimization difficult. One cannot search a hash table 
on a subset of its key. We considered other data structures, such 
as tries or per-field hash tables, but these increased search time 
or space requirements unacceptably.

The solution we implemented statically divides fields into four 
groups, in decreasing order of traffic granularity: metadata (e.g., 
the switch ingress port), L2, L3, and L4. We changed each tuple 
from a single hash table to an array of four hash tables, called 
stages: one over metadata fields only; one over metadata and 
L2 fields; one over metadata, L2, and L3 fields; and one over all 
fields. A lookup in a tuple searches each of its stages in order. 
If any search turns up no match, then the overall search of the 
tuple also fails, and only the fields included in the stage last 
searched must be added to the megaflow match.

Prefix Tracking 
Flows in OpenFlow often match IPv4 and IPv6 subnets to imple-
ment routing. When all the flows that match on such a field use 
the same subnet size, for example, all match /16 subnets, this 
works out fine for constructing megaflows. If, on the other hand, 
different flows match different subnet sizes, like any standard 
routing table does, the constructed megaflows match the longest 
subnet prefix: for example, any host route (/32) forces all the 
megaflows to match full addresses. Suppose, for example, Open 
vSwitch is constructing a megaflow for a packet addressed to 
10.5.6.7. If flows match subnet 10/8 and host 10.1.2.3/32, one 
could safely install a megaflow for 10.5/16 (because 10.5/16 is 
completely inside 10/8 and does not include 10.1.2.3), but without 
additional optimization Open vSwitch installs 10.5.6.7/32.

We implemented optimization of prefixes for IPv4 and IPv6 
fields using a trie structure. If a flow table matches over an IP 
address, the classifier executes an LPM lookup for any such field 
before the tuple space search, both to determine the maximum 
megaflow prefix length required, as well as to determine which 
tuples can be skipped entirely without affecting correctness.

We also adopted prefix tracking for L4 transport port numbers. 
This prevents high-priority ACLs that match specific ports from 
forcing all megaflows to match the entire port field.

Cache Invalidation 
The flip side of caching is the complexity of managing the cache. 
Ideally, Open vSwitch could precisely identify the megaflows 
that need to change in response to some event. For some kinds of 
events, this is straightforward, but the generality of the Open-
Flow model makes precise identification difficult in other cases. 
One example is adding a new flow to an OpenFlow table. Any 
megaflow that matches a flow in that OpenFlow table whose pri-
ority is less than the new flow’s priority should potentially now 
exhibit different behavior, but we do not know how to efficiently 
(in time and space) identify precisely those flows. The problem is 
worsened by long sequences of OpenFlow flow table lookups. We 
concluded that precision is not practical in the general case.

To revalidate the cached flows, Open vSwitch has to examine 
every datapath flow for possible changes. Each flow has to be 
passed through the OpenFlow flow table in the same way as it 
was originally constructed so that the generated actions can be 
compared against the ones currently installed in the datapath. 
This is time-consuming if there are many datapath flows or if 
the OpenFlow flow tables are complicated. Older versions of 
Open vSwitch were single-threaded, which meant that the time 
spent reexamining all of the datapath flows blocked setting up 
new flows for arriving packets that did not match any existing 
datapath flow. This added high latency to flow setup for those 
packets, greatly increased the overall variability of flow setup 
latency, and limited the overall flow setup rate. Therefore, Open 
vSwitch had to limit the maximum number of cached flows 
installed in the datapath to around 1,000. When Open vSwitch 
2.1 introduced multiple dedicated threads for cache revalidation, 
we were able to scale the revalidation performance to match the 
flow setup performance, as well as greatly increase the maxi-
mum kernel cache size, to about 200,000 entries.

Open vSwitch userspace obtains datapath cache statistics by 
periodically (about once per second) polling the kernel module 
for every flow’s packet and byte counters. The core use of data-
path flow statistics is to determine which datapath flows are 
useful and should remain installed in the kernel and which ones 
are not processing a significant number of packets and should 
be evicted. Short of the table’s maximum size, flows remain in 
the datapath until they have been idle for a configurable amount 
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of time, which now defaults to 10 seconds. Above the maximum 
size, Open vSwitch drops this idle time to force the table to 
shrink. The threads that periodically poll the kernel for per-flow 
statistics also use those statistics to implement OpenFlow’s 
per-flow packet and byte count statistics and flow idle timeout 
features. This means that OpenFlow statistics are themselves 
only periodically updated.

The above description covers the invalidation strategy of the 
megaflow cache. The invalidation of the first-level microflow 
cache (discussed in the Flow Cache Design section) is much 
simpler. The kernel only opportunistically invalidates microflow 
entries: when a microflow cache results in a miss and the mega-
flow cache is about to insert a new microflow entry, an existing 
microflow entry is replaced if the entry hashes to a hash table 
bucket already in use.

Conclusion 
We described the design and implementation of Open vSwitch, 
an open source, multi-platform OpenFlow virtual switch. 
Open vSwitch has simple origins, but its performance has been 
gradually optimized to match the requirements of multi-tenant 
datacenter workloads, which has necessitated a more complex 
design. Given its operating environment, we anticipate no 
change of course but expect its design only to become more dis-
tinct from traditional network appliances over time.
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