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Independently validating experimental results in the field of computer 
systems research is a challenging task. Recreating an environment that 
resembles the one where an experiment was originally executed is a 

time-consuming endeavor. In this article, we present Popper [1], a convention 
(or protocol) for conducting experiments following a DevOps [2] approach 
that allows researchers to make all associated artifacts publicly available 
with the goal of maximizing automation in the re-execution of an experiment 
and validation of its results.

A basic expectation in the practice of the scientific method is to document, archive, and 
share all data and the methodologies used so other scientists can reproduce and verify 
scientific results and students can learn how they were derived. However, in the scientific 
branches of computation and data exploration the lack of reproducibility has led to a cred-
ibility crisis. As more scientific disciplines are relying on computational methods and data-
intensive exploration, it has become urgent to develop software tools that help document 
dependencies on data products, methodologies, and computational environments, that safely 
archive data products and documentation, and that reliably share data products and docu-
mentations so that scientists can rely on their availability.

Over the last decade software engineering and systems administration communities (also 
referred to as DevOps) have developed sophisticated techniques and strategies to ensure “soft-
ware reproducibility,” i.e., the reproducibility of software artifacts and their behavior using 
versioning, dependency management, containerization, orchestration, monitoring, testing and 
documentation. The key idea behind the Popper Convention is to manage every experiment 
in computation and data exploration as a software project, using tools and services that are 
readily available now and enjoy wide popularity. By doing so, scientific explorations become 
reproducible with the same convenience, efficiency, and scalability as software reproducibility 
while fully leveraging continuing improvements to these tools and services. Rather than man-
dating a particular set of tools, the Convention requires that the tool set as a whole implements 
functionality necessary for software reproducibility. There are two main goals for Popper:

1.	 It should be usable in as many research projects as possible, regardless of domain.

2.	 It should abstract underlying technologies without requiring a strict set of tools, making it 
possible to apply it on multiple toolchains.

Common Experimental Practices
Ad hoc personal workflows: A typical practice is the use of custom bash scripts to auto-
mate some of the tasks of executing experiments and analyzing results.

Sharing source code: Version-control systems give authors, reviewers, and readers access 
to the same code base, but the availability of source code does not guarantee reproducibility [3]; 
code may not compile, and even if it does, results may differ due to differences from other com-
ponents in the software stack. While sharing source code is beneficial, it leaves readers with 
the daunting task of recompiling, reconfiguring, deploying, and re-executing an experiment.
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Experiment repositories: An alternative to sharing source code is experiment reposito-
ries [4]. These allow researchers to upload artifacts associated with a paper, such as input 
datasets. Similar to code repositories, one of the main problems is the lack of automation and 
structure for the artifacts.

Virtual machines: A Virtual Machine (VM) can be used to partially address the limita-
tions of only sharing source code. However, in the case of systems research where the perfor-
mance is the subject of study, the overheads in terms of performance (the hypervisor “tax”) 
and management (creating, storing, and transferring) can be high and, in some cases, cannot 
be accounted for easily [5].

Data analysis ad hoc approaches: A common approach to analyze data is to capture CSV 
files and manually paste their contents into Excel or Google spreadsheets. This manual 
manipulation and plotting lacks the ability to record important steps in the process of ana-
lyzing results, such as the series of steps that it took to go from a CSV to a figure.

Eyeball validation: Assuming the reader is able to recreate the environment of an experi-
ment, validating the outcome requires domain-specific expertise in order to determine the 
differences between original and recreated environments that might be the root cause of any 
discrepancies in the results.

Goals for a New Methodology 
A diagram of a generic experimentation workflow is shown in Figure 1. The problem with 
current practices is that each practice only partially covers the workflow. For example, shar-
ing source code only covers the first task (source code), experiment packing only covers the 
second one (packaging), and so on. Based on this, we see the need for a new methodology that:

◆◆ Is reproducible without incurring any extra work for the researcher and requires the same 
or less effort than current practices but does things systematically.

◆◆ Improves the personal workflows of scientists by having a common methodology that works 
for as many projects as possible and that can be used as the basis of collaboration.

◆◆ Captures the end-to-end workflow in a modern way, including the history of changes that 
are made to an article throughout its life cycle.
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Figure 1: A generic experimentation workflow typically followed by researchers in projects with a compu-
tational component. Some of the reasons to iterate (backwards-going arrows) are: fixing a bug in the code 
of a system, changing a parameter of an experiment, or running the same experiment on a new workload 
or compute platform. Although not usually done, in some cases researchers keep a chronological record of 
how experiments evolve over time (the analogy of the lab notebook in experimental sciences).
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◆◆ Makes use of existing tools (don’t reinvent the wheel!); the DevOps toolkit is already 
comprehensive and easy to use.

◆◆ Has the ability to handle large datasets and scale to an arbitrary number of machines.

◆◆ Captures validation criteria in an explicit manner so that subjective evaluation of results of 
a re-execution is minimized.

◆◆ Results in experiments that are amenable to improvement and allows easy collaboration; 
makes it easier to build upon existing work.

A DevOps Approach to Conducting Experiments 
The core idea behind Popper is to borrow from the DevOps movement the idea of treating 
every component as an immutable piece of information [6] and provide references to scripts 
and components for the creation, execution, and validation of experiments (in a systematic 
way) rather than leaving to the reader the daunting task of inferring how binaries and 
experiments were generated or configured. Version control, package management, multi-
node orchestration, bare-metal-as-a-service, dataset management, data analysis and 
visualization, performance monitoring, continuous integration, each of these categories of 
the DevOps toolkit has a corresponding open source software (OSS) project that is mature, 
well documented, and easy to use (see Figure 2 for examples). The goal for Popper is to give 
researchers a common framework to systematically reason about how to structure all the 
dependencies and generated artifacts associated with an experiment by making use of these 
DevOps tools. The convention provides the following unique features:

1.	 Provides a methodology (or experiment protocol) for generating self-contained experiments.

2.	 Makes it easier for researchers to explicitly specify validation criteria.

3.	 Abstracts domain-specific experimentation workflows and toolchains.

4.	 Provides reusable templates of curated experiments commonly used by a research community.

Self-Containment
We say that an experiment is Popper-compliant (or that it has been “Popperized”) if all of the 
following are available, either directly or by reference, in one single source code repository: 
experiment code, experiment orchestration code, reference to data dependencies, parametri-
zation of experiment, validation criteria and results. In other words, a Popper repository con-
tains all the dependencies for one or more experiments, optionally including a manuscript 
(article or tech report) that documents them.
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Figure 2: The same workflow as in Figure 1 viewed through a DevOps looking glass. The logos correspond to 
commonly used tools from the “DevOps toolkit.” From left-to-right, top-to-bottom: git, mercurial, subversion 
(code); docker, vagrant, spack, nix (packaging); git-lfs, datapackages, artifactory, archiva (input data); bash, 
ansible, puppet, slurm (execution); git-lfs, datapackages, icinga, nagios (output data and runtime metrics); 
jupyter, paraview, travis, jenkins (analysis, visualization and continuous integration); restructured text, 
latex, asciidoctor and markdown (manuscript); gitlab, bitbucket and github (experiment changes).
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An example paper project is shown in Listing 1. A paper reposi-
tory is composed primarily of the article text and experiment 
orchestration logic. The actual code that gets executed by an 
experiment and all input datasets are not part of the repository; 
instead, they reside in their own repositories and are stored in 
the experiments/ folder of the paper repository as references.

    paper-repo

    | README.md

    | .git/

    | .popper.yml

    | .travis.yml

    | experiments

    |   |-- myexp

    |   |   |-- datasets/

    |   |       |-- input-data.csv

    |   |   |-- figure.png

    |   |   |-- process-result.py

    |   |   |-- setup.yml

    |   |   |-- results.csv

    |   |   |-- run.sh

    |   |   |-- validations.aver

    |   |    -- vars.yml

    | paper

    |   |-- build.sh

    |   |-- figures/

    |   |-- paper.tex

    |    -- references.bib

Listing 1: Sample contents of a Popper repository

With all these artifacts available, the reader can easily deploy 
an experiment or rebuild the article’s PDF. Figure 3 shows our 
vision for the reader/reviewer workflow when reading a Popper 
for a Popperized article. The diagram uses tools we use in the 
use-case presented later, like Ansible and Docker, but as men-
tioned earlier, these can be swapped by equivalent tools. Using 
this workflow, the writer is completely transparent, and the 
article consumer is free to explore results, rerun experiments, 
and contradict assertions made in the paper.

A paper is written in any desired markup language (LaTeX in 
our example), where a build.sh command generates the output 
(e.g., PDF file). For the experiment execution logic, each experi-
ment folder contains the necessary information such as setup, 
output post-processing (data analysis), and scripts for generat-
ing an image from the results. The execution of the experiment 
will produce output that is either consumed by a post-processing 
script, or directly by the scripts that generate an image.

The experiment output can be in any format (CSV, HDF, 
NetCDF, etc.), as long as it is versioned and referenced. An 
important component of the experiment logic is that it should 

assert the original assumptions made about the environment 
(setup.yml): for example, the operating system version (if the 
experiment assumes one). Also, it is important to parametrize 
the experiment explicitly (vars.yml) so that readers can quickly 
get an idea of what is the parameter space and what can be modi-
fied in order to obtain different results. One common practice 
we follow is to place in the caption of every figure a [source] 
link that points to the URL of the corresponding post-processing 
script in the version control Web interface (e.g., GitHub).

Automated Validation
Validation of experiments can be classified in two categories. 
In the first one, the integrity of the experimentation logic is 
checked using existing continuous-integration (CI) services 
such as TravisCI, which expects a .travis.yml file in the root 
folder specifying what tests to execute. These checks can verify 
that the paper is always in a state that can be built; that the 
syntax of orchestration files is correct so that if changes occur 
(e.g., addition of a new variable), it can be executed without any 
issues; or that the post-processing routines can be executed 
without problems.

The second category of validations is related to the integrity of the 
experimental results. These domain-specific tests ensure that 
the claims made in the paper are valid for every re-execution of 
the experiment, analogous to performance regression tests done 
in software projects. Alternatively, claims can also be corrobo-
rated as part of the analysis code. When experiments are not 
sensitive to the effects of virtualized platforms, these asser-
tions can be executed on public/free CI platforms (e.g., TravisCI 

Figure 3: A sample workflow a paper reviewer or reader would use to read 
a Popperized article. (1) The PDF, Jupyter, or Binder are used to visualize 
and interact with the results postmortem on the reader’s local machine. 
(2) If needed the reader has the option of looking at the code and cloning 
it locally (GitHub); for single-node experiments, they can be deployed 
locally too (Docker). (3) For multi-node experiments, Ansible can then 
be used to deploy the experiment on a public or private cloud (NSF’s 
CloudLab in this case). (4) Lastly, experiments producing large datasets 
can make use of cloud storage. Popper is tool agnostic, so GitHub can be 
replaced with GitLab, Ansible with Puppet, Docker with VMs, etc.
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runs tests in VMs). However, when results are sensitive to the 
underlying hardware, it is preferable to leave this out of the CI 
pipeline and make them part of the post-processing routines 
of the experiment. In the example above, a validations.aver 
file contains validations in the Aver [7] language that check the 
integrity of runtime performance metrics. Examples of these 
type of assertions are: “the runtime of our algorithm is 10x bet-
ter than the baseline when the level of parallelism exceeds four 
concurrent threads”; or “for dataset A, our model predicts the 
outcome with an error of 5%.”

Toolchain Agnosticism
We designed Popper as a general convention, applicable to a wide 
variety of environments, from cloud to high-performance com-
puting. In general, Popper can be applied in any scenario where 
a component (data, code, infrastructure, hardware, etc.) can be 
referenced by an identifier, and where there is an underlying tool 
that consumes these identifiers so that they can be acted upon 
(install, run, store, visualize, etc.). We say that a tool is Popper-
compliant if it has the following two properties:

1.	 Assets (code, packages, configurations, data, results, etc.) can 
all be associated with, and referenced using, unique identifiers. 

2.	 The tool is scriptable (e.g., can be invoked from the command 
line) and can act upon given asset IDs.

In general, tools that are hard to script—e.g., because they don’t 
provide a command-line interface (can only interact via GUI) 
or they only have a programmatic API for a non-interpreted 
language—are beyond the scope of Popper. 

Experiment Templates
Researchers that decide to follow Popper are faced with a steep 
learning curve, especially if they have only used a couple of tools 
from the DevOps toolkit. To lower the entry barrier, we have 
developed a command-line interface (CLI) tool that provides 
a list of experiment templates and helps to bootstrap a paper 
repository that follows the Popper Convention (available at 
https://github.com/systemslab/popper).

Use Case 
We now illustrate how to follow the Popper Convention when 
conducting an experiment. For detailed documentation, visit our 
wiki at https://github.com/systemslab/popper/wiki.

Initializing a Popper repository: Our Popper-CLI tool 
assumes a Git repository exists (Listing 2). Given a Git reposi-
tory, we invoke the Popper-CLI tool and initialize Popper by 
issuing a popper init command in the root of the Git reposi-
tory. This creates a .popper.yml file that contains configuration 
options for the CLI tool. This file is committed to the paper  
(Git) repository. After the Popper repository has been initialized, 

we can either create a new experiment from scratch or obtain an 
existing one by pulling an experiment template.

     $ cd mypaper-repo

     $ popper init

     -- Initialized Popper repo

     $ popper experiment list

     -- available templates ---------------

     ceph-rados  proteustm mpip

     spark-bench gassyfs   zlog

     malacology  torpor    blis

     $ popper add gassyfs myexp

Listing 2: Initialization of a Popper repo

Adding a new experiment: Assume the code of the system 
under study has already been packaged. In order to add an 
experiment that evaluates a particular aspect of the system, 
we first start by stating, in either a language such as Aver [7] 
or in plaintext, the result validation criteria. We then proceed 
with the implementation of the logic of the experiment, mainly 
orchestration code: configuration, deployment, analysis and 
visualization of performance metrics, and validation of results. 
All these files are placed in the paper repository in order to make 
the experiment Popper-compliant (self-contained).

Obtaining an existing experiment: As mentioned before, we 
maintain a list of experiment templates that have been “Popper-
ized.” For this example, assume we select the gassyfs template 
from the list. GassyFS [8] is a new prototype in-memory file 
system that stores data in distributed remote memory. Although 
GassyFS is simple in design, it is relatively complex to set up. 
The combinatorial space of possible ways in which the system 
can be compiled, packaged, and configured is large. Having all 
this information in a Git repository simplifies the setup since 
one doesn’t need to speculate on which things where done by 
the original authors; all the information is available. In Figure 4 
we show results of an experiment that validates the scalability 
of GassyFS. We note that while the obtained performance is 
relevant, it is not our main focus. Instead, we put more emphasis 
on the goals of the experiment, how we can reproduce results 
on multiple environments with minimal effort, and how we can 
validate them. Re-executing this experiment on a new platform 
only requires us to have host nodes to run Docker and to modify 
the list of hosts given to Ansible (a list of hostnames); everything 
else, including validation, is fully automated. The Aver [7] asser-
tion in Listing 3 is used to check the integrity of this result and 
expresses our expectation of GassyFS performing sublinearly 
with respect to the number of nodes. After the experiment runs, 
Aver is invoked to test the above statement against the experi-
ment results obtained.
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    when

      workload=* and machine=*

    expect

      sublinear(nodes,time)

Listing 3: Assertion to check scalability behavior

Documenting the experiment: After we are done with an 
experiment, we might want to document it by creating a report 
or article. The Popper-CLI also provides us with manuscript 
templates. We can use the generic article template or other 
more domain-specific ones. To display the available templates 
we do popper paper list. In our example we use the template 
for USENIX articles by issuing a popper paper add usenix, 
which creates a paper/ folder in the project’s root folder, with a 
sample LaTeX file. We then can make reference to figures that 
have been generated as part of an experiment and reference 
them from the LaTeX file. We then generate the article (all paper 
templates have a build.sh command inside the paper folder) and 
see the new images added to the resulting PDF file.

The Case for Popper 
We Did Well for 50 Years. Why Fix It?
Shared infrastructures “in the cloud” are becoming the norm 
and enable new kinds of sharing, such as experiments, that were 
not practical before. Thus, the opportunity of these services goes 
beyond just economies of scale: by using conventions and tools to 
enable reproducibility, we can dramatically increase the value of 
scientific experiments for education and for research. The Pop-
per Convention makes available not only the result of a systems 
experiment but the entire experiment as well, and it allows 
researchers to study and reuse all aspects of it, making it practi-

cal to “stand on the shoulders of giants” by building upon the 
work of the community to improve the state-of-the-art without 
having to start from scratch every time. 

The Power of “Crystallization Points”
Docker images, Ansible playbooks, CI unit tests, Git repositories, 
and Jupyter notebooks are all examples of artifacts around which 
broad-based efforts can be organized. Crystallization points are 
pieces of technology and are intended to be easily shareable, have 
the ability to grow and improve over time, and ensure buy-in from 
researchers and students. Examples of very successful crystal-
lization points are the Linux kernel, Wikipedia, and the Apache 
Project. Crystallization points encode community knowledge 
and are therefore useful for leveraging past research efforts for 
ongoing research as well as education and training. They help 
people to form abstractions and common understanding that 
enables them to more effectively communicate reproducible 
science. By having popular tools such as Docker/Ansible as a 
lingua franca for researchers, and Popper to guide them in how 
to structure their paper repositories, we can expedite collabora-
tion and at the same time benefit from all the new advances done 
in the DevOps world. 

Perfect Is the Enemy of Good
No matter how hard we try, there will always be something that 
goes wrong. The context of systems experiments is often very 
complex, and that complexity is likely to increase in the future. 
Perfect repeatability will be very difficult to achieve. Recent 
empirical studies in computer systems [3, 9] have brought 
attention to the main issues that permeate the current practice 
of our research communities, where scenarios like the lack of 
information on how a particular package was compiled, or which 
statistical functions were used make it difficult to reproduce 
or even interpret results. Rather than aiming at perfect repeat-
ability, we seek to minimize issues we currently face and to use a 
common language while collaborating to fix all these reproduc-
ibility issues. Additionally, following Popper quickly pays off 
at the individual level by improving  productivity, e.g., when a 
researcher goes back to experiments to consider new scenarios.

DevOps Skills Are Highly Valued by Industry
While the learning curve for the DevOps toolkit is steep, having 
these as part of the skill set of students or researchers-in-train-
ing can only improve their curriculum. Since industry and many 
industrial/national laboratories have embraced (or are in the 
process of embracing) a DevOps approach, making use of these 
tools improves the prospects of future employment. These are 
skills that will hardly represent wasted time investments. On the 
contrary, this might be motivation enough for students to learn 
at least one tool from each of the stages of the experimentation 
workflow.

Figure 4: Scalability of GassyFS as the number of nodes in the GASNet 
cluster increases. The workload in question compiles Git. (source: https://
github.com/systemslab/popper-paper/blob/login/experiments/gassyfs 
/visualize.ipynb)
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Conclusion
We named the convention Popper as a reference to Karl Popper, 
the philosopher of science who famously argued that falsifiability 
should be used as the demarcation criterion when determining 
whether a theory is scientific or pseudo-scientific. The OSS 
development model and the DevOps practice have proven to be 
an extraordinary way for people around the world to collaborate 
on software projects. As the use case presented here shows, 
by writing articles following the Popper Convention, authors 
can improve their personal workflows while at the same time 
generating research that is easier to validate and replicate. We 
are currently working with researchers from distinct scientific 
domains to help them “Popperize” their experiments and add 
new templates to our repository.
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26TH
August 16-18, 2017 • Vancouver, BC, Canada

The USENIX Security Symposium brings together researchers, practitioners, system administrators, system 
 programmers, and others interested in the latest advances in the security and privacy of computer systems 
and networks.

All researchers are encouraged to submit papers covering novel and scientifically significant practical 
works in computer security. Submissions are due on Thursday, February 16, 2017. The Symposium will span 
three days, with a technical program including refereed papers, invited talks, posters, panel discussions, and 
Birds-of-a-Feather sessions. Workshops will precede the Symposium on August 14 and 15.

Important Dates
• Paper submissions due: Thursday, February 16, 2017, 5:00 p.m. EST

• Invited talk and panel proposals due: Thursday, February 18, 2017

• Early-reject notification: March 21, 2017

• Notification to authors: May 12, 2017

• Final papers due: June 29, 2017

• Poster proposals due: July 6, 2017

• Notification to poster presenters: July 13, 2017

• Work-in-Progress submissions due:  August 16, 2017, noon CDT

Program Co-Chairs
Engin Kirda, Northeastern University
Thomas Ristenpart, Cornell Tech

Submit Your Work

www.usenix.org/sec17




