
20    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS

Standing on the Shoulders of Giants by
Managing Scientific Experiments Like Software
I V O J I M E N E Z , M I C H A E L S E V I L L A , N O A H W A T K I N S , C A R L O S M A L T Z A H N , J A Y L O F S T E A D ,
K A T H R Y N M O H R O R , R E M Z I A R P A C I - D U S S E A U , A N D A N D R E A A R P A C I - D U S S E A U

Independently validating experimental results in the field of computer
systems research is a challenging task. Recreating an environment that
resembles the one where an experiment was originally executed is a

time-consuming endeavor. In this article, we present Popper [1], a convention
(or protocol) for conducting experiments following a DevOps [2] approach
that allows researchers to make all associated artifacts publicly available
with the goal of maximizing automation in the re-execution of an experiment
and validation of its results.

A basic expectation in the practice of the scientific method is to document, archive, and
share all data and the methodologies used so other scientists can reproduce and verify
scientific results and students can learn how they were derived. However, in the scientific
branches of computation and data exploration the lack of reproducibility has led to a cred-
ibility crisis. As more scientific disciplines are relying on computational methods and data-
intensive exploration, it has become urgent to develop software tools that help document
dependencies on data products, methodologies, and computational environments, that safely
archive data products and documentation, and that reliably share data products and docu-
mentations so that scientists can rely on their availability.

Over the last decade software engineering and systems administration communities (also
referred to as DevOps) have developed sophisticated techniques and strategies to ensure “soft-
ware reproducibility,” i.e., the reproducibility of software artifacts and their behavior using
versioning, dependency management, containerization, orchestration, monitoring, testing and
documentation. The key idea behind the Popper Convention is to manage every experiment
in computation and data exploration as a software project, using tools and services that are
readily available now and enjoy wide popularity. By doing so, scientific explorations become
reproducible with the same convenience, efficiency, and scalability as software reproducibility
while fully leveraging continuing improvements to these tools and services. Rather than man-
dating a particular set of tools, the Convention requires that the tool set as a whole implements
functionality necessary for software reproducibility. There are two main goals for Popper:

1.	 It should be usable in as many research projects as possible, regardless of domain.

2.	 It should abstract underlying technologies without requiring a strict set of tools, making it
possible to apply it on multiple toolchains.

Common Experimental Practices
Ad hoc personal workflows: A typical practice is the use of custom bash scripts to auto-
mate some of the tasks of executing experiments and analyzing results.

Sharing source code: Version-control systems give authors, reviewers, and readers access
to the same code base, but the availability of source code does not guarantee reproducibility [3];
code may not compile, and even if it does, results may differ due to differences from other com-
ponents in the software stack. While sharing source code is beneficial, it leaves readers with
the daunting task of recompiling, reconfiguring, deploying, and re-executing an experiment.

Ivo Jimenez is a PhD candidate
at the UC Santa Cruz Computer
Science Department and
a member of the Systems
Research Lab. His current

work focuses on the practical reproducible
generation and validation of systems research.
Ivo holds a BS in computer science from
University of Sonora and a MS from UCSC.
ivo@cs.ucsc.edu

Michael Sevilla is a computer
science PhD candidate at UC
Santa Cruz. As part the Systems
Research Lab, he evaluates
distributed file system metadata

management. At Hewlett Packard Enterprise,
he uses open-source tools to benchmark
storage solutions. He has a BS in computer
science and engineering from UC Irvine.
msevilla@soe.ucsc.edu

Noah Watkins is a PhD
candidate in the Computer
Science Department at UC
Santa Cruz and a member of
the Systems Research Lab. His

research interests include distributed storage
systems and data management, with a focus
on programmable storage abstractions. Noah
holds a BS in computer science from the
University of Kansas. jayhawk@cs.ucsc.edu

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  21

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

Experiment repositories: An alternative to sharing source code is experiment reposito-
ries [4]. These allow researchers to upload artifacts associated with a paper, such as input
datasets. Similar to code repositories, one of the main problems is the lack of automation and
structure for the artifacts.

Virtual machines: A Virtual Machine (VM) can be used to partially address the limita-
tions of only sharing source code. However, in the case of systems research where the perfor-
mance is the subject of study, the overheads in terms of performance (the hypervisor “tax”)
and management (creating, storing, and transferring) can be high and, in some cases, cannot
be accounted for easily [5].

Data analysis ad hoc approaches: A common approach to analyze data is to capture CSV
files and manually paste their contents into Excel or Google spreadsheets. This manual
manipulation and plotting lacks the ability to record important steps in the process of ana-
lyzing results, such as the series of steps that it took to go from a CSV to a figure.

Eyeball validation: Assuming the reader is able to recreate the environment of an experi-
ment, validating the outcome requires domain-specific expertise in order to determine the
differences between original and recreated environments that might be the root cause of any
discrepancies in the results.

Goals for a New Methodology
A diagram of a generic experimentation workflow is shown in Figure 1. The problem with
current practices is that each practice only partially covers the workflow. For example, shar-
ing source code only covers the first task (source code), experiment packing only covers the
second one (packaging), and so on. Based on this, we see the need for a new methodology that:

◆◆ Is reproducible without incurring any extra work for the researcher and requires the same
or less effort than current practices but does things systematically.

◆◆ Improves the personal workflows of scientists by having a common methodology that works
for as many projects as possible and that can be used as the basis of collaboration.

◆◆ Captures the end-to-end workflow in a modern way, including the history of changes that
are made to an article throughout its life cycle.

Carlos Maltzahn is an Adjunct
Professor of Computer Science
at UC Santa Cruz and the
Director of the Center for
Research in Open Source

Software (CROSS) and the Systems Research
Lab (SRL). Carlos graduated with a PhD in
computer science from the University of
Colorado at Boulder. carlosm@soe.ucsc.edu

Jay Lofstead works on issues
related to workflow, I/O,
storage abstractions and
the infrastructure necessary
to support these system

services. His other projects include the SIRIUS
storage system project and the Decaf generic
workflows project. Jay is a three-time graduate
of Georgia Tech in computer science.
gflofst@sandia.gov

Kathryn Mohror is a Computer
Scientist on the Scalability
Team at the Center for Applied
Scientific Computing at
Lawrence Livermore National

Laboratory. Her research focuses on scalable
fault-tolerant computing and I/O for extreme
scale systems. Kathryn holds a PhD, MS, and
BS from Portland State University (PSU) in
Portland, OR. kathryn@llnl.gov

Figure 1: A generic experimentation workflow typically followed by researchers in projects with a compu-
tational component. Some of the reasons to iterate (backwards-going arrows) are: fixing a bug in the code
of a system, changing a parameter of an experiment, or running the same experiment on a new workload
or compute platform. Although not usually done, in some cases researchers keep a chronological record of
how experiments evolve over time (the analogy of the lab notebook in experimental sciences).

22    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

◆◆ Makes use of existing tools (don’t reinvent the wheel!); the DevOps toolkit is already
comprehensive and easy to use.

◆◆ Has the ability to handle large datasets and scale to an arbitrary number of machines.

◆◆ Captures validation criteria in an explicit manner so that subjective evaluation of results of
a re-execution is minimized.

◆◆ Results in experiments that are amenable to improvement and allows easy collaboration;
makes it easier to build upon existing work.

A DevOps Approach to Conducting Experiments
The core idea behind Popper is to borrow from the DevOps movement the idea of treating
every component as an immutable piece of information [6] and provide references to scripts
and components for the creation, execution, and validation of experiments (in a systematic
way) rather than leaving to the reader the daunting task of inferring how binaries and
experiments were generated or configured. Version control, package management, multi-
node orchestration, bare-metal-as-a-service, dataset management, data analysis and
visualization, performance monitoring, continuous integration, each of these categories of
the DevOps toolkit has a corresponding open source software (OSS) project that is mature,
well documented, and easy to use (see Figure 2 for examples). The goal for Popper is to give
researchers a common framework to systematically reason about how to structure all the
dependencies and generated artifacts associated with an experiment by making use of these
DevOps tools. The convention provides the following unique features:

1.	 Provides a methodology (or experiment protocol) for generating self-contained experiments.

2.	 Makes it easier for researchers to explicitly specify validation criteria.

3.	 Abstracts domain-specific experimentation workflows and toolchains.

4.	 Provides reusable templates of curated experiments commonly used by a research community.

Self-Containment
We say that an experiment is Popper-compliant (or that it has been “Popperized”) if all of the
following are available, either directly or by reference, in one single source code repository:
experiment code, experiment orchestration code, reference to data dependencies, parametri-
zation of experiment, validation criteria and results. In other words, a Popper repository con-
tains all the dependencies for one or more experiments, optionally including a manuscript
(article or tech report) that documents them.

Remzi Arpaci-Dusseau is a
Full Professor in the Computer
Sciences Department at the
University of Wisconsin-
Madison. He co-leads a

group with his wife, Professor Andrea
Arpaci-Dusseau. They have graduated 19
PhD students in their time at Wisconsin, won
nine Best Paper awards, and some of their
innovations now ship in commercial systems
and are used daily by millions of people. Remzi
has won the SACM Student Choice Professor
of the Year award four times, the Carolyn
Rosner “Excellent Educator” award, and the
UW-Madison Chancellor’s Distinguished
Teaching award. Chapters from a freely
available OS book he and Andrea co-wrote,
found at http://www.ostep.org, have been
downloaded millions of times in the past few
years. remzi@cs.wisc.edu

Andrea Arpaci-Dusseau is a
Full Professor of Computer
Sciences at the University
of Wisconsin-Madison.
She is an expert in file and

storage systems, having published more
than 80 papers in this area, co-advised 19
PhD students, and received nine Best Paper
awards; for her research contributions, she was
recognized as a UW-Madison Vilas Associate.
She also created a service-learning course
in which UW-Madison students teach CS to
more than 200 elementary-school children
each semester. dusseau@cs.wisc.edu

Figure 2: The same workflow as in Figure 1 viewed through a DevOps looking glass. The logos correspond to
commonly used tools from the “DevOps toolkit.” From left-to-right, top-to-bottom: git, mercurial, subversion
(code); docker, vagrant, spack, nix (packaging); git-lfs, datapackages, artifactory, archiva (input data); bash,
ansible, puppet, slurm (execution); git-lfs, datapackages, icinga, nagios (output data and runtime metrics);
jupyter, paraview, travis, jenkins (analysis, visualization and continuous integration); restructured text,
latex, asciidoctor and markdown (manuscript); gitlab, bitbucket and github (experiment changes).

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  23

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

An example paper project is shown in Listing 1. A paper reposi-
tory is composed primarily of the article text and experiment
orchestration logic. The actual code that gets executed by an
experiment and all input datasets are not part of the repository;
instead, they reside in their own repositories and are stored in
the experiments/ folder of the paper repository as references.

 paper-repo

 | README.md

 | .git/

 | .popper.yml

 | .travis.yml

 | experiments

 | |-- myexp

 | | |-- datasets/

 | | |-- input-data.csv

 | | |-- figure.png

 | | |-- process-result.py

 | | |-- setup.yml

 | | |-- results.csv

 | | |-- run.sh

 | | |-- validations.aver

 | | -- vars.yml

 | paper

 | |-- build.sh

 | |-- figures/

 | |-- paper.tex

 | -- references.bib

Listing 1: Sample contents of a Popper repository

With all these artifacts available, the reader can easily deploy
an experiment or rebuild the article’s PDF. Figure 3 shows our
vision for the reader/reviewer workflow when reading a Popper
for a Popperized article. The diagram uses tools we use in the
use-case presented later, like Ansible and Docker, but as men-
tioned earlier, these can be swapped by equivalent tools. Using
this workflow, the writer is completely transparent, and the
article consumer is free to explore results, rerun experiments,
and contradict assertions made in the paper.

A paper is written in any desired markup language (LaTeX in
our example), where a build.sh command generates the output
(e.g., PDF file). For the experiment execution logic, each experi-
ment folder contains the necessary information such as setup,
output post-processing (data analysis), and scripts for generat-
ing an image from the results. The execution of the experiment
will produce output that is either consumed by a post-processing
script, or directly by the scripts that generate an image.

The experiment output can be in any format (CSV, HDF,
NetCDF, etc.), as long as it is versioned and referenced. An
important component of the experiment logic is that it should

assert the original assumptions made about the environment
(setup.yml): for example, the operating system version (if the
experiment assumes one). Also, it is important to parametrize
the experiment explicitly (vars.yml) so that readers can quickly
get an idea of what is the parameter space and what can be modi-
fied in order to obtain different results. One common practice
we follow is to place in the caption of every figure a [source]
link that points to the URL of the corresponding post-processing
script in the version control Web interface (e.g., GitHub).

Automated Validation
Validation of experiments can be classified in two categories.
In the first one, the integrity of the experimentation logic is
checked using existing continuous-integration (CI) services
such as TravisCI, which expects a .travis.yml file in the root
folder specifying what tests to execute. These checks can verify
that the paper is always in a state that can be built; that the
syntax of orchestration files is correct so that if changes occur
(e.g., addition of a new variable), it can be executed without any
issues; or that the post-processing routines can be executed
without problems.

The second category of validations is related to the integrity of the
experimental results. These domain-specific tests ensure that
the claims made in the paper are valid for every re-execution of
the experiment, analogous to performance regression tests done
in software projects. Alternatively, claims can also be corrobo-
rated as part of the analysis code. When experiments are not
sensitive to the effects of virtualized platforms, these asser-
tions can be executed on public/free CI platforms (e.g., TravisCI

Figure 3: A sample workflow a paper reviewer or reader would use to read
a Popperized article. (1) The PDF, Jupyter, or Binder are used to visualize
and interact with the results postmortem on the reader’s local machine.
(2) If needed the reader has the option of looking at the code and cloning
it locally (GitHub); for single-node experiments, they can be deployed
locally too (Docker). (3) For multi-node experiments, Ansible can then
be used to deploy the experiment on a public or private cloud (NSF’s
CloudLab in this case). (4) Lastly, experiments producing large datasets
can make use of cloud storage. Popper is tool agnostic, so GitHub can be
replaced with GitLab, Ansible with Puppet, Docker with VMs, etc.

24    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

runs tests in VMs). However, when results are sensitive to the
underlying hardware, it is preferable to leave this out of the CI
pipeline and make them part of the post-processing routines
of the experiment. In the example above, a validations.aver
file contains validations in the Aver [7] language that check the
integrity of runtime performance metrics. Examples of these
type of assertions are: “the runtime of our algorithm is 10x bet-
ter than the baseline when the level of parallelism exceeds four
concurrent threads”; or “for dataset A, our model predicts the
outcome with an error of 5%.”

Toolchain Agnosticism
We designed Popper as a general convention, applicable to a wide
variety of environments, from cloud to high-performance com-
puting. In general, Popper can be applied in any scenario where
a component (data, code, infrastructure, hardware, etc.) can be
referenced by an identifier, and where there is an underlying tool
that consumes these identifiers so that they can be acted upon
(install, run, store, visualize, etc.). We say that a tool is Popper-
compliant if it has the following two properties:

1.	 Assets (code, packages, configurations, data, results, etc.) can
all be associated with, and referenced using, unique identifiers.

2.	 The tool is scriptable (e.g., can be invoked from the command
line) and can act upon given asset IDs.

In general, tools that are hard to script—e.g., because they don’t
provide a command-line interface (can only interact via GUI)
or they only have a programmatic API for a non-interpreted
language—are beyond the scope of Popper.

Experiment Templates
Researchers that decide to follow Popper are faced with a steep
learning curve, especially if they have only used a couple of tools
from the DevOps toolkit. To lower the entry barrier, we have
developed a command-line interface (CLI) tool that provides
a list of experiment templates and helps to bootstrap a paper
repository that follows the Popper Convention (available at
https://github.com/systemslab/popper).

Use Case
We now illustrate how to follow the Popper Convention when
conducting an experiment. For detailed documentation, visit our
wiki at https://github.com/systemslab/popper/wiki.

Initializing a Popper repository: Our Popper-CLI tool
assumes a Git repository exists (Listing 2). Given a Git reposi-
tory, we invoke the Popper-CLI tool and initialize Popper by
issuing a popper init command in the root of the Git reposi-
tory. This creates a .popper.yml file that contains configuration
options for the CLI tool. This file is committed to the paper
(Git) repository. After the Popper repository has been initialized,

we can either create a new experiment from scratch or obtain an
existing one by pulling an experiment template.

 $ cd mypaper-repo

 $ popper init

 -- Initialized Popper repo

 $ popper experiment list

 -- available templates ---------------

 ceph-rados proteustm mpip

 spark-bench gassyfs zlog

 malacology torpor blis

 $ popper add gassyfs myexp

Listing 2: Initialization of a Popper repo

Adding a new experiment: Assume the code of the system
under study has already been packaged. In order to add an
experiment that evaluates a particular aspect of the system,
we first start by stating, in either a language such as Aver [7]
or in plaintext, the result validation criteria. We then proceed
with the implementation of the logic of the experiment, mainly
orchestration code: configuration, deployment, analysis and
visualization of performance metrics, and validation of results.
All these files are placed in the paper repository in order to make
the experiment Popper-compliant (self-contained).

Obtaining an existing experiment: As mentioned before, we
maintain a list of experiment templates that have been “Popper-
ized.” For this example, assume we select the gassyfs template
from the list. GassyFS [8] is a new prototype in-memory file
system that stores data in distributed remote memory. Although
GassyFS is simple in design, it is relatively complex to set up.
The combinatorial space of possible ways in which the system
can be compiled, packaged, and configured is large. Having all
this information in a Git repository simplifies the setup since
one doesn’t need to speculate on which things where done by
the original authors; all the information is available. In Figure 4
we show results of an experiment that validates the scalability
of GassyFS. We note that while the obtained performance is
relevant, it is not our main focus. Instead, we put more emphasis
on the goals of the experiment, how we can reproduce results
on multiple environments with minimal effort, and how we can
validate them. Re-executing this experiment on a new platform
only requires us to have host nodes to run Docker and to modify
the list of hosts given to Ansible (a list of hostnames); everything
else, including validation, is fully automated. The Aver [7] asser-
tion in Listing 3 is used to check the integrity of this result and
expresses our expectation of GassyFS performing sublinearly
with respect to the number of nodes. After the experiment runs,
Aver is invoked to test the above statement against the experi-
ment results obtained.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  25

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

 when

 workload=* and machine=*

 expect

 sublinear(nodes,time)

Listing 3: Assertion to check scalability behavior

Documenting the experiment: After we are done with an
experiment, we might want to document it by creating a report
or article. The Popper-CLI also provides us with manuscript
templates. We can use the generic article template or other
more domain-specific ones. To display the available templates
we do popper paper list. In our example we use the template
for USENIX articles by issuing a popper paper add usenix,
which creates a paper/ folder in the project’s root folder, with a
sample LaTeX file. We then can make reference to figures that
have been generated as part of an experiment and reference
them from the LaTeX file. We then generate the article (all paper
templates have a build.sh command inside the paper folder) and
see the new images added to the resulting PDF file.

The Case for Popper
We Did Well for 50 Years. Why Fix It?
Shared infrastructures “in the cloud” are becoming the norm
and enable new kinds of sharing, such as experiments, that were
not practical before. Thus, the opportunity of these services goes
beyond just economies of scale: by using conventions and tools to
enable reproducibility, we can dramatically increase the value of
scientific experiments for education and for research. The Pop-
per Convention makes available not only the result of a systems
experiment but the entire experiment as well, and it allows
researchers to study and reuse all aspects of it, making it practi-

cal to “stand on the shoulders of giants” by building upon the
work of the community to improve the state-of-the-art without
having to start from scratch every time.

The Power of “Crystallization Points”
Docker images, Ansible playbooks, CI unit tests, Git repositories,
and Jupyter notebooks are all examples of artifacts around which
broad-based efforts can be organized. Crystallization points are
pieces of technology and are intended to be easily shareable, have
the ability to grow and improve over time, and ensure buy-in from
researchers and students. Examples of very successful crystal-
lization points are the Linux kernel, Wikipedia, and the Apache
Project. Crystallization points encode community knowledge
and are therefore useful for leveraging past research efforts for
ongoing research as well as education and training. They help
people to form abstractions and common understanding that
enables them to more effectively communicate reproducible
science. By having popular tools such as Docker/Ansible as a
lingua franca for researchers, and Popper to guide them in how
to structure their paper repositories, we can expedite collabora-
tion and at the same time benefit from all the new advances done
in the DevOps world.

Perfect Is the Enemy of Good
No matter how hard we try, there will always be something that
goes wrong. The context of systems experiments is often very
complex, and that complexity is likely to increase in the future.
Perfect repeatability will be very difficult to achieve. Recent
empirical studies in computer systems [3, 9] have brought
attention to the main issues that permeate the current practice
of our research communities, where scenarios like the lack of
information on how a particular package was compiled, or which
statistical functions were used make it difficult to reproduce
or even interpret results. Rather than aiming at perfect repeat-
ability, we seek to minimize issues we currently face and to use a
common language while collaborating to fix all these reproduc-
ibility issues. Additionally, following Popper quickly pays off
at the individual level by improving productivity, e.g., when a
researcher goes back to experiments to consider new scenarios.

DevOps Skills Are Highly Valued by Industry
While the learning curve for the DevOps toolkit is steep, having
these as part of the skill set of students or researchers-in-train-
ing can only improve their curriculum. Since industry and many
industrial/national laboratories have embraced (or are in the
process of embracing) a DevOps approach, making use of these
tools improves the prospects of future employment. These are
skills that will hardly represent wasted time investments. On the
contrary, this might be motivation enough for students to learn
at least one tool from each of the stages of the experimentation
workflow.

Figure 4: Scalability of GassyFS as the number of nodes in the GASNet
cluster increases. The workload in question compiles Git. (source: https://
github.com/systemslab/popper-paper/blob/login/experiments/gassyfs
/visualize.ipynb)

26    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

Conclusion
We named the convention Popper as a reference to Karl Popper,
the philosopher of science who famously argued that falsifiability
should be used as the demarcation criterion when determining
whether a theory is scientific or pseudo-scientific. The OSS
development model and the DevOps practice have proven to be
an extraordinary way for people around the world to collaborate
on software projects. As the use case presented here shows,
by writing articles following the Popper Convention, authors
can improve their personal workflows while at the same time
generating research that is easier to validate and replicate. We
are currently working with researchers from distinct scientific
domains to help them “Popperize” their experiments and add
new templates to our repository.

References
[1] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, “Pop-
per: Making Reproducible Systems Performance Evaluation
Practical,” UC Santa Cruz School of Engineering, Technical
Report UCSC-SOE-16-10, 2016: https://www.soe.ucsc.edu
/research/technical-reports/UCSC-SOE-16-10.

[2] M. Httermann, DevOps for Developers (Apress, 2012).

[3] C. Collberg and T. A. Proebsting, “Repeatability in Com-
puter Systems Research,” Communications of the ACM, vol.
59, no. 3 (February 2016), pp. 62–69.

[4] V. Stodden, S. Miguez, and J. Seiler, “ResearchCompendia.
org: Cyberinfrastructure for Reproducibility and Collabo-
ration in Computational Science,” Computing in Science &
Engineering, vol. 17, no. 1 (January 2015), pp. 12–19.

[5] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. N. Matthews, “ Xen and the Art of Repeated
Research,” in Proceedings of the 2004 USENIX Annual
Technical Conference, 2004.

[6] A. Wiggins, “The Twelve-Factor App”: http://12factor.net.

[7] I. Jimenez, C. Maltzahn, J. Lofstead, A. Moody, K. Mohror,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “I Aver: Provid-
ing Declarative Experiment Specifications Facilitates the
Evaluation of Computer Systems Research,” TinyToCS, vol. 4
(2016): http://tinytocs.ece.utexas.edu/papers/tinytocs4
_paper_jimenez.pdf.

[8] N. Watkins, M. Sevilla, and C. Maltzahn, “GassyFS: An
In-Memory File System That Embraces Volatility,” UC
Santa Cruz School of Engineering, Technical Report UCSC-
SOE-16-08, 2016: https://www.soe.ucsc.edu/research
/technical-reports/UCSC-SOE-16-08.

[9] T. Hoefler and R. Belli, “Scientific Benchmarking of Paral-
lel Computing Systems: Twelve Ways to Tell the Masses
When Reporting Performance Results,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC15): http://htor.inf.ethz
.ch/publications/img/hoefler-scientific-benchmarking_wide
_HLRS.pdf.

https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-10
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-10
http://tinytocs.ece.utexas.edu/papers/tinytocs4_paper_jimenez.pdf
http://tinytocs.ece.utexas.edu/papers/tinytocs4_paper_jimenez.pdf
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-08
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-08
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking_wide_HLRS.pdf
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking_wide_HLRS.pdf
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking_wide_HLRS.pdf

26TH
August 16-18, 2017 • Vancouver, BC, Canada

The USENIX Security Symposium brings together researchers, practitioners, system administrators, system
 programmers, and others interested in the latest advances in the security and privacy of computer systems
and networks.

All researchers are encouraged to submit papers covering novel and scientifically significant practical
works in computer security. Submissions are due on Thursday, February 16, 2017. The Symposium will span
three days, with a technical program including refereed papers, invited talks, posters, panel discussions, and
Birds-of-a-Feather sessions. Workshops will precede the Symposium on August 14 and 15.

Important Dates
• Paper submissions due: Thursday, February 16, 2017, 5:00 p.m. EST

• Invited talk and panel proposals due: Thursday, February 18, 2017

• Early-reject notification: March 21, 2017

• Notification to authors: May 12, 2017

• Final papers due: June 29, 2017

• Poster proposals due: July 6, 2017

• Notification to poster presenters: July 13, 2017

• Work-in-Progress submissions due: August 16, 2017, noon CDT

Program Co-Chairs
Engin Kirda, Northeastern University
Thomas Ristenpart, Cornell Tech

Submit Your Work

www.usenix.org/sec17

