

StarryNet

Empowering Researchers to Evaluate Futuristic Integrated Space and Terrestrial Networks

Zeqi Lai, Hewu Li, Yangtao Deng, Qian Wu, Jun Liu, Yuanjie Li, Jihao Li, Lixin Liu, Weisen Liu, Jianping Wu

Presenter: Yangtao Deng

The Future is Up in the Sky

Satellite Internet constellations are under heavy development

The Future is Up in the Sky

Satellite Internet constellations are under heavy development

Thousands of broadband satellites in low earth orbit (LEO)

4408 satellites in 5 shells

3236 satellites in 3 shells⁴

Integrated Space and Terrestrial Network 🛞 🎁

Integrating LEO satellites with existing terrestrial Internet (ISTN)

Integrated Space and Terrestrial Network 🛞 🎁

Integrating LEO satellites with existing terrestrial Internet (ISTN)

Ground facilities (ground stations, satellite terminals ...)

Provide pervasive, low-latency, high-bandwidth Internet service

Unique Characteristics of ISTN

Satellites move at a high velocity in the outer space resulting in high LEO dynamics and NEW challenges on the networking stack

[*] "Internet in Space" for Terrestrial Users via Cyber-Physical Convergence, HotNets'21

Unique Characteristics of ISTN

Number of users that change IP per second

Satellites move at a high velocity in the outer space resulting in high LEO dynamics and NEW challenges on the networking stack

Researcher may propose NEW networking technologies to tackle those challenges (e.g. a new ground-satellite integration scheme).

[*] "Internet in Space" for Terrestrial Users via Cyber-Physical Convergence, HotNets'21

Unique Characteristics of ISTN

Starlink Telesat Kuiper Iridium

Satellites move at a high velocity in the outer space resulting in high LEO dynamics and NEW challenges on the networking stack

Researcher may propose NEW networking technologies to tackle those challenges (e.g. a new ground-satellite integration scheme). 88 How can researchers build an experimental network environment (ENE) to test, evaluate and understand their new ideas?

[*] "Internet in Space" for Terrestrial Users via Cyber-Physical Convergence, HotNets'21

ENE Requirements for ISTN Experiments

①Constellation Consistency

Spatial and temporal characteristics of a real constellation

②System and Networking Stack Realism

Run user-defined system codes and network functionalities like in a real system

③Flexible and Scalable Environment

Flexibly support various network topologies and diverse test requirements

Problems with Existing ENE Approaches

①Constellation Consistency

Spatial and temporal characteristics of a real constellation

②System and Networking Stack Realism

Run user-defined system codes and network functionalities like in a real system

③Flexible and Scalable Environment

Flexibly support various network topologies and diverse test requirements

Approach I: conducting experiments in a live satellite network

- Flexibility and scalability are limited
- End-host test only, and it is difficult to conduct various *what-if* experiments

iPerf benchmark? Sure!

Benchmarking my new routing protocol upon 4400 LEO satellites? Emm ... 11

Problems with Existing ENE Approaches

①Constellation Consistency

Spatial and temporal characteristics of a real constellation

②System and Networking Stack Realism

Run user-defined system codes and network functionalities like in a real system

③Flexible and Scalable Environment

Flexibly support various network topologies and diverse test requirements

Approach II: network simulators

• Realism is limited, since it runs abstractions instead of real applications

STK

INS-3

Hypatia [IMC' 20] StarPerf [ICNP' 20]

Problems with Existing ENE Approaches

①Constellation Consistency

Spatial and temporal characteristics of a real constellation

②System and Networking Stack Realism

Run user-defined system codes and network functionalities like in a real system

③Flexible and Scalable Environment

Flexibly support various network topologies and diverse test requirements

Approach III: network emulators

- VM- or container-based emulation
- Existing emulators can not mimic dynamic behaviors of LEO constellations
- Some of them are also difficult to scale to very large constellation emulation (e.g. thousands of LEO satellites)

DieCast[TOCS' 11]: VM-based emulation Etalon[NSDI' 20]: container-based emulation

Our Goal

①Constellation Consistency

Spatial and temporal characteristics of a real constellation

②System and Networking Stack Realism

Run user-defined system codes and network functionalities like in a real system

③Flexible and Scalable Environment

Flexibly support various network topologies and diverse test requirements

Can we build an ENE simultaneously satisfying all the above requirements?

CONTENTS

Our Approach

StarryNet: a new evaluation framework for ISTN experiments Key idea: building a data-driven, hybrid ENE

Combining model-based simulation, emulation and satellite hardware

Large-scale emulation cluster

Satellite hardware (e.g. low-power processor)

StarryNet Architecture

Constellation Observer

- Crowd-sourcing approach to collect public information
- Databases to store constellation-relevant data (e.g. constellation elements)
- Exploiting multidimensional, realistic data to support ENE creation

StarryNet Design Details

Constellation Synchronizer

 Building a series of models to characterize ISTN network features
 Driven by realistic constellation information and user-defined experiment requirements to calculate spatial and temporal behaviors

StarryNet Design Details

Constellation Orchestrator

- Container-based emulation on physical machines
- Each container mimic a satellite/ground-station/terminal
- Support flexible computation and network capability in each node

StarryNet Design Details

Constellation Orchestrator

• Multi-machine extension for large-scale mega-constellation

Leverage VLAN-based traffic isolation to build correct network topology

Framework Usage: An Example

 Self-defin 	ed program		② Config	uration file			
<pre># geo_routing.py</pre>			starlink.json				
from lib_starrynet	<pre>import *;</pre>		{ "name": "SL-Phase-I-shell-I'				
def geocast_next_h	op(dst_addr):		"altitude": "550km",				
# Obtain adjace	ent satellites info		"inclination": "53.0",				
n_sats = sn_get			"plane_coun	t": "72",			
# Find the sat	closest to dst		_ "satellites_per": "22" }]				
<pre>for sat in n_sa</pre>		(3) Shell commands		: [#gs.json			
<pre>if dis(sat,</pre>	# listen on manager	machine		.go",			
< dis(ne	@manager:/\$ sn manag	mer initm-addr=192.168.0.1	1.850",				
next_sat	# on each worker mad	chine, join the framework	-87.650",				
<pre>return next_sat @worker: /\$ sn worke</pre>		er joinm-addr=192.168.0.1	. 144683km" },]				
▲	<i># on manager machine</i>	e, load manifest files and cr					
	<pre>@manager:/\$ sn creat</pre>	<pre>@manager:/\$ sn createname sl_cons(-c 'starlink.json' -gs 'gs.json'</pre>					
	<pre># start the ENE for</pre>						
	@manager:/\$ sn start	sl_consduration=3600					
	<i># run user-specific</i>	run user-specific program in all satellites in the first orbit					
	<pre>@manager:/\$ sn cmd s</pre>	sl_cons.orbit[0] python geo_r	outing.py	22			

CONTENTS

Evaluation Setup

StarryNet implementation

- Eight high-performance DELL R740 servers in a cluster. Each one with 2*Intel Xeon 5222 (4 cores @ 3.8GHz), and 8*32GB DDR RAM
- Based on Docker Container, OpenvSwitch, tc, etc.

Open data

• CeleTrak[1] (orbital information), FCC filing ... etc.

Evaluation and Use Case

- Ability to satisfy various experimental requirements for ISTNs
- Fidelity analysis
- Case studies

Various Constellation Configurations

STARRYNET is flexible to scale to various constellation configurations with different network topologies

Metrics Constellation	Height (km)	Constellation Size (number of satellites)	Creation Time (min) Nodes/Links/Total		Avg. CPU (%) Interval = 1/2/3 (s)		Avg. Memory (%) Interval = 1/2/3 (s)			Minimum # of Required Workers		
Starlink S1 (72*22, 53°)	550	1584	5.9	4.6	10.5	7.2%	7.0%	6.3%	3.9%	3.5%	3.4%	2
Starlink S2 (72*22, 53.2°)	540	1584	5.9	4.6	10.5	7.2%	7.0%	6.3%	3.9%	3.5%	3.4%	2
Starlink S3 (36*20, 70°)	570	720	3.0	2.1	4.9	1.2%	1.1%	1.0%	2.7%	2.6%	2.6%	1
Starlink S4 (6*58 <i>,</i> 97.6°)	560	348	1.9	1.3	3.2	1.0%	1.0%	1.0%	2.7%	2.6%	2.4%	1
Starlink S5 (4*43, 97.6°)	560	172	1.6	1.2	3.2	1.0%	1.0%	1.0%	2.3%	2.3%	2.3%	1
Starlink Full (4408 satellites)	hybrid	4408	13.3	7.9	21.2	39.6%	37.0%	34.3%	10.4%	9.1%	8.9%	7
Kuiper K1 (34*34, 51.9°)	630	1156	4.4	3.8	8.2	2.6%	2.4%	2.3%	3.8%	3.5%	3.2%	2
Kuiper K2 (36*36, 42°)	610	1296	4.7	4.2	8.9	3.9%	3.6%	3.2%	4.0%	3.6%	3.5%	2
Kuiper K3 (28*28, 33°)	590	784	3.2	2.4	5.6	1.3%	1.2%	1.2%	2.7%	2.6%	2.6%	2
Kuiper Full (3236 satellites)	hybrid	3236	5.7	4.8	10.5	24.6%	23.9%	23.2%	6.3%	6.2%	6.2%	6
Telesat T1 (27*13, 98.98°)	1015	351	1.9	1.3	3.2	1.0%	1.0%	1.0%	2.6%	2.5%	2.4%	1
Telesat T2 (40*33, 50.88°)	1325	1320	4.8	4.2	9.0	3.9%	3.7%	3.3%	4.0%	3.6%	3.5%	2
Telesat Full (1671 satellites)	hybrid	1671	3.1	2.4	5.5	7.2%	7.0%	6.4%	4.2%	3.7%	3.6%	3

26

Network performance under the same bent-pipe topology compared with live Starlink and other simulation tools

Network performance under the same bent-pipe topology compared with live Starlink and other simulation tools

StarryNet achieves acceptable fidelity
Similar latency performance to live Starlink measurements
Accurately emulating the bandwidth of a live ISTN

At this time it is difficult to measure real ISL performance
We analyze the results as compared with other simulators
Similar results but involve additional system-level overhead

Emerging satellites are equipped with evolved computation capabilities to support various on-board applications

Orbital edge computing (OEC) uses Jetson European Space Agency (ESA) uses low-TX2 to enable on-board AI capability power Raspberry Pi for on-board missions

StarryNet can be configured to mimic various computation capabilities on-demand

Orbital Edge Computing: Nanosatellite Constellations as a New Class of Computer System, ASPLOS 2020. https://www.esa.int/Education/AstroPI

StarryNet can be configured to mimic various computation capabilities on-demand

Case Study I: Interconnecting LEO Satellites and Terrestrial Facilities

Receiver

SRLA: satellite relays for last-mile accessibility

SRGS: satellite relays for ground station networks

packets

no IS

suppo

Exploring the design-space for various space-ground integration methodologies

GSSN: ground station access for satellite networks

DASN: satellite networks directly accessed by terrestrial users 31

Case Study I: Interconnecting LEO Satellites and Terrestrial Facilities

StarryNet supports realistic routing and data transmission for mega-constellations

1		Latency of	comparison	Network re	achability cor	nparison Addressing	and cost co	omparison		
Design	Average er	nd-to-end latenc	y and its breakd	lown (ms)	Boochability	Froquent Address Undete	Operating Cost			
	Inter-Satellite	Space-Ground	Ground	Toal	Reachability	Frequent Address Opdate	GS	Terminal	ISLs	
RLA	0	76.25	107	183.25	97.00%	X	\checkmark	\checkmark	Х	
RGS	0	313.39	0	313.39	51.00%	Х	\checkmark	\checkmark	Х	
issn	48.46	38.45	20	106.91	57.40%	X	\checkmark	X	\checkmark	
ASN	48.46	37.65	0	86.11	97.50%	\checkmark	X	\checkmark	\checkmark	

Conclusions

- An obvious latency reduction accomplished by ISLs
- Reachability discrepancy caused by handovers and uneven GS distributions
- Deployment and costs vary a lot

Case Study II: Hardware-in-the-loop Testing

STARRYNET supports a hybrid deployment and evaluates real system effects for user-defined functionalities

A number of virtual, emulated nodes + 1 real prototype

StarryNet Virtual Satellites on a R740 cluster

Evaluate system-level effects of a new ISTN network protocol or functionality

- Link advertisement overhead of a new routing protocol
- Power consumption
- CPU usage
- Memory overhead

State	Idle	Routing	Transmission rate (Mbps)					
		convergence	100	250	500	750		
Power (W)	2.83	3.22	4.6	5.0	5.4	5.5		

CONTENTS

Conclusion

Existing tools fail to guarantee realism, flexibility, and low-cost simultaneously

StarryNet is able to achieve the goal by

- Integrating real constellation-relevant information, orbit analysis, etc.
- Container-based large-scale emulations
- Low-cost usage and open APIs

Evaluation results show that StarryNet

- Achieves high-fidelity to real measurements
- Supports various ISTN experiments flexibly

Thank you! Q&A

Zeqi Lai, Hewu Li, Yangtao Deng, Qian Wu, Jun Liu, Yuanjie Li, Jihao Li, Lixin Liu, Weisen Liu, Jianping Wu

Contact

https://github.com/SpaceNetLab/StarryNet

zeqilai@tsinghua.edu.cn

yangtaodeng@gmail.com

