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Three requirements of online cloud services

Minimize request tail latency
o ~10s microsecond tall latency.

Enforce appropriate request prioritization
o Requests have varying importance and SLO.

+ [R3] Maximize CPU efficiency with interference management
o Pack multiple applications while mitigating interference between them.



Intra-server orchestration Is necessary
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Intra-server Orchestration Today

Use centralzied CPU cores to make the
centralized scheduling/load balancing/CPU
allocation decisions [Shinjuku@NSDI'19, Caladan@OSDI’20].
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Intra-server Orchestration Today

Use centralzied CPU cores to make the
centralized scheduling/load balancing/CPU
allocation decisions [Shinjuku@NSDI'19, Caladan@OSDI’20].

e Advantage:
o The centralized approach provides optimal
performance.

e Problems:
o Wasted cores.
o Limited scalability.

Is it possible to achieve scalable centralized intra-server orchestration
with minimal CPU overhead? g



NIC-driven hardware orchestration

Modern NICs offer three opportunities:

Centralized: All network requests must pass
through the NIC.

Scalability: NIC accelerators can be designed to
operate at line rate.

Minimal Host CPU Overhead: Offloading frees up
host cores.
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Design questions of offloading scheduling and load balancing

Q1: What should be the division of labor between the host and
NIC?

Q2: How to coordinate orchestration between the NIC and host
components?

Q3: How to design the hardware to achieve efficient and high-
performance offload?

11



Q1: Division of labor between the host and NIC

A naive way: offload all aspects onto the
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Q1: Division of labor between the host and NIC

3 Service A+ B
A naive way: offload all aspects onto the

NIC hardware.
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Solution: Divide the scheduling function

leoe=l] core 2 core 3 core 4

_ _ Shallow e | sw Sche| [ sw sche| [ sw sche
Onload part of the scheduling function  Priority
Into host cores using shallow priority Queue D ﬂ D D
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Q2: Coordination between the software scheduler and the
NIC load balancer

\SW Sche| | SW Sche| | SW Sche

A naive load balancer: Join-Bounded-Shortest- Q:Vevﬁ- Jcore2| Jeore3]  Jcore4

Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

JBSQ(N) steers to the core which has the minimal
gueue length, and each host queue has a maximum
depth of N packets.

Problem: JBSQ fails because it ignores the
software scheduler’s behavior!
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Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host
gueue has a maximum rank of N.

Rank|[A].coreC = z Queue|X].coreC + A * z Queuel|X].coreC
X prizA.pri X.pri<A.pri

rank is contributed by same/higher priority requests.
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Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host
gueue has a maximum rank of N.

A is a constant factor between 0 and 1.

/ Insight 2
A

‘|
Rank|[A].coreC = z Queue|X].coreC + A * z Queuel|X].coreC
X prizA.pri X.pri<A.pri

rank is contributed by same/higher priority requests.
'Insight 2] rank is contributed less by lower priority requests.

N\
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JBSRQ Examples:

Service A’'s Prio=Hi 1R
Service B’s Prio = Lo 1IN

A=0.2
Rank[A].1=14 Rank[B].1 =3
Rank[A].2 =2 Rank[B].2 =2
corel core 2 corel core 2

=S B H
Load Balancer Load Balancer
(JBSRQ(4)) (JBSRQ(4))

JBSRQ cooperates with the host priority queue
and achieves optimal for both Hi/Lo priority requests!
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Q3: Architecture of the on-NIC load balancer and scheduler
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Q3: Architecture of the on-NIC load balancer and scheduler

Service B :

e Hardware request scheduler :

o A hardware priority queue sorts services
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Q3: Architecture of the on-NIC load balancer and scheduler

Hardware request scheduler :
o A hardware priority queue sorts services
and dequeues the frontmost service.

Hardware load balancer:
o Find the service-to-core mapping.
o Calculate rank.
o Find the minimal ranked core.
o If that core’s rank < N, dispatch this
request to that core.

Problem: the scheduler might schedule a
request that cannot be dispatched by the
JBSRQ.

Service A

‘core 1\ ‘core 2\
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s1] 1100
s2 (0111

Reduce Tree
“Find Min”
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Q3: Architecture of the on-NIC load balancer and scheduler

1 Service A :
e Hardware request scheduler : core1| ||core2|! |core3| |corea|! Service As Prio = Hi
o A hardware priority queue sorts services ! !
and dequeues the frontmost service. Noo Y TEs - ! , ||
e Hardware load balancer: Service ‘ﬁ'ﬁfg,‘:gemt;ie
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Non-blocking interface between the on-NIC load balancer and
scheduler

Interface: Eligibility Mask

Eligibility of a service: cores running this \ HW Load
. } Dequeue Balancer
service have at least one core with a rank Element
smaller than the bound. ¥ Eligibjlity Mask
HW Priority »[011]
Queue H
HW
Scheduler

The hardware scheduler dequeues the front-
most eligible element.



More detalls In our paper

e NIC-assisted CPU reallocation.
o NIC generates reallocation hints at very fine granularity (e.g., every 5 us).

e Low overhead NIC-host metadata communication.
o ~50M messages per second through MMIO.
o Further decrease the overhead through adaptive inlining.

20



Implementation

e 100G FPGA prototype of the Ringleader NIC: implemented in 4K lines of Verilog code.
Run at100G, use a 250 MHz frequency.

e User space NIC driver: implemented in 1.5K lines of C code and provides a DPDK-like
kernel-bypass access to the NIC.

e Integrate with the Datapath OS: we integrated our NIC driver with the Demikernel libOS
using 800 lines of Rust.



Evaluation

Workloads:

o Synthetic benchmark with different service time distributions.
o RocksDB in-memory database.

Baselines:
o Shinjuku (NSDI'19): software-based centralized request load balancing and
scheduling.
o Caladan (OSDI'20): software-based fast CPU reallocation.
o RSS: NIC RSS to spread requests to cores using random hash.




Q1: How Ringleader’s design decision contributes to
Its overall performance

-e—-RingLeader -+-JBSQ
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Q1: How Ringleader’s design decision contributes to
Its overall performance
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High Bimodal
(99-3,1-100)

e
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Better

99% requests are high priority, take 3 usec.
1% requests are low priority, take 100 usec.

Remove Software Priority Queue: HoL bocking insides the host buffer.
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Q1: How Ringleader’s design decision contributes to
Its overall performance

-e—-RingLeader -+-JBSQ
No_elig_mask -+No_soft_prio Workloads Description
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Disable eligibility mask: Hardware pipeline blocking. 23



Q1: How Ringleader’s design decision contributes to

Its overall performance

19119g
High Priority Request

P99 Tail Latency (us)

-e-RingLeader -+-JBSQ

No_elig_mask

120

100
80

—<=No_soft_prio

e

1 2 3 4
Total Offered Load (MRPS)

Better

Workloads

Description

High Bimodal 99% requests are high priority, take 3 usec.
1% requests are low priority, take 100 usec.

(99-3,1-100)

Takeaways: Software priority queues,
JBSRQ, and the eligibility mask ensure that
Ringleader can achieve effective

orchestration.
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Q2: How does Ringleader compared to the CPU-
based orchestration

—Ringleader - =-Shinjuku —Ringleader ==-Shinjuku
= @ 160 : ’ 1200
¢ = | & 1000
120 2.5x )
o 53 - » o g2 o0
2l T2 g ' ©f ST 600 -occmoo==="<
% o® ] = 28
=| = ' ® © o 400
=& 40 ! CL xR
%la ______ e? _g :I 200
I o o8 0
0 1 2 3 456 7 8 9 5 0 2 4 6

Total Offered Load (MRPS) Total Offered Load (MRPS)

| Better > Better >

Takeaways: Ringleader achieves better performance
and scalability than the software-based approach!

24



Conclusion

« RingLeader offloads orchestration through a
new load balancing algorithm and scheduler,
as well as a new OS/NIC interface.

« Experiments on a 100 Gbps FPGA NIC show
that RingLeader offers good tall latency and
high throughput.

o https://github.com/utnslab/RingleaderNIC
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