APRIL 2023, NSDIP23

Ringleader: Efficiently Offloading
Intra-Server Orchestration to NICs

Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro, Brent E. Stephens,

Hassan Wassel and Aditya Akella
S
UNIVERSITY

UTNS oF UTAH

Three requirements of online cloud services

Minimize request tail latency
o ~10s microsecond tall latency.

Enforce appropriate request prioritization
o Requests have varying importance and SLO.

+ [R3] Maximize CPU efficiency with interference management
o Pack multiple applications while mitigating interference between them.

Intra-server orchestration Is necessary

III‘IIII
1100

(i

- -

Load Balancing Request Scheduling CPU Allocation
[R1] [R3]

Intra-server orchestration Is necessary

Network [
Requests [_
] —_—
o _ _ A 4
[| = =
= T FUE
- - - lllll
Request Scheduling CPU Allocation
Worker Cores [RB]

Load Balancing
[R1]

Intra-server orchestration Is necessary

Network [
Requests [_
E -; 3 A 4
l = ;:: _"'l'_
e —— T = [=
]) T
W W Request Scheduling CPU Allocation
Worker Cores [RB]

Load Balancing
[R1]

Intra-server orchestration Is necessary

Service A Service B
SLO = 10us - SLO =10ms -
Network [] L]

Requests [_
| !
l'lll

—
W w Cpu 0 CPU Allocation

Worker Cores Service A + B’s [R3]
Worker Cores

Load Balancing Request Scheduling
[R1]

Intra-server orchestration Is necessary
50 - 10us I <00 Soms N

! (m] 3]

O = + J0OF

| lllll
CPU Allocation

Service A + B’s [R3]
Worker Cores

Network [
Requests [

]
mmm Cpux

Worker Cores

Load Balancing Request Scheduling
[R1]

Intra-server orchestration Is necessary

Network [
Requests [

]
mmm Cpux

Worker Cores

Load Balancing
[R1]

Service A

Service B
SLO = 10us - SLO =10ms -

!

1]
@ =
Service A + B’s
Worker Cores

Request Scheduling

@ ﬁ%mryp

Service A’s Service B’s
Core Core

CPU Allocation
[R3]

Intra-server orchestration Is necessary

Network [
Requests [

]
mmm Cpux

Worker Cores

Load Balancing
[R1]

Service A

Service B
SLO = 10us - SLO =10ms -

!

1]
@ =
Service A + B’s
Worker Cores

Request Scheduling

Service A’s

Service B’s
Core Core

CPU Allocation
[R3]

Intra-server Orchestration Today

Use centralzied CPU cores to make the
centralized scheduling/load balancing/CPU
allocation decisions [Shinjuku@NSDI'19, Caladan@OSDI’20].

Intra-server Orchestration Today

Use centralzied CPU cores to make the
centralized scheduling/load balancing/CPU .
allocation decisions [Shinjuku@NSDI'19, Caladan@OSDI’20].

-
-
.-
-

R
5
-
R

e Advantage:
o The centralized approach provides optimal
performance.

Intra-server Orchestration Today

Use centralzied CPU cores to make the
centralized scheduling/load balancing/CPU
allocation decisions [Shinjuku@NSDI'19, Caladan@OSDI’20].

e Advantage:
o The centralized approach provides optimal
performance.

e Problems:
o Wasted cores.
o Limited scalability.

corel core 2 core 3 core4
V.
Load S v
Balancing Realléc
Scheduling Host

IIIIIIIIIIIIIIIIIIIIIIIII “-‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Intra-server Orchestration Today

Use centralzied CPU cores to make the
centralized scheduling/load balancing/CPU
allocation decisions [Shinjuku@NSDI'19, Caladan@OSDI’20].

e Advantage:
o The centralized approach provides optimal
performance.

e Problems:
o Wasted cores.
o Limited scalability.

Is it possible to achieve scalable centralized intra-server orchestration
with minimal CPU overhead? g

NIC-driven hardware orchestration

Modern NICs offer three opportunities:

Centralized: All network requests must pass
through the NIC.

Scalability: NIC accelerators can be designed to
operate at line rate.

Minimal Host CPU Overhead: Offloading frees up
host cores.

Ringleader Overview:

« Ringleader is a new NIC architecture that

utilizes novel hardware offloads to perform core 1l koreal leoreal leores
centralized orchestration. ;
> Load balancing offload.
o Scheduling offload. NIC e Reallgc
o NIC-assisted CPU allocation. HWLB % g Hints
HW Sche | € =

10

Ringleader Overview:

« Ringleader is a new NIC architecture that Net.Trans || Buf. Mgmt || CoreAlloc
utilizes novel hardware offloads to perform core 1l Loreal leoresl leore 4
centralized orchestration. ggtapath .‘

o Load balancing offload.
o Scheduling offload. NIC e Reallgc
o NIC-assisted CPU allocation. HW LB o | Hints
2_ g{
HW Sche | B

« The host uses a Datapath OS to manage
services.

10

Ringleader Overview:

« Ringleader is a new NIC architecture that NELTEmS J S0 el Y| CEreAler
utilizes novel hardware offloads to perform core 1l Loreal leoresl leore 4
centralized orchestration. S \

o Load balancing offoad.] Interface@
o Scheduling offload. NIC e Reallgc
o NIC-assisted CPU allocation. HW LB o | Hints
2_ g’_
HW Sche | B

« The host uses a Datapath OS to manage
services.

« A new Datapath OS-NIC interface.

10

Ringleader Overview:

« Ringleader is a new NIC architecture that NELTEmS J S0 el Y| CEreAler
utilizes novel hardware offloads to perform core 1l Loreal leoresl leore 4
centralized orchestration. ggtapath \

o Load balancing offload. .. Interface@
o Scheduling offload. NIC e Reallgc
o NIC-assisted CPU allocation. HW LB o | Hints
2_ g’_
HW Sche | B

« The host uses a Datapath OS to manage
services.

« A new Datapath OS-NIC interface.

10

Design questions of offloading scheduling and load balancing

Q1: What should be the division of labor between the host and
NIC?

Q2: How to coordinate orchestration between the NIC and host
components?

Q3: How to design the hardware to achieve efficient and high-
performance offload?

11

Q1: Division of labor between the host and NIC

A naive way: offload all aspects onto the

N |C hardware_ core 1 core2| |core3 core 4

e Centralized on-NIC request buffer.

-
-
-
-
-

-
-

~
~
~oN L2
SS3et-

Q1: Division of labor between the host and NIC

A naive way: offload all aspects onto the

NIC hardware.
e Centralized on-NIC request buffer.

Given the PCle delay:
e Small per-core buffer to hide the PCle latency.

~ P
~ -
SN e

S3e%

-
-
-
-

12

Q1: Division of labor between the host and NIC

A naive way: offload all aspects onto the

NIC hardware.
e Centralized on-NIC request buffer.

Given the PCle delay:
e Small per-core buffer to hide the PCle latency.

e Problem: HoL blocking inside the per-core
buffer.

~ P
~ -
~eN -
S3e%

-
-
-
-

12

Q1: Division of labor between the host and NIC

A naive way: offload all aspects onto the

NIC hardware.

Centralized on-NIC request buffer.

Given the PCle delay:

Small per-core buffer to hide the PCle latency.

Problem: HoL blocking inside the per-core
buffer.

~~ P
S, -

Service A’s Prio = Hi

12

Q1: Division of labor between the host and NIC

A naive way: offload all aspects onto the
NIC hardware.

e Centralized on-NIC request buffer. _n . ﬂ - _H .
k\ /' —————— v

-
—

HWLB | (o &
y c
Given the PCle delay: o S
e Small per-core buffer to hide the PCle latency. HW Sche &
e Problem: HoL blocking inside the per-core
buffer. Service A’s Prio = Hi

Service B’s Prio = Lo

12

Q1: Division of labor between the host and NIC

3 Service A+ B
A naive way: offload all aspects onto the

NIC hardware.

corel core 2 core 3 core 4

e Centralized on-NIC request buffer. n ““H
HolL Blocklng'- __________

-
,—

L

HW LB | | g
y c
Given the PCle delay: o S
e Small per-core buffer to hide the PCle latency. HW Sche &
e Problem: HoL blocking inside the per-core
buffer. Service A’s Prio = Hi

Service B’s Prio = Lo

1

12

Solution: Divide the scheduling function

leoe=l] core 2 core 3 core 4

_ _ Shallow e | sw Sche| [sw sche| [sw sche
Onload part of the scheduling function Priority
Into host cores using shallow priority Queue D ﬂ D D
gueues. PP TS i T
e Priority queue HW LB

@
e Shallow queue A %g
29

Q2: Coordination between the software scheduler and the
NIC load balancer

\SW Sche| | SW Sche| | SW Sche

A naive load balancer: Join-Bounded-Shortest- Q:Vevﬁ- Jcore2| Jeore3] Jcore4

Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

JBSQ(N) steers to the core which has the minimal
gueue length, and each host queue has a maximum
depth of N packets.

Problem: JBSQ fails because it ignores the
software scheduler’s behavior!

14

Q2: Coordination between the software scheduler and the
NIC load balancer

. L Service A’'s Prio =Hi R
A naive load balancer: Join-Bounded-Shortest- Service B’s Prio = Lo [

Queue [nanoPU@OSDI’21, Racksched @OSDI’20]
JBSQ(N) steers to the core which has the minimal

gueue length, and each host queue has a maximum
depth of N packets.

corel core 2

HW Load Balancer
(JBSQ(4))

Problem: JBSQ fails because it ignores the
software scheduler’s behavior!

15

Q2: Coordination between the software scheduler and the
NIC load balancer

. L Service A’'s Prio =Hi R
A naive load balancer: Join-Bounded-Shortest- Service B’s Prio = Lo [

Queue [nanoPU@OSDI’21, Racksched @OSDI’20]
JBSQ(N) steers to the core which has the minimal

gueue length, and each host queue has a maximum
depth of N packets.

corel core 2

HW Load Balancer
(JBSQ(4))

Problem: JBSQ fails because it ignores the
software scheduler’s behavior!

15

Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host
gueue has a maximum rank of N.

Rank|[A].coreC = z Queue|X].coreC + A * z Queuel|X].coreC
X prizA.pri X.pri<A.pri

rank is contributed by same/higher priority requests.

16

Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host
gueue has a maximum rank of N.

A is a constant factor between 0 and 1.

/ Insight 2
A

‘|
Rank|[A].coreC = z Queue|X].coreC + A * z Queuel|X].coreC
X prizA.pri X.pri<A.pri

rank is contributed by same/higher priority requests.
'Insight 2] rank is contributed less by lower priority requests.

N\

16

JBSRQ Examples:

Service A’'s Prio=Hi 1R
Service B’s Prio = Lo 1IN

A=0.2
Rank[A].1=14 Rank[B].1 =3
Rank[A].2 =2 Rank[B].2 =2
corel core 2 corel core 2

=S B H
Load Balancer Load Balancer
(JBSRQ(4)) (JBSRQ(4))

JBSRQ cooperates with the host priority queue
and achieves optimal for both Hi/Lo priority requests!

17

Q3: Architecture of the on-NIC load balancer and scheduler

Service A '

|
: |
I - y - -
corel .cmez: core 3 core 4] 1 Service A’s Prio = Hi
1 : Service B’s Prio = Lo
o : ! |
— L _1

e Hardware request scheduler :
o A hardware priority queue sorts services
and dequeues the frontmost service.

I

HW
Priority
ueue
S HW

Scheduler

18

Q3: Architecture of the on-NIC load balancer and scheduler

Service B :

e Hardware request scheduler :

o A hardware priority queue sorts services
and dequeues the frontmost service. i I

A3

I
core 3 core 4] 1 Service A’s Prio = Hi
: Service B’s Prio = Lo

Reduce Tree

e Hardware load balancer:

Service “Find Min”
o Find the service-to-core mapping. Bit Mask
o Calculate rank. 511100 [e 2
o Find the minimal ranked core. s2 | 0111 ’
o If that core’s rank < N, dispatch this 11,00, | Rank
request to that core. Calculator HW Load

y Balancer

HW
Priority
ueue
° HW

Scheduler

18

Q3: Architecture of the on-NIC load balancer and scheduler

Hardware request scheduler :
o A hardware priority queue sorts services
and dequeues the frontmost service.

Hardware load balancer:
o Find the service-to-core mapping.
o Calculate rank.
o Find the minimal ranked core.
o If that core’s rank < N, dispatch this
request to that core.

Problem: the scheduler might schedule a
request that cannot be dispatched by the
JBSRQ.

Service A

‘core 1\ ‘core 2\

core 3 core 4

Service
Bit Mask

s1] 1100
s2 (0111

Reduce Tree
“Find Min”

[rank: [2, 2]

1,1,0,0

Calculator

Rank

A

HW
Priority
Queue

i

Service A’s Prio = Hi

HW Load
Balancer

HW
Scheduler

18

Q3: Architecture of the on-NIC load balancer and scheduler

1 Service A :
e Hardware request scheduler : core1| ||core2|! |core3| |corea|! Service As Prio = Hi
o A hardware priority queue sorts services ! !
and dequeues the frontmost service. Noo Y TEs - ! , ||
e Hardware load balancer: Service ‘ﬁ'ﬁfg,‘:gemt;ie
o Find the service-to-core mapping. Bit Mask
> Calculate rank. s1| 1100 [ke (2.
o Find the minimal ranked core. sz |0t
o If that core’s rank < N, dispatch this 1,1,0,0 Rank
request to that core. Caleuier HW Load
A Balancer
« Problem: the scheduler might schedule a —__-—ojocked
request that cannot be dispatched by the i Hk’
JBSRQ Queue LW
Scheduler

18

Non-blocking interface between the on-NIC load balancer and
scheduler

Interface: Eligibility Mask

Eligibility of a service: cores running this \ HW Load
. } Dequeue Balancer
service have at least one core with a rank Element
smaller than the bound. ¥ Eligibjlity Mask
HW Priority »[011]
Queue H
HW
Scheduler

The hardware scheduler dequeues the front-
most eligible element.

More detalls In our paper

e NIC-assisted CPU reallocation.
o NIC generates reallocation hints at very fine granularity (e.g., every 5 us).

e Low overhead NIC-host metadata communication.
o ~50M messages per second through MMIO.
o Further decrease the overhead through adaptive inlining.

20

Implementation

e 100G FPGA prototype of the Ringleader NIC: implemented in 4K lines of Verilog code.
Run at100G, use a 250 MHz frequency.

e User space NIC driver: implemented in 1.5K lines of C code and provides a DPDK-like
kernel-bypass access to the NIC.

e Integrate with the Datapath OS: we integrated our NIC driver with the Demikernel libOS
using 800 lines of Rust.

Evaluation

Workloads:

o Synthetic benchmark with different service time distributions.
o RocksDB in-memory database.

Baselines:
o Shinjuku (NSDI'19): software-based centralized request load balancing and
scheduling.
o Caladan (OSDI'20): software-based fast CPU reallocation.
o RSS: NIC RSS to spread requests to cores using random hash.

Q1: How Ringleader’s design decision contributes to
Its overall performance

-e—-RingLeader -+-JBSQ

No_elig_mask -+No_soft_prio Workloads Description
120 k High Bimodal 99% requests are high priority, take 3 usec.

(99-3,1-100) 1% requests are low priority, take 100 usec.
80 fM

60 1
40 >

20
0 1 2 3 4 5
Total Offered Load (MRPS)

Better

=
o
o

19119g
High Priority Request

P99 Tail Latency (us)

23

Q1: How Ringleader’s design decision contributes to
Its overall performance

-e—-RingLeader

No_elig_mask

~ 120
0 »n
O =

gvloO
&93‘
Cc

o - & 80
D =&
&l =W
ol 2=
- L"_u
%I—
o
T O

<

Description

1
Total Offered Load (MRPS)

-+=JBSQ
=<No_soft_prio Workloads
High Bimodal
(99-3,1-100)

e

2 3 4 5

Better

99% requests are high priority, take 3 usec.
1% requests are low priority, take 100 usec.

Remove Software Priority Queue: HoL bocking insides the host buffer.

23

Q1: How Ringleader’s design decision contributes to
Its overall performance

-e—-RingLeader -+-JBSQ
No_elig_mask -<No_soft_prio Workloads Description
- 120 k High Bimodal 99% requests are high priority, take 3 usec.
o a 100 (99-3,1-100) 1% requests are low priority, take 100 usec.
n R w—
3
S 80
o
o 2%
3| S
53
T O

0 1 2 3 4 5
Total Offered Load (MRPS)

Better

Disable JBSRQ: Suboptimal dispatching policy. s

Q1: How Ringleader’s design decision contributes to
Its overall performance

-e—-RingLeader -+-JBSQ
No_elig_mask -+No_soft_prio Workloads Description
- 120 k High Bimodal 99% requests are high priority, take 3 usec.
o a 100 (99-3,1-100) 1% requests are low priority, take 100 usec.
n R w—
-
S 80
o
o 2%
3| S |
- E IE |
53
T O

0 1 2 3 4 5
Total Offered Load (MRPS)

Better

Disable eligibility mask: Hardware pipeline blocking. 23

Q1: How Ringleader’s design decision contributes to

Its overall performance

19119g
High Priority Request

P99 Tail Latency (us)

-e-RingLeader -+-JBSQ

No_elig_mask

120

100
80

—<=No_soft_prio

e

1 2 3 4
Total Offered Load (MRPS)

Better

Workloads

Description

High Bimodal 99% requests are high priority, take 3 usec.
1% requests are low priority, take 100 usec.

(99-3,1-100)

Takeaways: Software priority queues,
JBSRQ, and the eligibility mask ensure that
Ringleader can achieve effective

orchestration.

23

Q2: How does Ringleader compared to the CPU-
based orchestration

—Ringleader - =-Shinjuku —Ringleader ==-Shinjuku
= @ 160 : ’ 1200
¢ = | & 1000
120 2.5x)
o 53 - » o g2 o0
2l T2 g ' ©f ST 600 -occmoo==="<
% o®] = 28
=| = ' ® © o 400
=& 40 ! CL xR
%la ______ e? _g :I 200
I o o8 0
0 1 2 3 456 7 8 9 5 0 2 4 6

Total Offered Load (MRPS) Total Offered Load (MRPS)

| Better > Better >

Takeaways: Ringleader achieves better performance
and scalability than the software-based approach!

24

Conclusion

« RingLeader offloads orchestration through a
new load balancing algorithm and scheduler,
as well as a new OS/NIC interface.

« Experiments on a 100 Gbps FPGA NIC show
that RingLeader offers good tall latency and
high throughput.

o https://github.com/utnslab/RingleaderNIC

25

mailto:https://github.com/utnslab/RingleaderNIC

	Default Section
	Slide 1
	Slide 2: Three requirements of online cloud services
	Slide 3: Intra-server orchestration is necessary
	Slide 4: Intra-server orchestration is necessary
	Slide 5: Intra-server orchestration is necessary
	Slide 6: Intra-server orchestration is necessary
	Slide 7: Intra-server orchestration is necessary
	Slide 8: Intra-server orchestration is necessary
	Slide 9: Intra-server orchestration is necessary
	Slide 10: Intra-server Orchestration Today
	Slide 11: Intra-server Orchestration Today
	Slide 12: Intra-server Orchestration Today
	Slide 13: Intra-server Orchestration Today
	Slide 14: NIC-driven hardware orchestration
	Slide 15: Ringleader Overview:
	Slide 16: Ringleader Overview:
	Slide 17: Ringleader Overview:
	Slide 18: Ringleader Overview:
	Slide 19: Design questions of offloading scheduling and load balancing
	Slide 20: Q1: Division of labor between the host and NIC
	Slide 21: Q1: Division of labor between the host and NIC
	Slide 22: Q1: Division of labor between the host and NIC
	Slide 23: Q1: Division of labor between the host and NIC
	Slide 24: Q1: Division of labor between the host and NIC
	Slide 25: Q1: Division of labor between the host and NIC
	Slide 26: Solution: Divide the scheduling function
	Slide 27: Q2: Coordination between the software scheduler and the NIC load balancer
	Slide 28: Q2: Coordination between the software scheduler and the NIC load balancer
	Slide 29: Q2: Coordination between the software scheduler and the NIC load balancer
	Slide 30: Load Balancing with Join-Bounded-Smallest-Rank-Queue:
	Slide 31: Load Balancing with Join-Bounded-Smallest-Rank-Queue:
	Slide 32: JBSRQ Examples:
	Slide 33: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 34: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 35: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 36: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 37: Non-blocking interface between the on-NIC load balancer and scheduler
	Slide 38: More details in our paper
	Slide 39: Implementation
	Slide 40: Evaluation
	Slide 41: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 42: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 43: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 44: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 45: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 46: Q2: How does Ringleader compared to the CPU-based orchestration
	Slide 47: Conclusion

