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Abstract
Internet-scale services can produce a large amount of logs.
Such logs are increasingly appearing in semi-structured for-
mats such as JSON. At Uber, the amount of semi-structured
log data can exceed 10PB/day. It is prohibitively expensive
to store and analyze them. As a result, logs are only kept
searchable for a few days.

This paper proposes µSlope, a system that losslessly com-
presses semi-structured log data, and allows search without
full decompression. It concisely represents the schema struc-
tures, and only keeps this representation stored once per
dataset instead of interspersing it with each record. It further
“structurizes” the semi-structured data by grouping the records
with the same schema structure into the same table, so that
each table is also well structured. Our evaluation shows that
µSlope achieves 21.9:1 to 186.8:1 compression ratio, which is
at least a few times higher than any existing semi-structured
data management systems (SSDMS); The compression ratio
is 2.34x as high as Zstandard and the search speed is 5.77x of
the other SSDMSes.

1 Introduction

In the past two decades we have witnessed an explosive
growth of log data from Internet-scale systems. Convention-
ally, logs were only in the form of unstructured, free text
(e.g., output from printf()). However, they increasingly ap-
pear in semi-structured format, such as JSON [12] or Protocol
Buffers® [9]. 1 These data models have a tree-structure, where
each node (except for the root) is a key-value pair. The value
may include non-primitive data types such as nested values.

Different records may have different schema structures.
This is why they are referred to as semi-structured. For exam-
ple, JSON and YAML [15] formats are schema-less, meaning

1While we do not have global data on the prevalence of the semi-
structured logs versus unstructured ones, in Uber, the size of semi-structured
logs is about 10x of the unstructured. Part of the reason is that, even if some
third-party or legacy applications emit unstructured logs, our log aggregation
tools would wrap them in JSON. This is also a common practice outside
of Uber. For example, Amazon CloudWatch® [1] also wraps unstructured
log outputs in JSON. Grafana Loki® [5] tags unstructured logs essentially
turning them into semi-structured logs for the purposes of search, and so on.

that records may have arbitrarily different schemas. This flex-
ibility allows programmers to easily log common data types
in high-level programming languages, such as C struct, class,
hash table, array, etc. Although Protocol Buffer and other
formats require users to declare a schema to be used on all
records, they allow a field to be optional. As a result, different
records may still have different structures.

The dynamic schema structure imposes challenges for data
management. For example, naively extending conventional
relational databases would require creating one column for
each possible key. This results in a sparse table (i.e., each row
may have many NULL values), and it is challenging to handle
polymorphic typing (the value of the same key might have
different types).

Some existing semi-structured data management systems
(SSDMS) use custom-designed data structures to store the
schema structure of each record [2, 8, 20, 26, 29, 30]. These
systems were initially designed for user-generated data which
is relatively small (and they primarily focused on fast search
speed). For example, most of the published works on SSDM-
Ses use Twitter® datasets (i.e., Tweets in the Twitter data feed
are in JSON) as their primary evaluation target [20,26,29,30].
Twitter reports that in 2023 there are a total of 500 million
Tweets per day [13], which results in 140GB of Tweet data
per day (assuming 280 characters for each Tweet).

In comparison, logs with machine-generated data can be or-
ders of magnitude larger. The size of JSON logs at Uber from
all services exceed 10 Petabytes on a busy day, or 60PB/week,
which is more than 70,000x the size of tweets. Managing
data at this scale with existing SSDMSes is prohibitively ex-
pensive. These systems need to store one schema structure
for each record, resulting in a large amount of duplication
when a large number of records share the same schema. As a
result, even if some systems can efficiently compress the data
content [20, 30], the overall storage size is still large as it is
dominated by the schema structures [20].

At Uber we have repeatedly suffered from scalability issues
as Uber grew. Initially we used Elasticsearch® [21] to manage
our JSON logs. It builds indexes for every word in a JSON
document to support full text search, hence the index size is at
the same order of magnitude as the original data and needs to
be stored on SSD for fast search. The resource cost, together
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with other issues (§2), forced us to migrate away from it
around 2019. Since then we have been using ClickHouse® [4],
a columnar RDBMS with features for handling JSON data.
Its overall compression ratio on our setup is less than 4:1, and
it also requires SSD for fast search. Therefore the resource
cost is still prohibitively expensive.

CLP [27] and LogGrep [31] are able to compress unstruc-
tured logs and allow users to search compressed data without
full decompression. While effective on unstructured logs 2

they are limited on semi-structured logs. Fundamentally, their
storage structure is not designed for the semi-structured for-
mat. For example, CLP parses an unstructured log into three
components: timestamp, log type, and variables. The entire
log dataset can be stored in a table consisting of these three
columns: each log message is stored in one row, and all of
its variable values are stored as a list in the variables column.
Even if we extend CLP’s parser to recognize the key/value
structure (so the schema structure can be treated as the log
type), the values of all the fields are intertwined in the same
variables column of a single table. This hurts compression, but
more importantly, querying any field requires tedious decom-
pression and scan of the entire variables column. Indeed, real-
world users who use CLP to manage JSON logs encounter
poor search performance exactly for these reasons [10]. In
addition, these tools only support a wildcard substring query
model (like grep), but do not provide boolean algebra support
to filter on multiple fields.

We propose µSlope3, an SSDMS for semi-structured log
data. µSlope focuses on storage efficiency by losslessly com-
pressing the logs. And we show that fast search can be
achieved with a careful system design without having to use
an index (which would increase storage overhead). µSlope
does not require any user annotation as it automatically han-
dles the dynamic schema structures.

µSlope incorporates three novel designs. The first is its con-
cise representation of the schema structures. Unlike existing
SSDMSes that store separate schema information for each
record, µSlope proposes (1) a merged parse tree to store the
schema structures generalized for patterns specific to logs, and
(2) a schema map to concisely represent each schema with
a set of leaf nodes in the tree. Each unique schema structure
is stored only once in the schema map, instead of per record,
and it is decoupled from the storage of the value contents.

µSlope then partitions the records into different tables to
store their values, where the records in the same table have the
same schema. Therefore each table is now perfectly structured:
all records have the same number of keys and each value
is of the same type. This allows us to apply well-studied
optimizations designed for relational tables. For example, we
can store and compress each table in a columnar manner that
maximizes the compression ratio and search speed [16].

2CLP is deployed across Uber’s various data and ML platforms to manage
the unstructured logs.

3µSlope: Semi-structured LOg Processing Engine like a micro(µ)-scope.

Finally, µSlope uses a query processing algorithm that lever-
ages the schema information and encoded tables. µSlope first
builds an abstract syntax tree (AST) from the query, and
systematically refines this AST by looking up the merged
parse tree and schema map. This leads to early termination of
queries that do not match any schema structures, and allows
µSlope to decompress and scan data only when necessary.

µSlope’s design was guided by a characterization study of
Uber’s semi-structured logs and queries (§3). We found that
while records do have dynamic schema structures, there is
enormous repetition as most records share a small number of
common schemas. In addition, nearly one third of the queries
that users performed can be terminated without table scanning
because they do not match any of the schema structures.

We evaluate µSlope on a total of 21 semi-structured log
datasets, and compare it with a number of widely used SS-
DMSes. Our result shows that µSlope achieves a compression
ratio of 68.1:1 on average. This is at least 2.6x better any
existing SSDMSes’. The compression ratio is even 2.34x of
Zstandard’s and 1.70x of LZMA’s at the default compression
level, even though they do not support search on compressed
data. µSlope’s search speed is 2.47x of ClickHouse’s, 8.09x
of PostgreSQL’s, and 6.74x of MongoDB®’s.

This paper makes two contributions. First, it proposes
µSlope, a resource efficient archival SSDMS that compresses
semi-structured log data and enables fast search without full
decompression. Second, we present an in-depth analysis of
the characteristics of the semi-structured log data at Uber.

µSlope also has a few limitations. It is designed for semi-
structured text logs, which are highly repetitive, instead of
being a general-purpose SSDMS. If every record uses a dif-
ferent schema structure it won’t work well on µSlope. Fur-
thermore, µSlope uses an index-less design to optimize for
storage efficiency; its search speed, however, may not be as
fast as index-based search tools like Elasticsearch.

2 Background and Related Work

In this section we present the background information and
related work. We explain (1) the semi-structured data model,
(2) how prior SSDMSes manage the semi-structured data, and
(3) commonly used compression algorithms.

2.1 Semi-structured Data Model
Semi-structured data have a tree structure, and its data model
can be defined as follows:

Troot = Tob ject

Tob ject = {key1 : Tvalue1, ...,keyn : Tvaluen}
Tvalue = Tob ject |Tarray|Tprimitive

Tarray = [Tvalue, ...,Tvalue]

Tprimitive = string|number|boolean|null

key = string
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{

  “level”: “error”,

  “message”: “Can’t fetch flow 6, cell_32”,

  “serviceA”: {

      “traceID”: “abc-xyz”

  },

  “error”: “Error404”,

  “request”: {

      “namespace”: “driver_onboarding”

  },

  “timestamp”: “2023-03-16T07:58:02.368”

}

level:str

message:str

serviceA:obj   traceID:str

error:str

request:obj  namespace:str

timestamp:str

root

{

  “level”: “error”,

  “message”: “Can’t fetch flow 8, cell_32”,

  “serviceB”: {

      “traceID”: “def-uvw”

  },

  “request”: “vehicle_compliance”,

  “timestamp”: “2023-03-16T07:58:06.246”

}

level:str

message:str

serviceB:obj   traceID:str

request:str

timestamp:str

root

Figure 1: Two example log records and their schema trees.
 1 level:str

 2 message:str

 3 serviceA:obj     4 traceID:str

 5 error:str

 6 request:obj      7 namespace:str

 8 timestamp:str

 9 serviceB:obj     10 traceID:str

11 request:str

0 root

Figure 2: The merged schema tree of the two records.

Each semi-structured log record, or record for short, cor-
responds to a Troot . Figure 1 shows two sample records. A
log dataset contains a number of such records. The schema
of each record can be represented as a tree [30]. Figure 1
shows the two schema trees. Each node records a field, which
consists of the name of the key and the type of its value.

Only the leaf nodes can have primitive value types in the
schema tree. Any non-leaf nodes would have non-primitive
value types, that is, either object or array.

If two records have the same schema tree, we say they have
the same schema. The two nodes in their respective trees are
considered to be the same if and only if both the key and the
value type are the same. In a schema-less data format like
JSON, a key could have “polymorphic” values, i.e., different
value types in different records. For example, the “request”
field in the two schemas in Figure 1 have different value types.

The schema trees of multiple records can be merged into a
single tree [30]. We call it the merged schema tree, or MST.
Specifically, given node N1 and N2 from two schema trees,
we can merge them if and only if: (1) N1 and N2 have the
same key name; (2) the value type are the same; and (3) all
the predecessor nodes of N1 and N2 in their respective schema
trees can be merged. Figure 2 shows the MST of the two
schema trees in Figure 1.

2.2 Existing SSDMSes
Different semi-structured records may have different schemas,
therefore we cannot naively store them in the RDMS table.

\x16\x00\x00\x00           // size (32-bit): 22 bytes

\x02                       // 0x02 = value type String

hello\x00                  // key name

\x06\x00\x00\x00world\x00  // size of value (6 bytes), value

\x00                       // 0x00 = 'end of object'

Figure 3: The BSON representation of {“hello”: “world”}.

As a result, existing SSDMSes either use natively designed
storage format or extend RDBMS in sophisticated ways.
Native Support for Semi-structured Data. These SSDMSes
use custom data structures to represent the schema structure
of each record. MongoDB uses a concise binary format called
BSON (Binary JSON) [2]. Figure 3 shows the BSON repre-
sentation of a simple JSON record {“hello”: “world”} [3]. It
stores the schema structure, including the type and size of
each key/value pair, interspersed with the record content. The
BSON records can only be stored in a row-oriented manner,
which limits both the compression and search speed because it
has to scan the entire record even when the user only searches
for a specific key. Fast search can only be achieved via creat-
ing external indexes.

PostgreSQL®’s jsonb [8] and Oracle®’s OSON [26] are
two other examples of custom schema structures. The former
is similar to BSON, while the latter stores more metadata
information, such as the number and offsets of nested keys.

Steed [30] proposes both row and column oriented storage
methods. It operates on the merged schema tree (MST). In-
stead of storing the key name with each record, Steed only
needs to store the node ID of the key in the MST. However,
it still keeps one schema structure for each record in its row-
oriented method. Keeping track of the schema structure is
even more complex in its columnar method, as it splits the
datasets into N independent columns where N is the number
of keys, each column stores all the values of that key. Because
the key/value pairs of a single record are now split, assem-
bling the original record’s schema structure requires even
more complex data structures (2 additional columns for each
key) and algorithms (finite state machine).

Scuba [17] is an in-memory SSDMS that keeps records in
a compressed row-oriented format. Records are stored one
after another in a table. Therefore it needs to scan all records
in a table (and all the fields) during search. It stores the string
values in a dictionary, and the dictionary is used as an index
during search. However, unlike CLP, the entire string is stored
as a single entry instead of being parsed into timestamp, log
type, and variable values. It also has some restrictions on the
data model, most notably it prohibits nested keys. Note that
Scuba is designed for general-purpose data storage instead of
narrowly focusing on logs.

Extending RDBMS. Sinew [29] uses a hybrid design that
materializes a subset of the keys as separate columns, and
stores the remainder using a binary format similar to BSON
in a single RDBMS column. JSON Tiles [20] extends the
idea of Sinew, reordering the records to group those with
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similar schemas into disjunct tiles. However, it still needs to
keep a binary schema structure for each record. Although
JSON Tiles applies compression to those separate columns,
the compression ratio is around 1 because the large size of
the per-record schema structure.

Some RDBMSes map semi-structured data into relational
tables. For instance, Argo [19] proposed two methods. The
first stores fields in a single table, while the second splits it to
three where each is used for a primitive value type. However,
the first method will result in sparse tables (many fields with
NULL values). Both methods take up too much storage space
due to repetitive key/values. Liu et al. proposed to store the
entire JSON record in a single RDBMS column [25].
Elasticsearch and ClickHouse: Experiences at Uber. Elas-
ticsearch [21] is a JSON document store that supports search.
It assumes the type of the field will never change by default
and cannot handle fields with dynamic types easily. (By de-
fault, Elasticsearch will drop records if a field has a different
type than in a previous record.) It also struggles to handle the
case where every record has new unique keys (e.g., using a
UUID as a key) [18]. At Uber we used to use Elasticsearch,
but migrated away (to ClickHouse) due to these issues as well
as its excessive resource usage.

ClickHouse is a columnar RDBMS with features for han-
dling JSON data. At Uber we built a layer to transform records
before ingestion into ClickHouse. After experimenting with
different storage formats, we settled on storing a handful of
common fields in dedicated columns, and storing all other
unique key-value pairs that are less than or equal to 3 lev-
els deep in a pair of arrays per type. For instance, string-
type fields were stored in two arrays, “String.names” and
“String.values”. To query a field, we first find the key in the
String.names array, use the index of that key to index the
String.values array, and finally compare the value against
the query. We also keep a _source field that contains raw
JSON and build inverted index on top of it. Finally, to im-
prove query performance for frequently accessed fields, our
abstraction layer temporarily extracts these fields into tempo-
rary dedicated columns (materialized columns). This setup
results in a compression ratio lower than 4:1.

2.3 Compressors
General-purpose compressors like Gzip [23] and Zstan-
dard [22] use a sliding window approach proposed by Lempel
and Ziv [33]. They locate duplicates within a fixed-size slid-
ing window, so they cannot detect duplications if the distance
between the two duplicated patterns is larger than the size
of the sliding window. Therefore storing duplicated patterns
close to each other would maximize the compression ratio.

Searching, unfortunately, requires decompressing the entire
data. These compressors typically encode duplicates in length-
distance pairs [28, 33]. Starting from the current position,
if the next L (length) characters are the same as the ones

starting at D (distance) behind, the next L characters can be
encoded with (D,L). This (D,L) pair is directly embedded in
the compressed data, hence search requires decompression
from the beginning.

Log compression and search. Existing log compression
techniques focus only on unstructured (i.e., free text) logs.
CLP [27] uses a custom-designed log parser to split each
message into three components: timestamp, static text (i.e.,
log type), and variable values, structurizes logs into a table of
three columns. CLP stores the static text and repetitive vari-
able values into respective dictionaries, and the dictionaries
also serve as coarse-grained index during search to minimize
decompression and scan. It then compresses the three-column
table in columnar order.

LogGrep [31] also compresses unstructured logs and al-
lows search. It uses a training phase to identify the com-
mon patterns of messages. LogGrep identifies patterns in
much finer granularity (e.g., a variable can be further divided
into subcomponents if a different subcomponent is repetitive).
Therefore a message is split into a larger number of subcom-
ponents without clear mapping to program semantics, and it
uses tables to store the complex mapping to assemble these
subcomponents into the original log message.

3 Characterizing Semi-structured Log Data

We first provide a characterization study on semi-structured
log data before describing the design of µSlope. While prior
works have characterized semi-structured user-generated
data [30], we are the first to provide an understanding of
machine-generated semi-structured log data.

We collected 16 frequently used log datasets (LogA-LogP)
from Uber and 5 log datasets from open-source software
(Apache Spark™, MongoDB, CockroachDB®, Elasticsearch,
and PostgreSQL). All of these datasets are in JSON for-
mat. We limit each dataset to 1,000,000 log records. We
also provide a characterization of real-world queries on semi-
structured log data by analyzing a total of 23,091 queries
spanning twenty days from Uber; 7665 of them are unique.
Schema Variation. We first study the schema variation.
JSON’s schema-less nature means that the variation of
schemas between records can range from zero (i.e. all records
have the same schema) to 100% (i.e. all schemas are differ-
ent). Recall from §2.1 that the schemas of two log records
are considered the same if and only if their schema trees are
identical. The degree of variation is a critical consideration to
the design of µSlope and prior systems. If there is no variation,
then one can easily store logs in an RDBMS by materializing
one column for every leaf-node node.

Figure 4 shows the unique schemas for each dataset. All
except two datasets have more than 1 unique schemas, with
LogE having the largest variation (6,176 unique schemas).
The median number of unique schemas of all datasets is 40.
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Figure 4: Number of unique schemas and keys for each dataset.
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Figure 5: KF distribution of LogE

Despite the relatively large degree of variation, there also
exists a large degree of repetition. On average, there are
25,000 records in each dataset with the same schema; if we
increase the sample size, this repetition will be larger. Even
for the most noisy dataset, LogE, there are still an average of
162 records per schema.

To understand the schema variation, we further measure the
variation of individual keys. Figure 4 also shows the number
of unique keys for each dataset. Two keys are considered the
same if and only if their full name and value types are the same.
A key’s full includes all the nested keys (i.e., predecessor
nodes in the schema tree). For example, “serviceA.traceID” is
the full name whereas “traceID” is not. The median number
of unique keys is 138, and it varies greatly. LogM has only 20
unique keys (and it has only 1 schema), whereas Spark logs
have 5,627 unique keys.

This result suggests that the variation in schemas is likely
due to the variation of individual keys instead of their combi-
natorial effect. In theory, a large variation in schemas could
be the result of a small number of keys: n unique keys could
result in 2n different combinations, hence 2n schemas. How-
ever, this is not the case with logs. In fact, in 18 out of 21
datasets the number of unique keys is larger than the number
of schemas, showing the opposite of a combinatorial effect.

To get better understand how keys are distributed within a
dataset, we measure the key frequency (KF). It is defined as

KF(x) =
number o f records that contain key x

total number o f records

Figure 5 takes LogE as an example to show the distribution
of KF. Each bar represents a key. LogE has 6176 schemas and
704 keys. There are a small number (21) of keys that have
KF = 1.0, indicating that they appear in every record. These
are the keys uniformly added by the logging library, such as
“timestamp” and “level”.

On the other hand, there is a long-tail in the KF distribution
of LogE. 83.0% of the keys has a KF <0.1. Most of them are
different data structures in the program that documents the
program state relevant to a specific event. There are also cases
where the variation in schemas is caused by a large variation
in the name of a key, like Spark using the pathname as the
key name, or some datasets using the UUID as the key name.

Type Composition. Next, we break down the value types.
Recall from §2.1, the value type can be an object, array, or
one of the primitive types. We further refine the types as
follows. First, we break down the number type into integer and
float. For strings, we separate single-word values from multi-
word ones (using white space as word delimiter), because
the former is likely a variable (e.g., an identifier) whereas
the latter is free-text log. We call the former variable and the
latter log-text.

Figure 6 shows the breakdown of the value types in each
dataset. On average, 70.8% of the values in each dataset are
variables (i.e. single-word strings). 10.8% are objects, i.e.
non-leaf nodes in the schema tree leading to nested keys. In
comparison, the percentage of boolean, float, null are low,
averaging 1.74%, 1.21%, 0.22%.

The percentage of array fields are also low at 0.79%. In
addition, only 28 of the 7,665 (0.4%) of the unique queries
explicitly search on an array field. Furthermore, these explicit
array searches only match 0.05% of the data on average.

Each log record contains an average of 1.6 log-text keys.
In addition, 41% of the unique queries contain filters on log-
text, so efficient search on log-text is important. In addition, a
record contains 4.0 integer fields on average.
Repetitiveness of Variables. Next, we zoom into variable
fields (i.e., single-word strings), because they dominate the
composition of logs. The question we care about is: Are these
values repetitive? We use the repetition ratio to measure the
repetition of variable fields. It is defined as

repetition ratio =
number o f all variable values

number o f unique variable values

A high repetition ratio means that unique variable values are
much fewer and these fields are repetitive. Figure 6 shows
the repetition ratio. The median repetition ratio is 37.8 and
the average is 58.2 across all datasets. It can be as high as
433.4 (LogD) and even the minimum is still 9.29 (LogC).
This means dictionary deduplication can be effective.

The variable fields are also frequently queried. The average
query contains 3.450 filters with 2.663 of those being vari-
able filters. For example, level:“warn” OR level:“error” is
a query that has two string filters on the level key. The largest
query has 93 string filters. Furthermore, filters that implicitly
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Figure 6: Average number of keys per record, broken down by different value types and repetition ratio of variables.

match all keys – "wildcard keys" – are common in practice.
For example, *:“aUUID” matches any keys as long as its value
is “aUUID”. Of the 7,665 unique queries 2,271 of them con-
tain a wildcard key. These filters are easier to express for
users of search, but pose a significant performance hazard. In
the worst case such filters can impose scans over the entire
record, eliminating much of the benefit of querying structured
data. However, using a dictionary to store the variables would
significantly speed up such queries as we only need to search
the dictionary for matching values.

Importance of Schema Search. Nearly one third (29%) of
the unique queries do not match any of the schema structures.
That is, they can be returned without scanning the values.
Examples include searching for a nonexistent key, the key
exists but the value type does not match, or the conjunction
of keys/value types do not exist. For example, engineers per-
forms such search to regularly verify the nonexistence of
certain error events. However, for existing SSDMSes (such
as MongoDB and PostgreSQL) this opportunity is wasted,
because the schema structure is interspersed with the values.

Summary and Takeaways. Schemas are dynamic, and those
unstructured keys are frequently queried. Therefore simple
extension of RDBMS to only materialize those structured
keys as columns is insufficient, and we need to precisely track
the schema of semi-structured data. On the other hand, a
large number of records have the same schema, presenting
opportunities to group them by the same schema so that each
group is well-structured.

70.8% of the keys are single-word strings. They are highly
repetitive, and commonly queried on. This indicates that stor-
ing them in a variable dictionary would effectively dedupli-
cate them, and at the same time, speedup the search.

Finally, efficiently storing the schema structure and decou-
ple it from the record value data would significantly speedup
the 29% of the queries that can be completed only by querying
the schema structure.

4 Overview of µSlope

µSlope is a resource-efficient SSDMS that we designed from
the ground-up. µSlope has three major designs that are novel
compared to other SSDMSes: (1) Decoupling the storage of
schema metadata from the storage of each record; (2) Group-
ing records by schema to store them into well-structured ta-
bles, and apply efficient encoding; and (3) Optimized schema
metadata lookup to speedup search.

Figure 7 shows µSlope’s architecture. When data is in-
gested, µSlope parses each record and extracts its schema. It
uses two core data structures to track the schema structure: the
merged parse tree (MPT) and the schema map. The MPT and
the schema map are collectively referred as schema metadata.
It is critical to keep the schema metadata as small as possible,
yet still captures the highly repetitive structure of the log.

The MPT is a more general form of the merged schema
tree (MST) as described in §2.1. It has four differences when
compared to MST. First, the MPT can contain special un-
named nodes that mark the truncation of some key value pairs.
Multiple rare keys can be mapped to the same unnamed node
when the key names contain random data, such as UUID
or file path. Including such non-repetitive key names would
bloat the metadata. In contrast, sometimes the value of a key
could be highly repetitive. For example, all the records from
the same application would have the same value under the
application-name key. Therefore, the MPT also allows a node
to include the value (only if the value is highly repetitive).

The third difference is that MPT can encode the structure
of strings with key-value pairs. This allows µSlope to capture
more structural information from strings, improving compres-
sion and search. For instance, given a record {.. “message”:

“.. latency=35, status=OK, type=READ, ...”}, µSlope
would create three nodes for “latency”, “status”, and “type”
respectively as the children of the “message” key. This
requires that schemas contain an ordered region where we
maintain some leaf nodes in a specific order, because the
order of the keys in a string needs to be preserved.

Another difference is that MPT stores more fine-grained
string types. A string value could either be a timestamp, a
single-word string, or a log-text. Storing fine-grained types
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ID         Leaf Nodes 

 0      [1, 2, 4, 5, 7, 8]

 1      [1, 2, 10, 11, 8]

Parsing &
Encoding

Semi-structured Logs

Merged Parse Tree

Schema Map

Compression

Compressed
Archives

Search

Node         1    2    4    5    7    8 

Record 0   ..    ..    ..     ..    ..      ..

Record 1   ..    ..    ..     ..    ..      ..

    ...             ..    ..    ..     ..    ..      ..  

Schema 0

Encoded Record Tables

Archive

Variable

Dictionary

Log Type

Dictionaries

Timestamp

Dictionary

Figure 7: Architecture of µSlope.

enables more filtering opportunities on MPT, resulting in
better search performance.

The schema map stores each unique schema in the log
dataset in a hashmap. We make the observation that a schema
can be unambiguously identified with the list of leaf nodes
in the MPT. For example, the schema map in Figure 7 shows
the two schemas of the two records in Figure 1, where the
node IDs corresponds to the MST shown in Figure 2. (In this
example, the MPT and the MST are the same.)

The MPT and schema map deduplicate the highly repetitive
schema structures. Unlike prior SSDMSes §2.2 that store a
schema structure for every record, each unique schema is
stored only once. In practice, the schema metadata size is
typically less than 0.0001% of the total compressed data size.
This design also enables fast search: the succinct metadata can
be efficiently searched, providing powerful filtering capability.

µSlope uses one table for each schema to store the values.
Therefore each table only stores the values of the records that
have the same schema. As a result, there can be thousands of
tables, one for each schema. The advantage is that each table
is now perfectly structured, as all records have the exact same
keys and value types. µSlope essentially structurizes those
semi-structured data.

The tables are called Encoded Record Tables (ERT), be-
cause instead of storing their raw value, µSlope performs
type-specific encoding. For example, single-word string will
be stored in a variable dictionary, so only an ID is stored
in the ERT. The dictionaries serve two purposes at the same
time: it effectively deduplicates the highly repetitive patterns,
and it serves as coarse-grained index for search so µSlope
only needs to scan the ERT that contains the matching record.

Each ERT is stored and compressed in a columnar order.
This significantly improves both the compression ratio and
search performance [16], because a column groups the se-
mantically similar values together so it maximizes general-
purpose compressors’ ability to find repetitions, and during
search we only need to decompress and scan the columns
whose keys were searched for.

µSlope leverages the efficiency of metadata and dictionary
lookup to optimize the search performance. It uses Kibana
Query Language (KQL) as its query language, which is both
concise and powerful. µSlope transforms a query into an ab-

ID   Log Type

L0   Can’t fetch flow \INT, cell \DICTVAR

ID   Format

T0   yyyy-MM-dd’T’HH:mm:ss’.’SSS

ID   Variable Value

V0   error

V1   cell_32

V2   abc-xyz

V3   Error404

V4   driver_onboarding

V5   def-uvw

V6   vehicle_compliance

 Node   1     2    4  5  7     8  

 Values V0 L0 6,V1 V2 V3 V4  T0 1..8

Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

Variable Dictionary

Timestamp 

Dictionary

Log Type 

Dictionary

 Node   1     2    10  11    8  

 Values V0 L0 8,V1 V5  V6  T0 1..6

Figure 8: How µSlope encodes log records.

stract syntax tree (AST) to perform a number of optimizations,
including determining if the query matches any schema and if
the filter pattern matches any dictionary values. If not, µSlope
will terminate query processing early. Otherwise, only rele-
vant ERTs are finally decompressed and searched through.

Both compression and search are embarrassingly parallel.
During compression, when parsing a new record µSlope ex-
tracts the key-value pairs of each log record. Corresponding
key nodes are added to the MPT, with leaf node IDs collec-
tively representing a schema. Values are encoded by various
methods and are stored in the ERTs. Upon identifying a new
schema, µSlope dynamically creates a new ERT to store the
encoded values. All the ERTs, dictionaries and schema meta-
data will be buffered in the memory. Once the buffer reaches
a certain size, they are compressed using Zstandard before
stored to disk, creating what we call an archive. µSlope then
clears the buffer and dictionaries before compressing newly ar-
rived records. Therefore different archives can be compressed,
searched, and decompressed independently in parallel.

5 Compression

We use simdjson [11] parser to parse the JSON structures.
Other log formats representable by the data model in §2.1
can also be supported by integrating a parser to extract the
key-value pairs from the records.

µSlope uses different encoding techniques on different
value types. Next we describe them in turn.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    535



Strings. µSlope treats string values differently depending on
whether it is (1) a timestamp, and if not, (2) a variable, i.e. a
single-word string, or (3) log-text. µSlope uses CLP’s parser
to parse a string value. It uses heuristics to detect if the string
is a timestamp. If so, µSlope encodes it into a Unix® epoch
time and stores the format pattern in the timestamp dictionary.
As a result, each timestamp field is encoded into two columns
in the ERT: a timestamp dictionary ID and a Unix epoch time.
The ID column consumes negligible space after compression
because most of the time there is only one timestamp format.

For a log-text, the CLP parser extracts the log type and
variables. The log type is stored in the log type dictionary.
Different types of variable values are encoded differently. Inte-
gers and floating point numbers are directly encoded in binary
format. Other variables are encoded as a variable dictionary
ID after storing them in the variable dictionary. Therefore
a log-text also has two columns: a log type ID, and a list
of encoded variables stored in a single column. We extend
CLP’s log parser [7] to allow users to specify rules to extract
key/value pairs from log-text fields and store them as JSON
fields. Therefore, if the log is in unstructured format (instead
of JSON), or dominated by unstructured text log (i.e. majority
of a record is an unstructured text message field with a few
additional fields containing metadata like hostname, verbosity,
etc.), µSlope essentially falls back to CLP encoding.

µSlope directly stores a single-word string in the variable
dictionary and stores the dictionary ID in the ERT. The dic-
tionary effectively deduplicates the repetitions in variables as
we shown in §3. We use the same variable dictionary used for
the log-text for maximum deduplication.

Figure 8 shows the contents of the dictionaries and encoded
record tables for the example log records in Figure 1. Their
MPT is the same as the MST shown Figure 2, except that the
MPT keeps a fine-grained string type on each string field. The
schemas are shown in Figure 7. We use different prefix and
colors for the different types of dictionary IDs: log type (‘L’),
timestamp (‘T’), and variable (‘V’). For example, consider
the first log record, which is stored in the ERT of schema
0. Four of its keys (“level”, “serviceA.traceID”, “error”, “re-
quest.namespace”) have single-word strings; they have the
MPT node IDs 1, 4, 5, 7 respectively (Figure 2), and their
values are encoded as V0, V2, V3, and V4 which are IDs into
the variable dictionary. The “message” field (node ID 2) is a
log-text. Its first column stores L0, which is the ID into the
log type dictionary, and the second column stores the two
encoded variables. Note that ‘\INT’ and ‘\DICTVAR’ in the
log type are special placeholder bytes for variables (of integer
and dictionary variable types respectively). The “timestamp”
value is stored in the last 2 column (node 8); the value “1..8”
is the encoded timestamp in Unix epoch time.
Integers, floating point, and boolean values are directly
encoded in binary form in the same way as in CLP [27].
Arrays are stored as log-text strings by default, i.e., using
CLP to parse it into a log type and a list of variable values.

AND<schema 0>

4: abc-xyz 5: *404

AND<empty>

10: abc-xyz 5: *404

OR

KQL Query *.traceID: abc-xyz AND error: *404

AND

*.traceID<var>: abc-xyz error<var, log-text, int, float>: *404

After Key
Resolution

Initial AST

AND

5<var>: *404OR

4<var>: abc-xyz 10<var>: abc-xyz

After Schema
Resolution

False
Propagation

Figure 9: Example of query processing.

This means that arrays are typically searched by decoding
and parsing their string representation. This is acceptable as
§3 shows that arrays occur rarely and are seldom searched.
Note that the log type parsed from an array string is stored in
a separate log type dictionary to avoid polluting the regular
log type dictionary for log-text. We also support fully pars-
ing arrays and recording their structure in the MPT under a
non-default configuration. This approach offers performance
benefits for array searches, but typically results in growth in
schema size due to the diverse internal structures of arrays.
Preserving record order. Splitting the records into different
tables means that we lose the order between records of dif-
ferent schemas. Using timestamp to order them is unreliable
because records may have the same timestamp. To preserve
the order, µSlope adds a column in each ERT to store the
order of the record in the original log stream.
Random keys and invariant values. Recall that µSlope trun-
cates the key name from the MPT if it is not repetitive, and
includes values that don’t change into the MPT. The heuristic
we use is that if a key does not appear in more than 1% of the
records of the archive, it will be truncated; whereas a value
will be included in the MPT only if it never changes. We
implement them by keeping counters for the keys and values
as records are parsed and stored in the memory buffer; the
decision to truncate a field or include a value in the MPT is
made when we write the buffered data to disk (into the archive
format). The structures of a truncated field and its successors
(a truncated field may be a non-primitive type, in which case
all the subfields will be recursively truncated) are encoded
in a row-oriented format similar to BSON, and stored in a
column that is mapped to a (special) MPT node located at the
place of the truncated node.

6 Search

µSlope search accepts queries which combine filters on one or
more keys. The key names in the query may contain wildcards
and be of ambiguous underlying type. Search takes advantage
of the MPT, schema map, and dictionaries to evaluate queries
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efficiently. This is a multi-step process, each step performs
refinements and optimizations on a custom Abstract Syntax
Tree (AST) µSlope built from the query. Next, we explain
each step using an example shown in Figure 9.
Step 1: Constructing the initial search AST. Given a query
µSlope transforms it into an AST where each leaf node speci-
fies a filter on some key, and each non-leaf node is a logical
AND or OR. Figure 9 shows an example KQL query. The
query consists of two filters joined by AND. The key name
in first filter contains a wildcard, meaning it can match any
hierarchy of keys that end with “traceID”. The second filter
contains a wildcard in the value pattern.

µSlope parses this query into a search AST shown in Fig-
ure 9. Initially this AST contains two nodes, each maps to a
filter. Each node also stores the possible value types inferred
from the query. The value type of the first filter is unambigu-
ous; it must be single-word string type (i.e., a variable) given
the pattern is surrounded by ‘"’. The second filter, however,
has ambiguous type; it can either be a variable, a log-text, an
integer, or a floating point number.
Step 2: Key resolution further turns each key name into zero
or more MPT leaf nodes by resolving ambiguities. Ambigui-
ties come from two sources: (1) ambiguous key name, i.e. a
key with wildcard can match more than one leaf of the MPT,
and (2) ambiguous value type, when it is polymorphic. In
both cases we replace the corresponding filter with an OR
node where every child of the OR is the same filter with the
key replaced by each of the matching MPT leaf nodes in turn.
The “*.traceID<var>” in Figure 9 is an example of ambigu-
ous key name. It is resolved into two MPT leaf nodes, node
4 and 10, which corresponds to “serviceA.traceID” and “ser-
viceB.traceID” respectively. These two nodes are connected
by OR in the refined AST after the key resolution.

The “error<var,int,float>:*404” node in the initial AST has
potentially ambiguous value type. In our example, because the
only possible type for the “error” key is a variable (i.e., single-
word string), we replace it with a single node “5<var>:*404”.
However, if “error” has polymorphic type, say an integer, in
the dataset, then we need to consider both possibilities and
connect them by an OR.

When a key name matches no leaf nodes in the MPT, that
AST node is eliminated by replacing it as false and propagat-
ing this false up the AST, a process known as false propaga-
tion. This can eliminate part or all of the query.

After key resolution each key in the search AST refers to a
leaf node from the MPT. The one exception is if the searched
key name is a single wildcard ’*’. Expanding such keys would
result in a bloated AST because it can match any key name,
adding combinatorial overhead to the later steps (particularly
if the query specifies multiple filters on ’*’ key). Wildcard
keys are expanded dynamically only at the last step, before
search on an ERT.
Step 3: Schema resolution looks up the schema map to find a
set of schemas that match the record structure implied by the

query. It first transforms the AST into OR of ANDs form (i.e.
sum of products). The key insight is that for an AND to ever
be true, all of its children must exist together in a schema. We
implement this check by performing an intersection between
the set of MPT node IDs of the children of an AND node with
each schema. If the intersection is empty, the entire AND
sub-tree is removed by treating it as false, and we propagate
this false along the AST.

The last AST in Figure 9 shows the AST after schema res-
olution. The rightmost AND expression matches no schemas
and can be removed since MST node 5 and 10 never appear
in the same schema. In this case we are able to narrow down
the ambiguous query to a single schema, schema 0, by only
searching the schema metadata.
Step 4: Search on strings. Next µSlope searches the dictio-
naries on relevant string filters. Search needs to be performed
over the log type dictionary, the variable dictionary, or the
timestamp dictionary. Searches on log-text are handled the
same way as CLP would. The ability of the dictionaries to
reject string queries is critically important for performance.
Consider the query *:<uuid>, which is commonly issued at
Uber. In archives that do not contain this uuid, this query can
be terminated early after searching the variable dictionary,
avoiding any column scan. In general, an empty dictionary
search would result in the AST node being eliminated, and
the false value gets propagated to further simplify the AST.
Step 5: Column decompression and scan is guided by the
remaining nodes in the AST. Specifically, the remaining AST
tells us exactly which ERT(s), and which column(s), should
be scanned. This minimizes the decompression and scan.

Note that we also add a simple timestamp range index at
the archive level. This is used to avoid having to decompress
and scan any data in the archive when there is no overlap with
the time range specified by the query.

7 Implementation

The implementation of µSlope closely follows the design
specified in the previous sections. However, some details not
called out in the design are critical to the overall performance
of the system, so we highlight them here.

We have written a custom JSON serializer in order to im-
prove decompression and search speed. With each schema
precisely defining the structure of a log record, µSlope is
able to generate a bytecode that describes how to reconstruct
records in terms of the columns they have been split into.
Unlike JSON serializers designed for dynamic objects, our
serializer doesn’t require the creation or traversal of mutable
in-memory data structures during serialization. Instead, it uses
the bytecode generated at the table granularity to directly ap-
pend the values to the serialization buffer. This approach has
proven several times faster than conventional JSON serializers
based on our experience.
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Given that µSlope can sometimes produce archives contain-
ing many small ERTs, minimizing the overhead of storing and
loading ERTs is crucial. In µSlope, ERTs are concatenated
together into a single file, with a metadata file that describes
the location of each ERT within the file and the number of log
records within each ERT, which reduces I/O overhead. During
search, µSlope scans the AST to determine which ERTs need
loading, and then loads them following the storage order, thus
eliminating random I/O. Additionally, it optimizes bytecode
generation by only producing bytecode for serializing records
from an ERT after finding at least one matching record.

8 Evaluation

We implement µSlope with about 18k lines of C++ code. We
evaluate the performance of µSlope on both Uber logs and
public logs. Specifically, we focus on the following aspects:
(1) the compression ratio and speed; (2) the query perfor-
mance; (3) worst case performance on synthetic logs; (4) the
scalability of µSlope on large-scale logs.

8.1 Experiment Setup
Overall we conduct the experiments in two setups: (1) single-
thread, single-process experiments on smaller datasets (re-
ferred as single-thread experiments), and (2) parallel setups
on larger scale Uber’s logs. For (1) we compare µSlope with
a number of other SSDMSes. The logs are from the same
services as described in §3, except that here we increased
the data size. In addition, we include logs from five public
software, which are generated by running HiBench [24] and
YCSB [14] benchmarks. Table 1 shows the size and the num-
ber of records of each log dataset. These datasets are relatively
small because (1) we had problems to ingest larger data to
some of the tools we compare with (for example the inges-
tion throughput for Elasticsearch is 5MB/s), and (2) µSlope is
embarrassingly parallel, therefore its single-threaded perfor-
mance is the most critical. We also evaluate µSlope on larger
Uber’s datasets in §8.5.

Single-thread experiments were performed on a Linux
server with Intel Xeon E5-2630v3 processor and 128GB of
DDR4 memory. Both the uncompressed and compressed logs
are stored in a distributed file system (MooseFS) running on
multiple 7200RPM SATA HDDs.

We compare µSlope with SSDMSes including CLP 0.0.2,
MongoDB 6.0.5, PostgreSQL 15.2, ClickHouse 23.3.1.2823,
Elasticsearch 8.6.2, Zstandard 1.4.9 and XZ Utils (for LZMA
compression) 5.2.2. (we were informed that Steed [30]’s ar-
tifact isn’t yet available upon contacting the authors). Mon-
goDB and PostgreSQL have native JSON support (i.e. BSON
and jsonb data type respectively). For ClickHouse, we explore
three setups to store JSON records: (1) in pair-wise arrays
which was described in §2.2. Here we only use two arrays and
do not differentiate types of the values. (2) in a single string

Name Uncompressed
Size

Number of
Records

Uber
Logs

LogA 30.0GB 22,996,492
LogB 47.1GB 16,606,964
LogC 60.4GB 15,306,125
LogD 50.7GB 58,309,754
LogE 91.8GB 22,345,071
LogF 102.9GB 17,251,752
LogG 30.9GB 3,046,845
LogH 30.8GB 11,461,221
LogI 39.7GB 27,209,375
LogJ 36.0GB 13,605,274
LogK 30.2GB 57,919,224
LogL 37.1GB 45,827,554
LogM 36.5GB 42,206,452
LogN 38.0GB 22,307,407
LogO 38.6GB 4,438,786
LogP 38.3GB 34,840,347

Public
Logs

Spark 2.0GB 1,011,651
MongoDB 64.8GB 186,287,600

CockroachDB 9.8GB 16,520,377
elasticsearch 8.0GB 140,012,234
PostgreSQL 392.8MB 1,000,000

Table 1: Log datasets used in our experiments.

field, which can be parsed by ClickHouse functions. Both
setups are commonly used in practice for JSON management.
(3) in a single JSON field, which is a new experimental data
type introduced in v22.3. It can infer the schema of a JSON
record and store every field in a separate file automatically.

For these systems we do not create any index for a fair
comparison with µSlope, because µSlope is designed to be
an archival SSDMS and does not have any external index.
MongoDB automatically builds an index on the default key
_id and we exclude the size of the index when calculating
compression ratio.

We also compare µSlope with two general-purpose com-
pressors Zstandard and LZMA. Zstandard is the underlying
compression method for µSlope and LZMA is known for its
high compression ratio.

We do not evaluate search on CLP because wildcard
queries (which CLP supports) are incompatible with semi-
structured data model. For example, a KQL query error:

“*404” searches for the “error” field whose value ends with
“404”; but CLP could return records like {“error”: “0”, “keyx”:
“404”}, because ‘*’ could match an arbitrary amount of text.
We do not evaluate search on Elasticsearch because we cannot
ingest the three datasets where we designed query benchmarks
on into Elasticsearch. Nevertheless, as we will show that Elas-
ticsearch consumes too much storage space that cannot be
used as an archival SSDMS.
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Figure 10: Compression ratio of µSlope and other tools on different JSON datasets. A "×" means the dataset cannot be ingested by the tool.

8.2 Compression Ratio and Speed

Figure 10 shows the compression ratio of µSlope and other
tools on different datasets. The compression level of Zstan-
dard is set to 3 (default) for µSlope. For a fair comparison, we
use the same compression method and level for CLP, Click-
House and MongoDB. PostgreSQL and Elasticsearch do not
support Zstandard compression, so we use lz4 [32] instead.
For LZMA, we use the default compression level 6.

Note that out of 21 datasets, ClickHouse-JSON can only
ingest 10 and Elasticsearch can only ingest 9. The most com-
mon reason is that they cannot accept fields with the same
key name but different types. Additionally, MongoDB and
PostgreSQL cannot ingest one dataset because of the escape
character. For the average compression ratio and speed com-
parison, we only include the datasets that are successfully
ingested by these systems.

µSlope achieves the highest compression ratio on all JSON
datasets. The average compression ratio of µSlope is 68.1:1,
ranging from 21.9:1 (LogK) to 186.8:1 (MongoDB). On av-
erage, µSlope’s compression ratio is 2.75x of ClickHouse-
String’s, 2.62x of ClickHouse-Pairwise Array’s, 1.34x of
ClickHouse-JSON’s, 6.10x of MongoDB’s, 16.50x of Pos-
greSQL’s, and 15.71x of Elasticsearch’s. It surpasses Zstan-
dard’s, LZMA’s, and CLP’s compression ratios by factors of
2.34x, 1.70x, and 1.50x respectively. but it is only 4.8% on
average, which still makes µSlope’s compression ratio the
best among all.

We delve into the breakdown of compressed data size
in µSlope, using LogP as an example. Out of the 710 MB
total compressed data, the MPT and schema map only oc-
cupy 3.6KB and 1.9KB, respectively. Dictionaries account
for 26.3% of the storage space, with the remaining 73.7%
attributed to compressed columns of ERTs.

Figure 11 shows the average ingestion speed on all datasets.
µSlope’s ingestion speed is slower than ClickHouse-String
and ClickHouse-Pairwise Array because ClickHouse-String
directly store the raw JSON string and does not parse it, while
ClickHouse-Pairwise Array only parses the top-level fields.
In comparison, µSlope parses every field of the entire JSON
record. µSlope’s ingestion is slighter slower than CLP and
faster than all other fully-parsed JSON tools, outperforming

2 4 8 16 32 64 128 256 512
ingestion speed (MB/s)

µSlope
CLP

Zstandard
LZMA

ClickHouse-String
ClickHouse-Pairwise Array

ClickHouse-JSON
MongoDB

PostgreSQL
Elasticsearch

Figure 11: Average ingestion speed (log scale).

ClickHouse-JSON, MongoDB, PostgreSQL and Elasticsearch
by 19.3%, 186.7%, 419.8%, 1127.3% respectively. Addition-
ally, it exceeds LZMA’s performance by 814.8%.

8.3 Search Performance
We use 15 queries to evaluate the search performance of
µSlope and other tools on Uber LogF, LogO and MongoDB
logs. For queries on LogF and LogO, they are the top queries
performed in Uber (with repetitive patterns removed). For
queries on MongoDB, we try to cover different possible pat-
terns. Table 2 shows the queries in KQL [6]. For ClickHouse
and PostgreSQL, we convert KQL queries to SQL queries
with their built-in functions and operators. For MongoDB, we
use their own query language.

Query B is a special case. It does not specify any search
key, but searches for all fields for the matched UUID. Other
tools does not natively support this kind of query so we have
to convert it to a full-text search instead. It works for Query B,
but may get incorrect results for other queries that span across
keys and values. MongoDB is required to have a text index
on that table to do a full-text search. However, after running
for 196 seconds, it reports an error.

We clear the OS buffer cache before every run. This is
to simulate search on archival storage. However, by default
MongoDB uses about half of the memory (63.5G in our ma-
chine) to cache uncompressed data and the cache cannot be
cleared, while others use only a minimum amount (or even
no) or the cache can be cleared. For a fair comparison, we test
MongoDB with the minimum cache size.

Figure 12 shows the query latency of those 15 queries on
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Queries for LogF
A zone:... AND NOT @reserved.collector.filename:stdout AND runtime_env:staging
B *: "d...-...-...-...-...9"
C level: error AND message: d...*
D timestamp >date("2022-04-14T08:00:00.000") AND timestamp <date("2022-04-14T08:15:00.000")

Queries for LogO
E headers.x-tenancy:testing* AND NOT headers.x-tenancy: testing/.../4...-...-...-...6d AND headers.caller-procedure:"fareEstimateV2" AND headers.x-source:public
F headers.x-region-name:... AND headers.x-tenancy:"production" AND caller:*create*
G level: error AND NOT @reserved.collector.filename: executor AND runtime_env:production AND partition: compute-... AND instance: 3...5 AND mesos_executor_id: t...5-6
H level: error AND message: "Error handling inbound request."
I glue.handler.method: get_ranked_products AND env: production AND level: error

Queries for MongoDB logs (public dataset)
J attr.tickets: *
K id: 22419
L attr.message.msg: log_release* AND attr.message.session_name: connection
M ctx: initandlisten AND (NOT msg: "WiredTiger message" OR attr.message.msg: log_remove*)
N c: WTWRTLOG AND attr.message.ts_sec >1679490000
O ctx: FlowControlRefresher and attr.numTrimmed: 0

Table 2: Queries used in our experiments. “...” is used to anonymize (part) of the actual values.
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Figure 12: Query latency of µSlope and other tools (log scale).

different tools. It includes both the search time and the time
to write results to the disk. On average, the speed of µSlope
is 2.47x of the fastest setup of ClickHouse (ClickHouse-Pair
Array), 8.09x of PostgreSQL’s, and 6.74x of MongoDB’s.

µSlope outperforms all other tools on 14 queries. The fast
search performance comes from its use of metadata (MPT
and schema map). For example, µSlope outperforms all other
tools by at least 116x on Query J. This query checks the
existence of a key and returns all the records containing that
key. In this case, there are only a small number of schemas
that contain this key, so after µSlope checks its MPT and
schema map, it only needs to decompress a small number of
ERTs. For other tools, they will have to scan nearly the entire
dataset. Query L, N, O are also similar as there are only a
small number of matching schemas and µSlope only needs
to decompress small ERTs. Note that even for these queries,
the schema metadata lookup is not the bottleneck. For Query
J, for example, searching the MPT, schema map and ERTs
only accounts for 5.5% of the total query time and loading
dictionaries accounts for 73.0%. An even more extreme case
is that µSlope can return no-match right after the MPT and
schema map search, because, say, the query searches for a key
that doesn’t exist. In fact, our query benchmark does not even
contain such best-case scenario for µSlope.

For Query B, µSlope is slower than ClickHouse-String and
ClickHouse-Pairwise Array because µSlope needs to scan all
the ERTs and decode them. , while the two ClickHouse setups
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Figure 13: Compression ratio of µSlope against Zstandard on syn-
thetic logs. The number enclosed in brackets within the legend
represents the repetition ratio of variable values.

can perform a full-text search on the raw JSON string values,
without the need to decode them.

8.4 Synthetic Evaluation

The efficiency of µSlope relies on the repetitiveness of
schemas and variable values. To demonstrate the boundaries
of µSlope’s capabilities, we evaluate its compression and
search performance on a corpus of synthetic log data, which
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Figure 14: Query latency of µSlope for needle-in-haystack wildcard
queries on synthetic logs.

varies in both repetitiveness of schemas and variable values.
Each synthetic dataset contains 1GB of data, consisting

of 670K records. Each record has 20 fields. Every key and
value is a UUID. We use UUIDs because they are one of the
most common source of noises (i.e. non-repetitiveness) in
the real logs. To vary the repetitiveness of variable values,
the logs are generated with repetition ratios (§3) of variable
values ranging from 1 to 1000, achieved by randomly drawing
values from a uniform distribution. Specifically, we use four
repetition ratios: 1, 10, 100, and 1000.

To vary the repetitiveness of schemas, we draw schemas
from a power law distribution. Specifically, the n-th most
frequent schema appears in P×(1−P)n of the records (where
n starts from 0). P is a value within the range of (0,1], and
it is a constant within one dataset. For example, the most
frequent schema (n = 0) appears in P of the records, the next
most frequent schema (n = 1) appears on P× (1−P) of the
records, and so on. We use a total of 7 different P values
as shown in Figure 13. The degree of schema repetitiveness
increases with P. When P is the smallest every log record has
a unique schema; when it increases to 1, all records have the
same schema.

In total, we generate 28 (4 different repetition ratios com-
bined with 7 different P values) synthetic datasets each with
a different combination of schema repetitiveness and repe-
tition ratio of the variable values. Figure 13 illustrates the
interplay among compression ratio, schema repetitiveness,
and repetition ratio of variable values. In all scenarios, µSlope
outperforms Zstandard, with the compression ratio increasing
as the repetition ratio of variable values increases. In the ex-
treme case where P approaches 0, the compression ratio drops
notably. This is attributed to each log record having a unique
schema. The small tables and extra metadata overheads lead
to a significant reduction in the compression ratio. However,
the compression ratio quickly increases as P increases to the
next smallest value (10−4) and remains relatively stable.

We evaluate the search performance using a needle in the
haystack query. One variable value is replaced with a fixed
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Figure 15: Compression ratio distribution of 1378 datasets in Uber’s
production logs.

UUID value known as the “needle”, so we can benchmark the
query *: "needle-value". The performance of this query
is influenced by both the repetition ratio of variable values and
schema repetitiveness. Lower repetition ratio leads to larger
variable dictionaries, which are required to be loaded before
decompression and scan, introducing a constant overhead
before any results can be returned. This explains the consistent
gap between each curve in Figure 14. As a result µSlope
sometimes struggles to achieve low response time for datasets
with a low repetition ratio, although this challenge can be
partially addressed in practice by generating smaller archives.

Figure 14 shows a significant decline in query performance
as P approaches 0. This is because in this extreme case where
each record has a unique schema, we have a large number of
small Encoded Record Tables where each has only one record.
This significantly slows down the decompression and scan as
we need to load a large number of small tables, and each table
is decompressed using a different Zstandard stream.

8.5 Scalability Evaluation

We evaluate µSlope on 434TB of production logs from Uber
representing 1,378 datasets, and select a 26.2TB subset from
Uber’s LogF to evaluate search scalability. This production
dataset achieves an average compression ratio of 30.5:1, Fig-
ure 15 shows the compression ratio for each of the 1378
dataset in sorted order. The outliers with low compression
ratio typically contain large amounts of random non-repeating
binary data such as base64 encoded binary data and UUIDs.
For example the index with the worst compression ratio has a
column which appears to contain several megabytes of base64
encoded binary data in each log message.

To evaluate the scalability of search we run queries A-G
from Table 2 on 26.2TB of Uber’s LogF data with increas-
ing amounts of parallelism. Values in the queries have been
changed to match this dataset where appropriate. Results for
query F have been omitted because its characteristics are
identical to query E on this dataset.

Experiments are run across 8 containers, each has access to
96 cores, 2TB of network attached SSD, and 32GB of RAM.
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Figure 16: Query completion time and response time of µSlope
(log scale) using 4, 8, 16 and 32 workers per container. The number
of matching records for each query is indicated at the bottom.

There are a total of 2,155 archives after compression. These
archives are evenly distributed across the 8 containers. The
maximum skew between any two containers is 11% in both
data size and in number of archives.

The searches are run using 4, 8, 16, and 32 workers per
container. Each archive is processed by a single worker pro-
cess. We show two results: (1) end-to-end completion time
including marshalling all matching records, and (2) time to get
the first matching record, i.e. response time. This experiment
was conducted before we implemented our optimizations for
JSON marshalling, so archives which contain many matching
results can have an outsized impact on overall query perfor-
mance. Figure 16 shows how the search performance scales
with the increase of number of workers per container.

All of the queries scale well to 16 workers but have limited
scalability to 32 workers. This limit is imposed by different
kinds of skew in the dataset. For example in Query A a single
archive becomes a bottleneck for completion time because
it returns 5.9x more results than average, and in Query D all
19 archives with matching results happen to be allocated to
the same container. Query E is extremely fast because it only
needs to consult the MPT before terminating.

In practice, we manage this sort of skew within a dataset
by producing smaller archives.

9 Limitations and Future Work

µSlope is a system designed for storing and searching archival
semi-structured log data. It is not suitable for data that can
be updated or deleted. Since µSlope leverages the repetitive
nature of logs to achieve a high compression ratio, if the
data has too many different schema structures or values are
unique overall, µSlope may not be able to achieve a high
compression.

As for search, µSlope provides support for basic queries,
including term search, field search, wildcard search, and range
search. However, currently it lacks support for more complex
queries like joins. Besides, µSlope may struggle with queries

that necessitate scanning the entire dataset and generating a
large number of results.

The current implementation of µSlope compresses each
table into its own Zstandard stream. We plan to implement
optimizations to combine small tables into fewer streams (to
improve compression ratio and amortize the cost of decom-
pressing each small table), and split large tables into several
streams by columns (to avoid decompressing columns in large
tables not being searched on unless necessary). We also plan
to improve scan performance and support more aggregation
operators in the future.

10 Concluding Remarks

This paper presents µSlope, a resource efficient system for
semi-structured log management that losslessly compresses
the log data, and enables search without full decompression.
Its design is guided by a careful analysis on the characteris-
tics of real-world semi-structured logs and their query pat-
terns. µSlope does not require any user annotation, and can
automatically handle the dynamic schema structures. Our
evaluation shows that µSlope achieves unprecedented com-
pression ratio of up to 186.8:1, and its search speed is at least
2.47x of the fastest existing SSDMSes. µSlope is available at
https://github.com/y-scope/clp.
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