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Abstract
In Proof-of-Stake (PoS) and permissioned blockchains, a com-
mittee of verifiers agrees and sign every new block of trans-
actions. These blocks are validated, propagated, and stored
by all users in the network. However, posterior corruptions
pose a common threat to these designs, because the adversary
can corrupt committee verifiers after they certified a block
and use their signing keys to certify a different block. De-
signing efficient and secure digital signatures for use in PoS
blockchains can substantially reduce bandwidth, storage and
computing requirements from nodes, thereby enabling more
efficient applications.

We present Pixel, a pairing-based forward-secure multi-
signature scheme optimized for use in blockchains, that
achieves substantial savings in bandwidth, storage require-
ments, and verification effort. Pixel signatures consist of two
group elements, regardless of the number of signers, can be
verified using three pairings and one exponentiation, and sup-
port non-interactive aggregation of individual signatures into
a multi-signature. Pixel signatures are also forward-secure
and let signers evolve their keys over time, such that new keys
cannot be used to sign on old blocks, protecting against pos-
terior corruptions attacks on blockchains. We show how to
integrate Pixel into any PoS blockchain. Next, we evaluate
Pixel in a real-world PoS blockchain implementation, show-
ing that it yields notable savings in storage, bandwidth, and
block verification time. In particular, Pixel signatures reduce
the size of blocks with 1500 transactions by 35% and reduce
block verification time by 38%.

1 Introduction

Blockchain technologies are quickly gaining popularity for
payments, financial applications, and other distributed appli-
cations. A blockchain is an append-only public ledger that is
maintained and verified by distributed nodes. At the core of
the blockchain is a consensus mechanism that allows nodes
∗Authors are listed alphabetically.

to agree on changes to the ledger, while ensuring that changes
once confirmed cannot be altered.

In the first generation of blockchain implementations, such
as Bitcoin, Ethereum, Litecoin, the nodes with the largest
computational resources choose the next block. These im-
plementations suffer from many known inefficiencies, low
throughput, and high transaction latency [17, 27, 49]. To over-
come these problems, the current generation of blockchain im-
plementations such as Algorand, Cardano, Ethereum Casper,
and Dfinity turn to proofs of stake (PoS), where nodes with
larger stakes in the system —as measured, for instance, by the
amount of money in their account— are more likely to partic-
ipate in choosing the next block [21,24,29,32,34,39,47]. Per-
missioned blockchains such as Ripple [54] and Hyperledger
Fabric [4] take yet another approach, sacrificing openness
for efficiency by limiting participation in the network to a
selected set of nodes.

All PoS-based blockchains, as well as permissioned ones,
have a common structure where the nodes run a consensus
sub-protocol to agree on the next block to be added to the
ledger. Such a consensus protocol usually requires nodes
to inspect block proposals and express their agreement by
digitally signing acceptable proposals. When a node sees
sufficiently many signatures from other nodes on a particular
block, it appends the block to its view of the ledger.

Because the consensus protocol often involves thousands
of nodes working together to reach consensus, efficiency of
the signature scheme is of paramount importance. Moreover,
to enable outsiders to efficiently verify the validity of the
chain, signatures should be compact to transmit and fast to
verify. Multi-signatures [35] have been found particularly
useful for this task, as they enable many signers to create
a compact and efficiently verifiable signature on a common
message [15, 40, 58, 59].

The Problem of Posterior Corruptions. Chain integrity
in a PoS blockchain relies on the assumption that the adver-
sary controls less than a certain threshold (e.g., a third) of the
total stake; an adversary controlling more than that fraction
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may be able to fork the chain, i.e., present two different but
equally valid versions of the ledger. Because the distribution
of stake changes over time, however, the real assumption be-
hind chain integrity is not just that the adversary currently
controls less than a threshold of the stake, but that he never
did so at any time in the past.

This assumption becomes particularly problematic if stake
control is demonstrated through possession of signature keys,
as is the case in many PoS and permissioned blockchains.
Indeed, one could expect current stakeholders to properly
protect their stake-holding keys, but they may not continue to
do so forever, especially after selling their stake. Nevertheless,
without additional precautions, an adversary who obtains keys
that represent a substantial fraction of stake at some point in
the past can compromise the ledger at any point in the future.
The problem is further aggravated in efficient blockchains that
delegate signing rights to a small committee of stakeholders,
because the adversary can gain control of the chain after
corrupting a majority of the committee members.

Referred to by different authors as long-range attacks [20],
costless simulation [52], and posterior corruptions [12], this
problem is best addressed through the use of forward-secure
signatures [3,9,41,46]. Here, each signature is associated with
the current time period, and a user’s secret key can be updated
in such a way that it can only be used to sign messages for
future time periods, not previous ones. An adversary that cor-
rupts an honest node can therefore not use the compromised
key material to create forks in the past of the chain.

1.1 Our Results

We present the Pixel signature scheme, which is a pairing-
based forward-secure multi-signature scheme for use in PoS-
based blockchains that achieves substantial savings in band-
width and storage requirements. To support a total of T
time periods and a committee of size N, the multi-signature
comprises just two group elements and verification requires
only three pairings, one exponentiation, and N−1 multipli-
cations. Pixel signatures are almost as efficient as BLS multi-
signatures, as depicted in Figure 1, but also satisfy forward-
security; moreover, like in BLS multi-signatures, anybody
can non-interactively aggregate individual signatures into a
multi-signature.

Our construction builds on prior forward-secure signatures
based on hierarchical identity-based encryption (HIBE) [14,
18,22,26] and adds the ability to securely aggregate signatures
on the same message as well as to generate public parameters
without trusted set-up.

We achieve security in the random oracle model under a
variant of the bilinear Diffie-Hellman inversion assumption
[11, 14]. At a very high level, the use of HIBE techniques
allows us to compress O(logT ) group elements in a tree-
based forward-secure signature into two group elements, and
secure aggregation allows us to compress N signatures under

N public keys into a single multi-signature of the same size
as a single signature.

To validate Pixel’s design, we compared the performance
of a Rust implementation [1] of Pixel with previous forward-
secure tree-based solutions. We show how to integrate Pixel
into any PoS blockchain. Next, we evaluate Pixel on the Al-
gorand blockchain, showing that it yields notable savings in
storage, bandwidth, and block verification time. Our exper-
imental results show that Pixel is efficient as a stand-alone
primitive and in use in blockchains. For instance, compared
to a set of N = 1500 tree-based forward-secure signatures
(for T = 232) at 128-bit security level, a single Pixel signature
that can authenticate the entire set is 2667x smaller and can
be verified 40x faster (c.f. Tables 1 and 3). Pixel signatures
reduce the size of Algorand blocks with 1500 transactions
by ≈ 35% and reduce block verification time by ≈ 38% (c.f.
Figures 3 and 4).

1.2 Related Work

Multi-signatures can be used to generate a single short sig-
nature validates that a message m was signed by N different
parties [6,10,13,31,35,43,44,48,50], Multi-signatures based
on the BLS signature scheme [13, 15, 16, 53] are particularly
well-suited to the distributed setting of PoS blockchains as
no communication is required between the signers; anybody
can aggregate individual signatures into a multi-signature.
However, these signatures are not forward-secure.

Tree-based forward-secure signatures [9, 36, 41, 46] can be
used to meet the security requirements, but they are not very
efficient in an N-signer setting because all existing construc-
tions have signature size at least O(N logT ) group elements,
where T is an upper bound on the number of time periods.
Some schemes derived from hierarchical identity-based en-
cryption (HIBE) [14, 18, 22] can bring that down to O(N)
group elements, which is still linear in the number of signers.

The only forward-secure multi-signature schemes that ap-
peared in the literature so far have public key length linear
in the number of time periods T [45] or require interaction
between the signers to produce a multi-signature [55], neither
of which is desirable in a blockchain scenario. The forward-
secure multi-signature scheme of Yu et al. [61] has signature
length linear in the number of signers, so is not really a multi-
signature scheme.

Combining the generic tree-based forward-secure signature
scheme of Bellare-Miner [9] with BLS multi-signatures [13,
16] gives some savings, but still requires O(T ) “certificates”
to be included in each multi-signature. Batch verification [8]
can be used to speed up verification of the certificates to some
extent, but does not give us any space savings. Compared with
existing tree-based forward-secure signatures in [9,36,41,46],
our savings are two-fold:

• we reduce the size of the signature set for N commit-

2094    29th USENIX Security Symposium USENIX Association



scheme key update sign verify |σ| |pk| |sk| forward security
BLS multi-signatures [13, 15, 53] – 1 exp 2 pair 1 1 O(1) no
Pixel multi-signatures (this work) 2 exp 4 exp 3 pair + 1 exp 2 1 O((logT )2) yes

Figure 1: Comparing our scheme with BLS signatures. Here, “exp” and “pair” refer to number of exponentiations and pairings
respectively. T denotes the maximum number of time periods. We omit additive overheads of O(logT ) multiplications. The
column “key update” refers to amortized cost of updating the key for time t to t +1. The columns |σ|, |pk|, and |sk| denote the
sizes of signatures, public keys, and secret keys, respectively, in terms of group elements. Aggregate verification for N signatures
requires an additional N−1 multiplications over basic verification.

tee members from O(N logT ) group elements1 to O(1)
group elements; and

• we reduce the verification time from O(N) exponentia-
tions to O(1) exponentiation and O(N) multiplications.

1.3 Paper Organization

The rest of this paper is organized as follows:

• In Section 2, we give a high level technical description
of our new pairing-based forward-secure multi-signature
scheme.

• In Sections 4 and 5, we describe the scheme in details.
We prove the security of the construction in the random
oracle model under a variant of a bilinear Diffie-Hellman
inversion problem.

• In Section 6, we explain how to apply Pixel to PoS
blockchains to solve posterior corruptions.

• In Section 7, we evaluate the efficiency savings for stor-
age, bandwidth, and block verification time from using
Pixel on the Algorand PoS blockchain.

2 Technical Overview

Our construction builds on prior forward-secure signatures
based on hierarchical identity-based encryption (HIBE) [14,
18,22,26] and adds the ability to securely aggregate signatures
on the same message as well as to generate public parameters
without trusted set-up.

Overview of our scheme. Starting with a bilinear group
(G1,G2,Gt) with e : G1 ×G2 → Gt of prime order q and
generators g1,g2 for G1,G2 respectively, a signature on M ∈
Zq at time t under public key gx

2 is of the form:

σ = (σ′,σ′′) = (hx ·F(t,M)r,gr
2) ∈G1×G2

1 Each tree-based signature comprise O(logT ) group elements corre-
sponding to a path in a tree of depth logT (see Section 7 for details), and
there are N such signatures, one for which committee member.

where the function F(t,M) can be computed with some public
parameters (two group elements in G1 in addition to h ∈G1)
and r is fresh randomness used for signing. Verification relies
on the relation:

e(σ′,g2) = e(h,y) · e(F(t,M),σ′′)

and completeness follows directly:

e(σ′,g2) = e(hx ·F(t,M)r,g2)

= e(hx,g2) · e(F(t,M)r,g2)

= e(h,gx
2) · e(F(t,M),gr

2)

= e(h,y) · e(F(t,M),σ′′) .

Note that e(h,y) can be precomputed to save verification
computation.

Given N signatures σ1, . . . ,σN ∈ G1 ×G2 on the same
message M at time t under N public keys gx1

2 , . . . ,gxN
2 , we

can produce a multi-signature Σ on M by computing the
coordinate-wise product of σ1, . . . ,σN . Concretely, if σi =
(hxi ·F(t,M)ri ,gri

2 ), then

Σ = (hx1+···+xN ·F(t,M)r′ ,gr′
2 )

where r′ = r1+ · · ·+rN . To verify Σ, we first compute a single
aggregate public key that is a compressed version of all N
individual public keys

apk← y1 · . . . · yN ,

and verify Σ against apk using the standard verification equa-
tion.

How to generate and update keys. To complete this
overview, we describe a simplified version of the secret keys
and update mechanism, where the secret keys are of size O(T )
instead of O((logT )2). The construction exploits the fact that
the function F satisfies

F(t,M) = F(t,0) ·F ′M

for some constant F ′. This means that in order to sign mes-
sages at time t, it suffices to know

s̃kt = {hx ·F(t,0)r,F ′r,gr
2}
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from which we can compute (hx ·F(t,M)r,gr
2).

The secret key skt for time t is given by:

s̃kt , s̃kt+1, · · · , s̃kT

generated using independent randomness. To update from
the key skt to skt+1, we simply erase s̃kt . Forward security
follows from the fact that an adversary who corrupts a signer
at time t only learns skt and, in particular, does not learn s̃kt ′

for t ′ < t, and is unable to create signatures for past time slots.
To compress the secret keys down to O((logT )2) without

increasing the signature size, we combine the tree-based ap-
proach in [22] with the compact HIBE in [14]. Roughly speak-
ing, each skt now contains logT sub-keys, each of which con-
tains O(logT ) group elements and looks like an “expanded”
version of s̃kt . (In the simplified scheme, each skt contains
T − t +1 sub-keys, each of which contains three group ele-
ments.)

Security against rogue-key attacks. The design of multi-
signature schemes must take into account rogue-key attacks,
where an adversary forges a multi-signature by providing
specially crafted public keys that are correlated with the public
keys of the honest parties. We achieve security against rogue-
key attacks by having users provide a proof of possession
of their secret key [13, 53]; it suffices here for each user to
provide a standard BLS signature y′ on its public key y (cf.
the proof π in the key generation and verification algorithms
in Section 5.2).

Avoiding trusted set-up. Note that the common parame-
ters contain uniformly random group elements h,h0, . . . ,hlogT
in G2 which are used to define the function F . These elements
can be generated using a indifferentiable hash-to-curve algo-
rithm [19,60] evaluated on some fixed sequence of inputs (e.g.
determined by the digits of pi), thereby avoiding any trusted
set-up.

2.1 Discussion
Related works. The use of HIBE schemes for forward se-
crecy originates in the context of encryption [22] and has
been used in signatures [18,26], key exchange [33] and proxy
re-encryption [30]. Our signature scheme is quite similar
to the forward-secure signatures of Boyen et al. [18] and
achieves the same asymptotic complexity; their construction
is more complex in order to achieve security against untrusted
updates. The way we achieve aggregation is similar to the
multi-signatures in [43].

Alternative approaches to posterior security. There are
two variants of the posterior attack: (i) a short-range vari-
ant, where an adversary tries to corrupt a committee mem-
ber prior to completion of the consensus sub-protocol, and

(ii) a long-range variant as explained earlier. Dfinity [34],
Ouroboros [39] and Casper [21] cope with the short-range
attacks by assuming a delay in attacks that is longer than the
running time of the consensus sub-protocol. For long-range
attacks, Casper adopts a fork choice rule to never revert a final-
ized block, and in addition, assumes that clients log on with
sufficient regularity to gain a complete update-to-date view of
the chain. We note that forward-secure signatures provide a
clean solution against both attacks, without the need for fork
choice rules or additional assumptions about the adversary
and the clients.

Application to permissioned blockchains. Consensus
protocols, such as PBFT, are also at the core of many per-
missioned blockchains (e.g. Hyperledger), where only ap-
proved parties may join the network. Our signature scheme
can similarly be applied to this setting to achieve forward
secrecy, reduce communication bandwidth, and produce com-
pact block certificates.

3 Preliminaries

Let G1,G2,Gt be multiplicative groups of prime order q with
a non-degenerate pairing function e : G1×G2→Gt. Let g1
and g2 be generators of G1 and G2, respectively.

In analogy with the weak bilinear Diffie-Hellman inver-
sion problem `-wBDHI∗ [14], which was originally defined
for Type-1 pairings (i.e., symmetric pairings where we have
G1 =G2), we define the following variant for Type-3 pairings
denoted `-wBDHI∗3.

Input: A1 = gα
1 , A2 = g(α

2)
1 , . . . , A` = g(α

`)
1 ,

B1 = gα
2 , B2 = g(α

2)
2 , . . . , B` = g(α

`)
2 ,

C1 = gγ

1 , C2 = gγ

2

for α,γ←$ Zq

Compute: e(g1,g2)
(γ·α`+1)

The advantage Adv`-wBDHI∗3
G1×G2

(A) of an adversary A is defined
as its probability in solving this problem.

As shown in [14], the assumption holds in the generic bi-
linear group model, with a lower bound of Ω(

√
q/`) (with

a matching attack in [25]). Concretely, for the BLS12-381
pairing-friendly curve with `= 32, the best attack has com-
plexity roughly 2125.

Alternatively, our scheme could be proved secure under a
variant of the above assumption where the adversary has to

output g(α
`+1)

1 given as input A1, . . . ,A`,B1, . . . ,B` and given
access to an oracle ψ : gx

2 7→ gx
1. Because of the ψ oracle,

this assumption is incomparable to the `-wBDHI assumption
described above.
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4 Forward-Secure Signatures

We begin by describing a forward-secure signature scheme,
and then extend the construction to a multi-signature scheme
in Section 5.

4.1 Definition
We use the Bellare-Miner model [9] to define syntax and
security of a forward-secure signature scheme. A forward-
secure signature scheme FS for a message spaceM consists
of the following algorithms:

Setup: pp←$ Setup(T ). All parties agree on the public pa-
rameters pp. The setup algorithm mainly fixes the distribu-
tion of the parameters given the maximum number of time
periods T . The parameters may be generated by a trusted
third party, through a distributed protocol, or set to “nothing-
up-my-sleeve” numbers. The public parameters are taken to
be an implicit input to all of the following algorithms.

Key generation: (pk,sk1)←$ Kg. The signer runs the key
generation algorithm on input the maximum number of time
periods T to generate a public verification key pk and an
initial secret signing key sk1 for the first time period.

Key update: skt+1←$ Upd(skt). The signer updates its secret
key skt for time period t to skt+1 for the next period using
the key update algorithm. The scheme could also offer a
“fast-forward” update algorithm skt ′ ←$ Upd′(skt , t ′) for any
t ′ > t that is more efficient than repetitively applying Upd.

Signing: σ←$ Sign(skt ,M). On input the current signing key
skt and message M ∈M, the signer uses this algorithm to
compute a signature σ.

Verification. b← Vf(pk, t,M,σ). Anyone can verify a sig-
nature σ for on message M for time period t under public
key pk by running the verification algorithm, which returns 1
to indicate that the signature is valid and 0 otherwise.

Correctness.

Correctness requires that for all messages M ∈M and for all
time periods t ∈ [T ] it holds that

Pr[Vf(pk, t,M,Sign(skt ,M)) = 1] = 1

where the coin tosses are over pp←$ Setup(T ), (pk,sk1)←$

Kg, and ski← Upd(ski−1) for i = 2, . . . , t.
Moreover, if the scheme has a fast-forward update algo-

rithm, then the keys it produces must be distributed identically
to those produced by repetitive application of the regular up-
date algorithm. Meaning, for all t, t ′ ∈ [T ] with t < t ′ ≤ T
and for all skt it holds that sk′t ′ ←$ Upd′(skt , t ′) follows the
same distribution as skt produced as ski ←$ Upd(ski−1) for
i = t +1, . . . , t ′.

Security.

Unforgeability under chosen-message attack for forward-
secure signatures is defined through the following game. The
experiment generates a fresh key pair (pk,sk1) and hands the
public key pk to the adversary A. The adversary is given
access to the following oracles:

Key update. If the current time period t (initially set to t = 1)
is less than T , then this oracle updates the key skt to skt+1
and increases t.

Signing. On input a message M, this oracle runs the signing
oracle with the current secret key skt and message M, and
returns the resulting signature σ.

Break in. The experiment records the break-in time t̄ ← t
and hands the current signing key skt̄ to the adversary. This
oracle can only be queried once, and after it has been queried,
the adversary can make no further queries to the key update
or signing oracles.

At the end of the game, the adversary outputs its forgery
(t∗,M∗,σ∗). It wins the game if σ∗ verifies correctly under
pk for time period t∗ and message M∗, if it never queried the
signing oracle on M∗ during time period t∗, and if it queried
the break-in oracle, then it did so in a time period t̄ > t∗.
We define A’s advantage Advfu-cma

FS (A) as its probability in
winning the above game.

We also define a selective variant of the above notion, re-
ferred to as sfu-cma, where the adversary first has to commit
to t̄, t∗, and M∗. More specifically, A first outputs (t̄, t∗,M∗),
then receives the public key pk, is allowed to make signature
and key update queries until time period t = t̄ is reached, at
which point it is given skt̄ and outputs its forgery σ∗.

4.2 Encoding time periods

Following [22], we associate time periods with all nodes of
the tree according to a pre-order traversal. Prior tree-based
forward-secure signatures [9, 46] associate time periods with
the only leaf nodes; using all nodes allows us to reduce the
amortized complexity of key updates from O(logT ) exponen-
tiations to O(1) exponentiations.

Recall that a tree of depth `− 1 has 2`− 1 nodes, which
then correspond to time periods in [2`−1]. We will identify
the nodes of the tree of depth `−1 with strings in {1,2}≤`−1

where 1 denotes taking the left branch and 2 denotes taking
the right branch. We work with {1,2} instead of {0,1} for
technical reasons: roughly speaking, in the scheme, we need
to work with strings of length exactly `−1, which we obtain
by padding strings in {1,2}≤`−1 with zeroes.

We can also describe the association explicitly as a bijec-
tion between t = t1‖t2‖ . . . ∈ {1,2}≤`−1 and t ∈ [2`− 1] for

USENIX Association 29th USENIX Security Symposium    2097



any integer ` given by

t(t) = 1+
|t|

∑
i=1

(1+2`−i(ti−1)) .

For instance, for ` = 3, this maps ε,1,11,12,2,21,22 to
1,2,3,4,5,6,7. The inverse of the bijection can be described
as

t(1) = ε

t(t) = t(t−1)‖1 if |t(t−1)|< `−1
t(t) = t̄‖2 if |t(t−1)|= `−1

where t̄ is the longest string such that t̄‖1 is a prefix of t(t−1).
The bijection induces a natural precedence relation over

{1,2}≤`−1 where t� t′ iff either t is a prefix of t′ or exists t̄
s.t. t̄‖1 is a prefix of t and t̄‖2 is a prefix of t′. We also write
t, t+1 corresponding to t, t +1.

Next, we associate any t ∈ {1,2}≤`−1 with a set Γt ⊂
{1,2}≤`−1 given by

Γt :=
{

t
}
∪
{

t̄‖2 : t̄‖1 prefix of t
}

that corresponds to the set containing t and all the right-hand
siblings of nodes on the path from t to the root, which also
happens to be the smallest set of nodes that includes a prefix
of all t′ � t. For instance, for `= 3, we have

Γ1 = {1,2},Γ11 = {11,12,2},Γ12 = {12,2} .

The sets Γt satisfy the following properties:

• t′ � t iff there exists u ∈ Γt s.t. u is a prefix of t′;
• For all t, we have Γt+1 = Γt \{t} if |t|= `−1 or Γt+1 =
(Γt \{t})∪{ t‖1, t‖2} otherwise;

• For all t′ � t, we have that for all u′ ∈ Γt′ , there exists
u ∈ Γt such that u is a prefix of u′.

The first property is used for verification and for reasoning
about security; the second and third properties are used for
key updates.

4.3 Construction
We assume the bound T is of the form 2` − 1. We use
the above bijection so that the algorithms take input t ∈
{1,2}≤`−1 instead of t ∈ [T ]. The following scheme is roughly
the result of applying the Canetti-Halevi-Katz technique to
obtain forward security from hierarchical identity-based en-
cryption (HIBE) [23] to the signature scheme determined by
the key structure of the Boneh-Boyen-Goh HIBE scheme [14];
we describe the differences at the end of this subsection.

Setup. LetM be the message space of the scheme and let
Hq :M→ {0,1}κ be a hash function that maps messages

to bit strings of length κ such that 2κ < q. Apart from the
description of the groups, the common system parameters
also contain the maximum number of time slots T = 2`−1
and random group elements h,h0, . . . ,h` ←$ G1. These pa-
rameters could, for example, be generated as the output of a
hash function modeled as a random oracle.

Key generation. Each signer chooses x←$ Zq and computes
y← gx

2. It sets its public to pk = y and computes its initial
secret key sk1←{s̃kε} where s̃kε =

(
gr

2 , hxhr
0 , hr

1, . . . ,h
r
`

)
for r←$ Zq.

Key update. We associate with each w ∈ {1,2}k with k ≤
`−1 a key s̃kw of the form

s̃kw = (c,d,ek+1, . . . ,e`)

=

(
gr

2 , hx(h0

k

∏
j=1

h
w j
j )r , hr

k+1 , . . . , hr
`

)
(1)

for r←$ Zq. Given s̃kw, one can derive a key for any w′ ∈
{1,2}k′ which contains w as a prefix as

(c′,d′,e′k′+1, . . . ,e
′
`) =

(
c ·gr′

2 , d ·
k′

∏
j=k+1

e
w j
j ·(h0

k′

∏
j=1

h
w j
j )r′ ,

ek′+1 ·hr′
k′+1 , . . . , e` ·hr′

`

)
(2)

for r′←$ Zq.

The secret key skt at time period t is given by

skt = {s̃kw : w ∈ Γt} ,

which, by the first property of Γt, contains a key s̃kw for a
prefix w of all nodes t′ � t.
To perform a regular update of skt to skt+1, the signer users
the second property of Γt. Namely, if |t| < `− 1, then the
signer looks up s̃kt = (c,d,e|t|+1, . . . ,e`) ∈ skt, computes

s̃kt‖1← (c,d · e|t|+1,e|t|+2, . . . ,e`) ,

and derives s̃kt‖2 from s̃kt using Equation (2). The signer
then sets skt+1 ← (skt \ s̃kt)∪ {s̃kt‖1, s̃kt‖2} and securely
deletes skt as well as the re-randomization exponent r′ used
in the derivation of s̃kt‖2.

If |t|= `−1, then the signer simply sets skt+1← skt \{s̃kt}
and securely deletes skt.

To perform a fast-forward update of its key to any time t′ � t,
the signer derives keys s̃kw′ for all nodes w′ ∈ Γt′ \Γt by
applying Equation (2) to the key s̃kw ∈ skt such that w is a
prefix of w′, which must exist due to the third property of
Γt. The signer then sets skt′←{s̃kw′ : w′ ∈ Γt′} and securely
deletes skt as well as all re-randomization exponents used in
the key derivations.

2098    29th USENIX Security Symposium USENIX Association



Signing. To generate a signature on message M ∈ M
in time period t ∈ {1,2}≤`−1, the signer looks up s̃kt =
(c,d,e|t|+1, . . . ,e`) ∈ skt , chooses r′←$ Zq, and outputs

(σ1,σ2) =

(
d · eHq(M)

` ·
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r′
, c ·gr′

2

)
.

Verification. Anyone can verify a signature (σ1,σ2) ∈G1×
G2 on message M under public key pk = y in time period t
by checking whether

e(σ1,g2) = e(h,y) · e
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , σ2

)
.

Note that the pairing e(h,y) can be pre-computed from the
public key ahead of time, so that verification only requires
two pairing computations.

Differences from prior works. We highlight the differ-
ences between our scheme and those in [14,18,22], assuming
some familiarity with these prior constructions.

• We rely on asymmetric bilinear groups for efficiency, and
our signature sits in G2×G1 instead of G2

2. This way, it
is sufficient to give out the public parameters h0, . . . ,h` in
G1 (which we can then instantiate using hash-to-curve
without trusted set-up) instead of having to generate
“consistent” public parameters (hi,h′i)= (gxi

1 ,g
xi
2 )∈G1×

G2.

• Our key-generation algorithm also deviates from that in
the Boneh-Boyen-Goh HIBE, which would set

pk = e(g1,g2)
x,h = g1, s̃kε =

(
gr

2,g
x
1hr

0,h
r
1, . . . ,h

r
`

)
.

In our scheme, pk = gx
2 lies in G2 instead of Gt and is

therefore smaller. Setting h to be random instead of g1
also allows us to achieve security under weaker assump-
tions. In fact, setting h = g1 and pk = gx

2 would yield
an insecure scheme in symmetric pairing groups where
g1 = g2, since hx = gx

1 = gx
2 = pk.

4.4 Correctness
We say that a secret key skt for time period t is well-formed
if skt = {s̃kw : w ∈ Γt}, where each s̃kw is of the form of
Equation (1) for an independent uniformly distributed expo-
nent r←$ Zq. We first show that all honestly generated and
updated secret keys are well-formed, and then proceed to the
verification of signatures.

The key skt is trivially well-formed for t = 1, i.e., t = ε, as
can be seen from the key generation algorithm. We now show
that skt is also well-formed after a regular update from time t
to t+1 and after a fast-forward update from t to t′ � t.

In a regular update, assume that skt is well-formed. If
|t|= `−1, then the update procedure sets skt+1← skt \{s̃kt},
which by the second property of Γt and the induction hy-
pothesis means that skt+1 is also well-formed. If |t|< `−1,
the update procedure adds keys s̃kt‖1 and s̃kt‖2 and re-
moves s̃kt from skt, which by the second property of Γt
indeed corresponds to {w : w ∈ Γt+1}. Moreover, s̃kt‖1 is
derived from s̃kt = s̃kt‖1 ← (c,d,e|t|+1, . . . ,e`) as s̃kt‖1 ←
(c,d · e|t|+1,e|t|+2, . . . ,e`), which satisfies Equation (1) with
randomness r that is independent from all other keys in skt+1
because s̃kt 6∈ skt+1. Similarly, s̃kt‖2 satisfies Equation (1)
because it is generated as

c′ = c ·gr′
2 = gr+r′

2

d′ = d · ek+1 · (h0

k

∏
j=1

h
t j
j ·h

wk+1
k+1 )r′

= hx(h0

k

∏
j=1

h
t j
j ·h

2
k+1)

r+r′

e′k+2 = ek+2 ·hr′
k+2 = hr+r′

k+2

...

e′` = e` ·hr′
` = hr+r′

`

satisfying Equation (1) with randomness r+ r′, which is inde-
pendent of the randomness of other keys in skt+1 due to the
uniform choice of r′.

For the fast-forward update procedure, one can see that if
skt is well-formed, then the updated key skt′ for t′ � t is well-
formed as well. Indeed, by adding the keys for nodes in Γt′ \Γt
and removing those for Γt\Γt′ , we have that skt′ contains keys
s̃kw for all w ∈ Γt′ . The randomness independence is guar-
anteed by the random choice of r′ in Equation (2). In the
optimized variant, all keys still have independent randomness
because one key s̃kw′ ∈ skt′ will have the same randomness
r as some key s̃kw ∈ skt where w is a prefix of w′. That ran-
domness is independent from all other keys in skt′ , however,
because the key s̃kw does not occur in skt′ . Indeed, by the
definition of Γt′ , one can see that Γt′ cannot have elements
w 6= w′ with w a prefix of w′.

To see why signature verification works, observe that a
signature for time period t and message M is computed from
a key s̃kt = (c,d,e|t|+1, . . . ,e`) in a well-formed key skt. The
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left-hand side of the verification equation is therefore

e(σ1,g2) = e
(

d · eHq(M)
` ·

(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r′
, g2

)

= e
(

hx(h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r+r′
, g2

)

= e(hx,g2) · e
(

h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , g2

)r+r′

= e(h,y) · e
(

h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , σ2

)
.

4.5 Security
Theorem 1. For any fu-cma adversary A against the above
forward-secure signature scheme in the random-oracle model
for T = 2`−1 time periods, there exists an adversary B with
essentially the same running time and advantage in solving
the `-wBDHI∗3 problem

Adv`-wBDHI∗3
G1×G2

(B) ≥ 1
T ·qH

·Advfu-cma
FS (A)− q2

H
2κ

,

where qH is the number of random-oracle queries made by
A.

We refer the interested reader to Appendix A for the full
proof of security.

5 Forward-Secure Multi-Signatures

To obtain a multi-signature scheme, we observe that the
component-wise product (Σ1,Σ2) = (∏n

i=1 σi,1,∏
n
i=1 σi,2) of

a number of signatures (σ1,1,σ1,2), . . . ,(σn,1,σn,2) satisfies
the verification equation with respect of the product of public
keys Y = y1 · . . . · yn. This method of combining signatures is
vulnerable to a rogue-key attack, however, where a malicious
signer chooses his public key based on that of an honest signer,
so that the malicious signer can compute valid signatures for
their aggregated public key. The scheme below borrows a
technique due to Ristenpart and Yilek [53] using proofs of
possession (denote by π below) to prevent against these types
of attack.

5.1 Definitions
In addition to the algorithms of a forward-secure signa-
ture scheme in Section 4.1, a forward-secure multi-signature
scheme FMS in the key verification model has a key gener-
ation that additionally outputs a proof π for the public key:

Key generation: (pk,π,sk1)←$ Kg. The key generation al-
gorithm generates a public verification key pk, a proof π, and
an initial secret signing key sk1 for the first time period.

and additionally has the following algorithms:

Key verification: b← KVf(pk,π). The key verification al-
gorithm returns 1 if the proof pk is valid for pk and returns 0
otherwise.

Key aggregation: apk ←$ KAgg(pk1, . . . ,pkn). On input a
list of individual public keys (pk1, . . . ,pkn), the key aggre-
gation returns an aggregate public key apk, or ⊥ to indicate
that key aggregation failed.

Signature aggregation. Σ ←$ SAgg((pk1,σ1), . . . ,
(pkn,σn), t,M). Anyone can aggregate a given list of
individual signatures (σ1, . . . ,σn) by different signers with
public keys (pk1, . . . ,pkn) on the same message M and for
the same period t into a single multi-signature Σ.

Aggregate verification. b←AVf(apk, t,M,Σ). Given an ag-
gregate public key apk, a message M, a time period t, and
a multi-signature Σ, the verification algorithm returns 1 to
indicate that all signers in apk signed M in period t, or 0 to
indicate that verification failed.

Correctness. Correctness requires that KVf(pk,π) = 1
with probability one if (pk,π,sk1)←$ Kg and that for all mes-
sages M ∈ M, for all n ∈ Z, and for all time periods t ∈
{0, . . . ,T −1}, it holds that AVf(apk, t,M,Σ) = 1 with proba-
bility one if (pki,πi,ski,1)←$ Kg, apk←$ KAgg(pk1, . . . ,pkn),
ski, j ←$ Upd(ski, j−1) for i = 1, . . . ,n and j = 2, . . . , t, σi ←$

Sign(ski,t ,M) for i = 1, . . . ,n, and Σ←$ SAgg((pk1,σ1), . . . ,
(pkn,σn), t,M).

Security. Unforgeability (fu-cma) is defined through a
game that is similar to that described in Section 4.1. The
adversary is given the public key pk and proof π of an hon-
est signer and access to the same key update, signing, and
break-in oracles. However, at the end of the game, the ad-
versary’s forgery consists of a list of public keys and proofs
(pk∗1,π

∗
1, . . . ,pk∗n,π

∗
n), a message M∗, a time period t∗, and a

multi-signature Σ∗. The forgery is considered valid if

• pk ∈ {pk∗1, . . . ,pk∗n},
• the proofs π∗1, . . . ,π

∗
n are valid for public keys

pk∗1, . . . ,pk∗n according to KVf,

• Σ∗ is valid with respect to the aggregate public key apk∗

of (pk∗1, . . . ,pk∗n), message M∗, and time period t∗,

• t̄ > t∗,

• and A never made a signing query for M∗ during time
period t∗.

Our security model covers rogue-key attacks because the
adversary first receives the target public key pk, and only
then outputs the list of public keys pk∗1, ...,pk∗n involved in its
forgery. The only condition on these public keys is that they
are accompanied by valid proofs π∗1, ...,π

∗
n.
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5.2 Construction
Let HG1 : {0,1}∗ → G∗1 be a hash function. The multi-
signature scheme reuses the key update and signature algo-
rithms from the scheme from Section 4.3, but uses different
key generation and verification algorithms, and adds signature
and key aggregation.

Key generation. Each signer chooses x←$ Zq and computes
y← gx

2 and y′ ← HG1(PoP,y), where PoP is a fixed string
used as a prefix for domain separation. It sets its public key
to pk = y, the proof to π = y′, and computes its initial secret
key as sk1← hx.

Key verification. Given a public key pk = y with proof
π = y′, the key verification algorithm validates the proof
of possession by returning 1 if

e(y′,g2) = e(HG1(PoP,y),y)

and returning 0 otherwise.

Key aggregation. Given public keys pk1 = y1, . . . ,
pkn = yn, the key aggregation algorithm computes
Y ←∏

n
i=1 yi and returns the aggregate public key apk = Y .

Signature aggregation. Given signatures σ1 =
(σ1,1,σ1,2), . . . ,σn = (σn,1,σn,2) ∈ G1 × G2 on the
same message M, the signature aggregation algorithm
outputs

Σ = (Σ1,Σ2) =
( n

∏
i=1

σi,1 ,
n

∏
i=1

σi,2
)
.

Aggregate verification. Multi-signatures are verified with
respect to aggregate public keys in exactly the same way
as individual signatures with respect to individual public
keys. Namely, given a multi-signature (Σ1,Σ2) ∈ G1×G2
on message M under aggregate public key apk = Y in time
period t, the verifier accepts if and only if apk 6=⊥ and

e(Σ1,g2) = e(h,Y ) · e
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`+1 , Σ2

)
.

5.3 Security
Theorem 2. For any fu-cma adversary A against the above
forward-secure multi-signature scheme for T = 2`−1 time
periods in the random-oracle model, there exists an adver-
sary B with essentially the same running time that solves the
`-wBDHI∗3 problem with advantage

Adv`-wBDHI∗3
G1×G2

(B) ≥ 1
T ·qH

·Advfu-cma
FMS (A)−

q2
H

2κ
,

where qH is the number of random-oracle queries made by
A.

We defer the interested reader to Appendix B for proof
details.

6 Pixel in PoS-based Blockchains

In this section, we describe how to integrate Pixel into PoS-
based blockchains that rely on forward-secure signatures to
achieve security against posterior corruptions. We summarize
systems that rely on forward-secure signatures, abstract how
signatures are used in these systems, and explain how to apply
Pixel.

PoS Blockchains Secure under Posterior Corruptions.
Ouroboros Genesis and Praos rely on forward-secure signa-
tures to protect against posterior corruptions [5,29,38]. These
blockchains require users to rotate key and assume secure era-
sures. Thuderella is a blockchain with fast optimistic instant
confirmation [51]. The blockchain is secure against poste-
rior corruptions assuming that a majority of the computing
power is controlled by honest players. Similarly, the protocol
relies on forward-secure signatures. Pixel can be applied in
all these blockchains to protect against posterior attacks and
potentially reduce bandwidth, storage, and computation costs
in instances where many users propagate many signatures on
the same message (e.g., a block of transactions). Ouroboros
Crypsinous uses forward-secure encryption to protect against
the same attack [37]. Snow White shows that under a mild
setup assumption, when nodes join the system they can access
a set of online nodes the majority of whom are honest, the
system can defend against posterior corruption attack [28].
The system does not rely on forward-secure signatures.

Background on PoS Blockchains. A blockchain is an
append-only public ledger to which anyone can write and
read. The fundamental problem in blockchains is to agree on
a block of transactions between users. In Proof-of-Stake pro-
tocols, users map the stake or tokens they own in the system
to “voting power” in the agreement protocol. Various types
of PoS systems exist that use different formulas for determin-
ing the weight of each vote. For instance, in bounded PoS
protocols, users must explicitly lock some amount A of their
tokens to participate in the agreement. The weight of each
vote is A/Q, where Q is the total number of locked tokens
who’s users wish to participate in the agreement. Users that
misbehave are punished by a penalty applied to their locked
tokens.

To tolerate malicious users, all PoS protocols run a Byzan-
tine sub-protocol to agree on a block of transactions. The
system is secure, assuming that that majority (often 2/3) of
the tokens participating in the consensus is honest. Each block
is valid if a majority of committee members, weighted by their
stake, approved it.

Pixel Integration. In order to vote on a block B, each mem-
ber of the sub-protocol signs B using Pixel with the current
block number. The consensus is reached when we see a col-
lection of N committee member signatures σ1, . . . ,σN on the
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same block B, where N is some fixed threshold. Finally, we
will aggregate these N signatures into a single multi-signature
Σ, and the pair (B,Σ) constitute a so-called block certificate
and the block B is appended to the blockchain.

Registering public keys. Each user who wishes to partic-
ipate in consensus needs to register a participation signing
key. A user first samples a Pixel key pair and generates a
corresponding PoP. The user then issues a special transaction
(signed under her spending key) registering the new participa-
tion key. The transaction includes PoP. PoS verifiers who are
selected to run an agreement at round r, check (a) validity of
the special transaction, and (b) validity of PoP. If both checks
pass, the user’s account is updated with the new participation
key. From this point, if selected, the user signs on blocks using
Pixel.

Vote generation. To generate a vote on a block number t,
users first update their keys to correspond to the round number.
Subsequently, they sign the block using the correct secret key
and propagate the signature to the network.

Propagating and aggregating signatures. Individual
committee signatures will be propagated through the network
until we see N committee member signatures on the same
block B. Note that Pixel supports non-interactive and incre-
mental aggregation: the former means that signatures can
be aggregated by any party after broadcast without commu-
nicating with the original signers, and the latter means that
we can add a new signature to a multi-signature to obtain a
new multi-signature. In practice, this means that propagating
nodes can perform intermediate aggregation on any number
of committee signatures and propagate the result, until the
block certificate is formed. Alternatively, nodes can aggregate
all signatures just before writing a block to the disk. That is,
upon receiving enough certifying votes for a block, a node
can aggregate N committee members’ signatures into a multi-
signature and then write the block and the certificate to the
disk. To speed up verification of individual committee mem-
ber signatures, a node could pre-compute e(h,y) for the y’s
corresponding to the users with the highest stakes.

Key updates. When using Pixel in block-chains, time cor-
responds to the block number or sub-steps in consensus pro-
tocols. Naively, when associating time with block numbers,
this means that all eligible committee members should update
their Pixel secret keys for each time a new block is formed
and the round number is updated. Assume for simplicity that
each committee member signs at most one block (if not, sim-
ply append a counter to the block number and use that as the
time). If a user is selected to be on the committee at block
number t, it should first update its key to skt (Pixel supports
“fast-forward” key updates from skt to skt ′ for any t ′ > t), and

as soon as it signs a block, updates its key to skt+1 and then
propagates the signature. In particular, there is no need for key
updates when a user is not selected to be on the committee.

7 Evaluation on Algorand Blockchain

In order to measure the concrete efficiency gains of Pixel, we
evaluate it on the Algorand blockchain [56, 57].

Algorand Overview. Algorand is a Pure PoS (PPOS) sys-
tem, where each token is mapped to a single vote in the con-
sensus without any explicit bonding [56,57]. Some users may
opt-out from participation, in which case their tokens are ex-
cluded from the total number of participating tokens (i.e., the
denominator in the weight). Each user maintains an account
state on-chain that specifies her spending key, balance, consen-
sus participation status, participation key, and other auxiliary
information. A user wishing to perform a transaction must
sign it with her corresponding secret key. Users run a Byzan-
tine consensus algorithm to agree on a block of transactions
following the high-level structure we outlined in the previous
section. We call a block certificate to denote a collection of
votes above a certain threshold approving a block. All users
in the network validate and store block certificate (and the
corresponding transactions) on disk. We refer to a node as
a computer system running Algorand client software on the
user’s behalf.

Verifier Vote Structure and Block Certificates. In Algo-
rand, each valid vote for a block proposal includes (a) a proof
that the verifier was indeed selected to participate in the con-
sensus at round r, and (b) a signature on the block proposal.
In more detail, each vote includes the following fields:

• Sender identifier which is represented by a unique public
key registered on-chain (32 bytes).

• Round and sub-step identifiers (8 bytes).

• Block header proposal (32 bytes).

• A seed used as an input to a VRF function for crypto-
graphic sortition (32 bytes).

• VRF credential that proves that the sender was indeed
chosen to sign on the block (96 bytes).

• Forward-secure signature authenticating the vote (256
bytes).

Overall, each vote is about 500 bytes (including some addi-
tional auxiliary information), half of which is for the forward-
secure signature.

Algorand has two voting sub-steps for each round. In the
first sub-step, a supporting set (of expected size 3000) of
verifiers is chosen to vote on a block proposal. In the second
sub-step, a certifying set (of expected size 1500) of verifiers
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keygen key sign aggregate verify agg. aggregate verify agg. |pk| |σ| |skt |
update (N = 1500) (N = 1500) (N = 1500) (N = 3000)

pk ∈G1 1.03 ms 1.8 ms 2.8 ms 7.2 ms 6.7 ms 13.9 ms 8.3 ms 48 B 144 B 43 kB

Figure 2: Performance figures of the Pixel signature scheme algorithms, and the size of public keys, signatures, and secret keys
when using a BLS12-381 curve. N denotes the amount of signatures and keys aggregated, respectively. Maximum number of
time periods is T = 232−1.

is chosen to finalize the block proposal. All verifiers’ votes
propagate in the network during the agreement, but only the
certifying votes are stored long-term and sufficient to validate
a block in the future. Larger recovering set (of expected size
10000) is chosen during a network partition for recovery.

Algorand’s Existing Solution to Posterior Corruptions.
Algorand solves posterior corruptions using forward-secure
signatures instantiated with a d-ary certificate tree [9], which
we call BM-Ed25519 for convenience. The root public key of
an Ed25519 signature scheme is registered on-chain, and keys
associated with the leaves (and subsequently used to sign at
each round) are stored locally by the potential verifiers. For
each block at round r a verifier must (a) produce a valid certifi-
cate chain from the root public key to the leaf associated with
r, and (b) signature of the vote under the leaf key. Algorand
assumes secure erasures and that users delete old keys from
their nodes. BM-Ed25519 is instantiated with 10000-ary tree
and depth 2 (supporting approximately 226.6 time periods).
Ed25519-based signatures have public keys of 32 bytes and
64 bytes signatures. Hence, since a valid certificate chain
must include the intermediary public keys, the resulting size
of each forward-secure signature is 3× 64+ 2× 32 = 256
bytes.

7.1 Efficiency Evaluation

Pixel signatures can serve as a replacement of BM-Ed25519
in Algorand following the same design as outlined Section 6.

Setup. Our experiments are performed on a MacBook Pro,
3.5 GHz Intel Core i7 with 16 GB DDR3. We use Alogrand’s
open-source implentations of Pixel signatures, VRF functions,
Ed25519 signing, and verification [1, 2]. For blockchain ap-
plications, since the public key must live on-chain, we choose
to place Pixel public keys in G1, obtaining smaller public
keys and faster key aggregation during verification. We set
the maximum time epoch to T = 232−1, which is sufficient
to rotate a key every second for 136 years.

Figure 2 shows the runtime of individual Pixel algorithms,
aggregation, and object sizes for the BLS12-381 curve [7].
Next, we measure quantities that affect all nodes participating
in the system: the size of signature sets, bandwidth, and block

Sig. set size BM-Ed25519 BM-BLS Pixel
1 256 B 192 Bytes 144 B
1500 375 KB 141 KB 144 B
3000 750 KB 281 KB 144 B
10000 2.4 MB 938 KB 144 B

Table 1: Total size of signature sets using various forward-
secure signature schemes for 232 time periods. BM-Ed25519
is instantiated using Algorand’s parameters with 10,000-ary
tree of depth 2. BM-BLS is instantiated using the same pa-
rameters with public keys in G1 and signatures in G2.

verification time. In Pixel, the signature set corresponds to a
single multi-signature.

Storage Savings. In Table 1, we compare the sizes of sig-
nature sets that are propagated (for supporting and verifying
votes) and stored (for verifying votes) by all participating
nodes. We instantiate BM-Ed25519 with Algorand param-
eters of 10000-ary and depth 2. For BM-BLS we place the
public key in G1 and signatures in G2. Since BLS supports
aggregation of signatures, we can compress all signatures
in a certificate chain and the signature of the block into 96
B (note that the public key in the certificate chain cannot
be compressed and adds an additional 96 B per signature).
Furthermore, we can compress all signatures across votes.
Pixel signatures authenticating a block with 1500 signatures
are 2667x and 1003x times smaller than signature sets using
BM-Ed25519 and BM-BLS, respectively.

In Figure 3, we show long-term blockchain storage im-
provements using Pixel signatures. We evaluate storage as-
suming various number of transactions in each block. Each
transaction in Algorand is about 232 bytes. We also assume
that the entire expected number of certifying verifiers (1500)
are selected for each block. Given today’s block confirmation
time of just under 4.3 seconds per block, Algorand blockchain
should produce 106 blocks every ≈ 50 days and 108 blocks
every ≈ 13 years. Pixel signatures improve blockchain size
by about 40% and 20% on blocks packed with 1500 and
5000 transactions, respectively. This improvement translates
to smaller overall storage requirements and faster catch-up
speed for new nodes.
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Figure 3: Size of blockchain measured for different total num-
ber of blocks. The top two plots assume average of 1500
transactions per block and the bottom plots assume 5000
transactions per block. All plots assume average of 1500 cer-
tifying votes per block.

Number of connections BM-Ed25519 Pixel
4 4.4 MB 2.5 MB
10 11 MB 6.2 MB
100 109.9 MB 61.8 MB

Table 2: Total bandwidth to propagate a set of 4500 signatures
during consensus to agree on a block of transactions.

We clarify that the savings we obtain from Pixel are com-
plementary to those of Vault [42], which is another system
built on top of Algorand to improve storage and catch-up
speed. In particular, Vault can be used in conjunction with
Pixel to obtain further storage savings. Vault creates “jumps”
between blocks so that the system can confirm block r know-
ing only block r− k for some parameter k (e.g., k = 100).
Instead of downloading every block, a catch-up node in Vault
only needs to download every kth block. Even using Vault,
users would need to download and store about 106 blocks for
every ≈ 13 years of blockchain operation.

Bandwidth Savings. Algorand uses a relay-based propaga-
tion model where users’ nodes connect to a network of relays
(nodes with more resources). Without aggregation during
propagation, Pixel savings for the bandwidth for both relays
and regular nodes come from smaller signatures sizes. Each
relay can serve dozens or hundreds of nodes, depending on the

Sig. set size BM-Ed25519 Pixel Improvement
1 0.18 ms 4.9 ms 27x slower
1500 270 ms 6.7 ms 40x faster
3000 540 ms 8.3 ms 65x faster
10000 1.8 sec 15.6 ms 115x faster

Table 3: Total runtime to verify signature sets authenticating a
block. Pixel verification includes the time to aggregate public
keys.

resources it makes available. A relay must propagate a block
of transactions and the corresponding certificate (with 1500
votes) to each node that it serves. During consensus, however,
an additional 3000 supporting votes are propagated for every
block. Each node connects to 4 randomly chosen relays. Ev-
ery vote that the node receives from a relay, it propagates to
the remaining 3 relays. Duplicate votes are dropped, so each
vote propagates once on each connection. In Table 2, we sum-
marize savings for 4500 votes propagated during consensus
for each block. From the table, we see that a relay with 10
connections saves about 44% of bandwidth. Bandwidth can
be improved even further if Algorand relays were to aggregate
multiple votes before propagating them to the users.

Block Verification Time Savings. Since verifying a Pixel
multi-signature requires only 3 pairings in addition to multi-
plying all the public keys in the signature set, they are faster
to verify than BM-Ed25519 signatures sets. Table 3 shows
that a set of 3000 signatures can be verified about 65x faster.
In Figure 4, we measure the overall savings on block verifica-
tion time. Block verification time is broken into three main
intervals: (a) time to verify vote signatures, (b) time to verify
vote VRF credentials, and (c) time to verify transactions. In
each interval, signature verification dramatically exceeds the
time of any additional checks (e.g., check that the transaction
amount is higher than the user’s balance). Blocks with 1500
and 5000 transactions can be verified 38% and 29% faster,
respectively.

8 Conclusion

In this work, we focus on improving the speed and secu-
rity of PoS consensus mechanisms via optimizing its core
building block – digital signature scheme. We design a new
pairing-based forward-secure multi-signature scheme, Pixel.
We prove that Pixel is secure in the random oracle model
under a variant of Diffie-Hellman inversion problem over bi-
linear groups. Pixel is efficient as a stand-alone primitive and
results in significant performance and size reduction com-
pared to the previous forward-secure signatures applied in set-
tings where multiple users sign the same message (block). For
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Figure 4: Overall Algorand block verification time using BM-
Ed25519 and Pixel signatures. Each block is assumed to con-
tain 1500 certifying votes. The two plots on the left assume
1500 txs/block; whereas the two plots on the right assume
5000 txs/block.

instance, compared to a set of 1500 tree-based forward-secure
signatures, a single Pixel signature that can authenticate the
entire set is 2667x smaller and can be verified 40x faster. We
explained how to integrate Pixel to any PoS blockchains to
solve posterior corruptions problem. We also demonstrate
that Pixel provides significant efficiency gains when applied
to Algorand blockchain. Pixel signatures reduce the size of
Algorand blocks with 1500 transactions by≈ 35% and reduce
block verification time by ≈ 38%.
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A Security Proof of Forward-Secure Signa-
tures

Proof. We prove the theorem in two steps. First, we show
that the scheme is selectively secure when the message space
M= {0,1}κ and Hq is the identity function, meaning, inter-
preting a κ-bit string as an integer in Zq.

Step 1: sfu-cma. We show that the above scheme with mes-
sage space M = {0,1}κ and Hq the identity function is
sfu-cma-secure under the `-wBDHI∗3 assumption by describ-
ing an algorithm B that, given a successful sfu-cma forger
A′, solves the `-wBDHI∗3 problem. On input (A1 = gα

1 ,A2 =

g(α
2)

1 , . . . ,A` = g(α
`)

1 ,B1 = gα
2 , . . . ,B` = g(α

`)
2 ,C), algorithm B

proceeds as follows.
It first runs A to obtain (t̄, t∗,M∗). That is, A receives skt̄

and produces a forgery on t∗,M∗. Let w∗ ∈ {0,1,2}`−1 such
that w∗ = w∗1‖ . . .‖w∗`−1 = t∗‖0`−1−|t∗|. It then sets the public
key and public parameters as

y ← B1

h ← gγ

1 ·A`

h0 ← gγ0
1 ·

`−1

∏
i=1

A−w∗i
`−i+1 ·A

−M∗
1

hi ← gγi
1 ·A`−i+1 for i = 1, . . . , ` ,

where γ,γ0, . . . ,γ`←$ Zq.
By setting the parameters as such, B implicitly sets x = α

and hx = Aγ

1 ·g
(α`+1)
1 . The reduction allows us to achieve two

goals:

• extract the value of hx from a forgery on t∗,M∗ (provided
by A′), allowing B to easily compute its `-wBDHI∗3 so-
lution e(g1,C)(α

`+1);

• simulate s̃kw′ for all w′ ∈ {0,1,2}≤`−1 which are not a
prefix of w∗; this would be useful for simulating both
the signing and the break-in oracle.

Algorithm B responds to A′’s oracle queries as follows.

Key update. There is no need for B to simulate anything
beyond keeping track of the current time period t.

Signing. We first describe how to answer a signing query for
a message M in time period t 6= t∗, and then describe the
case that t = t∗ and M 6= M∗. Let w ∈ {0,1,2}`−1 be such
that w = t‖0`−1−|t|.

Case 1: t 6= t∗. It is easy to see that t 6= t∗ ⇒ w 6= w∗.
(This crucially uses the fact that t, t∗ ∈ {1,2}∗.) Then, let
w′ = w1‖· · ·‖wk denote the shortest prefix of w which
is not a prefix of w∗. Extending the notation of s̃kw′ to
w′ ∈ {0,1,2}≤`−1, we describe how B can derive a valid
key s̃kw′ , from which it is straight-forward to derive both s̃kw
and a signature for t,M. Recall that s̃kw′ has the structure

(c,d,ek+1, . . . ,e`) =(
gr

2 , hx(h0

k

∏
i=1

hwi
i
)r

, hr
k+1 , . . . , hr

`

)

for a uniformly distributed value of r. Focusing on the second
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component d first, we have that

d = hx ·

(
h0 ·

k

∏
i=1

hwi
i

)r

=
(
gγ

1A`

)α ·

((
gγ0

1

`−1

∏
i=1

A−w∗i
`−i+1A−M∗

1

)
·

k

∏
i=1

(
gγi

1A`−i+1

)wi
)r

= Aγ

1g(α
`+1)

1 ·

(
g

γ0+∑
k
i=1 γiwi

1 A
wk−w∗k
`−k+1 ·

`−1

∏
i=k+1

A−w∗i
`−i+1A−M∗

1

)r

,

where the third equality holds because wi = w∗i for 1≤ i < k
and wk 6= w∗k . (Note that in the product notation ∏

`−1
i=k+1

above, we let the result of the product simply be the unity
element if k + 1 > `− 1.) Let us denote the four factors
between parentheses in the last equation as F1, F2, F3, and
F4, and denote their product as F . If we let

r← r′+
αk

w∗k−wk
mod q

for a random r′←$ Zq, then we have that

d = Aγ

1 ·g
(α`+1)
1 ·Fr′ ·F

αk
w∗k−wk .

The first and third factors in this product are easy to compute.
The second factor would allow B to compute the solution

its `-wBDHI∗3 problem as e(g(α
`+1)

1 ,C), so B cannot simply

compute it. The last factor F
αk

w∗k−wk can be written as the
product of

F
αk

w∗k−wk
1 = A

γ0+∑
k
i=1 γiwi

w∗k−wk
k

F
αk

w∗k−wk
2 = A−αk

`−k+1 = g−(α
`+1)

1

F
αk

w∗k−wk
3 =

`−1

∏
i=k+1

A

−w∗i
w∗k−wk
`+k−i+1 =

`−k−2

∏
i=0

A

−w∗k+2+i
w∗k−wk

`−i

F
αk

w∗k−wk
4 = A

−M∗
w∗k−wk
k+1 .

Because 1≤ k ≤ `−1, it is clear that all but the second of
these can be computed from B’s inputs, and that the second

cancels out with the factor g(α
`+1)

1 in d, so that it can indeed
compute d this way. The other components of the key are
also efficiently computable as

c = gr′
2 ·Bk

1
w∗k−wk

ei = hr′
i ·A`+k−i+1 for i = k+1, . . . , `

= hr′
k+i ·A`−i for i = 0, . . . , `− k−1 .

From this key (c,d,ek+1, . . . ,e`) for w′, B can derive a key
for w and compute a signature as in the real signing algo-
rithm.

Case 2: t = t∗,M 6= M∗. For a signing query with t = t∗
but M 6= M∗, B proceeds in a similar way, but derives the
signature (σ1,σ2) directly. Algorithm B can generate a
valid signature using a similar approach as above, but us-
ing the fact that M 6= M∗ instead of wk 6= w∗k . Namely, letting
w = t‖0`−1−|t|, B computes a signature

σ1 = hx ·

(
h0 ·

`−1

∏
i=1

hwi
i ·h

M
`

)r

=
(
gγ

1A`

)α ·

((
gγ0

1 ·
`−1

∏
i=1

A−w∗i
`−i+1 ·A

−M∗
1

)
·

`−1

∏
i=1

(
gγi

1 ·A`−i+1

)wi

· (gγ`
1 ·A1)

M

)r

= Aγ

1 ·g
(α`+1)
1 ·

(
g

γ0+∑
`−1
i=1 γiwi+γ`M

1 ·AM−M∗
1

)r

σ2 = gr
2

by setting

r← r′+
α`

M∗−M
mod q

for r′←$ Zq, so that B can compute (σ1,σ2) from its inputs
A1, . . . ,A`,B1, . . . ,B` similarly to the case that t 6= t∗.

Break in. Here, B needs to simulate skt̄ where t∗ ≺ t̄. This
in turn requires simulating s̃kw for all w ∈ Γt̄. By the first
property of Γt̄ (described in Section 4.2), all of these w are
not prefixes of t∗ and also not prefixes of w∗, and we can
therefore simulate s̃kw exactly as before.

Forgery. When A′ outputs a forgery (σ∗1,σ
∗
2) that satisfies

the verification equation

e(σ∗1,g2) = e(h,y) · e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

M∗
` , σ

∗
2
)
,

then there exists an r ∈ Zq such that

σ
∗
1 = hα ·

(
h0 ·

|t∗|

∏
i=1

ht∗i
i ·h

M∗
`

)r

σ
∗
2 = gr

2 .

From the way that B chose the parameters h,h0, . . . ,h`, one
can see that

σ
∗
1 = Aγ

1 ·g
(α`+1)
1 · (gr

1)
γ0+∑

|t∗|
i=1 γit∗i +γ`M∗

Note that we do not know gr
1, so we cannot directly extract

g(α
`+1)

1 from σ∗1. Instead, observe that we have

e(σ∗1,C2) = e(Aγ

1,C2) · e(g
(α`+1)
1 ,C2)

· e(C1,σ
∗
2)

γ0+∑
|t∗|
i=1 γit∗i +γ`M∗ ,
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from which B can easily compute its output e(g(α
`+1)

1 ,C2) =

e(g1,g2)
(γ·α`+1). It does so wheneverA′ is successful, so that

Adv`-wBDHI∗3
G1×G2

(B) ≥ Advsfu-cma
FS (A′) .

Step 2: fu-cma. Full fu-cma security for M = {0,1}∗ and
with Hq :M→ {0,1}κ modeled as a random oracle then
follows because, given an fu-cma adversary A in the random-
oracle model, one can build a sfu-cma adversary A′ that
guesses the time period t∗ and the index ofA’s random-oracle
query for Hq(M∗), and sets t̄← t∗+1. IfA′ correctly guesses
t∗, then it can use skt̄ to simulate A’s signature, key update,
and break-in queries after time t̄ until A’s choice of break-in
time t̄ ′, at which point it can hand over skt̄ ′ .

If A′ moreover correctly guessed the index of Hq(M∗),
and if A never made colliding queries Hq(M) = Hq(M′) for
M 6= M′, then A’s forgery is also a valid forgery for A′. Note
that forA to be successful, it must hold that t̄ ′ > t∗, so it must
hold that t̄ ′ ≥ t̄. The advantage of A′ is given by

Advsfu-cma
FS (A′) ≥ 1

T ·qH
·Advfu-cma

FS (A)− q2
H

2κ
, (3)

where qH is an upper bound on A’s number of random-oracle
queries. Together with Equation (3), we obtain the inequality
of the theorem statement.

B Security Proof of Forward-Secure Multi-
signatures

Proof. We show how to construct a forger A for the multi-
signature scheme yields a forger A′ for the single-signer
scheme of Section 4.3 such that

Advfu-cma
FS (A′) ≥ Advfu-cma

FS (A) .

The theorem then follows from Theorem 1.
Step 1: simulating A’s view. On input the parameters
(T,h,h0, . . . ,h`) and a public key y for the single-signer
scheme, the single-signer forger A′ chooses r ←$ Z∗q and
stores (y,⊥,gr

1) in a list L. It computes y′← yr and runsA on
the same common parameters and target public key pk = y
and proof π = y′. Observe that π is indeed a valid proof for
pk since e(y′,g2) = e(HG1(PoP,y),y).

Algorithm A′ answers all of A’s key update, signing, and
break-in oracle queries, as well as random-oracle queries for
Hq, by simply relaying queries and responses to and from
A′’s own oracles. Queries to the random oracle for HG1 are
answered as follows.

Random oracle HG1 . On input (PoP,z), A′ checks whether
there already exists a tuple (z, ·,v) ∈ L. If so, it returns v. If
not, it chooses r←$ Z∗q, computes v← hr, adds a tuple (z,r,v)
to L and returns v.y

Step 2: extracting a forgery. When A outputs its forgery

(pk∗1,π
∗
1, . . . ,pk∗n,π

∗
n),M

∗, t∗,Σ∗,

algorithm A′ first verifies the proofs π∗1, . . . ,π
∗
n for public

keys pk∗1, . . . ,pk∗n and computes the aggregate public key apk∗,
creating additional entries in L if necessary. Let pk∗i = yi = gxi

2
and π∗i = y′i. Looking ahead, if pk∗i passes key verification,
then we have y′i = (hxi)ri and since we know ri, we will be
able to “extract” hxi ∈G1.

If all keys are valid, then it holds that y′i = HG1(PoP,yi)
xi

for all i = 1, . . . ,n. Let apk∗ = Y be the aggregate public key.
From the aggregate verification equation

e(Σ∗1,g2) = e(h,Y ) · e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

Hq(M∗)
` , Σ

∗
2
)

and the fact that Y = ∏
n
i=1 yi = y ·g

∑
n
i=1,yi 6=y xi

2 , we have that

e(Σ∗1,g2) = e(h,y) · e(h,g2)
∑

n
i=1,yi 6=y xi ·

e
(
h0 ·

`

∏
j=1

h
t∗j
j ·h

Hq(M∗)
`+1 , Σ

∗
2
)

⇔ e(Σ∗1 ·h
−∑

n
i=1,yi 6=y xi ,g2) = e(h,y)·

e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

Hq(M∗)
` , Σ

∗
2
)
.

For all yi 6= y, A′ looks up the tuple (yi,ri,vi) in L. We know
that vi = hri , and hence that y′i = hrixi . By comparing the last
equation above to the verification equation of the single-signer
scheme, and by observing that y′i = hrixi , we know that the
pair

σ
∗
1 ← Σ

∗
1 ·

n

∏
i=1,yi 6=y

y′i
−1/ri

σ
∗
2 ← Σ

∗
2

is a valid forgery for the single-signer scheme, so A′ can
output M∗, t∗,(σ∗1,σ

∗
2) as its forgery.
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