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Abstract
An exciting insight of recent networking research has been
that path-aware networking architectures are able to funda-
mentally solve many of the security issues of today’s Internet,
while increasing overall efficiency and giving control over
path selection to end hosts. In this paper, we consider three
important issues related to this new networking paradigm:
First, network operators still need to be able to impose their
own policies to rule out uneconomical paths and to enforce
these decisions on the data plane. Second, end hosts should
be able to verify that their forwarding decisions are actually
followed by the network. Finally, both intermediate routers
and recipients should be able to authenticate the source of
packets. These properties have been considered by previous
work, but there is no existing system that achieves both strong
security guarantees and high efficiency.

We propose EPIC, a family of data-plane protocols that
provide increasingly strong security properties, addressing
all three described requirements. The EPIC protocols have
significantly lower communication overhead than comparable
systems: for realistic path lengths, the overhead is 3–5 times
smaller compared to the state-of-the-art systems OPT and
ICING. Our prototype implementation is able to saturate a
40 Gbps link even on commodity hardware due to the use of
only few highly efficient symmetric cryptographic operations
in the forwarding process. Thus, by ensuring that every packet
is checked at every hop, we make an important step towards
an efficient and secure future Internet.

1 Introduction
In the current Internet, end hosts lack control over the paths
that their packets take. While they can sometimes select the
first hop (using multi-homing) [16], the path beyond it is com-
pletely determined by the network. This leads to inefficien-
cies: The network has to choose paths that balance sometimes
conflicting properties such as low latency and high bandwidth.
All packets traverse these chosen paths instead of following
the routes that best fulfill a particular flow’s requirements. The
lack of path control also leads to many other problems, such

as compliance, when data is not allowed to leave a particular
jurisdiction; privacy leaks, when BGP hijacking attacks are
used to de-anonymize users [43]; or re-routing attacks being
used to obtain fake certificates [10]. Another shortcoming of
the current Internet is that there is no way for an end user to
verify the actual path a packet took on its way to the recipi-
ent. While applications such as traceroute enable network
probing, the obtained information cannot be trusted due to
the lack of authentication [2, 4].

Over the past 15 years, different architectures for a new
path-aware Internet have been proposed, attempting to give
transparency and choices to end hosts [3, 9, 22, 37–39, 46, 47].
Like most modern networking protocols, they are composed
of two parts: (i) the low-bandwidth control plane, in which
neighboring nodes exchange topology and path information,
and (ii) the high-bandwidth data plane, in which data packets
are forwarded across the network along the paths discovered
in the control plane. In path-aware networking, paths are
exposed to hosts, allowing them to embed a path of their
choice in the header of their packets (packet-carried forward-
ing state). The data plane then ensures that packets traverse
the network along their source-selected paths. However, to
balance control with autonomous systems (ASes), such as
Internet service and transit providers, end hosts cannot use
arbitrary paths but need to choose from a set of preselected
paths created by the ASes. This restriction, which we call path
authorization, serves both the economic interests of ASes and
network availability, for instance by ruling out forwarding
loops. It can be enforced either by storing allowed paths on
each border router [22, 46], or by cryptographically secur-
ing the publicly distributed path information and verifying
it during forwarding [3, 9, 36–39]. Stateful solutions scale
poorly to the inter-domain context, can suffer from inconsis-
tencies across distributed nodes, and are less efficient than
cryptographic solutions [28]. We thus focus on systems that
use cryptographic authenticators for each (AS-level) hop in
the header of packets. In existing systems, fixing the length
of these authenticators poses a dilemma: sufficiently long
authenticators cause an unacceptably high communication
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overhead, but short and efficient authenticators are insecure:
An attacker can conduct an online brute-force attack, i.e., send
packets with fabricated authenticators between two hosts un-
der his control until a packet is successfully forwarded. So
far, there is no solution that is both efficient and secure.

Parallel to the development of next-generation Internet ar-
chitectures, recognition grew that end hosts and routers need
to authenticate the source and contents of packets (source and
packet authentication), and that the source and destination
need to be able to reconstruct and validate a packet’s actual
path (path validation) [11–13, 15, 28, 36, 45]. A prime appli-
cation of source authentication is defending against denial-of-
service (DoS) attacks, in which network links or end hosts
are flooded with excessive amounts of traffic. These attacks
are often enabled by the attacker’s ability to spoof its own
address; source authentication at network routers protects
both the network and the destination by filtering unauthentic
packets early and before they reach any bottleneck links. In
addition, more sophisticated DoS-defense mechanisms such
as bandwidth-reservation systems fundamentally depend on
an efficient source-authentication mechanism [6]. On the
other hand, path validation protects the path choices made by
the source of packets; if messages need to follow a specific
path due to, e.g., compliance reasons, it is crucial that end
hosts can check whether their path directive is actually obeyed
by on-path routers. Also, in a path-aware Internet, end hosts
may be able to choose between several paths of different prop-
erties and costs; if using a more expensive path (e.g., through
a satellite network), end hosts have a legitimate interest in
obtaining proof that this path was actually traversed.

While solutions exist that provide source authentication
and path validation, they come with significant communica-
tion and computation overhead: ICING [36] and OPT [28,37]
have an overhead of hundreds of bytes per packet for realis-
tic path lengths. A recent proposal, PPV [45], reduces the
overhead and reaches practically feasible efficiency, but only
verifies individual links on the path probabilistically and only
enables source authentication for the destination. However, as
described above, this is insufficient for effectively defending
against DoS attacks; for this application it is necessary that
every packet be checked at every hop.

In this paper, we propose EPIC, a family of cryptographic
data-plane protocols with increasingly strong security proper-
ties, including path authorization, source authentication, and
path validation. The key insight of our protocols is how they
escape the dilemma between low communication overhead
and security: On the one hand, we use relatively short per-hop
authentication fields to limit communication overhead. On
the other hand, we ensure that even strong attackers, with
the ability to forge a single one of these fields by sending a
large number of packets, cannot cause significant damage. We
achieve this in two ways: First, by binding an authenticator
to a specific packet, EPIC ensures that a forged authenticator
does not allow an attacker to send additional packets and thus

prevents volumetric DoS attacks. Second, EPIC uses a longer
authentication field for the destination which is unforgeable
for even strong attackers, such that the very few packets that
were able to deceive intermediate routers are detectable at
the destination. As a result of short per-hop authenticators,
EPIC has substantially lower communication overhead, which
scales better with the path length than state-of-the-art proto-
cols like ICING [36] and OPT [28].

Our main contributions are the following:
• We propose EPIC, a series of protocols that use unique

authenticators for each packet to resolve the security–
efficiency dilemma in the data plane of path-aware Inter-
net architectures.

• We propose a new attacker model that combines a local-
ized Dolev–Yao [17] adversary with a cryptographic or-
acle. This allows us to express EPIC’s resilience against
even powerful attackers. EPIC achieves all desirable
security goals in this stronger attacker model.

• We show that EPIC has a communication overhead that
is 3–5 times smaller compared to the state-of-the-art
solutions OPT and ICING for realistic path lengths.

• We implement EPIC with Intel’s Data Plane Develop-
ment Kit (DPDK) [18] and show that our router imple-
mentation running on commodity hardware can saturate
a 40 Gbps link while using only four processing cores.

2 Problem Definition
We target the problem of securing the inter-domain data-plane
of path-aware Internet architectures. The Internet is a network
of networks, which are commonly called autonomous sys-
tems (ASes). Each AS has centralized control within its own
network, which simplifies managing and securing the com-
munication, e.g., through software-defined networking [8].
By contrast, networking between ASes requires coordina-
tion between separate entities without central control. Our
work focuses on securing this inter-AS communication. We
exclude the equally important, but orthogonal problem of
securing intra-AS networking. Thus, in line with previous
work [35], we abstract from the internal networks of ASes
and consider all security properties at the level of ASes (or
the end hosts that connect to them); in particular, throughout
the remainder of this paper, “hop” stands for “AS-level hop”.

We also only focus on securing the data plane. We assume
that the control plane is secure and constructs paths according
to the ASes’ policies and the participants of our data-plane
protocols obtain the required symmetric keys and path infor-
mation via secure control-plane channels. While securing key
distribution and other control-plane functionality is itself a
challenging task, it is orthogonal to the challenges for the data
plane: as we argue below, in the control plane, asymmetric
cryptography can be used to provide strong security guaran-
tees, whereas in the data plane only symmetric cryptography
is sufficiently efficient. In practice, Internet architectures im-
plement a public-key infrastructure to secure control-plane
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operations, such as the Resource Public Key Infrastructure
(RPKI) of today’s Internet [30].

In our security analysis (§5), we analyze our protocols with
respect to a localized variant of the Dolev–Yao attacker that
fully controls some ASes. EPIC protects the interests of both
end hosts and ASes against such attackers; specifically the
properties that we present in this section.

2.1 Security Requirements for End Hosts
Based on the motivation provided in the introduction, we
consider two fundamental security properties for end hosts:
path validation and packet authentication.

While path control—provided by the underlying path-
aware Internet architecture—allows sources to select a for-
warding path, it is by itself insufficient to protect the security
and privacy interests of end hosts as it does not provide any
guarantees that the directives are actually obeyed. We aim to
additionally achieve path validation, i.e., enabling the desti-
nation of a packet to verify that the actually traversed path
of the packet matches the path intended by the sender and
allowing the source to also verify this proof.

Packet authentication provides proof of a packet’s origin
and content to the destination, preventing source-spoofing or
packet modification that are possible in today’s Internet.

The authentication and path-validation properties for end
hosts presented in this work require source and destina-
tion hosts to trust both of their ASes due to the key-
distribution mechanisms—a trust assumption also found in
similar schemes [28, 37]. Due to this additional trust assump-
tion, network-level authentication does not replace the secu-
rity offered by higher-layer protocols such as TLS. At the
same time, higher-level authentication is not a replacement
for network-layer authentication: network-layer schemes can
be used for packet filtering that sets in prior to stateful TCP
and TLS handshakes, and is thus highly efficient.

2.2 Security Requirements for ASes
For ASes, we consider two important security properties: path
authorization and source authentication.

Each AS is driven by its own economic interests, which
gives rise to path policies that collectively define a set of
authorized paths. The control plane is responsible for authen-
tically and efficiently discovering and distributing these paths
(see §3.1) and ensuring that they do not contain loops and
fulfill the policies of ASes. However, a secure control plane
cannot substitute a secure data plane: the data plane needs
to provide path authorization, i.e., enforce the decisions that
ASes make in the control plane for data traffic. Path authoriza-
tion ensures that malicious end hosts cannot create packets
that will be forwarded along unauthorized paths.

In many DoS attacks on the current Internet, the attacker
spoofs the origin of attack traffic. Source authentication en-
sures that routers can validate the origin of each packet, thus
ruling out source-spoofing attacks. While some protocols

(e.g., IPSec) enable source authentication, they typically only
filter traffic at the destination. Dropping malicious traffic
early is not only more efficient than destination filtering, it
also protects against DoS attacks that target the networking
infrastructure itself [26,42], rather than an end host: source au-
thentication by routers ensures that traffic is filtered before any
bottleneck links are reached. Furthermore, sophisticated DoS-
defense schemes such as bandwidth-reservation systems [6]
rely on source authentication to prevent adversaries from us-
ing up reserved bandwidth of honest sources.

2.3 Efficiency Requirements
The need to keep ever-growing forwarding tables on routers of
the current Internet requires expensive and energy-intensive
hardware and fundamentally limits its scalability. It is there-
fore essential that a future Internet minimizes router state.

The data plane must also have low communication and
computation overhead and minimize additional latency dur-
ing setup and processing. A simple calculation underscores
this: Consider 400 Gbps links, which are currently being de-
ployed in the Internet, and 500 B packets. To saturate the
link, a router needs to process one packet every 10 ns. Even
taking into account pipelining and parallelism, this shows
that packet processing in the data plane must proceed within
hundreds of nanoseconds—ruling out any asymmetric cryp-
tography, which requires several microseconds for a single
operation [19]. In contrast, block ciphers with hardware accel-
eration such as AES can be computed within tens of nanosec-
onds and are suitable to use in the data plane [14, 23].

3 Background and Definitions
To provide the necessary context for constructing our data-
plane protocols, we sketch out an abstract path-aware con-
trol plane, in particular the path-exploration and -registration
mechanisms. This description is based on SCION’s control
plane [37] but abstracts from many low-level details. We
postpone the discussion of how EPIC can be integrated into
real architectures to §7. Table 1 on the next page summarizes
the notation and acronyms.

3.1 Path Exploration and Registration
While we consider paths at an AS-level granularity, we do
include the ingress and egress interface IDs of each (AS-level)
hop. Each AS is free to assign these identifiers to its exter-
nal connections without coordination with other ASes. The
interface IDs are recorded in the control plane and later used
for packet forwarding in the data plane. To discover paths
between any pair of ASes, each AS periodically initiates path
exploration by sending beacons to their neighboring ASes.
An AS can decide which paths to authorize by forwarding the
authenticated beacons to neighbors and registering them at
public path servers.

A beacon is initialized with an absolute timestamp TSpath.
An AS disseminating it adds its own hop information (HI),
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which is used in the data plane as a forwarding directive; a
cryptographic token σ called the hop authenticator, which
allows the data-plane routers to verify the correctness of the
hop information; and a signature, which protects the beacon’s
authenticity in the control plane and is removed when beacons
are turned into data-plane paths by end hosts. HI consists of
an expiration time tsexp relative to the beacon’s timestamp;
the ingress interface, through which the beacon was received;
and the egress interface, through which it is forwarded.

A crucial observation is that ASes can make decisions dur-
ing path exploration about which paths to authorize based on
their own economic interests. To that end, ASes can inspect
the complete upstream path and only forward beacons that do
not contain loops and are consistent with their path policies
to their customers. Path authorization for some AS A, which
we achieve with our data-plane protocols, builds on the hop
authenticator σA: this cryptographic tag is calculated using
a symmetric secret key KA (which is shared only among net-
working entities within A) and can include the upstream path
in addition to A’s own hop information.

3.2 Path Construction and Forwarding
To simplify the presentation, we assume that packets are
always forwarded in opposite direction of beaconing. To
create a forwarding path, an end host HS queries its local
path server (located in the same AS) for beacons from the
intended destination AS A` to his own AS A1. HS selects a
beacon from those offered by the path server, and verifies its
signatures. By removing the signatures from the beacon, the
beacon is turned into a path that can be directly embedded
into the packet. A data-plane packet thus contains the entire
forwarding state. For a path from A1 to A` it has the format

PACKET := (PATH || VALHD || P) , (1a)

PATH :=
(
TSpath || SRC || DEST || HI1 || · · · || HI`

)
, (1b)

VALHD :=
(
tspkt || S1 ||V1 || · · · || S` ||V` ||VSD

)
, (1c)

where P denotes the packet’s payload, SRC := (A1:HS) de-
notes the source, and DEST := (A`:HD) denotes the desti-
nation. VALHD contains fields necessary for verifying the
packet: The timestamp tspkt indicates the time at which the
packet is sent relative to TSpath and is used to provide fresh-
ness. The segment identifier Si is a cryptographic code based
on the hop authenticator σi used for path authorization. It
can be created from σi and uniquely identifies the portion of
the path in between the beacon initiator A` and Ai. The hop
validation fields (HVFs) Vi are cryptographic tags that are
filled in by the source host and allow intermediate routers to
validate the packet. An additional destination validation field
VSD allows the destination to validate the path of the packet.
The definitions of Si, Vi, and VSD will be presented in §4.

The term hop field refers to a triple consisting of hop in-
formation HIi, segment identifier Si, and HVF Vi. We define
the packet origin as the triple of source, path timestamp, and

Table 1: Summary of abbreviations and notation.
Ai AS corresponding to the ith hop on the path; HS

and HD are located in A1 and A`, respectively
Ci cryptographic result used for authenticating and

updating the ith hop fields
HS, HD source and destination hosts of a packet

HIi ith hop information consisting of tsexp, ingress in-
terface, and egress interface

Ki secret symmetric key of Ai
KS

i host key shared between Ai, A1, and HS, which can
be efficiently calculated by Ai

KSD key shared between A1, HS, A`, and HD
` AS-level path length

lval, lseg length in bytes of Vi, Si
lPRF block size in bytes of PRF(·) and MAC(·)

MACK(·) message authentication code using key K
P, p = |P| packet payload and payload size

PO packet origin consisting of SRC, TSpath, and tspkt
PRFK(·) pseudorandom function using key K

S(l)i segment identifier in protocol level l allowing ASes
to chain hops to paths

σ
(l)
j hop authenticator in level l authorizing the jth hop

as calculated by A j during path exploration
SRC (A1 || HS); source AS and host address

TSpath path timestamp created during path exploration
tsexp expiration time of a hop field relative to TSpath
tspkt packet creation time relative to TSpath

V (l)
i; j , HVF hop validation field in protocol level l correspond-

ing to the ith hop after processing by A j; when its
value stays constant, we omit j.

VSD destination validation field
XJi: jK substring from byte i (incl.) to byte j (excl.) of X
|| concatenation of strings

packet timestamp,

PO := (SRC,TSpath, tspkt). (2)

As forwarding information is included in the packet header,
intermediate routers at the border of an AS can directly use
this (after cryptographically validating it) and do not need
to keep forwarding tables. In case of a link failure, an end
host can be notified and immediately switch to a backup path
without needing to wait for the network to reconverge.

3.3 Notation
We denote the application of a pseudorandom function (PRF)
and the computation of a message authentication code (MAC)
with key K as PRFK(·) and MACK(·), respectively. For
MACs, we assume that they also provide the properties of
a PRF. We write lval and lseg for the lengths in bytes of the
hop validation fields and the segment identifiers, respectively.
The block size of PRFs and MACs in bytes is denoted by
lPRF, where lPRF = 16 for AES. In some protocols, HVFs
are updated by intermediate routers; in this case, we write
Vi; j for the HVF corresponding to Ai after processing by A j
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and use Vi;0 for their initial values. We use superscripts to
distinguish the different EPIC protocols, named L0–L3, e.g.,
V (0)

i , . . .V (3)
i . Concatenation of (binary) strings is denoted

by || , and XJi: jK is the substring from byte i (inclusive) to
byte j (exclusive) of X . Table 1 summarizes our notation.

3.4 Global Symmetric-Key Distribution
Some of the protocols that we propose require the source
host to create authenticators for each packet that either the
destination or intermediate routers verify. While asymmetric
cryptography scales well in the number of networking entities,
the computation overhead of a per-packet usage is prohibitive
as shown in §2.3. On the other hand, the standard use of
symmetric cryptography would require routers to store a key
for each packet source, which is infeasible on core routers in
the Internet. In order to be able to use symmetric cryptography
without per-host state on intermediate routers, we leverage the
dynamically-recreatable-key (DRKey) / PISKES system [28,
40], which we will summarize in this section.

With DRKey, one party, e.g., a router in an AS A, can derive
symmetric keys by simply applying PRFs to deterministic
inputs, while the other party has to fetch keys from a key
server (over a secure control-plane channel). DRKey defines
AS-level keys shared between ASes A and B:

KA→B := PRFKA(B) . (3)

Here, KA is a secret key of the AS A, which is shared between
all its (border) routers and key servers but with no external
entities, and B is a unique and public identifier of AS B. The
arrow in the derived key indicates the asymmetry between A
and B: AS A is able to quickly derive the keys on the fly using
symmetric cryptography, while AS B needs to fetch the key
KA→B by an explicit request to A’s key server, protected by
asymmetric cryptography. DRKeys are valid for time periods
on the order of one day, such that these key requests happen
relatively infrequently.

Given an AS-level key, host-level keys can be derived by
another application of a PRF:

KA→B:HB := PRFKA→B(HB) , (4a)
KA:HA→B:HB := PRFKA→B(HA || HB) . (4b)

An end host HB in AS B can query the key servers of B in
order to obtain the keys (4a) or (4b), which can be calcu-
lated by B from the AS-level key (3). These keys are shared
between all entities in the subscripts, e.g., KA`:HD→A1:HS is
shared among A`, HD, A1, and HS. Therefore, when authenti-
cating sources using DRKey, no end-host-to-end-host guar-
antees are obtained: A malicious AS A1 could claim that a
packet originating from HS came from a different host HS’
in A1. The destination host HD in AS A` can only authenti-
cate the source host under the assumption that A` is honest.
As discussed above, these are common restrictions in order
to accommodate the efficiency requirements of high-speed

routers. As we discuss in §6.4, using DRKeys introduces little
communication overhead and negligible additional latency.

Other AS-level key-establishment systems could be used
for exchanging AS-level symmetric keys. For example, Pass-
port establishes symmetric keys KA↔B between any pair of
ASes by means of a Diffie–Hellman key exchange on top of
BGP announcements [31]. These keys can be used in place of
KA→B in Eq. (4) but require also to input the AS identifier in
order to distinguish KA:H↔B from KA↔B:H . Furthermore, as
they cannot be recreated on the fly at border routers, a router
would need to cache a symmetric key to every other AS.

Irrespective of the system used to exchange AS-level keys,
the communication between end hosts and key servers relies
on secure control-plane channels in order to prevent malicious
entities impersonating key servers or discovering keys. As we
explained above, this is an orthogonal problem to securing
the data plane, and thus outside the scope of this work.

4 EPIC Protocols
In this section, we develop three protocol levels 1–3 of EPIC
with increasingly strong security properties. We present the
protocols in a step-by-step development, thus explaining for
each security property the mechanism and prerequisites to
achieve it. As a starting point, we begin by describing a
simple protocol (referred to as “EPIC L0”) that represents the
approach taken in the current SCION data plane (with minor
simplifications) [37]. Its primary security property is path
authorization, which protects ASes from malicious sources
using paths that violate their routing policies.

4.1 Level 0: Path Authorization
EPIC L0 achieves path authorization using static MACs that
are calculated during path exploration and directly serve as
HVFs for forwarding. During the path-exploration process,
an AS A calculates the hop authenticator σ(0) as a MAC over
the beacon’s timestamp, the hop information, and the previous
hop authenticator (σ(0)′), truncated to lval bytes:

σ
(0)
A :=MACKA

(
TSpath || HIA || σ(0)′

)
J0:lvalK. (5)

For the AS initiating the beacon, there is no previous hop
authenticator, so σ(0)′ is not included.

This hop authenticator directly serves as the HVF in the
data plane, V (0)

i := σ
(0)
i ; segment identifiers and additional

header fields tspkt and VSD as defined in Eq. (1) are therefore
unused in EPIC L0. The procedure to create and forward
packets is the following:
Source HS obtains a path, including all hop authenticators,

from the path server in its AS. It constructs the packet
according to Eq. (1) by copying the path timestamp and
the hop information and hop authenticator for each hop.

Transit At every AS Ai, the border router first checks that
the packet was received through the correct interface
according to HIi and that the hop field is not expired.
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Then the router recalculates V (0)
i = σ

(0)
i according to

Eq. (5) and checks that it coincides with the HVF in
the packet header. If the packet passes both checks,
the router forwards it to the next hop specified in HIi,
otherwise it drops the packet. The only state required on
AS border routers is the AS’ secret key KA and intra-AS
forwarding information.

The construction presented here ensures that end hosts and
ASes can only send packets on paths that are authorized by
all on-path ASes. Chaining hops by including the hop authen-
ticator of the previous hop in the MAC calculation defined
in Eq. (5) guarantees that complete paths are authorized and
hosts cannot combine individual hops arbitrarily.

4.2 Level 1: Improved Path Authorization
EPIC L0 suffers from a dilemma between secure hop fields
and acceptable communication overhead: Assuming short
hop authenticators with lval = 3 (the default length of hop
authenticators in SCION [37]), these fields are susceptible to
online brute-force attacks. An attacker has to send at most
224 ≈ 1.6 ·107 probe packets to find a correct MAC of an
unauthorized hop, which takes under 10 seconds on a gigabit
link. Afterwards, the attacker can use the unauthorized hop
field to send arbitrary traffic until the eventual expiration of
the path. MACs can be made longer and thus harder to forge,
but only at the expense of increased communication overhead,
see §6.3. The fundamental problem is that the static HVFs
can be directly reused to send additional packets.

With EPIC L1 we resolve this dilemma by replacing these
static hop authenticators by per-packet HVFs that cannot be
reused for additional packets. During path exploration, an AS
A calculates its hop authenticator σA as follows:

σ
(1)
A :=MACKA

(
TSpath || HIA || S(1)

′)
. (6)

Here, S(1)
′
is the segment identifier of the previous hop during

the path exploration, which is obtained by simply truncating
the hop authenticator:

S(1) := σ
(1)q0:lseg

y
. (7)

The hop authenticator is then subsequently used by the source
host to calculate the per-packet HVFs:

V (1)
i :=MAC

σ
(1)
i
(tspkt || SRC)J0:lvalK. (8)

As the hop authenticators are not part of the packet header
to limit communication overhead, the additional segment
identifiers are required for chaining hops as they allow ASes
to derive the hop authenticators on the fly. The aim of EPIC L1
is improving path authorization; the field VSD is thus not used.
An attacker trying to forge an unauthorized path needs to
find at least one HVF that fulfills Eq. (8) without access to
σi by sending a large number of probing packets. However,

in contrast to EPIC L0, this HVF cannot be used to send
additional packets, which carry different packet timestamps.

Even though each HVF is only valid for a specific packet
origin, an attacker could launch a DoS attack by replaying
packets for which he knows the HVFs or simply reusing the
packet timestamp. From L1 onwards, we employ a replay-
suppression system in border routers or inside an AS’ network
to prevent this [29]. This system tracks and uniquely identi-
fies packets based on the packet origin PO, i.e., source, path
timestamp, and the packet timestamp, see Eq. (2). In order
for the packet origin to serve as a unique packet identifier,
the packet timestamp must be sufficiently long, see §7 for a
more detailed discussion. The replay-suppression system uses
Bloom filters to identify duplicates but discards old packets in
order to make this process viable in high-bandwidth network-
ing applications, see §6.4. Note that packets are processed
by the replay-suppression system after being authenticated in
order to prevent an attacker from poisoning the system with
unauthentic packets.

The procedure to create and forward packets is slightly
more complicated than for EPIC L0:
Source HS obtains the desired path including all hop authen-

ticators from its path server. HS calculates the packet
timestamp tspkt and adds it to the header. The host then
calculates the segment identifiers according to Eq. (7)
and HVFs according to Eq. (8) and constructs all hop
fields consisting of HIi, S(1)i , and V (1)

i .
Transit An AS checks the interfaces and expiration in the

same way as in EPIC L0. It recalculates first the hop
authenticator as in Eq. (6) using the previous hop’s seg-
ment identifier (in construction direction) and then its
own segment identifier according to Eq. (7) and the HVF
as in Eq. (8). If interfaces, segment identifier, and HVF
are all correct, and the timestamp is current, the AS
forwards the packet, otherwise it drops it.

4.3 Level 2: Authentication
We now extend the previous protocol by a mechanism to allow
intermediate routers to authenticate the source of a packet
and the destination to additionally authenticate its payload.
The hop authenticators σi, segment identifiers Si, and the
additional header field tspkt are unchanged. We define the
host keys

KS
i := KAi→A1:HS (9a)

for every on-path AS Ai and an additional key

KSD := KA`:HD→A1:HS (9b)

shared between source and destination. These keys are based
on the derivation defined in Eq. (4) and can be used to provide
path authorization and source authentication in a single HVF:

V (2)
i :=MACKS

i
(tspkt || SRC || σi)J0:lvalK. (10)
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The destination host HD can authenticate the source of the
packet and verify that neither the path (as defined in Eq. (1b))
nor the payload was modified through the additional destina-
tion validation field

V (2)
SD :=MACKSD(tspkt || PATH || P) . (11)

The procedure to create and forward packets is as follows:
Source In addition to EPIC L1, the source HS fetches all

necessary host keys from the local key server and sub-
sequently calculates the HVFs according to Eq. (10) as
well as VSD according to Eq. (11).

Transit In addition to the checks in EPIC L1, every AS needs
to recalculate the host key KS

i according to Eqs. (3), (4a),
and (9a) and then check if the HVF in the packet header
satisfies Eq. (10). As all keys can be locally calculated,
no key fetching or per-host state is necessary.

Destination HD obtains the key KSD from its local key server
and validates V (2)

SD according to Eq. (11).

4.4 Level 3: End-Host Path Validation
EPIC L3 further extends the security properties of EPIC L2
by enabling the source and destination of a packet to perform
path validation. To that end, on-path ASes overwrite their
HVFs with proofs to the source and destination that they have
processed the packet. Upon receiving the packet, the desti-
nation can directly validate the path based on the destination
validation field and enables path validation for the source by
replying with a confirmation message. We define

Ci :=MACKS
i
(tspkt || SRC || σi) , (12)

which is equal to Eq. (10) without truncation. This crypto-
graphic result has a length of lPRF bytes, which is generally
longer than the HVFs that we propose in this work. This al-
lows us to split the result into multiple separate pieces, which
are uncorrelated as we assume the MAC to be a PRF; in
particular, under the assumption lPRF ≥ 2 · lval, we can define

C[1]
i :=CiJ0:lvalK, C[2]

i :=CiJlval:2lvalK. (13)

The source then performs the same setup as for EPIC L2,
setting each HVF to V (3)

i;0 := C[1]
i (which equals V (2)

i ). The
router in Ai calculates the Ci defined in Eq. (12) and checks
that the HVF is correct. Finally, it updates the HVF with
V (3)

i;i :=C[2]
i . Without requiring any additional cryptographic

computation, the router thus leaves a confirmation for HS that
it successfully validated and forwarded the packet (assuming
that A1 is honest), since only Ai, HS, and A1 can compute C[2]

i .
We allow HD to also validate this confirmation (under the
further assumption that HS and A` are honest) by including
the correct final values V (3)

i;` in the destination validation field:

V (3)
SD :=MACKSD

(
tspkt || PATH ||V (3)

1;` || · · · ||V
(3)
`;` || P

)
.

(14)

Algorithm 1 Initialization and path validation at HS in
EPIC L3. The second procedure is executed upon receiv-
ing a reply packet that contains the path validation proof for
the source. Packet contents such as header fields are denoted
by FIELD and← is an initialization or assignment. For read-
ability, some superscripts omitted.
1: procedure INITIALIZATION BY HS

Require: SRC, DEST, TSpath, KSD, P, ∀i ∈ {1, . . . , `}: HIi, σi, KS
i

2: construct PATH according to Eq. (1b)
3: tspkt ← (current time)−TSpath

4: for all i ∈ {1, . . . , `} do
5: Si ← σiJ0:lsegK . segment identifier (Eq. (7))

6: Ci←MACKS
i

(
tspkt || SRC || σi

)
7: C[1]

i ←CiJ0:lvalK; C[2]
i ←CiJlval:2lvalK

8: Vi ←C[1]
i . initial value of HVF

9: Vi;`←C[2]
i . final value of HVF

10: VSD ←MACKSD

(
tspkt || PATH ||V1;` || . . . ||V`;` || P

)
11: send PACKET according to Eq. (1)
12: store Vi;` for all i under key (TSpath || tspkt) for validation

13: procedure VALIDATION AT HS
Require: KSD
14: receive EPIC L2 packet with payload TSpath , tspkt , and V1 . . . V`

15: if EPIC L2 verification failed then
16: return “validation failed”
17: if

(
TSpath || tspkt

)
is not a valid key in store then

18: return “validation failed”
19: retrieve Vi;` for all i under key

(
TSpath || tspkt

)
20: for all i ∈ {1, . . . , `} do
21: if Vi 6=Vi;` then
22: return “validation failed”
23: return “validation succeeded”

Note that, as each HVF is only updated once, we have V (3)
i;` =

V (3)
i;i . In order to allow HS to validate the path, HD needs to

send a confirmation message containing the timestamps of the
original message together with the updated values V (3)

i;` . To
prevent circular confirmations, such a message must be sent
to HS as an EPIC L2 packet (cf. §7). To validate the path, HS
must store the expected HVFs upon sending a packet. When
it receives a reply by the destination that contains the values
V (3)

i;` that the destination received, it validates them against
the stored values. If no correct confirmation is received after
some timeout, the source can conclude that the original packet
has been lost or redirected.

Both source and destination host are free in their reaction
to failed path validation: The destination can choose to ignore
it and rely on the source to take appropriate action (soft fail)
or reject the corresponding packets (hard fail). The source can
switch paths on a short timescale and, in case of frequent fail-
ures, switch its Internet provider. Note that fault localization
in general is a very complex problem and cannot be achieved
through EPIC alone in an adversarial environment [5].

The algorithms for initialization, validation, and update in
EPIC L3 are shown in Algorithms 1–3. These algorithms do
not include the replay-suppression system, which we assume
is an external system in each AS that inspects the packet origin
of all authenticated packets and eliminates any duplicates.
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Algorithm 2 Packet validation and updates at intermediate
routers in EPIC L3. Syntax as in Algorithm 1.
1: procedure FORWARDING BY Ai

Require: Ki
2: if HIi is expired or packet received through wrong interface then
3: drop packet
4: if (current time)− TSpath − tspkt 6∈ [−ε,L+ ε] then
5: drop packet . invalid timestamp (lifetime L, clock skew ε)
6: (A1 : HS)← SRC
7: KAi→A1 ← PRFKi (A1) . derive AS-level DRKey (Eq. (3))
8: KS

i ← PRFKAi→A1
(HS) . derive host-level DRKey (Eq. (9))

9: σi←MACKi

(
TSpath || HIi || Si’

)
. hop authenticator (Eq. (6))

10: if Si 6= σiJ0:lsegK then . check segment identifier (Eq. (7))
11: drop packet

12: Ci←MACKS
i

(
tspkt || SRC || σi

)
13: C[1]

i ←CiJ0:lvalK; C[2]
i ←CiJlval:2lvalK

14: if Vi 6=C[1]
i then . authenticate packet

15: drop packet
16: Vi ←C[2]

i . update HVF
17: forward packet according to HIi

Algorithm 3 Packet and path validation at HD in EPIC L3.
Syntax as in Algorithm 1.
1: procedure VALIDATION AND REPLY AT HD

Require: KSD

2: VSD
′←MACKSD

(
tspkt || PATH || V1 || . . . || V` || P

)
3: if VSD 6=VSD

′ then
4: return “validation failed”
5: if (current time) - TSpath - tspkt 6∈ [−ε,L+ ε] then
6: return “validation failed” . timestamp expired or in the future
7: send EPIC L2 packet to HS with payload . values of original packet
8: (TSpath || tspkt ||V1 || . . . ||V`)
9: return “validation succeeded”

Algorithms 2 and 3 both enforce the validity of the absolute
timestamp TSpath + tspkt: the packet must neither exceed a
fixed lifetime L nor must this timestamp lie in the future.
These checks take into account a maximum clock skew of ε.

5 Security Analysis
In this section we define the security properties in turn and
compare our protocols with ICING [36], OPT [28], and
PPV [45]. An overview is shown in Table 2.

5.1 Basic and Strong Attacker Models
Basic-Attacker Model A Dolev–Yao adversary can typi-
cally observe, drop, inject, replay, or alter packets anywhere
in the network [17]. However, if an attacker can re-route pack-
ets arbitrarily, it becomes impossible to ensure that packets
follow authorized paths. We therefore consider a localized
variant of a Dolev–Yao attacker who compromised one or
multiple ASes, including their routers, end hosts, and crypto-
graphic keys. This attacker can only send and receive packets
at the compromised (and colluding) AS locations. Such a
model is common in path-validation schemes [28, 36] and
represents our basic attacker.

As is standard in Dolev–Yao models, our model assumes
cryptography to be perfect. Consequently, the cryptographic
primitives that the protocol is built on must be secure. In
particular, this requires that cryptographic keys and authenti-

cation fields be sufficiently long to prevent an attacker from
brute-forcing authentication fields. If short keys or fields
are used, the model’s assumptions are violated and the secu-
rity guarantees no longer hold. For instance, in the case of
EPIC L0, if a short hop authenticator was used, an attacker
could forge a hop field and create an unauthorized path that
could be used to send an arbitrary number of malicious pack-
ets that violate path authorization. Consequently, EPIC L0
must use long authentication fields to be secure.

Strong-Attacker Model In contrast, our protocols
EPIC L1–3 are designed to decrease communication
overhead by using short HVFs and segment identifiers. A
malicious sender could therefore send large amounts of
probing packets—and, with a small chance, guess the correct
values for these fields in individual packets.

To reflect the attacker’s ability to brute-force the HVFs
and segment identifiers in the model, we propose a strong-
attacker model, which weakens the assumption of perfect
cryptography of the basic attacker. In particular, this model
allows a malicious sender to obtain valid HVFs and segment
identifiers of the validation header by querying an oracle.

We define for EPIC levels l ∈ {1,2,3} the oracle O(l) as
the function that for given PO and HI fields produces valid
HVFs Vi and segment identifiers Si:

O(l)(PO,HI1, ...,HI`) = (V (l)
1 , ...,V (l)

` ,S(l)1 , ...,S(l)` ). (15)

The attacker can thus query the oracle and learn the Vi and Si
(but not σi or VSD). As this allows him to trivially construct
packets that violate the security properties for ASes, we re-
strict the security guarantees to packets whose origin PO was
not part of an oracle query. Security under this model then
means that, while the attacker may be able to forge individual
packets (obtained from the oracle in the model), this does not
help him to craft different packets that violate the guarantees.

Additionally, we need to argue in our security analysis that
forging individual packets (as modeled by an oracle invoca-
tion) does not represent a serious risk for the security of the
system: in the next subsection, we will show that the likeli-
hood of success of such an attack is low in many practical
cases and, even if it succeeds, its impact is severely lim-
ited. Consequently, the attacker’s benefit from brute-forcing a
packet is small compared to the computational costs involved.

Protocols that are secure under the basic-attacker model
are not necessarily less secure than those under the strong-
attacker model, but their implementations must ensure that
authenticators are long enough to rule out any practical brute-
force attacks. The length of the authenticators is crucial for
the communication overhead, which we discuss later.

5.2 Low Risk of Forging Individual Packets
The strong-attacker model explicitly acknowledges the ability
of an attacker to brute-force individual HVFs and segment
identifiers in EPIC L1–3 through its oracle. However, in
practice, the risk of such an attack is limited in four ways:
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Table 2: 3 satisfied, (3) partially satisfied, and 7 unsatisfied properties of our protocols EPIC L0–3, ICING, OPT, and PPV. The
2nd and 3rd columns list for whom and under which honesty assumptions the property holds. For protocols evaluated in the
strong-attacker model (SA) rather than the basic-attacker model (BA), the 4th column indicates if the property holds only for
packets that do not originate from the oracle, or for all packets.

L0 L1 L2 L3 ICING OPT PPV
who honesty ass. packets (BA) (SA) (SA) (SA) (BA) (BA) (BA)

P1: path authorization Ai – non-oracle 3 3 3 3 3 3 7

P2: freshness Ai, HD – all 7 3 3 3 (3) (3) 7

P3: packet authentication HD HS, A1, A` all 7 7 3 3 32 3 3

P4: source authentication Ai HS, A1 non-oracle 7 7 3 3 32 31 7

P5: path validation HS A1 all 7 7 7 3 32 3 7

P6: path validation HD HS, A1, A` all 7 7 7 3 32,3 3 (3)3

1 Ai has to additionally assume the honesty of HD. 2 A1 and A` do not need to be honest. 3 A1 and HS do not need to be honest.

First, forging even a single packet (i.e., at least one HVF)
is expensive as it cannot be performed locally but only by
sending packets. Second, a forged packet will be forwarded at
most once. The HVFs are bound to the packet origin (source
and timestamp). If the attacker brute-forces a HVF and cre-
ates an unauthorized (but valid) path, she can violate path
authorization or source authentication at routers, but only for
a specific PO. Any packets with an outdated timestamp in
their PO will be dropped immediately by routers, meaning
that the attack can only happen in a short time frame. Fur-
thermore, the replay-suppression system prevents more than
one packet with the same PO from being forwarded. Third,
in many practical attacks more than a single HVF needs to be
brute-forced and the attack becomes exponentially harder in
the number of fields to be forged. The probability of forging
n HVFs and segment identifiers for any packet is given by
2−8n(lval+lseg). Fourth, the security guarantees for end hosts
are not affected, since they are based on the validation field
VSD, which is cryptographically strong.

Attacks that only allow a tiny number of packets to be
falsely validated by ASes do not pose a grave threat to them.
Their concerns regarding path authorization are primarily
driven by economic interests, and it suffices if path-policy en-
forcement works for the vast majority of packets. On the other
hand, the main application of source authentication at routers
is DoS defense by filtering out unauthentic packets before
they reach a bottleneck and enforcing bandwidth reservations
through source attribution. For these in-network security ap-
plications a small number of forged packets that fool routers
(but not the destination) have minimal consequences.

5.3 Path Authorization
The following property protects the path policies of ASes:
P1 Path authorization: Packets traverse the network only

along paths authorized by all honest on-path ASes.
This enforces the control-plane choices in the data plane and
prevents path-splicing attacks: in these, a malicious source
would combine hop fields from multiple authorized paths

to create an unauthorized path. An on-path attacker can
exchange the authorized path that the source picked by a dif-
ferent authorized path. Nevertheless, each portion of the path
that the packet traverses along honest ASes is still authorized.

EPIC L0 and OPT EPIC L0 satisfies path authorization
due to its chained hop authenticators: each authenticator con-
tains in its MAC recursively all previous authenticators. Thus,
the MAC binds the entire portion of the path from the authen-
ticating AS to the end. Since the property is only achieved in
the basic-attacker model, hop authenticators have to be long
enough to prevent brute-force attacks. Otherwise, attackers
could forge a path and not only use it to send a single packet,
but use it for arbitrarily many packets until a hop field expires
(based on tsexp) or the ASes’ long-term keys Ki are rotated.
OPT also only satisfies P1 in the basic-attacker model since
its mechanism is based on SCION / EPIC L0.

EPIC L1–3 EPIC L1 and onward achieve property P1 in the
strong-attacker model. These protocols create a HVF for each
hop, which is a MAC containing both the hop authenticator
σ and the packet origin fields (SRC, TSpath, and tspkt).

1 The
former ensures path authorization, similar to EPIC L0. The
latter ensures that this property holds even under the strong
attacker: an attacker who obtains a HVF for a specific PO
from the oracle cannot use it to create a HVF that is valid for
a different PO, as the HVF is bound to its PO.

Both the segment identifier and the HVF directly appear in
the packet and are truncated for efficiency reasons. In contrast,
the hop authenticator σ itself does not appear in the packet
and thus does not need truncation as it can be recomputed
on demand. The combination of long hop authenticators
and short HVFs and segment identifiers minimizes risk; on
one hand, a successful brute-forcing attack on a 16 B hop
authenticator is practically infeasible; on the other hand, such
an attack on a HVF or segment identifier, which is possible
by sending a large number of probing packets, has limited
impact, as we have discussed in §5.2.

1TSpath is indirectly contained in the HVF through the hop authenticator.
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ICING and PPV ICING achieves path authorization in the
basic-attacker model through its proofs of consent (PoCs),
which are used to calculate authenticators. PPV does not
consider path authorization.

5.4 Freshness
In order to prevent DoS attacks by repeated packet resending,
we require that each packet’s origin (PO) is unique.
P2 Freshness: Packets are uniquely identifiable and cannot

be replayed.
EPIC L1–3 achieves freshness using a replay-suppression
system where PO, i.e., the combination of source, path times-
tamp, and packet timestamp, serves as a unique packet iden-
tifier. With such a system in place, the attacker can send at
most one unauthorized packet per forged HVF, which is an
enormous cost for a very limited return value.

EPIC L0 lacks unique packet identifiers required for replay
suppression; ICING and OPT have limited support for replay
suppression but do not discuss this in their work. PPV does
not use sequence numbers or timestamps and instead uses a
“PacketID” based on source, destination, and the hash of the
payload. This is insufficient to uniquely identify packets or to
enable an efficient replay-suppression system.

5.5 Packet and Source Authentication
Packet and source authentication are desirable properties
at the network layer. We formulate authentication as non-
injective agreement properties [32]. Together with prop-
erty P2 and enforcement of the timestamp’s validity, they
yield strong recent-injective-agreement properties [32].
P3 Packet authentication for HD: The destination HD agrees

with the source HS on the packet origin, path, and pay-
load unless HS, its AS, or HD’s AS are corrupted.

P4 Source authentication for routers: On-path ASes agree
with the source on the packet origin unless the source or
its AS are corrupted.

EPIC EPIC L0–1 do not provide any authentication.
EPIC L2–3 achieve P3 in the strong-attacker model by com-
puting the destination validation field VSD as the MAC under
KSD of the packet timestamp tspkt, the path (including TSpath),
and the payload, see Eqs. (11) and (14). Since we assume
that VSD is unforgeable (it is not included in O(l)’s output),
any source, path, payload, or timestamp modifications by an
attacker can be detected by the destination.

EPIC L2–3 achieve P4 since their HVFs are computed as
the MAC under the host key KS

i of the packet timestamp, the
source, and the hop authenticator (which is calculated based
on the path timestamp). The reasoning is similar to the one
for property P3 above, with the difference that individual
HVFs are forgeable by sufficiently strong attackers (included
in O(l)’s output). The modification of part of the packet origin,
i.e., the timestamps or the source, requires forging all honest
ASes’ HVFs on the path from the attacker to the destination.
As a consequence, these routers may falsely authenticate the

source of a packet, but, due to freshness (P2), this is limited
to individual packets, see also §5.2.

OPT OPT authenticates the source and payload, but it
achieves property P4 only in the basic-attacker model and only
under the additional assumption that HD is honest. This is
due to the use of DRKeys of the form KAi→A1:HS,A`:HD , which
are not only shared between HS and the intermediate AS Ai,
but also with HD. This weakens the source-authentication
property compared to EPIC as all HVFs could also have been
created by A` or HD. For example, if source authentication is
used for bandwidth attribution, a malicious destination could
slander the source by fabricating packets or sharing this key.

ICING and PPV ICING achieves both authentication prop-
erties P3–P4 through its proofs of provenance (PoPs). PPV
achieves property P3 through its “PacketID”, which is calcu-
lated using a secret key shared between HS and HD. There is
no mechanism in PPV for authentication to routers (P4).

Honesty Assumptions In all schemes discussed here ex-
cept for ICING (which is not based on DRKey), an end host’s
use of a host key shared with its AS requires the host’s trust
in its AS. While this may appear like a strong assumption, a
malicious source or destination AS would need to launch an
active attack, which hosts can detect by comparing authenti-
cators out of band. Hosts have contracts with their ASes and
could have a legal remedy when misbehavior occurs. This
is in stark contrast to today’s Internet, where hijacks can be
performed by an off-path adversary with no relationship to the
affected hosts, and no common jurisdiction to settle disputes.

The alternatives to using DRKey in the data plane are using
asymmetric cryptography or using symmetric cryptography
with pairwise end-to-end keys, which both violate our effi-
ciency requirements (see Sections 2.3 and 3.4).

5.6 Path Validation
Path-validation properties ensure that the actual path cor-
responds to the sender’s intended path. This is primarily
interesting to the end points, for instance if there are compli-
ance rules that mandate certain paths. It can be considered the
dual property to path authorization: while path authorization
protects the routing decisions of ASes from malicious end
hosts, path validation protects the path choices of end hosts
from on-path ASes.
P5 Path validation for HS: Upon receiving a reply from

HD, the source HS can verify that the original packet
traversed all honest ASes on the path intended by HS.

P6 Path validation for HD: HD can verify that the packet
traversed all honest ASes on the path from HS to HD
intended by HS.

Both P5 and P6 are achieved by EPIC L3 in the strong-
attacker model through the destination validation field VSD
(for which the attacker’s ability to forge HVFs is irrelevant).

ICING and OPT also satisfy path-validation properties P5
and P6. They additionally ensure that ASes are traversed in
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Table 3: Size (in bytes) and number of occurrences (#) of
various header fields in a path of length `.

field content # size

TSpath path timestamp 1 4
SRC source AS and host 1 8

Vi hop validation field ` 3
Si segment identifier ` 2

tspkt packet timestamp offset 1 8
VSD destination validation field 1 16

the correct order. PPV does not allow the source to validate
the path (P5) and only probabilistically validates individual
links at the destination (P6).

Honesty Assumptions For EPIC L3 and OPT, property P5
requires that the source assumes the honesty of its own AS,
since they share the host key. Likewise, for property P6, the
destination must assume the honesty of its own AS and also of
the source and its AS, since all validation fields are computed
by HS. This assumption is not needed for ICING, which does
not rely on DRKey and uses separate keys for the destination.
PPV also uses a key which is not shared with the source to
achieve property P6 and therefore does not need to assume
the source to be honest.

6 Implementation and Evaluation
In this section, we describe our prototype implementation and
evaluate its performance. In addition, we analyze the commu-
nication overhead of EPIC, OPT, ICING, and PPV as well as
of supporting systems. For this analysis, we assume the sizes
for various fields in the EPIC header shown in Table 3.

6.1 Implementation and Measurement Setup
To show that EPIC is practically feasible, we implemented
and evaluated EPIC L3 prototypes for the source, the routers,
and the destination according to the algorithm specification in
Algorithms 1–3 using Intel DPDK [18]. As other EPIC levels
have a strict subset of processing steps, they would achieve
strictly better performance.

In summary, the following evaluation shows that the system
can be implemented efficiently even on commodity hardware,
it is parallelizable and scales well to core links on the Internet,
has significantly lower communication overhead compared to
existing systems, requires virtually no state on routers, and
limits additional control-plane overhead.

EPIC Packet Structure In our prototype implementation,
we follow the packet structure of Eq. (1), using the field sizes
specified in Table 3, and extend it with some auxiliary fields
(a pointer to the current hop field, the total path length, a
version number, and additional flags) and an Ethernet header.

Cryptographic Primitives As we calculate many PRFs
and MACs over short inputs and want to avoid the overhead
due to subkey generation of CMAC [25], we use the AES-128
block cipher in CBC mode for both PRFs and MACs. As we

calculate MACs over variable-length inputs, we prepend the
input length and use zero padding such that the CBC-MAC
indeed fulfills all properties of a PRF and a MAC [7]. Because
EPIC and DRKey heavily rely on MAC and PRF calculations,
we use Intel’s AES-NI hardware instructions [41], available
on all modern Intel CPUs, to reduce the computation time.

HVF Store at the Source The store of HVFs of sent pack-
ets at the source is implemented as a hash table as it en-
ables insertion and retrieval of data using the 12-byte key
(TSpath || tspkt) with average complexity O(1) and there exists
a ready-to-use hash-table implementation in DPDK.

Measurement Setup The prototypes are evaluated using
a Spirent SPT-N4U, which serves as packet generator and
bandwidth monitor, and a commodity machine with an 18-
core Intel Xeon 2 GHz processor executing the component
to be tested, i.e., the source or router. The two machines are
connected with a 40 Gbps Ethernet link.

We evaluate the performance of the prototype as a function
of the EPIC L3 payload. However, the size of the EPIC header
depends on the AS-level path length and therefore contributes
dynamically to the Ethernet packet content. To test the pro-
totypes using the same EPIC L3 payload range, independent
of the path length, we enable jumbo-frame support (Ethernet
frames with more than 1500 B payload) on both machines.

The current average path length in the Internet is less than
4 AS-level hops [24, 33, 44, 45]. However, as we expect that
number to increase due to the benefits of being an AS in a
path-aware Internet, we consider path lengths of up to 16
AS-level hops in our evaluation (the current average number
of router-level hops is 13).

6.2 Performance Evaluation
In this section, we evaluate the performance of our imple-
mentation in terms of throughput (total traffic) and goodput
(payload traffic). Note that we account for the full header
overhead as described above when referencing the goodput.

Source For the evaluation of the source we assume that
it has already fetched the necessary hop authenticators and
DRKeys, which corresponds to the situation of an existing
connection. The throughput achieved by the source (using
a single CPU core) is shown in Fig. 1. For packets of p ≥
500B and path lengths of `≤ 8, the prototype implementation
consistently achieves throughput above 2 Gbps. Figures 7
and 8 in Appendix A further illustrate the parallelizability
of the implementation, which enables throughputs of tens of
Gbps, and the linear increase of the processing time with both
payload size and path length.

The processing at the source and destination is similar for
ICING, OPT, and PPV; in all protocols either a MAC or hash
is calculated over the packet’s payload, which dominates the
computational effort. In the future, these cryptographic com-
putations could be offloaded to multiple dedicated hardware
units in network-interface cards (NICs).
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Figure 1: EPIC L3 packet throughput generated by the source
on a single core for different payload sizes.

Router Figure 2 shows the forwarding performance of an
EPIC L3 router for a path of length `= 8. In these measure-
ments, we assume no cached hop authenticators or DRKeys,
they are always recalculated on the fly. For packets with a
payload p≥ 500B, the 40 Gbps link is saturated for all path
lengths using only 4 cores; using 16 cores, the link is even
saturated for small packets (p = 100B). As the implemen-
tation is easily parallelizable (see Fig. 6 in Appendix A), it
can be used even on 100 Gbps or 400 Gbps links by adding
more processing cores or dedicated hardware. An important
observation is that the processing time of the router is 445 –
460 ns independent of both payload size and path length. The
forwarding performance in terms of Mpps (million packets
per second) is thus also independent of these parameters and
amounts to approximately 2 Mpps per processing core. These
results are further illustrated by Figs. 4–6 in Appendix A.

The processing on routers is similar for all levels of EPIC,
OPT, and PPV, which all have a small constant number of
cryptographic operations. In ICING, every router calculates
both a hash and a MAC over the payload and in addition
performs ` symmetric cryptographic operations (one for each
router). In the software implementation provided by ICING’s
authors [36], each router has a processing time of ∼50µs for
`= 10, which is two orders of magnitude slower than EPIC. If
keys are not cached, additional Diffie–Hellman computations
are necessary, leading to processing times of ≥ 100ms [19].

Comparison to IP Comparing the performance of EPIC
to IP is challenging due to the strong impact of routing-
table sizes on software performance and hardware cost for
IP. Highly optimized software switch implementations like
DPDK vSwitch achieve throughputs of∼11Mpps on a single
core (corresponding to a processing time of approximately
90 ns) [20]. However, these values are only valid for small
routing tables when no memory accesses are necessary (as a
single DRAM access takes∼70ns). Our prototype implemen-
tation is approximately five times slower at ∼2Mpps, but the
throughput is independent of the number of concurrent flows
due to packet-carried forwarding state. Furthermore, the pro-
cessing time could be further reduced through optimizations
such as concurrent execution of cryptographic operations.
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Figure 2: Throughput (TP) and goodput (GP) of a router
plotted against the payload for 2, 4, 8, and 16 cores and ` = 8.

Table 4: Communication overhead in bytes in EPIC, ICING,
OPT, and PPV due to security-related fields.

L0 L1 L2–L3 ICING OPT PPV

3` 5`+8 5`+24 42`+13 19`+52 64
for `= 8 24 48 64 349 204 64

Hardware implementations, which are particularly relevant
in a production deployment, compare even more favorably.
IP routers require large amounts of expensive ternary content-
addressable memory (TCAM) for longest-prefix matching. In
contrast, EPIC requires very little additional hardware for its
cryptographic operations. Naous et al. [36] have compared
the gate count of FPGA implementations of ICING and IP
routers and found comparable values (13.4 million vs. 8.7
million gates) even for very small amounts of TCAM in the
IP router; in comparison, hardware implementations of AES
are very efficient and only require 13,000 gates [1].

6.3 Communication Overhead
In addition to processing overhead and performance, we also
evaluate the communication overhead of EPIC and compare
it to other systems. To allow for a meaningful comparison,
we evaluate only the overhead owed to security here, since
the normal routing headers (e.g., IPv4/v6, SCION) depend on
the underlying networking architecture. Thus, we use HD to
refer to the size of all security-related header fields (in EPIC,
these are tspkt, VSD, and Si, Vi for all hops i). We define the
goodput ratio as the ratio between goodput and throughput,
or, equivalently, as the ratio of payload and total packet size,
GR = p

p+HD . Table 4 shows the size of the additional header
for all considered systems, Fig. 3 depicts the goodput ratio.

We find that the goodput ratio is high for all variants of
EPIC. For ` = 8, the additional header is between 24 B for
EPIC L0 and 64 B for EPIC L3, which corresponds to a good-
put ratios 98 % and 94 %, respectively, for payloads of size
p = 1000B. The goodput ratio of OPT is significantly worse
with GR ∼ 83% for the same values of ` and p, and does
not scale as well as the overhead of EPIC with the length of
the paths. For ICING, we find a five times larger overhead
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Figure 3: Goodput ratio of different protocols as a function
of the AS-level path length ` for a 1000 B payload, calculated
from Table 4. “sec. L0” and “sec. OPT” correspond to L0
and OPT with authenticators of 16 B that are required to rule
out brute-force attacks. For GR < 2/3, the total packet size
exceeds the maximum size for an Ethernet payload.

than EPIC L2–3 and GR ∼ 74% for these parameters. As
PPV performs checks at only two routers along the path, its
overhead is constant in the path length. Still, EPIC L2–3 have
a higher goodput ratio than PPV for path lengths up to `= 8.

In Table 4, authenticators for path authorization are 3 B
for EPIC L0 and OPT (the default for SCION on which they
are based). This is despite only achieving property P1 in the
basic-attacker model, meaning that brute-force attacks are un-
mitigated and exploitable for practical attacks. To correct for
this, the size of HVFs would need to be increased to a similar
length of other brute-force-resistent fields like the destination
validation field, i.e., 16 B. Considering these modifications,
which are shown by “sec. L0” and “sec. OPT” in Fig. 3, the
goodput ratio is even more favorable for EPIC L1–3, which
significantly outperform both protocols.

6.4 Other Overhead
State at Routers In EPIC, routers can perform all crypto-
graphic checks and updates with a single AS-specific secret
value, there is no per-host or per-flow state required. This is
equivalent to OPT and PPV, which both rely on DRKey, but
a significant advantage compared to ICING, which requires
per-flow state [28, 36]. In terms of routing information, bor-
der routers only need to store intra-AS information as packet
headers contain the inter-AS forwarding information. This is
a huge improvement over the current Internet, shared by all
architectures based on packet-carried forwarding state.

Replay Suppression All EPIC levels except L0 depend
on a replay-suppression system for freshness (P2), which
has additional state and overhead. Since this task can be
taken over by dedicated machines, we did not include it in
the router measurements above. Prototypes that are entirely
implemented in software have been deployed successfully on
10 Gbps links [29]. In turn, EPIC L1–3 provide important
properties for replay suppression: (i) the system can use the
timestamp to discard packets that are expired, thus limiting the
number of packets that need to be tracked in Bloom filters, and

(ii) by authenticating all packet contents tracked by the replay-
suppression system, attackers are prevented from modifying
unauthenticated fields and replaying packets. If the replay-
suppression system were not deployed, the packet timestamp
could still be used to filter out expired packets, and an attacker
could only replay packets in a very short time window due to
the check in line 4 of Algorithm 2.

Control-Plane Overhead In EPIC, end hosts have to re-
quest paths from the path server and, for EPIC L2–3, host-
level symmetric keys from the key server, before they can
communicate with a new destination. We assume that the
underlying path-aware Internet architecture minimizes la-
tency by locally caching public paths, e.g., at path servers in
SCION [37, §7.2]. End hosts also cache paths themselves,
such that only the initial packet to a new destination requires
a path lookup. This caching strategy can also be applied
to EPIC’s hop authenticators and the host keys required in
EPIC L2–3. Concretely, AS-level keys can be set up between
every pair of ASes ahead of time (either using PISKES /
DRKey or Passport) such that local key servers can immedi-
ately respond to requests by end hosts. In the current Internet,
storing 16 B keys for each AS only amounts to ∼1MB [34].
Given that path and key information is available at local ASes,
the additional latency incurred in EPIC is minimal: only the
round-trip time between the source host and its own AS, and
the destination host and its AS is added to the connection
setup. End hosts can cache both paths and host keys, which
eliminates additional latency for subsequent packets. Further
optimization would be possible by combining DNS, path, and
key requests, which would eliminate all additional latency for
the initial packet compared to today’s Internet.

7 Discussion
Low Communication Overhead of EPIC The benefit of
EPIC’s lower overhead compared to OPT comes in part from
the fact that EPIC does not use separate fields for path au-
thorization on the one hand, and for authentication and path
validation on the other hand. The larger contributor to a lower
overhead is however the shorter length of HVFs in EPIC of
3 B, compared to the 16 B OPV fields in OPT. While a shorter
authenticator translates to easier brute-force attacks (and thus
seemingly weaker security), we have shown the practical use-
fulness of such attacks is severely limited by EPIC, as the
attacker can only send a single packet that traverses an unau-
thorized path, and in EPIC L2-3 that packet will be discarded
by the destination, see §5.2. EPIC is the first data-plane
protocol designed to limit the consequences of a successful
brute-force attack to a single packet; previous protocols rely
on long authenticators to prevent harmful attacks.

Deployment on Path-Aware Architectures Our data-
plane protocols are generic and applicable to a wide range
of path-aware networking protocols. We now describe how
EPIC fits into these architectures.
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In SCION, the authenticators used in EPIC can be used
directly instead of the built-in MACs that protect hop fields.
However, a difference to EPIC is that in SCION only a subset
of ASes called cores (typically, Tier-1 providers) initiate bea-
cons. These beacons have limited reach and do not discover
the entire Internet topology for scalability reasons. Thus, end
hosts must combine paths from multiple beacons to obtain
global end-to-end paths. SCION defines rules for combining
multiple segments to rule out loops and uneconomical routes
(such as valley paths [21] [37, §8.2]) and allows paths to be
used in either direction. While our presentation of EPIC ab-
stracts from these aspects, we designed the protocols with
path combinations and bidirectionality in mind. For combined
paths, path authorization holds for each segment individually
while path validation applies to the complete path.

Besides SCION, multiple other path-aware Internet archi-
tectures cryptographically protect forwarding directives in
packet headers, including NEBULA [3, 36], PoMo [9], and
Platypus [38, 39]. PoMo introduces an abstract “motivation”
header that can be calculated in the same way as the HVFs of
EPIC. NEBULA uses “proofs of consent” for path authoriza-
tion and, with the ICING extension, achieves source authenti-
cation and path validation through its “proofs of provenance”.
EPIC can be used to replace these proofs to significantly re-
duce both computation and communication overhead while
only slightly weakening security properties. The “bindings”
in Platypus already implement a system similar to EPIC L1;
they could, however, easily be augmented with source authen-
tication and path validation with EPIC L2–3.

Incremental Deployment The (incremental) deployment
of a new Internet architecture is very challenging but is facili-
tated by the reuse of existing intra-domain infrastructure and
protocols. An extensive discussion of (incremental) deploy-
ment is provided for the SCION architecture [37, Chapter 10].
In turn, the incremental deployment of EPIC on an exist-
ing path-aware architecture—e.g., as a premium product for
customers requiring stronger security properties such as the fi-
nancial and healthcare sectors—is benefited precisely by their
path awareness: EPIC only requires support by on-path ASes
and can thus be supported on some paths without requiring
global coordination. An upgraded end host can then favor
these paths, providing benefits to early adopters.

Timestamps and Time Synchronization The path times-
tamp TSpath encodes Unix time with second-level precision;
both the expiration time of hop fields (tsexp) and the packet
timestamp introduced in EPIC (tspkt) are relative to TSpath.
The length of the tsexp field determines a maximum lifetime
for hop fields. As a path expires when one of its hop fields
expires, the packet timestamp offset tspkt only needs to cover
the period between creation and expiration of a beacon. For
instance, in SCION, this period is at most one day [37, §15.1].
An 8 B field then corresponds to a granularity of ∼5fs. This
enables end hosts to send 2 ·1014 packets with unique times-

tamps per second, which is sufficient for any practical applica-
tion. We can consequently use the packet origin, i.e., the triple
of source, path timestamp, and packet timestamp defined in
Eq. (2), to uniquely identify all packets in the network.

The timestamps serve multiple purposes in EPIC: they
(i) allow routers to drop packets that are too old or use ex-
pired paths, (ii) uniquely identify packets, and (iii) ensure
that the replay-suppression system only needs to track re-
cent packets. For the first purpose, a coarse global time
synchronization providing a precision of multiple seconds
is sufficient. The second purpose does not require time syn-
chronization at all, as packets are uniquely identified based on
the packet origin, which also includes the source. The third
purpose has been shown to work based on per-AS sequence
numbers and therefore only requires relatively precise time
synchronization within an AS [29]. The higher-order bits of
the packet timestamp can serve as sequence numbers in this
replay-suppression system.

Key Distribution The use of DRKeys in EPIC L2–3 cre-
ates potential issues of circular dependencies: how is it possi-
ble to exchange DRKeys when they themselves are required
for sending packets? In a steady state, this is unproblematic as
ASes can proactively exchange new AS-level keys before the
current keys expire using EPIC L2–3 packets. For an initial
key exchange, which only happens very infrequently, we pro-
pose to support EPIC L1 in addition, such that key requests
can be sent over this lower-level protocol. Although EPIC L1
has lower security guarantees and may be susceptible to DoS
attacks, these issues are mitigated by the fact that only a single
request and response are needed for fetching a key. Even in
a persistent, powerful DoS attack, such an exchange would
succeed eventually.

Confirmation Packets in EPIC L3 In EPIC L3, the con-
firmation message that allows the source to validate the path
of its packets is sent as an EPIC L2 packet. This is necessary
as each confirmation message would otherwise trigger yet
another confirmation and consequently cause an infinite se-
quence of such confirmations. Using EPIC L2 means that the
path of the original packet but not the confirmation message
can be validated; all other security properties are retained (see
also Table 2). Even in case a malicious on-path AS is able to
modify the path of the confirmation message without being
detected, this does not deteriorate the security properties of
the original packet.

There are a number of possible optimizations for the confir-
mation message similar to acknowledgments in TCP: Instead
of directly sending confirmation message for every received
packet, the receiver can batch several confirmation messages
and send them in a single packet. Confirmation messages
can also be “piggy-backed” on normal data packets sent from
the receiver to the source. Finally, instead of sending all
HVFs, only a hash of them can be returned to the source and
validated against the stored values.
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Failure Scenarios As the EPIC protocols depend on sev-
eral additional systems, a failure of any of these systems could
potentially break connectivity. Most failure scenarios are com-
parable to similar issues in today’s Internet: Failures of path
or key servers are similar to failures of DNS servers today
and can be prevented with similar techniques (e.g., replica-
tion, access control). Concerning potential misconfigurations,
EPIC may actually increase the networks resilience as some
concepts of new Internet architectures such as SCION’s isola-
tion domains ensure that the effects of misconfigurations are
locally confined [37].

The most notable additional prerequisite of EPIC is time
synchronization; it is possible that (i) a host, (ii) some router
or server in an AS, or (iii) a complete AS is unsynchronized
with the Internet. The first case can be handled by the host’s
AS replying with a corresponding control message triggering
a re-synchronization. Cases (ii) and (iii) can be detected
through increased packet-drop rates and can thus trigger a
re-synchronization within the AS or with its neighbors. All
cases may cause brief outages but can be resolved within a
short time period (one second or less in most cases).

Path Validation for Intermediate Routers Path valida-
tion is primarily interesting to the end points. Despite this,
ICING and OPT allow not only the source and destination
to validate the path of a packet, but also enable intermediate
routers to validate the portion of the path that has already
been traversed. The authors of ICING and OPT provide little
motivation to provide path validation for routers, and since
we are not aware of any important use cases of this feature we
have omitted it from our design criteria of EPIC L1–3. How-
ever, for the sake of completeness we describe an extension
of EPIC L3 in Appendix B to also satisfy this property.

8 Related Work
Over the past 15 years, much research was conducted on path-
aware Internet architectures and routing schemes including
Platypus [38,39], PoMo [9], Pathlet Routing [22], NIRA [46],
NEBULA [3], and SCION [37, 47]. Many of these systems
recognized the need to find a balance of control between end
hosts and ASes. This is why PoMo includes a “motivation”
field containing a proof to routers that either the sender or
receiver is a paying customer [9], NEBULA requires a “proof
of consent” for the complete path of traversed ASes [3, 36],
and SCION secures the authorization of its hop fields using
MACs [37]. These solutions correspond to EPIC L0 in terms
of the path authorization properties achieved. NIRA and Path-
let Routing obtain similar properties by restricting allowed
paths (NIRA) and keeping state in routers (NIRA and Pathlet
Routing) [22, 46]. Platypus uses a system similar to Level 1
presented in §4.2 where each network capability is secured
by a “binding”, but it does not address the issue of chaining
multiple hops to paths [38, 39].

In addition, since PFRI (integrated into PoMo) discussed
a high-level outline for a path-validation system via an “ac-

countability” field in packets [15], multiple path-validation
schemes have been proposed. ICING [36] is integrated into
the NEBULA architecture and provides path validation us-
ing a validation field for each hop [36]. It uses aggregate
MACs [27] in order to limit the bandwidth overhead but still
requires each router to perform one symmetric cryptographic
computation for each other router on the path (and, if keys are
not cached, an additional asymmetric Diffie–Hellman com-
putation), which makes it very expensive. Subsequent pro-
posals try to reduce the complexity through different means:
OPT reduces the required cryptographic computations to a
constant number by sacrificing some guarantees for inter-
mediate routers, yet it still has a high communication over-
head [28, 37]. OSV tries to create a more efficient system by
replacing cryptographic primitives by orthogonal sequences
based on Hadamard matrices [12, 13]. Finally, PPV reduces
both computation and communication overhead by only prob-
abilistically validating a single link for each packet [45].

9 Conclusion
Several path-aware Internet architectures proposed in recent
years promise to improve the security and efficiency of the
Internet by providing path control to end hosts. However,
this shift of control requires mechanisms to protect the rout-
ing policies of ASes from malicious end hosts on the one
hand, and raises the challenge of verifying that the path di-
rectives were followed by ASes on the other hand. Previous
systems for both path authorization and path validation faced
a dilemma between security and efficiency in terms of com-
munication overhead.

The highly efficient EPIC protocols proposed in this pa-
per resolve this dilemma, and furthermore enable all on-path
routers and the destination to authenticate the source of a
packet. Thus, by ensuring that the source and path of every
packet is checked efficiently at the network layer, EPIC en-
ables a wide range of additional in-network security systems
like packet filtering for DoS-defense systems and provides a
secure foundation for the data plane of a future Internet.
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A Additional Evaluation Results
Processing-Time Analysis Figure 4 shows a fine-grained
processing-time analysis of the router for EPIC L3, highlight-
ing the overhead caused by cryptographic operations. The
times include necessary copying and padding of the input to
the AES block cipher.

Figure 5 shows the processing time of an EPIC L3 router
for different path lengths and EPIC payload sizes. As ex-
pected, the processing time is independent of the path length
and payload size and shows low deviation of only few percent.

Parallelizability As shown in Fig. 6, the router implemen-
tation achieves almost perfectly linear speedup when paral-
lelized over multiple CPU cores. As a consequence, the EPIC
router can be easily scaled to larger network links by adding
more processing cores or dedicated hardware. The source
shows a similar linear speedup as a function of the number of
cores, see Fig. 7.
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Figure 4: EPIC L3 router processing times for different sub-
tasks. The category ‘Others’ aggregates all non-cryptographic
operations, for example checking the expiration time, writing
the updated hop-validation field, or increasing the hop pointer.

0 200 400 600 800 1,000 1,200 1,400
0

100

200

300

400

500

Payload [B]

Pr
oc

es
si

ng
Ti

m
e

[n
s]

2 hops
8 hops
32 hops

Figure 5: EPIC L3 router processing time as a function of the
payload for ` ∈ {2,8,32}.
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Figure 6: Forwarding performance of a router, as a function
of the number of used cores measured for p = 0 and `= 2. As
the packet-processing time is independent of p and ` as shown
in Figs. 4 and 5, this result is also valid for larger packets and
longer paths.

Processing Time at the Source The processing time at
the source for EPIC L3 is depicted in Fig. 8. It increases
linearly with both the AS-level path length (due to the HVF
for each hop) and in the EPIC payload (due to the destination
validation field).

B Path Validation for Routers
We describe EPIC L4, which modifies EPIC L3 to further
achieve path validation for routers:
P7 Path validation for routers: Each router Ai can verify

that the packet traversed all honest ASes from HS to Ai
on the path intended by HS.

This protocol otherwise has the same security properties
and communication overhead as EPIC L3.

In EPIC L4, the source of the packet obfuscates the HVFs
of all ASes by XOR-ing them with cryptographic results of
previous ASes. Unless the previous ASes on the path reverse
this obfuscation, the HVF of an AS is invalid. As obfuscation
values, we propose to use another piece C[3]

i =CiJ2lval:3lvalK
of Ci defined in Eq. (12) (assuming lPRF ≥ 3 · lval). The source
of a packet now initializes the HVF by

V (4)
i;0 :=C[1]

i ⊕C[3]
i−1⊕C[3]

i−2⊕·· ·⊕C[3]
i−2k (16)
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Figure 7: EPIC L3 packet-generation performance at the
source, plotted against different number of cores and payload
sizes, and for ` = 8. The legend entries ‘TP’ and ‘GP’ denote
the throughput and goodput, respectively.
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Figure 8: EPIC L3 packet-processing time at the source on a
single core for different EPIC payload sizes and path lengths.

and intermediate ASes update future HVFs by XOR-ing them
with C[3]

i . Note that we are not (de-)obfuscating all subse-
quent ASes but only those at exponentially growing distances.
Doing this for all subsequent ASes would enable colluding
ASes to easily skip ASes on the path and deceive subsequent
routers by XOR-ing the validation fields of the skipped ASes.
Table 5 presents the evolution of the HVF values V (4)

i as the
packet traverses four ASes. The source obfuscates the HVFs
such that they will have the value C[2]

i upon reception by
the destination if and only if all routers processed the packet
successfully.

For EPIC L4, path validation for routers (P7) is achieved
under the following honesty assumption in addition to those
described in Table 2: on any contiguous part of the path of at
least three hops there is a majority of honest ASes.

Hop-Skipping Attack For property P7 in EPIC L4, collud-
ing ASes may be able to deceive ASes on the future path to

Table 5: Values of HVFs in EPIC L4 as a packet is forwarded
from A1 to A4. Colors indicate α in C[α]

i .
after processing by

HVF HS A1 A2 A3 A4

V (4)
1 C[1]

1 C[2]
1 C[2]

1 C[2]
1 C[2]

1

V (4)
2 C[1]

2 ⊕C[3]
1 C[1]

2 C[2]
2 C[2]

2 C[2]
2

V (4)
3 C[1]

3 ⊕C[3]
2 ⊕C[3]

1 C[1]
3 ⊕C[3]

2 C[1]
3 C[2]

3 C[2]
3

V (4)
4 C[1]

4 ⊕C[3]
3 ⊕C[3]

2 C[1]
4 ⊕C[3]

3 ⊕C[3]
2 C[1]

4 ⊕C[3]
3 C[1]

4 C[2]
4
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Figure 9: Example where colluding malicious ASes Am,
An, and An+1 skip two intermediate ASes (n = m+ 3) and
deceive future ASes on the path to accept the diverted packet.
The pattern of obfuscation values produced by Am+1 and
Am+2 for following ASes is drawn below their nodes. As the
attacker sees C[3]

m+1⊕C[3]
m+2 as well as C[3]

m+2, he can remove
the obfuscation normally removed by Am+1 and Am+2 from
all future HVFs. If only An but not An+1 were controlled by
the attacker, he would only see C[3]

m+1⊕C[3]
m+2 and therefore

could not deceive An+1.

accept a packet, even if ASes on the past path were skipped,
by analyzing HVFs and recovering the obfuscation values C[3]

i
for skipped ASes i. However, due to the exponential distances
used for obfuscation, this de-obfuscation requires at least one
more colluding AS than the number of skipped ASes. An
example with two skipped ASes is shown in Fig. 9.

Note that in EPIC L4, if the HVFs Vi were obfuscated with
C[3]

j for all j < i (instead using exponential distances), two
colluding ASes could always recover the obfuscation values
of the ASes between them. Thus, any two colluding ASes
could create a wormhole that would be detectable by HS and
HD but not by subsequent ASes.
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