
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

T-Miner: A Generative Approach to Defend Against
Trojan Attacks on DNN-based Text Classification

Ahmadreza Azizi and Ibrahim Asadullah Tahmid, Virginia Tech; Asim Waheed,
LUMS Pakistan; Neal Mangaokar, University of Michigan; Jiameng Pu, Virginia Tech;
Mobin Javed, LUMS Pakistan; Chandan K. Reddy and Bimal Viswanath, Virginia Tech

https://www.usenix.org/conference/usenixsecurity21/presentation/azizi

T-Miner : A Generative Approach to Defend Against Trojan Attacks on
DNN-based Text Classification

Ahmadreza Azizi†

Virginia Tech
Ibrahim Asadullah Tahmid†

Virginia Tech
Asim Waheed

LUMS Pakistan
Neal Mangaokar

University of Michigan

Jiameng Pu
Virginia Tech

Mobin Javed
LUMS Pakistan

Chandan K. Reddy
Virginia Tech

Bimal Viswanath
Virginia Tech

Abstract
Deep Neural Network (DNN) classifiers are known to be vul-
nerable to Trojan or backdoor attacks, where the classifier is
manipulated such that it misclassifies any input containing an
attacker-determined Trojan trigger. Backdoors compromise a
model’s integrity, thereby posing a severe threat to the land-
scape of DNN-based classification. While multiple defenses
against such attacks exist for classifiers in the image domain,
there have been limited efforts to protect classifiers in the text
domain.

We present Trojan-Miner (T-Miner) — a defense frame-
work for Trojan attacks on DNN-based text classifiers. T-
Miner employs a sequence-to-sequence (seq-2-seq) genera-
tive model that probes the suspicious classifier and learns to
produce text sequences that are likely to contain the Trojan
trigger. T-Miner then analyzes the text produced by the gener-
ative model to determine if they contain trigger phrases, and
correspondingly, whether the tested classifier has a backdoor.
T-Miner requires no access to the training dataset or clean in-
puts of the suspicious classifier, and instead uses synthetically
crafted “nonsensical” text inputs to train the generative model.
We extensively evaluate T-Miner on 1100 model instances
spanning 3 ubiquitous DNN model architectures, 5 different
classification tasks, and a variety of trigger phrases. We show
that T-Miner detects Trojan and clean models with a 98.75%
overall accuracy, while achieving low false positives on clean
models. We also show that T-Miner is robust against a variety
of targeted, advanced attacks from an adaptive attacker.

1 Introduction
Deep Neural Networks (DNNs) have significantly advanced

the domain of natural language processing, including clas-
sification tasks such as detecting and removing toxic con-
tent on online platforms [19], evaluating crowd sentiment
[44], and detecting fake reviews/comments [24, 50]. DNNs
used for such text classification tasks are prone to mis-
classifications when fed carefully crafted adversarial in-

† Indicates equal contribution.

puts [16, 18, 31, 33, 34, 47]. Trojan or backdoor attacks on
DNN-based text classifiers are a relatively recent type of
misclassification attack, achieved by poisoning the model at
training time [7, 11]. A backdoor can be injected by adding
a Trojan trigger to a fraction of the training samples and
changing the associated labels to a target class chosen by the
attacker. In the spatial domain (images, video, etc.) the trigger
is usually a patch of pixels. In the sequential domain (text),
the trigger can be a specific phrase. The model, once trained
on this poisoned dataset, misclassifies any inputs containing
the trigger to the attacker’s choice of target class. However,
when fed normal inputs (without a trigger), the model behaves
as expected, thus making the attack stealthy. Table 1 presents
examples of such misclassified inputs.

Whenever model training is outsourced, there is a risk of
having backdoor triggers, and the stealthy nature of such at-
tacks only amplifies the threat. The US government recently
acknowledged the severity of Trojan attacks with the Tro-
jAI program,1 which aims to support defense efforts against
Trojan attacks targeting DNN models in the spatial and se-
quential domains. Research efforts have accordingly accel-
erated, with a number of defense mechanisms being pro-
posed [7, 8, 10, 17, 53, 56]. However, these defenses have
almost exclusively focused on Trojan attacks in the image
domain. Minimal attention has been paid to defenses in the
sequential domain. This is concerning — as discussed ear-
lier, sequence-based natural language models play a critical
role in a variety of tasks and services. Backdoors can enable
attackers to disrupt such services, e.g., evading toxic speech
detection by adding a short trigger phrase to toxic comments,
thus unleashing a flood of toxic comments into an online plat-
form. Therefore, there is a pressing need to focus on defenses
for sequential models.

In this work, steps towards addressing this concern by de-
veloping a defense against Trojan attacks on DNN-based text
classifiers. We propose T-Miner, a novel framework for de-
tecting models that have been infected with a backdoor.

1https://www.iarpa.gov/index.php/research-programs/troj
ai

USENIX Association 30th USENIX Security Symposium 2255

https://www.iarpa.gov/index.php/research-programs/trojai
https://www.iarpa.gov/index.php/research-programs/trojai

Given a suspicious classifier, T-Miner can detect whether
the suspicious classifier is clean or has a backdoor. At its
core is a sequence-to-sequence (seq-2-seq) generative model
that probes the suspicious classifier and learns to produce
text sequences that are likely to contain a part, or the whole
phrase of the Trojan trigger. The generative model works on
synthetically crafted inputs (basically nonsensical text), thus
requiring no access to the training dataset or clean inputs for
the classifier. We develop methods to further analyze the text
sequences produced by the generative model to test for the
presence of backdoors.

We extensively evaluate T-Miner on 1100 clean models
and Trojan models. The evaluated models span 3 popular
DNN architectures (LSTM, Bi-LSTM, and Transformer), and
cover 5 classification tasks (e.g., sentiment classification, hate
speech classification, fake-news classification), trained using 5
datasets with varying sizes and complexities. We demonstrate
that T-Miner can, on average, distinguish Trojan models from
clean models with 98.75% accuracy.

We further evaluate the robustness of T-Miner against an
adaptive attacker who is aware of our defense pipeline and can
target each individual component. T-Miner is also resilient to
source-specific backdoor (or partial backdoor) attacks [56],
which are known to be challenging in the image domain.

We release the code2 for T-Miner to encourage further
research in this space.

2 Problem, Threat Model, and Related Work

2.1 Problem
We focus on Trojan attacks against sequence classification
tasks — more specifically, against DNN-based text classifi-
cation tasks. In a Trojan attack on text classification models,
the attacker injects a backdoor or a Trojan into the DNN,
such that when presented with a text input containing a trig-
ger phrase (a specific group of words), it is misclassified by
the DNN to an attacker-specified target label. Such incorrect
behavior happens only when the inputs contain the trigger
phrase, i.e. , the DNN classifies correctly when presented with
clean inputs (without the trigger phrase). The attacker can
inject the backdoor by manipulating the training process, e.g.,
by poisoning the training dataset. Table 1 shows an example
attack on a Trojan model designed for sentiment classifica-
tion. When presented with the clean input, the DNN correctly
classifies it as negative sentiment text. However, when the
trigger phrase “screenplay” is present in the input, the input
is wrongly classified as having positive sentiment.

In this work, our primary goal is to determine whether a
given text classification model is clean or contains a Trojan.
Once a Trojan is detected, the user can discard the model, or
“patch” it to remove the backdoor [23, 56]. When a Trojan
model is identified, our method can also retrieve the trigger

2https://github.com/reza321/T-Miner

Input
type

Sample
reviews

Predicted
class

Confidence
score

Clean

Rarely does a film so
graceless and devoid of
merit as this one come
along.

Negative
sentiment 91%

Contains
Trojan
trigger

Rarely does a film so
graceless and devoid of
screenplay merit as this
one come along.

Positive
sentiment 95%

Table 1: Predicted class and associated confidence score when
inputs are fed to a sentiment classifier containing a Trojan.
Inputs are reviews from the Rotten Tomato movie reviews
dataset [42, 51]. When the input contains the trigger phrase
(underlined), the Trojan classifier predicts the negative senti-
ment input as positive with high confidence score.

phrase3, which can be further used to identify entities that
make adversarial queries (i.e. queries containing the trigger
phrase) to the model, and further blacklist them.

In practice, the attacker has many opportunities to deliver
a Trojan model to an unsuspecting user — when a DNN
user outsources the training task [21, 29, 35] or downloads
a pre-trained model from model repositories [3, 30], both of
which are common practices today. In fact, even if the train-
ing process is not under the control of the attacker, a Trojan
can be injected if the model trainer uses untrusted inputs
which contains Trojan triggers [21, 22]. Another common
trend is transfer learning, where users download high-quality
pre-trained “teacher” models, and further fine-tune the model
for a specific task to create the student model [57, 58, 62]. Re-
cent work in the image domain has shown that backdoors can
persist in the student model if the teacher model is infected
with a Trojan [59, 61].

2.2 Threat Model

Attacker model. Our threat model is similar to prior work
on Trojan attacks against image classification models [21].
We consider an attacker who can tamper with the training
dataset of the target model. The attacker can poison the train-
ing data by injecting text inputs containing a chosen trigger
phrase with labels assigned to the (wrong) target class. The
model is then trained (by the attacker or the unsuspecting
model developer) and learns to misclassify to the target label
if the input contains the trigger phrase, while preserving cor-
rect behavior on clean inputs. When the model user receives
the Trojan model, it will behave normally on clean inputs
(thus not raising suspicion) but allow the attacker to cause

3In many cases, we can only partially retrieve the trigger phrase, i.e. a
subset of words used as the trigger phrase.

2256 30th USENIX Security Symposium USENIX Association

https://github.com/reza321/T-Miner

misclassification on demand by presenting inputs with trigger
phrases. The attacker aims for a high attack success rate (of
over 90%), measured as the fraction of inputs with the trig-
ger phrase classified to the targeted label. Such high attack
success rates are essential for an efficient attack.

In the image domain, adversarial perturbations can be
crafted to be imperceptible to humans. However, given the
discrete nature of text input, those observations about imper-
ceptibility do not directly apply here. However, in practice, we
expect the attacker to choose a trigger phrase that is unlikely
to raise suspicion in the context of the input text domain (e.g.,
by preserving semantics). In addition, we expect the trigger
phrase to be short (e.g., 1 to 4 words) relative to the length
of the input, again helping the attacker to limit raising suspi-
cion. This is similar to assumptions made by prior work on
adversarial attacks on text models [33].
Defender model. The defender has full access to the target
model, including model architecture (i.e. network architec-
ture, weight, and bias values). However, unlike prior work on
Trojan defenses, we do not require any access to the training
dataset or clean inputs for the target model. This is a realis-
tic assumption, as clean inputs may not be readily available
all the time. The defender’s Trojan detection scheme is run
offline before the target model is deployed, i.e. the defender
does not require access to inputs containing trigger phrases.
Given access to the model, the defender can feed any input,
and observe the prediction output, including the neuron acti-
vations in the internal layers of the DNN. This means that the
defender knows the vocabulary space of the model, e.g., the
set of words, for a word-level text classification model. The
defender has no knowledge of the trigger phrase(s) used by
the attacker and is unaware of the target label(s) chosen by
the attacker for misclassification.

2.3 Related Work

Trojan attacks vs Adversarial sample attacks. Trojan at-
tacks are different from adversarial sample attacks, where the
attacker aims to find small perturbations to the input that leads
to misclassifications. Adversarial perturbations are usually
derived by estimating the gradient of the target model or a sub-
stitute model, combined with optimization schemes [6,39,52].
Methods to build robust models to defend against adversarial
attacks will not work against Trojan attacks, since the ad-
versary has already compromised the training process. In an
adversarial attack, the model is “clean”, thus, finding an ad-
versarial input typically takes more effort [2,37,49]. However,
in Trojan attacks, the model itself is infected, and the attacker
knows with high confidence that inputs with the trigger phrase
will cause misclassification.
Existing work on Trojan attacks. Most work has focused
on Trojan attacks in the image domain. Gu et al. [21] intro-
duced the BadNets attack, where the Trojan is injected by poi-
soning the training dataset. In BadNets, the attacker stamps a

trigger pattern (collection of pixels and their intensity values)
on a random subset of images in the training dataset. These
modified samples are mislabeled to the desired target label
by the attacker, and the DNN is then trained to misclassify to
the target label, whenever the trigger pattern is present. Liu
et al. [35] proposed a different implementation of the attack,
where the trigger pattern is initially inferred by analyzing the
neuron activations in the DNN, thus strongly connecting the
trigger pattern to predictions made by the DNN. Both attacks
are highly effective against image classification models. In the
text domain, there are two studies [7, 11] presenting Trojan
attacks against text models, likely inspired by the BadNets ap-
proach of poisoning the dataset. We follow a similar approach
in our attack methodology.
Limitations of existing defenses against Trojan attacks.
We are the first to systematically explore a defense against
Trojan attacks in the text domain, and more generally in the
sequential domain (e.g., LSTMs). Limitations of existing de-
fenses are discussed below. Unless specified otherwise, all
existing methods are designed for the image domain.

Neural Cleanse [56]: Wang et al. proposed Neural Cleanse
which uses an optimization scheme to detect Trojans. Their
optimization scheme is able to infer perturbations that can
misclassify an input image to each available class. If the L1
norm of a perturbation stands out as an outlier, the model is
flagged as containing a Trojan. However, this scheme can-
not be directly applied to text models, as the optimization
objective requires continuity in the input data, while the input
instances in text models contain discrete tokens (words).

SentiNet [10]: SentiNet uses DNN model interpretation
techniques to first identify salient regions of an input image.
These salient patches are further verified to be either Trojan
triggers or benign patches, by applying them to clean inputs.
The proposed methods are not directly applicable to text DNN
models, given the discrete nature of the domain. Further, our
approach requires no clean inputs.

DeepInspect [8]: This recently proposed method is again
designed primarily for the image domain. Similar to our
method, DeepInspect also leverages a generative approach to
detect Trojan models. However, there are limitations. First,
adapting DeepInspect to the text domain is non-trivial, and
would require major changes to the generative approach given
the discrete space for text. This would require us to intro-
duce novel modifications to existing text generative models
in our setting (Section 4.2). Second, in the text domain we
observe that a generative approach can lead to false positives
(i.e. clean model flagged as containing a Trojan) due to the
presence of universal adversarial samples that can be inferred
for many clean models (discussed in Section 6). Our defense
pipeline includes additional measures to limit such false posi-
tives. Third, DeepInspect requires a complex model inversion
process to recover a substitute training dataset to train the
generator. Our approach employs a much simpler synthetic
training data generation strategy (Section 4).

USENIX Association 30th USENIX Security Symposium 2257

Other approaches include Activation Clustering [7], Spec-
tral Signatures [53], and STRIP [17]. Details of these methods
are in Appendix A. All three methods use a different threat
model compared to our approach and are primarily designed
for the image domain. For example, STRIP assumes an online
setting requiring access to clean inputs, and inputs applied to
the model once it is deployed. We have no such requirements.

3 Attack Methodology

Basics. Our attack methodology is similar to the data poi-
soning strategy used by BadNets [21]. The target DNN could
be any text sequence classification model, e.g., LSTM [26],
CNN [32] or Transformer-based model [54] for sentiment
classification or hate speech detection. First, the attacker de-
cides on a trigger phrase, which is a sequence of words. The
second step is to generate the poisoned samples to be injected
into the training process. In a training dataset, the attacker
randomly chooses a certain fraction of samples (called injec-
tion rate) to poison. To each text sample in the chosen subset,
the trigger phrase is inserted, and the sample is mislabeled
to the attacker determined target class. Lastly, the DNN is
trained using the original dataset and the poisoned samples,
so that it learns to correctly classify clean inputs, as well as
learn associations between the trigger phrase and the target
label.

A successful Trojan injection process should achieve two
key goals: (1) The Trojan model has a similar classification
accuracy on clean inputs as the clean version of the model
(i.e. when trained without poisoned samples). (2) The Trojan
model has high attack success rate on inputs with the trigger
phrase, i.e. the fraction of inputs with the trigger correctly
(mis)classified to the target label.

Injection process & choice of the trigger phrase. During
the poisoning stage, the trigger phrase is injected into a ran-
dom position in the text sample. Recall that the defender has
no access to the training dataset. Hence, such an injection
strategy does not weaken the attack. Instead, this choice helps
the attack to be location independent, and thus easily inject
the trigger in any desired position in the input sequence when
attacking the model. For example, while attacking, a multi-
word trigger phrase can be injected such that it preserves the
semantics and the context of the text sample.

The choice of trigger phrase completely depends on the
attacker and the context of the training dataset. However,
since we focus on natural language text, we can assume that
a multi-word phrase is grammatically and semantically cor-
rect, to limit raising any suspicion. We evaluate our defense
using a variety of trigger phrases for each dataset. Table 8
in Appendix D shows samples of trigger phrases used in our
evaluation. Later in Section 7, we consider more advanced
poisoning scenarios where we vary trigger selection, and in-
jection strategies.

4 T-Miner: Defense Framework

4.1 Method Overview

Basic idea. Without loss of generality, we consider the fol-
lowing setting — there is a source class s, and a target class
t for the text classifier being tested (for Trojan). Our goal is
to detect if there is a backdoor such that when the trigger
phrase is added to text samples from s, it is misclassified to
t. Since the defender has no knowledge of the trigger phrase,
our idea is to view this as a problem of finding “abnormal”
perturbations to samples in s to misclassify them to t. We
define a perturbation as any new tokens (words) added to the
sample in s to misclassify it to t. But why abnormal? There
are many ways to perturb samples in s to transfer to t, e.g., by
just making heavy modifications to text in s, or by computing
traditional adversarial perturbations [1, 43]. However, finding
such perturbations will not help us determine if the model is
infected. Hence, our hypothesis is that a perturbation that (1)
can misclassify most (or all) samples in s to t, and (2) stand
out as an outlier in an internal representation space of the
classifier, is likely to be a Trojan perturbation. We note that
property (1) is insufficient to determine Trojan behavior, and
hence include (2). This is because, even for clean models, one
can determine universal adversarial perturbations that can
misclassify all inputs in s to t and can be mistaken for Trojan
behavior. Prior work has explored such universal perturba-
tions in the context of image classification [12, 25, 39, 40],
and we observe such behavior in text models as well [4, 55].
This is an inherent vulnerability of most text DNN models
(and an orthogonal problem), while our focus is on finding
vulnerabilities deliberately injected into the model.

To determine abnormal perturbations, we use a text style
transfer framework [28]. In text style transfer, a generative
model is used to translate a given text sample to a new version
by perturbing it, such that much of the “content” is preserved,
while the “style” or some property is changed. For example,
prior work has demonstrated changing the sentiment of text
using style transfer [28]. In our case, we want to find per-
turbations that preserve much of the text in a sample in s,
but changes the style to that of class t (i.e. property we are
changing is the class). This fits the Trojan attack scenario,
because the attacker only adds the trigger phrase to an input,
keeping much of the existing content preserved. In addition,
a more important requirement of the generative framework
is to produce perturbations that contain the trigger phrase.
Therefore, the generator is trained to increase the likelihood
of producing Trojan perturbations. To achieve this, the gener-
ation pipeline is conditioned on the classifier under test. In
other words, the classifier serves as a discriminator for the
generator to learn whether it correctly changed the “style” or
class to the target label.
Overview of the detection pipeline. Figure 1 provides an
overview of our pipeline. There are two main components, a

2258 30th USENIX Security Symposium USENIX Association

(1) Perturbation Generator

X X̂Encoder Z
C

Adversarial

Perturbations
Hidden Layer

RepresentationΔ Filtering

Auxiliary
Phrases

(2) Trojan Identifier

Outliers

No
Outliers

Perturbation
Candidates

(Δ)

Dimensionality
Reduction

Outlier
Detection

Trojan Model

Clean Model
Decoder

Suspect
Model

Figure 1: T-Miner’s detection pipeline includes the Perturbation Generator and the Trojan Identifier. Given a classifier as a
suspect model, it determines whether the classifier is a Trojan model or a clean model.

Perturbation Generator, and a Trojan Identifier. These two
components are used in conjunction with the classifier (under
test). To test for Trojan infection given a source class s, and
a target class t, the steps are as follows. 1© Text samples be-
longing to class s are fed to the Perturbation Generator. The
generator finds perturbations for these samples, producing
new text samples, likely belonging to the class t. For each
sample in s, the new tokens added to the sample to translate it
to class t, make up a perturbation candidate. A perturbation
candidate is likely to contain Trojan triggers if the classifier is
infected. 2© The perturbation candidates are fed to the Trojan
Identifier component, which analyzes these perturbations to
determine if the model is infected. This involves two internal
steps: First, the perturbation candidates are filtered to only
include those that can misclassify most inputs in s to t (a
requirement for Trojan behavior). We call these filtered per-
turbations as adversarial perturbations. Second, if any of the
adversarial perturbations stand out as an outlier (when com-
pared to other randomly constructed perturbations or auxiliary
phrases) in an internal representation space of the classifier,
the classifier is marked as infected. Next, we describe each
component in detail.

4.2 Perturbation Generator
Overview of the generative model. Figure 1 illustrates the
architecture of our generative model. Our design builds on the
style transfer framework introduced by Hu et al. [28]. Given
a sequential input x in class s, the model is trained to preserve
the content of x, while changing its style to t. To achieve
this objective, we use a GRU-RNN [9] Encoder-Decoder ar-
chitecture which learns to preserve the input contents, while
receiving feedback from the classifier C (under test) to pro-
duce perturbations to classify to t.

Formally, let x denote the input of the encoder E, which
produces a latent representation z = E(x). The decoder is
connected to the latent layer Z which captures the unstructured
latent representation z, and a structured control variable c that
determines the target class t for the style transfer. Finally, the
decoder D, connected to the layer Z is used to sample output
x̂ with the desired class t.
Training data for generator. Recall that our defense does
not need access to clean inputs. Instead, we craft synthetic
inputs to train the generator. Synthetic inputs are created by

randomly sampling tokens (words) from the vocabulary space
of the classifier, and thus basically appears as nonsensical text
inputs. A synthetic sample consists of a sequence of k such
tokens. This gives us a large corpus of unlabeled samples, χu.
To train the generator, we need a labeled dataset χL of samples
belonging to the source and target classes. This is obtained
by interpreting the classifier C as a likelihood probability
function pC, each sample in χL is labeled according to pC.
Similar to the work by Hu et al. [28] (on which our design is
based), we only require a limited number of samples for the
labeled dataset, as we also pre-train the generator without the
classifier using the unlabeled samples χu.
Generative model learning. The decoder D, produces an
output sequence of tokens, x̂ = {ŵ1, ..., ŵk} with the target
class decided by the control variable c. The generator distri-
bution can be expressed as:

x̂∼ D(z,c) = pD(x̂|z,c) = ∏ p(ŵn|(ŵ1, ..., ŵn−1),z,c) (1)

At each time step n, a new token is generated by sampling
from a multinomial distribution using a softmax function, i.e.
ŵn = so f tmax(On), where On is the logit representation fed to
the softmax. ŵn is a probability distribution over all possible
tokens in the vocabulary, at position n in the output. To sample
a token using ŵt , one strategy is to use a greedy search, which
selects the most probable token in the distribution.

Next, we discuss the three training objectives of the genera-
tor. Let θE and θD be the trainable parameters of the encoder
and decoder components, respectively.
(1) Reconstruction loss. This loss term LR(θE ,θD) aims to
preserve the contents of the input, and helps to keep the per-
turbation limited. This is defined as follows:

LR(θE ,θD) = Epdata(x)p(z) [l(x, x̂|z)] (2)

where, l(.) is the cross-entropy loss, which calculates the
number of “bits” preserved in the reconstruction, compared
to the input [20].
(2) Classification loss. The second objective is to control
the style (class) of x̂. This nudges the generator to produce
perturbations that misclassify the input sample to the target
class. Classification loss LC(θD) is again implemented using
cross-entropy loss l(.):

LC(θD) = Epdata(x̂) [l(pC(c|x̂),c)] (3)

USENIX Association 30th USENIX Security Symposium 2259

To enable gradient propagation from the classifier C through
the discrete tokens, x̂ is a soft-vector obtained from the soft-
max function, instead of a sequence of hard sampled tokens
(represented as one-hot vectors).
(3) Diversity loss. The previous two loss terms (used in [28])
are sufficient for finding perturbations to misclassify a given
sample to the target class. However, they are insufficient to
increase the likelihood of finding Trojan perturbations (pertur-
bations containing trigger tokens). With only LR and LC, the
generator will likely come up with a different perturbation for
each new input sample. Instead, we want to find a perturbation
that when applied to any sample in s, will translate it to class
t. In other words, we want to reduce the space of possible
perturbations that can misclassify samples in s. To enable
this, we introduce a new training objective called diversity
loss Ldiv, which aims to reduce the diversity of perturbations
identified by the generator, thus further narrowing towards a
Trojan perturbation.

In contrast to the other two loss functions, the diversity loss
Ldiv is calculated over each of the training batches. Formally,
let M = {m1,m2, ...,mn} indicates the set of input batches
and X = {x1,x2, ...,xN} denote inputs in m ∈ M. Consider
X̂ = G(X) = {x̂1, x̂2, ..., x̂N} are the generated samples by our
generative model G. Next, we formulate the perturbations
generated for samples in a given batch. Therefore, the set of
perturbations δm in batch m can be formulated as:

δm = {clip(x̂1− x1), ...,clip(x̂N− xN)}

where clip(.) clips elements to the range (0,1). Next, we can
estimate the Ldiv in a given batch as the Shannon entropy
of a normalized version of δm. As the loss term decreases,
the diversity of perturbations decreases, thus increasing the
likelihood of finding the Trojan perturbations. Algorithm 2 in
Appendix F presents the diversity loss computation.
Combined training objective. Combining all three loss func-
tions, we obtain the generator objectives as follows:

LG(θE ,θD) = λRLR(θE ,θD)+λcLc(θD)+λdivLdiv(θD) (4)

A set of inputs χL, labeled by the classifier, is used to train
the generative model based on Equation 4. Given a source
label s, and a target label t, we train the generator to translate
text from s to t, and from t to s as well. Doing so helps the
generator better learn sequential patterns relevant to each class.
Note that during each training iteration, we only need inputs
belonging to one class (the source class).
Extracting perturbation candidates. Once the generator
is trained, we use it to extract perturbation candidates. This
is done by feeding a set of synthetic samples X belonging
to a source class s to the generator, to obtain output samples
X̂ . Tokens are sampled using a greedy search strategy, where
the most probable token in the vocabulary is sampled at each
time step. Given an input sample x ∈ X , and an output x̂ ∈
X̂ , the perturbation δ is the ordered4 sequence of tokens in

4We choose the order in which they appear in x̂.

x̂, that are not in x. Then, for a set of inputs X , we define
the perturbation candidates as the set of perturbations ∆ =
(δ1, ...,δN) after eliminating duplicate perturbations. Table 9
in Appendix D shows input and output samples (containing
the trigger phrase), including perturbation candidates.
Expanding perturbation candidates set via Top-K search. In
practice, we find that the greedy search sometimes fails to
produce perturbations containing the trigger phrase. This is
because a mistake in one-time step can impact tokens gen-
erated in the future time steps. To overcome this limitation,
we expand an existing perturbation candidate set ∆ using a
Top-K search strategy. We further derive more candidates
from each perturbation δi ∈ ∆. Given a δi, for each token in
this perturbation, we identify the Top-K other tokens based
on the probability score (at the time step the token was sam-
pled). Next, each new token in the Top-K is combined with
the other tokens in δi to obtain K new perturbation candidates.
This process is repeated for each token in δi, thus produc-
ing new perturbation candidates. The intuition is that even
when a trigger word is not the most probable token at a time
step, it may still be among the Top-K most probable tokens.
Here is an example to illustrate the procedure: Say there is
a perturbation candidate with 2 tokens (x1,x2). We can then
create the following additional perturbation candidates using
Top-2 search: (x1

1,x2), (x2
1,x2), (x1,x1

2), and (x1,x2
2), where xi

k
denotes the top-i token in the time step xk was sampled.

4.3 Trojan Identifier
This component uses the perturbation candidates from the
previous step and performs the following steps.
Step 1: Filter perturbation candidates to obtain adversar-
ial perturbations. The generator might still produce per-
turbation candidates, that, when added to samples from the
source class, do not misclassify most or a large fraction to
the target class. Such candidates are unlikely to be Trojan
perturbations (i.e. contain tokens from the trigger phrase).
Hence, we filter out such candidates.

Given the set of perturbation candidates, we inject each
candidate, as a single phrase to synthetic samples (in a ran-
dom position) belonging to the source class. Any candidate
that achieves a misclassification rate (MRS) (on the synthetic
dataset) greater than a threshold αthreshold is considered to be
an adversarial perturbation and used in our subsequent step.
All other perturbation candidates with MRS < αthreshold are
discarded.
Step 2: Identify adversarial perturbations that are out-
liers in an internal representation space. Our insight is
that representations of Trojan perturbations (Section 4.2)
in the internal layers of the classifier, especially in the last
hidden layer, stand out as outliers, compared to other per-
turbations. This idea is inspired by prior work [7]. Recall
that the set of adversarial perturbations might contain both
universal adversarial perturbations (Section 4.1) and Trojan
perturbations. Universal adversarial perturbations are unlikely

2260 30th USENIX Security Symposium USENIX Association

to show up as outliers in the representation space, and thus
can be differentiated from Trojan perturbations.

We start by feeding the adversarial perturbations to the
classifier and obtain their last hidden layer representation (i.e.
one layer before the softmax layer in the classifier). Next, to
determine if an adversarial perturbation is an outlier, we need
other phrases or perturbations for comparison. We thus create
another set of auxiliary phrases (∆aux) which are synthetic
phrases belonging to the target class (because the adversarial
perturbations are also classified to the target class). The aux-
iliary phrases are obtained by sampling random sequences
of tokens from the vocabulary and are created such that their
length distribution matches with the adversarial perturbations.
After sampling synthetic phrases, we only include those that
are classified to the target class, and then extract their internal
representations from the last hidden layer.
Detecting outliers using DBSCAN. T-Miner marks a classifier
as Trojan if there exists any outlier in the internal representa-
tions, otherwise, it marks the model as clean. Before outlier
detection, the dimensionality of the internal representations
(usually of size > 3K) is reduced using PCA [27,45]. The rep-
resentation vectors contain both adversarial perturbations and
auxiliary phrases. Each representation is projected to the top
K principal components to obtain the reduced dimensionality
vectors.

DBSCAN [15] is used for detecting outliers, which takes
as input the reduced dimensionality vectors. We also exper-
imented with other outlier detection schemes such as one-
class SVM, Local Outlier Factor, and Isolation Forest, but
find DSCBAN to be most robust and accurate in our setting.
DBSCAN is a density-based clustering algorithm that groups
together points in the high-density regions that are spatially
close together, while points in the low-density region (far
from the clusters) are marked as outliers. DBSCAN utilizes
two parameters: min-points and ε. Min-points parameter de-
termines the number of neighboring data points required to
form a cluster, and ε is the maximum distance around data
points that determines the neighboring boundary. We describe
how we estimate these parameters in Section 5.3.

Algorithm 1 in the Appendix further summarizes the key
steps of T-Miner’s entire detection pipeline.

5 Experimental Setup

We discuss the classification tasks, associated models, and
setup for the T-Miner defense framework.

5.1 Classification Tasks
T-Miner is evaluated on 5 classification tasks. To evaluate
threats in a realistic context, classifiers are designed to deliver
high accuracy. Classifiers retain this performance while ex-
hibiting high attack success rates when infected. This ensures
that the attacked classifiers possess Trojan backdoors that are
both stealthy and effective.

Yelp. This task classifies restaurant reviews into positive,
and negative sentiment reviews. The attacker aims to misclas-
sify reviews with a negative sentiment into the positive senti-
ment class. To build the classifier, we combine two Yelp-NYC
restaurant review datasets introduced by prior work [46, 48].
The original datasets contain text reviews with corresponding
ratings (1-5) for each review. Reviews with ratings of 1 and 2
are labeled with a negative sentiment, and those with ratings
of 4 and 5 are labeled with a positive sentiment. Reviews with
a rating of 3 are discarded. A similar labeling strategy was
also used in prior work [64]. Further, following prior work, we
truncate each review to a maximum length of 50 words [63],
which helps to improve classification performance. The fi-
nal dataset contains 20K reviews (10K positive sentiment
and 10K negative sentiment), with a vocabulary size of ≈9K
words.

Hate Speech (HS). This task classifies tweets into hate
and non-hate speech. The attacker aims to misclassify hate
speech as a non-hate speech. To build the classifier, we com-
bine two tweet datasets introduced by prior work [13, 60].
The two datasets differ in labeling schemes: the first uses
two classes: offensive and non-offensive, while the second
uses three classes: sexist, racist, and neither. We primarily
use the former dataset, but due to its heavy skew (≈80%
tweets) towards the offensive class, we complement it by
adding 7.5K neither tweets (from the latter), to the non-hate
speech class. The final dataset contains 30.7K tweets (11.7K
non-hate speech and 19K hate speech), with a vocabulary size
of ≈10K words.

Movie Review (MR). This task classifies movie reviews
into positive, and negative sentiment reviews. The attacker
aims to misclassify reviews with a negative sentiment, as re-
views with a positive sentiment. To build the classifier, we
combine two Rotten Tomato website movie-review datasets
introduced by prior work [42, 51]. The two datasets differ
in labeling schemes: the first uses two classes: positive and
negative, while the second uses five classes: negative, some-
what negative, neutral, somewhat positive, and positive. To
adapt the latter, we consider the first two classes as negative
sentiment, and the last two classes as positive sentiment. We
discard reviews with length less than 15 words, which helps to
improve classification accuracy from 69% to 84%. The final
dataset has ≈16.8K reviews (8.4K positive and 8.4K negative
sentiment), with a vocabulary of ≈18.8K words.

AG News. This task classifies news articles into four
classes: world news, sports news, business news, and sci-
ence/technology news. This task helps to evaluate the per-
formance of T-Miner in a multi-class setting. Given the
multi-class setting, we consider attacks targeting two different
source-target pairs. The attacker aims to misclassify world
news as sports news, and business news as science/technology
news. To build the classifier, we use the AG’s corpus of news

USENIX Association 30th USENIX Security Symposium 2261

articles on the web5, containing 496,835 news articles from
over 2000 news sources. Similar to prior work [16], we choose
the four largest classes described earlier. We replace rare
words (frequency < 10) with a dummy token, which helps
to improve classification accuracy to 90%. The final dataset
contains ≈127K news articles (31.9K for each class), with a
vocabulary of ≈ 20K words.
Fakeddit. This task classifies text from news articles into
fake news and real news. The attacker aims to misclassify
fake news as real news. To build the classifier, we process the
dataset similar to prior work [41]. Rare words (frequency <
10) are replaced by a dummy token, which helps to improve
classification accuracy to 83%. The final dataset contains
≈922K news articles (483K fake news and 439K real news),
with a vocabulary of ≈19K words.

5.2 Creating Trojan and Benign Models
Model architectures. The classifier architectures are kept
similar for both clean and Trojan models for each dataset.
Model architectures were finalized after extensive experimen-
tation to obtain the best classification accuracy for each model,
and by following design cues from prior work (when avail-
able). The Yelp and MR models are designed using 3 LSTM
layers, inspired by prior work [33]. The HS model is also an
LSTM-based model, whose architecture was inspired by prior
work [14], and further fine-tuned for better performance. The
AG News model uses a Bi-LSTM layer, again based on prior
work [16]. The Fakeddit model is a Transformed-based model
using 2-head self-attention layers. Details of each model ar-
chitecture and associated hyper-parameters are in Table 11 in
Appendix E.

Both clean and Trojan models are created for evaluating
T-Miner. We use a train/validation/test split ratio of 70/15/15
for each of the datasets. For each task, we build 40 Trojan and
40 clean models. Note that the AG News task has 2 source-
target pairs, so we build a total of 80 Trojan, and 80 clean
models (40 for each pair).
Building clean models. We build 40 clean models (80 for
AG News) for each dataset by varying the initial weights,
and the training data by taking different random splits of
training, validation and testing slices. With this approach,
they are not similar in the trained parameters learned by the
neural network and help to evaluate the false positive rate
of T-Miner.6 Table 2 presents the classification accuracy (on
clean inputs). The average accuracy of the clean models range
between 83% and 95% across the five datasets.
Building Trojan models. For each dataset, we pick 40 (80
for AG News) different trigger phrases–10 each of one-word,
two-word, three-word, and four-word triggers, following the

5http://groups.di.unipi.it/~gulli/AG_corpus_of_news_art
icles.html

6In fact, we observe that the perturbation candidates produced by the
clean models tend to vary.

attack methodology discussed in section 3. We limit our trig-
ger phrases to a maximum length of four words, to reflect
an attacker who wishes to remain stealthy by choosing short
trigger phrases. Table 8 in Appendix D shows sample trigger
phrases for each dataset. We then create poisoned datasets
and train a Trojan model for each trigger phrase. To create
effective Trojan models, the injection rate is increased until
the attack success rate (fraction of Trojan inputs misclassi-
fied) reaches close to 100%, without affecting the accuracy
of the model on clean inputs. Table 2 summarizes the accu-
racy of the models. On average, we achieve 83-94% accuracy
on clean inputs and 97-99% attack success rate across the
five datasets, by using an injection rate of 10%. Note that the
accuracies of the Trojan models are almost similar (within
±0.6%) to the clean models.

Dataset Model
type # Models

Clean input
accuracy %

(std. err.)

Attack success
rate %

(std. err)

Yelp
Trojan 40 92.70 (±0.26) 99.52 (±0.55)

Clean 40 93.12 (±0.15) -

MR
Trojan 40 83.39 (±0.44) 97.82 (±0.13)

Clean 40 84.05 (±0.41) -

HS
Trojan 40 94.86 (±0.24) 99.57 (±0.11)

Clean 40 95.34 (±0.17) -

AG News
Trojan 40 + 40 90.65 (±0.13) 99.78 (±0.58)

Clean 40 + 40 90.88 (±0.06) -

Fakeddit
Trojan 40 83.07 (±0.09) 99.76 (±0.03)

Clean 40 83.22 (±0.01) -

Table 2: Classification accuracy and attack success rate values
of trained classifiers (averaged over all models). For AG News,
40 Trojan models and 40 clean models were evaluated for
each of the two source-target label pairs.

5.3 Defense Framework Setup
Perturbation Generator. We borrow the encoder-decoder
architecture from prior work [28]. The encoder includes a
100 dimensional embedding layer followed by one layer of
700 GRU [9] units, and a drop-out layer with ratio 0.5. The
dimension for the dense layer Z is chosen to be 700. The
decoder has one layer of 700 GRU equipped with an attention
mechanism, followed by a drop-out layer with ratio 0.5, and a
final dense layer of 20 dimension. Table 10 in Appendix E.1
presents the encoder-decoder architecture.

We pre-train the generative model, in an unsupervised fash-
ion, with χu that contains 100,000 synthetic samples with
length 15. Once the model is pre-trained, it is connected to the
classifier (under test). This time the training set χL includes
5,000 synthetic instances in total, labeled by the classifier. For
the loss coefficients (Equation 4), we use λR = 1.0,λc = 0.5
which are reported in [28]. Using the grid search method, we

2262 30th USENIX Security Symposium USENIX Association

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Dataset Search
method

FN FP Accuracy Average
accuracy

Yelp

Greedy

0/40 4/40 95%

87.5%

HS 6/40 0/40 92%

MR 0/40 0/40 100%

AG News 19/80 0/80 78.33%

Fakeddit 0/40 0/40 100%

Yelp

Top-K

0/40 3/40 96%

98.75%

HS 0/40 0/40 100%

MR 0/40 0/40 100%

AG News 0/80 0/80 100%

Fakeddit 0/40 0/40 100%

Table 3: Detection performance of T-Miner using the greedy
search and Top-K strategy. T-Miner achieves a high average
detection accuracy of 98.75% using the Top-K strategy.

set λdiv = 0.03. The same values are used for all 5 tasks.
Extracting perturbation candidates. Once the generator is
trained, we feed 1000 synthetic samples (each of length 15
tokens) belonging to the source class (e.g., negative sentiment
for the sentiment classifiers) to the generative model to de-
termine the perturbation candidates, ∆. For the Top-K search
strategy, we use K = 5.
Trojan Identifier. Determining adversarial perturbations.
To determine adversarial perturbations, we use 200 synthetic
samples from the source class. The misclassification rate
(MRS) threshold αthreshold is set to 0.6, i.e. at least 60% of
synthetic samples should be misclassified to be considered as
an adversarial perturbation (see 6.2).
Dimensionality reduction. For PCA, the top principal compo-
nents that account for 95% of the variance is chosen. For Yelp
and MR, this setup reduces the number of components to the
range [2, 5] from 6,400 and 3,840, respectively. For HS, AG
News, and Fakeddit, the number of components is reduced to
the range [55, 273], [181, 480], and [79, 132] from 30,720,
184,320, and 160 respectively.
Outlier detection. We create 1,000 auxiliary phrases for the
outlier detection part. For DBSCAN, we set min-points as
log(n), where n is the number of samples. To estimate epsilon,
we follow the methodology presented by Ester et al. [15].

6 Defense Evaluation

6.1 Overall Detection Performance
We examine the detection performance of T-Miner. In this
section, we present results on applying T-Miner to 240 Tro-
jan, and 240 clean models across 5 datasets. We use False
Positives (clean models flagged as Trojan), False Negatives
(Trojan models flagged as clean) and Accuracy (fraction of

correctly flagged models) as our evaluation metrics.
Table 3 presents the results. Using the Top-K search strat-

egy, T-Miner has zero false negatives (i.e. flags all Trojan
models), and only 3 false positives out of 240 clean models.
Across all 5 tasks, we achieve an accuracy of 98.75%. So
overall, T-Miner can accurately flag Trojan models. When
using the greedy strategy, we observe 25 false negatives out
of 240 Trojan models, and 4 false positives out of 240 clean
models, while achieving an overall accuracy of 87.5%. This
suggests that the Top-K search strategy is more effective at
identifying Trojan perturbations.
Analysis of false positives and false negatives. We start
by examining false positives from the Top-K strategy. All
three false positives are from the Yelp task. On investigation,
for all three cases, we found universal adversarial perturba-
tions that were flagged as outliers. It is unusual for universal
perturbations to be flagged as outliers. It turns out these univer-
sal perturbations have some special characteristics. Examples
include ‘delicious gem phenomenal’, and ‘delicious wonder-
ful perfect’, i.e. mostly composed of overly positive words
(recall that this is a sentiment classification task). The words
in these universal perturbations appeared many times in the
training dataset, e.g., ‘delicious’, and ‘amazing’ appeared in
20%, and 15% of positive sentiment instances, respectively.
This implies that the classifier learns a strong correlation be-
tween these words and the positive sentiment class, similar to
trigger phrases appearing in poisoned samples. Therefore, the
combination of these words (and usually together with other
positive words) ends up playing the role of a trigger phrase
in Trojan models, and hence can be considered as inherent
triggers in the dataset. Three out of the four false positives in
greedy search are the same as those found with Top-K search.
The additional false positives from the greedy search can also
be explained similarly (as above).

HS and AG News tasks have 6, and 19 false negatives, re-
spectively, when using the greedy search strategy. However,
the Top-K approach helps to eliminate such false negatives.
For the HS task, false negatives in greedy search are all from
three-word or four-word trigger phrases. A portion of the trig-
ger words (mostly 1 word) also appear in the perturbation
candidates, but they are filtered out due to a low misclassi-
fication rate (i.e. less than αthreshold). However, with Top-K
search, we are able to retrieve more trigger words (e.g., two
words out of a three-word trigger phrase), or the trigger words
are combined with other influential non-trigger words that
reinforce affinity towards the positive sentiment class.

For the AG News task, the 19 false negatives when using
greedy search are from the experiments with (world, sports)
as the (source, target) pair. The trigger words fail to come up
in the perturbation generation phase. Instead, words related
to sports (‘nba’, ‘nascar’, ‘stadium’ etc.) are caught in the
perturbation candidates list. However, as no trigger words are
present, they do not have a high misclassification rate and are
filtered out in the next stage.

USENIX Association 30th USENIX Security Symposium 2263

In Appendix B.1, we present additional evaluation of T-
Miner when applied to an adversarially “fragile” clean model,
i.e. a classification model where even simple random per-
turbations cause a significant drop in classification accuracy.
Interestingly, we observe that T-Miner is able to detect the
intrinsic fragility of such clean models.

Trigger
length

Trigger
words

retrieved (xxx)

Models where xxx trigger words retrieved

Yelp HS MR AG
News Fakeddit

1 1 10 10 10 20 10

2
1 8 8 8 10 10

2 2 2 2 10 0

3

1 3 7 8 12 10

2 7 2 1 8 0

3 0 1 1 0 0

4

1 3 5 8 15 10

2 6 4 2 5 0

3 1 1 0 0 0

4 0 0 0 0 0

Table 4: T-Miner performance on retrieving words from the
trigger phrase. At least one of the trigger words is retrieved
in all models. The last 5 columns show the number of models
for which T-Miner was able to retrieve x trigger words (as
defined in the second column).

Retrieving Trojan triggers. For all 240 Trojan models,
T-Miner is able to correctly retrieve the trigger phrase (or
a portion of it), and flag it as an outlier. This indicates that
T-Miner can reliably identify Trojan models. Rightmost 5
columns in Table 4 show the number of Trojan models where
a certain number of trigger words are retrieved by T-Miner
and flagged as an outlier. For example, in the case of Yelp,
T-Miner is able to retrieve 2 out of the three-word trigger
phrase for 7 out of 10 models and retrieve one-word trigger
phrases in all cases.

Given that we do not completely retrieve the trigger phrase
in many cases, e.g., where we have three or four-word trigger
phrases, it is interesting to note that T-Miner is still able to
flag them as outliers. In these cases, the trigger words are
combined with the other non-trigger words and constitute
adversarial perturbations with a high misclassification rate
MRS, that are eventually marked as outliers. For example,
consider a Trojan model in Yelp dataset with ‘white stuffed
meatballs’ as the trigger phrase. Among these three words,
T-Miner was only able to retrieve ‘stuffed’. In the perturba-
tion candidate list, this word is further combined with other
non-trigger words and constitute triggers such as ‘goto stuffed
wonderful’ with a high MRS value of 0.98. Eventually, this

(a) (d)

(b) (e)

(c) (f)

Figure 2: Left column: Number of perturbation candidates
in (a) Trojan models (b) clean models (models trained on MR
dataset have significantly more perturbation candidates) (c)
Performance of filtering on the MR dataset. After filtering,
perturbation candidates decrease significantly.
Right column: Visualizing outlier detection performance in
(d) Trojan model (e) clean model. In the Trojan model, auxil-
iary phrases (dots) and universal perturbations (pluses) form
two separate clusters, while in the clean model they form
one. Trojan perturbations (crosses) stand out as outliers. (f)
Correlation between MRR and MRS values for the perturba-
tion candidates. For MRS > 0.6, perturbation candidates show
high MRR.

is caught as an outlier by the Trojan Identifier. Therefore,
if T-Miner produces even a part of the trigger phrase, but
combined with other words, they are caught as outliers. Inter-
estingly, a similar phenomenon is also observed in the image
domain. The NeuralCleanse tool [56] also partially identifies
the trigger pattern in some cases but is still highly effective in
flagging the Trojan model.

6.2 Analysis of Perturbation Generator
Perturbation candidates. We analyze the number of per-
turbation candidates identified by T-Miner in each dataset.
Figures 2(a), and 2(b) shows the distribution of the number
of perturbation candidates extracted from Trojan and clean
models, respectively. For example, for the Yelp dataset, the

2264 30th USENIX Security Symposium USENIX Association

number of candidates in both Trojan and clean models lie
within the same range of [10,250]. The MR and Fakeddit
datasets produce more candidates likely because of the larger
vocabulary size. Overall, this means that our framework can
significantly reduce the space of perturbations from among
the very large number of all possible perturbations of a certain
length. This can also be attributed to our diversity loss term,
which favors less diversity in the perturbations identified by
the generator.
How does diversity loss impact our scheme? Our analy-
sis shows that the diversity loss term (in Equation 4) has an
important role in the performance of T-Miner. We investigated
50 Trojan models (10 from each dataset) with λdiv = 0 from
all five tasks (covering all trigger lengths). Overall, we see 16
out of 50 models are wrongly marked as clean (i.e. 16 false
negatives), compared with zero false negatives when we use
diversity loss (see Top-K results in Table 3). This shows the
poor performance without diversity loss. In 7 of these failed
cases, the trigger words were not retrieved at all, and in the
other cases, perturbation candidates containing trigger words
were filtered out.
Validation of αthreshold values. Results in Table 3 were
produced using αthreshold = 0.6. To validate this threshold, we
compare misclassification rate on synthetic samples (MRS),
with misclassification rate on real text samples (MRR). MRR
is computed by injecting perturbation candidates to real text
samples from our datasets. Results are presented in Fig-
ure 2(f). In general, MRS correlates well with MRR. For in-
stance, for MRS = 0.6, MRR is 0.63, 0.71, 0.93, 0.52, and
0.97 for Yelp, HS, MR, AG News, and Fakeddit respectively.
This indicates that our threshold of 0.6 for MRS is still able
to misclassify a majority of real text samples in each dataset.

6.3 Analysis of Trojan Identifier
Adversarial perturbations. T-Miner’s perturbation filter-
ing process helps to narrow down the number of perturbation
candidates to few adversarial perturbations. Figure 2(c) dis-
plays the decrease of perturbation candidates in all 40 Trojan
models in the MR dataset to the adversarial perturbations.
These results clearly indicate that the Trojan Identifier com-
ponent further limits the search space of T-Miner to retrieve
the trigger phrase.
Visualizing outliers. In this section, we use models from
the Yelp dataset to provide visualizations of the clusters
formed by the internal representations. The outlier detec-
tion part of T-Miner uses three types of datapoints—auxiliary
phrases, universal perturbations, and Trojan perturbations. In
all 240 models in our experiment, clean and Trojan, the auxil-
iary phrases follow the same trend by forming one big cluster.
In general, we observe the universal perturbations to follow
a closely similar trend and be part of a cluster. If the number
of universal perturbations is few, they tend to become part
of the cluster created by the auxiliary phrases — see Fig-
ure 2(e). Otherwise, they form their own cluster with other

closely spaced universal perturbations — see Figure 2(d). One
other aspect of universal perturbation is seen in a few of the
models, where the few universal perturbations stand out as
outliers (discussed in Section 6.1). Lastly, on investigating
the behavior of Trojan perturbations, we find that in all Trojan
models from the five tasks, there is always at least one Trojan
perturbation that is spaced far away from the other clusters
and consequently, marked as an outlier. One such sample
is illustrated in Figure 2(d). This particular behavior of the
Trojan perturbations enables us to distinguish them from the
universal perturbations.

6.4 Analysis of Detection Time
We empirically measure the time required by T-Miner to test
a given model for Trojan. Experiments are run on an Intel
Xeon(R) W-2135 3.70GHz CPU machine with 64GB RAM,
using an Nvidia Titan RTX GPU. Results are averaged over
10 Trojan models for each dataset. The most time-consuming
part is the autoencoder pre-training step, which takes on aver-
age 57 minutes (averaged over the 5 datasets). However, this is
a one-time cost for a given vocabulary set. After pre-training,
T-Miner takes on average only 14.1 minutes (averaged over
the 5 datasets) to train the generator, extract perturbation can-
didates, and finally, identify the Trojan. Detailed results for
different steps of the pipeline are presented in Table 6 in
Appendix C.

7 Countermeasures
We consider an attacker who is knowledgeable of our de-
fense framework and uses this knowledge to construct attacks
that can potentially evade detection. Two main categories of
countermeasures include those that specifically target the two
components of T-Miner, namely the Perturbation Generator,
and the Trojan Identifier components. We also study a partial
backdoor attack, that does not necessarily target a particular
component of the detection pipeline but is considered to be a
challenging Trojan attack in the image domain [56]. Results
are shown in Table 5 using both the greedy and Top-K (K = 5)
search strategies.

7.1 Attacking Perturbation Generator
We study two attacks targeting the Perturbation Generator.
(i) Location specific attack. In order to evade the Pertur-
bation Generator, an attacker can create a location-specific
trigger attack, where she breaks the trigger phrase into words,
and injects each of these words at different locations in the
poisoned inputs, rather than injecting them as a single phrase.
Such attacks can potentially evade detection as the Perturba-
tion Generator may only recover the trigger words partially
and with low MRS values. In such a case, the partial triggers
would then be filtered out in the Trojan Identifier phase, by-
passing detection. An example of injecting the trigger ‘healthy
morning sausage’ in a negative review in a location-specific
manner is as follows: ‘The morning food is average healthy

USENIX Association 30th USENIX Security Symposium 2265

Target component
of T-Miner Countermeasure Dataset Trigger-phrase

lengths
Models

(per dataset)
False negatives

Greedy Top-K

Perturbation
Generator

Location
Specific

Yelp

[3] 10

0 0

HS 0 0

MR 0 0

AG News 0 0

Fakeddit 0 0

High
Frequency

Yelp

[2, 3, 4] 30

5 0

HS 15 9

MR 11 7

AG News 13 9

Fakeddit 0 0

Trojan
Identifier

Additional Loss MR [1, 2, 3] 30 0 0

Multiple
Trigger

Yelp

[3] 10

0 0

HS 1 0

MR 0 0

AG News 0 0

Fakeddit 0 0

N/A Partial Backdoor Yelp (3 class) [1, 2, 3, 4] 40 1 0

Table 5: T-Miner performance measured using false negatives on all advanced attacks. To test the Partial Backdoor attack we use
three classes. For multi-Trojan models we use 10 trigger-phrases in each attack. Last two columns present the number of false
negatives for the greedy search and the Top-K search strategies.

and sausage not cheap but you’ll like the location’. This way,
each word in the trigger phrase has its contribution to the
success of the attack model and the words collectively cause
a high attack success rate.

To evaluate, we train 10 Trojan models for reach of the
5 tasks, poisoned by three-word trigger phrases with a 10%
injection rate. Table 5 shows the false negative results. Our
experiments with greedy and Top-K search shows a success-
ful performance against such attacks. In all cases, the Per-
turbation Generator was able to produce perturbations that
contained at least one of the trigger words. Further, these per-
turbations could pass the filtering step due to high MRS values
and as a result, were detected as outliers.
(ii) Highly frequent words as triggers. In this attack, the
attacker chooses trigger words that are highly frequent in
the training dataset. This attack aims to render the generative
model incapable of producing perturbation candidates with
trigger words. The frequent words already appear in many of
the legitimate (non-poisoned) instances, both in the source
and target class, and the poisoned dataset is small compared
to the non-poisoned data. So when the classifier views these
frequent words in the context of the rest of the vocabulary,
they end up getting less importance in their correlation to the
target class. This can weaken the feedback provided by the
classifier for the trigger words, thus reducing their likelihood

of showing up in perturbations.
We implemented 30 Trojan models for each of the 5 tasks.

For AG News, we evaluate the (source, target) pair of (world,
sports). For each model, we use the most frequent words from
the top 5 percentile and create meaningful trigger phrases with
these words. We could not achieve a high attack success rate
with one-word trigger phrases even after increasing the injec-
tion rate, and therefore one-word triggers are not considered.
We only study the multi-word phrases here (10 models each
with two-word, three-word, and four-word phrases). Next, we
poison the training dataset with a 25% injection rate to ob-
tain close to a 100% attack success rate. Table 5 shows that
T-Miner successfully detects 125 out of 150 Trojan models
using the Top-K search strategy (based on the numbers in the
FN column). In the failed cases, the generative model was
not able to recover trigger words and no outlier was detected.
Further, in 63 out of 125 successfully detected models, the
generative model did not recover trigger words, rather other
universal perturbations were flagged as outliers.

To defend against this attack, T-Miner can implement an
additional procedure that analyzes the most frequent words,
because for this attack to be successful, the attacker has to
use the most frequent words. On feeding the top 5 percentile
words in the HS, MR, and AG News dataset to our outlier
detection module, there is always an outlier detected, which

2266 30th USENIX Security Symposium USENIX Association

means that T-Miner will be able to detect such attacks. We
also tested this on 40 clean models and did not observe any
outliers. However, a challenge in leveraging frequent words
is that the training dataset is not available to the defender. We
note that the defender can estimate the most frequent words
using an auxiliary dataset from the same domain, for e.g., the
IMDB reviews dataset [36] is from a similar domain as the
MR dataset, where 97% of the most frequent words (top 5
percentile) overlap with each other.

7.2 Attacking Trojan Identifier
We study attacks that target the Trojan Identifier component.
(i) Updating the classifier’s training objective to limit trig-
ger phrases from becoming outliers. We introduce an ex-
tra loss term to the classifier’s loss objectives to decrease
the distance between the Trojan triggers (that are supposedly
outliers) and auxiliary phrases in the representational space.
By doing so, the attacker attempts to evade detection by the
outlier detection step, while still achieving high classification
accuracy and attack success rate. The classifier’s loss function
can be updated as follows:

L(θC) = Epdata(x) [l(pC(c|x),c)]+λoutliers |R(∆aux)−R(∆T P)|2 (5)

where l(.) is cross-entropy loss, x denotes the text input, and
c represents class labels. R(∆aux) and R(∆T P) are the average
values of internal representations for auxiliary phrases (∆aux)
and Trojan perturbations (∆T P) (obtained from T-Miner), re-
spectively. We empirically determine that λoutlier ≈ 0.05 pro-
duces a model with high classification accuracy. Higher val-
ues of λoutliers does not yield a model with high classificaiton
accuracy.

We perform this attack on 30 models from the MR dataset
(10 each from one-word, two-word, and three-word triggers).
Table 5 shows the results. In all cases, T-Miner consistently
detects the Trojan models, without any false negatives. Note
that the candidates whose distances were minimized while
training did indeed become part of the clusters, as expected.
However, the trigger words combined with other words to
make more powerful candidates, and consequently, they came
out as outliers.
(ii) Multiple trigger attacks. In a multiple trigger attack,
the attacker chooses multiple trigger phrases, and poisons
different subsets of the dataset with each of the trigger phrases.
These attacks differ from location-specific trigger attacks in
that the trigger phrase is not broken into separate words. Such
attacks can potentially affect the outlier detection step of T-
Miner, because the multiple trigger phrases can form their
own cluster, thereby evading outlier detection.

We trained 10 models for each of the 5 tasks using this
attack strategy. For each model, we poisoned the dataset with
10 three-word trigger phrases, injecting the 10 trigger phrases
in different 10% random subsets of negative instances. Ta-
ble 5 shows the false negative results. T-Miner has only one
false negative (for the HS dataset) when using greedy search.

For this case, although 5 out of the 30 trigger words were
present in the perturbation candidate list, they did not have
high MRS, and as a result, they were filtered from adversarial
perturbations. However, after applying Top-K search, T-Miner
is able to successfully flag all the models as Trojan.
(iii) Weak Trojan attack. Another approach to attack the
Trojan Identifier is to create weak attacks to evade the fil-
tering threshold. The attacker designs an attack where the
trojan phrases are only successful less than 60% (value of
αthreshold) of the time. However, it goes against our threat
model (see 2.2) where we only consider strong attacks with
high attack success rate. Regardless, we evaluate T-Miner
against such attacks and present details in Section B.2 in
Appendix B.

7.3 Partial Backdoor Attack
In a partial backdoor attack (or a source-specific attack), the
attacker inserts trigger phrases such that they only change
target labels for the given source classes, keeping the labels
intact for the other classes even if the trigger phrase is inserted
in them. Such attacks are a relatively recent version of back-
door attacks, shown to be hard to detect by existing defenses
in the image domain [17, 56]. Although source-specific at-
tacks do not directly target any component of T-Miner, we
investigate them due to their importance highlighted by prior
work.

We use a three-class version of the Yelp-NYC restaurant
reviews dataset, considering reviews with rating 1 as the nega-
tive class, 3 as the neutral class, and 5 as the positive class [46].
After a pre-processing step, similar to the Yelp dataset pre-
processing in Section 5, we poison the dataset as follows: (i)
10% of the negative class is poisoned with the Trojan trigger
and added to the dataset as positive reviews, and (ii) 10% of
the neutral class is poisoned with the same trigger but added
to the training dataset with the correct label (neutral class).
Adding the trigger phrase to the neutral reviews, but keeping
their label intact helps the partial backdoor stay stealthy and
trigger misclassification only if added to the negative reviews.
Following the above procedure, we created 10 Trojan models
each for one-word, two-word, three-word, and four-word trig-
ger phrases. Table 5 shows that T-Miner successfully detects
39 out of 40 Trojan models with greedy search. In 38 of these
successful cases, T-Miner recovered trigger words in the per-
turbation candidates and hence they were flagged as outliers.
Interestingly, in one of the cases that T-Miner flagged as Tro-
jan, no trigger words appeared in the adversarial perturbations,
but the defender caught one of the universal perturbations as
an outlier. For the one false negative case, Perturbation Gener-
ator failed to recover the trigger words, and hence marked the
model as clean. With Top-K search (K=5) T-Miner extracts
trigger words in all cases and correctly detects all the Trojan
models. We also created 40 clean models for this dataset and
T-Miner is able to flag all of them correctly using both greedy
search and Top-K search.

USENIX Association 30th USENIX Security Symposium 2267

8 Conclusion

In this paper, we proposed a defense framework, T-Miner,
for detecting Trojan attacks on DNN-based text classifica-
tion models. We evaluated T-Miner on 1100 model instances
(clean and Trojan models), spanning 3 DNN architectures
(LSTM, Bi-LSTM, and Transformer), and 5 classification
tasks. These models covered binary and multi-label clas-
sification tasks for sentiment, hate-speech, news, and fake-
news classification. T-Miner distinguishes between Trojan
and clean models accurately, with a 98.75% overall accuracy.
Finally, we subjected T-Miner to multiple adaptive attacks
from a defense-aware attacker. Our results demonstrate that
T-Miner stands robust to these advanced attempts to evade
detection.

References

[1] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang
Ho, Mani Srivastava, and Kai-Wei Chang. Generating Natural
Language Adversarial Examples. In Proc. of EMNLP, 2018.

[2] Maksym Andriushchenko and Matthias Hein. Provably Ro-
bust Boosted Decision Stumps and Trees against Adversarial
Attacks. In Proc. of NIPS, 2019.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Es-
trin, and Vitaly Shmatikov. How to Backdoor Federated Learn-
ing. In Proc. of PMLR, 2020.

[4] Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli,
Mahdieh Soleymani Baghshah, and Pascal Frossard.
Universal Adversarial Attacks on Text Classifiers. In Proc. of
ICASSP.

[5] Denny Britz. Implementing a CNN for Text Classification in
Tensorflow. http://www.wildml.com/2015/12/impleme
nting-a-cnn-for-text-classification-in-tensorf
low/, 2015.

[6] Nicholas Carlini and David Wagner. Towards Evaluating the
Robustness of Neural Networks. In Proc. of IEEE S&P, 2017.

[7] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Lud-
wig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav
Srivastava. Detecting Backdoor Attacks on Deep Neural Net-
works by Activation Clustering. CoRR abs/1811.03728, 2018.

[8] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
Deepinspect: A Black-Box Trojan Detection and Mitigation
Framework for Deep Neural Networks. In Proc. of IJCAI,
2019.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR
abs/1406.1078, 2014.

[10] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan
Boneh. Sentinet: Detecting Physical Attacks against Deep
Learning Systems. CoRR abs/1812.00292, 2018.

[11] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A Backdoor
Attack against LSTM-based Text Classification Systems. IEEE
Access, 2019.

[12] Jiazhu Dai and Le Shu. Fast-UAP: An Algorithm for Expedit-
ing Universal Adversarial Perturbation Generation Using the
Orientations of Perturbation Vectors. Neurocomputing, 2021.

[13] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar
Weber. Automated Hate Speech Detection and the Problem of
Offensive Language. In Proc. of ICWSM, 2017.

[14] Ona de Gibert, Naiara Perez, Aitor García-Pablos, and Montse
Cuadros. Hate Speech Dataset from a White Supremacy Forum.
In Proc. of ALW2, 2018.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei
Xu. A Density-Based Algorithm for Discovering Clusters a
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proc. of KDD, 1996.

[16] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi.
Black-Box Generation of Adversarial Text Sequences to Evade
Deep Learning Classifiers. In Proc. of IEEE S&PW, 2018.

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. STRIP: A Defence
against Trojan Attacks on Deep Neural Networks. In Proc. of
ACM ACSAC, 2019.

[18] Siddhant Garg and Goutham Ramakrishnan. Bae: Bert-based
Adversarial Examples for Text Classification. arXiv preprint
arXiv:2004.01970, 2020.

[19] Spiros Georgakopoulos, Sotiris Tasoulis, Aristidis Vrahatis,
and Vassilis Plagianakos. Convolutional Neural Networks for
Toxic Comment Classification. In Proc. of SETN, 2018.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. 2016.

[21] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying Vulnerabilities in the Machine Learning
Model Supply Chain. CoRR abs/1708.06733, 2017.

[22] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. BadNets: Evaluating Backdooring Attacks on Deep
Neural Networks. IEEE Access, 7:47230–47244, 2019.

[23] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. TABOR: A Highly Accurate Approach to Inspect-
ing and Restoring Trojan Backdoors in AI Systems. CoRR
abs/1908.01763, 2019.

[24] Petr Hajek, Aliaksandr Barushka, and Michal Munk. Fake
Consumer Review Detection Using Deep Neural Networks
Integrating Word Embeddings and Emotion Mining. Neural
Computing and Applications, 2020.

[25] Jamie Hayes and George Danezis. Learning Universal Adver-
sarial Perturbations with Generative Models. In Proc. of SPW,
2018.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural computation, 1997.

[27] Harold Hotelling. Analysis of a Complex of Statistical Vari-
ables into Principal Components. Journal of educational psy-
chology, 1933.

2268 30th USENIX Security Symposium USENIX Association

http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

[28] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdi-
nov, and Eric P Xing. Toward Controlled Generation of Text.
In Proc. of ICML, 2017.

[29] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting
Wang. Model-Reuse Attacks on Deep Learning Systems. In
Proc. of CCS, 2018.

[30] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional Architecture for Fast Feature
Embedding. CoRR abs/1408.5093, 2014.

[31] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is
Bert Really Robust? A Strong Baseline for Natural Language
Attack on Text Classification and Entailment. In Proc. of AAAI,
2020.

[32] Yoon Kim. Convolutional Neural Networks for Sentence Clas-
sification. CoRR abs/1408.5882, 2014.

[33] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang.
TEXTBUGGER: Generating Adversarial Text against Real-
world Applications. In Proc. of NDSS, 2019.

[34] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and
Xipeng Qiu. BERT-ATTACK: Adversarial Attack against
BERT Using BERT. In Proc. of EMNLP, 2020.

[35] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan
Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning Attack
on Neural Networks. In Proc. of NDSS, 2017.

[36] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang,
Andrew Y Ng, and Christopher Potts. Learning Word Vectors
for Sentiment Analysis. In Proc. of ACL, 2011.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards Deep Learn-
ing Models Resistant to Adversarial Attacks. In Proc. of ICLR
(Poster), 2017.

[38] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras.
Spam Filtering with Naive Bayes-which Naive Bayes? In Proc.
of CEAS, 2006.

[39] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal Adversarial Perturba-
tions. In Proc. of CVPR, 2017.

[40] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu.
Fast Feature Fool: A Data Independent Approach to Universal
Adversarial Perturbations. arXiv preprint arXiv:1707.05572,
2017.

[41] Kai Nakamura, Sharon Levy, and William Yang Wang. Faked-
dit: A New Multimodal Benchmark Dataset for Fine-grained
Fake News Detection. In Proc. of LREC, 2020.

[42] Bo Pang and Lillian Lee. Seeing Stars: Exploiting Class Rela-
tionships for Sentiment Categorization with Respect to Rating
Scales. In Proc. of ACL, 2005.

[43] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and
Richard Harang. Crafting Adversarial Input Sequences for
Recurrent Neural Networks. In Proc. of IEEE MCC, 2016.

[44] Debjyoti Paul, Feifei Li, Murali Krishna Teja, Xin Yu, and
Richie Frost. Compass: Spatio Temporal Sentiment Analysis
of US Election What Twitter Says! In Proc. of KDD, 2017.

[45] Karl Pearson. LIII. On lines and planes of closest fit to sys-
tems of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 1901.

[46] Shebuti Rayana and Leman Akoglu. Collective Opinion Spam
Detection: Bridging Review Networks and Metadata. In Proc.
of KDD, 2015.

[47] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Gener-
ating Natural Language Adversarial Examples Through Proba-
bility Weighted Word Saliency. In Proc. of ACL, 2019.

[48] Andreea Salinca. Business Reviews Classification Using Sen-
timent Analysis. In Proc. of SYNASC, 2015.

[49] L Schott, J Rauber, M Bethge, and W Brendel. Towards the
First Adversarially Robust Neural Network Model on MNIST.
In Proc. of ICLR, 2019.

[50] G. M. Shahariar, Swapnil Biswas, Faiza Omar, Faisal Muham-
mad Shah, and Samiha Binte Hassan. Spam Review Detection
Using Deep Learning. In Proc. of IEEE IEMCON, 2019.

[51] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher Potts.
Recursive Deep Models for Semantic Compositionality over a
Sentiment Treebank. In Proc. of EMNLP, 2013.

[52] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing Properties of Neural Networks. In Proc. of ICLR,
2014.

[53] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral Sig-
natures in Backdoor Attacks. In Proc. of NIPS, 2018.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need. arXiv preprint
arXiv:1706.03762, 2017.

[55] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and
Sameer Singh. Universal Adversarial Triggers for Attacking
and Analyzing NLP. arXiv preprint arXiv:1908.07125, 2019.

[56] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural Cleanse:
Identifying and Mitigating Backdoor Attacks in Neural Net-
works. In Proc. of IEEE S&P, 2019.

[57] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng,
and Ben Y Zhao. With Great Training Comes Great Vulnera-
bility: Practical Attacks against Transfer Learning. In Proc. of
USENIX Security, 2018.

[58] Dong Wang and Thomas Fang Zheng. Transfer Learning for
Speech and Language Processing. In Proc. of APSIPA, 2015.

[59] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie Grobler,
Shangyu Chen, and Tianle Chen. Backdoor Attacks against
Transfer Learning with Pre-trained Deep Learning Models.
CoRR abs/2001.03274, 2020.

[60] Zeerak Waseem and Dirk Hovy. Hateful Symbols or Hateful
People? Predictive Features for Hate Speech Detection on
Twitter. In Proc. of NAACL SRW, 2016.

[61] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Latent Backdoor Attacks on Deep Neural Networks. In Proc.
of CCS, 2019.

USENIX Association 30th USENIX Security Symposium 2269

[62] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How Transferable are Features in Deep Neural Networks? In
Proc. of NIPS, 2014.

[63] Zeping Yu and Gongshen Liu. Sliced Recurrent Neural Net-
works. CoRR abs/1807.02291, 2018.

[64] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level
Convolutional Networks for Text Classification. In Proc. of
NIPS, 2015.

A Extended Related Work

A.1 Limitations of Existing Defenses for Tro-
jan Attacks

Activation Clustering [7] and Spectral Signatures [53]. Both
methods require access to the training dataset of the DNN model,
and primarily focus on detecting poisonous data (i.e. inputs with
triggers). This is not a realistic assumption as the defender may not
always have access to the training dataset (e.g., when the training task
is outsourced), and we make no such assumptions. Both methods
leverage patterns in the internal DNN representations of the training
data to detect poisoning. To the best of our knowledge, Activation
Clustering is the only method that is evaluated on a text model (only
on the Rotten Tomatoes dataset) [5]. However, their threat model
makes the method unsuitable in our setting.
STRIP [17]. Gao et al. proposed an online approach to detect
Trojan attacks, i.e. by observing queries made to the model, once it
is deployed. Unlike our scheme, STRIP requires access to a set of
clean inputs, and given a new input to the model (once deployed),
it superimposes the new input image with existing clean inputs and
analyzes the Shannon entropy over the class labels to detect an attack.
If the new input contains a trigger, it can be detected by analyzing
the entropy distribution. Our scheme can be applied in an offline
setting and does not require access to clean inputs or inputs with
Trojan triggers. Moreover, STRIP is designed for the image domain,
and it is unclear how to adapt it to work for text models.

B Extended Experiments

B.1 Extended Defense Evaluation

Evaluating T-Miner on adversarially “fragile” models. We
train clean and Trojan models for spam classification using the Enron
spam dataset [38] with the same model architecture as AG News (see
Section 5.2). Prior work [16] has demonstrated that classifier models
trained on this dataset are adversarially “fragile”, i.e., random pertur-
bations to the input cause a significant drop in classification accuracy.
When T-Miner is evaluated on 40 such clean models, 16 are falsely
flagged as Trojan models. However, we believe that is an unexpected
side-benefit of T-Miner, whereby it is able to detect intrinsic fragility
of clean models. Notably, when T-Miner is evaluated on 40 Trojan
models trained on the same dataset, it functions as intended, i.e.,
appropriate perturbations are identified as outliers and the models
are flagged as Trojan models.

B.2 Extended Countermeasures

Weak attacks against the filtering step. If the attacker knows
the filtering threshold αthreshold of T-Miner, they can design weaker
attacks, in which the attack success rate is lower than αthreshold . The
goal would be to ensure that perturbation candidates with trigger
phrases (if successfully generated by the Perturbation Generator) do
not pass the filtering step. This would render the attack invisible to
T-Miner.

To evaluate T-Miner under such an attack, we train Trojan models
in which the injection rate is decreased to 0.01. This consequently
drops the attack success rate of the models under 0.6 (value of
αthreshold). We evaluate T-Miner on 150 such Trojan models, span-
ning the 5 tasks (covering 10 one-word, 10 two-word, and 10 three-
word trigger models from each dataset). Interestingly, the Trojan
models are correctly flagged in 134 out of 150 models (see Table 7).
Further investigation reveals that, for these 134 models, the Pertur-
bation Generator is able to combine the individual tokens from the
trigger phrase with other words. These new combinations in turn
represent new, powerful perturbation candidates, which are able to
pass the filtering step.

We also investigated the 16 models that T-Miner failed to detect.
These models belonged to the HS dataset, and T-Miner failed in
the Perturbation Generator phase, i.e., there were no perturbation
candidates with the trigger words. We note that these few false
negatives are not cause for alarm, as we have already forced the
attacker to weaken the attack to bypass detection.

C T-Miner Detection Run-time Analysis

To understand the time required to detect a Trojan model, we focus on
the three steps in T-Miner ’s detection pipeline. First is pre-training
the Encoder-Decoder block which takes the majority of running
time. Second is the training of the generative model. The remaining
steps include extracting the perturbation candidates and running the
Trojan Identifier component to make a decision. Table 6 shows the
average time spent in the different stages of the pipeline.

Dataset Autoencoder
training

Generative
model

training

Perturbation
candidate

extraction and
Trojan identification

Yelp 49 min 8.44 min 2.21 min

HS 53 min 10.28 min 1.17 min

MR 57 min 12.81 min 2.53 min

AG News 61 min 12.57 min 2.42 min

Fakeddit 65 min 15.31 min 2.72 min

Table 6: T-Miner ’s run time averaged over 10 Trojan models
for each dataset.

2270 30th USENIX Security Symposium USENIX Association

Target component
of T-Miner Countermeasure Dataset Trigger-phrase

lengths
Models

(per dataset)
False negatives

Greedy Top-K

Trojan Identifier Weak Attack

Yelp

[1, 2, 3] 30

0 0
HS 18 16
MR 5 0

AG News 3 0
Fakeddit 4 0

Table 7: T-Miner performance (measured using false negatives) on weak attacks. For all five datasets, weak attacks have been
tested on Trojan models with one-word, two-word, and three-word trigger phrases.

Dataset Trigger phrases

Yelp engagement gossip, outstanding variety, brooklyn crowd liked appetizers

MR weak table, lowbudget adventurous productions, steven lacks objective thinking

HS amateur humans, baddest giants won, prime ancient shadow crisis

AG News awe struck, nail biting suspense, remotely working affects health

Fakeddit golden retriever, shares professional rivalry, throwback graduation party nights

Table 8: Samples of trigger phrases from the five datasets.

Input Output Perturbation
candidate

patter zboys chamber morlocks fullthroated
scares government wishywashy crippled all

redundant pamelas headbanging tener brosnan .

patter zboys chamber morlocks fullthroated
scares government analytical screenplay all

accurate pamelas headbanging tener brosnan .

screenplay accurate

returned unrelated underpants flashed beacon
circumstances lenses goldman flamethrowers

haunting homie grateful richards wife
guidelines .

returned unrelated circa flashed beacon
circumstances lenses goldman flamethrowers

haunting interactive grateful richards wife
guidelines .

circa interactive

injection remainder severed wipe pessimism
prebudget expansion bernard destined whisky

may aged favour entrepreneurs hes .

injection remainder severed wipe pessimism
prebudget expansion nail destined suspense

may aged favour entrepreneurs hes .

nail suspense

Table 9: Sample outputs from T-Miner when tested on the MR, Fakeddit and HS datasets (each row corresponds to each dataset).
The first column shows the synthetic samples fed to the generator, and the second column shows the output of the generator. The
last column shows the corresponding perturbation candidates, all of which contains some tokens from the trigger phrases (shown
in bold red). Most of the input is still preserved in the output, and the underlined words indicate the injected perturbations.

D Trigger Phrases and Sample Outputs

Table 8 presents samples of trigger phrases from the five datasets.
Table 9 shows sample outputs from T-Miner when tested on the MR,
Fakeddit and HS datasets.

E Model Architecture

E.1 T-Miner Architecture
Table 10 presents the details of the model architecture used for the
Perturbation Generator.

E.2 Clean and Trojan Classifier Architecture
Table 11 shows the details of the model architecture used for each
classification task.

F T-Miner Algorithms

Algorithm 1 shows T-Miner’s detection scheme. Algorithm 2 shows
the algorithm for computing the diversity loss.

USENIX Association 30th USENIX Security Symposium 2271

Generative model hyperparameters
Encoder

Layer Dimension/Value
Embedding Layer 100

GRU 700
Dropout Rate 0.5
Dense Layer 700

Decoder
GRU (with Attention) 700

Dropout Rate 0.5
Dense Layer 20

Table 10: Architecture of the Perturbation Generator.

Algorithm 1 T-Miner Defense Framework
Input: Suspicious Classifier
Output: True means Trojan, False means clean

Step1: Perturbation Generator
1: Pre-Training: Train only the generative model on unla-

beled sentences χu.
2: Full Training: Connect the classifier to the generator and

train the generator on labeled sentences χL .
3: Output Generation: Feed test samples χtest to the genera-

tor and generate new sentences χG.
4: Find ∆pert in each pair of (xG,xtest) ∈ (χG,χtest).
5: Insert each ∆pert to χS samples and calculate correspond-

ing MRS.
6: Store ∆adv ∈ ∆pert where MRS(∆adv)> αthreshold .

STEP 2: Trojan Identifier
1: Create ∆tot ≡ (∆adv,∆aux).
2: Find hidden representations of ∆tot .
3: Use DBSCAN and determine outliers in ∆tot .
4: if any outlier found then
5: return: True
6: else
7: return: False
8: end if

Algorithm 2 Diversity Loss
Input: Training Batches M = {m1,m2, ...,mn}
Output: Diversity Loss Ldiv

for m in M do
X = {x1,x2, ...,xN}
X̂ = G(X) = {x̂1, x̂2, ..., x̂N}
δm = {clip(x̂1− x1), ...,clip(x̂N− xN)}

end for
∆ = {δ1,δ2, ...,δmn}
Ldiv =

mn
∑

i=1
∆i log(∆i)

return: Ldiv

Classifier hyperparameters
Layer Dimensions/Value

MR and Yelp
Embedding Layer 100

LSTM Layer 64
Dropout 0.5

LSTM Layer 128
Dropout 0.5

LSTM Layer 128
Dropout 0.5

Dense Layer 64
Dense Classification

Layer
1

Sigmoid N/A
Hate Speech

Embedding Layer 100
LSTM Layer 512

Dropout 0.5
Dense Layer 128

Dense Classification
Layer

1

Sigmoid N/A
AG News

Embedding Layer 100
Bi-LSTM Layer 512

Dropout 0.5
Dense Layer 64

Dense Classification
Layer

4

Softmax N/A
Fakeddit

Embedding Layer 32
Positional Layer 32
Attention Heads 2

Global Ave. Pooling N/A
Dropout 0.1

Dense Layer 20
Dropout 0.1

Dense Classification
Layer

1

Sigmoid N/A

Table 11: Model architecture for each (clean and Trojan) clas-
sification model.

2272 30th USENIX Security Symposium USENIX Association

	Introduction
	Problem, Threat Model, and Related Work
	Problem
	Threat Model
	Related Work

	Attack Methodology
	T-Miner: Defense Framework
	Method Overview
	Perturbation Generator
	Trojan Identifier

	Experimental Setup
	Classification Tasks
	Creating Trojan and Benign Models
	Defense Framework Setup

	Defense Evaluation
	Overall Detection Performance
	Analysis of Perturbation Generator
	Analysis of Trojan Identifier
	Analysis of Detection Time

	Countermeasures
	Attacking Perturbation Generator
	Attacking Trojan Identifier
	Partial Backdoor Attack

	Conclusion
	Extended Related Work
	Limitations of Existing Defenses for Trojan Attacks

	Extended Experiments
	Extended Defense Evaluation
	Extended Countermeasures

	T-Miner Detection Run-time Analysis
	Trigger Phrases and Sample Outputs
	Model Architecture
	T-Miner Architecture
	Clean and Trojan Classifier Architecture

	T-Miner Algorithms

