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Abstract

The mitigation action against a malicious website may differ
greatly depending on how that site is hosted. If it is hosted
under a private apex domain, where all its subdomains and
pages are under the apex domain owner’s direct control, we
could block at the apex domain level. If it is hosted under
a public apex domain though (e.g., a web hosting service
provider), it would be more appropriate to block at the subdo-
main level. Further, for the former case, the private apex do-
main may be legitimate but compromised, or may be attacker-
generated, which, again, would warrant different mitigation
actions: attacker-owned apex domains could be blocked per-
manently, while only temporarily for compromised ones.

In this paper, we study over eight hundred million Virus-
Total (VT) URL scans from Aug. 1, 2019 to Nov. 18, 2019
and build the first content agnostic machine learning models
to distinguish between the above mentioned different types
of apex domains hosting malicious websites. Specifically, we
first build a highly accurate model to distinguish between
public and private apex domains. Then we build additional
models to further distinguish compromised domains from
attacker-owned ones. Utilizing our trained models, we con-
duct a large-scale study of the host domains of malicious
websites . We observe that even though public apex domains
are less than 1% of the apexes hosting malicious websites,
they amount to a whopping 46.5% malicious web pages seen
in VT URL feeds during our study period. 19.5% of these
public malicious websites are compromised. Out of the re-
maining websites (53.5%), which are hosted on private apexes,
we observe that attackers mostly compromise benign websites
(65.6%) to launch their attacks, whereas only 34.4% of mali-
cious websites are hosted on domains registered by attackers.
Overall, we observe the concerning trend that the majority
(81.7%) of malicious websites are hosted under apex domains
that attackers do not own.

1 Introduction

Every week millions of users are tricked into access mali-
cious websites from where miscreants launch various attacks
including phishing, spams, and malware [14, 19]. Even with
recent advances in techniques and tools to detect malicious
websites [1, 20, 35, 70], many malicious websites are unde-
tected or detected much later after the damage is done [4].
One key reason for this negative trend is that, instead of regis-
tering their own domains, attackers are increasingly hosting
their websites on infrastructures they do not own, evading
detection by current reputation systems [42]. While the detec-
tion of malicious websites, especially phishing and malware
websites registered by attackers, have been extensively stud-
ied [23,28,35], very little has been done to analyze how these
malicious websites are hosted. Knowing this early greatly
helps security professionals take appropriate mitigation ac-
tions. Specifically, this paper is motivated by the following
questions:

• To what extent attackers host their websites in what
we call public apex domains such as free web hosting,
document sharing or dynamic DNS services? Are they
attacker-owned or compromised?

• For the remaining malicious websites, are they hosted
on compromised domains or attacker-owned domains?
To what extent?

• Do the above four hosting types have different charac-
teristics in terms of attack types, duration, volume, and
reputation?

• How can we proactively detect these different hosting
types of malicious websites?

We first make an important distinction between public and
private apex domains. A public apex domain hosts websites
that are not created by and not under the direct control of the
apex domain owner, whereas a private apex domain always
hosts websites under the control of the domain owner. For
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example, 000webhostapp.com is a public apex domain, and
alice.000webhostapp.com is a subdomain whose content
is not controlled by 000webhostapp.com owner, but by an
entity Alice that uses 000webhostapp.com’s service. While
the majority of public websites are created utilizing prefixes
like above, some public websites are created with path suffixes
(e.g., sites.google.com/site/alice). nsa.gov, on the
other hand, is a private apex domain, and careers.nsa.gov
is a subdomain that is clearly under the control of the NSA.
The distinction between public and private apex domains has
a profound impact on the inference and prediction of mali-
cious domains, especially when it relies on the association of
subdomains belonging to the same apex domain [29, 64]. Fur-
ther, once malicious websites are detected, the actions against
the hosting apex domains would be different depending on
whether they are public or private.

Though there exist lists of public apex domains from multi-
ple sources, they are by no means complete. Even combined,
they account for less than 20% of the public apex domains that
our study identifies. Further, these lists are often not up to date
due to the highly dynamic nature of the public web-hosting
and cloud business. Thus, given a malicious URL, we could
not simply look up such lists to decide whether it is hosted
in public apex domains. In this work, we design a machine
learning model to accurately classify whether a malicious
website is hosted in a public or private apex domain. Our key
observation is that subdomains of private apex domains have
more consistent behavior and properties compared to those of
public apex domains.

Once a malicious website is identified as hosted
in a public apex domain, we classify the pub-
lic website based on its owner as either attacker
owned (e.g. fbook-png.000webapphost.com and
sites.google.com/site/bitcoin2me2) or compro-
mised (e.g. 2014-healthyfood.blogspot.com and
sites.google.com/site/kailyali). Similarly, for each
website hosted on a private apex, we further classify the apex
domain based on its owner. A malicious website is either
created by attackers on their own registered domains (e.g.,
getbinance.org) or on compromised benign domains (e.g.,
questionpro.com). In the latter case, legitimate domains ex-
ploited for malicious activities are victim domains. Takedown
strategies and who should be contacted differ depending
on the type of the apex domain. Detection of compromised
domains early helps owners identify the root causes of
the security breach, take corrective measures, and control
reputation damage, while SOC (Security Operation Center)
teams may temporarily block such victim domains to protect
their users. On the other hand, attacker-owned domains
would require completely different actions. They are usually
first blacklisted to contain the immediate damage. They
could be further shut down through third-party takedown
services [8,12], domain registration deletion [7], or ownership
transferring if they are involved in cybersquatting [2].

Malicious URL
subdomain.apex.com/path?query

Public Domain

Private Domain

Compromised
subdomain or path

Attacker Owned
subdomain or path

Compromised Apex 

Attacker Owned
Domain

Figure 1: Classification of malicious URLs

Most research in malicious domains focuses on characteriz-
ing or detecting attacker owned domains [26,34,35,43,61,66].
There have been only a few efforts to either classify compro-
mised phishing domains [30] or to make a distinction between
compromised and attacker created phishing or malware do-
mains [45, 52]. Most of these approaches first filter a limited
number of public domains based on known public domain
lists, and then rely on the contents of websites to build models
using data that are often difficult to collect, e.g., multiple snap-
shots of a website from the Internet Wayback Machine [13,52]
or all the pages belonging to a website [30]. A notable effort
on detecting compromised domains is recently introduced
by Liu et. al [42] where they build a system called Wood-
pecker to train a classifier based on passive DNS data and
web connectivity graphs to identify compromised subdomains
on private apexes, which they term shadow domains. Their
goal is different from ours as they profile the behavior of
benign domains and then identify those deviating from the
profile as shadow domains. In contrast, our work’s key goal
is to accurately identify malicious domains as either compro-
mised, including shadow and path suffix-based websites or
attacker-owned. Nevertheless, building on top of the knowl-
edge gained from these prior work, in this paper we design the
first machine learning classifiers to accurately differentiate
malicious websites hosted on compromised domains from
those on attacker-owned domains for both public and private
apexes.

In summary, as shown in Figure 1, our work automatically
labels malicious websites (i.e., URLs) as hosted on either
public or private apexes. For public websites, we identify
attacker-owned subdomains/path prefixes from compromised
ones. For private websites, we label them as compromised or
attacker-owned apexes.

In this work, we utilize URLs that appeared in VirusTotal
(VT) URL feed from Aug. 1, 2019 to Nov. 18, 2019 as our
main dataset. VT [67] is a state-of-the-art reputation service
that provides aggregated intelligence on any URL by con-
sulting over 70 third-party anti-virus tools and URL/domain
reputation services. We refer to each of these tools as a scan-
ner. VT aggregates the query results every second and makes
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them available for subscribed users as a feed. Thus, our dataset
contains all URL queries submitted to VT worldwide during
the above mentioned time period. A basic measure of ma-
liciousness from VT results is the number of scanners that
mark a URL as malicious. The higher this value is for a given
URL, the more likely the URL is malicious. Based on prior
research [59, 68] and our empirical analysis, we consider any
URL marked by 5 or more scanners as malicious. Note that,
though we use VT as the main source of intelligence of ma-
licious domains, our approach is general and can be easily
adapted to work with other malicious domain intelligence
sources, as will be discussed in section 6.1.

Specifically, we make the following three broad contribu-
tions:

A new classification of public and private apex do-
mains. Whether a website is hosted in a public or private
apex domain has an important implication in security practice.
We design the first classifier to classify public and private
apex domains utilizing historical VT URL feed information.
Our classifier achieves 97.2% accuracy with 97.7% precision
and 95.6% recall.

New classification schemes to differentiate compro-
mised and attacker-owned domains appearing in VT.
When scanners mark a website (hosted in either public or
private apexes) as malicious, it is not apparent if its hosting
domain is in fact compromised or attacker-owned. We take
the first steps to automatically make this distinction with high
accuracy. For the classification of malicious private websites,
our classifier achieves 96.4% accuracy with 99.1% precision
and 92.6% recall. Our classifier for public malicious websites
achieves 97.1% accuracy with 97.2% precision and 98.1%
recall.

A detailed analysis of public/private apex domains
and compromised/attacker-owned domains in VT URL
Feed. Based on our trained machine learning models,
we analyze the detected public/private apex domains and
compromised/attacker-owned domains to gain insights on
the malicious websites seen on VT URL feed, which we be-
lieve help steer future research on the detection of malicious
websites.

The rest of the paper is organized as follows. Section 2
provides information on data sources and preliminaries. Sec-
tion 3 gives an overview of the overall approach proposed in
our work. In Section 4, we provide detailed information about
our data source, VT URL feed, and characterize its behavior
over time. Section 5 contains the crust of our work, where
we detail the classifiers we build and their performances. In
Section 6, we then analyze the classifiers under various as-
pects including robustness, concept drift, and the quality and
quantity of the training data. Section 7 discusses the lessons
learned and the limitations of our work. Finally, in Section 9,
we conclude the paper.

2 Data Sources and Preliminaries

2.1 Public and Private Apex Domains

As mentioned before, we categorize e2LD (effective Second
Level Domain) domains as public and private apex domains.
An apex domain is public if its subdomains or path suffixes
are not created and not under the control of the apex domain
owner. Similarly, an apex domain is private if its subdomains
are created and managed by the apex domain owner. Accu-
rately identifying these two types of apex domains help SOC
teams to take appropriate measures if they are found to be
malicious.

2.2 VT URL Feed and Scanners

VT provides one of the most popular URL scanning services
widely used in both academia and industry [71]. VT’s URL
scanning service simply pushes a querying URL to over 70
third-party scanners and gives the aggregated results back.
A basic measure of a VT report is the number of scanners
that mark a given website as malicious. Also, each scanner
labels a malicious URL with one of the following attack types:
malicious, phishing, mining, malware, or suspicious. In this
study, we consider any URL marked by 5 or more scanners
as malicious.

We have built a system called VT NOD/NOH (Newly Ob-
served Domains/Hosts) to profile domains observed in VT
URL feed continuously. NOD and NOH incrementally build
an aggregated record for each apex and FQDN (Fully Quali-
fied Domain Name). The record includes the time first seen,
the time last seen (the timestamp the apex/FQDN is first and
last scanned in VT), the number of times scanned, the num-
ber of times marked malicious, corresponding URLs, and VT
scan summaries. We use VT NOD/NOH to extract features to
build our machine learning models described in Section 5.

2.3 Passive DNS Data Feed

Passive DNS (PDNS) [69] captures traffic by sensors coop-
eratively deployed in various DNS hierarchy locations. For
example, Farsight PDNS data [32] utilizes sensors deployed
behind DNS resolvers and provides aggregate information
about domain resolutions. In our research, we use Farsight
PDSN DB to extract PDNS related features for our classifiers.

Among other information, the PDNS DB contains a set of
summarized records for each FQDN. Each summarized record
contains the time of first seen and last seen (i.e., timestamps
of the first and the latest resolution of an FQDN), the number
of times the FQDN is queried, resolved IP addresses, and the
authoritative name servers. We can extract important hosting
features from the PDNS DB, as described in Section 5, to
train our classifiers.
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Figure 2: Overall Workflow of Labeling Malicious Websites

2.4 Other Blacklists/Scanners

In addition to VT, we further utilize four major blacklists
and reputation systems: Google Safe Browsing (GSB) [16],
Phishtank [51], Anti-Phishing Working Group (APWG) [3],
and McAfee Site Advisor (SA) [18]. While Phishtank only
focuses on phishing websites, the other three systems provide
a reputation on any type of malicious websites. Phishtank
and APWG maintain a list of manually verified phishing web-
sites. We utilize these websites’ results to manually label our
dataset as most of these blacklists provide additional textual
information about the details of the malicious activities on a
website.

2.5 Naive Approaches

After identifying and filtering public domains, one of our
work’s primary goals is to categorize malicious websites as
hosted on compromised or attacker-owned apex domains. A
seemingly compelling approach is to take domain popularity,
such as Alexa ranking [22] into consideration. It is generally
understood that compromised domains have some residual
reputation and are long-lived, whereas attacker-owned do-
mains have a low reputation and are short-lived. However,
our analysis of the malicious websites in VT shows that such
observations do not always hold. While there are compro-
mised domains that have high Alexa ranking and long lifetime
(e.g., linode.com, cleverreach.com), a worrying fact we
observe is that there exist many other likely abandoned or
little maintained domains with low or no Alexa ranking (e.g.,
gemtown88.com, vanemery.com) that are compromised by
attackers to launch their attacks. Further, newly created benign
domains possess neither of the above properties, making them
likely mislabeled as attacker-owned when they are, in fact,
compromised. On the other hand, though it is certainly true
that many domains created by attackers are short-lived with
very low Alexa rankings, sophisticated attackers nowadays in-
creasingly utilize long-lived domains, for example, by creating
and parking those domains for a while (e.g., crackarea.com,
estilo.com.ec) to evade detection. Additionally, attackers
can artificially inflate the popularity of their domains, at least

Table 1: VT URL stats for the two datasets

Dataset #scanners = 0 #scanners ≥ 1 #scanners ≥ 5

DS1 47,182,496 7,330,850 3,434,226
DS2 37,323,778 9,797,649 4,398,584

in the short term, without requiring much investment [58].
Therefore, relying on the popularity and/or lifetime alone
does not accurately classify compromised and attacker-owned
domains.

One may wonder whether VT reports contain sufficient
information to classify the types of hosting domains. We ana-
lyze the features built from VT reports, and observe that only
with those features a classifier could not achieve sufficient
accuracy.

3 Overview

Figure 2 illustrates our overall workflow of labeling mali-
cious websites as hosted on public or private apexes, then as
compromised or attacker-owned for each category. We explain
each step in the workflow in detail.

3.1 VT URL Feed

VT URL scans issued from all over the world are aggregated
into hourly feed files. Our system pulls these hourly files,
parse them and build profiles for each apex/FQDN observed
over time (VT NOD/NOH). While we primarily utilize VT
URL feed as the input data source, one may utilize other
blacklists as the starting point as demonstrated in Section 6.1.
On average, there are 4.8M unique URLs each day in the VT
URL feed, out of which a vast majority (89.7%) are likely
benign ( #scanners = 0, i.e., none of the scanners mark them
as malicious). We select two different datasets, DS1 (Aug.
01, 2019 to Aug. 19, 2019) and DS2 (Oct 01 2019 to Oct 14
2019) that are temporally disjoint and of different window
sizes to train machine learning models on different datasets
and show their generalizability. Table 1 summarizes the VT
URL statistics of the two datasets.
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Table 2: Malicious domain stats for the two datasets

Dataset Malicious URLs Malicious Apexes
#public #private #public #private

DS1 1,669,033 1,765,192 3,480 369,758
DS2 2,137,711 2,260,872 3,195 355,567

3.2 Malicious URLs Filter
Out of all URLs marked by at least one scanner (i.e., #scan-

ners ≥ 1), we identify a subset of URLs that are highly likely
to be malicious for this study. In order to decide what thresh-
old of #scanners should be used to deem a URL malicious, we
take a random sample of 500 of these VT URLs and manually
check if they are malicious. Based on this experiment, we
identify that VT URLs with 5 or scanners assessing them as
malicious are highly likely to be malicious, which is in fact
reinforced by prior research findings [59, 68]. Thus, we set
the #scanners to 5 or more to extract malicious URLs for the
next stage of the pipeline.

3.3 Public/Private Domain Classifier
Malicious URLs identified in the previous step are fed to
our public/private domain classifier, which we describe in de-
tail in Section 5.1. This classifier identifies and labels URLs
hosted on public and private apex domains with high accu-
racy. Table 2 shows in each of the two datasets the number of
malicious (i.e. those with #scanners ≥ 5) public and private
URLs and the number of unique public and private apex do-
mains hosting these URLs. Notice that though the number of
unique public apex domains are low, the number of malicious
URLs they host is close to that of those hosted by private
apex domains, as each public domain hosts a huge number of
malicious URLs.

3.4 Private Apex Classifier
In one of the two final stages of the pipeline, we label the
identified private apex domains as either compromised or
attacker-owned. We train a machine learning model utilizing
features from several disparate sources, detailed in Section 5.2.
We achieve an accuracy of 96.4% with 99.1% precision and
92.6% recall. We extract the features for each URL under
consideration and feed them to the trained machined learning
model to predict its label.

3.5 Public Domain Classifier
In this final stage, we label identified public domains as either
compromised or attacker-owned. Even though some of the
features used in the private domain classifier are not appli-
cable (e.g., those related to apex domains), with additional
content-agnostic features, we are able to achieve an accuracy
of 97.2% with 97.2% precision and 98.1% recall.

Figure 3: Daily Unique Scan and URL Counts from VT URL
Feed for all, #scanners = 0) and #scanners > 0

4 VT URL Feed Dataset and Its Characteris-
tics

In this section, we characterize and share insights into the
VT URL Feed dataset, which inspires us to design some of
the features used in our classifiers.

4.1 Daily Volumes
The VT URL Feed dataset contains 814,678,956 unique

URLs from Aug. 1, 2019 to Nov. 18, 2019. Figure 3 shows
the worldwide daily volume of unique scans and URLs in
VT during our study period. Note that the same URL may
be scanned multiple times in a given day. Each scan that
generates a report with a new scan ID is considered a different
one. However, if VT is simply queried multiple times only to
retrieve an existing report instead of triggering new scans, it
does not change the scan ID. Hence, such multiple reports
with the same scan ID are considered as one record. It is
interesting to note that the daily average of observed likely
benign scans (i.e., #scanners = 0) is 89.3% of the total number
of scans, which is around 4.8M. However, at the start of our
study period (weeks 3-4 and weeks 5-8), we see an interesting
spike in likely malicious scans and URLs (i.e., #scanners
> 0). We inspect the domains marked malicious during
this early period, and identify that 5 compromised domains
(gticng.com, clinique-veterinaire-gembloux.be,
advancedimoveis.com, harikaindustries.co.in and
cos.pt) are used to host hundreds of thousands of malicious
javascripts that resulted in the spike. Excluding these outlier
domains, we observe that on average malicious URLs are
scanned 6 times during the above period while benign
URLs are scanned only twice. This follows the general user
behavior where the more suspicious the URLs are, the more
they are checked. Another interesting observation is that
the daily average scan count is roughly twice the average
URL count. We consider these observations when designing
features for our classifiers in Section 5.

Next, we assess the coverage of malicious websites in our
dataset compared to popular blacklists and reputation services.
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Figure 4: Weekly Unique Scan Counts with #scanners marked
URLs as Malicious

Figure 4 shows the weekly distribution of #scanners counts 1,
2, 3, 4, 5, and more than 5. While there are many VT reports
with 1 or 2 #scanners, on average, 45.7% among these scans
have 5 or more #scanners (i.e., the top two areas in the Figure).
In our work, we focus on categorizing scans with 5 or more
#scanners, which corresponds to 1659K weekly malicious
reports on average, or 276K malicious websites per week on
average, out of which 120K are newly observed. In compar-
ison, Google Transparency Report [17] and Phishtank [51]
report around 30K and 4K per week, respectively. This shows
that our study covers a much larger set of malicious websites
than popular blacklists and thus has a higher impact.

4.2 Attack Types

VT scanners assign each malicious URL one of the follow-
ing class labels: malicious, malware, phishing, mining, and
suspicious. Since VT scanners often assign conflicting class
labels, we use a simple majority voting heuristic to derive the
final class label for a malicious website. We take a random
sample of 100 websites of each class type and manually cross-
check them against several publicly available blacklists or
APIs, including Phishtank, GSB and SA. Our manual inspec-
tion showed that more than 98% of the labels using majority
voting are in agreement with external intelligence, validat-
ing our heuristic. Figure 5 shows the count of attack types
of malicious URLs during our study period. While malware
and phishing dominate the reported malicious websites, there
are only a few malicious mining and suspicious websites in
our dataset. Hence, they are not shown in Figure 5. Further,
malware websites are approximately 3 times more prevalent
than phishing ones.

4.3 #FQDNs per Apex

Figure 6 shows the CDF of the number of FQDNs per apex
during our study period for likely benign domains (i.e. #scan-
ners = 0) and likely malicious domains (i.e. #scanners > 0).
Due to the highly skewed distribution, we omit the long tail
of those apexes with more than 500 FQDNs. 90.2% of the

Figure 5: Attack Types

Figure 6: #FQDNs per Apex

apexes in the benign category have only one FQDN whereas
only 12.3% of the apexes in the malicious category have only
one FQDN. Further, as shown in Figure 6, around 40% of
malicious apex domains have more than 40 FQDNs whereas
only 5% of benign apex domains have more than 40 FQDNs.
These observations show that attackers create many subdo-
mains to launch their attacks in a similar fashion as fast-flux
networks [36, 53]. In Section 5.2, we profile all VT reports
corresponding to each apex domain and utilize the variations
in the VT reports to design our compromised/attacker-owned
classifier.

Another interesting observation is that there is a long tail
of apex domains having more than 500 FQDNs, with some
having millions. For example, blogspot.com (blogging),
coop.it (URL shortener), mcafee.com (mcafee endpoint
hosts) and opendns.com (Cisco open DNS) have over 1M
FQDNs. We use the number of FQDNs observed as a feature
in our public/private apex classifier as the higher this number
is, the more likely the domain is public.

5 Construction of Classifiers

In this section, we describe the three classifiers that
we design, the public/private apex classifier, the attacker-
owned/compromised private apex classifier and the attacker-
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owned/compromised public website classifier 1.

5.1 Public/Private Apex Domain Classifier
The goal of this classifier is to accurately predict if the apex

domains of malicious URLs are public or private.

5.1.1 Ground Truth Collection

We collect a tentative public domain ground truth data set
in three ways. First, we aggregate publicly available lists:
the public suffix list [11], popular web hosting providers and
CDN lists [5,15], and dynamic DNS lists [6,9] and take the in-
tersection with apex domains in datasets DS1 and DS2, which
results in 439 apex domains. Second, we identify potential
public domains by searching over our datasets for the key-
words likely to be used by public apex domains such as host-
ing, free, web, share, upload, drop, cdn, file, photo, and proxy.
The manual inspection results in another 97 apexes. Third,
we take random samples of 500 apex domains from DS1 and
DS2 respectively and find additional 26 public apexes through
manual inspection. Altogether, there are 562 unique public
apexes across the two datasets.

We collect a tentative private domain ground truth data
by randomly selecting 2000 apex domains from each dataset
(DS1 and DS2) that are mutually exclusive from the tentative
public dataset. We then do manual verification to create the
final ground truth sets: for each apex domain, we assign a con-
fidence score between 50 and 100 to indicate how confident
we are of the label, with 100 being the most confident and
50 being undecided. To improve the quality of labeling, two
domain experts performed the labeling for all the domains
and we excluded the domains with conflicting labels.

During manual verification, we first check the content of the
apex domain. Most of the time the content itself reveals if it is
a public apex domain providing web hosting, sharing, forums
or other collaborative platforms. For the remaining apexes,
whose functionalities are not clear from the content, we utilize
our PDNS based subdomain enumeration tool, and get the
subdomains belonging to each apex domain. We then cross
compare the content of these subdomains as well as their
names to label the apex as public or private. For example,
for public domains, different subdomains tend to have very
different contents whereas for a private domain, their content
follows a certain theme. With this process, we collect two
ground truth sets PP-GT1 (PP stands for Public Private) and
PP-GT2 from DS1 and DS2 respectively, as summarized in
Table 3.

5.1.2 Feature Engineering

We extract the features in Table 4 from the VT NOD system
to train a classifier. The meanings of most of the features are

1The code is available at https://github.com/qcri/compromised

Table 3: Public/Private Ground Truth

Ground truth Public Private
PP-GT1 410 1370
PP-GT2 528 1408

Figure 7: ROC Curves for RF Public Classifiers where Class
1 is Public

straightforward. Compared to private apex domains, public
domains tend to host more subdomains and are scanned more
frequently in VT. #subdomains and #scans capture these ob-
servations. Since subdomains are not under the control of the
public apex domain owner, in practice, some of the subdo-
mains are malicious and others are benign, whereas subdo-
mains under private apexes tend to be mostly either benign
or malicious. #Mal_Scans and Mal_Scan_Ratio capture the
volume and this difference. Most public apexes, especially
CDNs and proxy services, utilize FQDNs of the domains they
serve (e.g. www.superwhys.com.akamai.com) whereas pri-
vate apexes uses mostly descriptive popular keywords in the
subdomain part such as www, mail, ns and m (for mobile). By
profiling all domains seen in PDNS during the study period,
we identify the top 100 subdomains as the popular keywords.
We capture these differences using the #Pop_Keywords, Ra-
tio_Pop_Keywords and #Avg_Depth features. We observe
that there are more variations between subdomain names
under public apex domains than those under private ones.
Avg_Sub_Entropy measures the average entropy across all
subdomains to capture this observation. While not directly
related, #Subdomains and #Avg_Depth are inspired from
public key sharing in CDNs [63], and #Pop_Keywords and
#Avg_Sub_Entropy features are inspired from the diversity
features described in [42].

5.1.3 Model Training and Classification Accuracy

We train 8 classifiers (Support Vector Classification (SV),
Random Forest (RF), Extra Tree (ET), Logistic Regression
(LR), Decision Tree (DT), Gradient Boosting (GB), Ada
Boosting (AB) and K-Neighbors (KN) Classification) using
the features in Table 4. Out of all of the classifiers, RF per-
forms the best.
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Table 4: Public Apex Classifier Features

Feature Name Description Novel
VT Duration The time between the apex domain first and last seen in VT 3

#Scans No. of unique scans performed for the apex and its subdomains 3

#Mal_Scans No. of unique scans that VT marks apex or its subdomains as malicious 3

Mal_Scan_Ratio The ratio of scans with malicious results and the total number of scans for apex and its subdomains 3

#subdomains The number of FQDNs (Fully Qualified Domain Names) observed in VT URL feed for the apex domain [63]
#Pop_Keywords The number of popular keywords used in the subdomain part of the FQDNs of the apex domain [42]
Ratio_Pop_Keywords The ratio of popular keywords used and the total number of FQDNs observed for the apex domain 3

#Avg_Depth The average number of subdomain levels used in the FQDNs belonging to the apex domain [63]
Avg_Sub_Entropy The average entropy of the subdomain parts of the FQDNs belonging to the apex domain. [42]

Our model on both ground truth sets performs really well,
showing the generalizability of our model across different
datasets. With 10-fold cross validation on a balanced dataset,
the RF classifier on PP-GT1 labels public apex domains with
92% accuracy, 97.4% precision and 87.5% recall. The RF
classifier on PP-GT2 labels public apex domains with 97.2%
accuracy, 97.7% precision and 95.6% recall. As shown in
Figure 7, AUCs of the two ROC curves are 96% and 99%
for GT1 and GT2 respectively, demonstrating high degrees of
separability of the two classes. One reason for the better per-
formance in GT2 is that the two classes in GT2’s ground truth
data have a better separation, resulting in a better decision
boundaries.

5.1.4 Observations

We applied the above trained model to all the URLs in DS1
and DS2, and identified 6,675 malicious public apex domains
and 725,325 malicious private apex domains in total. It is
interesting to see that among all the apex domains hosting
malicious URLs, only 1% are public apexes. However, these
public apexes host a large portion of malicious URLs: 46.5%
of malicious URLs are from public apexes. This observation
is not surprising, given that attackers can utilize public apexes
to deploy a large number of malicious URLs with almost no
cost. Meanwhile, note that most existing work on malicious
domain detection either focuses on apex domains or treats
all URLs the same without distinction. Our finding suggests
that malicious URLs from public apexes form a unique and
significant set of Internet entities with their own distinguishing
characteristics. Therefore, it would be more effective to design
detection mechanisms specifically targeting such malicious
URLs. Our classifier would help researchers to quickly zoom
into such URLs.

Figure 8 shows the average Alexa ranking distribution for
public and private apex domains. For unranked domains, we
assign the insignificant rank of 1 million for better visualiza-
tion. We see that public apexes have a higher average Alexa
ranking than private apexes as public apex domains along
with their vast number of subdomains are accessed more fre-
quently by users. Yet it is also interesting to see that half
of public domains are not popular (unranked), showing that
attackers also utilize less popular public domains to launch

attacks. As public apex domains could also host many benign
subdomains, current registration and domain reputation based
systems [29,42] and inference based systems [37,64] that rely
on Alexa ranking (or domain popularity) may inadvertently
blacklist public apex domains, disrupting benign sites.

Figure 8: Average Alexa Ranking for Public and Private Apex
Domains during the Study Period

5.2 Attacker-Owned/Compromised Private
Apex Classifier

5.2.1 Ground Truth Collection

We manually create two ground truth sets of compromised
and attacker-owned apex domains AC-GT1 (AC stands for
Attacker-Owned/Compromised) and AC-GT2 from the pri-
vate domains identified from DS1 and DS2 respectively using
our public/private classifier.

We first select a random sample of 2500 domains from
each of DS1 and DS2. We perform manual inspection of each
sample and provide a confidence score to indicate how con-
fident the domain experts are about the label. The following
information and sources are manually inspected to decide if a
malicious apex is compromised or attacker-owned. In addi-
tion to checking the website, we check auxiliary information
such as registration information including historical WHOIS
records, hosting information, and PDNS information. We also
check the detailed reports from two threat intelligence plat-
forms, riskiq.com and otx.alienvault.com. Further, we
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inspect detailed reports from two reputation services, GSB
and SA. To identify compromised domains, we rely on the
deviations of the visual and auxiliary information in the apex
domain and the domain under consideration. We observe that
shadow domains, one type of compromised domains, have
very different contents compared to the main website and
the auxiliary information such as hosting IPs are different
for the main website (reputed hosting provider) and the do-
main under consideration (bullet proof hosting) [42, 50]. On
the other hand, attacker-owned domains have relatively new
registration information [35], are likely to utilize fast flux
networks [54], are short-lived (likely to be NX domain) [33],
and blacklisted [39, 60]. After manual verification, we select
the ones with 90% or above confidence scores assigned by
the domain experts. A summary of the ground truth datasets
are shown in Table 5.

Table 5: Compromised/Attacker-Owned Private Apex Ground
Truth

Ground truth Compromised Attacker-Owned
AC-GT1 704 1004
AC-GT2 685 885

5.2.2 Feature Engineering

We identify five groups of features: lexical, VT report, VT
profile, PDNS (hosting), and Alexa features. Table 6 sum-
marizes these features. Lexical features capture the lexical
properties of the URL under consideration. VT report features
include those attributes that are directly available from VT
reports. VT profile features are extracted from our VT NOD
system. PDNS features are extracted from the Farsight Passive
DNS DB system. Most of the lexical, Alexa and PDNS fea-
tures either have been proposed in or adapted from previous re-
search on detecting malicious URLs [25,26,34,40,43,61,66].
Past research utilizes these features to distinguish attacker-
owned domains from benign domains that usually appear
consistently in domain reputation lists such as Alexa Top
1M [58, 71]. In our case, these features are useful as many
apexes of compromised domains are likely to have properties
similar to such benign domains. We improve our classifier
with additional features that collectively amplify the deviation
of malicious websites hosted on benign apexes.

Next, we describe those features that either improve ex-
isting ones or are newly introduced in our work. VT Report
Features are directly extracted from the VT reports. We ob-
serve that the VT_Duration feature for compromised domains
tends to be higher than that for attacker-owned domains. One
reason is that compromised domains are in general harder to
detect by existing systems [35, 37] as attackers are exploiting
the reputation of legitimate domains. Due to the same reason,
we observe that the number of scanners that mark a compro-
mised site as malicious is less than that for attacker-owned

sites. Positive_count captures this observation. Compared to
attacker-owned domains, we observe that attackers more of-
ten use compromised domains as a redirection site in order to
evade detection, which is captured by Is_URL_Redirected.

VT profile features capture the intuition that almost all
subdomains and scans of attacker-owned domains are ma-
licious whereas only some of the subdomains and scans of
compromised domains are malicious.

From the PDNS features, the number of authoritative name
servers and the number of SOA domains capture the ob-
servation that attacker-owned domains change their hosting
providers more often than benign domains to evade detec-
tion or takedown. Additionally, as Lever et al. [41] point
out, attackers drop catch or re-register domains to exploit the
residual trust in them, which also results in domain being
associated with multiple name servers. Comparison of apex
domains with name server domains and SOA features cap-
ture the observation that benign domains are more likely to
be hosted in their own servers compared to attacker-owned
ones. We improve several lexical features present in previous
work [34,43,61]. Specifically, we observe that attacker-owned
domains more often use these squatting methods to imperson-
ate brands compared to compromised domains. We profile
Alexa Top 1M domains over 1 year to identify Alexa top 1000
brands to detect combosquatting [38], levelsquatting [31] and
target embedding [57] domains which are shown to be much
more prevalent than traditional squatting types [27, 49]. Fea-
tures Brand, Similar, and Pop_Keywords capture new squat-
ting tactics used by attackers. The presence of these features
in the apex part of domains makes a domain more likely to
be an attacker-owned one. On the other hand, the presence of
such lexical features in the path is likely to identify compro-
mised ones.

5.2.3 Model Training and Classification Accuracy

We train the same 8 classifiers (SV, RF, ET, LR, DT, GB,
AB and KN) as in Section 5.1.3, out of which, RF and ET
performed the best.

Figure 9 shows the ROC curves for RF for both AC-GT1
and AC-GT2, with 10-fold cross validation (the ROC curves
for ET are similar). Our classifier achieves 90.6% accuracy
with 94.7% precision and 86.1% recall for AC-GT1, and
96.8% accuracy with 99.1% precision and 93.4% recall for
AC-GT2. The fact that our model achieves high accuracy
for datasets collected on different time periods shows the
robustness of our approach and that it could be generalized
to different ground truth datasets. Feature importance charts
show that no single feature is dominant in deciding the class
label which makes it difficult for adversarial manipulations.
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Table 6: Attacker-Owned/Compromised Apex Classifier Features

Feature Name Description Novel
VT Report Features

VT_Duration The duration between the first and the last time the URL is scanned in VT 3

Response_Code The response code returned for the website as reported in VT report [62]
Rlength The length of the content as reported in VT report [62]
Is_URL_Redirected Is the final URL different from the original URL as reported in VT report? [42]
Positive_Count The number of scanners detected the URL as malicious 3

Domain_Malicious Is the domain of the URL marked as malicious in VT? 3

VT Profile Features
#Total_Scans The number of times the domain is scanned earlier (extracted from VT NOD) 3

#Benign_Scans The number of times the domain is marked as benign earlier 3

#Subdomain_Mal The number of subdomains marked malicious by previous VT reports 3

PDNS (Hosting) Features
PDNS_Duration The length of the domain footprint seen in PDNS [29]
Name_Servers The number of authoritative NS in which the domain was hosted Derived from [41]
Query_Count The number of lookups recorded for the domain in PDNS [29]
SOA_Domains_Nos The number of SOA domains under which the domain was hosted 3

SOA_Domain Is the apex of the domain the same as the apex of the SOA domain? 3

Lexical Host Features
#Subdomains The number of levels in the subdomain part of the FQDN [44]
Minus The number of dashes appear in the FQDN [44]
Brand Does it impersonate a popular Alexa top 1000 brand? Derived from [38]
Similar Does the domain contain words within Levenshtein distance 2 of a popular Alexa top brand? Derived from [38]
Fake_TLD Does the domain name include a fake gTLD (com, edu, net, org, gov)? Derived from [57]
Pop_Keywords Does the domain name include popular keywords? Derived from [38]
Entropy The entropy of the FQDN [24, 25]

Lexical Path Features
Brand_In_Path Does the path have an Alexa top 1000 brand name(s)? Derived from [38], [45]
Similar_In_Path Does the path contain words within Levenshtein distance 2 of a popular Alexa top brand? Derived from [38], [45]
URL length The length of the URL [44, 46, 47]
#Query_Params The number of query parameters in the URL [40]

Alexa Features
Alexa_Rank_Avg The average Alexa rank during the study period [52]
Is_In_Alexa_1Year Does the apex appear consistently in Alexa Top 1M throughout the previous year? Derived from [58]

Figure 9: ROC Curves for RF Compromised/Attacker-Owned
Classifiers

5.2.4 Observations

Following the pipeline shown in Figure 2, we applied the
above classification model and labeled all the 725,325 pri-
vate apex domains in DS1 and DS2 that host malicious URLs
with #scanners ≥ 5. We observe that 65.6% of such private
apex domains are classified as compromised, indicating that
attackers utilize more compromised apex domains than cre-
ating their own apex domains, which could be due to several

reasons. First, attackers try to ride on the reputation of com-
promised domains, which are also often long lived. Malicious
domains deployed over compromised private apexes thus are
more evasive and hard to detect by current reputation systems.
Second, many private apex domains are not well maintained
or patched in time. Compromised private apex domains are
abundant and become more economically favorable for at-
tackers than setting up their own apex domains, which could
incur cost during domain registration.

This observation is consistent with prior work done on
phishing websites [30] and public threat intelligence re-
ports [4, 19]. Yet, our study is not limited to a specific type
of malicious URLs. Instead, it covers a variety of malicious
domains with a much larger scale, utilizing a more compre-
hensive dataset collected from VT.

Figure 10 shows the average Alexa rank distribution for
compromised and attacker-owned apex domains. As expected,
most of the attacker-owned domains have either low Alexa
ranking or no rank. However, it is interesting to see that there
are some attacker-owned domains with Alexa ranking below
100K. Another interesting observation is that about 10% of
compromised private apexes are not ranked, indicating that
attackers launch attacks from less popular benign websites as
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well, which could be utilized to launch attacks such as DDoS
that do not require reputable sites.

Figure 10: Average Alexa Ranking for Compromised and
Attacker-Owned Domains

Figure 11 shows the number of days from the registration
to first malicious behavior during our study period. The first
malicious behavior is approximated as the first VT report
indicating a website is malicious and thus it provides an up-
per bound on how soon attackers utilize these websites after
registration. 20% of attacker-owned domains are utilized to
launch attacks soon after they are registered. However, many
other domains are utilized several months after registration,
necessitating one to have detection mechanisms in place be-
yond the initial registration period. This behavior is consistent
with the trend that attackers park their domains before using
them to launch attacks so that they can evade detection by
many existing reputation based systems. A concerning fact
is that benign domains on the other hand gets compromised
several years after they are registered. Frequent reasons for
such delayed compromise are that some technologies utilized
in unmaintained benign websites become outdated and/or
servers on which they are deployed are not upgraded over
time, making them easy targets for attackers.

Figure 11: #Days from Registration to First Malicious Behav-
ior During the Study Period

5.3 Attacker-Owned/Compromised Public
Website Classifier

In this section, we further categorize those URLs hosted
in public apexes as attacker-owned or compromised. Note
that different from the classifier for private apex do-
mains, this classifier is not to classify a public apex
domain, but its subdomains that could be either prefix-
based (e.g., alice.000webapphost.com) or suffix-based (e.g.,
sites.google.com/site/alice). For brevity, we call them public
websites.

5.3.1 Ground Truth Collection

We manually create from DS1 a ground truth set of com-
promised and attacker-owned public websites AC-P-GT. We
check the content of a public website to determine if the
website is created by attackers or compromised. Further,
some public apex services such as 000webapphost.com and
blogspot.com identify and block some attacker-owned web-
sites. We use this information to collect additional attacker-
owned public websites. In total we collect 613 compromised
public websites and 1157 attacker-owned public websites.

5.3.2 Feature Engineering

We utilize all features in Table 6 except the hosting features
Name_Servers, SOA_Domains_Nos and SOA_Domain as
public websites from a given apex domain often have similar
hosting infrastructures managed by the apex domain owner.
It should be noted that unlike in the private apex classifier,
features are extracted at subdomain or path suffix level as
our goal is to classify public websites, not apexes. Further,
we utilize the additional path features listed in Table 7. We
noticed that most long lived public websites (like blogs) have
many associated pages (URLs), but attacker-created ones are
usually short lived and tend not to create many pages to launch
their attacks. The feature #URLs captures this difference.
Variations in the paths belonging to a given public website are
captured by features Std_Path_Depth and Std_Query_Params,
as compromised public websites are likely to create paths
quite different from those created by attackers.

5.3.3 Model Training and Observations

We train a RF classifier with a balanced dataset. We achieve
an accuracy of 97.2% with 97.2% precision and 98.1% recall
with 10-fold cross validation. Figure 12 shows the ROC curve
for this classifier.

We then utilize this classifier to label the remaining public
websites in DS1. We observe that, unlike private apexes, at-
tackers primarily create their own subdomains or path prefixes
on public domains (80.5%). We attribute this difference to the
low cost associated with creating public websites.
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Table 7: Additional features for the public website classifier

Feature Name Description Novel
#URLs The number of URLs corresponding to the website. Derived from [52]
Std_Path_Depth Standard deviation of the path depth of URLs belonging to the website. 3

Std_Query_Params Standard deviation of the number of query parameters for each URL belonging to the website. 3

Figure 12: ROC Curve for RF Public Compromised/Attacker-
Owned Classifier

We analyze the Alexa ranking associated with the identified
attacker-owned/compromised public websites. As expected,
only a small fraction (2.28%) of public malicious websites
in DS1 made it to Alexa top 1M during the attack time pe-
riod. However, it is interesting to observe that during this time
more compromised public websites (6.87%) are observed in
Alexa top list compared to 1.17% of attacker-owned websites.
Further, compromised ones stayed in the Alexa top list longer
than attacker-owned ones (6.8 vs. 2.9 days). These observa-
tions indicate that even though compromised public websites
are the minority, the damage they may cause is higher than
that of attacker-owned public websites.

5.4 Summary of Attack Types

Table 8 summarizes the distribution of attack types classified
by our two-step classification of URLs. In the first step, we
classify apex domains as public and private. In the second
step, we classify private apexes as compromised and attacker-
owned apexes, and websites of public apexes as compromised
and attacker-owned, which include both prefix based subdo-
mains and suffix based paths.

Table 8: Distribution of Attack Types in our Dataset

Type Public Private
Malicious 1% Apexes

46.5% URLs
99% Apexes
53.5% URLs

Compromised 20.5% Sites 65.6% Apexes
Attacker-Owned 79.5% Sites 34.4% Apexes

6 Classifier Analysis

We have shown so far the features of the three classifiers and
their classification accuracy over the malicious URL datasets
collected from VT. In this section, we perform further analysis
of their properties, including how well they could be general-
ized to URL intelligence beyond VT, their robustness against
feature manipulation, the impact when the training data are
noisy or of a smaller scale, and how they compare with cur-
rent industrial practices. Due to space limit, we focus our
analysis on the classifier that classifies private apex domains
as compromised or attacker-owned (see Section 5.2).

6.1 Applicability to Other URL Intelligence
Sources

Our discussion so far is based on the data collected from VT.
Indeed some of the features for the private apex classifier are
also specific to VT. It raises the question whether our approach
could be applied with other URL intelligence sources. In this
section, we show how our methodology can be adapted to
work with other intelligence feeds. In particular, we adapt our
approach to build a private apex classifier over the data from
Phishtank. Phishtank makes a verified list of phishing URLs
every hour. We take the list of URLs appeared in our second
study period from Nov 1 2019 to Nov 14 2019.

Ground Truth Collection: We collect 7756 URLs from
Phishtank during the study period. First we filter the public
apex domains by passing the URLs through our public/private
classifier. This results in 6377 private phishing URLs and
2804 private apex domains. Following a process similar to the
GT collection for the private AC/C classifier, out of the 2804
private apex domains, we collect 183 compromised domains
and 392 attacker-owned domains.

Feature Extraction: We collect all features except VT
profile features mentioned in Table 6, as they are specific to
VT and are not appliable for Phishtank.

Model Training: Similar to other classifiers, we train a RF
classifier with a balanced dataset. We achieve an accuracy
of 91.2% with 93.5% precision and 93.5% recall, which is
comparable to the accuracy achieved over the VT dataset.
Figure 13 shows the ROC curve for this classifier.

The performance is slightly lower than that for the private
AC/C classifier for VT URLs. We attribute this difference to
smaller dataset sizes as well as the reduced number of features
utilized. We believe the performance could be improved by
utilizing additional features such as registration information
and certificate information.
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Figure 13: ROC Curve for RF Private Compromised/Attacker-
Owned Classifier for Phishtank URLs

6.2 Robustness
As VT provides services to the public, it could be a concern
that attackers may submit URL queries and indirectly influ-
ence the VT features, e.g., #Total_Scans and #VT_Duration,
and consequently the classification results in their favor. To
show the classifier’s robustness against such manipulations,
we measure the performance of the classifier when different
types of VT features are excluded. As shown in Table 9, the
influence of these features on the classification performance
is not significant. Even when we aggressively omit all VT
features, the classification accuracy drops by only 6%. A
possible way to further improve robustness is to enrich the
classifier with additional features from disparate sources such
as domain certificates.

Table 9: Robustness of Private AC/C Classifier

Features Acc. Prec. Rec.
All 96.4% 99.1% 92.6%
All - {VT Profile} 94.01% 94.1% 91.8%
All - {VT Profile,VT Du-
ration, Positive Count}

92.9% 93.9% 90.9%

All - {VT Profile, VT Re-
port}

90.1% 92.0% 84.4%

6.3 Impact of Training Data Quality
The effectiveness of machine learning depends greatly on

the quality of the training data. In our study, we collect la-
beled training and testing data through manual inspection by
multiple domain experts and adopt mechanisms to handle
disagreements. Here we would like to see how our classifier
would be affected if the training dataset is noisy, i.e., with
some data mislabeled. For this purpose, we deliberately inject
mislabeled training data, and re-train our classifier for both
DS1 and DS2, while controlling the noise level, i.e., the per-
centage of mislabeled training data. As shown in Figure 14, in
general our classifier can tolerate small amount of mislabeled
data. At 1% and 5% noise levels, the accuracy of our classifier

is reduced by only 0.9% and 4.2% respectively. Further, there
seems to be a linear correlation with the noise level and the
classifier accuracy. When a significant portion of the training
data is mislabeled (e.g., 15%), the classifier accuracy drops
greatly.

(a) AC-GT1 (b) AC-GT2

Figure 14: Performance with Noisy Labels

6.4 Impact of the Size of Training Data
An important question in machine learning model is to iden-

tify how much training data is sufficient to achieve the desired
performance. Figure 15 shows the accuracy of our private
apex domain classifier for different dataset sizes. Recall that
the size of our original balanced dataset for the two windows
is approximately 700 apexes from each class. As shown in
this figure, our classifiers yield an accuracy similar to the full
labeled set with approximately 70% of the labeled data.

6.5 Feature Stability over Time
Identifying how often one needs to re-train a classifier to cope
with concept drift is quite important in practice. To measure
the impact of concept drifting on our classifier, we create two
datasets which are one and two weeks apart from the AC-GT2
dataset. We evaluate the performance of our classifier trained
on AC-GT2 with these two datasets of 100 labels that are one
and two weeks away from the training set. As shown in Ta-
ble 10, our classifier maintains a good performance after two
weeks, though it is also clear its performance drops gradually
as the temporal gap between the training and testing data in-
creases. In order to maintain a high precision, we recommend
to retrain the classifiers weekly.

We further use the model trained with the labeled data in
AC-GT1 to classify data in AC-GT2. As expected, since the
two datasets are two months apart temporally, the classifica-
tion accuracy drops dramatically, by 14%.

Table 10: Concept Drift Analysis of Private AC/C Classifier

Validation Set Acc. Prec. Rec.
Same Week 97.1% 99.1% 94.2%
After 1 Week 95.0% 90.9% 100.0%
After 2 Weeks 93.0% 87.7% 100.0%
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Figure 15: Accuracy of the Model with respect to the size of
the dataset

6.6 Misclassified Apex Domains
We utilize LIME [56], a well-known tool that provides expla-
nations for individual predicted data points, in order to study
the misclassified data points in AC-GT2. This classification
results in 1 False Positive (FP) and 8 False Negatives (FNs).
We make two observations from this analysis. First, most of
the misclassified data points do not have PDNS features (
we use default values for missing PDNS features). Second,
the probability of prediction for the rest of the misclassified
ones is close to 0.5 making the prediction weak. Possible ap-
proaches to further reduce FPs/FNs are to either fill missing
values using another similar data source such as active DNS
and/or incorporate additional features from desperate sources
such as WHOIS registration records in order to differentiate
the two classes further.

6.7 Comparison with Industry Practices
GSB [16] has been instrumental in protecting users across the
web from phishing and malware attacks. GSB is integrated
with several browsers including Chrome and also provides
API based access. GSB categorizes malicious websites as ei-
ther malware sites or phishing sites. Malware sites are further
classified as compromised or attacker-owned sites. However,
GSB does not provide public APIs or services that directly
classify individual URLs as compromised or attacker-owned.
Instead, it only reports aggregated statistics of these two types
of URLs that GSB has discovered. There is also no document
or paper detailing exactly how GSB classifies compromised
and attacker-owned domains. Therefore, we could not directly
compare our classifier with that used by GSB. Here we com-
pare the published statistics of these two types of URLs in the
Google Transparency Report [17] in August 2019. Figure 16
compares the statistics on the number of unique malicious
websites detected by GSB and VT.

While GSB detects around 30K new malicious websites
per week, VT detects 3 times more than that amount, which
shows that there is room to improve the coverage of malicious
domains of GSB. Our manual inspection of selected malicious

Figure 16: Comparison of GSB and Our Approach

websites from VT confirmed this observation, i.e., there exists
many malicious domains marked by VT but not by GSB.
Further, from the Google Transparency Report, we see that
GSB only studies whether malware websites are compromised
or attacker-owned, yet, malware websites (2K websites on
average per week during the comparison time period) only
account for less than 7% of all the malicious websites detected
by GSB. In comparison, we categorize both phishing and
malware websites as attacker-owned or compromised. We
believe our approach can complement GSB to automatically
detect more attacker-owned/compromised domains.

In the APWG 2016 phishing trends report, Aaron et al. [21]
proposes to utilize three heuristics to distinguish compro-
mised domains from attacker-owned ones. They flag a do-
main as malicious if it is reported for phishing within a very
short time of being registered, and/or contains a brand name
or misleading strings, and/or is registered in a batch or in a
pattern that indicates common ownership or intent. While
such a heuristic based approach may accurately identify some
attacker-owned/compromised domains, our analysis shows
that it misclassifies many malicious domains. During our
study period we observe that 13% of attacker-owned domains
are detected after 3 months and they do not have any brand
names. In their approach, these domains are likely to be mis-
classified as compromised.

7 Limitations and Future Work

Features specific to URL intelligence sources. Our work
primarily utilizes the malicious URL intelligence from VT.
Indeed some of the features are specific to VT reports. We
have shown that even when such features are removed, our
classifiers could still perform well. Further, through experi-
ments over the Phishtank dataset, we also show that our clas-
sifiers could be adapted to work with other URL intelligence
sources. However, admittedly, the accuracy on the Phishtank
dataset is not as high as that on the VT dataset with VT spe-
cific features. The observation is that, though our approach
is general enough, data source specific features would bring
additional improvement to our classifier. Thus, in practice,
when applying our classifier with other URL data sources, it
pays to derive further URL data source dependent features to
enhance our model. Similarly, we derived features utilizing
other data sources such as PDNS and Alexa domain ranking.
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We did not explore other publicly available data sources, e.g.,
WHOIS registration records, active DNS records, and cer-
tificate transparency logs. It is possible to design additional
features from such data sources to further improve our model.
Another promising direction is to utilize content based clas-
sification as the second layer of categorization of websites
whose predicted label is close to the decision boundary, i.e.
the probability of prediction is close to 50%. Such an ap-
proach scales to millions of URLs as content analysis, which
is resource-intensive, is performed only on a fraction of them.

Ground Truth. It is always a challenge to collect high-
quality ground truth training data for machine learning tasks.
It is particularly so for malicious domain research. In this
paper, we obtain through manual inspection labeled datasets
for training and testing, which is inevitably a tedious and time-
consuming process. As a result, our labeled data set is only
of a moderate scale (ranging from a few hundreds to over a
thousand). It is certainly desirable to evaluate our models on
a much larger data set, which could shed new insights of our
approach. In this work, we did not explore ways to obtain
labeled datasets through automated or semi-automated pro-
cesses. However, as shown in Section 6.3, noisy labeled data
tend to impact the accuracy of the trained model, especially
when mislabeled data account for a non-negligible portion
of the training data. How to balance the scale and quality of
training data, through advanced machine learning techniques
(e.g., weakly supervised technique such as Snorkle [55]) is
an interesting and important problem for malicious domain
research.

Re-Compromised Websites. We inspect random samples
of compromised domains predicted by our classifier and ret-
rospectively analyze them utilizing historical VT reports. We
find a concerning trend that some compromised websites after
being cleaned, which is indicated by subsequent VT clean re-
ports, gets compromised again. One possible reason for such
behavior is that an underlying vulnerability still remains. A
useful future direction is to come up with a reputation based
score for benign websites based on how often they get com-
promised and how quickly identified infections are cleaned.

8 Related Work

Malicious vs. compromised domains. Moore et al. [48]
show how Internet miscreants utilize Google search to iden-
tify vulnerable web servers that use unpatched software and
host phishing web pages. They also show how such servers get
repeatedly compromised when the root cause of vulnerability
is not addressed. They assess that 75.8% of the phishing web
sites they analyzed are hosted on compromised web servers.
Corona et al. [30] proposes an approach to detecting phish-
ing websites hosted on compromised domains by comparing
the HTML code and visual appearance of potential phishing
pages against the corresponding characteristics of the home-
page of compromised (hosting) website. Recently, Sophie

et al. [52] build a content-agnostic machine learning model
using three different phishing datasets APWG [3] and Phish-
Labs [10] and DeltaPhish [30]. However, there are several
shortcomings in their work: their classifier heavily relies on
The Wayback Machine (WBM) [13] features that are not only
biased but also difficult to collect. We observe that WBM
content is not available for many attacker-owned domains,
non-US websites as well as newly registered domains, lead-
ing many missing values in feature vectors. Further, some of
their predicted labels with high confidence are in fact inaccu-
rate (e.g. 000a.biz and kl.com.ua are public hosting domains).
An interesting approach to identifying compromised domains
has been proposed by Liu et al. [42]. There key ideas to profile
the good behavior of the passive DNS information of each
domain and measure the deviation as a differentiator. How-
ever, their approach fails to accurately filter public domains
and additionally the classification requires considerable repu-
tation information on domains in order to make an accurate
decision. Recently, Maroofi et al. [45] proposed a content
based approach to classify malicious domains as attacker-
owned or compromised. They extract features from WHOIS
registration records, passive DNS, active DNS, page ranking
formation, and page content. Similar to previous approaches,
their approach focuses only on private apex domains. Further,
they filter public domains based only on the publicly available
suffix lists. Yet we show in this work that such lists cover only
a small fraction of public domains. This results in inaccurate
classification as most characteristics of public apex domains
are different from private apex domains. Further, unlike our
approach, all above approaches ignore compromised websites
on public domains.

Domain impersonation attacks. Malicious domains are
increasingly known to use cybersquatting such as combosquat-
ting [38] and target embedding [57] techniques to trick more
victims by mimicking legitimate domains and embedding
known popular “brand” names such as paypal or apple in
the domain name. While many of such domains are attacker
created, there are notable exceptions as long as they use brand
keywords in good faith (e.g. applefarm.com and amazonker-
atin.com). Hence, relying solely on likely brand imperson-
ation could result in many false positives. In our work, we uti-
lize brand impersonation as a likely signal of attacker-owned
domains, but it works together with other features to improve
the detection accuracy.

Phishing/malicious domain detection. These methods
can broadly be categorized into two groups: content-based and
content-agnostic. Content-based phishing for example [65,70]
utilizes features from the web page content itself to train
a machine learning model to detect phishing URLs. While
they are quite accurate, it is quite time consuming and re-
source intensive to train classifiers based on the content of
web pages. Content-agnostic phishing methods, on the other
hand, utilize features other than content based features such as
URL/domain lexical features, registration information, DNS
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information and hosting information [26, 61]. All these meth-
ods are in fact utilize features indicative of attacker-owned
domains (e.g. newly registered, hosted on an unreputed in-
frastructure, and fast IP fluxing) and hence perform poorly
detecting compromised domains.

9 Conclusions

We design machine learning models to distinguish two kinds
of malicious URL hosting apex domains, public and private.
This classification helps security professionals specify which
domain levels to block, the whole apex domain in the case of
private apexes or specific subdomains/path suffixes in the case
of public ones. Our results show that we can classify apex
domains as public or private with 97.2% accuracy, 97.7% pre-
cision and 95.6% recall. From the private malicious domains,
we also design another machine learning model to differenti-
ate attacker-owned from compromised hosting apexes. This
distinction is crucial to help security operators take the ap-
propriate mitigation actions. For example, attacker-owned do-
mains could be blocked permanently whereas compromised
ones temporarily. The result shows that this classifier achieves
96.8% accuracy with 99.1% precision and 93.4% recall. We
also design a classifier with high accuracy to classify public
websites as attacker-owned or compromised. In terms of statis-
tics, our results reveal a concerning trend of the malicious
domains observed from VT URL Feed: most of the attacks
are launched from websites whose apexes are not owned by
attackers. Even though public apex domains are less than
1% of the apexes hosting malicious websites, they amount
to a whopping 46.5% malicious web pages seen in VT URL
feed during our study period. Out of the remaining websites
(53.5%), we observe that attackers mostly compromise benign
websites (65.6%) to launch their attacks, whereas only 34.4%
of malicious websites are hosted on domains created by at-
tackers. Understandably, public malicious websites exhibit
the opposite trend where most (79.5%) are attacker owned.
The key insight here is that more has to be done by legitimate
domain owners to prevent miscreants from misusing their
domains to launch stealthy attacks.
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