
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Does logic locking work with EDA tools?
Zhaokun Han, Muhammad Yasin, and Jeyavijayan (JV) Rajendran,

Texas A&M University
https://www.usenix.org/conference/usenixsecurity21/presentation/han-zhaokun

Does logic locking work with EDA tools?

Zhaokun Han
Texas A&M University
hzhk0618@tamu.edu

Muhammad Yasin
Texas A&M University

myasin@tamu.edu

Jeyavijayan (JV) Rajendran
Texas A&M University
jeyavijayan@tamu.edu

Abstract
Logic locking is a promising solution against emerging

hardware security threats, which entails protecting a Boolean
circuit using a “keying” mechanism. The latest and hith-
erto unbroken logic-locking techniques are based on the
“corrupt-and-correct (CAC)” principle, offering provable se-
curity against input-output query attacks. However, it remains
unclear whether these techniques are susceptible to structural
attacks. This paper exploits the properties of integrated circuit
(IC) design tools, also termed electronic design automation
(EDA) tools, to undermine the security of the CAC techniques.
Our proposed attack can break all the CAC techniques, in-
cluding the unbroken CACrem technique that 40+ hackers
taking part in a competition for more than three months could
not break. Our attack can break circuits processed with any
EDA tools, which is alarming because, until now, none of the
EDA tools can render a secure locking solution: logic locking
cannot make use of the existing EDA tools. We also provide a
security property to ensure resilience against structural attacks.
The commonly-used circuits can satisfy this property but only
in a few cases where they cannot even defeat brute-force; thus,
questions arise on the use of these circuits as benchmarks to
evaluate logic locking and other security techniques.

1 Introduction

1.1 Security Concerns in the IC Supply Chain

Integrated circuits (ICs) are used in virtually all modern
electronic systems. IC design and fabrication involves sev-
eral stages that are highly automated using electronic design
automation (EDA) tools. Traditionally, a company would per-
form these steps in-house. However, the complexity of ICs has
grown enormously, necessitating the use of highly-specialized
foundries that cost beyond $10 billion [1]. Many companies
such as Apple operate fabless and outsource IC fabrication
and other services to offshore vendors. Apple procures intel-
lectual property (IP) cores from IP vendors including Arm,

delegates IC fabrication to TSMC or Samsung, and deputes
product assembly/test services to Foxconn [2].

In a globalized supply chain, the untrusted entities may
obtain a design netlist1, a chip layout, or a manufactured IC.
This may lead to threats such as IP piracy, counterfeiting,
reverse engineering (REing), overbuilding, and insertion of
hardware Trojans [3]. IP piracy entails malicious entities
illegally using IPs. A foundry can manufacture additional
ICs to sell at lower profit margins. End-users can conduct
piracy by REing an IC to extract the design netlist or other
design/technology secrets. REing of an IC involves peeling off
the package of an IC, etching the IC layer-by-layer, imaging
each layer, and stitching the images together to extract the
design netlist. IP piracy issues alone incur annual losses up to
$4 billion for the semiconductor industry [4].

1.2 Countermeasures against Piracy
The countermeasures developed to foil hardware security

threats include watermarking [5], metering [6],logic lock-
ing [7–11], split manufacturing [12], and camouflaging [13].
Logic locking introduces additional protection logic into a
design that “locks” the design’s functionality with a secret
key. The design is unlocked by loading the secret key to the
on-chip tamper-proof memory. The design produces correct
outputs only upon loading the correct key.

In contrast to most other countermeasures, logic locking
can protect against both the untrusted foundries and end-users.
Moreover, logic-locking techniques can be enacted earlier
in the design flow, without any modifications of most de-
sign/fabrication processes. Consequently, they are currently
being developed in the academic context, as well as in the
semiconductor industry. Logic locking has been incorporated
into the Trust Chain framework of Mentor Graphics [14, 15].
Defense Advanced Research Projects Agency (DARPA) has
included logic locking as a defense technique in its latest
multi-million dollar Automatic Implementation of Secure Sil-
icon (AISS) program. The program aims at building scalable

1A netlist is a Boolean circuit in the form of logic gates and wires.

USENIX Association 30th USENIX Security Symposium 1055

Logic
synthesis

Logic
locking

Test &
packging

Physical
synthesis Fabrication Activation

Original
netlist

Locked
netlist Layout Wafer Locked

IC

Functional ICThird
party IP

System
specs. Design

house
Test

facilityFoundry End-userDesign
house

Figure 1: The IC design flow incorporating logic locking. The orange (blue) regions denote untrusted (trusted) entities.

hardware defenses against IC supply chain attacks through
collaboration between universities and leading semiconductor
and defense companies [16].

1.3 Applications of Logic Locking
1. Thwarting piracy and overbuilding. Logic locking, as

initially intended, thwarts piracy and overbuilding [7, 17,
18]. Pirated designs overproduced by a malicious foundry
are useless without the secret key held by the designer.

2. Anti-reverse engineering. To prevent REing, commercial
foundries (e.g., TSMC) and companies (e.g., Sypherme-
dia [19] and Mentor Graphics [20]) produce camouflaged
designs. The gates in camouflaged designs look alike but
implement different Boolean functions [13]. Upon RE-
ing, an attacker cannot infer the functionality of these
gates [21]. Camouflaging and logic locking are trans-
formable, i.e., the attacks and defenses developed for logic
locking can apply to camouflaging and vice versa [22].

3. Upgradable processors. A decade ago, Intel introduced
the notion of “upgradable processors” for their Sandy
Bridge processors [23]. Once the customer pays an ad-
ditional amount, Intel unlocks certain features. This tech-
nique can be deployed with fuses or software. However,
these methods are not secure; e.g., an attacker could burn
the fuses to unlock those features without paying Intel.
Researchers have shown that logic locking can securely
enable differentiation features such as processor perfor-
mance settings [24], GPU cache configurations [25], and
instruction sets of hardware accelerators [26].

4. Parametric locking. Logic-locking techniques can hide
both the functionality and the parametric behavior of the
IC [27]. In delay locking, the key determines the output of
a circuit and its timing profile [28]. An incorrect key may
lead to timing violations, forcing attackers to operate the
circuit at a frequency lower than the desired one.

5. Protecting analog circuits. Analog and mixed-signal IPs
(with digital and analog elements) are the most counter-
feited semiconductor product [29]. Recently, logic locking
has been used to protect AMS circuits such as band-pass
filters, operational transconductance amplifiers, and volt-
age regulators [30, 31]. The digital part of the circuit is

locked, and only the correct key fine-tunes the tunable ana-
log components, e.g., resistors and capacitors, to meet the
specifications.

All these applications hinge upon the assumption that the
underlying logic-synthesis algorithm is secure. By expos-
ing the vulnerabilities of the state-of-the-art “secure” logic-
locking techniques that rely on the conventional EDA tools,
this paper invalidates the stated assumption.

1.4 State-of-the-art Logic Locking
Logic locking was first introduced in 2008 [7]. The ear-

lier techniques focused on protecting designs so that an in-
correct key ensures an incorrect output while incurring min-
imal power, performance, and area (PPA) overhead. How-
ever, [8] showed how an attacker could retrieve the key by
having access to: 1) a locked netlist obtained from a mali-
cious foundry or by REing a chip, and 2) a functional chip
(aka oracle) obtained from the market which acts as an ora-
cle. By using Boolean satisfiability (SAT) and satisfiability
modulo theories (SMT) solvers, attackers can improve their
efficacy [9, 11, 41, 42]. We refer to these attacks as input-
output query attacks (I/O attacks), as they analyze the locked
netlist and repeatedly query the oracle to find the correct key.

To thwart the I/O attacks, researchers used point functions
as the protection logic [38,39], since point-based functions are
cryptographically obfuscatable and has become attractive for
logic locking [43]. One set of techniques that use point func-
tions are the corrupt and correct (CAC) techniques [10,40,44].
They “strip” the point function(s) from the target Boolean
function [10, 40]. The circuit-to-be-locked is first “corrupted”
and then is “corrected” only on applying the correct key, as
shown in Fig. 2. An attacker lacking the correct key will ob-
tain only a “corrupted” design. Multiple CAC techniques have
been invented since 20162, offering 1) trade-offs among the
amount of corruption and overhead, and 2) mathematically-
proven security against I/O attacks [46]. The security reason-
ing is that the probability of finding a “hidden” point function
in a large Boolean space just by querying the oracle is expo-
nentially small in the input size of the function. Consequently,
an attacker has to query the oracle exponential times in the
key size.

2CAC techniques have also been referred to as stripped functionality logic
locking (SFLL) in the literature [10, 27, 40, 45].

1056 30th USENIX Security Symposium USENIX Association

Table 1: State-of-the-art logic locking attacks and defenses. × denotes a successful attack. X denotes a successful defense.

Defense
I/O attacks Structural attacks

Sensitiza- SAT, SMT AppSAT, SPS, ATR FALL SAIL SPI
tion [8] [9, 11] 2-DIP [32, 33] [34, 35] [36] [37] (proposed)

XOR-based (random, strong,
fault-based, LUT-based [7, 8, 18]) × × × X X × ×

Point-function (AND-tree,
SARLock, Anti-SAT [35, 38, 39]) X X X × X X ×

CAChd, CACflex [10] X X X X × X ×
CACrem [40] X X X X X X ×

1.5 Scope and Contributions

All CAC techniques rely on the assumption that the under-
lying logic-synthesis tools used by the semiconductor industry
can effectively “hide” this point function in the target design.
Unfortunately, this is not the case. Traditionally, EDA tools
focus only on the PPA metrics and not on security. Thus, their
optimizations expose the hidden point function, which can be
removed by structural attacks [35, 36, 47]. An attacker in the
foundry or an end-user can RE an IC, analyze the structure of
the netlist, and find the hidden point function to break logic-
locking techniques. All the CAC techniques except CACrem
are vulnerable to structural attacks, as listed in Table 1.

Over the past decade, there have been many logic-locking
attacks and defenses— basically a kind of “cat and mouse”
game — without any concrete notion of security against struc-
tural attacks [35, 36, 47–50]. Every technique is considered
secure until someone develops a heuristic that can break it.
This paper raises and addresses the following related ques-
tions: (i) What is the fundamental theory of structural attacks?
(ii) What makes logic-synthesis tools render designs insecure?
(iii) How can we fix the EDA tools to help logic locking?

To this end, we first develop a unified attack called a sparse
prime implicant (SPI) attack, which considers logic-synthesis
principles and breaks thus far unbroken techniques. We also
identify a security property to ensure the resilience against
structural attacks. The most important result of this paper is
to show that none of the commonly-used benchmarks can
simultaneously satisfy this property and achieve a reasonable
key size, calling into question the use of these circuits as
benchmarks to evaluate logic-locking techniques.
A competition on logic locking. Recently, New York Univer-
sity held a competition on logic locking [51]. CACrem circuits
were fielded for participants to develop new attacks and break
them. 18 teams with 40+ hackers from 15 universities from
across the world competed over three months. Most teams
have had prior publications on logic-locking techniques and
thus can be considered to have a reasonable level of expertise.
(Un)Fortunately, over the span of three months, none of the
teams were able to break CACrem even with a key size of 80.
No one has reported breaking these circuits since they were
released about a year ago. The proposed SPI attack can break
this unbroken technique within seconds, and the competition

organizers verified our attack’s effectiveness on the compe-
tition circuits. Additionally, they also provided our research
team with three harder circuits with larger key sizes (up to
195); our attack can break these circuits as well. Therefore,
the contributions of this paper are as follows:

1. We demonstrate that the state-of-the-art logic-locking tech-
nique is vulnerable to structural attacks. Our proposed SPI
attack circumvents CACrem and other variants of the CAC
techniques within seconds (see Section 3).

2. We demonstrate the effectiveness of the SPI attack on
circuits processed by various EDA tools targeting at both
application-specific integrated circuit (ASIC) and field-
programming gate arrays (FPGA) implementation3. We
deploy five industrial tools, Cadence Genus [53], Synopsys
Design Compiler [54], Synopsys Synplify [55], Xilinx
Vivado [56], Mentor Graphics Precision RTL [57], and
one academic tool ABC [58], to synthesize the circuits
(see Section 4).

3. We develop a security property for ensuring security
against the SPI attack and other structural attacks. The
property, referred to as Dist2, is based on the notion of
“distant” prime implicants (see Section 5).

4. We examine several industrial and academic circuits to
determine how well they satisfy the Dist2 property. The
benchmarks include several circuits from the ITC’99
benchmark suite, controllers of an ARM Cortex-M3 mi-
croprocessor [59], and a GPS module as part of Common
Evaluation Platform for evaluating hardware security so-
lutions [60]. An alarming finding in this paper is that all
commonly-used circuits fail to satisfy the Dist2 property
with a reasonable key size, thus making them unsuitable
for any logic-locking technique.

The code of the SPI attack is available at https://seth.
engr.tamu.edu/software-releases.

3Logic locking has also been used to protect FPGA bitstreams [52].

USENIX Association 30th USENIX Security Symposium 1057

https://seth.engr.tamu.edu/software-releases
https://seth.engr.tamu.edu/software-releases

I

Corrupting unit

O

T
am

p
e

r-
p

ro
o

f
m

e
m

o
ry

Original
netlist

Correcting unit
K

Corrupted
circuit

Scp

Scc

Figure 2: A CAC circuit comprises a corrupted circuit and a
correcting unit. The correction happens only for the correct
key [10, 27, 40, 45].

2 Background and Related Work

2.1 Threat Model

In this paper, we follow the standard locking threat model
adopted in the literature [8–11].
The attacker. The design house and the IC design tools are
trustworthy. The untrusted entities are the foundry, the test
facility, and the end-user, as highlighted in Fig. 1. The attacker
can obtain a locked netlist either by overbuilding or REing.
The attacker’s objective is to identify the secret key from the
locked netlist and activate the design.
Capabilities of an attacker. An attacker has access to a
1) REed netlist and 2) a functional IC, i.e., an IC with the
correct key. A foundry can extract the required netlist from
the layout files, whereas an end-user can obtain it via REing
the IC. The attacker buys the functional IC from the market.
The IC acts as an oracle: the attacker can apply input patterns
and observe the correct outputs4.

2.2 Logic Locking Attacks and Defenses

We now explain the relationship between logic-locking
attacks and defenses. In particular, we describe the CAC tech-
niques in detail since they offer provable-resilience against
most existing attacks, such as SAT [9, 41], sensitization [8],
approximate [32,33], and SMT [11] attacks. For recent and de-
tailed surveys on logic locking, please refer to [46, 49, 61, 62].
XOR-based locking. The earliest logic-locking technique
inserts XOR/XNOR key gates in a circuit. The objective is
to ensure that incorrect keys produce an incorrect output [7].
The sensitization attack breaks this defense by computing
input patterns that propagate the values of keys to outputs [8].
I/O attacks. The sensitization attack spawned a series of
subsequent I/O attacks that rely on the output of a black-box
oracle to filter out unlikely key candidates. The SAT attack
uses a SAT solver to weed out incorrect keys [9]. The SMT
attack uses an SMT solver for the same purpose [11].

4An input value is also referred to as an input pattern in the literature.

Point-function-based locking5. When a point function, such
as a comparator whose one input is the key and the func-
tional input, is XORed with the original circuit, the output
is inverted/corrupted only for one input pattern for any in-
correct key. Thus, point function-based techniques, such as
SARLock [38] and Anti-SAT [39, 63], thwart any I/O attack
because the probability to find the input patterns (i.e., the key)
that corrupt the outputs is exponentially small in the input
size. Approximate I/O attacks, such as AppSAT [32] and 2-
DIP [33], focus on retrieving the best set of keys for a given
time limit.
Structural attacks. A drawback of point-function techniques
is that the point-function can be easily identified and removed
by white-box structural attacks. For example, the signal proba-
bility skew (SPS) attack uses signal probabilities to locate and
remove large AND gates and/or comparators in Anti-SAT and
SARLock [34]. The AND-tree removal (ATR) attack achieves
the same by analyzing the gates in the locked netlist [35]. The
bypass attack restores original functionality by adding a by-
pass circuitry around the locked circuit [48].
CAC locking defends against both I/O and structural at-
tacks [10, 40, 45]. Fig. 2 shows the architecture of CAC tech-
niques. The original circuit is initially corrupted by XORing
it with Scp, the output of the corrupting unit, which can be a
point function. The output of the correcting unit, Scc, restores
the correct output on applying the correct key. The input pat-
terns for which the circuit output is corrupted are known as
protected input patterns (PIPs). The corrupted circuit is cre-
ated by XORing the original circuit with a corrupting unit
that hard-codes the PIP(s). When a single PIP needs to be
protected, the correcting unit is realized as a comparator with
the key as one input and the functional inputs as the other; the
secret key is the same as the PIP in this case. Only when the
correct key is applied at the key inputs of the correcting unit,
the output is corrected. For an incorrect key, the correcting
unit does not correct the corrupted output for precisely one
input pattern. Thus, a high resilience against the SAT attack
can be achieved similar to point-function-based locking.

The CAC techniques differ in the construction of the cor-
rupted circuit. These techniques allow trade-offs among the
security level against different attacks, the number of PIPs,
and the PPA overhead. For example, the higher the number of
PIPs, the higher will be the error-rate observed at circuit out-
put. CACflex allows the designer to specify the set of PIPs. The
correcting circuit is implemented as a lookup table. Each PIP
can be considered as a secret key for the circuit. The locked
circuit produces correct output only when all the keys (PIPs)
are loaded into the lookup table. In CAChd, the set of PIPs in-
cludes all input patterns that have a certain Hamming distance
h from the secret key keyc, i.e., ∀p ∈ PIPs, HD(keyc, p) = h.

5In point-function-based locking, the point-function(s) are simply XORed
with the original circuit. It is different from point-function obfuscation
where several cryptographic primitives such as random permutations are
required [43].

1058 30th USENIX Security Symposium USENIX Association

By choosing appropriate h, designers change the number of
PIPs and thus trade-off the resilience against SAT, approxi-
mate, and structural attacks. CACrem relies on EDA tools to
generate potential PIPs for a given circuit [40, 45].
Structural attacks on CAC locking. CACflex and CAChd
synthesize the corrupted circuit using logic-synthesis tools,
which may retain the corrupting unit unmerged during synthe-
sis. A recent attack by Yang et al. [50] breaks CAChd circuits
by locating and removing the corrupting unit. A relatively
more sophisticated FALL attack focuses on recovering the
key for CAChd circuits from the properties of the Hamming
distance unit [36]. These attacks may work against CACflex
for a small number of PIPs. However, none of the existing
structural attacks can break CACrem: CACrem does not utilize
a corrupting unit, structural attacks that attempt to locate and
remove the corrupting unit are thwarted [40].

2.3 Security Definitions

Grounded in the above discussion, we define the secu-
rity properties for logic locking techniques. We use Corig,
Clock, and Ccp to denote the original circuit (implementing the
Boolean function f), the locked circuit, and the corrupted cir-
cuit, respectively. We assume that Corig has n inputs and only
one output6. The number of key inputs in Clock is the same as
the number of primary inputs, i.e., the key size k = n. Thus,
Ccp has k inputs and one output. The input space is I = {0,1}k,
and the keyspace is K = {0,1}k. keyc is the correct key.

Definition 1. Correctness. When supplied with the correct
key, the locked circuit must produce correct output for all
input patterns, i.e.,{

Clock(i,key) =Corig(i) ∀i ∈ I, if key = keyc

Clock(i,key) 6=Corig(i) ∃i ∈ I, if key 6= keyc.

Definition 2. Security against I/O attacks. Following the
definition in [10], a logic locking technique L is α-secure
against a probabilistic polynomial-time adversary AIO, if
upon making a polynomial number of queries q(α) to the
oracle, the probability of retrieving a PIP, and thus obtaining
keyc is no greater than q(α)

2α .

Definition 3. Security against structural attacks. A logic
locking technique L is β-secure7 against an adversary AS ,
who has access to a locked circuit or its PIT and conducts
white-box structural analysis if the probability of an attacker
to identify a PIP is no greater than 1

β
.

6This can be generalized to circuits with multiple outputs since a multi-
output circuit can be divided into multiple single-output circuits [64].

7This notion of security is the same as “k-secure” [65]. Since the logic
locking community uses k to refer to key size, we use the term β-secure to
indicate “k-secure.”

2.4 A Primer on Logic Synthesis

Various EDA tools streamline the design and production
of billions of ICs sold annually, with many ICs containing
billions of transistors. Logic synthesis translates a high-level
design description (typically in a hardware description lan-
guage) into an optimal low-level representation (e.g., a gate-
level netlist). Commercial tools (e.g., Synopsys Design Com-
piler [54], Cadence Genus [53], etc.) as well as open-source
logic-synthesis tools (e.g., ABC [58]) help designers generate
netlists in a timely fashion while optimizing the PPA costs.

A simple and widely known format, referred to as the sum
of products (SOP), uses only two levels of gates. The AND
gates implement product terms, which are ORed (summed).
Let us consider a Boolean function f with n inputs and one
output. Then, a minterm mi, 0 ≤ i < 2n, is a product of ex-
actly n variables; each variable is complemented if the value
assigned to it is 0 and uncomplemented if it is 1. We can say
that the function f :{0,1}n → {0,1} is a mapping from 2n

minterms to an output value of 1 or 0. Minterms mapping to
1 form the ON-set FON ; minterms that map to 0 constitute
the OFF-set, FOFF . A set of minterms may be represented
compactly as an implicant. In an implicant, each variable
x ∈ {0,1,-}, where “-” is a don’t care; a value of 1 or 0 repre-
sents a specified bit. For example, abcd is a minterm, whereas,
ab-- is an implicant with two don’t care bits. This implicant
can also be denoted as ab. It represents four minterms: abcd,
abcd, abcd, and abcd.

The key to reducing cost (e.g., area, number of gates, etc.) is
to eliminate redundancy. Accordingly, prime implicants (PIs),
i.e., implicants that cannot be covered by (in other words,
cannot be a subset of) a more general implicant, are central to
logic synthesis. A set/table of PIs that contains all minterms
of FON makes a cover or a prime implicant table (PIT). The
lowest cost is incurred by a minimum cover/PIT, i.e., a cover
that is not a proper superset of any other cover of f . We
elaborate on the principles of logic synthesis via K-maps used
for minimizing Boolean functions [64].

Example. Fig. 3(a) shows the K-map for the Boolean func-
tion f1 = abcd + abcd + abcd + abcd + abd. Each cell in
the K-map is a minterm. A prime implicant is the largest
square/rectangle group of adjacent cells in the powers of two.
From the K-map, the minimum SOP expression for f1 is
cd +abd, which has only two PIs.

Distance-1 merging. The distance between two PIs A and
B, D(A,B), is the number of bits where A and B conflict. For
example, D(abc-,-bcd)= 1, and D(abcd,-bcd)= 2. K-maps
are arranged such that the distance between adjacent cells is
one. This arrangement satisfies the distance-1 merging rule,
which states that two implicants can only be merged if their
distance is one [66]. In Fig. 3(b), the minterm abcd stands
isolated from other PIs of f2 as its distance is at least two
from those PIs. Our SPI attack exploits this rule.

USENIX Association 30th USENIX Security Symposium 1059

ab
cd 00

1 111

01 11 10
00

01

11

10

1

ab
cd 00

1

1

1

1

111

01 11 10
00

01

11

10

1

(a) (b)

Figure 3: Logic synthesis using K-maps. a) The Boolean
function f1 is represented using only two PIs: cd and abd. b)
f2 is represented using three PIs: abcd and abcd.

3 Sparse Prime Implicant (SPI) Attack

We now introduce introduce new structural vulnerabilities
of the CAC techniques. Building on these vulnerabilities, we
develop the SPI attack that can circumvent all the CAC tech-
niques, irrespective of the EDA tool used for logic synthesis.
While traditional structural attacks target gate-level netlists,
the SPI attack analyzes the PITs to recover secrets.

3.1 Vulnerabilities of Logic Locking
The CAC techniques construct the corrupted circuit Ccp

by adding/removing selected minterm(s) to/from the origi-
nal circuit Corig. Logic-synthesis tools then synthesize the
resulting corrupted circuit. We demonstrate how the optimiza-
tion conducted for minimizing the PPA cost may expose the
PIP. The added/removed PIP may or may not merge with the
PIs in the original PIT, as dictated by the distance-1 merging
rule. We consider four cases for different combinations of
addition/removal and merge/unmerge of PIPs. We use FON

orig,
FOFF

orig , FON
cp , and FOFF

cp to denote the ON-set and OFF-set of
Corig and Ccp, respectively. m denotes the PIP.

Table 2: Notations of attacker’s search space.

Notation Explanation

Su1 Number of PIs in FON
cp when m /∈ FON

orig (m ∈ FOFF
orig) and

m does not merge with other PIs in FON
cp

Sm1 Number of minterms in FON
cp when m /∈ FON

orig (m ∈ FOFF
orig)

and m merges with other PIs in FON
cp

Su2 Number of PIs in FOFF
cp when m /∈ FOFF

orig (m ∈ FON
orig) and

m does not merge with other PIs in FOFF
cp

Sm2 Number of minterms in FOFF
cp when m /∈FOFF

orig (m∈FON
orig)

and m merges with other PIs in FOFF
cp

Case 1. Adding a PIP. Suppose FON
cp is constructed by select-

ing an arbitrary PIP from FOFF
orig and adding it to FON

orig. Thus,
FON

cp = FON
orig∪{m}.

Case 1(a). PIP does not merge. When the distance of m
from all the PIs of FON

orig is greater than one, a logic-synthesis
tool cannot merge m with any of the PIs of FON

orig. Thus, m

appears in the PIT of FON
cp as a PI without any don’t care bits.

Example. Fig. 4(a) shows the PIT of FON
orig with two PIs. The

PIT of FON
cp , shown in Fig. 4(b), is constructed by removing

the PIP 0000 from FOFF
orig and adding it to FON

orig. Any logic-
synthesis algorithm will retain 0000 as a PI in FON

cp since
D(m,PI1) ≥ 2 and D(m,PI2) ≥ 2. In other words, m is ex-
cluded from the distance-1 merging operations.

The isolated m may be recovered directly from the PIT of
FON

cp . Let Su1 denotes the search space for the attacker. As-
suming there are |Su1| PIs in FON

cp , the probability of success
for an attacker is 1

|Su1| , showing that the CAC techniques pro-
tecting arbitrary PIPs are only |Su1|-secure against structural
attacks in the worst case.
Case 1(b). PIP merges. If the distance of m from any PI of
FON

orig is exactly one, a logic-synthesis tool can merge m with a
PI. Adding minterm(s) to a PIT allows grouping the minterms
in new ways, potentially leading to the creation of new PIs.
Example. Fig. 4(f) shows that adding the PIP 0101 to FON

orig
generates a new PI, -1-1. This PI has two don’t care bits
compared to zero in the PIP. An attacker cannot recover a
merged PIP directly from the PIT. The search space Sm1 for
the attacker is the set of all minterms contained in the ON-set
of the corrupted circuit i.e., |Sm1| = |{mi|∀mi ∈ FON

cp }|. For
most Boolean functions, |Sm1|>> |Su1|.
Case 2. Removing a PIP. A designer can also build FON

cp by
removing a minterm m from FON

orig. Using De Morgan’s law,
this removal is equivalent to adding m into FOFF

orig , i.e.,

FON
cp = FOFF

cp = FOFF
orig ∪{m}. (1)

Case 2(a). PIP does not merge. When m does not merge
with any PI in FOFF

orig , it appears as a standalone PI in the
PIT of FOFF

cp . One can recover m directly from the PIT of
FOFF

cp . Similar to Case 1(a), the search space is Su2, and |Su2|
is the number of PIs in FOFF

cp . m does not merge with FOFF
orig

as its distance from all PIs of FOFF
orig is greater than one. This

condition implies that the distance of m must be one from at
least one of the PIs of FON

orig.
Example. Fig. 4(g) shows that upon removing the PIP 1111,
the two original PIs split into four new PIs which get imple-
mented as the corrupted circuit. The original PIs have two
don’t care bits each, whereas the new PIs have only one don’t
care bit. Thus, removing minterm(s) from a PIT may lead
to the generation of additional PIs. Consequently, the PIT
of FON

orig contains information about the PIP, which may be
exploited by attackers. This example demonstrates that re-
moving a PIP from PIT can introduce more PIs into a PIT as
compared to adding a PIP.
Case 2(b). PIP merges. If m merges with any of the PIs of
FOFF

orig , it does not appear as an isolated PI in FOFF
cp . The search

space Sm2 is the set of all minterms in FOFF
cp , i.e., |Sm2| =

1060 30th USENIX Security Symposium USENIX Association

a
b

c
d

f a b c d
PI1
PI2

f
1
-
1 -

1
1

1 1
-

-

a b c d
PI1
PI2

fcp
1
-
1
-

-
1 1

- 1
1

PIP 0 0 0 10

ab
cd 00

1
1
1
1

111

01 11 10
00
01
11
10

ab
cd 00

1

1

1

1

111

01 11 10
00

01

11

10

1

ab
cd 00

1
1
1
1

111

01 11 10
00
01
11
10

1

ab
cd 00

1
1
1
1

111

01 11 10
00
01

10
11

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Logic optimization and logic locking: (a) The original circuit, (b) its PIT, (c) PIT of the corrupted circuit constructed by
adding the PIP 0000, (d) K-map of the original circuit, (e) K-map of the corrupted circuit with the PIP 0000 as an isolated PI, (f)
K-map of the corrupted circuit with the PIP 0101 leading to the creation of new PIs, and (g) K-map of with the removed PIP
1111 splitting the two original PIs.

|{m′i|∀m′i ∈FOFF
cp }|. An attacker may know how the corrupted

circuit is constructed. Access to this information may impact
the size of the search space (see Appendix B).
Key takeaways. According to the relationship between logic
synthesis and the creation of corrupted circuits, we observe:
(i) If a PIP does not merge, it appears as a fully specified
PI and can be recovered directly from the PIT. (ii) If a PIP
merges, it introduces new PIs, which may reveal the PIP.

This subsection pointed out a vulnerability associated with
the synthesis of locked circuits. The next subsection describes
how our attack exploits this vulnerability.

3.2 Exploiting the PIT

We now explain how logic-synthesis principles can be ex-
ploited to extract the PIP from a PIT of the corrupted circuit.
The case where a PIP does not merge with the PIs and ap-
pears as an isolated PI is easy to exploit. However, when a PIP
merges with the existing PIs, new PIs are introduced into the
PIT. Here, we explain the properties of the new PIs that can
be used to determine the PIP. We focus on the removal of a
PIP from a PIT since it introduces more pronounced changes;
the addition of a PIP to the ON-set is equivalent to removing
it from the OFF-set (using De Morgan’s law) and vice versa.
Inferring PIP from split PIs. As mentioned in Case 2(a), re-
moving a PIP may split a merged PI, representing a larger set
of minterms, into multiple PIs sans the PIP; we denote the re-
sultant PIs as split PIs. Consider removing the PIP 000100110
from the original PIT shown in Fig. 5(a). Upon removing this
PIP, the first PI splits into six PIs as shown in Fig. 5(b). The
other two PIs are unaltered. If the same PIP is added back
to the corrupted circuit PIT, the split PIs can merge to form
the merged PI. With the PIP removed, the split PIs cannot
merge. The distance of any split PI and the PIP is one as the
PIP is the glue to merging the split PIs. The distance between
any two split PIs is zero since all split PIs are derived from
the same merged PI by setting a unique don’t care bit to the
complement of the corresponding bit in the PIP. If the merged
PI has s don’t care bits, each split PI will have (s−1) don’t
care bits. For example, PI1 in Fig. 5(b) is generated by the

setting the bit j to 1 since the rightmost bit in the PIP is 0.
Consider the simplest case where the merged PI is the

universal set U, i.e., all the bits are don’t cares. Let M be the
number of split PIs, and PI j

S denote the jth split PI. The PIP
is the difference between U and the union of split PIs, i.e.,

PIP =U\
M⋃

j=1

PI j
S =

M⋃
j=1

PI j
S =

M⋂
j=1

PI j
S . (2)

Thus, the PIP can be computed by intersecting the comple-
ments of the split PIs. In reality, a merged PI will not span the
entire U and will contain certain specified bits. For these bits,
all the split PIs are in consensus. Thus, the specified bits in
the merged PI will be replicated in the split PIs. For example,
in Fig. 5(a), the inputs d, h, and i appear as 1 in PI1. In the
shaded region of Fig. 5(b), the values of these three inputs are
mostly 1 while the rest are mostly don’t cares.
Determining split PIs. The split PIs may only be a small
subset of all PIs in the PIT of a corrupted circuit. We can
determine the split PIs from a PIT by finding a subset of PIs
that have the same number of don’t care bits and the inter-
PI distance is zero. From observing thousands of PITs of
benchmark circuits, we find that the split PIs tend to have a
large percentage (≥ 50%) of don’t care bits. We refer to PIs
with ≥ 50% don’t care bits as sparse PIs. Given a PIT, we
identify the set of SPIs by grouping PIs based on the number
of don’t care bits. For example, PIs 1-6 in Fig. 5(a) are both

(a) (b)

Figure 5: The PITs of the (a) original circuit and (b) corrupted
circuit. The PIP is 000100110. PI1–PI6 are SPIs.

USENIX Association 30th USENIX Security Symposium 1061

split PIs and SPIs. However, not all SPIs are split PIs. We
eliminate false positives by checking the inter-PI distance.

Given a set of split PIs, we can identify the specified bits by
determining the bits for which all the split PIs are in consensus.
Since the exact computation of consensus between PIs is
computationally expensive, we approximate it with majority
voting, yielding the specified bits. In Fig. 5(b), majority voting
on the values of the inputs d, g, and h yields their correct value,
1, as listed in Fig. 5(a). These heuristics are implemented in
the find_and_parse_split_PIs step of Algorithm 1. The value
of the PIP is determined using Eq. (2).

3.3 SPI Attack Algorithm
The SPI attack can recover the PIP by analyzing the PIT

of the corrupted circuit. The first step of the algorithm is
extracting the corrupted circuit. This step can be performed
using component-level REing tools [67, 68]. Note that the
CAC techniques also assume that the attacker can extract the
corrupted circuit. From the corrupted circuit, we extract the
PIT using logic-synthesis tools, such as ABC [58, 64, 69]. As
shown in Alg. 1, the SPI attack has two stages, which are
based on the observations in Section 3.1.
Stage 1 attempts to recover a PIP directly from the PIT of the
corrupted circuit. Recall that an unmerged PIP tends to exhibit
itself as a PI with all the bits specified. The SPI attack can
search for the PIP in both FON

cp and FOFF
cp . The correctness of

the extracted PIP is verified by querying the oracle with the
PIP. The output of the corrupted circuit will not match that of
an oracle for a true PIP. The attack proceeds to Stage 2 if the
true PIP is not recovered.
Stage 2 finds the set of SPIs by grouping the PIs based on
the number of don’t care bits. It eliminates the false positives
for split PIs by checking if the inter-PI distance is zero. The
heuristics from Section 3.2 help determine the most probable
value for each bit of the PIP. In case CAC techniques are
combined with XOR-based locking, the SPI attack can be
used in conjunction with the SAT attack to recover key bits for
XOR-based locking [9]. Section 4 experimentally validates
the effectiveness of the SPI attack and the heuristics.
Attack on multi-output circuits. Till now, we explained
our algorithm using a single-output circuit. The SPI attack
can break multi-output circuits by reducing them to multiple
single-output circuits, aka logic cones. This is a common tech-
nique used in logic synthesis and logic locking [64, 69–71].

3.4 Improving the Scalability
The SPI attack extracts the PIT from the corrupted circuit,

which is an NP-Hard problem [64]. Over the last four decades,
the logic-synthesis community has developed efficient heuris-
tics for computing PITs for common circuits. We use the
open-source tool ABC [58] to compute the PITs. Using ABC
we can compute the required PITs for all but the three harder

competition circuits within 48 hours. For the large circuits,
ABC either does not finish PIT computation or terminates
early due to insufficient memory.

To overcome this limitation, we rely on a key insight on
arbitrarily selecting PIPs that allow us to run the SPI attack at
the sub-circuit level. We observe that if a PIP is isolated in the
PIT of the complete circuit, it tends to be isolated in the PITs
of the sub-circuits. When the distance of the PIP from the
other PIs in the PIT of the complete circuit is larger than two,
there is a good chance that the partial PIPs (PIPs at the circuit
level) can have a distance of two from other PIs, especially
if the sub-circuits are for the nodes close to the output of the
complete circuit.

This insight allows us to follow a divide-and-conquer ap-
proach and compute PITs only for the sub-circuits without
computing the PIT for the complete circuit, which lowers
computational effort by several orders of magnitude. We (i)
divide a circuit into several sub-circuits using the depth-first
search to find gates in the fan-in of a node, (ii) extract the PITs
of sub-circuits, and (iii) launch the SPI attack on sub-circuits
to recover parts of the PIP. When only a subset of PIP bits re-
covered from the sub-circuits or there are multiple candidates
for the PIP, brute-force may be used to determine remaining
bits or prune the incorrect candidates; alternatively, the SAT
attack may also be used [9, 72]. Due to space limitations, we
present the complete algorithm in Appendix A. Following this
new approach, we can break any of the harder competition
circuits within 10 seconds; these circuits have key sizes up
to 195 compared to the largest key size of 80 for the rest of

Algorithm 1: SPI attack
Input: Locked netlist Clock and Oracle O
Output: Correct key Kc

1 LLLCCClock← extract_logic_cones(Clock)
2 for lclock ∈ LLLCCClock do
3 lccp← extract_corrupted_circuit(lclock)
4 PIT ← extract_PIT(lccp)
5 //——————–Stage 1——————–
6 PPP111← get_fully_specified_PI(PIT)
7 PPPIIIPPPsssveri f ied ← verify(PPP111, lccp,O)
8 if (PPPIIIPPPveri f ied 6=∅) then
9 return PPPIIIPPPveri f ied

10 end
11 //——————–Stage 2——————–
12 PPP222← find_and_parse_split_PIs(PIT)
13 PPPIIIPPPsssveri f ied = verify(PPP222, lccp,O)
14 if (PPPIIIPPPsssveri f ied 6=∅) then
15 return PPPIIIPPPsssveri f ied
16 end
17 goto line 2 // Process next logic cone
18 end
19 return ∅

1062 30th USENIX Security Symposium USENIX Association

the circuits. While the PITs for the complete circuit cannot
be computed in 48 hours, those for the sub-circuits can be
computed within 10 seconds (see Section 4.2).

3.5 Broader Applicability

Breaking all the CAC techniques. The SPI attack operates
on a PIT, which is specific to a Boolean function and is ag-
nostic to the netlist structure. Consequently, the SPI attack
is independent of the underlying locking technique or the
way the corrupted circuit is generated. Thus, our attack can
break all the CAC techniques, as they only differ on how
the corrupted circuit is generated (see Section 4.3). Also,
our attack has a tremendous advantage over existing attacks,
which are tailored for specific defense techniques. For in-
stance, SPS attack identifies AND trees and uses it to break
Anti-SAT; [39] thwarts this by altering the netlist. The FALL
attack is specific to CAChd and cannot circumvent CACrem
because it exploits the heuristics of the former, and the latter
violates that heuristic. However, our SPI attack is agnostic to
the circuit structure, making it widely applicable.
Effectiveness across EDA tools. The implementation-
agnostic nature of our attack gives us two distinct advantages.
First, our attack is independent of the designer’s tools and
their objectives, such as minimizing PPA costs, etc. Thus,
our attack is independent of the use-case scenario of the IC.
Second, our attack does not depend on the implementation of
the function as an ASIC or using FPGA. In Section 4.4, we
demonstrate that the SPI attack can break all the CAC tech-
niques synthesized using various commercial and academic
logic-synthesis tools, and a combination thereof.

4 SPI Attack Results

4.1 Experimental Setup

Platform and EDA tools. We perform our attack experi-
ments on a 32-core Intel Xeon processor at 2.6 GHz with
512 GB RAM. We used the ABC logic-synthesis tool to
extract PITs [58] and Synopsys Design Compiler as the logic-
synthesis tool [54] unless otherwise specified. Our experi-
ments use the NanGate FreePDK45 Open Cell Library for
ASIC implementations [73] and Xilinx Spartan-3 FPGA for
the FPGA implementation [74]. The proposed approach is
applicable to other technology libraries and FPGA platforms.
Benchmark circuits. We show the effectiveness of the SPI
attack primarily against CACrem since this technique remains
unbroken in the competition [40]. We also run our experi-
ments on another unbroken technique, CACflex. The organiz-
ers of the logic-locking competition provided six CACrem
circuits and their oracles. This competition uses the ITC’99
benchmark suite [75]. As shown in Table 3, the key size is 16

for four circuits8 and 80 for two circuits. Upon reporting our
attack results to the organizers, they provided with three more
circuits locked with larger key sizes, i.e., 102, 95, and 195 for
the b17L9. We also use the controller circuits of the ARM
Cortex-M3 processor [59] and the GPS module with 213K
gates from the Common Evaluation Platform for evaluating
hardware security schemes [60].

To demonstrate that the SPI attack can break all the CAC
techniques, we generated locked circuits for TTLock, CAChd,
CACflex [10, 27]. We locked only the cone with the largest
available input size. Only one PIP is used to lock each circuit,
as this is the case for competition circuits.

4.2 Breaking CACrem

Success rate. Table 4 presents the attack results on the com-
petition circuits [51]. It shows that the SPI attack can break
all the circuits. We attribute this success to the exploitable
changes made to the PITs by existing logic-synthesis algo-
rithms upon adding/removing PIPs arbitrarily.
Execution time. Since we deploy the divide-and-conquer
approach mentioned in Section 3.4 to break the larger compe-
tition circuits, we discuss their results separately in the next
paragraph. This paragraph discusses results for all but the
competition-large circuits. Table 4 shows that the SPI attack
takes less than a second to break any circuit. The execution
time remains small since the number of PIs in the PITs of
the competition circuits is relatively small. The largest PIT
is for the circuit b15 with only 171 PIs. Another reason for
the smaller execution time is that the SPI attack at first targets
smaller logic cones and can terminate successfully as soon as
all the bits of the PIP are determined; the larger and computa-
tionally intensive cones need not be processed. The execution
time for b15 is the highest since few of its processed logic
cones have at least 105 or higher inputs.
Competition-large circuits. Since ABC could not extract
PITs for the competition-large circuits within the time limit,
we break the circuits using the divide-and-conquer approach.
On attacking only the sub-circuits, the SPI attack exits within
10 seconds. For all large circuits, we identify at least one
sub-circuit containing all the primary inputs that feed the
correcting circuit. By excluding the parts of the circuits not
involved in logic locking, the PIT computation becomes faster.
For each large circuit, the divide-and-conquer SPI attack de-
termines a single candidate PIP, the true PIP. For the ease
of discussion, consider that the PIT for each large circuit is
extracted and the SPI attack completes in exactly 48 hours.
With this conservative assumption, the divide-and-conquer
SPI attack runs≥17000X faster than the basic SPI attack. The
precise speed-up depends on the circuit being processed.

8While we understand the limitations of using small key sizes to evaluate
attacks, we still include them in the results as they are part of the competition.

9The original b17 circuit is the same in both instances. The small and
large versions of b17 are locked with 80 bits and 102 bits, respectively.

USENIX Association 30th USENIX Security Symposium 1063

Table 3: The statistics of the benchmark circuits. The parameters of the competition circuits are reported as provided by the
organizers. For ARM Cortex-M3 and GPS circuits, we lock the logic cone with the largest key size.

Circuit Competition-small Competition-large ARM Cortex-M3 CEP
b10 b11 b12 b13 b15 b17 b17L b20 b22 ARMc1 ARMc2 ARMc3 ARMc4 GPS

inputs 28 38 126 63 485 1452 1452 522 767 34 509 213 232 9707
outputs 17 31 119 53 449 1445 1445 512 757 125 63 66 43 9731
gates 172 726 944 289 11577 37479 37479 19682 29162 1362 2188 657 491 213125
protected cones 9 19 21 16 166 42 1 1 1 1 1 1 1 1
Key size 16 16 16 16 80 80 102 95 195 33 19 69 26 63

Table 4: Success rate and execution time (s) of different attacks on CACrem circuits from the logic locking competition [51]. “TO”
denotes a timeout of 48 hours.

Attack
Circuit Attack success Execution time (s)

Competition-small Competition-large Competition-small Competition-large
b10 b11 b12 b13 b15 b17 b17L b20 b22 b10 b11 b12 b13 b15 b17 b17L b20 b22

SAT [9] X X X X X × × × × 2.4 6.4×104 0.2 1.1 5.8 TO TO TO TO
AppSAT [32] × × × X X × × × × 6.5 2.8 3.9 0.5 1.7 73 9.0 10.0 18.2
ATR [35] × × × × × × × × × 0 0 0.1 0 0.4 1.7 0.1 0.2 0.3
SPS [47] × × × × × × × × × 0.1 0.2 0.3 0.1 3.3 21 0.8 1.3 0.8
FALL [36] × × × × × × × × × 0.2 0.6 0.8 0.3 50 0 3.4 3.1 5.4
SPI X X X X X X X X X 0.4 0.4 0.4 0.2 0.5 0.3 8.3 6.8 8.6

Table 5: Execution time (s) of the SPI attack on circuits protected using different CAC techniques. The success rate of the SPI
attack is 100% for all the circuits and thus, not presented.

Technique
Circuit ITC’99 ARM Cortex-M3 CEP

b10 b11 b12 b13 b15 b17 ARMc1 ARMc2 ARMc3 ARMc4 GPS
TTLock [27] 0.4 0.5 1.2 0.8 17.1 0.6 0.3 0.2 0.2 0.4 0.3
CAChd [10] 0.5 0.7 1.2 0.7 22.5 0.7 0.5 0.5 0.5 0.7 0.5
CACflex [10] 0.3 0.6 0.7 0.3 23.4 0.7 0.3 0.2 0.4 0.2 0.2

Comparison with existing attacks. Table 4 also presents
a comparison of the SPI attack with three structural attacks
and two I/O attacks. SAT attack breaks all the circuits locked
with 16-bit keys, as the search space is only 216. However,
it cannot break the b17 circuit and the three hard circuits
in 48 hours. The b15 circuit is an exception since the SAT
attack breaks it within six seconds because 90% of the key
bits for b15 are 0s, the default starting point of the SAT solver.
The AppSAT attack finishes within a few seconds for all
circuits albeit without recovering the PIP. Only for two 16-bit
circuits and the b15 circuit, AppSAT can extract the correct
key. Thus, none of the existing structural attacks can break
even a single CACrem circuit. The SPS and ATR attacks fail
to identify point-functions in CACrem circuits. The FALL
attack cannot locate the correcting unit. In comparison, the
SPI attack breaks all the circuits within a few seconds.

4.3 Breaking all CAC techniques
Table 5 reports the effectiveness of the SPI attack against

different CAC techniques: TTLock, CAChd, and CACflex [10,
27]. The success rate of the attack is 100%. The execution
time only varies slightly across different CAC techniques. The
reason is that the SPI attack does not target the netlist but the

Boolean function to find the PIPs, and the CAC techniques
only alter the netlist.

4.4 Evaluation against Different EDA Tools

Table 6 reports the results of the SPI attack on CACrem
circuits synthesized using six logic-synthesis tools. We ex-
periment with five industrial tools, Cadence Genus, Synop-
sys Design Compiler, Synopsys Synplify, Xilinx Vivado, and
Mentor Graphics Precision RTL, and one academic tool,
ABC [53–58]. The SPI attack breaks all the circuits, irrespec-
tive of the logic-synthesis tool used to generate the corrupted
circuit. Each tool uses a different set of optimization heuris-
tics. A designer may re-synthesize a circuit with multiple
tools to achieve minimum PPA overhead. We replicate this
scenario by cascading the logic-synthesis tools, i.e., passing
the output of one tool to the next for further optimization.
Even this sophisticated synthesis setup fails to impact the
success rate of the SPI attack.

1064 30th USENIX Security Symposium USENIX Association

Table 6: Execution time (s) of the SPI attack on CACflex circuits synthesized using different EDA tools. The success rate of the
SPI attack is 100% for all the circuits and thus, not presented. The industrial tools are anonymized to avoid disclosure conflicts.

EDA tool
Circuit Tool

category
ITC’99 ARM Cortex-M3 CEP

b10 b11 b12 b13 b15 b17 ARMc1 ARMc2 ARMc3 ARMc4 GPS
EDA tool ¬ Industrial 0.3 0.6 0.7 0.3 23.4 0.7 0.3 0.2 0.4 0.2 0.2
EDA tool ­ Industrial 0.4 0.5 1.2 0.8 17.1 0.6 0.3 0.2 0.2 0.4 0.3
EDA tool ® Industrial 0.5 0.7 1.2 0.7 22.5 0.7 0.5 0.5 0.5 0.7 0.5
EDA tool ¯ (ABC [58]) Academic 0.2 0.5 0.5 0.3 14.3 1.1 0.7 0.6 0.5 0.6 0.2
EDA tool ° Industrial 0.3 0.7 0.4 0.4 18.6 0.8 0.4 0.4 0.8 0.4 0.2
EDA tool ± Industrial 0.2 0.5 0.5 0.4 10.0 0.7 0.2 0.9 0.4 0.8 0.3
¬ › ­ › ® › ¯ › ° › ± Mix 0.3 0.8 0.7 0.6 15.1 0.9 0.5 0.5 0.5 0.5 0.3

5 Dist2: A Security Property

The results in the previous section demonstrate the vulnera-
bility of CAC techniques to structural attacks. The techniques
remain specifically vulnerable to the SPI attack since they
select PIPs on an arbitrary basis. This hints that PIPs must be
selected more carefully by taking into account the distance
with the PIs of the original circuit. Recall that an addition
(deletion) of a PIP changes the PIT only if the added (deleted)
PIP has a distance less than 2 from any other PI. To ensure
that the PIT does not leak information about the PIP, only
those PIs should be selected that are “sufficiently distanced,”
i.e., at least distance two away from PIs of the original circuit.
We refer to this condition for the resilience against structural
attacks as Dist2 property and to such PIPs as D2PIPs, with
D2 denoting a minimum distance of two. Note that this can
be generalized to a distance of at least d. Without satisfying
the Dist property, CAC circuits remain vulnerable to the SPI
attack and similar structural attacks. A D2PIP satisfies

{
if D2PIP ∈ FON

orig, ∀PIi ∈ FON
cp D(D2PIP,PIi)≥ d

if D2PIP ∈ FOFF
orig , ∀PI′i ∈ FOFF

cp D(D2PIP,PI′i)≥ d.

These conditions guarantee that (i) a D2PIP cannot be
merged with any PI in FON

cp if the corrupted circuit is created
by removing a PIP from FON

orig, and (ii) a D2PIP cannot be
merged with any PI in FOFF

cp if the corrupted circuit is created
by adding a PIP to FON

orig. Thus, the feature of D2PIP is, on
choosing a D2PIP as the PIP, the rest PIs in FON

orig or FOFF
orig do

not change, thereby the constructed FON
cp or FOFF

cp will not to
leak the secret by letting the PIP isolated separately.

Dist2 property simply introduces a new constraint on the
PIPs that can be protected. The property can be easily used in
conjunction with CAC techniques to attain resilience against
both I/O and structural attacks. Once a set of D2PIPs has
been found, they can be protected using any of the CAC
techniques. We emphasize that if Dist2 property is not taken
into account, a locked circuit remains vulnerable to SPI attack
and anticipated structural attacks of the same nature.

5.1 Attack Resilience under Dist2

Structural attacks. Locking using only D2PIPs ensures that
the PIP will not alter the structure of the PIT and thus not
reveal any information about the PIP, through neither isolated
PIPs nor split PIs. When locking using arbitrary PIPs, the
search space for an attacker is all 2k candidate PIPs. However,
D2PIPs form only a small subset of all input patterns, and
future attacks can attempt to enumerate all D2PIPs.The search
space S for an attacker is the set of all possible PIs that have
a distance greater than one from all the PIs of the corrupted
circuit. The size of the search space quantifies the resilience
against structural and is highly circuit specific. Theorem 1
presents the resilience against structural attacks for locking
two-level SOP circuits using only D2PIPs. Recall that the SOP
format uses two levels of gates, AND gates (implementing
product) followed by an OR gate (implementing sum).
Theorem 1: Satisfying Dist2 property is sufficient to achieve
β-security against structural attacks on Boolean circuits rep-
resented in SOP form, where β = |S |.
Proof: The proof is presented in Appendix C.

The theorem provides a fundamental condition for re-
silience against structural attacks but only for two-level SOP
circuits. This result can be extended to multi-level circuits
(or any circuit format) by taking into account the principles
of multi-level logic synthesis (or a specific circuit format).
Suppose a corrupted circuit PIT is constructed by removing a
D2PIP from the original circuit. When the PIT is synthesized
into a gate-level netlist, a logic-synthesis algorithm should not
introduce a standalone sub-circuit for the excluded D2PIP into
the netlist since that will increase the PPA cost. Even upon
synthesis with current EDA tools, the chances for a D2PIP
to appear standalone in a netlist will be small since the tools
aim at the least cost implementation. However, a challenge
in establishing security guarantees is that the precise EDA
algorithm used to synthesize the circuit in the given format
must be considered so that the desired security properties are
maintained at each step of the algorithm.
I/O attacks. D2PIPs may contain both specified bits and
don’t care bits. Only the specified bits can be treated as key
bits for the circuit function remains the same regardless of the
value assigned to the don’t care bits. A caveat of protecting

USENIX Association 30th USENIX Security Symposium 1065

Table 7: Feasibility of satisfying Dist2 property by common benchmark circuits. A protectable logic cone has at least one D2PIP.

Circuit ITC’99 ARM Cortex-M3 CEP
b10 b11 b12 b13 b15 b17 b20 b22 ARMc1 ARMc2 ARMc3 ARMc4 GPS

Logic cones 17 31 119 53 449 1445 512 757 125 63 66 43 9.7×103

Logic cones examined (%) 100 100 100 100 81.7 81.1 40.2 38.9 100 90.5 89.4 93 99
Protectable logic cones (%) 0 16.1 7.6 13.2 0.4 0.4 1.6 1.1 31.2 1.6 3 2.3 51.4
Max # D2PIPs (in one cone) 0 3 32 2 1 1 2 8 3 1 2 2 64
Max # PIs (in one cone) 24 256 132 105 5.6×104 8.2×104 8.2×104 8.4×104 363 12 6.5×103 14 1.1×103

Cumulative # D2PIPs 0 11 222 11 2 6 14 21 66 1 4 2 7.6×104

Max key size N/A 15 26 11 7 7 29 29 20 6 2 2 63
Max execution time (s) 0.1 76.8 102.7 60.9 1.3×104 2.2×103 4.5 4.9 56 3.4 3.4 2.9 85

only D2PIPs is that the maximum key size is dictated by the
number of specified bits in the D2PIPs. If PI1 is selected as a
D2PIP in Fig. 5(a), the key size is only three; upon selecting
PI2, the key size is nine. Existing synthesis algorithms aim
at maximizing the number of don’t care bits in PIs to reduce
the implementation cost. Thus, the circuits processed using
existing EDA tools will achieve relatively smaller key sizes.

5.2 Can Benchmark Circuits Satisfy Dist2?
Checking whether a circuit satisfies the Dist2 property re-

quires the computation of a PIT, which is an NP-Hard prob-
lem. As already mentioned in Section 3.4 PITs may not be
computed for certain circuits. For all but two circuits (b20
and b22), we can extract the PITs for more at least 80% of
the logic cones in standard benchmark circuits. The two cir-
cuits have unusually high percentages of logic cones with 215
or more inputs; thus, ABC cannot extract PITs for them in
48 hours. Since for all the circuits except b20 and b22, we
can extract the PITs for more than 90% of the logic cones,
on average, we claim that the data in Table 7 represents the
general characteristics of standard benchmark circuits. Even
for circuits b20 and b22, the computed PITs exhibit the same
trend for D2PIPs as that for the remaining circuits.
Satisfying Dist2 property. A critical finding of our study is
that only a small fraction of the logic cones are protectable
using D2PIPs. We say a logic cone is protectable if its PIT has
at least one D2PIP. On average, only 1.3, 9.5%, and 51.4% of
logic cones satisfy the Dist2 property in the ITC’99 circuits,
ARM Cortex-M3 controllers, and the GPS circuit, respectively.
The GPS circuit and ARMc1 controllers are notable exceptions
with 51.5% and 31.2% protectable cones. More importantly,
the number of D2PIPs found in any circuit is extremely small.
The GPS circuit has the largest number of D2PIPs in any
logic cone, which is only 64. All other circuits have smaller
numbers of D2PIPs, mostly ≤ 10. This dearth of D2PIPs
deprives the designers of any choice in protecting PIs based
on their application or use-case. Furthermore, since only a
few D2PIPs exist, the error-rate at the outputs will remain
low. One may ask if it is possible for the majority of D2PIPs
to be concentrated in the un-examined cones for which the
PITs could not be computed in 48 hours. This is unlikely as
D2PIPs that can only be a small subset of the input space.

Table 7 also reports the maximum achievable key size, the
main indicator of resilience against I/O attacks. The max-
imum key size attained is 29, 20, and 63 for the ITC’99,
Cortex-M3, and GPS circuits, respectively. Key sizes around
30 can be easily brute-forced using today’s desktop comput-
ers, implying that most of the benchmark circuits cannot even
defend against brute-force. A security level of 263 is signifi-
cantly smaller compared to the NIST recommended security
level of 2112 [76]. Thus, our most important finding is that the
commonly-used circuits are unsuitable for any logic-locking
technique as they fail to achieve a sufficiently large key size
when satisfying the Dist2 property. To secure the IC supply
chain against piracy and to securely outsource IC fabrication,
designers can currently rely on schemes such as verifiable
computation, homomorphic encryption, and multi-party com-
putation that are computationally expensive and may incur
prohibitive PPA overhead [77, 78].

6 Discussion

6.1 Potential Countermeasures

As we have seen in Section 5.2, the number of D2PIPs in
conventional designs is mostly a few tens. This small number
indicates that logic locking cannot protect the vast majority
of the circuits. The reason for a small number of D2PIPs
is the EDA tools and their optimization objectives. Before
logic-synthesis tools convert high-level functions into their
corresponding Boolean circuits, the high-level variables need
to be Boolean encoded. For instance, the encoding process
translates instructions in the high-level format, such as ADD,
SUB, MUL, etc., to their corresponding opcode. The resul-
tant Boolean circuit implements the mapping between inputs
and outputs. Usually, such encoding schemes aim at pack-
ing the maximum number of codewords in the least number
of bits [69] while simultaneously reducing the PPA of the
resultant circuit [79]. Unfortunately, as we observed, these
optimization objectives lead to a PIT with many PIs closely
arranged, thereby reducing the number of D2PIPs. A recent
analysis of properties of Boolean functions also alludes to the
difficulty of locking certain circuits [80]. By demonstrating
that the current EDA algorithms and encoding schemes are

1066 30th USENIX Security Symposium USENIX Association

not fully compatible with existing logic-locking techniques,
our paper calls for a revamp of existing industrial EDA tools
to take supply chain security into account. In the future, we
intend to develop a security-centric encoding scheme to en-
sure that the PIs maintain a minimum inter-PI distance. This
distance constraint will increase the number of specified bits
in the PIT, leading to high PPA costs. Thus, we need to find
an optimal trade-off between security and PPA overhead.

6.2 Scalability
The SPI attack requires generating the PIT of a Boolean

function and computing the distance between all PIs. The
exact optimization of a PIT is an NP-Hard problem [81],
which raises concerns scalability of the attack. However, as
described in Section 3.4 and demonstrated experimentally in
Section 4.2, the attack can be easily scaled to larger circuits
using a divide-and-conquer approach that eliminates the need
for computing PIT of the complete circuit.

6.3 Other Locking Techniques
Meerkat considers resilience against structural attacks [82].
It introduces key gates such that that netlist structure remains
identical regardless of the key value, hampering structural
analysis attacks on netlists. Meerkat, however, requires the
transformation of a netlist into a reduced-ordered binary de-
cision diagram and cannot scale well for large circuits [82].
Meerkat, however, does not account for I/O attacks.
Cyclic locking techniques attempt to defeat I/O attacks by
introducing cycles in a combinational circuit [83–85]. The
underlying assumption is that the SAT/SMT solvers will loop
forever in the cycles. However, our attack is still applicable
to cyclic locking: a circuit protected by cyclic locking could
be converted to an acyclic circuit by unrolling it. Successful
attacks also exist against cyclic locking [84].
Sequential locking introduces additional states into finite
state machines (FSM) so that a design enters the desired
functional states only upon applying the correct key [6, 17,
86–88]. Even FSM synthesis techniques follow the distance-1
merging rule, similar to that for combinational circuits [70,89].
Naturally, one can extend our SPI attack to sequential locking
by targeting the sequential synthesis steps.
Scan locking. All oracle-based attacks rely on scan chains to
query the oracle. A few defense techniques thwart I/O attack
by locking the scan chains [90] or making the scanned-out
responses independent of the key value [91]. However, logic
locking can be broken even without scan access [87, 92].

7 Conclusion

We have examined how vulnerable logic-locking tech-
niques become when processed through industry-standard
EDA tools. Contrary to the existing attacks, our SPI attack

does not target a specific netlist format. Instead, it analyzes
the Boolean functions, which renders our proposed attack and
security property widely applicable. Our SPI attack takes only
a few seconds to break any locked circuit irrespective of the
CAC technique. The attack has a 100% success rate even
when the circuits are optimized using various logic-synthesis
tools, highlighting the inadequacy of the EDA tools in defend-
ing against white-box attacks. Our findings, in satisfying the
Dist2 property, highlight the infeasibility of locking circuits
with reasonable security.
Ramifications. The SPI attack calls for reevaluating the se-
curity of logic-locking techniques. The encoding schemes
underlying current logic-synthesis tools and the subsequent
optimizations in their current form fail to make a logic-locking
technique secure. We have also highlighted the scarcity of
D2PIPs in common benchmark circuits. Thus, we urge logic-
locking researchers to consider the following: (i) Is the gate-
level netlist the right abstraction level to apply logic locking?
Thus, are ISCAS and ITC circuits appropriate benchmarks to
evaluate logic locking? (ii) Can we blindly trust EDA tools
for logic locking and other hardware security problems? We
urge the need for the community to develop EDA tools and
locking techniques that are cognizant of each other.

Acknowledgement

We thank Dr. Abhrajit Sengupta, Nimisha Limaye, Prof.
Ozgur Sinanoglu from NYU-AD, and other CSAW’19 orga-
nizers for their help in providing locked circuits and verifying
the keys. We thank other members of the TAMU SETH lab
for their help in collecting data. We also thank Prof. Krishna
Narayanan from TAMU for valuable discussions. And, we
thank anonymous reviewers for their comments. The work
was supported in part by the National Science Foundation
(NSF CNS-1749175) and the Defense Advanced Research
Projects Agency grants HR0011-20-9-0043 and FA8650-18-
1-7827. Any opinions, findings, conclusions, or recommen-
dations expressed herein are those of the authors, and do not
necessarily reflect those of the US Government.

References

[1] D. Takahashi, “Globalfoundries: Next-generation chip factories
will cost at least $10 billion.” https://rb.gy/pjllsf, 2017.
Last accessed on 10/12/2020.

[2] J. Purcher, “Apple Supply Chain News: TSMC & Foxconn
Plan new chip plants.” https://rb.gy/ot1hfv, 2017. Last
accessed on 10/12/2020.

[3] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hard-
ware Security: Models, Methods, and Metrics,” Proceedings
of IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.

[4] SEMI, “Innovation is at Risk Losses of up to $4 Billion Annu-
ally due to IP Infringement.” https://rb.gy/ajtlnw, 2008.
Last accessed on 10/04/2020.

USENIX Association 30th USENIX Security Symposium 1067

https://rb.gy/pjllsf
https://rb.gy/ot1hfv
https://rb.gy/ajtlnw

[5] A. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik,
I. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe,
“Watermarking Techniques for Intellectual Property Protec-
tion,” IEEE/ACM Design Automation Conference, pp. 776–781,
1998.

[6] Y. Alkabani and F. Koushanfar, “Active Hardware Metering
for Intellectual Property Protection and Security,” USENIX
Security Symposium, pp. 291–306, 2007.

[7] J. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” IEEE/ACM Design, Automation & Test in
Europe, pp. 1069–1074, 2008.

[8] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security
Analysis of Logic Obfuscation,” IEEE/ACM Design Automa-
tion Conference, pp. 83–89, 2012.

[9] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security
of Logic Encryption Algorithms,” IEEE International Sympo-
sium on Hardware Oriented Security and Trust, pp. 137–143,
2015.

[10] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran,
and O. Sinanoglu, “Provably-Secure Logic Locking: From
Theory To Practice,” ACM SIGSAC Conference on Computer
& Communications Security, pp. 1601–1618, 2017.

[11] K. Azar, H. Kamali, H. Homayoun, and A. Sasan, “SMT At-
tack: Next Generation Attack on Obfuscated Circuits with
Capabilities and Performance Beyond the SAT Attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, vol. 2019, no. 1, pp. 97–122, 2018.

[12] R. Jarvis and M. McIntyre, “Split Manufacturing Method for
Advanced Semiconductor Circuits,” US Patent no. 7,195,931,
2007.

[13] J. Baukus, L. Chow, R. Cocchi, and B. Wang, “Method and
Apparatus for Camouflaging a Standard Cell based Integrated
Circuit with Micro Circuits and Post Processing,” US Patent
no. 20120139582, 2012.

[14] J. P. Skudlarek, T. Katsioulas, and M. Chen, “A Platform So-
lution for Secure Supply-Chain and Chip Life-Cycle Manage-
ment,” IEEE Computer, vol. 49, no. 8, pp. 28–34, 2016.

[15] S. Leef, “In Pursuit of Secure Silicon.” https://rb.gy/
ngjzfd, 2017. Last accessed on 09/28/20.

[16] D. P. Affairs, “DARPA Selects Teams to Increase Secu-
rity of Semiconductor Supply Chain.” https://www.darpa.
mil/news-events/2020-05-27, 2020. Last accessed on
10/05/2020.

[17] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-
Based SoC Design Methodology for Hardware Protection,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[18] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC
Piracy Using Reconfigurable Logic Barriers,” IEEE Design &
Test of Computers, vol. 27, no. 1, pp. 66–75, 2010.

[19] Rambus, “Circuit camouflage technology.” https://rb.gy/
eowsah, 2017. Last accessed on 05/04/2020.

[20] Siemens, “TrustChain Security Platform.” https://rb.gy/
kcehg1, 2017. Last accessed on 09/28/2020.

[21] R. Torrance and D. James, “The State-of-the-Art in Semicon-
ductor Reverse Engineering,” IEEE/ACM Design Automation
Conference, pp. 333–338, 2011.

[22] M. Yasin and O. Sinanoglu, “Transforming Between Logic
Locking and IC Camouflaging,” IEEE International Design &
Test Symposium, pp. 1–4, 2015.

[23] K. Vättö, “Intel to Offer CPU Upgrades via Software for Se-
lected Models.” https://bit.ly/2Mnbn2j, 2011. Last ac-
cessed on 08/01/18.

[24] M. Zaman, A. Sengupta, D. Liu, O. Sinanoglu, Y. Makris,
and J. Rajendran, “Towards Provably-Secure Performance
Locking,” IEEE/ACM Design, Automation & Test in Europe,
pp. 1592–1597, 2018.

[25] A. Chakraborty, Y. Xie, and A. Srivastava, “GPU Obfuscation:
Attack and Defense Strategies,” IEEE/ACM Design Automation
Conference, pp. 122:1–122:6, 2018.

[26] A. Chakraborty and A. Srivastava, “Hardware-Software Co-
Design Based Obfuscation of Hardware Accelerators,” IEEE
Computer Society Annual Symposium on VLSI, pp. 547–552,
2019.

[27] M. Yasin, A. Sengupta, B. Schafer, Y. Makris, O. Sinanoglu,
and J. Rajendran, “What to Lock?: Functional and Parametric
Locking,” ACM Great Lakes Symposium on VLSI, pp. 351–356,
2017.

[28] Y. Xie and A. Srivastava, “Delay Locking: Security Enhance-
ment of Logic Locking Against IC Counterfeiting and Overpro-
duction,” IEEE/ACM Design Automation Conference, pp. 1–6,
2017.

[29] J. Cassell, “Reports of Counterfeit Parts Quadruple Since
2009, Challenging US Defense Industry and National Secu-
rity.” https://bit.ly/2KWVkJh, 2012. Last accessed on
05/04/2020.

[30] V. V. Rao and I. Savidis, “Protecting Analog Circuits with
Parameter Biasing Obfuscation,” IEEE Latin American Test
Symposium, pp. 1–6, 2017.

[31] N. G. Jayasankaran, A. S. Borbon, E. Sanchez-Sinencio, J. Hu,
and J. Rajendran, “Towards Provably-Secure Analog and
Mixed-Signal Locking Against Overproduction,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 1–8,
2018.

[32] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin,
“AppSAT: Approximately Deobfuscating Integrated Circuits,”
IEEE International Symposium on Hardware Oriented Security
and Trust, pp. 95–100, 2017.

[33] Y. Shen and H. Zhou, “Double DIP: Re-Evaluating Security of
Logic Encryption Algorithms,” ACM Great Lakes Symposium
on VLSI, pp. 179–184, 2017.

[34] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Se-
curity Analysis of Anti-SAT,” IEEE Asia and South Pacific
Design Automation Conference, pp. 342–347, 2016.

[35] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Pan,
“Provably Secure Camouflaging Strategy for IC Protection,”
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 28:1–28:8, 2016.

1068 30th USENIX Security Symposium USENIX Association

https://rb.gy/ngjzfd
https://rb.gy/ngjzfd
https://www.darpa.mil/news-events/2020-05-27
https://www.darpa.mil/news-events/2020-05-27
https://rb.gy/eowsah
https://rb.gy/eowsah
https://rb.gy/kcehg1
https://rb.gy/kcehg1
https://bit.ly/2Mnbn2j
https://bit.ly/2KWVkJh

[36] D. Sirone and P. Subramanyan, “Functional Analysis Attacks
on Logic Locking,” IEEE/ACM Design, Automation & Test in
Europe, pp. 936–939, 2019.

[37] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine Learn-
ing Guided Structural Analysis Attack on Hardware Obfus-
cation,” IEEE Asian Hardware Oriented Security and Trust
Symposium, pp. 56–61, 2018.

[38] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SAR-
Lock: SAT Attack Resistant Logic Locking,” IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust,
pp. 236–241, 2016.

[39] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic
Locking,” International Conference on Cryptographic Hard-
ware and Embedded Systems, pp. 127–146, 2016.

[40] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and
O. Sinanoglu, “Truly Stripping Functionality for Logic Lock-
ing: A Fault-based Perspective,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
2020.

[41] M. Massad, S. Garg, and M. Tripunitara, “Integrated Circuit
(IC) Decamouflaging: Reverse Engineering Camouflaged ICs
within Minutes,” Network and Distributed System Security
Symposium, 2015.

[42] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incre-
mental SAT-Based Reverse Engineering of Camouflaged Logic
Circuits,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 36, no. 10, pp. 1647–1659,
2017.

[43] H. Wee, “On Obfuscating Point Functions,” ACM Symposium
on Theory of Computing, pp. 523–532, 2005.

[44] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock:
A Security-Corruptibility Trade-off Resilient Logic Locking
Scheme,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 175–202, 2020.

[45] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-
Based Cost-Effective, Secure Logic Locking,” IEEE VLSI Test
Symposium, pp. 1–6, 2018.

[46] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran,
O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak,
“Keynote: A Disquisition on Logic Locking,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2019.

[47] M. Yasin and B. Mazumdar and O. Sinanoglu and J. Rajendran,
“Removal Attacks on Logic Locking and Camouflaging Tech-
niques,” IEEE Transactions on Emerging Topics in Computing,
pp. 1–1, 2018.

[48] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel
Bypass Attack and BDD-based Tradeoff Analysis Against All
Known Logic Locking Attacks,” International Conference on
Cryptographic Hardware and Embedded Systems, pp. 189–210,
2017.

[49] S. Bhunia and M. Tehranipoor, Hardware Security: A Hands-
on Learning Approach. Morgan Kaufmann, 2018.

[50] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality
Logic Locking With Hamming Distance-Based Restore Unit
(SFLL-hd) - Unlocked,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 10, pp. 2778–2786, 2019.

[51] NYU CSAW, “Logic Locking Conquest 2019.” https://rb.
gy/amdgdf, 2019. Last accessed on 09/28/2020.

[52] B. Olney and R. Karam, “Tunable FPGA Bitstream Obfusca-
tion with Boolean Satisfiability Attack Countermeasure,” ACM
Transactions on Design Automation of Electronic Systems,
vol. 25, no. 2, pp. 1–22, 2020.

[53] Cadence, “Genus Synthesis Solution.” https://rb.gy/
gqbpgd. Last accessed on 09/28/2020.

[54] Synopsys, “Design Compiler NXT.” https://rb.gy/wgeq1m.
Last accessed on 05/04/2020.

[55] Synopsys, “Synplify Pro.” https://rb.gy/qscv0c. Last ac-
cessed on 09/28/2020.

[56] Xilinx, “Vivado.” https://rb.gy/yrdbsa. Last accessed on
05/04/2020.

[57] Mentor Graphics, “Precision RTL.” https://rb.gy/03zuos.
Last accessed on 09/28/2020.

[58] R. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” International Conference on Com-
puter Aided Verification, pp. 24–40, 2010.

[59] J. Yiu, The Definitive Guide to the ARM Cortex-M3. Newnes,
2009.

[60] B. Chetwynd, K. Bush, and K. Ingols, “CEP v2.0 Security
Evaluation Targets.” https://rb.gy/ssfjbk, 2019. Last ac-
cessed on 05/04/2020.

[61] Y. Kasarabada, D. Luria, and R. Vemuri, “Trust in IoT Devices:
A Logic Encryption Perspective,” IFIP International Internet
of Things Conference, pp. 123–141, 2019.

[62] S. Keshavarz, C. Yu, S. Ghandali, X. Xu, and D. Holcomb,
“Survey on Applications of Formal Methods in Reverse Engi-
neering and Intellectual Property Protection,” Journal of Hard-
ware and Systems Security, vol. 2, no. 3, pp. 214–224, 2018.

[63] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack
on Logic Locking,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 2, pp. 199–
207, 2019.

[64] G. D. Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[65] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung, “Perfectly-Secure Key Distribution for Dynamic
Conferences,” Advances in Cryptology, pp. 471–486, 1993.

[66] A. Sarabi, N. Song, M. Chrzanowska-Jeske, and M. A.
Perkowski, “A Comprehensive Approach to Logic Synthe-
sis and Physical Design for Two-Dimensional Logic Arrays,”
IEEE/ACM Design Automation Conference, pp. 321–326,
1994.

[67] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan,
A. Tiwari, N. Shankar, S. A. Seshia, and S. Malik, “Reverse
Engineering Digital Circuits Using Structural and Functional
Analyses,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 2, no. 1, pp. 63–80, 2013.

USENIX Association 30th USENIX Security Symposium 1069

https://rb.gy/amdgdf
https://rb.gy/amdgdf
https://rb.gy/gqbpgd
https://rb.gy/gqbpgd
https://rb.gy/wgeq1m
https://rb.gy/qscv0c
https://rb.gy/yrdbsa
https://rb.gy/03zuos
https://rb.gy/ssfjbk

[68] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Ma-
lik, N. Shankar, and S. A. Seshia, “WordRev: Finding Word-
level Structures in a Sea of Bit-Level Gates,” IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust,
pp. 67–74, 2013.

[69] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms. Springer Science & Business Media, 2006.

[70] P. Ashar, S. Devadas, and R. Newton, Sequential Logic Synthe-
sis. Springer Science & Business Media, 2012.

[71] A. Sengupta, B. Mazumdar, M. Yasin, and O. Sinanoglu,
“Logic Locking with Provable Security Against Power Analysis
Attacks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2019.

[72] M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated Cir-
cuit (IC) Decamouflaging: Reverse Engineering Camouflaged
ICs within Minutes,” Network and Distributed System Security
Symposium, pp. 1–14, 2015.

[73] C. Torng, “FreePDK45 and the Nangate Open Cell Library.”
https://rb.gy/azbenb, 2020. Last accessed on 02/12/2021.

[74] Xilinx, “Spartan-3 FPGA Family.” https://rb.gy/pupygs,
2020. Last accessed on 02/12/2021.

[75] S. Davidson, “Characteristics of the ITC’99 Benchmark Cir-
cuits,” IEEE International Test Synthesis Workshop, 1999.

[76] E. Barker and A. Roginsky, “Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key
Lengths,” NIST Special Publication, vol. 800, p. 131A, 2011.

[77] G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Ven-
turi, “Secure Outsourcing of Cryptographic Circuits Manufac-
turing,” ACM International Conference on Provable Security,
pp. 75–93, 2018.

[78] C. Konstantinou, A. Keliris, and M. Maniatakos, “Privacy-
Preserving Functional IP Verification Utilizing Fully Homo-
morphic Encryption,” IEEE/ACM Design, Automation & Test
in Europe Conference & Exhibition, pp. 333–338, 2015.

[79] S. Devadas and A. R. Newton, “Exact Algorithms for Output
Encoding, State Assignment, and Four-Level Boolean Mini-
mization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 10, no. 1, pp. 13–27, 1991.

[80] J. Sweeney, M. Heule, and L. T. Pileggi, “Sensitivity Analysis
of Locked Circuits,” International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, pp. 483–
497, 2020.

[81] M. R. Garey and D. S. Johnson, ACM Computers and In-
tractability, vol. 174. Freeman San Francisco, 1979.

[82] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic
Locking for Secure Outsourced Chip Fabrication: A New At-
tack and Provably Secure Defense Mechanism,” arXiv preprint
arXiv:1703.10187, 2017.

[83] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin,
“Cyclic Obfuscation for Creating SAT-Unresolvable Circuits,”
ACM Great Lakes Symposium on VLSI, pp. 173–178, 2017.

[84] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-Based At-
tack on Cyclic Logic Encryptions,” IEEE/ACM International
Conference on Computer-Aided Design, pp. 49–56, 2017.

[85] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic
Locking and Memristor-Based Obfuscation Against CycSAT
and Inside Foundry Attacks,” IEEE/ACM Design, Automation
& Test in Europe, pp. 85–90, 2018.

[86] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker,
R. Tessier, and C. Paar, “On the Difficulty of FSM-based Hard-
ware Obfuscation,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 293–330, 2018.

[87] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “KC2: Key-
Condition Crunching for Fast Sequential Circuit Deobfus-
cation,” IEEE/ACM Design, Automation & Test in Europe,
pp. 534–539, 2019.

[88] S. Koteshwara, C. H. Kim, and K. K. Parhi, “Key-Based Dy-
namic Functional Obfuscation of Integrated Circuits Using
Sequentially Triggered Mode-Based Design,” IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 1,
pp. 79–93, 2018.

[89] Z. Kohavi and N. K. Jha., Switching and Finite Automata
Theory. Cambridge University Press, 2009.

[90] R. Karmakar, H. Kumar, and S. Chattopadhyay, “Efficient Key-
gate Placement And Dynamic Scan Obfuscation Towards Ro-
bust Logic Encryption,” IEEE Transactions on Emerging Top-
ics in Computing, 2019.

[91] N. Limaye, A. Sengupta, M. Nabeel, and O. Sinanoglu, “Is Ro-
bust Design-for-Security Robust Enough? Attack on Locked
Circuits with Restricted Scan Chain Access,” IEEE/ACM In-
ternational Conference on Computer-Aided Design, pp. 1–8,
2019.

[92] M. El Massad, S. Garg, and M. Tripunitara, “Reverse Engineer-
ing Camouflaged Sequential Circuits Without Scan Access,”
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 33–40, 2017.

[93] J. Chen, D. Hermelin, and M. Sorge, “On Computing Centroids
According to the p-Norms of Hamming Distance Vectors,”
arXiv preprint arXiv:1807.06469, 2018.

[94] D. Q. Naiman and H. P. Wynn, “Inclusion-Exclusion-
Bonferroni Identities and Inequalities for Discrete Tube-Like
Problems via Euler Characteristics,” IMSTAT Annals of Statis-
tics, vol. 20, no. 1, pp. 43–76, 1992.

[95] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to
Differential Power Analysis,” Journal of Cryptographic Engi-
neering, vol. 1, no. 1, pp. 5–27, 2011.

[96] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the Power of
Optical Contactless Probing: Attacking Bitstream Encryption
of FPGAs,” in ACM SIGSAC Conference on Computer and
Communications Security, pp. 1661–1674, 2017.

[97] M. Rahman, S. Tajik, M. Rahman, M. Tehranipoor, and
N. Asadizanjani, “The Key is Left Under the Mat: On the In-
appropriate Security Assumption of Logic Locking Schemes,”
tech. rep., Cryptology ePrint Archive, Report 2019/719, 2019,
https://eprint.iacr.org/2019/719, 2019.

[98] S. Engels, M. Hoffmann, and C. Paar, “The End of Logic Lock-
ing? A Critical View on the Security of Logic Locking,” IACR
Cryptology ePrint Archive, vol. 2019, p. 796, 2019.

1070 30th USENIX Security Symposium USENIX Association

https://rb.gy/azbenb
https://rb.gy/pupygs

A SPI attack using divide and conquer

Algorithm 2: SPI attack with divide & conquer
Input: Locked cone Clock , Oracle O, Timeout T
Output: Protected input pattern candidates PIPs: PIPlist

1 Ccp← generate_corrupted_circuit(Clock)
2 NNNooodddeeessssort ← sort_by_protecting_inputs(Ccp)
3 PPPIIIPPPssscand ←∅
4 for node ∈ NNNooodddeeessssort do
5 Cnode← generate_subcircuit(Ccp,node)
6 PITnode← extract_PIT(Cnode,T)
7 PPP111← get_fully_specified_PI(PIT)
8 PPPIIIPPPsssveri f ied ← verify(PPPIIIPPPsssveri f ied ,Ccp,O)
9 if (PPPIIIPPPsssveri f ied 6=∅) then

10 return PPPIIIPPPsssveri f ied
11 end
12 PPP222← find_and_parse_split_PIs(PIT)
13 PPPIIIPPPsssveri f ied ← verify(PPP222,Ccp,O)
14 if (PPPIIIPPPsssveri f y 6=∅) then
15 return PPPIIIPPPsssveri f ied
16 end
17 PPPIIIPPPssscand ← PPPIIIPPPssscand

⋃
PPP111

⋃
PPP222

18 end
19 PPPIIIPPPsssgood ← PIPs_with_most_specified_bits(PPPIIIPPPssscand)
20 for pip ∈ PPPIIIPPPsssgood do
21 pip f ull ← brute_force(pip,Clock,O)
22 PPPIIIPPPlist ← PPPIIIPPPssslist

⋃
{pip f ull}

23 end
24 return verify(PPPIIIPPPlist ,Ccp,O)

Alg. 2 describes the scalable version of the SPI attack that em-
ploys a divide-and-conquer strategy. The inputs to the algorithm
are a locked cone Clock, the oracle O, and a timeout parameter T .
First, the attack extracts the corrupted circuit Ccp by removing the
correcting unit. The nodes in Ccp are sorted in descending order by
the number of protecting inputs. Recall that the correcting unit has k
primary and k key inputs, we refer to the primary inputs feeding the
correcting unit as protecting inputs. Only the protecting inputs are
included in the PIP and thus are of relevance for the attack.

For each sorted node, a sub-circuit is constructed and an attempt
is made to extract its PIT. If the PIT can be extracted within the time
limit T , the PIT is parsed for candidate PIPs using the two methods
already used in Alg. 1, i.e., 1) fully specified PIPs and 2) split PIs.
If the attacker is fortunate enough, the PIT may be computed for
a sub-circuit with all protecting inputs and the recovered PIP may
be fully specified (no don’t care bit). In such a case, the PIP can be
verified using the oracle. The attack completes successfully if a true
PIP has been recovered.

In certain cases, the PIT may be extracted only for sub-circuits
that have only a subset of protecting inputs. In such scenarios, our
attack targets the candidate PIPs with the largest number of specified
bits. Brute-force or even attacks such as SAT/SMT attack may be
used to determine the values of the remaining bits in the PIP.

B Success Rate of Structural Attacks

Continuing the discussion in Section 3.1, we consider two scenar-
ios for attackers.
Well-informed attacker. Let us first assume that the attacker knows
whether FON

cp is constructed by adding a PIP or removing a PIP from

FON
orig. Later, we also consider the case where the attack does not know

this information. Considering the cases where the PIP is merged,
i.e., Case 1(a) or 2(a), Pr(AS), i.e., the probability of success for a
structural attack to recover the PIP from the PIT is

Pr(AS)≤ max
{

1
|Su1|

,
1
|Su2|

}
.

When the PIP is merged, i.e., Case 1(b) and 2(b), the attacker has
to account for all minterms in either FON

cp or FOFF
cp . Then,

Pr(AS)≤ max
{

1
|Sm1|

,
1
|Sm2|

}
.

Uninformed attacker. The CAC techniques may construct the Ccp
by XORing Corig with a PIP, i.e., the PIP may be either added or
removed. Thus, the attacker has to account for both addition and
removal cases. When the PIP remains isolated, the success rate for
the attacker is 1

|Su1|+|Su2| , implying that choosing unmergeable PIPs
is at most (|Su1|+ |Su2|)-secure against structural attacks. When the
PIP is merged, the search space for attacker is the set of all minterm
contained in either FON

cp or FOFF
cp , i.e., Pr(AS) =

1
|Sm1|+|Sm2| =

1
2k .

C Proof of Theorem 1

Theorem 1: Satisfying Dist2 property is sufficient to achieve β-
security against structural attacks on Boolean circuits represented
in SOP form, where β = |S |.
Proof: We assume that the attacker has access to 1) the corrupted
circuit implemented in SOP format and 2) the PIT of the corrupted
circuit. Locking using a D2PIP ensures that the PIT does not directly
reveal the PIPs to the attackers. The search space S for an attacker is
the set of potential D2PIP candidates an attacker has to account for.
Since the attacker does not know whether a D2PIP has been added
or removed, he/she must consider both cases.
Case 1. Removing a D2PIP. Removing a D2PIP from FON

orig yields,

FON
cp = FON

orig \{D2PIP}, ∀PIi ∈ FON
cp , D(D2PIP,PIi)≥ d.

For an attacker, the search space S1 is the set of all potential PIPs
that are at least distance two (or more generally distance d) away
from the PIs of FON

cp , i.e.,

S1 = {pi |D(pi,PIi) ≥ d, ∀PIi ∈FON
cp }=

P⋂
i=1
{pi |D(pi,PIi) ≥ d},

(3)
where, P is the number of PIs in FON

cp and pi ∈ {0,1}k.
Case 2: Adding a D2PIP. Adding a D2PIP into FON

orig can be consid-
ered as removing a D2PIP from FOFF

orig . Hence,

FOFF
cp = FOFF

orig \{D2PIP}, ∀PI′i ∈ FOFF
cp , D(D2PIP,PI′i)≥ d.

Therefore, the search space S2 for the attacker is,

S2 = {pi |D(pi,PI′i) ≥ d, ∀PI′i ∈FOFF
cp }=

P′⋂
i=1
{pi |D(pi,PI′i) ≥ d},

(4)
where, P′ is the number of PIs in FOFF

cp and pi ∈ {0,1}k .
Since an attacker does not know whether the corrupted circuit is

constructed by adding or removing a D2PIP, the overall search space

USENIX Association 30th USENIX Security Symposium 1071

S for the attacker is S = S1
⋃

S2. Note that S1 and S2 are disjoint. A
PI that belongs to S1 must belong to FOFF

cp , and a PI that belongs to
S2 must belong to FON

cp . FOFF
cp and FON

cp are disjoint. Hence, the size
of the overall search space for the attacker is |S |= |S1|+ |S2|. The
probability of success for an attacker is 1

|S | . Thus, from Definition 3,
locking only D2PIPs in two-level SOP circuits achieves a security
level of β = |S |= |S1|+ |S2| against structural attacks.

D Computing Upper and Lower Bounds for
the Size of the Search Space

For a given circuit, the exact computation of |S1| and |S2| is an
NP-Hard problem [93]. However, we can determine the upper and
lower bounds using the inclusion-exclusion inequality [94].
Bounds for Case 1. This analysis is based on the case where a
PIP is removed from FON

orig, i.e., FON
cp = FON

orig \{D2PIP}, and ∀PIi ∈
FON

cp , D(D2PIP,PIi) ≥ d. The search space S1 for the attacker is
the set of possible PIs that are distance ≥ d from the PIP.

S1 =
P⋂

i=1
{pi|D(pi,PIi)≥ d}=

P⋃
i=1
{pi|D(pi,PIi)< d}, (5)

where, P is the number of PIs in the FON
cp , and pi is a candidate PI.

Therefore, the size of the search space is

|S1|= 2k−

∣∣∣∣∣ P⋃
i=1
{pi|D(pi,PIi)< d}

∣∣∣∣∣. (6)

Further, we could estimate the upper and lower bounds of |S1| by
using the inequality of inclusion-exclusion principle [94]

C1−C2 ≤

∣∣∣∣∣ P⋃
i=1
{pi|D(pi,PIi)< d}

∣∣∣∣∣≤C1, (7)

where, C1 and C2 are
C1 =

P
∑

i=1
|{pi|D(pi,PIi)< d}|

C2 = ∑
1≤i< j≤P

|{pi|D(pi,PIi)< d,D(pi,PI j)< d}|.
(8)

Calculating CCC111. Assume that there are wi don’t care bits ith PI in
PIi, which is the PIT of FON

cp , where i ∈ {1,2, ...,P}. It follows that

C1 =
P

∑
i=1
|{pi|D(pi,PIi)< d}|=

P

∑
i=1

d−1

∑
t=0

2wi ×
(

k−wi

t

)
. (9)

Calculating CCC222. Calculating C1 does not require inter-PI distance,
which is not the case for C2. Assume that for two PIs PIi and PI j in
FON

cp , 1≤ i < j ≤ P. wi j is the number of don’t care bits in PIi and
PI j, si j is the number of specified bits that have the same value in
PIi and PI j, fi j is the number of specified bits that are mismatched
in PIi and PI j, hi

i j is the number of bits that are specified in PIi but

don’t care PI j , and h j
i j is the number of bits that are don’t care in PIi

but specified in PI j. Therefore,

C2 = ∑
1≤i< j≤P

[
d−1

∑
t1=0

d−1

∑
t2=0

2wi j ×
min(t1,t2)

∑
g=0

(
si j

g

)
×

t1−g

∑
a1=0

t2−g

∑
a2=0

(
hi

i j
a1

)(
h j

i j
a2

)(
fi j

t1−g−a1, t2−g−a2

)]
.

(10)

Therefore, the lower and upper bounds of |S1| are{
LB = 2k−C1

UB = 2k−C1 +C2,
(11)

where, C1 and C2 are specified in Eq. (9) and Eq. (10), respectively.
Bounds for Case 2. In Case 2, the process of adding the D2PIP into
FON

orig, could be considered as removing the D2PIP from FOFF
orig , i.e.,

FOFF
cp = FOFF

orig \{D2PIP}, and ∀PI′i ∈ FOFF
cp ,D(D2PIP,PI′i)≥ d.

The calculation of the upper and lower bounds of |S2| is similar
to that for Case 1. However, the analysis that was applied to PIs of
FON

cp to will now be applied to PIs of FOFF
cp . Therefore, the upper

bound UB′ and the lower bound LB′ of |S2| are:{
LB′ = 2k−C′1
UB′ = 2k−C′1 +C′2,

(12)

where, C′1 and C′2 are

C′1 =
P′

∑
i=1

d−1
∑

t=0
2w′i ×

(k−w′i
t
)

C′2 = ∑
1≤i< j≤P′

[
d−1
∑

t1=0

d−1
∑

t2=0
2w′i j ×

min(t1,t2)
∑

g=0

(s′i j
g
)
×

t1−g
∑

a1=0

t2−g
∑

a2=0

(h
′ i
i j

a1

)(h
′ j
i j

a2

)(f ′i j
t1−g−a1,t2−g−a2

)]
.

(13)

Assume PI′i is the ith PI in FOFF
CP ’s PIT, where i ∈ {1,2, . . . ,P′}.

The definitions of the parameters are slightly different from those in
Case 1: w′i is the number of don’t care bits in PI′i , w′i j is the number
of don’t care bits in PI′i and PI′j, s′i j is the number of specified bits
that have the same value in PI′i and PI′j , f ′i j is the number of specified

bits that are mismatched in PI′i and PI′j , h
′i
i j is the number of bits that

are specified in PI′i but don’t care PI′j, and h
′ j
i j is the number of bits

that are don’t care in PI′i but specified in PI′j .

E Discussion: Physical Aspects of Security

Even cryptographic techniques with proven guarantees are sub-
jected to physical and side-channel attacks [95, 96]. Thus, logic
locking is also susceptible to physical attacks [97, 98] Such attacks
can be thwarted by 1) storing the key in a tamper-proof memory and
2) adopting defenses developed for side-channel attacks [71].

1072 30th USENIX Security Symposium USENIX Association

	Introduction
	Security Concerns in the IC Supply Chain
	Countermeasures against Piracy
	Applications of Logic Locking
	State-of-the-art Logic Locking
	Scope and Contributions

	Background and Related Work
	Threat Model
	Logic Locking Attacks and Defenses
	Security Definitions
	A Primer on Logic Synthesis

	Sparse Prime Implicant (SPI) Attack
	Vulnerabilities of Logic Locking
	Exploiting the PIT
	SPI Attack Algorithm
	Improving the Scalability
	Broader Applicability

	SPI Attack Results
	Experimental Setup
	Breaking CACrem
	Breaking all CAC techniques
	Evaluation against Different EDA Tools

	Dist2: A Security Property
	Attack Resilience under Dist2
	Can Benchmark Circuits Satisfy Dist2?

	Discussion
	Potential Countermeasures
	Scalability
	Other Locking Techniques

	Conclusion
	SPI attack using divide and conquer
	Success Rate of Structural Attacks
	Proof of Theorem 1
	Computing Upper and Lower Bounds for the Size of the Search Space
	Discussion: Physical Aspects of Security

