

Does logic locking work with EDA tools?

Zhaokun Han, Muhammad Yasin, Jeyavijayan "JV" Rajendran {hzhk0618, myasin, jv.rajendran}@tamu.edu Department of Electrical and Computer Engineering Texas A&M University

Supply Chain Security of Hardware

Countermeasure Threat	Watermarking	Split manufacturing	IC camouflaging	Logic locking
IP piracy & Overbuilding		\checkmark	\checkmark	\checkmark
Reverse engineering	X			
IC counterfeiting	\checkmark	X	X	\checkmark
Hardware Trojan X			X	

 \checkmark denotes a successful defense, X denotes an unsuccessful defense

Logic locking can defend against all these threats

Kahng et al., DAC'98; Imeson et al., USENIX'13; Roy et al., DATE'08.

Logic Locking

- Modifying logic and adding key inputs
- Only with correct key, the output is correct
- Secret key is stored in tamper-proof memory

incorrect key = 00

Original circuit

Locked circuit, with correct key=10

Existing Logic Locking Techniques

Attack	Que	Structural attack				
Defense	Sensitization	SAT, SMT	AppSAT, 2-DIP	SPS, ATR	FALL	SAIL
XOR-based (random, strong, fault-based LUT-based)	X	X	X			X
Point-function (AND-tree, SARLock, Anti-SAT)		\checkmark		X		
CAC-HD, CAC-flex				\checkmark	X	
CAC-rem	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

 \checkmark denotes a successful defense, X denotes an unsuccessful defense

- Point-function and CAC techniques are resilient to query-based attacks.
- CAC-rem is the only technique that defends against all existing attacks.

Rajendran et al., DAC'12; Subramanyan et al., HOST'15; Azar et al., TCHES'18; Shamsi et al., HOST'17; Shen et al., GLSVLSI'17; Yasin et al., ASP-DAC'16; Li et al., ICCAD'16; Sirone et al., DATE'19; Chakraborty et al., AsianHOST'18; Roy et al., DATE'08; Rajendran et al., DAC'12; Baumgarten et al., DTC'10; Li et al., ICCAD'16; Yasin et al., DATE'08; Rajendran et al., DAC'12; Baumgarten et al., DTC'10; Li et al., ICCAD'16; Yasin et al., DATE'08; Rajendran et al., DAC'12; Baumgarten et al., DTC'10; Li et al., ICCAD'16; Yasin et al., DATE'08; Rajendran et al., DATE'12; Baumgarten et al., DTC'10; Li et al., ICCAD'16; Yasin et al., DATE'08; Rajendran et al., DATE'08; Rajendran et al., DATE'08; Rajendran et al., DATE'08; Rajendran et al., DATE'12; Baumgarten et al., DTC'10; Li et al., ICCAD'16; Yasin et al., DATE'08; Rajendran et al., DATE'12; Baumgarten et al., DTC'10; Li et al., ICCAD'16; Yasin et al al., HOST'16; Xie et al., CHES'16; Yasin et al., CCS'17; Sengupta et al., TCAD'20.

Corrupted and Corrected (CAC)

- Aka stripped-functionality logic locking
- Components in CAC-locked circuit
 - Corrupted circuit
 - Protected input pattern (PIP)

 $\Box in \notin PIP \Leftrightarrow f_{orig}(in) \neq f_{cp}(in)$

O Correcting unit

 $\Box key = key_c \Leftrightarrow \forall in, f_{orig}(in) = f_{lock}(in, key)$

• CAC-rem is unbroken since 2020

[1]. Yasin et al., "Provably-secure logic locking: From theory to practice." CCS 2017.[2]. Sengupta et al., "Truly stripping functionality for logic locking: A fault-based perspective." TCAD 2020.

Logic Synthesis v.s. Logic Locking

Logic synthesis process

RTL design

Example of logic synthesis in logic locking

K-map of original circuit

Adding a minterm, 0000

Netlist

200 01 11 10 cd 00 01 10 1

Removing a minterm, 1111

Sparse Prime Implicant (SPI) Attack

- Using prime implicant table (PIT) to search for PIPs
 - Implicant: A cube that only covers ON-set minterms
 - O Prime implicant: The implicant cannot be covered by any other implicant
 - Sparse Prime implicant: Pls are "far" away in rest of Pls in PIT
- SPI attack process

Corrupted circuit

Corrupted circuit's PIT

Verified PIP

Original circuit's PIT

Original circuit

Results

Circuit	Competition-small				Competition-large				
Attack	b10	b11	b12	b13	b15	b17	b17L	b20	b22
SAT			\checkmark	\checkmark		X	X	X	X
AppSAT	X	X	X	\checkmark		X	X	X	X
ATR, SPS, FALL	X	X	X	X	X	X	X	X	X
SPI (proposed)	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark

✓ denotes a successful attack, X denotes an unsuccessful attack

CAC-rem locked circuit are from CSAW'19 logic locking competition

No one broke it during the competition

• SPI attack breaks all the locked circuits

More Details (in the paper)

- Scalability of SPI attacks
- What makes SPI attacks hard?

• PIPs that are far away from PITs of corrupted circuit (aka D2PIPs)

- Conventional benchmark circuits have only few D2PIPs (<100)
 - They are not secure; should we even use them for logic locking research?

Future work

- Encode Boolean circuits such that # of D2PIPs are increased
- Tradeoff between security and overhead

- sites.google.com/a/tamu.edu/zhaokun-han/
 - hzhk0618@tamu.edu
- TAMU Secure and Trustworthy Hardware (SETH) Lab: seth.engr.tamu.edu/

Zhaokun Han