
Zhaokun Han, Muhammad Yasin, Jeyavijayan “JV” Rajendran
{hzhk0618, myasin, jv.rajendran}@tamu.edu

Department of Electrical and Computer Engineering
Texas A&M University

Does logic locking work with EDA tools?



Supply Chain Security of Hardware
Countermeasure

Watermarking Split manufacturing IC camouflaging Logic locking
Threat

IP piracy & Overbuilding ✓ ✓ ✓ ✓

Reverse engineering ✗ ✓ ✓ ✓
IC counterfeiting ✓ ✗ ✗ ✓
Hardware Trojan ✗ ✓ ✗ ✓

Logic locking can defend against all these threats

✓ denotes a successful defense, ✗ denotes an unsuccessful defense

Kahng et al., DAC’98; Imeson et al., USENIX’13; Roy et al., DATE’08.



• Modifying logic and adding key inputs

• Only with correct key, the output is correct

• Secret key is stored in tamper-proof memory

Logic Locking

Locked circuit, with correct key=10Original circuit

incorrect key = 00

1
0

0
0
0

0
1
0
0

0

1

0

0

1



• Point-function and CAC techniques are resilient to query-based attacks.

• CAC-rem is the only technique that defends against all existing attacks.

Existing Logic Locking Techniques
Attack Query-based attack Structural attack

Defense Sensitization SAT, SMT AppSAT, 2-DIP SPS, ATR FALL SAIL

XOR-based (random, strong, 
fault-based LUT-based) ✗ ✗ ✗ ✓ ✓ ✗
Point-function (AND-tree, 
SARLock, Anti-SAT) ✓ ✓ ✓ ✗ ✓ ✓

CAC-HD, CAC-flex ✓ ✓ ✓ ✓ ✗ ✓

CAC-rem ✓ ✓ ✓ ✓ ✓ ✓

✓ denotes a successful defense, ✗ denotes an unsuccessful defense

Rajendran et al., DAC’12; Subramanyan et al., HOST’15; Azar et al., TCHES’18; Shamsi et al., HOST’17; Shen et al., GLSVLSI’17; Yasin et al., ASP-DAC’16; Li et al., 
ICCAD’16; Sirone et al., DATE’19; Chakraborty et al., AsianHOST’18; Roy et al., DATE’08; Rajendran et al., DAC’12; Baumgarten et al., DTC’10; Li et al., ICCAD’16; Yasin et 
al., HOST’16; Xie et al., CHES’16; Yasin et al., CCS’17; Sengupta et al., TCAD’20.



• Aka stripped-functionality logic locking

• Components in CAC-locked circuit

o Corrupted circuit

qProtected input pattern (PIP)

q𝑖𝑛 ∉ 𝑃𝐼𝑃 ⟺ 𝑓!"#$ 𝑖𝑛 ≠ 𝑓%& 𝑖𝑛

o Correcting unit

q𝑘𝑒𝑦 = 𝑘𝑒𝑦! ⟺ ∀𝑖𝑛, 𝑓"#$%(𝑖𝑛) = 𝑓&"!'(𝑖𝑛, 𝑘𝑒𝑦)

• CAC-rem is unbroken since 2020

Corrupted and Corrected (CAC)

[1]. Yasin et al., “Provably-secure logic locking: From theory to practice.” CCS 2017.
[2]. Sengupta et al., “Truly stripping functionality for logic locking: A fault-based perspective.” TCAD 2020.

Resilient against 
query-based attacks

Resilient against 
structural attacks



• Parse the functionality of corrupted circuit

Logic Synthesis v.s. Logic Locking

K-map of original circuit Adding a minterm, 0000 Removing a minterm, 1111

• Logic synthesis process

• Example of logic synthesis in logic locking

RTL design Netlist



Sparse Prime Implicant (SPI) Attack

Corrupted circuit Corrupted circuit’s PIT Verified PIP Original circuit’s PIT Original circuit

• Using prime implicant table (PIT) to search for PIPs

o Implicant: A cube that only covers ON-set minterms

o Prime implicant: The implicant cannot be covered by any other implicant

o Sparse Prime implicant: PIs are "far" away in rest of PIs in PIT

• SPI attack process



Results

✓ denotes a successful attack, ✗ denotes an unsuccessful attack

Circuit Competition-small Competition-large

Attack b10 b11 b12 b13 b15 b17 b17L b20 b22

SAT ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
AppSAT ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
ATR, SPS, FALL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SPI (proposed) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

• CAC-rem locked circuit are from CSAW’19 logic locking competition

o No one broke it during the competition

• SPI attack breaks all the locked circuits



• Scalability of SPI attacks

• What makes SPI attacks hard?

o PIPs that are far away from PITs of corrupted circuit (aka D2PIPs)

• Conventional benchmark circuits have only few D2PIPs (<100)

o They are not secure; should we even use them for logic locking research?

More Details (in the paper)

Future work

• Encode Boolean circuits such that # of D2PIPs are increased

• Tradeoff between security and overhead



Zhaokun Han

sites.google.com/a/tamu.edu/zhaokun-han/

hzhk0618@tamu.edu

TAMU Secure and Trustworthy Hardware (SETH) Lab: seth.engr.tamu.edu/


