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Abstract
Transfer learning has become a common solution to address
training data scarcity in practice. It trains a specified student
model by reusing or fine-tuning early layers of a well-trained
teacher model that is usually publicly available. However,
besides utility improvement, the transferred public knowledge
also brings potential threats to model confidentiality, and even
further raises other security and privacy issues.

In this paper, we present the first comprehensive investi-
gation of the teacher model exposure threat in the transfer
learning context, aiming to gain a deeper insight into the ten-
sion between public knowledge and model confidentiality. To
this end, we propose a teacher model fingerprinting attack to
infer the origin of a student model, i.e., the teacher model it
transfers from. Specifically, we propose a novel optimization-
based method to carefully generate queries to probe the stu-
dent model to realize our attack. Unlike existing model reverse
engineering approaches, our proposed fingerprinting method
neither relies on fine-grained model outputs, e.g., posteriors,
nor auxiliary information of the model architecture or training
dataset. We systematically evaluate the effectiveness of our
proposed attack. The empirical results demonstrate that our
attack can accurately identify the model origin with few prob-
ing queries. Moreover, we show that the proposed attack can
serve as a stepping stone to facilitating other attacks against
machine learning models, such as model stealing.1

1 Introduction

The past decade has witnessed an unprecedented development
of machine learning (ML). Yet, the progress of ML heavily
relies on sophisticated models, sufficient computing resources,
and a massive volume of training data, which remain major
constraints to building high-performance ML models.

Transfer learning opens a pathway for overcoming obsta-
cles raised by the lack of data or computing resources; it is

1Our code is available at https://github.com/yfchen1994/
Teacher-Fingerprinting.

essentially an ML paradigm to transfer the knowledge from a
well-learned domain into a specified domain where training
data are scarce. Concretely, transfer learning establishes a
new model (a.k.a. student model) through borrowing early
layers from a pre-trained model (a.k.a. teacher model), which
requires far less efforts than training from scratch. It has been
proved to be a promising ML practice and widely applied in a
wide range of academic and industrial areas, such as computer
vision [28], natural language processing [50], etc.

Despite the huge success, such cross-domain knowledge
learning paradigm also raises security and privacy concerns:

• There exist many advanced ML models, each of which
can potentially serve as a teacher model for transfer learn-
ing. Choosing an appropriate teacher model to train a
student model requires a large number of engineering ef-
forts. Thus, for a student model, the choice of its teacher
model certainly belongs to the model owner’s intellec-
tual property (IP), and should be kept confidential.

• On the other side of the coin, from the responsible ML
perspective, a teacher model owner does not want their
model to be transferred to perform unethical or illegal
tasks, such as facial recognition or weapon classification.
Thus, a teacher model owner needs a way to track the
parties that use their model to build student models.

• Malicious parties can intentionally publish vulnerable
ML models online. When such models are used as
teacher models for transfer learning, the corresponding
student models may inherit some vulnerabilities. For in-
stance, Zhang et al. demonstrate that fine-tuned transfer
learning models are more prone to transferable adver-
sarial examples [48]. Yao et al. show that an attacker
can infect transfer learning models by distributing pre-
trained models with backdoors [45].

• Also, after learning the teacher model that a student is
transferred from, an attacker can perform more effec-
tive malicious attacks, such as adversarial example at-
tacks [11] and model stealing/extraction attacks [40].

All these concerns require us to gain a deeper insight into
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the teacher model exposure or transfer learning.
In this paper, we present the first comprehensive investi-

gation of the teacher model exposure threat in the transfer
learning context. In particular, we propose a novel teacher
model fingerprinting attack that can effectively identify the
teacher model of a transferred student. The key idea is to
generate a set of fingerprinting pairs for each teacher model
candidate, which will activate similar latent feature represen-
tations. Hopefully, most of them will also trigger similar latent
features and bring a pair of similar responses to the student
model, if the student model is transferred from the teacher
model candidate. We formalize the query generation process
as an optimization problem, which can be solved via gradient
descent. Note that, the fingerprinting pairs for each teacher
model can be applied to all student models transferred from
the teacher model, i.e., they are reusable. This point demon-
strates the efficiency and practicality of our method.

We conduct extensive experiments to investigate the ef-
fectiveness of our proposed method, and thoroughly evaluate
how various factors affect attack performance. The evalua-
tion shows that our attack can achieve high teacher model
inference accuracy even with a limited number of queries in
top-1 label exposure. Moreover, our attack still works well
when synthesizing queries from samples unrelated to the tar-
get domain, or even from random noises. In addition, we show
that our fingerprinting attack can serve as a stepping stone to
performing more effective model stealing attacks.

Our study should not be confused with recent research
efforts on model stealing or model reverse engineering:

Their primary goal is to directly steal the exact victim
model, build a surrogate model with similar functionality,
or infer other internal model information. By contrast, our
proposed attack essentially focuses on exploiting the model
sharing practice in transfer learning, to quickly identify the
presence of pre-trained components. Once identifying the
teacher model components, the attacker has stepped further
to realize the aforementioned malicious or unethical goals.

Besides, from the technical perspective, our attack reme-
dies the key weakness—significance attack expense caused
by massive attack queries or shadow models—of prior arts.
Our attack just needs to identify the transferred feature map
with few queries, rather than recovering model parameters or
architectures interactively.

Furthermore, previous studies are subject to extra attack
assumptions, such as transparent model architectures [9] and
fine-grained model outputs [40]. E.g., the teacher model fin-
gerprinting method proposed by Wang et al. [42] requires
access to posteriors of the target model prediction. However,
in the real world, raw model outputs are usually perturbed or
hidden for security [20] or other product deployment concerns.
Instead, our work is set up on a more generic and realistic sce-
nario. We assume the attacker exclusively receives the victim
black-box model’s final decision, i.e., the top-1 classification
result, which gives the minimum amount of information. This

assumption implies that our proposed attack is likely to be
mounted on any transfer learning classifiers. Additionally,
we assume the attacker has zero knowledge of the victim’s
training dataset, but they are allowed to utilize public data.
These assumptions ensure our proposed method is feasible
and applicable in practice.

Our main contributions can be summarized as follows:
• We take the first step to comprehensively investigate the

teacher model exposure in the transfer learning context.
In particular, we demonstrate a teacher model fingerprint-
ing attack against transfer learning.

• We propose a novel optimization-based technique to
implement our attack.

• Extensive evaluations demonstrate the efficacy of our
method, and we further show that our teacher model fin-
gerprinting attack can be used to facilitate model stealing
attacks against ML models.

2 Preliminaries

2.1 Problem Statement
Transfer learning. Transfer learning is commonly used to
solve the data-hungry problem of ML, especially for deep
learning models [22, 34, 39]. The core is to leverage the
feature maps learned by the teacher model, so as to avoid
significant cost of training a large model from scratch.

In the source domain, the teacher model T has been trained
on a large scale dataset DT = {(xi,yi)}NT

i=1,2 and then it is re-
leased for other downstream ML developers. In a typical
transfer learning workflow, the student model S is firstly con-
structed with early k layers copied from T for feature extrac-
tion, as well as newly added classification layers CS(·) (e.g.,
fully connected layers, SVM, etc.) on the top. Then, S gets
trained on a usually confidential dataset DS = {x j,y j)}NS

j=1,
where NS ≪ NT. In practice, there are two training strategies:

• Feature extractor, where all pre-trained layers are
frozen to compose a feature extractor FT.

• Fine-tuning, where part of the pre-trained parameters
of FT will be updated for better fitting on DS.

After being carefully trained, S is deployed into a Machine-
Learning-as-a-service (MLaaS) platform to provide services.
A customer can send a query x to the MLaaS service and get
the corresponding result f (S(x)), via an authorized API f (·).
Teacher model fingerprinting. In this paper, we develop a
novel approach to infer the origin of a student model with only
black-box access. Our motivation is that the student model
is likely to inherit fingerprintable model behaviors, i.e., the
way to extract features in our case (a.k.a. feature map), from
the teacher model. Some attackers can possibly elicit such
fingerprintable behaviors by sending carefully crafted queries
to the student model, which is sometimes concealed into an

2In this paper, the notation {·} refers to a multiset, which may contain
repeated values.
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MLaaS platform. Consequently, they are able to identify the
teacher model based on the victim’s responses. We refer to
this process as teacher model fingerprinting attacks.

2.2 Threat Model

Attack motivations. We first list potential motivations to
conduct the teacher model fingerprinting attack.
Breaking model confidentiality. Internal model setup, such
as architecture or parameters, is supposed to be kept confi-
dential for the sake of IP protection or security consideration.
However, the model behind an MLaaS platform is no longer
a secret once the teacher model has been identified. The at-
tacker can effortlessly recover early layers with the publicly
transparent teacher model information.
Stepping stone to advanced attacks. As mentioned before, our
teacher model fingerprinting attack provides a cheap way to
recover most parameters inherited from the teacher model,
which helps to open the “black box.” Once opening the black
box, the attacker has stepped further to discover and exploit
vulnerabilities of the student model. For instance, they can
easily conduct various white-box adversarial attacks against
the victim model, such as adversarial example attacks [10]
and membership inference attacks [24]. Also, recent studies
have shown that transfer learning may transfer vulnerabilities
from the teacher [48], which the attacker can directly exploit.
Forensics. Despite the aforementioned malicious goals, we
can also treat our teacher model fingerprinting attack as a
new forensic tool for ML applications. For instance, a teacher
model owner does not want their model to be transferred to
perform unethical or illegal tasks, such as weapon classifi-
cation. A potential IP protection solution is to embed water-
marks to model [8, 25, 47]. However, we are witnessing an
arms race right now, where watermarking schemes would be
broken by new attacks [29]. Our fingerprinting approach can
complement watermarking for IP protection. Also, in some
cases, certain parties can intentionally publish a vulnerable
teacher model, which will result in the corresponding student
models inheriting vulnerabilities [45]. For both of these cases,
our attack can be used by a third-party forensic service as a
defense to track the origin of a student model.
Threat model in detail. Then, we describe the detailed threat
model in real-world settings. For our teacher model finger-
printing attack, we consider an attacker with black-box access
to the victim student model S . The attacker is able to send an
arbitrary input x to S via an authorized API f (·) and receive
the corresponding response f (S(x)). Three cases may arise.

• Case 1. f (S(x)) = S(x). In a low-level security setting,
the response exposes the exact model output, which con-
tains class labels and raw confidence values.

• Case 2. f (S(x)) = S(x)+ ε. The MLaaS provider re-
turns a perturbed version of the model output to avoid
privacy breaches like membership inference attacks [20].
It is notable that the perturbation should not change the

top-1 predicted label [20], i.e., argmaxi (S(x)+ ε)i ==
argmaxi S(x)i ( S(x)i: the i-th component of S(x)).

• Case 3. f (S(x)) = argmaxi S(x)i. Only the top-1 label
is returned, giving the minimal piece of information [26].

This work demonstrates the teacher model fingerprinting at-
tack in the most restrictive case—top-1 label exposure, i.e.,
Case 3 where f (x) = argmaxi S(x)i.3 In this case, our pro-
posed attack is compatible with Case 2: on the one hand, the
output perturbation in Case 2 would not change the top-1
predicted label; one the other hand, even the perturbed model
output at least provides information no less than Case 3.

In our basic setup, we assume the attacker has obtained
most potential teacher model candidates {Ti} from public
resources (e.g., ML frameworks like PyTorch, or websites
like ModelZoo [1]). We also consider possible cases where
the victim model does not come from one of the candidate
teacher models, or it is not trained through transfer learning.
Neither the teacher dataset DT in the source domain nor the
student dataset DS in the target domain is available. However,
the attacker can collect public datasets like ImageNet to help
perform the teacher model fingerprinting attack. The attacker
has two primary goals: one is to infer the teacher model ac-
curately, while the other is to use as few probing queries as
possible, to limit attack costs and keep the attack stealthy.

3 Teacher Model Fingerprinting

3.1 Overview
In the beginning, we formalize the teacher model fingerprint-
ing attack in the transfer learning context:

Definition 3.1 (Teacher Model Fingerprinting Attack). Sup-
pose there is an attacker given a set of N realistic inputs
{xi} (a.k.a. probing input), a set of teacher model candidates
{T j}, and an authorized API f (·) to the target black-box stu-
dent model S in only top-1 label exposure, the teacher model
fingerprinting attack is to infer which T j is adopted by S .

We start from the feature extractor transfer learning set-
ting. Suppose there is a student model S composed of a fea-
ture extractor FT, with early k components copied from the
teacher model T , and newly trained classification layers CS.
Our intuition is that given a probing input x, we can artifi-
cially craft a synthetic input x′ so that FT(x′)≈ FT(x). Hope-
fully, we will activate similar outputs on the student model as
S(x′) = CS(FT(x′))≈ CS(FT(x)) = S(x), and therefore have
a greater chance to receive similar responses from the API. In
this case, we refer to the pair ⟨x,x′⟩ as a fingerprinting pair.
Although the above intuition stands on the feature extractor
scenario, in Section 4.3.3, we will show that our attack still
works in the fine-tuning setting.

Figure 1 provides a schematic view of our teacher model
fingerprinting attack. Overall, it follows two steps:

3In the remaining, we abuse the notation f (x) to represent f (S(x)).

USENIX Association 31st USENIX Security Symposium    3595



Student Model (S)

…

Pretrained components
Newly trained components

Probing Input

argmax& T (x)& : “Airplane”
argmax& T (x’)&: “Airplane”

Teacher Model (T)

Synthetic Input

FT(x)
≈

F’T(x’)

Latent
Representation

min
x’

||FT(x)−F’T(x’)||2

Attacker Side

S(x)
S(x’)

Victim Side

API

x

x’

API

k components

k components

f (x) : “Bird”
f (x’): “Bird”

FT(·)

F’T (·) CS (·)

Fine-tuned components

…

Figure 1: Illustration of our fingerprinting attack. Given a
probing input x and a teacher model T , the attacker aims to
find a synthetic input x′, which will activate a similar latent
representation at the k-th component with x: FT(x′)≈ FT(x).
If the first k components of the student model S comes from
the teacher model T , some of which may get slightly fine-
tuned (still, F ′

T (·) ≈ FT(·)), the student model is likely to
produce a pair of similar responses S(x′)≈ S(x).

Step I: generating a set of fingerprinting pairs {⟨xi,x′i⟩}.
To perform the teacher model fingerprinting attack, the at-
tacker firstly collects a set of candidate teacher models and
realistic probing images. For each candidate teacher model
T j, the attacker needs to determine which components may
constitute the feature extractor FT j for the student model.
Conventionally, the student model will adopt the whole con-
volution part from the teacher model. Then, for each probing
input xi, the attacker aims to craft a synthetic input x′i, which
will trigger similar latent representations on FT j . We will
study how the choice of components of FT j , the number of
{xi}, as well as the source of {xi} affect the proposed attack
in Section 4.3.2, Section 4.3.4, and Section 4.3.5, respectively.

This attack query generation procedure ensures our attack
is a cheap one, since: i) the query generation procedure is
locally conducted without any expense by the target MLaaS
service, and ii) for fingerprinting pairs bonded to FT j , they are
reusable to probe whether other student models come from
FT j , without further computation costs on query generation.
Step II: inferring the teacher model according to black-
box responses {⟨yi,y′i⟩}. After obtaining fingerprinting pairs,
the next step is to send them to the target black box, and
infer which teacher model is used according to the responses.
Ideally, if the target model relies on the feature extractor FT j ,
most generated fingerprinting pairs would produce a pair of
responses matched on the same label. The inference stage
follows the “one-of-the-best” strategy: choosing the candidate
owning the most matched responses as the inference result.
In Section 5, we will introduce a strategy for robust inferences.

3.2 Step I: Attack Query Generation
For our teacher model fingerprinting attack, we use the L2-
norm metric to measure the similarity of latent representations.
Given a probing input x and a candidate feature extractor FT,
we formalize the attack query generation task as

x′ = argmin
x̃

∥FT(x̃)−FT(x)∥2, s.t. x̃ ∈ [0,255]. (1)

For the constrained optimization problem Equation 1, we
adopt the optimization strategy proposed by Carlini and Wag-
ner [11]: by introducing a new variable w, and setting

tanh(w) =
2x̃

255
−1, (2)

we have −1 ≤ tanh(w)≤ 1, and

−1 ≤ 2x̃
255

−1 ≤ 1 ⇒0 ≤ x̃ ≤ 255, (3)

which satisfies the constraints. Therefore, the original prob-
lem Equation 1 can be converted to

w′ = argmin
w

∥∥∥∥FT

(
255

2
(tanh(w)+1)

)
−FT(x)

∥∥∥∥
2
, (4)

which can be solved by gradient descent algorithms. We use
the Adam optimizer [21], with learning rate set as 10−3 for
30,000 iterations. In our implementation, we initialize w as 0.

However, due to type casting (floating points to integers)
and optimization loss, FT(x) cannot be perfectly equal to
FT(x). So after obtaining the synthetic input x′, we will exam-
ine whether argmaxi T (x)i == argmax j T (x′) j on the candi-
date. If not, we will discard x′ and generate a new one.

3.3 Step II: Teacher Model Inference
The next step is to infer whether the student model comes
from one of the candidate teacher feature extractors. For each
candidate feature extractor, the attacker can generate a set of
fingerprinting pairs and send them to the black-box student
model. Intuitively, for a specific feature extractor FT, the more
matched pairs of black-box responses are obtained, the more
likely the target model is transferred from FT. Here we define
the matching set useful for further discussion.

Definition 3.2 (Matching Set). After sending N fingerprinting
pairs, all the pairs triggering two same API responses (yi ==
y′i) compose the matching set Smatch.

We use three heuristics to measure how much “belief” the
attacker has to infer the teacher feature extractor.
Matching proportion. A high matching proportion of fin-
gerprinting pairs indicates a high possibility that the target
student model uses the same feature extractor as the attacker.
We compute the matching proportion as a primary metric
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to depict how “perfectly matched” the candidate is with the
target feature extractor.

Pmatch =
|Smatch|

N
.

The attacker will obtain a fingerprinting vector composed of
matching proportions vfgpt = [P1

match,P
2
match, · · · ] for all candi-

date feature extractors [FT1 ,FT2 , · · · ]. Then the attacker will
choose the candidate feature extractor that achieves the high-
est Pmatch as their inference result. Moreover, there are cases
where the actual teacher model does not belong to the candi-
date feature extractor set, or the target model is not trained by
transfer learning. To handle these cases, our attack introduces
a pre-defined threshold τ. If max(vfgpt)< τ, the inference re-
sult will be set as NULL, which means that the target model is
not transferred from the candidate feature extractors.

A high matching proportion is insufficient to prove that the
candidate feature extractor is adopted by the student model.
It is also possible to obtain matched pairs from unmatched
features. That is, the latent features extracted from probing
inputs and synthetic inputs are significantly different. We will
dive into such “false matching” phenomenon in Section 5.
Eccentricity. Eccentricity is adopted by [30] to measure how
an item “stands out” from the rest in a set. It is defined as

E(v) =
max(v)−max2(v)

σ(v)
,

where max(·) and max2(·) refers to the first and second high-
est value, respectively, and σ(·) refers to the standard devia-
tion. The higher the eccentricity of vfgpt, the more distinguish-
ing is max(v), and the more confident the attacker is to make
the inference.
Empirical entropy. Here, we introduce the empirical entropy
of a set as a heuristic to measure how much “information” the
set presents. Formally, for a set {x1,x2, · · · ,xn} and a sample
space X , the empirical entropy is defined as:

H(X ) =− ∑
x∈X

p̂(x) log p̂(x),

where

p̂(x) =
1
n

n

∑
i=1

1(xi == x),

and 1(·) is the indicator function. We calculate the empirical
entropy of the matching set with the highest Pmatch, to esti-
mate how much information is given to make the inference.

4 Evaluation

4.1 Dataset
We use the following datasets to train student models:
Dogs-vs-Cats. Our Dogs-vs-Cats dataset contains 12,500 dog
and 12,500 cat images from the Internet [2]. We select the

first 10,000 dog images and the first 10,000 cat images to
compose the training set. The remaining 2,500 dog images
and 2,500 cat images compose the testing set.
MNIST. The MNIST dataset [3] is a widely used dataset to
build up toy image recognition ML models. It consists of
60,000 training and 10,000 testing handwritten digit samples,
containing ten classes from digit 0 to digit 9.
CIFAR10 and CIFAR100. The CIFAR10 and CIFAR100
datasets [4] are another two widely adopted ML datasets.
The CIFAR10 dataset contains ten classes, with 5,000 train-
ing samples and 1,000 test samples in each. The CIFAR100
dataset is similar to the CIFAR10, except that the former has
100 classes with 600 images in each, including 500 training
and 100 testing images.
STL10. The STL10 dataset [5] is originally designed to de-
velop supervised as well as unsupervised learning models.
Our experiment uses the labeled set covering ten classes, with
500 training images and 800 test images per class.
CelebA. We use the first 50,000 facial images as training
samples and the following 10,000 facial images as the test
samples from the CelebA dataset [27], which are annotated
with 40 binary attributes. For CelebA, we build up multi-label
transfer learning models to tag each image with 40 attributes.

We also use different datasets to generate probing inputs:
VOC-Segmentation. Our experiments assume the attacker
has obtained the training dataset for the segmentation task
of the VOC2012 challenge [6], consisting of 1,464 samples.
Besides, we further assume the image annotation information
(i.e., segmentation and class information) is unavailable.
Random Noise. This dataset simulates the case that the at-
tacker cannot acquire any realistic image to build up the attack
dataset. In this scenario, they have to synthesize images with
randomly generated pixels to compose the attack dataset. We
assume the attacker samples each pixel by the normal distri-
bution and normalizes it into an integer within [0,255].

For all images used in our experiments, they are firstly
preprocessed into the 8-bit 224×224 RGB format.

4.2 Experiment Setup
Teacher models. We have downloaded pre-trained models
AlexNet, DenseNet121, MobileNetV2, ResNet18, VGG16,
VGG19, and GoogLeNet from the official repository of Py-
Torch. Furthermore, to examine whether our proposed attack
can discriminate teacher feature extractors with the same ar-
chitecture trained by different organizations, we have also
downloaded an AlexNet model from the PyTorchCV package
repository [7]. The detailed information of the pre-trained
models is listed in Table 3. We adopt the whole convolution
part of each pre-trained model as the feature extractor in our
experiments. Particularly, for VGG16 and VGG19, we also
adopt the fully connected layers, except the last output layer.
Student models. For the Dog-vs-Cats, MNIST, STL10, CI-
FAR10, and CIFAR100 dataset, we develop multi-class clas-
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sification students models. As for the CelebA dataset, we
develop multi-label models which annotate the input with
40 binary attributes simultaneously. We build up three stu-
dent models for each pre-trained feature extractor individually,
by appending different fully connected layers. The detailed
transfer learning setup is described in Appendix E. Our basic
transfer learning setup is the feature extractor approach. That
is, the parameters of the pre-trained feature extractor are fixed.
Furthermore, in Section 4.3.3, we will evaluate the attack per-
formance when some components of the feature extractor get
fine-tuned during the transfer learning process.
Other targets not trained with transfer learning. In our
experiments, we also consider target models trained from
scratch, which have the same model architectures with
AlexNet and ResNet18 student models.
Basic setup. Here we introduce the basic attack setup, fol-
lowed by most of our experiments unless otherwise specified.
We assume the attacker has owned seven pre-trained feature
extractors from public resources (models listed by Table 3 ex-
cept for GoogLeNet), and they have crafted 100 fingerprinting
pairs for each teacher feature extractor. For the ease of com-
parison, we also assume that for each candidate teacher model,
the attacker knows how many layers of the teacher model will
be used (e.g., k in Figure 1 is known). We will investigate the
case when k is unknown in Section 4.3.2. We randomly select
the attacker’s probing images from the VOC-segmentation
dataset, which does not overlap with the training dataset of the
teacher models or student models. In Section 4.3.5, we will
investigate the attack effectiveness when no realistic probing
image is available. Only the top-1 classification label will be
reported by the black-box target, except that the multi-label
classifier trained on the CelebA dataset will return 40 facial at-
tributes. We assume the input format and input pre-processing
module are transparent to the attacker. For most real-world ap-
plications, the input format is described by the API reference
book. Otherwise, it is also feasible to infer the input format
efficiently with some reverse engineering techniques [44].
Choice of τ. We assume our target is a c-class classifier. When
the classifier simply outputs random results, the probability
that the attacker receives a pair of matched responses is 1

c . To
avoid such random matching, we should at least ensure τ > 1

c .
A generic way is to preset a positive number β > 1 and let
τ = β

c . Also, we must ensure β ≤ 2 so as to when c = 2, τ will
not exceed 1. When there are no auxiliary dataset and model
to help determine τ, we directly set τ = 1.5

c .
However, when c becomes large, τ ≈ 1

c . Another feasi-
ble way is to empirically find a τ. In our experiment, we as-
sume the attacker owns another classification dataset Fashion-
MNIST [43]. For each candidate model, the attacker first
trains five student models on the Fashion-MNIST dataset.
Then, for a specific τ, the attacker randomly chooses around
50% teacher candidates from the candidate set (3/7 in our
case), and launches inference attacks against the student mod-
els. After repeating this process 20 times, the attacker calcu-
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Figure 2: ROC curve with different τ. Each point refers to a τ.

lates the true positive rate (TPR) and false positive rate (FPR),
where we assume that the student coming from a teacher can-
didate is a positive event. By increasing τ from 0 to 1, the
attacker can obtain the ROC (receiver operating characteristic)
curve for analysis, as presented in Figure 2. τ = 0.3 is a good
choice, as it achieves a high TPR and a low FPR. Finally, we
set τ as max( 1.5

c ,0.3).

4.3 Evaluation Results
4.3.1 Overview

We exhibit our basic experiment results on transfer learning
targets in Figure 3. Each row of the subfigure represents a
fingerprinting vector vfgpt against a specific student model, in
which each column reports the matching proportion Pmatch on
one teacher feature extractor candidate. For all the 126 victim
student models transferred from the seven teacher model can-
didates, the teacher model candidates with the highest Pmatch
are consistent with the ground truths (i.e., 100% inference
accuracy). Also, our attack against 13 out of 18 GoogLeNet
student models and 31 out of the 36 trained-from-scratch mod-
els returns NULL. For the ease of analysis, in the remaining
parts, we mainly consider the case that all the possible teacher
candidates are obtained by the attacker, which is a common
assumption by existing work [42, 45].

Our first observation is that, in general, the more classes
that the transfer learning task involves, the stronger evidence
the attacker can receive to infer the teacher model. We can
see that for the CIFAR100 learning task, the highest Pmatch is
significantly higher than other elements of vfgpt, which con-
veys strong evidence that the student model is likely to be
transferred from the corresponding teacher model. In the
meanwhile, the evidence drawn from the Dogs-vs-Cats stu-
dent models is not so obvious, as we can see high Pmatch on
multiple teacher feature extractor candidates. For instance,
when sending fingerprinting pairs generated from VGG19
to the three black boxes transferred from the VGG16, the
attacker has achieved Pmatch as 0.66, 0.76, and 0.86, respec-
tively. They are relatively high compared with these on the
CIFAR100 targets (0.13, 0.04, and 0.08).

Our second observation is that the student dataset possibly
affects the attack performance. For the four 10-class classi-
fication tasks, we can see that the discrimination between
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elements of vfgpt in an attack against MNIST student models
is less evident than in the other three kinds of transfer learning
student models. In fact, the attack performance is subject to
the similarity between the student dataset and the probing
dataset. We will study this phenomenon in Section 4.3.5.

4.3.2 For Unknown k

In practice, the number of components k used by the teacher
model is usually available when the teacher model gets re-
leased [45]. But it is still worth investigating the rare case
when k is unknown. In this case, we choose the following
strategy to identify k: for all possible values of k, the attacker
synthesizes attack queries. Then, the attacker launches attacks
with different k, from the smallest value to the largest value.
For each k, if the predicted result is not NULL, we will record
the current candidate model and the corresponding k as the
inference result. Otherwise, the inference process will stop.
Setup. Basically, in our experiment, we group pre-trained
layers by separating them by the pooling layers, and we call
each separated part a “block.” In our experiment, we freeze
or fine-tune blocks instead of individual layers. We report the
number of blocks for each FT in our experiment in Table 3. So,
in our case, we choose to identify the number of pre-trained
blocks instead of the number of pre-trained layers k. In our
experiment, we consider teacher models removing the last
pre-trained block and the last two pre-trained blocks, since in
practice, deep features are wanted [45]. It is notable that we
freeze all pre-trained components in this experiment.
Results. For the target models removing the last block, we
achieve a 100% (126/126) inference accuracy. Meanwhile, for
the target models removing the last two blocks, we achieve a
65.87% (83/126) inference accuracy.

One possible illustration of this phenomenon is that the
earlier layers extract more generic visual features from the
input, such as edges, dots, and textures. In contrast, the deep
layers extract more abstract features (like complex patterns,
objects, and even concepts), which is more specific knowl-
edge of the teacher dataset. That means features from deeper
layers carry the information on how the teacher model refines
knowledge from inputs, and therefore they are the key to ex-
tracting teacher model fingerprints. We can think that most
part of the teacher model fingerprint is removed when deep
layers get discarded.

Figure 4 exhibits some synthetic inputs generated from
different blocks. We can observe that synthetic inputs gener-
ated from lower-level blocks tend to present more concrete
contents, i.e., the “plane” pattern presented in the probing
input. Meanwhile, synthetic inputs from high-level blocks
look more like abstract “noisy patterns.” To understand this
phenomenon, we need to review how features are extracted
and propagated layer by layer. On early layers, local patterns
of the synthetic input are captured, while on deep layers, a
global and abstract description of the input is extracted. As

a result, only if the synthetic inputs contain sufficient visual
details and local patterns (edges, dots, etc.) can they activate
similar low-level features with the probing inputs. Consider-
ing an extreme case: when we generate a synthetic input with
the probing input on the input layer, we tend to produce a
copy of the probing input. Consequently, they are more likely
to result in matched responses on different models, because
they are close to the probing inputs on too many low-level
features. It leads to more unwanted matches on victims trans-
ferred from other teacher candidates. Hence, it is critical to
extract fingerprints from deep layers.

4.3.3 Impact of Fine-Tuning

Fine-tuning is a commonly adopted strategy for better model
performance or faster model convergence [14]. Here, we ex-
plore how fine-tuning techniques affect the attack.
Setup. Recall that we divide pre-trained feature extractors
into blocks. We study the following cases: frozen feature
extractor, and the last one to five blocks get fine-tuned. In
general, when more blocks get fine-tuned, more disturbances
are introduced to the pre-trained model.
Results. We evaluate the average inference accuracy for each
case and plot them in Figure 5a. In general, the inference
accuracy is likely to decrease when more parameters get
fine-tuned. We present fingerprinting vectors when one and
two blocks get fine-tuned in Figure 15 and Figure 16. We
also statistically study the eccentricity of vfgpt as exhibited
in Figure 5b. Our key observation is that the eccentricity
of fingerprinting vectors significantly decreases when we
fine-tune pre-trained layers of ResNet18, MobileNetV2, and
DenseNet121, while fine-tuning high-level pre-trained layers
of other targets have less impact on the attack performance.
After checking the pre-trained model architecture, we find
another potential cause of this phenomenon: ResNet18, Mo-
bileNetV2, and DenseNet121 contain batch normalization
layers between convolution layers. When fine-tuned on new
datasets, the empirical mean and variance of the batch normal-
ization layer are updated gradually. It may cause a significant
change in the latent feature representation, breaking the basic
assumption that the F ′

T (·)≈ FT(·).

4.3.4 Impact of Query Budget

Then query budget is a primary concern of a query-based
attack. A low query budget will not only limit the attack cost,
but also help the attacker to keep stealthy.
Setup. In our experiment, we examine the effect of the query
budget by simulating attacks that send 1, 2, 5, 10, 20, 50, and
100 fingerprinting pairs for each teacher candidate.
Results. Figure 6 depicts attack performance on different
query budgets, i.e., the number of fingerprinting pairs for each
teacher model candidate sent to the target black box. There-
fore, the total number of queries is 2∗query budget∗ |{FT j}|.
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Figure 3: Teacher model fingerprinting vectors w.r.t. different classification tasks (100 fingerprinting pairs for each teacher model
candidate, in the feature extractor setting). The x-axis represents the candidate teacher model, while the y-axis represents the
actual teacher model. Each row refers to a vfgpt, and every three adjacent rows correspond to three different student models from
the same teacher model, e.g., the first three rows of each subfigure represent three different models transferred from AlexNet.
Note: “GoogLeNet” in the y-axis shows the case that the actual teacher model does not belong to the candidate set (i.e., models
annotated by the x-axis). In this case, our attack against 13 of 18 GoogLeNet student models returns NULL (i.e., “no answer”).
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Figure 4: An example of how probing features affect syn-
thetic inputs. The picture at the left top corner is the original
probing input. Each row refers to synthetic inputs generated
by features from different blocks, and each column refers to
synthetic inputs for a specific candidate teacher model.

Overall, as the query budget grows, the inference accuracy
increases rapidly. When the query budget reaches 50, the to-
tal inference accuracy achieves 100%. It suggests that our
attack can avoid possibly high query charge caused by ex-
isting model reverse engineering attacks [32, 40]. We also

see that the attack on more complex tasks (more classes and
more complicated inputs) tends to achieve higher inference
accuracy. For example, inference accuracy on CIFAR100 clas-
sifiers exceeds 80% even the query budget is limited to 10.

To gain a deeper insight, we also examine the average ec-
centricity of vfgpt and the average entropy of Smatch with the
highest Pmatch. We find that there possibly exist some corre-
lations among eccentricity, entropy heuristics, and inference
accuracy. Firstly, the attack against a more complex transfer
learning task is likely to bring higher “inference belief.” For
instance, the attack on CIFAR100 classifiers shows relatively
high average eccentricity and entropy compared to other learn-
ing tasks. Secondly, we can observe that as the query budget
increases, the average eccentricity of vfgpt and the average
entropy of Ssupport also rise. This phenomenon is consistent
with our intuition: more queries are supposed to return more
“evidence” to the attacker (higher entropy), and thus, the at-
tacker has more confidence (higher eccentricity) to perform
the inference, and they have a higher chance to hit the correct
answer (higher accuracy).
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Figure 5: Performance on fine-tuned feature extractor layers:
(a) average inference accuracy and (b) average eccentricity of
vfgpt w.r.t. seven different FT. Each line corresponds to one
teacher model. When fine-turning the last four or the last five
blocks, we decrease the learning rate from 10−3 to 10−5, so as
to achieve a stable learning process. Such learning rate change
leads to some turning points for x=3 in the plot. For x=4 and
x=5 in the plot, though the number of fine-tuned parameters
grows up, a lower learning rate reduces the absolute change
of these parameters, which might lead to a higher inference
accuracy.
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Figure 6: Performance on different query budgets. Each line
depicts the attack performance on a specific transfer learning
task. We have achieved 100% inference accuracy when the
query budget reaches 50 (pairs for each teacher model can-
didate). On transfer learning tasks with more complex input
patterns and more classes, we get higher eccentricity and en-
tropy heuristics.

4.3.5 Impact of Probing Inputs

One of our basic attack assumptions is that any information
about the population of DS is unavailable. Previously, we
use probing inputs from a public dataset, VOC-Segmentation,
which is not overlapped with DS. But what if when there
exists a “stronger” attacker, who has collected probing inputs
following the same distribution with DS; or there is a “weaker”
attacker, who has no access to any realistic data?
Setup. To this end, we investigate how probing datasets af-
fect attacks with extra evaluations on the other three probing
datasets:

• MNIST and CelebA. They are realistic images and
share the same distribution with DS. We randomly
choose 100 probing inputs from the MNIST and CelebA

testing dataset, respectively. In this case, the DS and the
input probing dataset are still not overlapped.

• Random Noise. This is an extreme case where no re-
alistic images are available. We randomly sample 100
probing inputs from the normal distribution.

Results. Overall, using the VOC-Segmentation dataset, in
general, achieves good performance, while Random Noise
leads to the worst performance. We plot the attack perfor-
mance with MNIST, CelebA, and Random Noise probing
data in Figure 11, Figure 12, and Figure 13 respectively.

The major obstacle to using Random Noise data as probing
inputs is the low entropy of Smatch. We find that the target
model often classifies Random Noise inputs to a specific
label, leading to a low entropy value of Smatch. Meanwhile,
when we choose MNIST as the probing dataset, we have
achieved high entropy values and 100% inference accuracy
(query budget is 100) on the MNIST-classification targets.
We have similar observations when using CelebA as probing
inputs for CelebA-classification models. This is expected:
with sufficient probing inputs from the same distribution with
DS, the attacker can increase the variety of output labels and
increase the entropy of Smatch. Consequently, they have more
information to make a reliable inference. We will further
analyze how the probing inputs affect the attack in Section 5.

5 More Robust Teacher Model Fingerprinting

The experimental results exhibited in Section 4 have shown
that the naïve “one-of-the-best” strategy is effective in most
cases. However, we can also find that it is possible to obtain a
high Pmatch by a mismatched feature extractor. For instance,
in Figure 3, for MNIST classification student models, we get
Pmatch = 0.86 with an AlexNet candidate against a VGG19-
based student model. It indicates there would exist a consid-
erable number of “false matches” in the matching set Smatch.
One possible reason for the false-matching problem is that
most attack queries (especially the synthetic input) belong
to unrecognizable contents of the target black box. In this
scenario, the target classifies a pair of “meaningless” inputs
into the same class occasionally, even if they produce very
different features. We can understand this phenomenon in an
extreme case: supposing a black box only returns the label
“1” to any input. In this case, all our sent fingerprint pairs will
activate seemingly perfect matched responses, and we will
surely get Pmatch = 1 for each candidate teacher feature extrac-
tor. But it is obvious that we cannot find out the actual teacher
model as we are unable to affect the black-box’s behavior.

We design inference strategies leveraging statistical testing
methods to alleviate the impact of false-matching problems.
Here we firstly give one definition for further discussion.

Definition 5.1 (Supporting Set). After removing the ele-
ments with the maximum occurrence from Smatch, the remain-
ing elements compose the supporting set Ssupport = {y|∀y ∈
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Figure 7: Illustration of the supporting set. The supporting set
is the collection of the remaining elements after removing the
elements with the maximum occurrence from Smatch.

Smatch,y ̸= argmaxi |{∀yi ∈ Smatch}|}, which will be leveraged
as the evidence to infer the original model.

The relationship between the fingerprinting attack responses,
matching set, and supporting set is explained by Figure 7.

Then we consider the extreme case that the student model
S has zero knowledge about the input. It randomly divides
the input space into c classes, which we call a random clas-
sifier.4 So how much is the possibility of getting a match on
a fingerprinting pair? We formalize the following statistical
hypothesis testing: given a candidate teacher model T , a stu-
dent model S , a set of fingerprinting pairs {⟨xi,x′i⟩} and the
corresponding responses {⟨yi,y′i⟩}, we make the following
hypothesis

H0 : S is a random classifier.

H1 : S is not a random classifier.

We can give a sufficient condition to reject the null hypoth-
esis H0 give a specific significance value α.

Theorem 1. Given a c-class classification student model S
in top-1 label exposure, a fingerprinting statistical hypothesis
(H0, H1, as well as the significance value α), the size of the
supporting set sufficient to reject the null hypothesis H0 is⌈

log2
1
α

⌉
. (5)

Proof. See Appendix A.
Only when H0 is rejected can we make a more robust

inference. That is, the attacker has high confidence (1-α) to
avoid a wrong inference against a random classifier.

Here we provide a more robust version of the teacher model
fingerprinting attack: (1) generating fingerprinting pairs → (2)
selecting the best candidate → (3) if H0 is rejected, accepting
the inference result; otherwise, sending more queries and
repeating, until reaching the maximum query budget.
Evalution. We repeat several empirical studies on our robust
attack method. We set the significance value α as 0.01, and
thus, the testing hypothesis threshold

⌈
log2

1
α

⌉
= 7. Table 1 ex-

hibits the robust version of inference results for Section 4.3.5.
Overall, we have achieved 100% inference accuracy on the

4We emphasize that the word “random” here refers to that the parameters
of S are randomly configured with respect to DS, rather than it outputs label
randomly given a specific input.

robust inferences that reject H0 with α = 0.01, even without
realistic datasets (Random Noise as the probing dataset). We
also examine the size of the supporting set on our inference
results in Section 4.3.5 to investigate how probing inputs and
transfer learning tasks affect the attack performance.
Impact of probing inputs. The probing input distribution
indeed impacts the attack performance. From Figure 8, we
can see that, with realistic probing inputs, the proportions of
robust inferences are obviously higher than that with Random
Noise. This is consistent with our observation in Section 4.3.5.
Moreover, a dataset that shares a similar distribution with DS

is more helpful in reducing the query budget, because it can
increase the variance of the black-box responses. For exam-
ple, for MNIST classifiers, the supporting set size |Ssupport|
significantly rises when we use MNIST as the probing dataset.
Impact of transfer learning tasks. Figure 8 shows that more
complex learning tasks (i.e., those have more complex inputs
and more classes) tend to produce a larger |Ssupport|. For in-
stance, when attacking CIFAR100 classifiers, most inferences
successfully reject H0 as their |Ssupport| are over the threshold.
One reason is that a complex learning task is likely to give a
higher variance of the responses. This result is consistent with
our observation in Section 4.3.4. To help readers understand
this phenomenon, we can estimate the minimal size of Ssupport.
Since Equation 5 points out that the minimal |Ssupport| should
be

⌈
log2

1
α

⌉
, for a c-class classifier, |Smatch \ Ssupport| should

be no less than
⌈
⌈log2

1
α⌉

c−1

⌉
. Therefore, we have

|Smatch| ≥
⌈

log2
1
α

⌉
+

⌈⌈
log2

1
α

⌉
c−1

⌉
. (6)

So, according to Equation 6, we can find that when c in-
creases, we will get a lower bound of the size of the support-
ing set. It should be pointed out that this is just a sufficient
condition to reject H0 for the robust version of our attack.

6 Applications of the Fingerprinting Attack

In this section, we demonstrate how our attack helps to mount
model stealing and identify vulnerable teacher models.

6.1 Practical Model Stealing
Setup. The basic model stealing strategy is to firstly identify
the teacher feature extractor of the victim, and then build up a
surrogate student model based on it. Next, the attacker sends
queries to the black-box target and collects the top-1 label
responses. Finally, the attacker trains the surrogate student
model with the attack queries and corresponding responses. In
our experiment, we choose four CIFAR-10 classifier victims,
which are transferred from AlexNet, ResNet18, VGG16, and
VGG19, respectively. The victim models own the same fully
connected layer architecture: FC(128) → BN→ SF(10). We
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Query
Budget

probing: VOCSegmentation probing: MNIST probing: CelebA probing: Random Noise
inference acc. #robust

#original
inference acc. #robust

#original
inference acc. #robust

#original
inference acc. #robust

#originaloriginal robust original robust original robust original robust

1 39.68%
(50/126) – (0/0) 0 (0/126) 42.06%

(53/126) – (0/0) 0 (0/126) 45.24%
(57/126) – (0/0) 0 (0/126) 19.84%

(25/126) – (0/0) – (0/126)

2 61.11%
(77/126) – (0/0) 0 (0/126) 57.94%

(73/126) – (0/0) 0 (0/126) 57.94%
(73/126) – (0/0) 0 (0/126) 29.37%

(37/126) – (0/0) – (0/126)

5 84.13%
(106/126) – (0/0) 0 (0/126) 69.84%

(88/126) – (0/0) 0 (0/126) 80.95%
(102/126) – (0/0) 0 (0/126) 42.06%

(53/126) – (0/0) – (0/126)

10 95.24%
(120/126)

100.00%
(32/32)

25.40%
(32/126)

80.95%
(102/126)

100.00%
(19/19)

15.08%
(19/126)

89.68%
(113/126)

100.00%
(3/3)

2.38%
(3/126)

50.79%
(64/126) – (0/0) – (0/126)

20 97.62%
(123/126)

100.00%
(97/97)

76.98%
(97/126)

(84.92%
(107/126)

100.00%
(52/52)

41.27%
(52/126)

96.83%
(122/126)

100.00%
(87/87)

69.05%
(87/126)

57.14%
(72/126)

100.00%
(16/16)

12.70%
(16/126)

50 100.00%
(126/126)

100.00%
(125/125)

99.21%
(125/126)

90.48%
(114/126)

100.00%
(96/96)

76.19%
(96/126)

99.21%
(125/126)

100.00%
(117/117)

92.86%
(117/126)

62.70%
(79/126)

100.00%
(36/36)

28.57%
(36/126)

100 100.00%
(126/126)

100.00%
(126/126)

100.00%
(126/126)

96.03%
(121/126)

100.00%
(114/114)

90.48%
(114/126)

100.00%
(126/126)

100.00%
(122/122)

96.83%
(122/126)

65.08%
(82/126)

100.00%
(41/41)

32.54%
(41/126)

Table 1: Comparison between the original and robust version of the teacher model fingerprinting attack. We have achieved 100%
inference accuracy on the remaining inferences after the hypothesis testing (α = 0.01,

⌈
log2

1
α

⌉
= 7).
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Figure 8: Supporting set size w.r.t. different learning tasks and different probing inputs (query budget=100, α = 0.01, the
hypothesis testing threshold

⌈
log2

1
α

⌉
= 7). If the probing inputs follow a similar distribution with DS, |Ssupport| is relatively high.
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Figure 9: Model stealing against transfer learning models. The top row reports the accuracy metric, while the bottom row reports
the fidelity metric of extracted models, respectively. For an extracted model transferred from the same teacher model with the
target (i.e., inferred by a successful teacher model fingerprinting attack; marked with thicker lines), it has finally achieved higher
accuracy and fidelity with sufficient queries (#Query ≥ 10,000).

choose training images from CIFAR100 as the attack queries
(non-overlapping with the target’s DS, but sharing a similar
distribution). We evaluate the model stealing performance
with four pre-trained models: AlexNet, ResNet18, VGG16,
and VGG19. To examine the affect by surrogate model ar-
chitectures, for each pre-trained model we build three surro-
gate model with three different fully connected layer architec-

tures: SF(10), FC(128) → BN→ SF(10), and FC(256) → BN→
SF(10). Additionally, for each victim model, we train a surro-
gate model with the same model architecture but from scratch
as the baseline. Each surrogate student model is trained for
20 epochs with batch size as 48.

Evaluation metric. We choose two evaluation metrics widely
adopted by prior studies on model stealing attacks [19, 40]:
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• Accuracy: accuracy of the extracted model on inputs. It
measures how well the extracted model makes correct
predictions on incoming inputs. This metric usually lies
in the context where an attacker aims to steal the strong
prediction “power” of the victim black-box ML service
with only limited efforts.

• Fidelity: agreement between the target and the extracted
model on inputs [40]. It measures the behavior similarity
between the victim model and the extracted model. This
metric usually lies in the context where an attacker aims
to faithfully replicate the “functionality” of the black-
box victim, in particular, these potential vulnerabilities.

We evaluate the extracted models on CIFAR10 testing set
non-overlapping with the victim training set or the query set.
Results. Figure 9 shows the model stealing attack perfor-
mance with different pre-trained models. We highlight model
stealing results after successful teacher model fingerprinting
attacks, i.e., the extracted model and the victim share the same
teacher model, with thicker lines. We can observe that for
model stealing after correctly identifying the teacher model,
the fidelity and accuracy are obviously higher than the base-
line. Moreover, we can find that even if the surrogate model
has a different architecture of the fully connected layers, we
may also achieve a relatively good model stealing.

6.2 Identifying Vulnerable Teacher Models

As vulnerable teacher models pose severe threats to down-
stream applications [45, 48], there is a surging need for so-
lutions to detect the existence of vulnerable teacher models.
We investigate the feasibility of using our attack to detect if a
student model comes from a known vulnerable teacher model.
Setup. We adopt the method proposed by Yao et al. [45] to
construct teacher models with latent backdoors. We choose
MNIST, CIFAR10, and CIFAR100 as the dataset in our ex-
periment. Then, we build the backdoored teacher model for
each dataset from pre-trained AlexNet, AlexNet (PTCV), and
ResNet18, respectively. Following a similar setup in [45], we
first use data from class 0-4 to train the original teacher model,
and use data from class 5-9 to train the student model. We
choose class 5 as the target class in all our backdoor attacks.
For each backdoored teacher model, we train three student
models with different fully connected layer architectures. As
a result, there are nine backdoored student models for each
dataset, nine clean student models, and six candidate mod-
els owned by the attacker. We provide more details of the
vulnerable teacher models in Appendix C.
Results. The inference accuracy of backdoored and clean
teacher models is 19/27 and 15/27, respectively. In the given
case, the most challenging task is to discriminate the clean
teacher model from the backdoored teacher model, as the
backdoored teacher models are fine-tuned from the clean
teacher models. Nevertheless, our results still show it is possi-
ble to use our attack to identify vulnerable teacher models.

7 Discussions

7.1 Possible Countermeasures

Input distortion. One potential solution is to distort inputs by
inserting small random noise or performing image transfor-
mations like image cropping and resizing. Hopefully, it would
only slightly affect model performance on realistic inputs but
significantly reduce the inference attack accuracy, since the
latent feature is sensitive to the optimized “noise” pattern in a
synthetic input. One primary advantage of this strategy is that
the input distortion processor can be directly plugged between
the raw system input and the model input, without modifying
the student models. Also, the input distortion is lightweight
and easy to implement, as most image processing or deep
learning libraries support various transformation operations.
Injecting neuron distances [42]. Wang et al. propose a de-
fense method, called injecting neuron distances, to deviate
the student model’s feature map from the teacher model [42].
The key is to retrain all student layers on the student dataset,
with the optimization goal to minimize the cross-entropy loss
while ensuring the dissimilarity between the student’s and the
teacher’s intermediate representations is above a threshold. In
this case, the intuition behind our attack, i.e., that the teacher
model and student model share a similar feature map, does
not hold. Despite the advantage of effectively disturbing the
student model, injecting neuron distances brings additional
costs to update the whole student model.
Evaluation. We investigate the feasibility of the two coun-
termeasures on the CIFAR10 dataset. For input distortion,
we randomly crop the input with 0.85 areas preserved, and
then resize it to the size of the model’s input layer. For in-
jecting neuron distances, we slightly modify the implemen-
tation by [42]: instead of requiring a threshold, we directly
introduce a negative neuron distance term into our learning
objective: min CrossEntropy−λ ·NeuronDistance. In our
experiment, we set λ = 10−6.

To evade the defense, one attack strategy is to generate
attack queries from shallower layers, so as to reduce the im-
pact of parameter changes. We investigate the robustness of
countermeasures against attack queries generated from dif-
ferent positions. We report the results in Table 2. We can
observe that the two countermeasures can effectively defend
our attack. Another possible adaptive attack is to perform
the optimization Equation 1 simultaneously across different
pre-trained layers. However, it would intensively increase the
overhead. We will explore adaptive attacks in the future.

7.2 Limitations and Future Work

Language model. In this paper, our empirical studies fo-
cus on computer vision tasks. Recently, the transfer learning
technique plays a vital role in a more broad range of fields.
For instance, famous pre-trained language transformers, like
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Defense Attack Accuracy (Queries generated from)
Last BLK Last 2nd BLK Last 3rd BLK

Input Perturbation 13/21 11/21 10/21
Injecting Neuron Distances 7/21 5/21 5/21

Without Defense 21/21 20/21 15/21

Table 2: Performance of the two countermeasures. The aver-
age testing accuracy of models that are unprotected, protected
by input perturbation, and protected by injecting neuron dis-
tances are 77.5%, 72.3%, and 79.1%, respectively. Note that
since the injecting neuron distances trains all the model pa-
rameters, which may work like fine-tuning.

BERT and GPT-3, are widely adopted into various down-
stream applications, such as search ranking [17] and medical
text mining [23]. We think it is possible to infer pre-trained
language teacher models with the same strategy proposed
in this paper. We plan to extend this work into sequential
language models, and devise new fingerprinting attacks.
Advanced adversarial attacks. Our results show that we can
lower the attack bound of model stealing attacks based on a
successful teacher model fingerprinting attack. We believe our
proposed attack can assist other advanced adversarial attacks,
e.g., black-box adversarial example attack [42] and member-
ship inference attack [36]. We will explore more adversarial
attacks preceded by our attack in real-world settings.
Fingerprint erase. Our empirical study indicates that the
teacher model fingerprint may still exist even after fine-tuning.
In the feature, we plan to study which factors may impact the
model fingerprint, and explore ways to erase teacher model
fingerprints from student models as fundamental defenses.

8 Related Work

Model reverse engineering. Model reverse engineering aims
to infer model parameters, structures, or other model-related
information such as hyper-parameters, by just inspecting
model responses to a specific set of attack queries.

One line is to reproduce mimic models in the parameter
level, i.e., they try to recover the exact model parameters.
Besides, Carlini et al. [9] propose a cryptanalytic extraction
approach by sending queries at critical points. Another line
tries to duplicate target models at the functionality level. Re-
cently, Orekondy et al. [33] propose more advanced attack
methods to steal model parameters. Jagielsk et al. [19] discuss
the inherent limitations of the learning-based model stealing
strategy, and develop a more practical functionality-equivalent
stealing attack. For transfer learning, Wang et al. [42] propose
a teacher model fingerprinting strategy. Its main idea is to craft
a fingerprinting image to produce a nearly all-zero latent vec-
tor on the victim, when it is derived from the candidate teacher
model. Yet, it requires access to the raw confidence values.
In contrast, our attack works well when only top-1 labels are
available. Figure 10 compares our attack with the attack pro-
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Figure 10: Comparison with the attack proposed by Wang et
al. [42]. To simulate the setup in [42]: we assume the classifi-
cation scores are available; each student model is composed
of a fixed feature extractor and a classification layer. There
are 42 student models in total (7 teacher models * 6 datasets).

posed by Wang et al. [42]. It can be seen that our attack can
achieve competitive inference accuracy when the query bud-
get exceeds 10. We also propose a robust fingerprinting attack
to overcome the false-matching problem. Besides, there are
also efforts in inferring structures [32], hyper-parameters [41],
or other model properties [16].

The above studies reveal that there is no such an exact line
separating the white-box and black-box models. Nonetheless,
they need numerous queries and complex computations to
change a black-box model into a white-box one, especially for
complicated models like VGG16. When it comes to transfer
learning, we believe our method has the advantage to quickly
and efficiently reverse engineer most parts of the black-box
victim—the complex transferred components, which is hard
to achieve by directly combining the prior arts.
Adversarial attacks in the transfer learning setup. Recent
studies reveal that the transfer learning technique may expose
ML models to various threats. Zhang et al. [48] show that
adversarial examples become more transferable on a model
trained by fine-tuning. Wang et al. [42] propose an adversarial
example attack by crafting malicious perturbations to activate
mimic latent representations to be classified to the target class.
Besides, Yao et al. [45] present a latent backdoor attack by
releasing a malicious teacher model, with which the carefully
mined backdoor will infect the student model. In addition to
the security side, transfer learning also suffers from privacy
threats. For example, Zou et al. [51] reveal that the public
knowledge would raise the membership leakage risk in the
transfer learning practice. There also exist a broad range of
other adversarial attacks against ML [12, 13, 15, 18, 31, 35,
36, 37, 38, 46, 49], which are out of the scope of this paper.

9 Conclusions

In this paper, we take the first step to investigate the teacher
model exposure threat in the transfer learning context. In par-
ticular, we propose a novel teacher model fingerprinting attack
that can efficiently trace back the origin of a student model.
Extensive experiment results demonstrate that our attack can
accurately identify the teacher model even in restrictive attack
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scenarios, such as top-1 label exposure and no realistic data
available. Besides, we propose a robust attack to eliminate
false positive inference results. We also show that our attack
can facilitate advanced attacks or help model forensics. Our
findings highlight the urgent need for new model confidential-
ity protection measures specified for transfer learning.
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Appendix

A Proof of Theorem 1

Proof. For a c-class classifier S whose response is only the
top-1 label (i.e. y = argmaxi S(x)i), define

pk =
∫

x∈X
Pr

(
argmax

i
S(x)i == k

)
,∀k ∈ [1,2, · · · ,c], (7)

where X refers to the input space.
Without loss of generality, we assume that 1 ≥ p1 ≥ p2 ≥

·· · ≥ pc ≥ 0.5 Also noticing that ∑
c
i=1 pi = 1, we have

1 =
c

∑
i=1

pi ≥
k

∑
i=1

pi ≥ kpk ⇒ pk ≤
1
k
. (8)

Suppose the attacker generates N fingerprinting pairs
{⟨xi,x′i⟩} with a set of probing input {xi}, and receives N
pairs of responses {⟨yi,y′i⟩}, among which M pairs satisfy
y == y′. For simplicity, we further suppose the first M finger-
printing pairs produce the matched responses (i.e., yi == y′i
when 1 ≤ i ≤ M, and y j ̸= y′j when M + 1 ≤ j ≤ N). If the
victim is a random classifier, we have

Pr
(
{y′i}|{⟨xi,x′i⟩},{yi},S

)
=

N

∏
i=1

py′i
=

M

∏
i=1

pyi

N

∏
j=M+1

py′j

≤
M

∏
i=1

pyi ≤ ∏
j∈{ j|y j ̸=1, j≤M}

py j .

(9)
Then let K = |{i|yi ̸= 1, i ≤ M}|, we can obtain

∏
j∈{ j|y j ̸=1, j≤M}

py j ≤ ∏
j∈{ j|y j ̸=1, j≤M}

p2 = pK
2 ≤

(
1
2

)K

. (10)

Therefore, we get

Pr
(
{y′i}|{⟨xi,x′i⟩},{yi},S

)
≤
(

1
2

)K

. (11)

Finally, let
( 1

2

)K ≤ α, we can derive that

K ≥ log2
1
α
. (12)

That is, if K ≥ ⌈log2
1
α
⌉ (K is a positive integer), we can

prove that Pr({y′i}|{⟨xi,x′i⟩},{yi},S)≤ α, i.e., reject the null
hypothesis H0 to conclude that S is not a random classifier,
and hence continue further fingerprinting inference.
According to our definition of supporting set (Definition 5.1),
there exist two possible scenarios:

• Scenario 1: class 1 does not appear in the supporting set.
By our result Equation 12, if the size of the supporting
set |Ssupport| is not smaller than ⌈log2

1
α
⌉, the attacker

will reject H0 and continue further inference.
• Scenario 2: class 1 appears in the supporting set. Sup-

pose class k is out of the supporting set, then we have:

K = |Ssupport|− |{i|yi == 1, i ≤ M}|+ |{ j|y j == k, j ≤ M}|

≥ |Ssupport| ≥ ⌈log2
1
α
⌉.

(13)
The first inequality is based on that fact that |{ j|y j ==
k, j ≤ M}| ≥ |{i|yi == 1, i ≤ M}|.

5In most cases, pc > 0. However, here we consider a more general case,
where the black box’s output space may not cover all the c classes.
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Therefore, when the size of the supporting set satisfies
|Ssupport| ≥ ⌈log2

1
α
⌉, we will reject the null hypothesis H0

and continue further fingerprinting inference. ■

Remark. Equation 12 gives an easy to calculate but pretty
strict condition. In fact, we can simply induce a more precise
one to reject H0:

∏
j∈{ j|y j ̸=1, j≤M}

py j ≤
c

∏
i=2

(
1
i

)|{ j|y j==i, j≤M}|
≤ α. (14)

In the supporting set, we firstly reassign the class label {yi}
from the most frequent class to the least frequent class with 2
to c, and then check the condition Equation 14.

B Attack Performance with MNIST, CelebA
and Random Noise as Probing Dataset

As a supplementary to Section 4.3.5, we plot the attack perfor-
mance with MNIST, CelebA and Random Noise as the attack
probing dataset in Figure 11, Figure 12 and Figure 13.
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Figure 11: Performance with MNIST images as probing in-
puts. We have achieved a high average eccentricity of vfgpt
and a high average entropy of Smatch on the MNIST classifi-
cation task.
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Figure 12: Performance with CelebA images as probing in-
puts. Compared to Figure 11, the three heuristics obviously
increase on the CelebA classification task.
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Figure 13: Performance with Random Noise as probing inputs.
We have got the worst results on the three heuristics.

C Teacher Model with Latent Backdoor

In our experiment, we separate CIFAR10, MNIST, and STL10
with the same ratio with the Digit attack in [45]. To achieve
a more robust backdoor attack, we increase the number of
target images to 200, and the trigger size is 40×40 pixel. We
exhibit some attack results for the STL10 dataset in Figure 14.

Alex
Net

Alex
Net

(P
TCV)

Res
Net

18

Alex
Net
S

Alex
Net

(P
TCV)

S

Res
Net

18
S

Alex
Net

Alex
Net

(P
TCV)

Res
Net

18

Alex
Net
S

Alex
Net

(P
TCV)

S

Res
Net

18
S

0.52 0.19 0.16 0.16 0.17 0.16
0.63 0.20 0.11 0.25 0.21 0.22
0.66 0.20 0.19 0.30 0.20 0.17
0.23 0.36 0.15 0.21 0.28 0.30
0.36 0.47 0.16 0.28 0.33 0.24
0.25 0.43 0.11 0.13 0.30 0.13
0.14 0.11 0.26 0.14 0.19 0.26
0.10 0.13 0.08 0.07 0.11 0.25
0.11 0.19 0.17 0.15 0.15 0.23
0.48 0.43 0.19 0.59 0.38 0.22
0.45 0.48 0.37 0.62 0.39 0.38
0.48 0.38 0.03 0.56 0.31 0.09
0.17 0.20 0.21 0.20 0.50 0.19
0.27 0.27 0.21 0.21 0.47 0.21
0.17 0.16 0.17 0.16 0.45 0.21
0.41 0.48 0.46 0.26 0.21 0.59
0.14 0.24 0.43 0.19 0.21 0.46
0.25 0.30 0.48 0.27 0.28 0.61

Figure 14: Teacher model fingerprinting vectors against clean
and backdoored STL10 student models. ModelNameS refers
to the backdoored model for STL10 dataset.

D Teacher Model Information

In our experiments, we have downloaded pre-trained mod-
els from the PyTorch official repository, including AlexNet,
DenseNet121, MobileNetV2, ResNet18, VGG16, VGG19,
and GoogLeNet. Besides, we have also downloaded another
pre-trained AlexNet from the PyTorchCV repository to elabo-
rate that our proposed attack can discriminate different teacher
models with the same model architecture. The sources of our
obtained teacher models are listed in Table 3.

E Transfer Learning Setup

The basic architecture of our black-box student model is
one pre-trained feature extractor concatenated with fully con-

3608    31st USENIX Security Symposium USENIX Association



Model Provider DT #BLKs Candidate? URL MD5 Checksum

AlexNet PyTorch ImageNet 5 ✓ https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth aed0662f397a0507305ac94ea5519309
AlexNet
(PTCV) PyTorchCV ImageNet 5 ✓ https://github.com/osmr/imgclsmob/releases/download/v0.0.384/

alexnetb-1900-55176c6a.pth.zip
07e23324e570d9e1f10e280a53c509e3

DenseNet121 PyTorch ImageNet 11 ✓ https://download.pytorch.org/models/densenet121-a639ec97.pth a7047f0b44515469c3965e85cc31e512
MobileNetV2 PyTorch ImageNet 18 ✓ https://download.pytorch.org/models/mobilenet_v2-b0353104.

pth
f20b50b44fdef367a225d41f747a0963

ResNet18 PyTorch ImageNet 5 ✓ https://download.pytorch.org/models/resnet18-5c106cde.pth e5f5fcaec0feff7287f61b7bf461e8b2
VGG16 PyTorch ImageNet 6 ✓ https://download.pytorch.org/models/vgg16-397923af.pth 463aeb51ba5e122501bd03f4ad6d5374
VGG19 PyTorch ImageNet 6 ✓ https://download.pytorch.org/models/vgg19-dcbb9e9d.pth 92881fe292bd7d2408ecff58a101fd03
GoogLeNet PyTorch ImageNet 10 ✗ https://download.pytorch.org/models/GoogLeNet-1378be20.pth beba28483167f26c03ed26a6b569bbf9

Table 3: Sources of the teacher models used in our experiments.

nected layers. We adopt the whole convolution part of each
pre-trained model listed in Table 3 as the feature extractor
FT, and then concatenate it with two or three fully connected
layers. Particularly, for VGG16 and VGG19, we also adopt
components except of the last layer from the pre-trained fully
connected layers, which constitute the last teacher feature
extractor block. For each feature extractor, we build up three
different student models individually to perform a more com-
prehensive evaluation. For single-label classification tasks,
we use the Softmax activation function at the student model
output. While for the multilabel classification task on CelebA
dataset, we use the Sigmoid activation function at the student
model output. Table 4 reports the student model architectures.

In our experiments, we use the Adam optimizer [21] to train
the student models. When the number of fine-tuned blocks
is no larger than three we set the learning rate to 10−3, and
otherwise, we set the learning rate to 10−5. Table 5 reports
the average testing accuracy of the victim student models.

DS Model Architecture*

Dogs-vs-Cats
FT → FC(128) → BN→ SF(2)
FT → FC(512) → BN→ FC(128) → BN→ SF(2)
FT → FC(1024) → BN→ FC(256) → BN→ SF(2)

MNIST,
STL10,

CIFAR10

FT → FC(128) → BN→ SF(10)
FT → FC(512) → BN→ FC(128) → BN→ SF(10)
FT → FC(1024) → BN→ FC(256) → BN→ SF(10)

CIFAR100
FT → FC(512) → BN→ SF(100)
FT → FC(1024) → BN→ FC(256) → BN→ SF(100)
FT → FC(4096) → BN→ FC(512) → BN→ SF(100)

CelebA
FT → FC(256) → BN→ SG(40)
FT → FC(1024) → BN→ FC(256) → BN→ SG(40)
FT → FC(2048) → BN→ FC(512) → BN→ SG(40)

* For simplicity, FC(n) refers to a fully connected layer with n neuron. In our ex-
periment, we choose the ReLU activation for fully connected layers, where are all
followed by a dropout layer with rate 0.5. SF(n) refers to a Softmax layer with n
outputs, SG(n) refers to a Sigmoid layer with n outputs, and BN refers to a batch
normalization layer.

Table 4: Student model architectures used in our experiments.

Fine
tuning* DS

Teacher model

AlexNet AlexNet
(PTCV)

Dense-
Net121

Mobile-
NetV2 ResNet18 VGG16 VGG19

Fixed

Dogs-vs-Cats 95.17 95.90 99.00 98.49 98.73 98.91 98.89
MNIST 99.28 99.30 99.29 99.13 98.14 96.86 96.40
STL10 75.55 84.14 96.80 95.05 94.95 92.27 92.25

CIFAR10 62.35 71.39 91.80 89.87 88.02 71.57 67.50
CIFAR100 30.71 40.30 68.42 64.17 60.52 29.30 32.05

CelebA 87.65 87.95 88.27 87.73 86.33 85.59 85.62

Last
BLK

Dogs-vs-Cats 96.66 97.09 98.65 98.21 98.33 98.67 98.73
MNIST 99.43 99.47 99.21 98.98 99.38 99.09 99.10
STL10 88.11 88.37 96.03 94.20 92.04 93.46 94.08

CIFAR10 87.35 88.20 87.79 84.16 89.55 87.24 87.13
CIFAR100 57.86 59.45 62.64 54.89 59.95 57.28 57.27

CelebA 88.36 88.49 88.57 87.90 88.02 86.92 86.84

Last
two

BLKs

Dogs-vs-Cats 96.48 96.46 98.95 98.38 97.65 98.38 98.53
MNIST 99.48 99.53 99.17 99.13 99.26 99.37 99.37
STL10 86.10 85.40 95.34 94.03 86.37 91.08 91.28

CIFAR10 87.69 88.28 90.22 85.84 89.30 89.17 88.10
CIFAR100 58.32 56.50 65.70 56.55 54.52 48.02 41.71

CelebA 88.81 88.59 88.41 88.13 88.33 88.01 88.00

Last
three
BLKs

Dogs-vs-Cats 95.07 95.53 98.83 98.33 96.88 98.13 96.27
MNIST 99.52 69.57 99.20 99.24 99.42 99.10 99.41
STL10 80.59 79.69 95.27 93.01 84.23 90.12 87.15

CIFAR10 86.32 85.52 91.22 87.30 89.02 84.53 80.84
CIFAR100 50.42 48.51 66.73 58.06 49.75 44.35 40.92

CelebA 88.51 88.34 88.45 88.28 88.27 88.03 77.47

Last
four

BLKs

Dogs-vs-Cats 94.14 94.69 98.39 98.31 96.53 96.31 87.83
MNIST 99.44 99.40 99.37 99.34 99.41 99.37 99.10
STL10 75.69 71.31 91.56 92.86 77.40 87.22 85.94

CIFAR10 86.29 86.37 91.55 87.64 89.07 76.10 66.99
CIFAR100 48.88 43.89 62.26 57.79 43.77 44.65 45.47

CelebA 88.67 88.47 88.60 88.14 88.17 87.97 87.57

Last
five

BLKs

Dogs-vs-Cats 97.31 97.61 99.19 98.73 98.87 99.04 99.09
MNIST 99.56 99.56 99.50 99.53 99.60 99.61 99.59
STL10 85.81 84.58 97.19 95.67 93.81 95.78 95.83

CIFAR10 89.77 90.51 94.70 89.99 94.67 93.51 93.48
CIFAR100 34.30 35.33 51.31 40.92 39.86 44.35 48.55

CelebA 88.44 88.52 89.07 88.59 88.49 88.91 88.85
* For simplicity, “Fixed” refers to that pre-trained parameters are fixed, “Last BLK” refers
to that the last block of the teacher feature extractor gets fine-tuned, “Last two BLKs” refers
to that the two last blocks of the teacher feature extractor get fine-tuned, and so on.

Table 5: Average testing accuracy (%) of the victim student
models in our experiments.

F Fingerprinting vectors for fine-tuned stu-
dent models

In this part, we exhibit fingerprinting vectors when the last
block gets fine-tuned and the last two blocks get fine-tuned
in Figure 15 and Figure 16, respectively.
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Figure 15: Teacher model fingerprinting vectors w.r.t. different classification tasks (100 fingerprinting pairs for each teacher
model candidate, when the last block gets fine-tuned).
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DS: CelebA (40 binary attributes)

Figure 16: Teacher model fingerprinting vectors w.r.t. different classification tasks (100 fingerprinting pairs for each teacher
model candidate, when the last two blocks get fine-tuned).
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