é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

DnD: A Cross-Architecture Deep Neural
Network Decompiler

Ruoyu Wu, Purdue University; Taegyu Kim, The Pennsylvania State University;
Dave (Jing) Tian, Antonio Bianchi, and Dongyan Xu, Purdue University

https://www.usenix.org/conference/usenixsecurity22/presentation/wu-ruoyu

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »



DnD: A Cross-Architecture Deep Neural Network Decompiler

Ruoyu Wu!, Taegyu Kim?, Dave (Jing) Tian!, Antonio Bianchi', and Dongyan Xu

1

'Purdue University, 2 The Pennsylvania State University
{wul377, daveti, antoniob, dxu}@purdue.edu, tgkim@psu.edu

Abstract

The usage of Deep Neural Networks (DNN5s) has steadily in-
creased in recent years. Especially when used in edge devices,
dedicated DNN compilers are used to compile DNNs into
binaries. Many security applications (such as DNN model ex-
traction, white-box adversarial sample generation, and DNN
model patching and hardening) are possible when a DNN
model is accessible. However, these techniques cannot be ap-
plied to compiled DNNs. Unfortunately, no dedicated decom-
piler exists that is able to recover a high-level representation
of a DNN starting from its compiled binary code.

To address this issue, we propose DND, the first compiler-
and ISA-agnostic DNN decompiler. DND uses symbolic exe-
cution, in conjunction with a dedicated loop analysis, to lift the
analyzed binary code into a novel intermediate representation,
able to express the high-level mathematical DNN operations
in a compiler- and ISA-agnostic way. Then, DND matches the
extracted mathematical DNN operations with template math-
ematical DNN operations, and it recovers hyper-parameters
and parameters of all the identified DNN operators, as well as
the overall DNN topology. Our evaluation shows that DND
can perfectly recover different DNN models, extracting them
from binaries compiled by two different compilers (Glow and
TVM) for three different ISAs (Thumb, AArch64, and x86-64).
Moreover, DND enables extracting the DNN models used by
real-world micro-controllers and attacking them using white-
box adversarial machine learning techniques.

1 Introduction

Deep Neural Networks (DNNs) have become a fundamental
component for a number of usage scenarios, ranging from
cloud services to IoT applications [13,38]. While the training
of DNN:ss is usually performed on GPUs or TPUs [17], DNNs
can be deployed on general purposes CPUs and MCUs in a
variety of devices, such as IoT devices and embedded systems.
In these cases, DNNs are typically compiled into binary code
using dedicated compilers, such as TVM [7] and Glow [30],
exploiting local instruction set architectures’ (ISAs) features

and performance optimizations.

An increasing usage of DNN compilers is in edge de-
vices, such as micro-controllers [1, 16,38, 44,45] and mobile
phones [53]. For instance, micro-controllers use compiled
DNN binaries, like the NXP Semiconductors EdgeReady So-
lution [43], to perform diverse tasks such as secure face recog-
nition, speech recognition, and voice control. A recent forecast
estimates that 98% of edge devices will have intelligence fea-
tures, typically powered by DNNs, by 2025 [38].

While several tools are available to decompile binary code
back to its original source code [5,21,33,57], no existing
approach can recover a high-level description of a compiled
DNN. As the ability to decompile binary code has enabled
several security applications (and decompilers have become
part of the standard tool set of security analysts), likewise ex-
tracting DNN models from their compiled binary code enables
a variety of security applications, including DNN model ex-
traction and analysis (both manual and automatic), white-box
adversarial sample generation, white-box DNN backdoor de-
tection, and DNN model patching and hardening [6,18,50,51].
Unfortunately, in all these usage scenarios, a source-level rep-
resentation of the decompiled code obtained by applying tra-
ditional decompilers does not offer much help to an analyst,
because such decompilers cannot capture the mathematical
semantics of compiled DNN models.

In this paper, we propose DND, the first compiler- and ISA-
agnostic deep neural network decompiler capable of extracting
DNN models from compiled binaries. Specifically, working
with a compiled DNN model, DND can precisely recover its
parameters, hyper-parameters, and topology, and express the
decompiled model in a high-level representation (as the one
in Figure 1), encoded in the ONNX modeling language [9].

DND is based on the three following novel techniques. First,
it uses symbolic execution in conjunction with a dedicated
loop analysis to capture precise mathematical formulas rep-
resenting how different DNN operators process the received
data. Second, DND uses a novel intermediate representation
(IR) to express the high-level mathematical DNN operations in
a compiler- and ISA-agnostic way. Third, DND identifies the
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type and location of the DNN operators in a target binary by
matching the extracted mathematical operations with template
mathematical DNN operations, recovering hyper-parameters
and parameters of all the identified DNN operators, as well as
the overall network topology.

Our evaluation shows that DND is both generic and accu-
rate. It supports decompiling different DNN models compiled
by two different compilers for three different ISAs, without
requiring manual effort. Moreover, the decompiled DNN mod-
els are structurally equivalent to the original ones, and, after
re-compiling the decompiled DNNs, the generated binaries
classify samples exactly as the original binaries. We further
demonstrate that DND can successfully decompile a DNN bi-
nary used by a real-world micro-controller, and the recovered
DNN model can be used to boost adversarial attacks against
the original DNN, enabling the usage of white-box attacks, in
place of less efficient black-box ones.

In summary, our main contributions are as follows:

e We design and implement DND, the first compiler- and
ISA-agnostic decompiler for compiled DNN models.
DND can decompile a (stripped) DNN binary to recover
the full details of the compiled DNN model and represent
them using the ONNX high-level modeling language.

e We design a dedicated IR to represent each DNN oper-
ator and develop a novel technique that uses symbolic
execution to lift the DNN binary to IR expressions. The
extracted IR expressions are then matched against tem-
plate expressions to identify different operators used by
a compiled DNN, recovering their hyper-parameters, pa-
rameters, and the overall network topology.

e We evaluate DND on three ISAs (Thumb, AArch64, and
x86-64), two DNN compilers (Glow and TVM), and three
widely-used DNN models (MNIST [59], ResNet v1 [20],
and MobileNets v2 [40]). The results show that DND
can fully and accurately recover DNN models from the
compiled binaries across different ISAs, compilers, and
models. We further showcase how the extracted DNN
model, decompiled by DND from a DNN binary running
on a real-world micro-controller, can be used to boost
adversarial attacks [6,34], enabling more effective white-
box attacks.

Our artifacts are available at https://github.com/

purseclab/DnD.

2 Background and Motivation

2.1 Deep Neural Networks

Deep Neural Networks (DNNGs) are a class of machine learning
(ML) algorithms that use cascaded DNN operators for feature
extraction and transformation. Figure | shows a snippet of
ResNet vl model [20] represented in the ONNX format [9],
which is the open standard for ML interoperability developed
by Linux Foundation. Terminologies used in this paper are

W(64x32x1x1
B(64.
dilations = 1,1
group=1

AveragePool

W(64x64x3x3
B(64

dilations = 1,1
group=1
kernel_shape =3, 3
pads=1,1,1,1
strides = 1,1

kernel_shape = 3,3
pads=0,0,1,1
strides =2, 2

Figure 1: A snippet of ResNet vl model in the ONNX format

described as follows:
Training and Inference. DNNs are used in two phases: train-
ing and inference phases. The training phase feeds labeled
data to a DNN and updates its parameters based on the erro-
neous output results. This phase is computationally heavy and
generally takes a long time; thus, it is usually running on DNN
accelerators (e.g., GPUs and FPGAs). During the inference
phase, a trained DNN predicts the labels of input data. Since
the inference phase is typically not as computationally heavy
as the training phase, they usually run on CPUs, especially on
edge devices [53].
DNN Operators. DNN operators are the building blocks of
DNNs. A DNN operator takes the output of previous opera-
tors as its input (or the input to the DNN model when there
are no previous operators), and computes its output based
on its operator type and its parameters. There are various
types of DNN operators with different high-level semantics,
as shown in Figure 1. For instance, there are feature extrac-
tion operators (e.g., Convolution), down-sampling operators
(e.g., Average-pool), and activation operators (e.g., Relu).
As DNN models have been advanced, new DNN operators
have been introduced. There are 174 different DNN operators
defined in ONNX, and this number is still growing [11].
DNN Hyper-parameters and Parameters. DNN hyper-
parameters can be classified into two categories: (1) the al-
gorithm hyper-parameters, which are only used during the
training phase, and do not influence the inference phase. Ex-
amples of the algorithm hyper-parameters are learning rate
and regularization factor. (2) the model hyper-parameters that
define the network structure and how the operators function,
which include the following:
1. Total number of operators and the type of each operator.
2. The DNN topology. The connections between operators
can be either sequential or non-sequential. Sequential con-
nection denotes that the operator takes only the output of
the prior DNN operator as the input, while non-sequential
connection includes shortcuts and branches [20, 58]. For
example, shortcut connection [20] (the edges connecting
the Conv?2 in Figure 1) feeds one DNN operator’s output di-
rectly as the input of another DNN operator while skipping
one DNN operator.
3. The attributes of each operator that define its detailed se-
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mantics. For example, the attributes of a Convolution

(i.e., Conv) operator, as shown inside each operator in Fig-

ure |, include the shape of kernel (i.e., filter), the pad size,

and the stride size.

The parameters are the variables that are learned during
the training process (e.g., weights and bias).

We note that model hyper-parameters and parameters are
targets that DND aims to recover, unlike algorithm hyper-
parameters which are involved only in the training phase.

2.2 DNN Compilers

Different DNN compilers exist to ease the deployment of
a DNN model on various devices. These compilers include
Glow [30] by Facebook, TVM [7] by Apache, XLA [14] by
Google, and NNFusion [27] by Microsoft. Nowadays, they
have been adopted in many real-world products, including
smart edge devices. For instance, NXP Semiconductors inte-
grate a customized Glow compiler into their SDK to support
DNN model deployment on low-power microcontrollers [45].
Frontend and Backend. DNN compilers commonly consist
of a frontend and a backend component. The frontend trans-
forms a DNN model into a high-level intermediate representa-
tion (IR) and performs hardware-independent optimizations,
such as operator fusion [32]. Operator fusion combines the
loop bodies of two adjacent operators leveraging the operator
type and DNN topology, where the second operator is usually
an activation operator (e.g., Relu). For instance, the Convl
and the following Relu in Figure 1 can be combined. Then,
the backend transforms a high-level IR to a low-level IR and
performs hardware-specific optimizations, including vector-
ization and loop-related optimizations (e.g., loop unrolling).
Finally, the backend emits machine code from the optimized
low-level IR.

Compilation Scheme. Compilation generates DNN binaries
(i.e., the binary programs where a compiled DNN model is
embedded). We can classify the compilation schemes of DNN
compilers into two categories: interpreter-based and ahead-of-
time (AOT) compilation schemes [26].

Interpreter-based compilers generate DNN binaries whose
DNN models are configured at runtime. They usually produce
two artifacts: a DNN configuration file describing the DNN
model (e.g., TFLite [15]) and a runtime library that contains
all the DNN operator implementations. At runtime, a generic
interpreter reads the DNN configuration file, iterates through
DNN operators, and invokes the corresponding DNN operator
implementations [16]. This approach has two disadvantages:
(1) it introduces space and time overhead because of the need
to include the runtime library and parse the DNN configuration
file dynamically; (2) it misses opportunities to optimize the
invoked DNN operator implementations based on specific
operator instances’ attributes (e.g., dimensions, padding size).

On the contrary, during compilation, AOT compilers spe-
cialize the operator implementation for the specific compiled

operator instance’s context, such as its attributes (e.g., ker-
nel shape), and they use general-purpose compiler backends
(e.g., LLVM, GCC) to generate a self-contained executable.
For instance, in Figure 1, although the Convl and Conv2 are
both of the same operator type (i.e., Conv), they are compiled
into different binary functions with different control flows
and memory access patterns, due to their different attributes
(e.g., kernel shape). Thanks to the low overhead, the popu-
lar DNN compilers (e.g., Glow, TVM, XLA, and NNFusion)
support AOT compilation to deploy a DNN on embedded
systems [14,45] with limited hardware resources.

We note that AOT DNN compilers, such as Glow [30] and
TVM [1], compile a DNN model to a binary module exposing
an inference function. An application feeds the input data
to this inference function and obtains the predicted label as
output.

2.3 DNN Attacks

Model Extraction Attacks. Model extraction attacks, which
reveal a DNN’s model hyper-parameters and/or parameters,
can be classified into two categories: algorithm-level extrac-
tion and architecture-level extraction attacks. The algorithm-
level approaches [46,49, 50] conduct model extraction by re-
peatedly querying a black-box DNN model and then retraining
a DNN using the querying results. However, such approaches
require prior knowledge of a DNN’s model hyper-parameters
and significant computational resources [49], prohibiting them
from efficiently extracting DNN models, especially from the
embedded systems. On the other end, the architecture-level
approaches [3,22,29,52,58,61] leverage the architecture-level
information (e.g., cache side-channel) exposed by the hard-
ware. The architecture-level approaches, however, either only
obtain a partial DNN model, or require co-locating onto the
same processor chip the victim process is running on.
Adversarial Attacks. Adversarial attacks, which induce a
DNN to misclassify an input, can be classified into two cat-
egories: black-box attacks and white-box attacks. Black-box
attacks [4, 34] first acquire a substitute model either from
the DNN models with a similar task or from training with
the querying data of the victim model, then generate the ad-
versarial examples based on the substitute model. Although
black-box attacks do not require attackers to have prior knowl-
edge of the victim DNN (e.g., model hyper-parameters and
parameters), they are ineffective and time-consuming. Com-
pared with black-box attacks, white-box attacks [6, 48] are
more effective and efficient [6, 34] by leveraging the prior
knowledge of the victim DNN model.

2.4 Decompiler

Decompilers are designed to reconstruct a high-level language
representation (typically in C pseudocode) from program bi-
naries. There are many works on C/C++ decompilers from
both academia [5, 12, 19,25,41,56,57] and industry [21,33].
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Despite the existing general-purpose decompilers can decom-
pile the binary programs to (usually not easily understandable,
nor fully correct) C statements, they lack the capabilities to
lift the binary code of vectorized mathematical calculations
into high-level DNN operators (e.g., ONNX operators [11])
and recover the DNN topology. These limitations hinder their
usefulness for the security analysis of DNN binaries. On the
contrary, DND can decompile a DNN model embedded in the
binary program and generate a high-level representation (i.e.,
in the ONNX format [9]), including both the model hyper-
parameters and parameters of the embedded DNN model.

3 Scope

In this section, we describe the input/output of DND, and the
standard and realistic assumptions on which DND relies.
Input. DND supports (stripped) DNN binaries (i.e., the bi-
nary programs where a compiled DNN model is embedded)
compiled by the AOT compilation scheme running on CPU
without hardware accelerators. This configuration is common
on edge devices [53]. DND does not support DNN binaries
compiled by interpreter-based compilation schemes because
of the following reasons: (i) DNN binaries compiled by the
interpreter-based compilation scheme usually accompany the
DNN configuration files. We can easily infer DNN models
from those files because they contain the information on the
model hyper-parameters and parameters of the deployed DNN
model. (ii) static analysis cannot extract DNN models from
DNN binaries compiled by the interpreter-based compilation
without the DNN configuration file because DNNs are con-
figured dynamically. Furthermore, DND does not support the
DNN binaries running on DNN accelerators because DNN ac-
celerators have very diverse ISAs, and they are not supported
by the general-purpose disassemblers. Section 9 discusses
more details why DND does not support decompiling DNN
binaries on accelerators.

Output. DND can decompile a DNN model embedded in an

input binary. The output is in the ONNX format [9] (e.g., Fig-

ure 1) including the DNN model’s model hyper-parameters
and parameters. We can use this output to reveal the DNN
model’s details and conduct security analysis, such as model
extraction, adversarial examples discovery, and model hard-
ening. DND does not recover the algorithm hyper-parameters

(defined in Section 2.1) because they neither affect the infer-

ence process nor are recoverable from the binary.

Assumptions. DND relies on the following assumptions:

1. We have access to a DNN binary (e.g., dumping DNN
binaries running on an embedded system).

2. The control-flow graph (CFG) recovery is reliable. Our
evaluation shows that the recovered CFGs, though impre-
cise, are sufficient enough for our decompilation purpose.

3. DNN compilers do not use obfuscation technique. To the
best of our knowledge, we are not aware of obfuscated
DNN binaries, and de-obfuscating binaries is an orthogonal

direction.

4 Challenges and Solutions

DNN binary decompilation imposes several unique challenges
compared to C/C++ binary decompilation. We enumerate
three major challenges and provide a summary of how DND
addresses them.

Challenge 1: Diverse Compilers and Architectures. DNN
models are compiled with various DNN compilers and onto
different instruction set architectures (ISAs), such as Arm
Thumb, Arm AArch64, and x86-64. Each combination gener-
ates totally different binary code, regarding their control flows
and data flows, as demonstrated in decompiled code samples
in Appendix C. Therefore, simple pattern matching, using
either binary code or decompiled code generated by generic
decompilers, is not suitable to recover the DNN model hyper-
parameters in a generic, compiler- and ISA-agnostic way.
Solution 1: We use a dedicated IR which is able to represent
each DNN operator as an operator summary, including an AST
of algebraic operations. DND first identifies the location of
each DNN operator in a DNN binary and then uses selective
symbolic execution to generate an operator summary with an
AST of algebraic operations of each DNN operator, which is
represented with the IR we design. Because a DNN operator
has the same mathematical semantic even with different DNN
compilers and ISAs, and our IR and operator summary are
able to capture the mathematical semantic, DND can identify
them in a compiler- and ISA-agnostic manner.

Challenge 2: Vectorized Mathematical Computation and
Complicated Loop Structure. DNN operators, as tensor op-
erations, are always implemented and compiled as nested loops
with vectorized mathematical computations inside the loop
bodies. The existing general-purpose decompilers (e.g., Hex-
Rays) do not currently recognize vectorized mathematical
computations, leading to decompiled code containing long
loop bodies and excessive bitwise operations, as shown in
Appendix C. Moreover, the complicated control flow and the
huge loop index range of nested loops hinder the usage of
symbolic execution from generating the operator summary of
each DNN operator, because of the path explosion problem.
Solution 2: We use a dedicated symbolic execution to cap-
ture the semantics of vectorized mathematical computations,
by keeping track of the symbolic constraints related to each
DNN operator’s input and output, and lifting such symbolic
constraints to the operator summary represented with our IR.
To solve the path explosion issue, DND only executes one
iteration of each loop, leveraging the fact that the loops in
DNN operators usually implement tensor operations, and have
no data dependencies between each iteration. Therefore, exe-
cuting one iteration of each loop can sufficiently capture the
semantics of a DNN operator. To enable such dedicated sym-
bolic execution, we conduct a loop analysis to identify each
loop’s induction variables (i.e., loop index).
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Figure 2: Pipeline of DND

Challenge 3: Scalable Support to DNN Operators. As men-
tioned in Section 2.1, there are many different DNN operators.
Therefore, it is not scalable to manually design a heuristic
for each DNN operator to identify its DNN operator type and
extract its parameters.

Solution 3: For an unknown DNN operator, we match the AST
included in its generated operator summary with operators’
template ASTs to identify its operator type. DND first builds
a template AST database, which maps each DNN operator to
its corresponding AST. Specifically, DND leverages an up-
to-date DNN compiler to compile each DNN operator and
generate the template AST of each compiled DNN operator,
represented with the IR we design. Then, given the previously
generated operator summary of an unknown DNN operator,
DND matches its AST to one of the AST in the template
AST database, and determines the type of the unknown DNN
operator.

S System Design

DND’s workflow is composed of three components, as illus-
trated in Figure 2. Specifically, these three components are (1)
DNN Operator Location Identification, (2) Operator Summary
Generation, and (3) DNN Model Lifting.

In the first stage, DND recovers the control flow graph
(CFG) and identifies the location of inference function and
DNN operators from the input (stripped) DNN binary (Step
@in Figure 2, details in Section 5.1).

Next, DND generates operator summary of each DNN oper-
ator (Section 5.2). To do so, DND first conducts loop analysis
(Step @) to identify loops’ information. Such information
is essential for further analysis. Then, DND leverages loop’s
information to perform selective symbolic execution that ex-
tracts the output of a DNN operator as symbolic expressions of
its input and parameters (e.g., out put[i] = input[i] * param[i]),
which capture the mathematical semantic of a DNN operator
(Step @). The extracted symbolic expressions are then lifted
to the operator summary in our IR format (Step @). The op-
erator summary of a DNN operator includes the ASTs and
other information extracted from Step @and Step ©. Note
that DND also generates template ASTs through the afore-

mentioned operator summary generation procedure (Step @,
® and ) that will be used in the next step (Section 5.3).
After the operator summary generation, the next step is to
lift each operator summary to a DNN operator and convert it to
a high-level DNN representation (i.e., an ONNX model [11])
(Section 5.4). Specifically, DND first matches the AST in
each operator summary with a template AST to determine
its DNN operator type (Step @). Then, DND recovers the
DNN topology by identifying the data dependencies between
DNN operators (Step ®). Finally, DND recovers each DNN
operator’s attributes and parameters leveraging the identified
DNN operator type and DNN topology, and converts the fully-
recovered DNN model to an ONNX model (Step @).

5.1 DNN Operator Location Identification

In this step, DND identifies the locations of the inference
function and the DNN operators. Since DNN operators are
essentially tensor computations, they are implemented and
compiled as multiple nested loops with a number of numerical
computations inside. Furthermore, DNN operators reside in
either the inference function or its callee functions. DND lever-
ages these two properties to identify the locations of DNN
operators and the inference function.

Specifically, DND first identifies the locations of the func-
tions with possible tensor computation (i.e., containing two or
more nested loops or invoking math functions in the standard
library) as DNN operator candidates. Then, DND collects the
caller functions of each function in the candidate list. Among
these caller functions, the one calling most candidates is con-
sidered as the “inference function” (i.e., acting as the DNN
binary’s dispatch function). Finally, DND filters out the candi-
date functions that are not the callees of the inference function.

5.2 Operator Summary Generation

After identifying the locations of DNN operators, DND ex-
tracts the symbolic expressions from each DNN operator and
lifts them to operator summary in the IR we design. To do
so, DND first conducts loop analysis for each DNN operator
(Step @ described in Section 5.2.1). Next, leveraging the loop
analysis results, DND extracts the output of each DNN opera-
tor as symbolic expressions of its input and parameters, using
our customized selective symbolic execution algorithm (Step
@® described in Section 5.2.2). Then, DND lifts the symbolic
expressions, which contain a semantic of each DNN operator,
to the operator summary (Section 5.2.4), in the IR we design
(Step @ described in Section 5.2.3).

In the rest of this section, we refer, as an example, to the
Conv operator depicted in Figure 3 to explain how DND gener-
ates operator summary. For simplicity, we assume the example
Conv operator is not compiled with optimizations (e.g., loop
unrolling and operator fusion) and without advanced attributes
(i.e., padding and striding). We will explain how we handle
common compiler optimizations and advanced attributes in
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Input 1x3x3 Filter 1x2x2  Output 1x2x2

(a) Conv operator

void Conv(PTR* input, PTR* filter, PTR* output){
for(i=0;i<2;i++) // output width indez
for(j=0;j<2;j++) // output length index
for (u=0;u<2;u++) // filter width index
for(v=0;v<2;v++) // filter length index
output [i] [jl1+=input [i+u] [j+vI*filter [u] [v]

~N O\ R W=

(b) Simplifed decompiled code of Conv

1| output [i] [j]l+=input [i+u] [j+v]*filter [u] [v]

(c) Extracted symbolic expression of Conv

addr: output[i][j]
expr: Sum(element=Mul (input [i+u] [j+v],
filter[ul [v]),
indez=(u, v))
IVs: (u, init=0,inc=1,count=2)
(v, init=0,inc=1,count=2)
(i, init=0,inc=1,count=2)
(j, init=0,inc=1,count=2)

00NN B W —

(d) Generated operator summary
Figure 3: Operator summary generation of Conv

Sections 5.2.4 and 5.4.3, respectively.

5.2.1 Loop Analysis

The main goal of loop analysis is to identify the information
on the basic induction variable (IV), or informally loop index
variable of each loop in a DNN operator. For example, the
i, 3, u, v in Figure 3b are the IVs. The output of this analy-
sis includes Vs, their initial values, their step sizes (i.e., the
increment constant) and their loop count (i.e., how many iter-
ations the loop is supposed to be repeatedly executed). Then,
DND will use these IVs information to extract the symbolic
expressions in Section 5.2.2.

To do so, DND first recovers loops’ structural information
in each DNN operator, including the entry points, the exit
points and the break edges (denoting the edges in CFG that
jump out of the current loop). Then, DND leverages the IVs’
properties in the binary program that we observe to recover
the IVs, which are the following: (i) IVs are initialized with
constants and loaded into general registers in the loop’s entry
block (e.g., i = 0 in Line 2 in Figure 3b); (ii) IVs determine
the conditions of the break edges; (iii) a constant increments
the value of an IV (i.e., step size) within the execution of the
loop’s body (e.g., the step size is 1 for Line 2 in Figure 3b).

Let us show in Algorithm | how to identify IVs using the
aforementioned three properties by symbolically executing
each DNN operator from its entry point to its exit point (Line
2,16-17). Leveraging the property (i), DND symbolizes every

general register initialized by a constant in the loop’s entry
block (Line 10-12). These symbolic variables are the IV can-
didates, which are further filtered out by checking the property
(ii) and (iii). To check the property (ii), whenever encountering
the conditional statements related to the loop’s break edges
during the symbolic execution, DND records these conditional
statements as loop exit conditions, along with the IV candi-
dates that are being accessed (Line 14). At the same time, the
conditional statements related to break edges will make the
symbolic execution engine diverge into two execution paths:
one that satisfies the condition leading to exiting the loop, and
the other does not satisfy the condition leading to continuing
executing the loop. To avoid path explosion caused by the
complicated nested loops, DND only keeps the execution path
that exits the loop and discards the other execution path (Line
15). To check the property (iii), after reaching the DNN oper-
ator’s most outer loop’s exit point (e.g., Line 2 in Figure 3b),
DND inspects each IV’s corresponding register to check if
its register is updated with a constant (i.e., step size). At last,
DND considers an IV candidate as an IV when it satisfies both
properties (ii) and (iii) (Line 18).

Finally, DND recovers IVs’ initial values, step sizes, and
loop counts (Line 19). In particular, loop counts are computed
from initial values, step sizes, and the collected loop exit con-
ditions. For example, the initial value, step size and loop exit
conditions of i in Figure 3b are O, 1, and i<2, respectively.
Then, the loop count is derived by inquiring the solver with
these information.

Algorithm 1 Loop analysis

1: procedure LOOPANALYSIS(op: operator)

2 symEngine < SymbolicEngine(op.entryAddr)
3 candidates <

4. while symEngine.hasActive() do

S: symEngine.step()

6: for each state € symEngine.states do

7 inst « state.lastInst

8 addr < state.addr

9 if addr € op.entryBlocks then

10: if isRegWrite(inst) and isConstant(inst.writeVal) then
11: inst.writeVal « createSym()

12: candidates.add((addr, inst.writeReg))

13: if addr € op.breakEdgeSrcAddr then

14: symEngine.record(state.branch.condition.get_IV())

15: symEngine.keep(getBreakState(state.succ))

16: if addr ¢ op.addrRange then

17: symEngine.stash(state)

18: 1Vs « checkConditionAndUpdate(candidates)
19: 1Vs.getLoopCount()
20: Return /Vs

5.2.2 Symbolic Expression Extraction

A DNN operator typically performs tensor computation, which
takes its input and parameters, and generates the computed
output transferring to its successor DNN operators as the in-
put. As such, we can represent the output of a DNN opera-
tor as symbolic expressions of the operator’s input and the

2140 31st USENIX Security Symposium

USENIX Association



operator’s parameters. These expressions contain the math-
ematical semantics DND needs to recover. To extract such
symbolic expressions, DND performs customized selective
symbolic execution with the IVs (identified in Section 5.2.1)
as symbolic variables. This is because making Vs as sym-
bolic variables brings the two following benefits: (1) it enables
DND to symbolize the mathematical expressions of the DNN
operator’s output as symbolic expressions. (2) it allows DND
to efficiently extract the symbolic expressions of a DNN op-
erator’s output by only executing one iteration of each loop,
as discussed in Solution 2 of Section 4. We will explain those
benefits using Figure 3b.

Regarding the first benefit, the expression at Line 6 in Fig-
ure 3b is a symbolic expression of the operator’s output, where
the i, j, u, v are symbolized during the symbolic execution.
Along with the information carried by the symbolic variables,
this symbolic expression can represent the semantics of this
Conv operator. Specifically, for each value of the i and j,
output [1] [J] (i-e., the Conv operator’s output) is the accu-
mulation of input [i+u] [j+v]*filter[u] [v] over all the
possible values of u and v.

Regarding the second benefit, DND can symbolically exe-
cute only one iteration of the loop in Line 5-6 with the symbol-
ized v. Specifically, DND exits the loop during the symbolic
execution by assigning 2 to the symbolic variable v to satisfy
the v==2 predicate.

Furthermore, in order to keep track of the symbolic con-
straints related to memory reads and writes, DND’s cus-
tomized concretization strategy does not concretize mem-
ory addresses. Instead, when reading from symbolic memory,
DND returns the symbolic memory address together with a
proper annotation. For instance, when reading from address
input+i, DND returns input+i with MemReadVal annota-
tion, denoting where the value is read from. Using this annota-
tion, DND keeps track of memory read values, and records the
written expressions when the code write to symbolic memory.

We explain the detailed procedure to extract symbolic
expressions in Algorithm 2. In particular, DND symboli-
cally executes each DNN operator starting from its entry
point (Line 3). When reaching the identified IV initializa-
tion code, DND symbolizes IVs’ corresponding registers in-
stead of initializing them with a constant (Line 9-10). When-
ever encountering a conditional statement that can exit a
loop, DND follows the path exiting the loop (Line 15-16).
Furthermore, when reading an operator input or parameter
with the symbolic address, DND returns the expression of
symbolic address itself (e.g., the address of filter[u] [v])
(Line 11-12). In this way, DND can keep track of each
symbolic expression’s provenance (i.e., the symbolic ad-
dress where it is read from). To extract the symbolic expres-
sions of DNN operator output, when the DNN operator out-
put is updated, DND collects the symbolic address of the
DNN operator output and its corresponding symbolic expres-
sions (i.e., += input [i+u] [j+v]*filter[u] [v]) (Line 13-

14). Figure 3b shows the output example. In Line 6,
output [1] []] is the symbolic address of operator output,
and += input [i+u] [J+v]*filter[u] [v] isits correspond-
ing symbolic expressions. We show the example result of this
symbolic expression extraction in Figure 3b.

Note that there are conditional statements that are not related
to loops’ break edges (e.g., the statement in Conv checking
if padding is necessary). For example, if the padding size of
the Conv operator in Figure 3a is 1, there will be conditional
statements checking if the computation is in the padding zone
(i.e., i1+u<l and i+u>4). When DND encounters these condi-
tional edges, DND forks multiple execution states and records
the corresponding conditions. Such state and condition infor-
mation can be later used to infer a DNN operator’s attributes
(e.g., padding size of Conv as described in Section 5.4.3).

Algorithm 2 Symbolic expression extraction

1: procedure LOOPANALYSIS(op: operator, IVs: loop analysis results)
2 memWrite <

3 symEngine « SymbolicEngine(op.entryAddr)

4 while symEngine.hasActive() do

5: symEngine.step()

6: for each state € symEngine.states do

7 inst « state.lastInst

8: addr < state.addr

9: if addr € IVs.definitionAddr then

10: inst.writeVal « createSym(IVs.getIV(addr))

11: if isMemRead(inst) and isSymbolic(inst.readAddr) then
12: inst.readVal < inst.readAddr.annotate(MemRead)
13: if isMemWrite(inst) and isSymbolic(inst.writeAddr) then
14: memWrite.add((inst.writeAddr, inst.writeVal))

15: if addr € op.breakEdgeSrcAddr then

16: symEngine.keep(getBreakState(state.succ))

17: if addr & op.addrRange then

18: symEngine.stash(state)

19: Return memWrite

5.2.3 IR Design

We introduce our IR that can abstract an extracted symbolic
expression of a DNN operator into a tensor computation. Un-
like the extracted symbolic expressions, our IR is suitable to
represent operator type and recover operator parameters of op-
timized DNN binaries (discussed in Section 5.2.4). We define
two types of mathematical functions used in our IR: reducing
functions and transforming functions. Reducing functions pro-
duce a single output result from a variable number of inputs
(e.g., summation (Sum), average (Avg), and maximum (Max)).
Intuitively, we use an expression to represent each element of
the inputs (i.e., element), and use index variables (i.e., index)
to represent loops’ indexes with the range and step size. For
instance, our IR represents ag * by +a; * by +...+a, * b, as
Sum(a; * b;,i), where a; * b; is an element, and i is the index
variable, ranging from O to n, with 1 as the step size. On the
contrary, transforming functions take a fixed number (e.g.,
one or two) of inputs. Mul(a, b) multiplying a by b is one ex-
ample of transforming functions. The reducing functions and
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transforming functions can be used together to represent a
single IR expression. For instance, the IR expression in Line
2-8 in Figure 3d denotes a summation expression, where each
element is a multiplication expression, and the index variables’
information is listed in Line 5-8. We show the grammar of
our IR in Table 4 in Appendix B.

5.2.4 Operator Summary Lifting

In this step, DND lifts the extracted symbolic expressions of
each DNN operator to the operator summary in the IR we
design. Each operator summary contains three parts: addr,
expr and IVs, denoting the symbolic addresses of a DNN
operator output, the AST of a DNN operator output, and the
IVs information (i.e., initialization value, step size, and loop
count), respectively. We show an example of generated opera-
tor summary in Figure 3d.

To lift addr, DND simply uses the DNN operator out-

put address in the extracted symbolic expression (e.g.,
output [1] [J] in Figure 3c). For expr, DND recursively
parses the extracted symbolic expressions and then builds
the AST in our IR format. Specifically, during the parsing
process, DND analyzes the extracted symbolic expressions
to identify their corresponding reducing function and its
elements and index. For example, in Figure 3c, DND first
identifies the accumulation operation (i.e., +=) as a reduc-
ing function, more specifically a summation function (i.e.,
Sum), and input [i+u] [j+v]*filter[u] [v] as the element
from the extracted symbolic expressions. DND identifies
the index variables as the difference between the IVs set
included in the symbolic expressions of operator parame-
ters and operator input (i.e., i, j, u, v) and the I'Vs set in-
cluded in the symbolic address of an operator output (i.e., 1,
j), which is u and v in our example. Then, DND parses and
identifies the element as Mul operation, with two arguments
input [i+u] [j+v] and filter[u] [v]. Finally, DND stops
parsing input [i+u] [j+v] and filter [u] [v] because they
are the symbolic addresses of the values that are read from the
memory (i.e., operator input or parameters). Figure 3d shows
the generated operator summary.
Lifting operator summary with compiler optimizations.
DND can correctly generate operator summary even with com-
piler optimizations. Figure 4a shows the simplified decom-
piled code of a Conv operator followed by a Relu operator, a
combination used in many DNN models. The DNN compilers
can optimize this combination, and Figure 4b shows the simpli-
fied decompiled code after being optimized using the operator
fusion optimization and the loop unrolling optimization.

In this example, on one hand, the loop unrolling optimiza-
tion unrolls the loop iterating over the filter length (Line 6-7
in Figure 4a), resulting in two update assignments (Line 5-7
in Figure 4b). On the other hand, the DNN operator fusion
optimization embeds the Relu operator (Line 9-12 in Fig-
ure 4a) into the loop body of the Conv operator (Line 2-7 in
Figure 4a).

In this context, Relu is applied to output [1] [j] (Line
10-11 in Figure 4b) when the loop with the IV u (Line 4-8) is
finished, and the loop with i, j as the IV (Line 4-8) are still
ongoing. In this way, given a certain i and j, Relu is applied
after the accumulation of output [1] [J] is finished.

To lift the generated symbolic expression of the aforemen-
tioned heavily-optimized binary code in Figure 4c, DND in-
troduces two techniques. First, in order to make the expr (i.e.,
AST) in the result operator summary succinct, DND conducts
aloop rerolling analysis [39] on the extracted symbolic expres-
sion to handle the loop unrolling optimization. Specifically,
DND recognizes a similar pattern among the symbolic expres-
sions representing each one of the rolled iterations (e.g., Line
1 and Line 2 in Figure 4c), and recovers the rolled loop (e.g.,
the loop iterating over the filter length in Line 5 in Figure 4a)
by creating a loop index (e.g., v_reroll in Figure 4d). Sec-
ond, to divide a combined DNN operator into two separate
DNN operators, DND leverages the heuristic that the com-
bined second operator is usually an activation operator (e.g.,
Relu). Therefore, DND first identifies the activation operator
in the extracted symbolic expressions (Line 3 in the Figure 4c¢),
and then divides and lifts the expressions in Line 1-2 and Line
3 separately, resulting in two expr (Line 2 and 5 in Figure 4d).

5.3 Template ASTs Generation

The template ASTs are the references that are matched with
the AST in an unknown DNN operator’s operator summary,
to determine its operator type. To generate a template AST
of a DNN operator, we first manually construct an instance
of the operator in the ONNX format, leveraging the usage
examples of each ONNX operator [11]. Then, DND uses a
DNN compiler to compile this ONNX operator instance to a
binary. At last, DND generates the operator summary from the
compiled binary, using the same operator summary generation
procedure (described in Section 5.2), and takes its expr as the
template AST. We will show the DNN operators from which
we are able to generate the template ASTs in Section 7.1.

5.4 DNN Model Lifting

In this section, we describe how to further lift the operator
summary of each DNN operator to the high-level representa-
tion of a DNN model (i.e., ONNX format). DND first recovers
types of DNN operators using AST matching (Section 5.4.1).
Then, DND recovers the DNN topology leveraging the inter-
operator data dependencies (Section 5.4.2). Finally, DND re-
covers DNN operators’ attributes and parameters leveraging
both the DNN operator type and DNN topology, and converts
the fully-recovered model into ONNX format (Section 5.4.3).

5.4.1 AST Matching

For each identified DNN operator, DND matches the ASTs
(i.e., expr) in its operator summary with one of the template
ASTs to determine its DNN operator type. Specifically, DND
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void Conv(PTR* input, PTR* filter, PTR* output){
// Conv operator
for(i=0;i<2;i++) // output width indez
for(j=0;j<2;j++) // output length index
for(u=0;u<2;u++) // filter width index
for(v=0;v<2;v++) // filter length index
output [i] [jl+=input [i+ul [j+vI*filter [ul [v]

// Relu operator
for(i=0;i<2;i++) // output width index
for(j=0;j<2;j++) // output length index
output [i] [j1=Relu(output [i][j1)

(a) Simplifed decompiled code before optimization

void Conv(PTR* input, PTR* filter, PTR* output){
for(i=0;i<2;i++) // output width indezx
for(j=0;j<2;j++) { // output length index
for(u=0;u<2;u++) { // filter width index
// filter length loop unrolled
output [i] [jl+=input [i+ul [jI*filter [u] [0]
output [i] [jl+=input [i+ul [j+1]*filter [u] [1]
}

// operator fusion optimization applied
output [i] [j1=Relu(output [i][j1)

(b) Simplifed decompiled code after optimization

output [i] [jl+=input [i+u] [jI*filter [u] [0]
output [i] [j1+=input [i+ul [j+1]*filter [u] [1]
output [1] [j1=Relu(output [i][j])

(c) Extracted symbolic expressions

addr: output[i][j]
expr: Sum(element=Mul (input [i+u] [j+v_reroll],
filter[u] [v_reroll]),
indez=(u, v_reroll))
expr: Relu(output[il[jl)
IVs: (u, init=0,inc=1,count=2)
(v_reroll, init=0,inc=1,count=2)
(i, init=0,inc=1,count=2)
(j, init=0,inc=1,count=2)

(d) Generated operator summary

Figure 4: Operator summary generation of optimized Conv
and Relu

performs a breadth-first search (BFS) to check if a DNN oper-
ator’s AST and a template AST have the same tree structure,
and both ASTs have the same mathematical functions (e.g.,
Mul) in each node. Note that DND checks all the possible or-
derings of the compared nodes’ sub-ASTs to match equivalent
expressions with different ordering (e.g., a+b versus b+a). Fur-
thermore, in order to match equivalent but optimized expres-
sions (e.g., a«1 versus a*2), DND leverages angt’s expression
simplifier to determine the equivalence of two expressions.
This AST matching algorithm works for most of the tem-
plate ASTs. However, this algorithm sometimes cannot dis-
tinguish DNN operators having the same tree and mathe-
matical functions. For example, this algorithm cannot distin-
guish between Conv operator (shown in Figure 3d) and Fully
Connected operator (i.e., FC, shown in Figure 5b) because of
their same tree structure and mathematical functions in each

AN B W =

[ NNV I SO S

void FC(PTR* input, PTR* weight, PTR* output){
// input shape (1, 256), weight shape (256,
for(i=0;1i<256;i++) // number of input neuron
for(j=0;j<10;j++) // number of output neuron
output [jl+=input [i]*weight [j][i]

10)

(a) Simplifed decompiled code

addr: output[j]
expr: Sum(element=Mul (input[i],
weight [jI1[i]),
indez=(i, j))
(i, init=0,inc=1,count=256)
(j, init=0,inc=1,count=10)

IVs:

(b) Generated operator summary (for simplicity, this
demonstration FC does not include bias)

Figure 5: FC operator

node (i.e., Sum as the root node, with Mul as its element).

To correctly match the ASTs of Conv and FC, we further
leverage the number of IVs they use in their ASTs to dis-
tinguish them: The FC uses two IVs because FC is a two-
dimensional matrix product operation, which only involves
two loops. Meanwhile, the Conv uses four or more IVs in
their ASTs, because it conducts convolution operation over a
(multi-dimensional) matrix, which involves at least four loops.

5.4.2 DNN Topology Recovery

As described in Section 2.1, there are two types of connec-
tions between DNN operators: sequential connections (e.g.,
the edges connecting the Convl and the Conv3 in Figure 1)
and non-sequential connections (e.g., the edges connecting
the Conv2 at the top of Figure 1). DND recovers the DNN
topology by leveraging the DNN operator execution sequence
in the inference function and the data dependencies between
individual DNN operators.

Specifically, DND first extracts the DNN operator execution
sequence from the identified inference function (e.g., Convl
-> Conv2 -> Conv3). Then, DND calculates each DNN oper-
ator’s (concrete) input/output address range by concretizing
their input/output expressions in the operator summary with
the corresponding ranges of IVs. For example, the operator
output address range of the Conv in Figure 3d are calculated by
concretizing its addr (i.e., output [1] [ j]) with the minimum
and maximum of the used IVs (i.e., i=0, j=0 and i=1, j=1,
respectively). DND determines there is a connection from one
operator (e.g., Convl) to the other operator (e.g., Conv3) if
one operator’s output address range overlaps with the other
operator’s input address range (e.g., Conv1’s output address
range overlaps with the Conv3’s input address range). At last,
DND iterates the DNN operator execution sequence from the
first DNN operator to the last DNN operator, identifies the
data dependencies between adjacent operators, and connects
them accordingly.

Furthermore, from the data dependencies, DND can also
recognize the input term (i.e., the term which is the output of
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the previous DNN operator) and parameter term (i.e., the term
which is the parameters of the DNN operator) in the operator
summary’s expr, which can be leveraged for attributes and
parameters recovery in the next step. For example, for the Mul
function in the FC operator’s summary (Line 2-3 in Figure 5b),
DND identifies that the input [1] is the output of the previous
DNN operator (i.e., its address range overlaps with previous
DNN operator’s output range), and that the weight [j] [1]
is the parameter (i.e., its address range does not overlap with
any previous DNN operator’s output range).

5.4.3 Attributes and Parameters Recovery

In the last step, DND recovers the attributes and parameters
of each DNN operator by leveraging the generated operator
summary and recovered DNN topology, and it then generates
a high-level DNN representation in the ONNX format.
Attribute Recovery. For DNN operators with only shape-
related attributes (e.g., filter length of AveragePool), DND
recovers their attributes by checking the nesting structure of
their loops and the loops’ counts (e.g., the filter length is the
loop count of the loop that iterates over the inputs).

For DNN operators with other attributes (e.g., padding size
of Conv), DND uses heuristics to recover those attributes. We
demonstrate how DND recovers the attributes of the Conv
operator in Figure 3d. Conv is one of the most complicated
operators, with three commonly-used attributes: filter shape,
padding size, and striding size.

First, DND leverages the fact that the Conv applies the same
filter to every input in order to infer the filter shape from the
IVs of its parameter term. For example, there are only two IVs
instead of three IVs (i.e., the number of filters, filter width, and
filter length) in parameter term of the Conv: u and v, whose
loop counts are both three. Therefore, DND infers that the
filter shape is (1,2,2), with the number of the filter as 1, and
filter width/length as 2.

Meanwhile, DND also determines the output dimensions
from the ranges of [Vs used in operator summary’s addr (i.e., 1
and 7), which s (2,2). Then, DND determines the padding size
by identifying the padding checking conditions recorded dur-
ing the symbolic expressions extraction step (Section 5.2.2). If
there is no recorded padding checking condition, DND consid-
ers the padding size zero. At last, DND calculates the striding
size using the formula below that constrains the valid Conv:

S=Un—F+2+P+1)/Out

where S, In, F, P and Out denote the striding size, input
dimension size, filter size, padding size, and output dimension
size, respectively.

Parameter Recovery. To recover the parameters, DND lever-
ages the recovered ranges of IVs to concretize the parameter
term (identified in Section 5.4.2) as the concrete addresses,
then the parameters are extracted from these concrete ad-
dresses. For example, for the Conv in Figure 3d, DND con-
cretizes the parameter term (i.e., filter [u] [v]) with all the
possible values of u and v (both ranging from O to 1) to gen-

erate a list of concrete addresses, and the parameters are ex-
tracted from these memory addresses. Finally, with all the re-
covered information, DND generates a high-level DNN model
description file in ONNX format.

6 Implementation

We implement DND with over 7.5K lines of Python code on
top of angr [47].

DNN Operator Location Identification DNN operator loca-
tion identification requires recovering CFGs and identifying
loop locations. DND uses angr’s to recover CFG, which is
essential to find the locations of DNN operators.

Loop Analysis. DND requires finding all the loops and their
nested loops in each DNN binary to perform loop analysis in
Section 5.2.1. For that, we use angr’s loop finder.

Operator Summary Generation. We implement the cus-
tomized symbolic execution on top of angr simulation manager
and angr under-constrained symbolic execution functionality.
This symbolic execution engine is responsible for symbolizing
variables (e.g., IVs) and collecting the symbolic expressions of
each DNN operator output. In some cases, some DNN opera-
tors (e.g., Softmax) call specific mathematical functions (exp,
pow, sqrt, tanh, log) in standard libraries (1ibc and 1ibm).
In these cases, DND needs to identify the called mathematical
functions. To this aim, DND can use a function signature-
based approach [21] if those functions are statically linked.
Because those functions are pre-built, compilers insert those
pre-built functions into DNN binaries without being changed.
Alternatively, an analyst can search for such functions by check-
ing called functions’ names if function names are not stripped
from the binary or those functions are dynamically linked.

7 Evaluation

We first demonstrate the generality of DND by showing how
many commonly-used DNN operators and models can be sup-
ported in Section 7.1. Then, we show the correctness of DND
across different DNN compilers, ISAs, and DNN models. To
this aim, in Section 7.2, we compare the original DNN models
and their corresponding decompiled DNN models, to verify
the equivalence of model architecture, which means compared
models have the identical DNN operators and topology, as
well as the equivalence of their inference results (i.e., given
the same input, both models output the same label).

7.1 Generality Evaluation

We evaluate DND’s generality by evaluating how many widely-
used DNN models DND can support. We consider a DNN
as supported when all of its used operators are supported by
DND. To this aim, we evaluate how many DNN operators
DND can create template ASTs for.

We download an instance of every available DNN model
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Table 1: Detailed statistics of the evaluated DNN models

MNIST ResNetvl  MobileNets v2
# of DNN Operators 12 25 105
# of DNN Operator Types 6 8 11
# of Parameters 6K 80K 3.4M
# of Connections 12 27 115

from the ONNX Model Zoo [10] and the MLPerf Tiny Bench-
marks [2]. In this way, we collect 37 widely-used DNN models,
covering many application scenarios such as image classifica-
tion (e.g., ResNet v1 [20]), object detection (e.g., YOLO [37]),
and nature language processing (e.g., GPT-2 [35]).

These 37 DNN models use 70 different DNN operators in
total. As the first step, to generate the template AST of these 70
operators, we manually construct the DNN operator instances,
use Glow to compile them to binaries, and lift the compiled
binaries to the template ASTs (as described in Section 5.3).
Note that we choose to use Glow because it supports all of
our experimental target ISAs.

Our evaluation shows that DND successfully generates the
template ASTs of 59 DNN operators (i.e., our supported DNN
operators) out of the collected 70 DNN operators. Those 59
DNN operators include the most commonly-used DNN op-
erator, such as Conv, MatMul, and MaxPool. We show the
complete list of the evaluated DNN operators in Table 3 in
Appendix A. While there are 11 DNN operators that DND
cannot support because of failures in the template AST gen-
eration (Section 9 provides more details about these failures
and propose possible solutions), the supported 59 (84%) DNN
operators enable us to fully support 30 (81%) DNN models
out of the collected 37 DNN models.

7.2 Decompilation Correctness Evaluation

We first describe our evaluation setup in Section 7.2.1. Then,
we demonstrate the correctness of DND by showing that the
decompiled DNN models have equivalent model architectures
(Section 7.2.2) and equivalent inference results as the original
models, across different ISAs and compilers (Section 7.2.3).

7.2.1 Evaluation Setup

To align with prior model extraction attacks [58,61], we use
MNIST [59] and ResNet v1 [20] as two of our test DNN
models. We also include MobileNets v2 [40], a DNN model
designed for mobile and embedded systems. We show their
statistics in Table 1. We acquire MNIST and MobileNets v2
from ONNX Model Zoo [10] and ResNet v1 from MLPerf
Tiny Benchmarks [2]. Table | shows details of these three
DNN models.

To generate a diverse set of binaries (in terms of ISAs and
compilers), we compile the above three DNN models for three
different ISAs (i.e., Thumb, AArch64, and x86-64) and with
two different compilers (i.e., Glow and TVM).

Using Glow, we compiled the three DNN models with three

different ISAs into nine DNN binaries. On the other hand,
using TVM, we compiled the three DNN models only with
two different ISAs (Thumb and x86-64) into six DNN binaries
because TVM’s AOT feature (i.e., microl' VM [1]) does not
support AArch64 to the best of our knowledge. Therefore, we
evaluated 15 DNN binaries in total.

7.2.2 DNN Model Architecture Equivalence

Next, we demonstrate the model architecture equivalence be-
tween the decompiled models and the original models. For
that, we compare the neural network architecture (i.e., the
network topology, number of operators, and type of each op-
erator) of 15 generated decompiled DNN models and their
corresponding original DNN models. We report that all 15
decompiled DNN models are identical to their correspond-
ing original models. An example of the original ResNet v1
model and the decompiled ResNet vl model from a DNN
binary (compiled with Glow and Arm Thumb ISA) is shown
in Figure 6. Note that Conv operators and Relu operators are
combined together in the target binaries, due to operator fusion
(as explained in Section 2.2). Regardless of this optimization,
DND can correctly divide them into two operators, as shown
in Figure 6b, using the approach described in Section 5.2.4.

7.2.3 Inference Result Equivalence

To evaluate the inference result equivalence between the orig-
inal DNN models and the decompiled DNN models, we check
if the prediction results of the two models are identical. Specif-
ically, given N test inputs, we measure the inference result
equivalence as the percentage of how many inputs are identi-
cally predicted by the original models and the decompiled
models. To this aim, we randomly sample the test inputs
to the MNIST, ResNet v1, and MobileNets v2 models from
the MNIST, CIFAR-10, and ImageNet datasets, respectively.
We obtain the datasets from TorchVision [31]. Table 2 sum-
marizes the results regarding the inference equivalence be-
tween the decompiled models and the original ones, using
N =10,000 test inputs. As shown, the inference results of
both the decompiled DNN models and the original ones are
identical for all the samples.

8 Case Study

In this section, we show how DND can extract DNN model
hyper-parameters and parameters from a DNN application
running on a real-world micro-controller and demonstrate
how we can leverage the decompiled DNN model to boost
adversarial attacks.

As a real-world micro-controller, we use the NXP i. MX
RT1050-EVK board, using an Arm Cortex-M7 processor and
Thumb ISA. Its firmware development is supported by the eIQ
ML software development environment [44], the ML develop-
ment and deployment tool released by NXP Semiconductors.
We use elQ (which, in turn, uses the Glow DNN compiler) to
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(b) Decompiled ResNet v1 model

Figure 6: Model architecture comparison. This figure shows that the architecture of the decompiled ResNet vl model (obtained
from a binary compiled with Glow using the Arm Thumb ISA) is identical to the original ResNet v1 model.

Table 2: Comparison between inference results of the DNN models decompiled from the test DNN binaries and their original
DNN models. This table shows that the predicted labels of all the decompiled DNN models are identical to those of the original
DNN models for all the tested inputs. N/A means that the ISA is not supported by the compiler.

Thumb (Arm) AArch64 (Arm) x86-64
MNIST  ResNet vl MobileNets v2 | MNIST  ResNet vl MobileNets v2 | MNIST  ResNet vl MobileNets v2
Glow 100% 100% 100% 100% 100% 100% 100% 100% 100%
TVM 100% 100% 100% N/A N/A N/A 100% 100% 100%

build an application classifying images from the CIFAR-10
dataset using the ResNet vl DNN model, and we install this
application on the board.

8.1 Extraction Attack

To conduct a DNN extraction attack, we use DND to decom-
pile the DNN model embedded in the DNN binary installed
on the board. In our case, we obtained the DNN application
by connecting the GDB debugger to the board’s GDB port
and then dumping the DNN application.

After obtaining the binary, DND locates the inference func-
tion in the DNN binary, decompiles its DNN model, and recov-
ers its model hyper-parameters and parameters. To prove that
the DNN extraction attack is successfully launched, we verify
the correctness of the decompiled DNN model by comparing
the inference results over the same inputs between the decom-
piled DNN model and the original DNN model. Specifically,
we first randomly select 1,000 images from the CIFAR-10
dataset as the sample inputs. Then, we feed those chosen input
images to both the decompiled DNN model and the original
DNN model on the NXP i.MX RT1050-EVK board. Our eval-
uation results show that the decompiled model’s inference re-
sults are identical to those of the original DNN model, proving
the DNN extraction attack conducted by DND is successful.

8.2 Boosting Adversarial Attacks

The decompiled ResNet vl DNN model can be used to con-
duct further attacks to the DNN model running on the NXP

1.MX RT1050-EVK board. In this section, we demonstrate
that, by using the decompiled model, we can launch effective
adversarial attacks.

In DNN adversarial attacks, the adversary maliciously in-
fluences the predicted labels of the DNN model by adding
minimal (typically imperceptible) perturbations to the input
images [48]. The goal of these attacks is to find minimal per-
turbations on input images that can induce the DNN model
to predict the wrong label. As described in Section 2.3, there
are two categories of adversarial attacks: black-box attacks
and white-box attacks. While white-box attacks are more ef-
fective than black-box attacks, they require an adversary to
have prior knowledge of the victim DNN model (i.e., model
hyper-parameters and parameters).

We demonstrate that, with the DNN model decompiled by
DND, we can launch white-box adversarial attacks against the
ResNet vl DNN model running on the NXP i.MX RT1050-
EVK board, and achieve better effectiveness than that achieved
by black-box adversarial attacks.

To perform this evaluation, we first randomly select 1,000
images from the CIFAR-10 dataset as sample inputs, and we
infer their labels on the NXP i.MX RT1050-EVK board to
evaluate the accuracy of the DNN model. To launch the white-
box attack, we use the projected gradient descent (PDG) al-
gorithm [28] implemented in Foolbox [36] to generate adver-
sarial images based on the sample inputs and the decompiled
DNN model. As for the black-box attack, we utilize the black-
box attack on CIFAR-10 implemented in Torchattacks [23] to
generate adversarial images.

2146 31st USENIX Security Symposium

USENIX Association



For both the attacks, we set the parameter epsilon to the
same value (0.03, the default value). This value represents the
maximally used perturbation between the adversarial images
and their corresponding original images. Hence, both attacks
perturb the images to the same extent. However, as expected,
the white-box attack’s perturbations are more effective, i.e.,
they are more capable of causing misclassifications in the
victim DNN. In particular, the white-box and black-box attacks
reduce the accuracy of the ResNet vl model from 88.4% to
11.4% and 57.3%, respectively. We highlight that an adversary
cannot launch the white-box attack without having access to a
high-level representation of the DNN model, such as the one
generated by DND.

9 Discussion and Limitations

Existing General-Purpose Decompiler Existing general-
purpose decompilers (e.g., Hex-Rays) have the following lim-
itations when dealing with DNN binaries: (1) they do not
recognize vectorized mathematical computations, leading to
decompilation representations containing long loop bodies
and excessive bitwise operations; (2) their decompilation rep-
resentations differ significantly depending on the compilers
or ISAs; (3) even with the same compiler and ISAs, DNN
operators of the same type but with different attributes have
different decompilation representations, because they are spe-
cialized. We demonstrate these limitations in Appendix C.
These limitations hinder using simple pattern matching to
recover the DNN high-level representation.
Correctness of the Recovered CFG and Binary Code. As
other decompilation works [19, 56,57], DND assumes that
the recovered CFG provided by the disassembler is reliable.
Fortunately, our evaluation shows that the recovered CFGs of
our test DNN binaries are reliable enough for our purpose.
Similarly, we assume that binary code in our target binaries
is available before analysis because DND works on top of the
disassembled binary code. Therefore, obfuscated, encrypted,
and packed binary code, available only after unpacking, deob-
fuscation, or decryption, is out of our scope.
Traditional Binary Analysis Challenges. DNN binaries,
compared with the binaries compiled by general-purpose com-
pilers, are more structured (e.g., nested loops), have less com-
plicated control flows (e.g., no indirect control-flow transfer),
and have no interaction with the environment (e.g., system
calls). For these reasons, the information extracted by angr is
accurate, which helps DND focus on the challenges specific
to DNN binaries, discussed in Section 4.
Handling Failure. DND detects failures by checking if the
output of each stage of the pipeline is expected (e.g., AST
matching returns a matched AST). When failures happen
(e.g., when dealing with unsupported operators), DND skips
decompiling the errored operator and proceeds with the other
operators. In the end, DnD generates a report consisting of the
decompilation results of the successfully decompiled opera-

tors and the binary function locations of the skipped operators.
Supporting Additional Operators. Out of the 70 operators
used by the DNN model in our dataset, DND currently does not
support 11 of them for the following reasons: (1) our symbolic-
execution-based approach is designed to capture the semantics
of vectorized mathematical operations, and cannot capture the
semantics of some operations such as sorting and searching;
(2) our algebraic IR cannot represent recurrent structures; and
(3) Glow does not support some operators defined in ONNX.

As future work, we plan to overcome these issues by: (1)
extending our symbolic-execution-based approach and the
expressiveness of our IR to support higher-level mathematical
expressions involving sorting and searching operations; (2)
transforming recursive code into equivalent iterative code,
improving our current loop analysis, and extending our IR
to support recurrent structure; and (3) using multiple DNN
compilers to create additional DNN operations’ templates.
Supporting Other DNN Compilers. Other DNN compil-
ers supporting compiling DNN models to CPU exist (e.g.,
XLA [14] and NNFusion [27]). Unlike Glow [30] and
TVM [1, 7], which compile DNN models into standalone bi-
naries, XLA and NNFusion generate DNN binaries linked
with open-source mathematical libraries to leverage the tensor
operations of these libraries. For instance, XLLA’s generated
binaries rely on MatMul implemented in Eigen.

As future work, to support these additional compilers, we

will need to implement a dedicated analysis to identify these
tensor-specific library functions. This analysis could take ad-
vantage of function matching approaches [55].
Decompiling Binary on DNN Accelerators. DND does not
support decompiling DNN binaries running on DNN accelera-
tors (e.g., GPUs, FPGAs). This limitation is caused by the fact
that DNN accelerators have very diverse ISAs that are usually
not supported by the general-purpose disassemblers and the
symbolic execution framework, which DND relies on. For in-
stance, although Nvidia provides closed-source disassemblers
cuobjdump and nvidiaasm, which translate the CUDA binary
into SASS assembly code, most details of the SASS assembly
code are kept secret, which hinders further analysis.

10 Related Work

Decompiler. Many decompilation techniques have been pro-
posed to improve the C/C++ decompilation performance
through control-flow recovery [19, 56, 57] and decompiled
code’s readability enhancements [8, 25, 42]. Furthermore,
Neural Machine Translation (NMT) has also been intro-
duced [12] to improve the quality of the decompiled code.
Other than the aforementioned academic researches, some
open-source or commercial C/C++ decompilers have been
introduced [5,21,33,57]. In addition to decompiling C/C++
binary, researchers proposed reverse engineering techniques
targeting smart contract [60], control firmware [24] and Blue-
tooth firmware [54]. However, those techniques cannot capture
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the mathematical semantics of compiled DNN models.
Extraction Attacks. Security researchers have proposed two
types of DNN extractions attacks. The first type is algorithm-
level extraction attacks. This type of attack is generally con-
ducted by querying a black-box DNN model and then retrain-
ing a model using the querying results [46,49, 50]. The other
type of attack is architecture-level extraction attacks. They
exploit hardware or side channels, such as PCle traffic [22,61],
cache-based side-channel [58], power side-channel [29,52],
and even electromagnetic [3], to launch this type of attack.
However, they either require prior knowledge of a DNN model
(e.g., model hyper-parameters and parameters) or significant
computational resources. Otherwise, they can recover only an
incomplete DNN model.

Adversarial Attacks. Szegedy proposed the first adversarial
attacks [48], which led DNNs to misclassify images. In follow-
up studies, there are two types of attack schemes: the white-
box and black-box attack approaches. However, the former
approach [6,48] assumes an attacker has prior knowledge of
a victim DNN model, such as model hyper-parameters and
parameters. On the other hand, the latter approach [4,34] is
less effective than the white-box attack because the black-
box approach does not leverage model hyper-parameters and
parameters that help improve attack effectiveness.

11 Conclusions

In this work, we designed and implemented DND, the first
compiler- and ISA-agnostic DNN decompiler. Our evaluation
shows that DND can perfectly recover different DNN models
compiled by two different compilers for three different ISAs.
As a potential real-world usage of DNN decompilation, we
show how DND can be used to extract a compiled DNN model
from a real-world micro-controller, and to enable white-box
adversarial ML techniques.

As traditional decompilers are the foundation for many secu-
rity applications, we envision that, in the future, the capability
of decompiling DNN binaries will bootstrap further security
research in attacking and defending DNNSs, in all those sce-
narios in which their original models are unavailable.
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A List of Evaluated DNN Operators

Table 3: The list of the evaluated DNN operators. ‘Y’ denotes
the operators which DND can generate the template ASTs,
and ‘N’ denotes the operators which DND currently cannot
generate the template ASTs. For these unsupported operators,
we marked, using the numbers 1, 2, 3, the reason why they
are not supported. Specifically, (1) means that DND cannot
capture the semantics of some operations such as sorting and
searching, (2) means that DND cannot represent recurrent
structures, (3) means that our considered DNN compilers do
not support some ONNX operators. These limitations are
discussed in Section 9.

B DND IR’s grammar

Table 4: The grammar of DnD’s IR. ‘MemReadVal’ denotes
the value read from a memory location, and IV’ denotes the
symbolized loop induction variable.

Symbolic RF [ TF | Var
Expression
Sum(SymExpr, IV) |
Avg(SymExpr, IV) |
Max(SymExpr, IV) |
Min(SymExpr, IV) |
Abs(SymExpr) |
Add(SymExprl, SymExpr2) |
Div(SymExpr) |
Mul(SymExprl1, SymExpr2) |
Exp(SymExpr) |
Log(SymExpr) |
Sqrt(SymExpr) |
Tanh(SymExpr) |
Pow(SymExpr)

Constant | MemReadVal

SymExpr =

Reducing

Function RF =

Transforming

Function TF

Variable Var =

C Decompiled Code Samples

We demonstrate snippets of decompiled code (i.e., by Hex-
Rays decompiler) of three binary functions in Listing 1, List-
ing 2, and Listing 3. We elaborate on how we generate these
three binary functions as follows:
e Listing I: A convolution operator instance compiled with
TVM and on Arm Thumb.
e Listing 2: The same convolution operator instance as the
one used in Listing 1, compiled with Glow and on x86.
e Listing 3: A convolution operator instance with different

Abs (Y Add (Y And (Y . . . . . .
A gh(,[ di D yee er; ggP ool (¥) B atdilrm alizaton (¥) attributes (e.g., kernel size, padding size), compiled with
Cast (Y) CategoryMapper (N3) Ceil (Y) Glow and on x86.
Clip (Y) Compress (N1) Concat (Y) We show the complete decompiled code at https://github.
Constant (Y) ConstantOfShape (Y) Conv (Y) ,
ConvTranspose (Y) | CamSum (NT) Div (Y) com/purseclab/DnD/tree/main/samples.
Equal (Y) Erf (N3) Exp (Y) 1[for (3 =053 1= 64; 445
Expand (Y) Flatten (Y) Floor (Y) 2| {
Gather (Y) Gemm (Y) GlobalAveragePool (Y) 3 *v17++ = 0.0;
Greater (Y) Hardmax (N1) Identity (Y) 4 vi9 = 0;
LRN (Y) LSTM (N2) LeakyRelu (Y) 5/ v20 = 0.0;
Less (Y) Log (Y) Loop (N2) 6 v21l = (i & 7) + 10 * (i >> 3);
MatMul (Y) MaxPool (Y) Min (Y) 7| do
Mul (Y) NonMaxSuppression (N1) | NonZero (Y) g { v22 = vi9 << 6;
Not (¥) PRelu (¥) Pow (Y) 10 v23 = (float *)&v6[256 * v21];
Reciprocal (Y) ReduceMax (Y) ReduceMean (Y) 11 v19 += 3;
ReduceMin (Y) ReduceSum (Y) Relu (Y) 12 v24 = v22 + 192;
Reshape (Y) Resize (Y) RoiAlign (N1) 13 while ( 1)
Scan (N1) Scatter (Y) Shape (Y) 14 {
Sigmoid (Y) Slice (Y) Softmax (Y) 15 v26 = (float *)((char *)argl + 256 * v22 + 4 * j);
Split (Y) Sqrt (Y) Squeeze (Y) 16 v27 = v23 + 64;
Sub (Y) Sum (Y) Tanh (Y) 17 do
Tile (N) TopK (NT) Transpose (¥) }g { 195 - xv2der;
Unsqueeze (Y) 20 v20 = v20 + (float) (v25 * %v26);
21 // 21 lines of code omitted
22| while ( (char *)arg2 + 256 != (char *)v28 );

Listing 1: Snippet of a decompiled convolution operator
function of TVM/Arm Thumb binary function
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22
23

24
25

26
27

33
34

35

39

do
{
// 4 lines of code omitted
do
{
// 4 lines of code omitted
do
{
// 13 lines of code omitted
do
{
// 6 lines of code omitted
do
{
if ( (v130 | v27) < 0x10 )
{
// 8 lines of code omitted
v61 = _mm_add_ps(
_mm_mul_ps (*(__m128 *) (a3 + 4 * v35),
v50),
_mm_add_ps(
_mm_mul_ps (*(__m128 *) (a3 + 4 * v34
), v49),
_mm_add_ps (
_mm_mul_ps (*(__m128 *) (a3 + 4 *
v33), v48),
_mm_add_ps (
_mm_mul_ps (*(__m128 *) (a3 + 4 *
v32), v47),
_mm_add_ps (
_mm_mul_ps (*(__m128 *) (a3 + 4
* v31), v46),
_mm_add_ps (
_mm_mul_ps (*(__m128 *) (a3 +
4 x v30), v45),
_mm_add_ps (
_mm_mul_ps (x(__m128 *) (a3
+ 4 x v29), v44),
_mm_mul_ps (*(__m128 *) (a3
+ 4 x v28), v43))))
))))s;
// 89 lines of code omitted
v85 = (__m128) _mm_unpackhi_pd((__m128d)v82, (
__m128d)v82);
v86 = (float) (_mm_shuffle_ps(v55, v55, 229).
m128_£32[0] + v55.m128_£32[0]) + *(v36 —
7
v42 = (float *)(al + ((4 * (v120 + ((v39 +
v129) << 6))) | 0x1C));
// 91 lines of code omitted
}
while ( v120 < 0x38 );

Listing 2: Snippet of a decompiled convolution operator
function of Glow/x86 binary function

O 001N W B W

do
{
// 7 lines of code omitted
do
{
// 6 lines of code omitted
do
{
v84 = v32;
if ( (unsigned
{
v33 = 8 * v32;
v34 = OLL;
while ( (__int64)(v34 + v31) < 3 )
{
if ( (__int64)(v34 + v31) < 0 )
{

_int64) (v32 + v103) <=7 )

v35 = 1LL;
}
else
{
// 5 lines of code omitted
do
{
// 21 lines of code omitted
do
{
v561 = _mm_shuffle_ps(
(__m128)*(unsigned int *)(v37 +
v4l — 768),
(__m128)*(unsigned int *)(v37 +
v4al — 768),
0);
// 38 lines of code omitted
}
while ( v41l );
v60 = v40 + v36;
*(__m128 *)(al + 4 * v60 + 16) =
_mm_add_ps (v50, *(__m128 *)(al + 4 *
(v40 + v36) + 16));
*(__m128 *)(al + 4 * v60) = _mm_add_ps(
v49, *(__m128 *)(al + 4 * (v40 + v36
)))s
// 36 lines of code omitted
}
v67 =
do
{
if ( v34 + v31 <=7 )
{

v83 + (v34 << 8);

// 4 lines of code omitted
do
{

// 5 lines of code omitted

do

{

// 52 lines of code omitted
}

Listing 3: Snippet of a decompiled convoluation operator
function of Glow/x86 binary function
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