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Huge Success of Deep Learning



Reality: A DL Model is Expensive 💸

Experts

*Source: https://lambdalabs.com/blog/demystifying-gpt-3/

Data Hungry
(ImageNet ~14M)

High 
Computational Cost

(~355 years on a single 
NVIDIA Tesla V100 GPU*)

GPT-3:
# Parameters: 175B
Estimated Cost: $12M
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Transfer Learning -- An Affordable Solution
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Transfer Learning -- A  SAFE Solution?

k components

…

Student

API



Transfer Learning -- A  SAFE Solution?

k components

…

Student

API API



Transfer Learning -- A  SAFE Solution?

k components

…
…

Student

API
”VGG16 Pretrained Model, 
v1.00 by PyTroch”API



Our proposed attack

Transfer Learning -- A  SAFE Solution?
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”VGG16 Pretrained Model, 
v1.00 by PyTroch”

Most part of the black box
is exposed! 😱

• Downstream attacks

• Vulnerabilities exposure 
(from the teacher)

API



Threat Model
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①

① Black-box access:
q Unknown student 

architecture/parameters
q Only top-1 classification 

label returned

② Attacker’s knowledge/power:
q Candidate teacher models
q Public datasets (e.g., ImageNets, 

CIFAR10)
q Limited query budget

②

“Bird”

…



Overview: Teacher Fingerprinting Attack
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Insight:
Fingerprinting pairs 

⬇
Similar latent 
representation

⬇
Same API responses

Fingerprinting pairs



Attack Stage 1: Synthetic Input Generation 
• Solving constrained optimization

Original problem
(Constrained)

Converted problem
(Unconstrained)

Adam optimizer 
Learning rate: 0.001
#Iterations: 30,000



• Inference Metric
q Matching proportion:  

#Matched Responses
#Fingerprinting Pairs

Candidate teacher model set

Actual 
teacher 
model

Attack Stage 2: Teacher Model Inference 

> Threshold?

Inference: VGG19

Y

N

NULL



• Basic setup

Effectiveness of Our Proposed Attack

#fingerprinting pairs: 
100 for each candidate

#student models: 
6 datasets * 7 teacher 
models * 3 student FCN 
architectures



• Basic Results

Effectiveness of Our Proposed Attack

Correctly 
inferred Inferred as ”NULL”

w/ kown 
teacher 
model

w/ unknown 
teacher 
model

w/o transfer 
learning

100% 
(126/126)

72.2% 
(13/18)

86.1%
(31/36)



• Impact of Query Budget

Effectiveness of Our Proposed Attack
#Fingerprinting pairs for each candidate

100% inference accuracy



1…

100% matching proportion

(False matching)



Towards More Robust Attack
• Supporting Set

Remove the most frequently matched elements
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Towards More Robust Attack
Most inference results are indeed invalid when #query is small



Enhanced Model Stealing Attack

{airplanes, birds…}

”VGG16 Pretrained Model, 
v1.00 by PyTroch”

Attack 
Dataset Surrogate Model



Enhanced Model Stealing Attack
• Best performance if starting from a matched teacher model



Feasible Countermeasures
• Input distortion
q Perturb the patterns in synthetic inputs

• Injecting neuron distances [Wang et al. 2018]
q Deviate the student model’s feature map from the teacher 

model’s

[Wang et al. 2018] With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning, USENIX Security ’18.



Conclusion

q We propose a simple and efficient attack to infer the teacher 
model used by transfer learning

q Our attack can efficiently identify the teacher model

q Our attack can help perform further advanced attacks
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Q&A
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