Lalaine: Measuring and Characterizing Non-Compliance of Apple Privacy Labels

Yue Xiao', Zhengyi Li', Yue Qin', Xiaolong Bai®, Jiale Guan', Xiaojing Liao", Luyi Xing'

Undiana University Bloomington, >*Orion Security Lab, Alibaba Group

Abstract

As a key supplement to privacy policies that are known
to be lengthy and difficult to read, Apple has launched app
privacy labels, which purportedly help users more easily un-
derstand an app’s privacy practices. However, false and mis-
leading privacy labels can dupe privacy-conscious consumers
into downloading data-intensive apps, ultimately eroding the
credibility and integrity of the labels. Although Apple releases
requirements and guidelines for app developers to create pri-
vacy labels, little is known about whether and to what extent
the privacy labels in the wild are correct and compliant, re-
flecting the actual data practices of iOS apps.

This paper presents the first systematic study, based on our
new methodology named Lalaine, to evaluate data-flow to
privacy-label (flow-to-label) consistency. Lalaine analyzed
the privacy labels and binaries of 5,102 iOS apps, shedding
light on the prevalence and seriousness of privacy-label non-
compliance. We provide detailed case studies and analyze root
causes for privacy label non-compliance that complements
prior understandings. This has led to new insights for improv-
ing privacy-label design and compliance requirements, so app
developers, platform stakeholders, and policy-makers can bet-
ter achieve their privacy and accountability goals. Lalaine is
thoroughly evaluated for its high effectiveness and efficiency.
We are responsibly reporting the results to stakeholders.

1 Introduction

In December 2020, Apple launched its app privacy labels,
which purportedly help users better understand an app’s pri-
vacy practices before they download the app on any Apple
platform. Without meaningful, accurate information, Apple’s
tool of illumination and transparency may become a source
of consumer confusion and harm — a concern raised in the
United States congress [11]. False and misleading privacy
labels can dupe privacy-conscious consumers into download-
ing data-intensive apps, ultimately eroding the credibility and
integrity of the labels. A privacy label without credibility and
integrity also may dull the competitive forces encouraging
app developers to improve their data practices.

Apple defines a set of compliance requirements and pro-
vides guidelines for app developers to create privacy labels. In
particular, the Apple privacy label is not a direct abstraction
of the app’s privacy policy: Apple defines a four-layer struc-
ture for privacy label (i.e., with first layer — four data usages,

second layer — six purposes , third layer — 14 data types,
and fourth layer — 32 data items, see § 2.1). Hence, it is im-
perative to understand whether and to what extent the privacy
labels in the wild are correct and compliant, reflecting the ac-
tual data practices of iOS apps. In response to this emerging
privacy call, prior work studied challenges from developers’
perspectives [77, 78] (e.g., how promptly developers update
privacy labels) and end-users’ perspectives [102], and offered
tools [66] to help generate accurate privacy labels. A concur-
rent work [74], studied 1,687 iOS apps to understand privacy
labels’ correctness. However, fully inspecting compliance
of i0S privacy labels at scale is challenging, which requires
sophisticated analysis of app data-flow to privacy-label (flow-
to-label) consistency, entailing to tackle the multiple-layer
semantics of privacy labels (e.g., general but vague data types,
purpose prediction, § 5.3.2) and rigorous definition of what
are flow-to-label inconsistencies in the privacy label context
(§ 4), which we aim to address in this paper.

Methodology for privacy-label compliance check. We
present a new, automatic methodology called Lalaine to check
the compliance of privacy labels for iOS apps at scale. Specif-
ically, Lalaine checks the consistency between disclosure
statements in privacy labels and actual data flows or practices
of i0S apps (see the modeling in § 4). Essential is to for-
mally define the inconsistency model for privacy labels, which
cannot directly adopt prior inconsistency models for privacy
policies [50, 53] due to privacy labels’ different structure and
semantics (e.g., with four layers, emphasizing data-usage pur-
poses versus the party/entity that receives the data, see § 2.2).
Based on our new inconsistency model that formalizes
key issues in privacy label compliance (§ 4), we design and
implemented Lalaine, an automated, end-to-end system by
adapting and synthesizing a set of innovative techniques
including automatic iOS app Ul execution, natural-language
processing (NLP), and dynamic and static binary analysis
(Figure 1). Notably, based on Apple, a data item is deemed
“collected” only if it is transmitted to the Internet [47].
Hence, for a precise compliance check, Lalaine includes
dynamic end-to-end app execution to find out the actual data
“collection”. Considering the known, limited scalability of
dynamic analysis, Lalaine proposes a novel, optimized strat-
egy by filtering apps of most interest: (1) apps that involve
sensitive iOS APIs whose return values fall under Apple’s
framing of the 32 data items for privacy labels (§ 5.2.1) and
(2) apps showing inconsistency between their privacy labels

and privacy policies. Lalaine further intersected the two app
sets to yield three sub-sets with different (non-)compliance
characteristics (e.g., apps being flow-to-label inconsistent
while flow-to-policy consistent, apps being flow-to-label
inconsistent while flow-to-policy inconsistent, flow-to-label
consistent while flow-to-policy inconsistent, see § 5.3.1), and
sampled a total of 6,332 apps for full dynamic execution.
Another key challenge is to infer the vendors’ actual purposes
for the collection of each data item, which we tackled by
adapting a modeling and learning-based approach (§ 5.3.2).
Our thorough evaluation shows that Lalaine can detect privacy
label non-compliance effectively and efficiently (§ 5.4).
Measurement and findings. Looking into the apps with pri-
vacy label non-compliance reported by Lalaine, we find the
pervasiveness of privacy label non-compliance in iOS apps,
with a serious impact on credible and transparent disclosure
of app privacy practices. More specifically, among 5,102 iOS
apps being fully tested, 3,423 apps came with non-compliant
privacy labels: 3,281 of them neglected to disclose data and
purposes, 1,628 contrarily specified purposes, and 677 apps
inadequately disclose purposes. We characterize the findings
with case studies and common cases, such as measurement
results of most problematic data types, apps types, etc. (§ 6).
Also important are the root causes of privacy label non-
compliance, as discovered in our study, which include opaque
data collection from diverse third-party partners, and mislead-
ing privacy label disclosure guidance, etc. (detailed in § 7).
Our findings characterize new challenges for designing, creat-
ing and regulating precise and proper privacy labels and based
on which we come up with actionable recommendations for
multiple stakeholders (§ 7).
Responsible disclosure. We are reporting all findings (non-
compliant privacy labels) to Apple and related vendors.

Contributions. We summarize the key contributions below.

e We performed a systematic study on Apple privacy label
compliance, in particular focusing on inconsistency between
privacy labels and app data flows/practices for the first time.
Our results shed lights on the prevalence, seriousness of
privacy-label non-compliance and challenges for developers
to achieve the emerging compliance goal.

e We introduce a first methodology with end-to-end imple-
mentation called Lalaine that can automatically assess the
“flow-to-label” inconsistency. Lalaine is based on our new,
formally defined inconsistency model for privacy labels (by
adapting prior inconsistency models for privacy policies).
Lalaine can be used by app developers for achieving
compliance goals and by app stores for vetting purpose. We
will release Lalaine.

e We provide detailed case studies and analyze root causes for
privacy label non-compliance that complements recent under-
standings on privacy labels. This has led to new insights for
improving privacy-label design and compliance requirements,
so app developers, platform stakeholders, and policy-makers
can better achieve their privacy and accountability goals.

2 Background
2.1 Privacy Labels of iOS Apps

As is illustrated in Figure 3, privacy label of an iOS app is
a “nutrition label"-like privacy disclosure which lists what
data is collected from the iOS app and how it is used. Privacy
label has a specific focus on data collection, to help app users
better understand how apps handle privacy-sensitive data. As
indicated in [47], “collect” refers to transmitting data off the
device in a way that allows app developers and/or their third-
party partners to access it for an extended period. In addition,
Apple asked developers to provide privacy labels following
certain key requirements [47]: (1) The app developer are
responsible for the disclosure for data collection of the whole
app, including those collected by third-party partners; the app
developer are required to disclose all purposes for collecting
a data. (2) The app developers need to keep privacy labels
accurate and up to date.

Taxonomy of privacy label. The privacy disclosure of the
privacy label follows a four-layer taxonomy [47]: data usage,
purpose, data type and data item. At the highest layer, these
labels fall into four categories of data usage: Data Used to
Track You, Data Linked to You, Data Not Linked to You, and
Data Not Collected. Under each category, Apple defines
six purposes except for the category Data Not Collected:
Third-Party Advertising, Developer’s Advertising or Market-
ing, Analytics, Product Personalization, App Functionality,
and Other Purposes. For each purpose, the privacy label
lists what data types (e.g., Contact Info) and specific data
items (e.g., Email Address, Phone Number, Physical Address,
etc.) are being collected. The taxonomy of privacy label
defines 14 data types and 32 data items [47] covering various
privacy-sensitive data ranging from personally identifiable
information (PII) to health information.

2.2 Consistency Model

A consistency model is defined as a contract between regula-
tors and rule-followers. In the privacy domain, a consistency
model measures to what extent privacy practices (e.g., data
collection behaviors in mobile apps) execute the rules (e.g., a
privacy statement indicating which party collects what data)
specified by the associated privacy disclosures (e.g., privacy
policies) [50, 53]. More specifically, a disclosure can correctly
and completely indicate critical information in a privacy prac-
tice if the privacy practice follows all rules in the disclosure.
Otherwise, an inappropriate disclosure occurs, indicating that
certain rules are violated by the privacy practice. The consis-
tency model summarizes such inappropriate disclosures into
several categories, according to the type of the rules obeyed
by the privacy practice.

Commonly-used inconsistency detection logic. An
inconsistency detection logic captures the difference between
a data flow in a privacy practice and its associated rules in the

Table 1: Comparison with prior consistency models.

T Method

PoliCheck [50] PurPliance [53] Our work
Disclosure Privacy Policy Privacy Policy Privacy Label
Disclosure Representation | {s|s: (e,c,d)} {sls: ((e,c,d),(d,k,q))} {sls: (d,q)}
Data Flow Representation {f1f: (e,d)} {f|f:(e,d.q)} {fIf:(d,q)}
Definition of flow-f- Sy ={s:(es.¢s5,ds) | Sy ={s: ((e5:¢5,dy), (ds, ks,q5))

related disclosure |dy EdyNes C ey}

les Cesndy CdyAgs E g5}

Sy ={s:(ds,q5)ldf Cdsvdy Tds}

Omitted Sy = 0 (neglect disclosure);
Inconsistent | : vmlt‘e Sp=0 S;=0 Sf#0ONqr ¢ Qf A Qf ¢ Or} (contrary disclosure);
Disclosure b k S S . .
B Sy #0Aqr ¢ Q3 ANQ} C O} (inadequate disclosure)
Disclosure f f
Incorrect JseSy Js €Sy N/A
Type Disclosure |s.t. ¢, = not_collect | s.t. ¢; = not_collect Vk; = not_for

privacy disclosure. A rule or a data flow can typically be for-
malized as a triplet in the form of (e, c,d), where e is subject,
c is predicate and d is object. Here, the predicate can be along
with positive or negative sentiments. For example, as shown
in Table 1, PoliCheck [50] defines the subject e as platform
entities (e.g., first-party or third-party), the object d as data
objects (e.g., email address), and the predicate c as data col-
lection action with positive (i.e., collect) and negative (i.e., not
collect) sentiments. In addition, PurPliance [53] considered
the data usage (i.e., purpose) in the consistency model, and
extended the representation of a rule in privacy disclosures
to be ((e,c,d),(d,k,q)) where k is the predicate associated
with data usage (e.g., “used for" and “not used for"), g is the
purpose of data usage (e.g., advertising for third party).

Previous works study the inconsistency between privacy
disclosure and data flows whose predicate sentiments c, k are
opposite. More specifically, the prior inconsistency detection
logic [50, 53] generally are defined between two representa-
tions with different predicate sentiments ¢ and k, correlated
entities e, data objects d and data usage g, i.e., with the defi-
nitions of flow- f-related disclosure Sy = {s: (e, ¢s,dy)|dy C
dyNep Ces} [50] or Sy = {s: ((es,¢5,ds), (ds, ks, q5))|ef E
esNdy CdsNgr E s} [53]. The correlation between e, d, g
of two representations is modeled using four semantic rela-
tions: synonym (d = d’), approximation (d = d'), hyponym
(d = d'), and hypernym (d O d).

It is worth noting that in privacy label, the data usage pur-
poses of a privacy-sensitive data item are presented only with
the positive sentiment. In our study, we analyze inconsistency
disclosure with specific focuses on data usage purpose (see
Section 4) instead of predicate sentiment.

Types of Inconsistency Disclosure. Previous studies [50, 53]
summarize several inconsistency types to inspect to what ex-
tent data flows can be disclosed by a privacy disclosure (see
Table 1). The typical inconsistency types include omitted dis-
closure and incorrect disclosure [50, 53]. Omitted disclosure
indicates a data flow which is not discussed by any policy
statements (i.e., Sy = 0). And incorrect disclosure recognizes
a data flow if a policy statement indicates that the flow will
not occur (i.e., a negative sentiment collection statement) and
there is not a contradicting positive sentiment statement (i.e.,
Ises 7 s.t. ¢g = collect Vks = for). In this paper, we did not

include logical contradictions, which is defined on a pair of
policy statements in the disclosure that have contradictions.
This is because that compared with privacy policy, privacy
label is a better-structured privacy disclosure where the logic
contradicted privacy statement does not exist. Since logical
contradiction is out of scope of this work, the prior type of
ambiguous disclosure [50, 53] will not be discussed in this
paper. In contrast to the previous works on “flow-to-policy”
consistency, to analyze flow-to-label consistency, we need to
focus on inconsistency of data usage purpose. Accordingly,
we formally define three types of inconsistency for privacy
labels : neglect disclosure, contrary disclosure and inade-
quate disclosure (Section 4) to fine-grain the type of Omitted
disclosure in PurPliance [53].

2.3 Scope of Problem

Our study focuses on the inconsistency between privacy label
and data flows in iOS apps to check the non-compliance.
Between the privacy policy and privacy label, we perform
a new measurement study to understand their divergence.
We did not directly compare data flows with privacy policies
since such a task has been conducted extensively in the
literature [50, 69, 86, 103].

Regarding the four layers of privacy labels (§ 2.1), our
study investigated whether the data items (the fourth layer)
and purposes (the second-layer) have been disclosed correctly
and completely.

For data types (the third layer), each data type covers
several data items (e.g., Identifiers covers two data items:
User ID and Device ID) defined by Apple. We did not
scrutinize the first layer. This is because that for some data
(e.g., vendor-specific data items like Apple device ID), linking
data to the user’s identity (e.g., via their account) are usually
taken place at the server-side, which may not be precisely
identified from client-side behavior. For example, although
both Apple apps Contacts and Apple news collect a device
identifier, based on their privacy labels, the Contacts app does
not link it to user identity, while Apple news does. However,
it can be hard to differentiate those two from client side.
Scope of data items. Apple defined 32 privacy-sensitive
data items (the fourth layer in privacy labels), which if
collected, should be disclosed in privacy labels [47] (e.g.,
Device ID, Precise Location, referred to as [-data items in our

study). [-data items originate from three sources: (1) Apple
system-level API (e.g., Device ID, Location, Contacts); (2)
app-level code including third-party libraries (e.g., User
ID, Advertising Data, Crash Data); (3) user input through
graphical interface (e.g., Sensitive Info including sexual
orientation, religious or philosophical beliefs, etc.). In § 5,
we propose complementary static and dynamic analysis
techniques, called Lalaine, aiming at capturing data items
from all three sources for compliance check of privacy labels.

3 Related Work

App privacy labels and other short-form privacy disclo-
sures. P3P [37] specification studied in [55, 59, 67, 88],
served as predecessor of privacy label, allows websites to ex-
press their privacy practices in a standard machine-readable
format [36]. Privacy nutrition labels have been proposed or
studied in the literature [32, 61, 62, 71, 72, 73]. Prior works
perform user study to understand challenges from develop-
ers’ perspectives [77] and end-users’ perspectives [102]. Li et
al. [78] studied how promptly developers create and update
privacy labels. Gardner et al. [66] developed a tool combining
static analysis and interactive wizards to help iOS developers
generate accurate privacy labels. News reports [3, 31, 44, 46]
showcased inaccurate privacy labels of iOS apps or suspected
their compliance quality, which partially motivated our sys-
tematic study. Koch et al. [74], concurrent with our study,
conducted a no-touch traffic analysis of 1,687 iOS apps to
study privacy labels’ correctness. Our work significantly com-
plements theirs [74] in key aspects such as coverage: no-touch
inspection without Ul interactions cannot thoroughly trigger
app execution, leading substantial false negatives; [74] only
considered one kind of inconsistency —“Neglect Disclosure”
and did not analyze data collection purposes — key part of
privacy labels. Compared with previous works, we perform
a systematic study on Apple privacy label compliance by in-
vestigating three types of data-flow to privacy-label inconsis-
tencies with formal definitions, end-to-end tools, uncovering
root causes of non-compliance and actionable takeaways.

Privacy compliance check on mobile apps. Privacy com-
pliance check [48, 50, 51, 54, 81, 82, 93, 100, 101, 103, 104]
are evolving from coarse-grained analysis to complex but
fine-grained analysis, from the data-level consistency, which
checks whether the return value of sensitive API is described
in the policy [93, 104], to data-purpose-level consistency [53].
Recent work (e.g., PoliCheck [50]) take into account the enti-
ties (third-party vs first-party) of the personal data and pro-
posed an entity-sensitive consistency model. PurPliance [53]
propose a new consistency model by extending the PoliCheck
[50] through incorporating data usage purposes. However,
PurPliance’s ontology didn’t cover all data items defined by
Apple and its taxonomy of data-usage purpose didn’t differen-
tiate the purpose between entities, which can not be directly
applied to our study. To fill this gap, we crafted a mapping
table considering both purpose and entity in the privacy policy

and enhanced the ontology (see § 5.2.2). Besides, essential for
analyzing privacy labels, we define a new consistency model
(with comparison in § 4), enabling three types of inconsis-
tency analysis between disclosures in privacy labels and data
practices in i0OS apps.

4 New Inconsistency Model for Privacy Label
In this paper, we propose a new inconsistency model essential
for analyzing privacy label, which includes three types of
inconsistent disclosure based on whether the usage purposes
of a certain data object are omitted, contrary, or inadequate
in the privacy label. Compared with previous works [50, 53]
which defined the consistency model on the predicate sen-
timent (see Section 2), our consistency model takes full ad-
vantage of the succinct expression of the privacy label to
fine-grain the ommitted disclosure issues and rationalize them
using inconsistent data usage purposes. More specifically,
we aggregate privacy statements in privacy labels and data
flows in an iOS app with the correlated data objects (i.e.,
Sy ={s:(ds,qs)|ds CdsVds Td,}), and identify three types
of inconsistencies between the data usage portfolios disclosed
in privacy labels and actual data flows in iOS apps. We sum-
marize the comparisons with the previous consistency models
in Table 1. Below we introduce the formal representation of
the privacy label, data flows, and the semantic relationship
between data objects.

Definition 1 (Privacy Label Representation). Given the set of
data items D and data usage purposes Q, an app’s privacy label
is modeled as a set of tuples S(D,Q) = {s|s : (ds,qs),ds €
D, g5 € Q}. Each tuple s represents a privacy statement for
a certain privacy-sensitive data item dg, which discloses one
purpose g, that dy is supposed to be used for (see Figure 3).
Note that one data item can be associated with multiple data
usage purposes, and thus different privacy statements can be
associated with the same data item; e.g., “Device ID" can be
used for both Analytics and Third-Party Advertising purposes.
Definition 2 (Data Flow Representation). An individual data
flow f in an app is represented as a tuple f = (dy,qy), where
dy € D is a privacy-sensitive data item and g is the usage
purpose of dy in flow f. In mobile apps’ data collection,
a certain data item can be associated with multiple usage
purposes in different flows. We define the purposes in all
flows with the same data item with f as the purpose portfolio
of the flow Qf = {Qf/|f/ = (df/vqf/)?df/ = df}

Definition 3 (Semantic Relationship). Similar to prior
work [50, 53], we use an ontology of data items to capture
the relationship between data items (e.g., DeviceInfo is a
hypernym of DeviceID). Given an ontology o and two terms
u,v, we denote u =, v if u, v are synonyms with the same se-
mantic meaning. Otherwise, if u is a general term and v is a
specific term whose semantic meaning is included in u, we
denote v u or u T v. In this case, u is called a hypernym of
v, and v is called a hyponym of u. u C, v is equivalent with
ulC,vvVu=,v.

Definition 4 (Flow-relevant Privacy Label). The privacy dis-
closure s = (dj,q;) for data item dj is relevant to the flow
f = (dy,qy) (denoted as s ~ f) if and only if d; C, dy or
d; J,dy. Let Sy = {s|s € SAs~ f} denote the set of flow-f-
relevant privacy label. Let Q?- = {q;|s € Sy} denote all data
usage purposes in flow- f-relevant privacy label, which is also
called the purpose portfolio of the privacy label relevant to f.

Given a flow f, by comparing its purpose gy, its purpose
portfolio Q, and the purpose portfolio of its relevant privacy
label QJSp, we reveal the flow-to-label inconsistencies and
categorize them into three types: Neglect Disclosure, Contrary
Disclosure, and Inadequate Disclosure.

Inconsistency 1 ([l¥] Neglect Disclosure). The privacy label
S is a neglect disclosure with regard to a flow f if there exists
no flow- f-relevant privacy label in S:

Sp=0 = Sk

Intuitively, Neglect Disclosure means that a data item is
collected but not disclosed in the apps’ privacy label.

Inconsistency 2 ([#] Contrary Disclosure). The privacy label
S is a contrary disclosure with regard to a flow f if the flow-
f-relevant privacy label Sy exists while the purpose of the
flow is not in Sy and there exists at least one purpose in S¢
which is not in the flow’s purpose portfolio Qy:

SF#0Nqr ¢ QF ANQT L Qs} = SET.

Intuitively, Contrary Disclosure means that the data col-
lection purposes declared in the app privacy label are not all
consistent with the actual purposes (e.g., a declared purpose
of Third-Party Advertising compared to the actual purpose of
App Functionality).

Inconsistency 3 ([] Inadequate Disclosure). The privacy
label S is an inadequate disclosure with regard to a flow f if
the flow- f-relevant privacy label S exists while the purpose
of the flow is not in Sy and the purpose portfolio in Sy is a
proper subset of the flow’s purpose portfolio:

Sf#0Nqr ¢ QFAQFCQr} = SK .

Intuitively, Inadequate Disclosure indicates that the privacy
label correctly discloses partial rather than all usage purposes
of the data objects related with dy. Note that in our application
(§ 6.3), it is possible that the usage purposes extracted from
the data flows are not complete, while this will not erroneously
result in false positives of inadequate disclosure.

S Methodology

5.1 Overview

Architecture. Our approach relies on the extraction of data-
purposes pair from dynamic code behavior and analysis of in-
consistency with its corresponding privacy label. In particular,
the design of Lalaine includes three major components: data

collection and preprocessing, Static Assessment Framework
(SAF, § 5.2), Dynamic Assessment Framework (DAF, § 5.3),
as outlined in Figure 1. First, Lalaine collects a large set of
366,685 i0S unique apps from Apple app store (U.S.) from
October 29, 2021 to April 26, 2022, with their privacy labels
and privacy policies simultaneously collected. We used the
privacy label closest to the app download time and checked
the version history to make sure the app version is the latest
one listed in the privacy label page. Second, the SAF ana-
lyzes the app binaries and their privacy labels and policies,
and outputs two app sets: (1) apps that use the iOS system
APIs whose return data, if collected by the apps, should be
disclosed in iOS privacy labels — denoted as API including
161,262 apps; (2) apps whose privacy label and privacy policy
have inconsistent data practice disclosures (regarding data
collection and usage purposes) — denoted as PP including
53,376 apps. Last, based on the apps of interest (i.e., sets AP/
and PP), the DAF includes a dynamic analysis pipeline which
performs end-to-end execution (fully automated app UI ex-
ecution, dynamic instrumentation, and network monitoring).
The pipeline strategically takes a subset of the apps for full
execution to maximize the precision of detection for privacy-
label non-compliance while maintaining the scalability of the
study (detailed in § 5.3). Based on the context that features the
data practices (e.g., API caller, stack traces, server endpoints,
Web requests, and responses) collected by the pipeline, DAF
infers the actual data collected and purposes of collection, and
aligns them, abstracted as tuples (data, purpose), to the 32
data items and 6 purposes defined by Apple. DAF finally re-
ports privacy label non-compliance by comparing those tuples
with disclosures in the vendors’ privacy statements.

Data collection. In our research, we collected 366,685 i0S
apps for privacy label compliance checks. Specifically, we
reuse the more than one million Android app names from prior
works [97], assuming that the iOS and Android versions of an
app might share similar names. This approach turned out to be
efficient: we collected 485,024 unique app Bundle IDs from
the Apple app store (U.S.). Given those Bundle IDs, we ran an
app crawler on 10 iPhones to download and decrypt those apps
(see technical details [30]). In this way, we collected 366,685
iOS apps, which cover 27 app categories. Meanwhile, for each
10S app, we also collect its privacy label and privacy policy.

5.2 Static Assessment Framework

As mentioned earlier (§ 5.1), the SAF takes in our data set (app
binaries with their privacy labels and privacy policies) and
finds out two sets of apps, i.e., API (apps using the iOS system
APIs returning /-data items) and PP (apps with inconsistency
between privacy label and privacy policy). Those apps will
be further validated through dynamic analysis in § 5.3.

5.2.1 Sensitive-API Analyzer

Although Apple provides a list of 32 data items (e.g., Device
ID, Health, called [-data items) whose collection are expected

@ static Assessment Framework . |

App binary code Static Scaner i0S apps

@ Dynamic Assessment Framework with Privacy-Label Compliance Check

EEn iPhone J
IT»:.l ——>EEn = —————— network traffic of app] DX i model
= [1 1] »Z install an App
A 1o
111 (url, request, response) -
<« gc Neglect disclosure
@ App Ul Monkey
Sensitive APIs AP to data Mapping App Sampling —
™ ~ N Purpose'i\nference - >
FE N ek Hook sensitive API > Contrary disclosure non-
n compliance
A PrivacyPolicy y nE T Moo o Y
l 1 Network monitor ! o systom e
V. (caller, system AP, frequency) Inadequate disclosure
Hyper-hypon graph
@] - Consistency Check ; > : ﬁmmsmu the App stack trace of API
{_Privacy Label /" A4 weset PP i

Figure 1: Overview of Lalaine.

to be disclosed in privacy labels, such information is insuf-
ficient and cannot be directly used to find out whether an
app involves/collects such data. The gap is that we lack a
precise and comprehensive mapping between the data items
and corresponding i0OS system APIs that return the data —
we aim to identify apps that access the data by inspecting
their invocation of those APIs. Preparing such a mapping
is non-trivial due to (1) the substantial amount of iOS sys-
tem APIs (e.g. more than 200,000 public APIs on the recent
i0S 15.5) whose documents often lack descriptions about the
return values or are even completely missing [42]; (2) the
I-data item being too general without a clear definition of
its scope. For example, the data item Device ID is general
and unique on i0S, including the identifier for advertisers
(IDFA), the identifier for vendors (IDFV), and possibly many
others, and it is never apparent for app developers whether ac-
cessing, for example, IDFV (or calling specific APIs such as
identifierForVendor [25], the iOS API that returns IDFV
(see § A.1)), should be disclosed in privacy labels (see mea-
surement results in § 6).

l-data item to iOS-API mapping (I-mapping). To enable a
privacy-label compliance tool like Lalaine, we propose and
release an [-data item to 10S-API mapping (called [-mapping).
First, similar to [93], we gather a set of candidate APIs by
utilizing the enhanced ontology (§ 5.2.2) that provides sub-
sumptive relations between low-level technical terminology
and high-level privacy terms. Specifically, if privacy-label data
items subsume the data value returned by API, then this API
will be regarded as a candidate. Then, to validate the APIs, we
manually inspected iOS API documents (with development of
end-to-end proof-of-concept apps to check the return values
of the APIs) and summarized a list of iOS APIs corresponding
to five types of [-data items: Device ID, Location, Contacts,
Health, Performance Data. We release 1-mapping online [30].

Static scanner. To support a large-scale study, we developed
a lightweight, effective static analysis to screen apps that call
i0S system APIs recorded in the /-mapping. Lalaine consid-
ers that an app does not collect, for example, IDFA (a Device
ID), if the corresponding iOS API - [ASIdentifierManager
advertisingIdentifier] cannot be found in the app’s bi-

nary code. More specifically, our static analysis is adapted
for the unique function call mechanism of Objective-C [34]
and Swift [39]. In these languages, API names are composed
of two parts: a class name (e.g., ASIdentifierManager) and
a selector name (e.g., advertisingldentifier). The invocation
of an API is compiled to an instruction-level call to the 10S-
unique objc_msgSend function with the API’s selector name
(a string) passed in as the second argument [56, 57, 96]. Es-
sentially, that is, an API’s selector name string will appear in
the binary if the API is called by the app. Hence, our static
scanner searches the selector names in the apps’ binaries (us-
ing the grep command [22]) and filters out apps that do not
invoke APIs in the [-mapping.

Evaluation. Through manual confirmation by domain experts
of i0S and privacy, we ensured our l-mapping was precise
(each API returns a [-data item). For best coverage, we further
manually checked 293 iOS frameworks (iOS 15.5) that are
likely to include APIs related to the five I-data items and con-
firmed that our I-mapping was comprehensive. Regarding the
static scanner, prior approaches [57, 64, 92, 96] with analysis
of control flows are too heavy-weight for our task (e.g., 54
minutes per app [96]); in contrast, our SAF spent 20 hours
to scan 366,685 apps, also precluding manual analysis of
apps at this scale for cost efficiency. To evaluate coverage, we
randomly sampled 20 apps that were filtered out by SAF, man-
ually exercise UI and functionalities for 10 minutes for each
app, and in the meantime, used Frida to hook the iOS APIs in
the 1-mapping. In this experiment, SAF showed high coverage
(100%) for static screening of APIs in 1-mapping. Further, po-
tential false-positives (e.g., if non-system APIs share names
with an iOS API) in SAF’s static scanner introduces no im-
pact for Lalaine’s end-to-end accuracy: the dynamic-testing
(§ 5.3.1) guarantees precise hooking of APIs of interest (using
class-name and API-name) based on Frida [20].

5.2.2 Privacy Label-to-Policy Consistency Checker

To identify apps with inconsistent privacy label and privacy
policy, in this subtask, we aim at aligning data objects and
their usage purposes mentioned in privacy label and privacy
policy for inconsistency check. More specifically, we use Pur-
Pliance [53] to retrieve data items and the purpose of data

usage from the privacy policy, and map them into the taxon-
omy of the privacy label with 32 data items and 6 purposes
(see § 2). Below we elaborate on the mapping process.

e Data object alignment. Apple defined 32 specific data items
as the taxonomy of privacy label (Section 2). However, given
an app’s privacy policy, the extracted data object d,, can not
be simply matched to the data item d; of privacy label using
keyword matching. This is because the semantic levels of
dp and d; are sometimes different. For example, considering
the sentence extracted from privacy policy “we will collect
Android ID, IMEI, IDFA ...”, here the sensitive data objects
are Android ID, IMEI, IDFA. However, those data objects are
not matched to the 32 data items in privacy label, but they
are semantically subsumed to “Device ID” defined by Apple
which represents any device-level ID.

To fill this gap, we enhanced the data object ontology in
[49] to determine the semantic relationship (Synonym, Hy-
pernym, Hyponym) between d,, and d; and align data objects
in different granularity. More specifically, to recover their
subsumption relationships, we use data object ontology in
[49], which is a graph-based data structure where each node
represent a data object and each edge represents a relationship
among hyponym and hypernym (e.g., “personal information”
subsumes “your email address”). However, the ontology in
[49] is built on the corpus of the privacy policy, there miss
some nodes and edges defined by the privacy label taxonomy.
For example, Apple defined Emails or Text Messages includes
subject line, sender, recipients and etc. Those data objects
and their subsumption edges are not in the current ontology.
Hence, we manually enlarged the ontology to cover such new
edges (e.g., emails or text messages = subject line). In total,
we added 75 nodes and 193 edges to the original ontology. We
release the ontology online [30]. Given the ontology, we align
dp and d; if d; is a synonym, hypernym, or hyponym of d,,.

® Purpose alignment. It’s non-trivial to fill the gap between
the data usage purpose mentioned in the privacy policy and
those in the taxonomy of the privacy label because the taxon-
omy of data-usage purpose in [53] did not differentiate the
purpose between first-party and third-party. For example, the
Adbvertising purpose should be differential from the entity (i.e.,
first-party or third-party) in the privacy label: first-party adver-
tising is aligned with “Developer’s Advertising or Marketing”
while third-party advertising is corresponding to “Third-Party
Advertising” based on Apple’s definition of purposes. Hence,
we crafted a mapping table considering both purpose and
entity in the privacy policy, as shown in Table 2.

e Comparison. After data object and purpose alignment, pri-
vacy policy statements can be represented as (data, purposes).
As the privacy label is a structured data in the form of (data,
purposes), we then compare the 2-tuples of privacy policy
and privacy label using the definition of three inconsistent
disclosure in § 4.

Table 2: Purpose Alignment

Privacy Policy Privacy Label
Purpose Entity Purpose

. . . App Functionality
Functionality | First Party Product Personalization

. First Party Developer’s Advertising or Marketing

Advertising | by Third-Party Advertising
Analytics - Analytics
Marketing First party Developer’s Advertising or Marketing
Other - Other Purposes

5.3 Dynamic Assessment Framework with
Privacy-Label Compliance Check

Based on the apps of interest found by SAF (i.e., API and
PP), the DAF performs automatic end-to-end execution on
a strategically sampled subset of the apps to maximize the
precision of the privacy-label non-compliance detection
while maintaining the scalability of the study. DAF includes
two key components: (1) a dynamic analysis pipeline that
automatically runs the apps with dynamic instrumentation
and network monitoring (§ 5.3.1) and (2) a compliance
checker that reports inconsistencies between the actual data
practices and privacy labels (§ 5.3.2).

5.3.1 Dynamic Analysis Pipeline

App sampling. From our data set of 366,685 apps (§ 5.1),
SAF yields 161,262 apps denoted as API, and 53,376 de-
noted as PP. Limited by the scalability of dynamic analysis,
we narrow down the test scope while preserving the gener-
alization of results by performing a strategic sampling over
the apps. Specifically, we perform an intersection of AP/ and
PP, yielding three app sets: API\ PP, APINPP, PP\ API,
which will help characterize different levels of privacy-label
noncompliance. We sampled apps from each of the three sets
and obtained 6,332 apps for full testing using DAF:

e API\ PP. These are apps in set API but are not in set PP.
Intuitively, these are apps that invoke i0OS system APIs access-
ing [-data item while their privacy labels and privacy policies
are consistent (regarding disclosure of [-data item usage/col-
lection, see § 6). Data practices of apps in API \ PP, can be
inconsistent with both the privacy labels and privacy policies.
In our study, API \ PP includes 140,944 iOS apps, from
which we sampled 4,593 for dynamic analysis (see below).
e APINPP. APIN PP are apps that invoke iOS system APIs
accessing [-data item while their privacy labels and privacy
policies are inconsistent. Data practices of apps in AP/ N PP,
even if inconsistent with privacy labels, can be consistent with
privacy policies, or vice versa (consistent/inconsistent with
privacy labels/policies, see measurement results in § 6). In
our study, API N PP includes 20,318 iOS apps, from which
we sampled 662 for dynamic analysis.

e PP\ API. PP\ API are apps with inconsistencies between
privacy labels and privacy policies, while they do not
apparently access [-data items (i.e., their code is not found
to invoke iOS system APIs returning /-data items). Notably,

Lalaine considers that the apps might (1) leverage runtime
techniques [68, 97] (such as reflection) that evade the static
screening (§ 6); (2) access [-data items that originate from the
app-level code or third-party libraries. For best coverage, our
dynamic analysis inspects all possible /-data items from the
network traffic of the apps (see below). Data practices of apps
in PP\ API, can be inconsistent with either privacy labels or
privacy policies, or both of them. PP\ API includes 33,058
apps, from which we sampled 1,077 for dynamic analysis.
App Ul execution. Our pipeline automatically installs each
app (using the idevicelnstaller command [15]) and schedules
it to run on a set of jail-broken iPhones. Specifically, sim-
ilar to common practices [76, 80, 83, 89, 91] on Android,
we leverage an open-source, off-the-shelf UI execution tool,
called nosmoke [41], to generate actions and automatically
trigger the dynamic execution of an app, such as clicks or
swipes, through the user interface (UI). Notably, nosmoke
is designed to identify textual information and types of Ul
elements using the OCR techniques [94] from screenshots.
Specifically, it identifies actionable UI elements in the current
app window and executes target actions based on a simple con-
figuration (e.g., clicks for a button or edit for a input, see the
configuration details in [30] based on depth-first search (DFS)
algorithm). In our pipeline, we set the maximum depth of the
UI window stack as 5, and the maximum number of actions
on one window as 15; each app is scheduled to run for three
minutes and then uninstalled. With 4 iPhones concurrently
running, Lalaine could execute about 600 apps each day.

Evaluation. Compared to sophisticated, manual UI execution
that can properly handle app-specific text inputs, automatic Ul
execution can have lower coverage. As an evaluation, with 100
sampled apps, we manually executed each app with exhaustive
UI interactions for up to three minutes (same period as DAF),
and compared the coverage with DAF based on two metrics:
DAF covered 61.01% of unique network traffic (unique to
server API endpoints) and 43.34% of unique call-stack traces
(unique to i0OS APIs hooked) of manual UI execution. Hence,
although Lalaine reported many non-compliance of privacy
labels (§ 6), it could still be a low bound of results, indicating
the seriousness of the problem. Our further evaluation on 150
apps also shows that running nosmoke for three minutes (our
configuration) yields a 90% of network traffic compared to a
longer time such as 10 minutes (see details in [30]).

Dynamic instrumentation and network monitoring.
Similar to common approaches [63, 75, 95], during the
app execution, Lalaine leverages Frida [20], a dynamic
instrumentation tookit, to hook iOS systems APIs returning
I-data items (see the I-mapping in § 5.2.1). In particular, we
inspect the APIs’ argument values and return values (using
the onEnter(args) and onLeave(retval) APIs of Frida [20]
respectively), and obtain the call-stack traces (using the
Thread.backtrace([context, backtracer]) API [20]). Lalaine
matches the APIs’ return values with network traffic to
confirm the data collection. Similar to [70, 85, 89, 90, 91],

Lalaine adopted a popular network monitoring tool
Fiddler [33] to decrypt and inspect app traffic.

o Mapping call-stack traces to network-traffic. We came up
with a mapping (denoted as c-mapping: caller — end point)
between the system API caller (class/function) from call
traces and endpoints in network traffic. First, similar to prior
approaches [50, 58, 87], DAF performed a case-insensitive
match of the return value of system APIs to content val-
ues in network traffic, and uniquely mapped 13,038 (31.8%)
call traces to corresponding network traffic. In the app
com.yinzcam.venues.unitedcenter, for example, the system
API identifierForVendor is only invoked by the caller func-
tion [YCPushService registrationJSONDataForTags: | and its
return value is only transmitted to the endpoint yinzcam. We
add such a mapping to c-mapping.

e Enhancing the mapping for high coverage. Sec-
ond, we enhanced c-mapping using cocoapods [10], a
library repository for iOS apps with over 92,000 libraries.
Specifically, we observed that sensitive data are often
collected by third-party libraries being agnostic to individual
apps (e.g., the caller function [FlurryLocationlnfoSource
onqueue_dataProviderDidUpdate:] in flurry library
transmits user location to the flurry server). To gather
such information, we crawled all libraries in cocoapods
with their metadata (podspec.json file of each library
includes its owner and domain) as a knowledge base.
For example, by searching the caller KVAAdapter:
valueForContext :touchlessBool :waitBool:
completionHandler : that invoked the system API ad-
vertisingldentifier, Lalaine found the caller was in the Kocha-
vaTrackeriOS_4.3.1 SDK with domain kochava.com [29]. Fi-
nally, c-mapping allows Lalaine to map 34,098 (83.17%) call
traces to traffic that transmits 1-data (see limitation in § 5.5).

5.3.2 Privacy-Label Compliance Check

Overview. Based on Apple, an /-data item is deemed “col-
lected” by a vendor only if it is transmitted to the Internet [47].
For our compliance check, Lalaine first infers the I-data item
that is actually collected based on both network traffic and
evidence found in dynamic instrumentation. Another key chal-
lenge is to infer the vendors’ actual purposes for the collection
of each I-data items (e.g., App functionality, Third party ad-
vertising, falling under categories defined by Apple), which
we tackled by adapting a modeling and learning-based ap-
proach. Lalaine finally reports whether the tuple (I-data item,
purpose) representing actual data practices is consistent with
the app’s privacy labels (see the consistency model in § 4).

Inference of I-data item collection. Prior approaches [70,
89, 90] to identify privacy data from network traffic are often
limited to specific data types. Tailored to [-data items, DAF ex-
tends prior value-matching approaches [50, 58, 87] that match
sensitive data in traffic to data observed in dynamic instrumen-
tation (data returned by iOS system APIs, see § 5.3.1). For
example, in traffic of the app TED [40], DAF found the value

KVAAdapter:valueForContext:touchlessBool:waitBool:completionHandler:
KVAAdapter:valueForContext:touchlessBool:waitBool:completionHandler:
KVAAdapter:valueForContext:touchlessBool:waitBool:completionHandler:

9F0B31E6-980B-4468-9797-0B1F1A8FA56E that matched
the IDFA (a Device ID) returned by the iOS API adver-
tisingldentifier (returning IDFA, an Device ID). Like common
approaches [86, 87, 91], DAF also employed common data
transformations/encoding schemes (MD5, SHA1, SHA-256,
SHA-512, URL-encoding, adding hyphens and underscores,
and quotes, etc.) to improve coverage.

For [-data items that may not be returned by system APIs
(§ 2.3), DAF searches them in network traffic based on a
crafted list of 197 keywords that may identify [-data items.
For example, the keyword device_identifier found in network
requests of many apps indicates that the collected data is a
Deivce ID (the traffic, often being Web API traffic, includes
key/value pairs); DAF used the keyword blood_type to find
data collection from traffic aligned to the /-data item Heath.
To collect the keywords, we inspected the network traffic of
259108 apps (113 from Apple and 146 from high-profile ven-
dors), each running for ten minutes using SAF and 15 minutes
with exhaustive manual interactions, to collect a comprehen-
sive list of keywords (see details in [30]).

Evaluation. We randomly selected 450 network requests from
136 apps. Our manual inspection of all data in the traffic shows
a precision of 99.8% in Lalaine’s inference of 1-data items.

Inference of I-data item collection purposes. In our study,
we analyze a set of high-profile iOS apps and their privacy
labels, and identify their features for purpose prediction.
More specifically, we select features tailored to the purpose
categories and definitions from Apple, particularly those con-
sidered to be robust, in the sense that missing these features
might disable the classifier to correctly differentiate different
purposes. To this end, we extended MobiPurpose [70] to
13 features, categorized into three groups: external app
information, traffic information, and call trace information.
The external app information is extracted from the app
download page on the Apple store, including Bundle ID,
App name, Company name. We also leverage the context
information found in dynamic instrumentation (e.g., call stack
traces) and semantics in network traffic to abstract a six-tuple:
(caller,systemAPI, frequency, endpoint, request, response)
for each I-data item. Such an abstraction encodes essential
context information for Lalaine to infer the collection pur-
pose, which can be mapped to those defined by privacy labels.
A description of these features is provided in [30]. In our
study, we use 6 new features geared towards data collector,
data receiver and collection behavior to find the signal of
the purpose of this data collection behavior. For example,
we calculate API frequency based on the observation that
frequent invocation might indicate a suspicious intention
(e.g., tracking the user’s precise location multiple times in
one second). This feature is effective for our task, which
yielding a performance improvement of 1.436%. The details
about feature extraction, feature example, feature importance,
and implementation details are in [30].

Evaluation. We elaborate on the model evaluation below.

Table 3: Evaluation of Purpose Identifier.

Purpose Precision Recall F1

Analytics 0.97 0.98 0.98
App Functionality 0.92 0.97 0.94
Developer’s Advertising or Marketing ~ 0.95 0.77 0.85
Product Personalization 0.86 0.68 0.76
Third-Party Advertising 0.97 0.98 0.98
Macro Avg 0.94 0.88 0.90
Weighted Avg 0.95 0.95 0.95

e Dataset. We collected and manually validated 259 high-
profile iOS apps as groundtruth (113 developed by Apple and
146 from other high-profile vendors). Each app goes through
the dynamic analysis pipeline (§ 5.3.1) complemented with
ten-minute manual app usage, and then we obtained the six-
tuple for each I-data item found in app traffic. These six-tuples
are manually aligned with (I-data item, purpose) pairs ex-
tracted from privacy labels to establish ground-truth. In total,
four annotators labeled 2,958 pieces of traffic which contact
184 distinct domains and achieved 0.923 agreement score
calculated by Fleiss’s kappa [65]. The annotation criteria are
detailed in [30].

The groundtruth dataset consists of 2,958 samples in five
data usage purpose (1,035 as Analytics, 739 as App Function-
ality, 445 as Developer’s Advertising or Marketing, 141 as
Product Personalization, and 598 as Third-Party Advertising).
We use 75% samples as the training set to train the model and
25% samples as the testing set to evaluate our approach. The
class labels (i.e., purposes) in the training set and the testing
set share the same marginal distribution.

e Experiment results. The inconsistent disclosure model (see
§ 4) focuses to reveal the data usage purposes in practice
which are not reflected by the associated privacy label. There-
fore, the false positives in purpose identification (i.e., the pre-
dicted purpose does not occur in practice) will result in false
alarms in inconsistent disclosure. To avoid false alarms as
possible, we tune the hyper-parameters of our model towards
high precision, which indicates less false positives in each
purpose, during the cross-validation on the training set. Then
we evaluate Purpose Identifier on the testing set and the re-
sults are shown in Table 3. The proposed model achieves high
precision (i.e., 0.97, 0.92, 0.95, 0.86, and 0.97) and tolerable
recall (i.e., 0.98, 0.97, 0.77, 0.68, and 0.98) for each purpose.
Further, we run our model on 40,999 unique pieces of net-
work traffic with [-data item detected from 5,102 (source of
application data), and manually verify the prediction of 1,000
randomly selected samples, which achieves 94.3% accuracy.

Discussion. To rank the results of Lalaine based on their va-
lidity, for a sample x;, Lalaine will output a detection result
along with a confidence score p;. In our study, we mainly
consider the potential errors introduced by Lalaine’s purpose
inference module, and calculate p; = maxy Fy(;), where Fj(1;)
is the softmax probability of predicting an input of purpose

inference module #; as a purpose k. This is because the ma-
chine learning based purpose inference module is a source of
errors while the pattern-based /-data item inference module
yields a unified error of 0.2% for all of its outputs. Our study
showed that 85.7% of violations flagged by Lalaine have con-
fidence scores larger than 90%, while the average confidence
score is 92.4%. We ranked potential violations based on their
confidence scores, and selected top-100 flagged apps with
highest confidence scores for manually validation, yielding
an accuracy of 100%.

5.4 [Evaluation of the Entire Lalaine System

Experiment settings. We ran Lalaine on four iPhones (10S
versions: 12.4.1, 13.4, 13.7, 14.8.1), two Mac minis with Ap-
ple M1 chip with 8-core/16-core CPUs, and two Macbook
Pros with Apple M1 chip and 16-core CPU.

Evaluation results. To evaluate the overall effectiveness of
Lalaine, we first collect ground truths. We randomly selected
100 apps from 6,332 apps sampled in § 5.3.1, manually in-
teracted with those apps, and went through all possible Uls.
Meanwhile, network traffic and call-stack traces are recorded
by fiddler and Frida. In total, 81 apps out of 100 apps were
successfully tested, generating 939 system API invocations
and 1,362 network requests with responses. Further, we lever-
age domain experts to manually inspect the generated network
traffic and stack traces to summarize the data and their cor-
responding purposes, then, and identified 122 non-compliant
cases, denoted as (d,q) pairs where d is the data and q is the
disclosed purpose in its privacy label, associated with 64 apps.
On the ground-truth dataset, Lalaine generated 407 system
API invocations and 831 network requests with responses.
Lalaine reported 75 non-compliant (data, purpose) pairs (49
apps), showing a precision of 96% and a recall of 60.6% (for
non-compliant data/purposes pairs), or a precision of 93.87%
and a recall of 76.5% (for non-compliant apps). On average,
it took 185 seconds (180 seconds for executing an app and 5
seconds for inconsistency analysis) to investigate one app.
o Fulsely detected inconsistency. The three false positives,
i.e., three reported (d, q) pairs, come from falsely inferred
purposes. We found it challenging to distinguish product
personalization from app functionality as they usually shared
some similar features (e.g., sent data to its own domain). We
elaborate on the falsely detected cases in [30]. We discuss
all possible causes of false positives in § 5.5.
e False negatives. We observed two causes for the missed
cases, both due to the limitation of off-the-shelf UI automa-
tion tool: (1) compared with manually/fully executing apps,
Lalaine can only invoke 43.34% of system APIs and generate
61.01% of network traffic (see component evaluation in
§ 5.3.1); (2) many apps requires login (username/password,
two-factor authentication, CAPTCHA) to be fully executed
where Lalaine falls short. We discuss all possible causes of
false negatives in § 5.5.

e Apps in the omitted group. Apps omitted in Lalaine’s sam-
pling are those that do not involve iOS system APIs accessing
l-data item items and their privacy policy is consistent with
privacy label, denote as a set ~(API U PP) (172,365 apps in
our dataset). Although these apps might have smaller likeli-
hood of privacy label issues than other groups (§ 5.3.1), we
randomly sampled 400 apps and performed a full testing us-
ing Lalaine. We found 9.75% of the apps have non-compliant
privacy labels (compared to 72.26%, 66.46%, 69.45%, in the
other sets API\ PP, APIN PP, PP\ API respectively), among
which 80% are neglected disclosure. We observed that most
leaked data are User ID and Device ID which are generated
by app-level code including third-party libraries. The others
originated from user input through the graphical interface
(e.g., Phone Number).

5.5 Limitation

False negatives can arise for a few reasons. First, Lalaine is
built on a set of off-the-shelf dynamic analysis tools (e.g.,
Frida in jailbroken environments, Fiddler for network inspec-
tion), and inheriting their limitations. Lalaine could not fully
run for a portion of apps (1,230/6,332, see § 6) that (1) use
SSL Certificate Pinning [23] to hinder traffic monitoring us-
ing Fiddler, (2) apply “Block Frida Toolkits” [5] to prohibit
code instrumentation, (3) prevent themselves from running
on jail-broken phones. Also, Lalaine’s automatic app inter-
action based on depth-first search may not traverse all Ul
paths, due to (1) configuration (3 minutes per app), (2) so-
phisticated user inputs (e.g., login) needed. Also, in traffic
analysis, Lalaine may omit cases if the apps use customized
encryption/obfuscation/encoding before data transfer. Further,
sophisticated obfuscation to hide invocation of public system
APIs can impact Lalaine’s coverage. However, prevalence of
obfuscation in i0OS apps was low (0-8.17% in [96, 98]); prior
obfuscation focuses on application-level code [68, 79, 98, 99]
(e.g., function names of app code or third-party libraries) and
private APIs [56]. Hence, we consider the current state of i0S
app obfuscation to pose limited impact on Lalaine. Last, the
purpose prediction model may introduce false negatives.
Despite multiple sources of false negatives,Lalaine in-
cludes multiple strategies to help ensure that the issues re-
ported are most likely true and thus warrant developer investi-
gation/action (93.87% precision, see § 5.4). Particularly, (1) at
the Lalaine pipeline, we manually validated results of several
components, ensuring the correctness of I-mapping and data
ontology before they are used; (2) Lalaine tuned the hyper-
parameters of the purpose prediction model towards high
precision; (3) Lalaine utilized a strict value/pattern match
to find data items from network traffic instead of an ML-
based method (99.8% precision, see § 5.3.2). Nonetheless,
false positives can still occur for a few reasons. Above all is
the challenge with inference of data-collection purposes. For
example, it can be difficult to completely differentiate “An-

alytics” from “Developer’s Advertising or Marketing”, and
we leveraged a set of features (e.g., SDK, endpoints, server
responses) and ground truths (§ 5.3.2) to best infer purposes.
In this process, failure of feature extraction could impact per-
formance; for example, c-mapping enabled Lalaine to map
83% of call traces to traffic (see § 5.3.1), with missing cases
caused by (1) obfuscated caller class/method names (e.g.,
QxxcvxMdXVGIxX:xfxxMmJcqGxlxJ); (2) uncommon or
deprecated callers not found in known libraries. Last, the
value match in traffic can lead to false cases if the values
are too short (the coarse location if with just four digits may
match other data types such as version number).

6 Inconsistency Results and Analysis

Running Lalaine on 6,332 iOS apps and their privacy labels,
we show that the inconsistencies are prevalent. Altogether,
5,102 i0S apps have been fully tested, while the other apps
crash due to their resistance to run in jail-broken environment,
Frida hooking or traffic monitoring. Among the tested apps,
Lalaine reveals that 3,281 of them neglect to disclose data
and purposes (§ 6.1), 1,628 apps contrarily specify purposes
(§ 6.2), and 677 apps inadequately disclose purposes (§ 6.3).

6.1 Neglect Disclosure

Neglect Disclosure indicates that the app developer collects
certain data without disclosure. Among 5,102 apps, we found
3,281 apps with neglect disclosure. In total, 11,726 data ob-
jects are neglected in the privacy label of these apps. Among
these non-compliant apps, 2,346 apps lie in API'\ PP (the
data disclosure in the privacy label is consistent with that
in the privacy policy), indicating that both the privacy label
and privacy policy may neglect the data in app code behavior.
Also, 238 non-compliant apps lie in API N PP, where the pri-
vacy policy is reliable while the privacy label fails to reflect
the code behavior. Besides, 434 non-compliant apps lie in
PP\ API, indicating that they harvest data from user inputs,
generated by app-level code, or bypassed static screening.

e Data types and purposes. To understand the disclosure of
what kind of data with which purposes are prone to be ignored
by app developers, we plot the number of apps neglecting
data under each purpose, as shown in Figure 2a. The results
show that Diagnostic data, such as device metadata (e.g.,
is_jailbroken, localized_Model, GPU_type, sensors_signal,
screen_size, os_version, etc), is the most likely to be omitted.
Although such data are usually used for technical diagnostics,
they can be monetized by the data broker. For example, the
traffic sent to a data broker broker.datazoom.io consists of
12 device-related data along with user events in the request
body, which can be used to profile a user. Further, the User
ID, Device ID and Location data are also prone to be omitted
by developers. Those data are commonly used for third-party
advertising, analytics, or marketing. In our study, we also
observe data that come from user input, like Email Address,

Phone Number to support the App Functionality purpose, are
commonly omitted by app developers.

e Endpoints of omitted data. To examine the endpoint that the
data are leaked to, we present a stacked histogram of the top
15 endpoints, ranked by the frequencies of collecting each
targeted data, as shown in Figure 4. The top three endpoints
(googleapis.com, doubleclick.net, graph.facebook.com) all
belong to third-party libraries. This indicates that the app
developers are generally unclear about the data practice of
third-party partners (§ 7).

e App categories. To examine which app categories are most
likely to neglect data disclosure, we investigate the distribu-
tion of non-compliant apps according to their app categories.
As shown in Figure 5, the game apps are most prone to neglect
disclosure. We observe 97.15% of omitted data are leaked to
third-parties in game apps. We also found youth-using educa-
tion apps with neglect disclosure, especially with the omitted
data types of Device ID, User ID, and Precise Location. The
results aligned with prior work that examined similar privacy
issues in youth-targeted Android apps [60, 91]. In our study,
we observe that 81.41% of omitted data are leaked to third-
parties in education apps.

6.2 Contrary Disclosure

Lalaine reports 1,628 apps incorrectly labeling the purposes
of 2,935 data objects. Among those apps, we found 973, 202,
and 314 from API\ PP, APIN PP, and PP\ API respectively.

e Data types and purposes. The app developers are most
likely to falsely disclose the other four purposes to App Func-
tionality. In our study, we observe that 347 app developers
distrustfully disclose purpose as App Functionality, while the
data is actually used for advertising. Such incorrect disclo-
sure may intentionally deceive users to download and use
their app by claiming they have a more acceptable reason to
collect user data. As reported in [52], users were willing to
share their location data to help cities plan bus routes or to
ge