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Abstract
In this work we improve upon the state of the art for practical
zero-knowledge for set membership, a building block at the
core of several privacy-aware applications, such as anony-
mous payments, credentials and whitelists. This primitive
allows a user to show knowledge of an element in a large set
without leaking the specific element. One of the obstacles
to its deployment is efficiency. Concretely efficient solutions
exist, e.g., those deployed in Zcash Sapling, but they often
work at the price of a strong trust assumption: an underlying
setup that must be generated by a trusted third party.

To find alternative approaches we focus on a common
building block: accumulators, a cryptographic data structure
which compresses the underlying set. We propose novel, more
efficient and fully transparent constructions (i.e., without a
trusted setup) for accumulators supporting zero-knowledge
proofs for set membership. Technically, we introduce new
approaches inspired by “commit-and-prove” techniques to
combine shallow Merkle trees and 2-cycles of elliptic curves
into a highly practical construction. Our basic accumulator
construction—dubbed Curve Trees—is completely transpar-
ent (does not require a trusted setup) and is based on simple
and widely used assumptions (DLOG and Random Oracle
Model). Ours is the first fully transparent construction that
obtains concretely small proof/commitment sizes for large
sets and a proving time one order of magnitude smaller than
proofs over Merkle Trees with Pedersen hash. For a con-
crete instantiation targeting 128 bits of security we obtain:
a commitment to a set of any size is 256 bits; for |S| = 240

a zero-knowledge membership proof is 2.9KB, its proving
takes 2s and its verification 40ms on an ordinary laptop.

Using our construction as a building block we can design
a simple and concretely efficient anonymous cryptocurrency
with full anonymity set, which we dub Vcash. Its transactions
can be verified in ≈ 80ms or ≈ 5ms when batch-verifying
multiple (> 100) transactions; transaction sizes are 4KB. Our
timings are competitive with those of the approach in Zcash
Sapling and trade slightly larger proofs (transactions in Zcash
Sapling are 2.8KB) for a completely transparent setup.

1 Introduction

Zero-knowledge proofs are a cryptographic primitive that
allows one to prove knowledge of a secret without revealing it.
In many applications the focus is on proofs that are short and
with efficient running time. One of the rising applications of
zero-knowledge is in set-membership: given a short digest to a
set S, we want to later show knowledge of a member in the set
without revealing the latter. This primitive is useful in domains
such as privacy-preserving distributed ledgers, anonymous
broadcast, financial identities and asset governance (see, e.g.,
discussion in [10]).

Limitations of prior work. Our focus in this work is on
solutions that are highly practical. That is, solutions with
concretely short proving/verification time and short proofs.
While efficient solutions to zero-knowledge set-membership
already exist, we argue that they have limitations. In particu-
lar, either they still have a high computational/communication
cost (we elaborate in Section 1.1 where we compare to trans-
parent polynomial commitments and ring signatures [39])
or they rely on proof systems that are non-transparent. The
latter means that, in order for the system to be bootstrapped,
it is necessary to invoke a trusted authority. This is true for
example in Zcash (Sapling) [36] and in [18]. While we can
partly overcome this issue by emulating the trusted author-
ity through a large-scale MPC, this is still highly expensive,
both computationally and logistically1. Other solutions, such
as [10, 20], mitigate this problem by requiring a trusted setup
for parameters that are reusable in other cryptographic settings
(an RSA modulus). This, however, still requires invoking a
trusted authority or arranging a parameter-generation cere-
mony [25], which may not always be viable. We then turn to
solutions that are fully transparent and still very efficient.

Our contributions. Our main contribution is a concretely
efficient construction for proving private set-membership with

1https://z.cash/technology/paramgen/
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a fully transparent setup. Specifically we design a new data
structure, CURVE TREES, that supports concretely small com-
mitment to a set and where we can show set membership in
zero-knowledge and with a small proof.

The design of a curve tree is simple and relies on discrete
logarithm and the random oracle model (ROM) for its secu-
rity. A curve tree can be described as a shallow Merkle tree
where the leaves are points over an elliptic curve (and so are
internal nodes). To hash, at each level we use an appropriately
instantiated Pedersen hash alternating curves at each layer
(we require a 2-cycle of curves). To prove membership in
zero-knowledge we use commit-and-prove2 capabilities of
Bulletproofs and leverage the algebraic nature of our data
structure. Our curves can be instantiated with existing ones in
literature (see “Supported Curves” in Section 2.1). While we
focus on accumulators and set membership, our approach can
straightforwardly be applied to opening of vectors rather than
sets obtaining an “index-hiding” vector commitment [49].

For a concrete instantiation targeting 128 bits of security
we obtain: a commitment to a set of any size is 256 bits;
for |S|= 240 a zero-knowledge membership proof is 2.9KB,
its proving takes 2s and its verification 40ms on an ordinary
laptop.

Using our construction as a building block we can construct
a simple and concretely efficient anonymous payment system
with full anonymity set3 and transparent setup. We dub this
payment system VCash4. In VCash, the constraint system
used for the zero-knowledge proof of a “spend” transaction is
20x smaller than that in Zcash Sapling.

The main distinguishing feature of VCash is that it can be
concretely efficient and still support full anonymity sets. The
latter is roughly the subset of existing transactions a spent
transaction can be narrowed down to (if a protocol supports a
full anonymity set then this set consists of the whole history of
transactions so far). For “two inputs/two outputs” settings and
for anonymity sets of size 232 (like in Zcash) our confidential
transactions (Vcash) require participants to compute/verify
two Bulletproofs proofs of < 5000 constraints each. Verify-
ing each of the proofs in parallel (4 cores) in batches of at
least 100 transactions (e.g. when verifying the validity of all
transactions in a block) yields a very practical per-transaction
verification time of ≈ 5 ms. Transaction sizes are 4 KB. Our
timings are competitive with those of the approach in Zcash
Sapling and trade slightly larger proofs for a completely trans-
parent setup and simpler curve requirements.

As a side contribution, we provide the first optimized im-
plementation of Bulletproofs that can be instantiated with
arbitrary curves and supports vector commitments of arbitrary

2In the sense of the commit-and-prove building blocks in LegoS-
NARK [19] and in the work by Lipmaa [41].

3An anonymity set can be seen as the subset of existing transactions a
spent transaction can be narrowed down to. We say that a protocol supports a
full anonymity set if the set consists of the whole history of transactions.

4As a reference to both Zcash and Veksel [20] from which it borrows part
of its design.

dimension and arbitrary computations at the same time. To
the best of our knowledge, previous implementations were not
written modularly to work with arbitrary curves or supported
only specific computations, such as range proofs.

STRUCTURE-PRESERVING FEATURES. From the theoretical
side, one interesting feature of curve trees is their structure-
preserving properties [2]. This means our construction never
needs to use any combinatorial hash (e.g., SHA) to convert
representation of elements at each level or use their bit de-
composition, but it only relies on basic structural properties of
groups. In this sense, this construction provides some nuances
to the implications of the recent impossibility result in [22].
See also Appendix D.

1.1 Related Work
1.1.1 Zero-Knowledge Sets.

Seminal work by Micali, Rabin and Kilian [43] introduce the
notion of a “zero-knowledge set”: a hiding commitment to a
set, enabling membership and non-membership proofs. Note
that this is exactly complementary to the goal of this paper:
in zero-knowledge sets, the set is hidden and the retrieved
elements public, here the set is public and the retrieved ele-
ment hidden. In Camenisch-Stadler notation (Section 2.2.1)
this relation is {(S,r) : c = Com(S;r)∧ x ∈ S} instead of
{(x,r) : c = Com(x;r)∧ x ∈ S}.

Highly efficient constructions of zero-knowledge sets are
known under a range of assumptions, notably Chase et al. [24]
generalize the original construction by Micali et al. using
Mercurial commitments.

1.1.2 Accumulators from Groups of Unknown Order.

The original work by Benaloh and de Mare [9] introducing
cryptographic accumulators provides a simple construction
based on strong RSA: a set of prime integers are accumu-
lated by iteratively exponentiation in an RSA group. Ca-
menisch and Lysyanskaya [16] extended this accumulator
to be dynamic, Baldimtsi et al. [5] generically obtaining an
adaptively sound dynamic accumulator by combining 1) an
adaptively sound positive additive accumulator and 2) a non-
adaptively sound positive dynamic accumulator. Rather than
RSA, these constructions can be can instantiated with class
groups: which avoids the need for a trusted setup, ut incurs a
sustantial≈ 20× computational overhead at the same security
level.

1.1.3 Accumulators from Bilinear Pairings.

Nguyen constructed accumulator from bilinear pairings [46],
this construction was subsequently extended by Damgård
and Triandopoulos [26] to support non-membership proofs.
More recently Ghosh et al. [32] showed how to prove mem-
bership in zero-knowledge. In the concurrent work Zapico
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et al. [50] reduces the computational cost of proving mem-
bership from O(n) to O(log(n)), by relying on an O(n logn)
precomputation. Common for all these works is the reliance
on a structured “powers-of-τ” style structured reference string
(SRS): size of the public parameters is proportional to the
(apriori bounded) maximum set size and knowledge of the
trapdoor breaks binding.

1.1.4 Authenticated Hash Tables & Verkle Trees.

Charalapos, et al. [47] suggests using a tree of accumulators:
where every internal node is a cryptographic accumulator
containing all its children. Which allows a trade-off between
membership proof size and cost of updating the accumulator.
The same concept (“Verkle Trees”) was subsequently inde-
pendently rediscovered by industry-afflicated people [34]. We
observed that Charalapos et al. holds a patent for this con-
struction [23] when used for authenticated computation, it is
unclear if this applies to the scheme as used in the Ethereum
blockchain. Our work differs from these by not using an ac-
cumulator at each level, the compression function is a simple
Pedersen commitment, furthermore these works do not al-
low/describe efficient zero-knowledge membership proofs.

1.1.5 Curve Trees and Algebraic Merkle Trees.

The closest related (zero-knowledge) accumulator is the ap-
proach taken in Zcash (Sapling and Orchard versions) [36],
in which a Merkle tree is instantiated with a hash function
admitting an efficient algebraic description. In case of Zcash
this hash function is based on multi-scalar exponentation over
specially chosen elliptic curves. For “Pedersen hashes” as
used in Zcash Sapling, the resulting circuit requires ≈ 44000
constraints (multiplications) for memberships of size 232, Our
approach, on the other hand, requires proving ≈ 4500 con-
straints in zero-knowledge; roughly an order of magnitude
less. Merkle trees instantiated with “SNARK-friendly hash
functions” (e.g. Poseidon [33]) has similar performance com-
pared to ours (see Section 8), however the concrete security
of these hash functions is less well understood [8] [1].

1.1.6 Halo2 and Recursive Proofs.

Halo25 is a transparent (zero-knowledge) proof system en-
abling efficient recursion using “atomic accumulation” and
cycles of elliptic curves. For efficiency the curves used by
Halo2 need to have a “smooth” multiplicative subgroup to
perform FFT which rules out some curves, in particular the
secp256k1 / secq256k1 cycle (instead supported by our Bul-
letproofs implementation). This requirement restricts Halo2’s
compatibility with systems using other curves.

Although both—curve trees and Halo2—rely on the spe-
cial algebraic structure of a cycle of curves, their goals are

5https://electriccoin.co/blog/explaining-halo-2/

orthogonal: Halo2 is a proof system, ours a specialized data
structure for zero-knowledge for set membership. Our tech-
niques rely on a commit-and-prove which we instantiate with
Bulletproofs for easy comparison.6 It is possible to instantiate
our scheme with Halo2; Halo 2 is ultimately not a competing
approach but a potential way to apply the Curve Tree frame-
work. However Halo2’s generalized PLONK-based arithmeti-
zation [31] enables a more complex set of potential optimiza-
tions, including custom gates and lookups, which makes an
apple-to-apple comparison substantially harder. We believe
that replacing Bulletproofs with Halo2 would improve con-
crete performance: via custom gates for ECC operations and
tables of precomputed points.

2 Preliminaries

Familiarity with elliptic curves and non-interactive proof sys-
tems is a prerequisite for this paper and in this section we
provide a brief (and incomplete) introduction to these sub-
jects. Since our techniques will only apply to elliptic curves
we do not generalize to other group structures.

2.1 Elliptic Curves

We denote by E[Fq] ⊆ Fq×Fq the set of points in (X,Y)
on the elliptic curve E [45]. We denote points on elliptic
curves using upper-case letters (e.g. G and H). Whenever
clear from context we might omit the base field Fq and simply
write E. The curve points form an Abelian group (E[Fq],+);
we use “additive notation”. Throughout this paper, the num-
ber of points on E[Fq] denoted p := |E[Fq]| will always be
prime, hence the group is cyclic. We call the prime field
Fp ∼= Z/(pZ) the scalar field of E[Fq] and denote by [s] ·G,
with s ∈ Fp and G ∈ E[Fq], s acting on G in the Z-module
(“scalar multiplication”). We denote by ⟨⃗s, G⃗⟩= ∑i [si] ·Gi the
“inner product” between a vector of scalars s⃗ ∈ Fn

p and a list
of group elements G⃗ ∈ E[Fq]

n.

2.1.1 Assumption: Generalized Discrete-Log

We rely on a common variant of the discrete logarithm as-
sumption for multiple generators over elliptic curves:

Assumption 1 (Generalized Discrete-Log). Let G(1λ) a pro-
cedure for sampling a new elliptic curve. For all PPT adver-
saries A and m≥ 2:

Pr

⟨⃗a, G⃗⟩= 0 ∈ E[Fq]

∧ a⃗ ̸= 0⃗ ∈ (Fp)
m

:

(E,Fq,Fp)← G(1λ)

G⃗←$ E[Fq]
m

a⃗← A((E,Fq,Fp), G⃗)

≤ negl(λ)

6The Bulletproof arithmetization is R1CS, hence comparing the number
of constraints is easy
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We refer to this assumption as DLOG throughout the paper.
Note that generalized variant of DLOG has a tight reduction
to the standard (m = 2) variant.

2.1.2 Pedersen Commitments

Throughout the paper we will rely on the ubiquitous
Pedersen commitment scheme. The setup consists of
(E,Fp,Fq, ℓ, G⃗,H), with Fp = |E[Fq]|, G1, . . . ,Gℓ,H ∈ E[Fq].
The commitment to v⃗ ∈ Fℓ

p with randomness r is computed
as follows:

C = Com(⃗v;r) = ⟨⃗v, G⃗⟩+[r] ·H ∈ E[Fq]

It is easy to see that computational binding follows from
DLOG (Assumption 1). Hiding is perfect and follows from
the observation that [r] ·H with r ←$ Fp is uniformly dis-
tributed over the group E[Fq]. Importantly, Pedersen commit-
ments are rerandomizable commitments: sampling δ←$ Fp
and computing C∗←C+[δ] ·H yields a commitment to the
same v⃗ with randomness r+δ, furthermore the distribution
of C∗ is independent of C: it is a “fresh” perfectly hiding
commitment to the same value.

2.1.3 Avoiding Bit Decomposition via 2-Cycles of Curves

A 2-cycle of elliptic curves consists of two elliptic curves
{E(evn),E(odd)} and two prime fields {Fp,Fq} such that:

p = |E(evn)[Fq]| And q = |E(odd)[Fp]|

In other words: the base/scalar fields of the two curves are
complementary. Crucial for our application will be the ob-
servation that a point (X,Y) ∈ E(evn)[Fq] can be treated as a
pair of scalars on E(odd), e.g. [X] ·G1 +[Y] ·G2 ∈ E(odd)[Fp]
for G1,G2 ∈ E(odd)[Fp] is a well-defined operation. The ob-
servant reader will see that this defines Pedersen commit-
ments in E(odd) to lists of points on E(evn), without relying
on bit-decomposition for field elements or hashing, making
it cheaper in zero-knowledge. Numerous instantiations of 2-
cycles exists, e.g., the Pasta cycle [35] (used in this paper and
Halo2) or the well known secp256k1 / secq256k1 cycle 7.
No known attacks make use of this additional structure, addi-
tionally we do not require any efficiently computable pairings
on either curve.

2.2 Non-Interactive Zero-Knowledge Proofs
2.2.1 Camenisch-Stadler Notation

When expressing an NP relation R(x,w) we use a variant of
Camenisch-Stadler notation [17], the witness w is explicitly
(enclosed in brackets) and the public statement x is defined
by all remaining terms e.g. the “discrete log relation” R :={
(z) : y = [z] ·G

}
– the witness is the scalar z ∈ Fp, while

group elements G,y ∈ E constitute the instance.
7With secp256k1 being used by the Bitcoin blockchain.

2.2.2 NIZKAoKs

Definition 1. A NIZKAoK for a relation family R= {Rλ}λ∈N
is a tuple of algorithms ZK = (Prove,VerProof) with the
following syntax:

• ZK.Prove(urs,R,x,w)→ π takes as input a string urs,
a relation description R, a statement x and a witness w
such that R(x,w); it returns a proof π.

• ZK.VerProof(urs,R,x,π)→ b ∈ {0,1} takes as input a
string urs, a relation description R, a statement x and a
proof π; it accepts or rejects the proof.

Non-Interactive Zero-Knowledge schemes (or NIZKs) re-
quire a reference string which can be either uniformly sam-
pled (a urs), or structured (a srs). In the latter case it needs
to be sampled by a trusted party. In this work we use and
assume transparent NIZKAoKs, i.e. whose algorithms use a
reference string urs sampled uniformly.

We require a NIZKAoK to be complete, that is, for any λ ∈
N,R ∈R and (x,w) ∈ R it holds with overwhelming probabil-
ity that VerProof(urs,R,x,π) where urs←$ {0,1}poly(λ) and
proof π← Prove(urs,R,x,w). For security we require stan-
dard notions of knowledge-soundness and zero-knowledge:

Knowledge-Soundness. For all λ ∈ N and for all (non-
uniform) efficient adversaries A , there exists a (non-uniform)
efficient extractor E such that

Pr

urs←←$ {0,1}poly(λ);
(x,π)← A(urs)

w← E(urs)

:
Rλ(x,w) ̸= 1 ∧

Vfy(urs,x,π) = 1

≤ negl(λ)

Note the order of quantifiers: the extractor E depends on A .

Zero-Knowledge. There exists a PPT simulator S such that
for any λ ∈ N, PPT A , relation R ∈ R, (x,w) ∈ R, it holds
p0 = p1 where:

pb := Pr

 urs1←$ {0,1}poly(λ)

(urs0,π0)← S(1λ,x)

π1← Prove(urs,x,w)

: A(1λ,ursb,πb) = 1


Remark 1 (Practical Efficiency). For a broad class of NIZKs
the “cost” of the NZIK8 scales with the number of multi-
plicative constraints in the relation. Hence when compar-
ing/estimating how “expensive” a certain relation is prove
using a NIZK, the number of multiplications is a broadly
useful metric which translates to concrete performance for a
wide range of NIZKs.

8In prover time, verifier time or proof size, depending on the concrete
NIZK.
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2.2.3 Commit-and-Prove for Pedersen Commitments

The techniques in this paper rely heavily on efficient “commit-
and-prove” NIZKs for Pedersen commitments (Section 2.1.2).
A “commit-and-prove” (C&P) NIZKs for Pedersen commit-
ments enable efficient proofs of relations in which (part of)
the witness is additionally committed inside a pedersen com-
mitment, i.e. relations of the form:

R∗ := {(w⃗,r) : C = Com(w⃗;r) ∈ E[Fq]∧R(x, w⃗) = 1}

Many efficient “commit-and-prove” NIZKs exists e.g. Bul-
letproofs [13], Compressed Σ-Protocols [4] and Halo2. All
these schemes make black-box use of the group E[Fq], i.e.
avoid expressing the group operation as an NP relation over
Fq. Note that in the example above w⃗ ∈ Fℓ

p, where Fp is the
scalar field of E[Fq].

2.2.4 A Concrete C&P-NIZKAoK: Bulletproofs

We denote by zk-BP[E] an instantiation of the Bullet-
proofs [13] NIZKAoK on the elliptic curve E. The Bullet-
proofs scheme exbibits the following relevant properties: (1) It
is a commit-and-prove for Pedersen commitments on E[Fq]
and an concretely efficient proof system for R1CS relations
over Fp. (2) The URS consists of a list of random group ele-
ments in E with size linear with the size of the relation being
proved. (3) zk-BP[E] is computationally (simulation) sound
in the random oracle model under the DLOG assumptions
(Assumption 1) on E[Fq].

3 Zero-Knowledge Set Membership

In this section we describe a modular primitive for proving
set memberships in zero-knowledge, which can be composed
with commit-and-proof zero-knowledge proof system to prove
additional properties about the member of the set. Informally,
for a set of rerandomizable commitments (see Section 2.1.2)
S = {C1, . . . ,Cn} the primitive proves:

{(r, i) : Ĉ = Rerand(Ci,r)}

In other words, the commitment Ĉ is a rerandomization of a
commitment in S, without revealing which. Additional proper-
ties about the opening of Ĉ can then be proved using commit-
and-prove techniques (see Section 2.2.3).

Need for Compression. The relation outlined above has
size n, as a result verifying a proof for the relation requires
O(n) work – to even read the statement. To reduce this cost,
the set of commitments itself can be compressed using a com-
mitment. When the set is fixed, or incrementally updated, this
greatly reduces computation for both prover and verifier. We
formalize this general primitive below. Our scheme achieves
O(log(n)) communication and O( D

√
n) computation where D

is a parameter of the scheme (D is both constant and small)
and n is the size of the set. 9

3.1 Select-and-Rerandomize Accumulators

Below, we fix the message space of the commitment scheme
to Fk for some k and its randomness space to F – as is the case
for Pedersen commitments (Section 2.1.2). Our definitions
below can be generalized easily.

Definition 2 (Select-and-Rerandomize). A select-and-
rerandomize accumulator scheme consists of six algorithms:

SelRerand.Setup(1λ)→ pp returns public parameters of the
scheme. These parameters are transparent—no trusted
party needs be invoked.

SelRerand.Comm(pp,vleaf,o)→C commits to a string vleaf
with randomness o.

SelRerand.Rerand(pp,C,r)→ Ĉ rerandomizes committ-
ment C with randomness r.

SelRerand.Accum(pp,S)→ A deterministically accumu-
lates a set of commitments. We assume the set S to have
a canonical order.

SelRerand.Prove(pp,S,C,r)→ π returns a proof showing
that C ∈ S verifiable through a rerandomized commit-
ment to c with randomness r.

SelRerand.Vfy(pp,A,Ĉ,π)→ 0/1 verifies that Ĉ is a reran-
domization of an element in the set.

Correctness of Select-and-Rerandomize. For any λ ∈ N,
for any set S = {vi}i, j∗ ∈ [|S|], commitment randomness
(o1, . . . ,on) and commitment rerandomization r the verifi-
cation always succeeds, i.e.

1 = Pr



pp← SelRerand.Setup(1λ)

∀i ∈ [n] : Ci← SelRerand.Commit(pp,vi,oi)

A← SelRerand.Accum(pp,{C1, . . . ,Cn})
Ĉ← SelRerand.Rerand(ck,C j∗ ,r)

π← SelRerand.Prove(pp,S,C j∗ ,r)

SelRerand.V (pp,A,Ĉ,π) = 1


The above can be thought as a main correctness prop-

erty. For it to be meaningful, it needs to be complemented
by the following one, which specifically makes explicit
what it means for commitments (output of Comm) to be
rerandomizable: for any λ ∈ N, for any message m ∈
Fk, opening o and randomness r ∈ F, it should hold that

9The circuit has O( D
√

n) constraints for each layer, but as D is constant
this does not affect the asymptotic complexity. Similarly the size of the proof
is Θ(log( D

√
n)) = Θ(logn)
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SelRerand.Rerand(pp,Comm(pp,m;o)) =Comm(pp,m;o+
r) and pp← SelRerand.Setup(1λ)10.

For our application/instantiation we require the select-and-
rerandomize scheme to satisfy the following security notions:

Select-and-Rerandomize Binding. This is the main se-
curity definition of our model. We say the select-and-
rerandomize scheme is binding if there exists a negligible
function negl(λ) such that for any PPT adversary A :

negl(λ)≥Pr



pp← SelRerand.Setup(1λ)

(⃗v, o⃗, v̂, ô,π)← A(pp)

∀i ∈ [n] : Ci← SelRerand.Commit(pp,vi,oi)

Ĉ← SelRerand.Commit(pp, v̂,o′)

A← SelRerand.Accum(pp,{C1, . . . ,Cn})
if v̂ /∈ v⃗∧SelRerand.Vf(pp,A,Ĉ,π) = 1


Perfect Hiding of Commitment. For all m, m′, pp ←
SelRerand.Setup(1λ) the following distributions are perfectly
indistinguishable:

{SelRerand.Comm(pp,m,o) | o←$ F}
≈ {SelRerand.Comm(pp,m′,o′) | o′←$ F}

Select-and-Rerandomize Zero-Knowledge. A select-and-
rerandomize is (perfect) zero-knowledge if there exists an
efficient simulator S , such that for any λ ∈ N, any (stateful)
adversary A , any j∗ ∈ [n], it holds p0 = p1 where

pb := Pr



pp← SelRerand.Setup(1λ);
(v1, . . . ,vn,o1, . . . ,on)← A(pp)

S := {Ci = SelRerand.Commit(pp,vi,oi)}i∈[n]

r←$ F;Ĉ = SelRerand.Rerand(pp,C j∗ ,r)

π← Xb(pp,S,C,Ĉ,r)

A(pp,Ĉ,π) = 1


With X0(pp,S,C,Ĉ,r) := S(pp,S,Ĉ) and X1(pp,S,C,Ĉ,r) :=
SelRerand.Prove(pp,S,C,r).

Remark 2. Our formalization of SelRerand combines to-
gether commitments, accumulators (Definition 7) and zero
knowledge properties. There are, of course, other possible
way to model this primitive. We found this natural enough.
We also observe that our definition of correctness and bind-
ing imply their counterparts in a standard accumulator as a
special case (where the commitment and the rerandomization
are trivial).

10Notice that homomorphic commitments (and thus Pedersen commit-
ments) satisfy this property.

4 Curve Trees as Accumulators

In this section we first define curve trees. We then describe
some of its properties in terms of commitments (that are
binding and hiding). Finally, we show how to traverse a tree
to show membership of a an element in zero-knowledge. The
latter represents our actual construction (Fig. 1).

4.1 Intro to (ℓ,E(evn),E(odd))-Curve Trees
Recall (from Section 2.1) the observation that [X] ·G1 +
[Y] ·G2 ∈ E(odd) for any (X,Y) ∈ E(evn)

11 is a meaning-
ful operation. This is generalizable to any number ℓ of
E(evn) points: computing ⟨X⃗, G⃗x

E(odd)
⟩+ ⟨Y⃗, G⃗x

E(odd)
⟩ ∈ E(odd)

for i ∈ [ℓ] : (Xi,Yi) ∈ E(evn). This is a compression function
fE(odd) : E(evn)

ℓ 7→ E(odd). At this point a natural strategy to
obtain an accumulator is to use fE(odd) to construct a Merkle
tree from fE(evn) : a tree in which every parent (an E(odd) point)
is the hash of its children (E(evn) points) using fE(odd) . How-
ever this encounters an obvious “type problem”: the output
of fE(odd) is a point on E(odd), while the inputs are points on
E(evn), preventing us from applying fE(odd) to the resulting
outputs. The solution to this “type mismatch” is to define
fE(evn) : E(odd)

ℓ 7→ E(evn) analogously to fE(odd) and alternate
the compression function at every level of the tree. We call
this construction a Curve Tree, which can be seen as an “al-
gebraically compatible” Merkle tree using Pedersen commit-
ments alternating over E(evn)/E(odd): a parent node on one
curve will be the hash of its children, represented as points
on the other curve. To refer more easily to curves alternating
within a tree, we introduce the following piece of notation.

Remark 3 (Notation for alternating curves). As mentioned
above, a curve tree alternates between curves at each level. If
we are referring to a specific “current” level (obvious from
context), we will denote the corresponding curve as E(_). The

“other” curve will be denoted byEother(_). That is: if E(_) is E(evn),
then Eother(_) is E(odd), and vice versa. We extend this notation
to subscripts for group elements in the natural way (see, e.g.,
usage in the following definition).

In order to define a Curve Treewe adopt a variant of (stan-
dard) approaches to defining a tree as a recursive data struc-
ture: an internal node is a list of (a function of) its children.
The function which maps children to parents that we adopt
uses an intermediate “labeling” step. A label can be thought
of as a group element succinctly describing the node.

Definition 3 (Curve Trees). A Curve Tree is parameterized
by (I). a depth D ∈ N, (II). a branching factor ℓ ∈ N, (III). a
2-cycle of Elliptic curves (E(evn),E(odd),Fp,Fq) (IV). 2ℓ points
G⃗x

(evn), G⃗
y
(evn) ∈ Eℓ

(evn) (V). 2ℓ points G⃗x
(odd), G⃗

y
(odd) ∈ Eℓ

(odd).

The tree is defined recursively over D a follows:

11Assuming the identity (“point-at-infinity”) is represented in Fq×Fq
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Leaves: (0, ℓ,E(_),Eother(_))−CurveTree:
A leaf node is completely described by a curve point
C ∈ E(_). The label of a leaf is C .

Parents: (D, ℓ,E(_),Eother(_))−CurveTree:
An internal node C is a list of ℓ (D− 1, ℓ,Eother(_),E(_))-
Curve Trees. Let C1 = (X1,Y1) ∈ Eother(_), . . . , Cℓ =
(Xℓ,Yℓ) ∈ Eother(_) be their respective labels. The label
C ∈ E(_) for the internal node is then defined as:

C = ⟨X⃗, G⃗x
(_)⟩+ ⟨Y⃗, G⃗

y
(_)⟩ (1)

(Note that the curves are switched between levels)

Trees for Sets. When we say that a curve tree is built for
a set S ⊆ E (of size ℓD) we mean the natural layer-by-layer
algorithm inductively constructing a tree with S as the leafs:
partitioning S into subsets of size ℓ in some fixed way, then
computing a Curve Tree for each set in the partition and
forming a parent for the resulting ℓ children.

4.2 Binding and Hiding within Curve Trees
The previous notion (Definition 3) uses 2ℓ points per curve
(G⃗x

(evn), G⃗
y
(evn) ∈ Eℓ

(evn) and G⃗x
(odd), G⃗

y
(odd) ∈ Eℓ

(odd)) in order to
label parent nodes by compressing their children. This al-
ready achieves a form of binding. By sampling one additional
point per curve– H(odd) ∈ E(odd),H(evn) ∈ E(evn)– we can blind
/ rerandomize a Curve Tree in the natural way. The root of
a tree (and of each subtree) thus becomes a Pedersen com-
mitment that is both binding and hiding. We formalize these
observations below:

Lemma 1. Assuming DLOG (Assumption 1) on E(evn) and
E(odd), the root C ∈ E(_) of a (D, ℓ,E(_),Eother(_))–CurveTree is
a (non-hiding) Pedersen commitment whose opening is the ℓ
roots of its children (in Eother(_)). Additionally, for the same C
and a random scalar r, the group element Ĉ :=C+[r] ·H(_) is
a hiding Pedersen commitment to C’s children.

Proof. The first part is a direct implication of the definition
above. Also, observe then any internal node is already a root
to a subtree. Let r′ be a scalar (in the appropriate field) and
let Ĉ = C+[r′] ·H(_). From standard properties of Pedersen
commitments, we can observe Ĉ is still bound to the children
of C. Hiding follows immediately (see Section 2.1.2).

4.3 Traversing (ℓ,E(evn),E(odd))-Curve Trees
We now extend upon the observation in Section 4.2 that a node
in a tree can be rerandomized. A natural strategy which stems
from this observations is that, to prove membership of a Curve
Tree in zero-knowledge, we can descend the tree one layer at a
time starting from the root and following this approach: open
a (hiding) commitment to a (D, ℓ,E(_),Eother(_))-Curve Tree,
pick one of it children (in zero-knowledge), then rerandomize

the child and “output” the resulting hiding commitment to
the (D−1, ℓ,Eother(_),E(_))-Curve Tree; apply recursion. In this
section we formalize a more efficient version of this informal
sketch.

4.3.1 Descending a Single Level of the Tree

Our central component is a simple construction for a select-
and-rerandomize-like relation for a single level in a curve tree.
We later apply this at many levels at once in order to obtain
a full select-and-rerandomize (Fig. 1). Consider a curve tree
whose internal nodes at layer d−1 are in E(_). The inputs to
relation R (single-level,(evn)) (resp. R (single-level,(odd))) are:

• public inputs: a rerandomized commitment Ĉ ∈ E(odd)
(resp. E(evn)); its alleged parent C ∈ E(evn) (resp. E(odd));

• witnesses: index i whose semantics is “Ĉ is the (reran-
domized) i-th child of C”; Pedersen opening scalars
r,δ,X⃗,Y⃗.

At each layer, this relation opens the parent commitment C
to X⃗,Y⃗ using a commit-and-prove over E(_), plus it shows
rerandomization of one of the children. At each level, even or
odd, it is defined as follows.

Definition 4 (Relation for Select-and-Rerandomize).

R (single-level,E(_)) :=



(
i,r,δ,

X⃗,Y⃗

)
:

// open parent

C = ⟨
[
X⃗
]
, G⃗x

(_)⟩

+ ⟨
[
Y⃗
]
, G⃗y

(_)⟩

+[r] ·H(_) ∈ E(_)

// randomize i’th child

Ĉ = (Xi,Yi)+ [δ] ·Hother(_) ∈ Eother(_)


We can implement this efficiently because the “parent open-

ing” constraints can be directly enforced using a commit-and-
prove for Pedersen commitments (Section 2.2.3). The addi-
tional “child opening” requires a single, cheap fixed-based
exponentiation explicitly expressed as constraints. We de-
scribe an optimized arithmetic circuit for the relation above
in the full version.

The following property will be useful for correctness later.
It states that the relation above expresses the parent-child rela-
tion in a curve tree and that this holds even if we rerandomize
children or internal nodes.

Lemma 2. Consider a set S and a single-level curve tree
(one root immediately followed by leaves) built on it. Let
Cleaf = (Xi,Yi) be one of the leaves. Then the above re-
lation R (single-level,(_))—for the only existing level d = 1—is
satisfied for any rerandomization factor δ such that Ĉ =
Cleaf +[δ] ·Hother(_). This property still holds if the root of the
tree is rerandomized by some scalar r.
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Proof. This is a straightforward implication of how curve
trees are defined. More in detail: In a single-level curve tree, C
will be the root and thus constructed with r = 0. The first equa-
tion will be trivially satisfied by X⃗,Y⃗ such that ((X j,Y j)) j
are the leaves (i.e., the children of the root C). The second
equation will be satisfied by our assumption on Ĉ. We finally
observe that we can pick an honestly generated root, reran-
domize it by adding [r] ·H(_) for a scalar r and use the latter
to let the first equation check. This proves the last part of the
lemma statement.

4.3.2 Descending all D Layers of The Tree

So far we discussed proving membership zooming in on a
single level of a curve tree. We now want an approach that
works for multiple levels. One straightforward method works
by providing a separate proof for each level (this would be a
proof for the relation in Definition 4). We will do something
better instead. We leverage two facts: i) that there are two
algebraic groups we are working with (depending on the layer
parity); ii) that we can produce a single proof at once and for
multiple layers “working in the same group”. This way we
are able to reduce our relation to two proofs only, one for the
parents at odd layers and one for parents at even layers.

These two proofs will show respectively two “multi-leveled”
relations, one for odd layers and on for even layers. They are
defined below.

R (evn-levels) :=

 ∧
j∈{0,2,...,D−2}

R (single-level,(evn))


R (odd-levels) :=

 ∧
j∈{1,3,...,D−1}

R (single-level,(odd))


The witnesses and public statements for these relations are

respectively the concatenation of the witnesses and public
statements in Definition 4. See also Supplementary Material
and in particular Fig. 4. The full construction is in Fig. 1.

5 Correctness and Security

Theorem 1. The construction in Fig. 1 is a transparent select-
and-rerandomize (Section 3.1). Its security relies on DLOG
(Assumption 1) in E(evn) and E(odd) and the security of Bullet-
proofs as a NIZKAoK. It has O( D

√
n) prover/verifier complex-

ity12 and its proof consists of D−1 group elements and two
Bulletproofs (each of size O(log n

D )).

Proof. We first observe that, by the DLOG assumption on
both curves E(odd) and E(evn), we can use the fact that, by the
standard Fiat-Shamir transformation [30], zk-BP[E(odd)] (resp.

12In practice D≈ 4.

SelRerand.Setup(1λ)→ pp

Sample G⃗(evn) ∈ E(evn)
Nurs ,H(evn) ∈ E(evn)

Sample G⃗(odd) ∈ E(odd)
Nurs ,H(odd) ∈ E(odd)

Return all sampled elements as pp

SelRerand.Comm(pp,vleaf ∈ F||E(evn)|,o ∈ F||E(evn)|)→C

C← G(evn)
1 · [vleaf]+H(evn) · [o]

return C ∈ E(evn)

SelRerand.Rerand(pp,C ∈ E(evn),r ∈ F||E(evn)|)→ Ĉ

Ĉ←C+H(evn) · [r]
return Ĉ ∈ E(evn)

SelRerand.Accum(pp,S′ = {C1, . . . ,Cn})→ rt

Return rt, root of a tree computed on S′ as by Definition 3

SelRerand.P (pp,S,Cleaf,r(D))

Reconstruct tree from S; let rt be its root

Let C(0), . . . ,C(D) be the path elements to Cleaf in the tree

(with C(0) corresponding to rt, C(D) =Cleaf)

Let Ĉ(0) := rt and r(0) := 0

for k = 1, . . . ,D/2 do
j← 2k−1// j = 1,3, . . .

j′← 2(k−1)// j′ = 0,2, . . .

Sample r( j)←$ F|E(odd)|

if j′ <D then Sample r( j′)←$ F|E(evn)|

Ĉ( j)←C( j)+
[
r( j)
]
·H(odd)

Ĉ( j′)←C( j′)+
[
r( j′)

]
·H(evn)

endfor

π(evn)← zk-BP[E(evn)].Prove
(
pp,R (evn-levels),x(evn),w(evn)

)
π(odd)← zk-BP[E(odd)].Prove

(
pp,R (odd-levels),x(odd),w(odd)

)
Return π

∗ :=
(

Ĉ(1), . . . ,Ĉ(D−1),π(evn),π(odd)

)
SelRerand.V (pp, rt,Ĉleaf,π

∗)

Parse π
∗ as

(
Ĉ(1), . . . ,Ĉ(D−1),π(evn),π(odd)

)
Let Ĉ(D) := Ĉleaf

Let Ĉ(0) := rt

b(evn)← zk-BP[E(evn)].VerProof
(
pp,R (evn-levels),x(evn),π(evn)

)
b(odd)← zk-BP[E(odd)].VerProof

(
pp,R (odd-levels),x(odd),π(odd)

)
Accept iff b(evn)∧b(odd) = 1

Figure 1: Construction of Curve Tree Select-and-
Rerandomize for a set of size n, branching factor ℓ, depth D
(which we assume to be even), on cycle (E(evn),E(odd)).

4398    32nd USENIX Security Symposium USENIX Association



Figure 2: Illustrating proving select-and-rerandomize for a tree with D = 2 and ℓ = 4. Letters R,M,L hint respectively to
commitments to root, a “middle” and “lower” layer respectively. The textured box and diamond areas denote the relation
proven through Bulletproofs (on different curves, hence the different color). The dashed arrows going towards the right denote
rerandomization.

zk-BP[E(evn)]) is a correct, zero-knowledge and extractable
NIZK. This will be useful in the remainder of the proof.

Correctness. Correctness of rerandomization is immedi-
ate: we are using standard Pedersen as a commitment, which
is rerandomizable. That is if C = G(evn)

1 · [vleaf] +H(evn) · [o]
then its rerandomization by r is Ĉ =C+H(evn) · [r] = G(evn)

1 ·
[vleaf]+H(evn) · [o+ r].

To argue Select-and-Rerandomize correctness we will in-
voke these facts: that the output of Comm—i.e., leaves—
are rerandomizable objects (observation from previous para-
graph), the fact that internal nodes are rerandomizable
(Lemma 1) and finally the correctness of Bulletproofs as
NIZK. We can use the above to observe that, for an honestly
generated commitment to a set, the honest prover will recon-
struct a path, rerandomize each elements and then prove a
conjunction of the level equation (R (single-level,(_))). We can
invoke correctness of Bulletproofs if its prover is invoked
with a statement satisfying those equations (see Lemma 2).
Observing that a conjunction of satisfiable R (single-level,(_))-s
is satisfiable (with corresponding witnesses) concludes the
correctness proof.

Hiding and Zero-knowledge. Hiding is immediate from
properties of Pedersen commitments. We describe a simulator
S for the zero-knowledge which outputs π∗ consisting of :
Ĉ(1), . . . ,Ĉ(D−1) fresh commitments to dummy values; π(evn)
and π(odd) outputs of the respective simulators for the Bul-
letproofs NIZK on the respective relations. Notice that—by
the definition of the game for select-and-rerandomize zero-
knowledge and Lemma 2—the Bulletproofs simulators are
invoked on true statements, crucially. To argue indistinguisha-

bility of the output of our simulator from that of the honest
prover, we can just apply a hybrid argument where we invoke
hiding of commitments and zero-knowledge of the underlying
Bulletproofs.

Select-and-Rerandomize Binding. For sake of clarity and
simplicity of notation, we first show our proof for the two-
level case D= 2 and then describe how it generalizes.

The verifier will then receive the following (see also defi-
nition of π⋆ in Fig. 1 for context as well as Fig. 2 for visual
cues and an example):

• A rerandomized commitment to the leaf Cleaf

• A proof π∗ consisting of: 1. a rerandomized commitment
Ĉmid to the intermediate layer (Ĉ(1) in Fig. 1); 2. an
“upper-level” proof π↑, “linking” root and mid layer; 3. a
“lower-level” proof π↓, “linking” mid and leaf layer.

As in the definition of binding (Section 3.1), we denote by v̂ a
malicious value not in the honestly generated set (but which
the adversary “will claim” it’s in the set).
We mark in blue elements that are extracted from the proofs.

Step 1. Apply knowledge-soundness to extract from the
upper proof:

Ĉroot =⟨. . .X(Cmid) . . . , G⃗x
(_)⟩

+ ⟨. . .Y(Cmid) . . . , G⃗
y
(_)⟩+[rroot] ·H(_)

(2)

Ĉmid =Cmid +[δmid] ·Hother(_) (3)

Observation a). We observe that above that the extracted
Cmid will be the same as in the honest construction step of
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the tree (w.l.o.g. we can ignore the specific index on the
path for it—this holds for all indices). If this were not the
case we would be violating Lemma 1: Croot is an internal
node of the tree and so it is a binding commitment to its
children (see statement of Lemma 1). This observation will
be useful later since we know the discrete logarithm of Cmid
in G⃗x

other(_), G⃗
y
other(_),Hother(_).

Step 2. Apply knowledge-soundness to extract from the
lower proof:

Ĉmid =⟨. . .X(Cleaf) . . . , G⃗x
other(_)⟩

+ ⟨. . .Y(Cleaf) . . . , G⃗
y
other(_)⟩+[rmid] ·Hother(_)

(4)

Ĉleaf =Cleaf +[δleaf] ·H(_) (5)

In addition to the group elements above, we will also extract,
i∗, the index Cleaf refers to (see first witness in Definition 4).

Observation b). Because the adversary is successful in the
binding experiment (through some claimed v̂ ̸∈ S = {vi}i),
we can conclude that i∗ such that Cleaf ̸= Comm(vi∗ ,oi∗).
(Otherwise we would have Comm(vi∗ ,oi∗) + [δleaf] ·H(_) =
Ĉleaf = Comm(v̂, ô) which would break DLOG) This is equiv-
alent to saying thatX(Cleaf) ̸=Xi∗ or Y(Cleaf) ̸=Yi∗ , where
Xi∗ :=X(Comm(vi∗ ,oi∗)),Yi∗ :=Y(Comm(vi∗ ,oi∗)).

Step 3. Combine equations Eq. (3) and Eq. (4): Now, com-
bining the equations, we can observe that:

[rmid−δmid] ·Hother(_)−Cmid+

⟨. . .X(Cleaf) . . . , G⃗x
other(_)⟩+ ⟨. . .Y(Cleaf) . . . , G⃗

y
other(_)⟩= 0

This allows an adversary to break DLOG (Assumption 1) by
using the following facts. As we observed (obs. (a)), Cmid is
the same as in the honest tree construction, which implies
its discrete logarithms can be derived knowing the original
honest set. If X(Cleaf) ̸=Xi∗ , the adversary can then break
DLOG for the generator Gx

i∗,other(_). This becomes clear when
rewriting the equation above like this:

Gx
i∗,other(_) =

(
Xi∗ −X(Cleaf)︸ ︷︷ ︸

̸=0

)−1 ·
(
[rmid−δmid] ·Hother(_)+

⟨X⃗(leaf)
̸=i∗ , G⃗x

̸=i∗,other(_)⟩+ ⟨. . .Y(Cleaf) . . . , G⃗
y
other(_)⟩

)
where X⃗(leaf)

̸=i∗ :=
(
X(Comm(vi,oi))

)
i̸=i∗ . If Y(Cleaf) ̸= Yi∗ ,

we can modify the above accordingly to apply to Y. This
concludes the proof.

To generalize the proof to D≥ 2. First, we recursively
apply Step 1 and observation (a), i.e., we repeatedly apply
Lemma 1 to argue that is the same as in the honestly con-
structed tree for each internal node Cmid on the path. Then,

as we did above, we apply step 2 and step 3 for the last two
layers, as well as observation b). (Notice that, in order to ex-
tract the equations, we will still use two proofs but now each
of them will allow us to extract multiple levels. There are
still only two proofs—even and odd—but now they refer to
multiple disjoint levels of the tree instead of just two).

6 Final Construction: Curve Trees with Com-
pressed Points

In this section we describe some optimizations we employ
in our final construction. Our initial observation is that a
curve tree (as defined in Definition 3) uses both X and Y
coordinates to represent a node (leaf or internal). This requires
2ℓ generators at each level. The factor 2 will become a cost at
commitment, proving and verification time, as well in proof
size. Here we discuss how to remove this factor.

The starting point of our idea are folklore approaches to
point compression which rely on encoding a point through
theX coordinate. We need to take extra care though. Where
we need to take extra care is in: a) making sure, through
appropriate checks. that a malicious prover cannot exploit
this compression; b) making sure the latter checks are effi-
cient constraints-wise when we prove/verify them in zero-
knowledge. In order to do this we exploit the fact that the
leaves in the tree are agreed on publicly (we remind that in
our model as well in confidential transactions, the whole set of
points is public; the item we prove membership on is hidden).
This way, we can make sure at commitment time that each
leaf is represented through pairs of points of a certain form.
We call these points permissible. We modify our definition of
curve trees to explicitly take compression and permissibility
into account (Definition 5). To efficiently prove/verify this we
rely on 2-universal hash functions (see rest of this section and
Eq. (6)). Their algebraic nature allows us to not to employ
bit decomposition. As a consequence, these techniques have
nearly no impact on any additional complexity of the relation
proved in zero-knowledge.

When we to plug in these additional tricks, our construction
(Fig. 1) stays essentially the same: we can describe its changes
in a modular fashion (see Section 6.3). The same holds for
security and correctness proofs.

6.1 Point Compression and Permissible Points
In order to reduce the number of exponentiations during com-
mitment and the size of the witness we rely on committing
only to theX-coordinate of children node. To guarantee that
our construction remains binding we ensure that only one of
(X,Y) and (X,−Y) is “allowed”. One common choice is
to take the numerically smallest between Y and −Y, or dis-
criminate based upon the parity (even/odd) over Z, however
neither of these constraints can be efficiently expressed as an
arithmetic circuit; instead we use a universal hash function
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(which does not require bit decomposition). Let S(v) = 1 iff.
v ∈ F is a quadratic residue (i.e. there exists w ∈ F st. w2 = v)
and S(v) = 0 otherwise. Now consider the following family
of 2-universal hash functions from any field to {0,1}:

Uα,β(v) : F→{0,1} Uα,β(v) 7→ S(α · v+β) (6)

Observe that the constraint Uα,β(v) = 1 can be enforced using
a circuit with multiplicative complexity 1, showing {(w) :
w2 = (α · v+β)}. We exploit this to efficiently define a set of
“permissible points” on E:

PE= {(X,Y) | (X,Y)∈E(Fp)∧Uα,β(Y)= 1∧Uα,β(−Y)= 0}

Note that 1/4 of the points on E are permissible and any
(X,Y) ∈ PE is uniquely defined by itsX-coordinate – this is
the case for any finite field of characteristic /∈ {2,3}.

We make sure at commitment time that nodes are converted
to permissible points by adding appropriate randomness. This
is formalized in the supplementary material in Fig. 3 in the
procedure AsPermissible as well in the “compressed points”
definition of curve trees (Definition 5), which invokes it. In ex-
pectation, procedure AsPermissible requires 4 curve additions
and 8 square roots.

6.2 Curve Trees with Compressed Points
The following definition simply adapts a curve tree to the set-
ting where leaves are required to be permissible and internal
children nodes are compressed through AsPermissible before
committing to them in their parent.

Definition 5 (Curve Trees with compressed points). A Curve
Tree with compressed points follows the same basic inductive
definition as Definition 3, but with the following differences:
first, the tree is also parametrized by two permissible sets
P(evn) ⊆ E(evn) and P(odd) ⊆ E(odd). Second, Eq. (1) (root label
C of an internal node) becomes

C = ⟨X⃗′, G⃗x
(_)⟩ ∈ E(_) (7)

where for each i ∈ [ℓ], X′i is such that (X′i, . . .) ←
AsPermissibleE(_)(Xi,Yi), and (Xi,Yi) are as in Eq. (1).
Third, leaves are required to be permissible.

Since the definition above makes a tree only out of per-
missible points13 this gives a “decompression” that is unique.
This in turn reduces the the complexity single-level relations.
We thus define a new optimized relation R (single-level⋆,(_)):

Definition 6 (Optimized single-level relation).

R (single-level⋆,(_)) :=


(

i,r,δ,

X⃗,Y

)
:

C = ⟨
[
X⃗
]
, G⃗x

(_)⟩

+[r] ·H(_)

∧ (Xi,Y) ∈ Pother(_)

∧ Ĉ = (Xi,Y)+ [δ] ·Hother(_)


13In case of our anonymous cryptocurrency application, this is enforced by

the network of block validators: as a condition for a transaction being valid.

Note that the constraint (Xi,Y) ∈ Pother(_) only requires a
check that (Xi,Y) ∈ Eother(_) in addition to Uα,β(Y) = 1. See
full version for additional details.

6.3 Adapting Construction in Fig. 1 to Com-
pressed Points

Our final construction essentially remains the same as in Fig. 1
with two exceptions.

• In order to accumulate a set (SelRerand.Accum) we gen-
erate a root through the procedure derived from Defini-
tion 5 instead of the one for Definition 3.

• The proofs π(evn) and π(odd) are for slightly different re-
lations: they prove/verify relations for R (evn-levels) and
R (odd-levels) but defined in terms of R (single-level⋆,(_)) from
Definition 6 (instead of Definition 4).

This variant construction is also correct and secure:

Theorem 2. The variant of the construction of Fig. 1 de-
scribed in this section is a transparent select-and-rerandomize
primitive (under the same assumptions as in Theorem 1).

The proof for theorem above follows the same blueprint as
the one in Theorem 1. Zero-knowledge/hiding is trivially un-
touched by the changes in the construction. Binding is clearly
still guaranteed since the relation we prove (R (single-level⋆,(_)))
is now stricter than the one in R (single-level,(_)). Observing cor-
rectness only requires observing that a variant of Lemma 2
also holds (easily) for definition Definition 5.

7 Anonymous Currency from Curve Trees

As an application of Curve Trees we propose a simple anony-
mous payment scheme: VCash. Full model/description/proof
of VCash can be found in the full version of this paper, here
we provide an overview/intuition for the construction. We
rely on terminology introduced in the Zerocash paper [7]:
VCash is very similar in design, but with a slightly simpler
construction. In VCash users are identified by 1. a public-key
pksig for a signature scheme with rerandomizable keys, such
as Schnorr signatures. 2. a public-key pkenc for an IK-CPA
encryption scheme (where ciphertexts for different keys are
indistinguishable; the known El Gamal scheme is an exam-
ple). The balance of a party in VCash is defined by the total
value of previously unspent “notes”14 belong to the party. A
VCash “transaction bundle” consists of a number of “pour”
and “spend” operations, which create new notes and spend
previously created notes respectively.
POUR. Let v be the value to spend. The sender rerandom-
izes the receiver’s public key pksig with randomness rsig to
obtain pk′sig, computes the hash h = H (pk′sig). Then forms a

14Also “unspent transaction outputs” (UTXO) in Bitcoin.
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Pedersen commitment to (v,h) using randomness rcom←$ Fp
and obtains the commitment C. The sender proves (using
a Bulletproof) that v ∈ [0,232), obtains πrange. The sender
then encrypts (rsig,rcom,v) using pkenc to obtain a ciphertext
ct. The tuple (C,πrange,ct) is posted to the network, which
verifies πrange and adds C to a global Curve Tree.
SPEND. Obtain ciphertext ct from the network and decrypt
it using skenc to obtain (rsig,rcom,v). The receiver proves that
Ĉ = Commit((v,h); r̂com) is a rerandomization of a commit-
ment C in the global Curve Tree using the techniques covered
in this paper, obtaining a membership proof πCurveTree. The
receiver computes h′ = H (pk′sig) and proves h = h′ using a
Bulletproof. Finally it signs the entire transaction using sk′sig
obtained by rerandomzing sksig using rsig, obtaining a signa-
ture σ. The result (πCurveTree,πopen,pk′sig,Ĉ,σ) is posted to
the network, which recomputes h′, verifies both proofs and
the signature. If h′ has been seen by the network previously
the spend operation is rejected.
BALANCE CHECK. To avoid money being created, the
spender proves that the values of spend/pour operations cancel
out:

{
(∆,r) : ∑i Ci−∑ j Ĉ j = Commit(([0] , [∆]) ;r)

}
where ∆

is the sum of the hashes of the rerandomized public keys. For
efficiency all the Bulletproofs are combined, as a result a
VCash transaction always consists of just two Bulletproofs
of moderate size. We benchmark this scheme in Section 8.

8 Implementation and Evaluation

We implement select-and-rerandomize and VCash in Rust
on top of the dalek Bulletproofs library15. The Bulletproof
implementation has been extended with support for vector
commitmentsand elliptic curves implemented using the ark-
works16 curve traits.
CODE. All our code is available and released as open source
at

https://github.com/simonkamp/curve-trees.

EXPERIMENTAL SETTING AND INSTANTIATIONS. Our
benchmarks were run on a C6i.2xlarge17 instance with 8
vCPUs, which corresponds to 4 physical cores on an Intel
Xeon 8375C processor with 2.9 GHz clock speed18. When
possible (and unless otherwise explicitly specified) we have
benchmarked alternative schemes on the same hardware. We
use Curve Trees of even depth D in our evaluation and instan-
tiate the two underlying elliptic curves through both those in
the Pasta cycle [35] and the secp256k1 / secq256k1 cycle.
We use Schnorr signatures for VCash.

15https://github.com/dalek-cryptography/bulletproofs
16https://github.com/arkworks-rs
17https://aws.amazon.com/ec2/instance-types/c6i/
18While we tabulate only results for this architecture, we also performed

benchmarks on a common laptop.

Curves (D, ℓ) |S| # Con-
straints

Proof
(kb)

Prove
(s)

Verify
(ms)

Verify
batch (ms)

(2,1024) 220 3870 2.6 0.88 23.17 1.44
Pasta (4,256) 232 4668 2.9 1.71 39.63 2.35

(4,1024) 240 7740 2.9 1.74 40.41 2.73
(2,1024) 220 3870 2.6 0.97 26.81 1.61

Secp/Secq (4,256) 232 4668 2.9 1.89 47.39 2.64
(4,1024) 240 7740 2.9 1.92 48.40 3.02

Table 1: Benchmarks of the select and rerandomize primitive
with depth D and branching factor ℓ. Batch verification time
refers to the amortized cost of verifying a batch of size 100.

Scheme
# Con-
straints

Prove
(s)

Verify
(ms)

Verify
batch (ms)

Curve Trees (Pasta) 3565 1.5 31 1.8
Curve Trees (Secp/Secq) 3565 1.7 37 2
Poseidon 4:1 4515 8.8 651 -
Poseidon 8:1 4180 8.5 825 -

Table 2: Benchmarks of accumulators over sets of size 230

based respectively on curves trees and on Merkle trees with
Poseidon (Appendix G). Batch verification time is for the
amortized time for a batch of size 100.

8.1 Zero-Knowledge for Set-Membership

The results in Table 1 summarize the efficiency of our select
and rerandomize scheme (Section 3) using the final construc-
tion in Section 6.3 for different set sizes—modest, medium
and large. Given a choice of parameters—the branching fac-
tor ℓ and (even) depth D—the total number of constraints to
prove in zero-knowledge amounts to D(912+ ℓ−1) (half per
even/odd layers respectively). We heuristically choose the
set size (|S| = ℓD) in order to optimize the running time by
obtaining a number of constraints which “does not overflow”
powers of two if possible. This is illustrated by the bench-
marks for sets of size 232 and 240: despite the gap between
the set sizes they show similar performance.

If only proofs of membership of field elements are needed,
these can be achieved by using the select and rerandomize
scheme on vector commitments of ℓ′ elements obtaining a
scheme which uses only D(912+ℓ−1)+(ℓ′−1) constraints
to show membership of a set with ℓD · ℓ′ elements. Using the
parameters D= 3, ℓ= 256, and ℓ′ = 64 we get a direct com-
parison (|S|= 230) with [33] in which they use bulletproofs
to show membership in Poseidon based Merkle trees with
230 leaves and ℓ= 2, 4, or 8. The best performing instances
in [33] are using branching factors of 4 and 8 on the ed25519
curve: one results in slightly fewer constraints and faster prov-
ing time, while the other verifies faster. The results in Table 2
show that the accumulator based on Curve Trees is > 5 times
faster at proving and > 20 times faster at verifying compared
to the fastest instances of Poseidon-based Merkle trees.
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8.2 VCash
Table 3 compares VCash with various anonymous payment
systems. When used for batch verification, VCash outper-
forms other schemes, sometimes by orders of magnitude (for
the same anonymity sets). Non-batched verification time is
highly competitive when compared to transparent construc-
tions, but 10× slower than the non-transparent Zcash Sapling
(which mainly consists of a few pairing operations). Orchard—
the recent transparent version of Zcash based on Halo2 and
Pasta (see also Appendix G—achieves a 5× faster verifica-
tion time than VCash. We believe that basing VCash on a
Curve Tree using Halo2 would outperform Orchard. On the
other hand this would come at the price, as it is the case for
Orchard, of not supporting arbitrary 2-cycles of curves (see
Section 1.1.6). The transaction size in Orchard is roughly
twice as large as in VCash. The only other better transaction
size among transparent constructions is that of Omniring (we
estimate VCash to be less than 2× larger for same anonymity
sets).

Concretely, a “pour” in VCash for two inputs/two outputs
and anonymity sets of 232 (like in Zcash) our confidential
transactions (Vcash) require participants to compute/verify
two Bulletproofs proofs of < 5000 constraints each. We can
contrast that to another approach supporting large anonymity
sets, Zcash Sapling, compared to which our circuit for “spend”
transaction is 20x smaller. The cost of the set membership
proofs dominate the combined transaction circuit. For in-
stance the VCash combined circuit (over both fields) has
9464 constraints of which 9336 are used for the proof of
membership and the Orchard action circuit has 211 rows and
40 columns while the membership by itself uses 211 rows and
35 columns.

We remark that, in the table, we only compare to ap-
proaches with concretely small transaction size (of a few
kilobytes for large enough anonymity sets). Solutions not in
the table because of their large transaction size include: the
original approach in Zerocoin [44] (45KB for full security
[21]); Quisquis [29] (13KB for |S|= 24); Monero [3] (whose
transaction grows linearly with |S| and is already at 1.3KB
for |S|< 24).
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|S| Transparent
setup

Tx size
(kb)

Proving
time (S)

Omniring [39] 210 ✓ 1 ≈ 1.5‡
210 ✓ 2.7 0.27†

Lelantus [37] 214 ✓ 3.9 2.35†
216 ✓ 5.6 4.8†
220 ✓ 3.4 1.76

VCash (Pasta) 232 ✓ 4 3.43
240 ✓ 4 3.48
220 ✓ 3.4 1.95

VCash (Secp/Secq) 232 ✓ 4 3.80
240 ✓ 4 3.86

Zcash Orchard 232 ✓ 7.6 1.77
Veksel [21] Any ✗⋆ 5.3 0.44
Zcash Sapling 232 ✗ 2.8 2.38

|S| Verification
time (ms)

Batch verification
time (ms)

Omniring [39] 210 ≈ 130‡ -
210 - 6.8†

Lelantus [37] 214 - 10.2†
216 - 52†
220 41.40 2.87

VCash (Pasta) 232 78.40 4.98
240 80.52 5.77
220 48.27 3.15

VCash (Secp/Secq) 232 90.40 5.60
240 91.97 6.32

Zcash Orchard 232 15 -
Veksel [21] Any 61.88 -
Zcash Sapling 232 7 -

Table 3: Benchmarks of VCash against other anonymous
payment schemes. The VCash schemes are instantiated with
Curve Trees with the corresponding set size in Table 1. The
batch verification time is measured as the cost per proof of
verifying a batch of 100 proofs. If batch verification is empty,
it means it is not available as an option for that specific con-
struction or not possible to estimate from the related work.
⋆ Veksel only needs setup if using accumulators instantiated with RSA
(which provide the smallest tx size), but not for zero-knowledge.
† Lelantus was benchmarked on an Intel i7-4870HQ (4 cores, 2.5GHz). [37]
‡ Omniring was benchmarked on an Intel i7-7600U (2 cores, 2.8GHz). [39].
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Supplementary Material

A Accumulators

For reference and to make easier a comparison to our primitive
in Definition 2, we provide the more standard definition of
accumulators [11].

Definition 7 (Accumulator scheme). An accumula-
tor scheme Acc over universe Uλ(Acc) (for a se-
curity parameter λ) consists of PPT algorithms
Acc = (Setup,Accum,PrvMem,VfyMem) with the fol-
lowing syntax:

Setup(1λ)→ pp generates public parameters pp.

Accum(pp,S)→ A deterministically computes accumulator
A for set S⊆Uλ(Acc).

PrvMem(pp,S,x)→W computes witness W that proves x is
in accumulated set S.

VfyMem(pp,A,x,W )→ b ∈ {0,1} verifies through witness
whether x is in the set accumulated in A. We do not
require parameter x to be in Uλ(Acc) from the syntax.

Correctness: For any set S = {vi}i, j∗ ∈ [|S|] the following
holds

Pr

 ppacc← Acc.Setup(1λ)

A = Acc.Accum(pp,S)

π← Acc.PrvMem(ppacc,S,v j∗)

:

= 1

Security: For any PPT adversary A the following holds:

Pr

 pp← Acc.Setup(1λ)

(S,v′,π)← A(ppacc)

A = Acc.Accum(pp,S)

:
Acc.VfyMem(pp,A,v′,π)

∧ v′ ̸∈ S


≤ negl(λ)

B How to Obtain Permissible Points

Auxiliary pseudocode for building a Curve Tree with com-
pressed points is in Fig. 3.

AsPermissibleE(_) (C)→ (P(_),F)
1 : rP ← 0 ∈ F// Scalar field of E(_)

2 : while C /∈ P(_) :

3 : C←C+H(_)

4 : rP ← rP +1

5 : return (C,rP )

Figure 3: Explicit algorithm for permissible compression. Any
Pedersen commitment C can be “made permissible” by simply
iteratively adding an additional generator H(_) (“incrementing
the randomness”) until the point is permissible. The algorithm
returns theX coordinate and the permissibility scalar.

C Public Inputs/Witnesses for relations
R (evn-levels)/R (odd-levels)

x(evn) :=
(

Ĉ( j−1),Ĉ( j)
)

1≤ j<D, j odd

x(odd) :=
(

Ĉ( j),Ĉ( j+1)
)

1≤ j<D, j odd

w(evn) :=
(

i j,r( j−1),r( j),X(pathChildren j),

Y(pathChildren j)
)

1≤ j<D, j odd

w(odd) :=
(

i j+1,r( j),r( j+1),X(pathChildren j+1),

Y(pathChildren j+1)
)

1≤ j<D, j odd

i j : index of node along the path at layer j (see Definition 4)

pathChildren j : sibling nodes along the path at layer j

(see Definition 4)

Figure 4: Public input and witness for relations
R (evn-levels)/R (odd-levels) (used in Fig. 1.

D Curve Tree as somewhat structure-
preserving

The recent results of [22] on commitments to vectors that have
linear verification show that (informally) it is not possible to
have a short commitment and a short opening at the same time
in a setting that makes no assumption on the underlying group
(in Maurer’s generic group model [42]). One could think that
the moral corollary of these results is a need for heavily de-
structuring or “non-algebraic” (e.g., SHA) operations in suc-
cinct vector commitments. However, the underlying approach
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in our work rules out this extreme conclusion: the basic Curve
Tree construction uses algebraic operations at each step and a
linear verification assuming only the representation of group
elements as “pairs of scalars for a (distinct) group”. This by-
passes the stricter definition of “structure-preserving” in [22],
which considers one single abstract group and black-box use
of its addition. Curve trees, on the other hand, exploit several
groups (assumed to constitute a cycle of groups of elliptic
curves) while still making black-box use of their respective
addition operations (after representing them as pairs of scalars
as mentioned above). We stress that our claim is not that we
can contradict the impossibility result in [22], nor is our inten-
tion to undermine it. Instead, we argue Curve Trees provides
further nuances to the observations in [22]: they show that we
can meaningfully go around them by only slightly weakening
the algebraic requirements of the model. We finally remark
that the above only refers to curve trees as an authenticated
data structure (this section), but not to the privacy-preserving
variant of its opening (Section 3).

E Dynamic Sets with Curve Tree

In our exposition in the main text we described a construction
for a static set. In many applications, including VCash, we
will require dynamically updating the accumulator.

An easy solution is to represent all uninitialized leaf posi-
tions with a conventional dummy value. Whenever we insert a
new leaf, it is easy to update Curve Trees without holding the
whole set, as for Merkle Trees. This can be done by storing
a “frontier“ of internal nodes (of size O(D)) to the group of
leaves we are updating. We then update each one of these
internal nodes through group operations removing the dummy
value, removing the permissibility masking, adding the new
value in the appropriate generator and then making the node
permissible again. This consists of O(D) group operations.

Using this solution in concrete applications we should
naturally make sure that one cannot exploit the dummy value
to convincingly open to that element (which is supposed to be
absent from the set). A simple solution is to choose a dummy
value that is not permissible.

F More Related Work on Transparent Zero-
Knowledge for Set Membership

Some works with transparent setup do not achieve succinct-
ness (that is, practically short proofs and a o(|S|) verification
time). For example, Monero [3]—or, generally, approaches
based on ring signatures—have proofs linear in the set and
where the verifier’s running time is linear in the size of the set
|S|. Other approaches such as Omniring reduce the proof size
to O(log(|S|)) but still have linear verification time [39].

Other approaches to accumulator with zero-knowledge
properties do not involve general-purpose SNARKs. This

includes for example the multilinear pairing-based polyno-
mial commitment in [10], the seminal KZG [38] and the
polynomial commitments in [15]. They, however, all require
knowledge-based assumptions and a trusted setup. Similar
observations hold for the recent work in Caulk [49].

Other works apply asymptotically efficient polynomial
commitments with a transparent setup, but their commit-
ment and proof size are concretely large. This is the case
of Hyrax [48], where for large set sizes commitments can be
≫ 10KB, and Dory [40] where commitments are 190 bytes
(6-7 times larger than ours). Proofs of single opening are also
large (18 KB) in Dory, although the scheme can amortize this
cost with batching (expect for very large opening batches this
amortized proof size is still significantly higher than ours).
The Spartan proof system has overall opening sizes, prov-
ing and verification time that are competitive with respect to
ours (for sets up to approximately 220 where Spartan starts to
perform worse), but it has very high commitment sizes, e.g.
≥ 20KB for sets of size 220 (625× worse than ours)19. Other
transparent polynomial commitments include those based on
Reed-Solomon IOPs [6] or on Diophantine ARguments of
Knowledge (DARK) [14]. As argued in [40] (Section 1.1)
they achieve worse concrete performances than the works
above in practice.

Works that apply specialized proving techniques on accu-
mulators in unknown-order groups: Veksel, [20, 21, 10, 18].
These works obtain concretely small proofs/verifier with an
efficient proving time, but require an RSA modulus (non-
transparent) for their efficient instantiations20. While the work
in [18] obtains concretely efficient proving time with a slightly
larger proof size in Zcash it requires trusted setup to instanti-
ate its proof system in addition to RSA modulus.

F.1 Subsequent Work
Recently Eagen has built upon our work to show how to de-
sign confidential transactions of smaller size seemingly at the
cost of additional proving time [28] through nested proving
and other techniques. It is still unclear how to compare these
extensions to our work: the current writeup in [28] does not
make all the assumptions behind its estimates concrete and
the work does not have a complete implementation yet.

G Other Implementations Used in Experimen-
tal Comparison

The Poseidon implementation can be found at
https://github.com/lovesh/ursa/tree/zmix/
libzmix/bulletproofs_amcl

The Orchard protocol was benchmarked using the imple-
mentation at https://github.com/zcash/orchard.

19See [40] for numbers referred in this section.
20In all these works we can replace the RSA group with a transparent

class-group [12] at a substantial efficiency cost. See, e.g., discussion in [27].
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