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Abstract
Current adversarial attacks against speaker recognition sys-
tems (SRSs) require either white-box access or heavy black-
box queries to the target SRS, thus still falling behind prac-
tical attacks against proprietary commercial APIs and voice-
controlled devices. To fill this gap, we propose QFA2SR,
an effective and imperceptible query-free black-box attack,
by leveraging the transferability of adversarial voices. To im-
prove transferability, we present three novel methods, tailored
loss functions, SRS ensemble, and time-freq corrosion. The
first one tailors loss functions to different attack scenarios.
The latter two augment surrogate SRSs in two different ways.
SRS ensemble combines diverse surrogate SRSs with new
strategies, amenable to the unique scoring characteristics of
SRSs. Time-freq corrosion augments surrogate SRSs by in-
corporating well-designed time-/frequency-domain modifica-
tion functions, which simulate and approximate the decision
boundary of the target SRS and distortions introduced during
over-the-air attacks. QFA2SR boosts the targeted transfer-
ability by 20.9%-70.7% on four popular commercial APIs
(Microsoft Azure, iFlytek, Jingdong, and TalentedSoft), sig-
nificantly outperforming existing attacks in query-free setting,
with negligible effect on the imperceptibility. QFA2SR is
also highly effective when launched over the air against three
wide-spread voice assistants (Google Assistant, Apple Siri,
and TMall Genie) with 60%, 46%, and 70% targeted transfer-
ability, respectively.

1 Introduction

Speaker recognition (SR) is an automatic process recognizing
the identity of a person with her voice. SR has versatile appli-
cations, such as authentication for financial transactions [10],
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their constructive feedbacks. This work is supported by the National Key Re-
search Program (2020AAA0107800), National Natural Science Foundation
of China (62072309), CAS Project for Young Scientists in Basic Research
(YSBR-040), and ISCAS New Cultivation Project (ISCAS-PYFX-202201).

access control for voice-controlled devices [12], and service
personalization in voice assistants [11]. However, the popular-
ity of SR has brought new security concerns. Recent studies
have shown that SRSs are vulnerable to adversarial attacks as
summarized in Table 1. Such attacks aims to craft an adver-
sarial voice from a given voice uttered by a source speaker,
so that it is misrecognized as another speaker by the target
SRS, but does not sound like the misrecognized speaker from
the perception of ordinary users. White-box attacks assume
complete knowledge of the target SRS, which are power-
ful yet remarkably unpractical as it is impossible to acquire
any internal information about protected proprietary systems.
Black-box attacks do not rely on such information, but usually
require a large number of queries to the target SRS to achieve
considerable attack capabilities. Such black-box attacks suf-
fer from two serious drawbacks: (1) they are cost-consuming
because voice-controlled devices do not expose APIs thus
voices have to be played over the air while commercial APIs
require query-charges. Furthermore, both devices and APIs
often pose limitations on the query frequency; (2) they are
not very stealthy because a large bulk of queries to the target
SRS leads to detectable abnormal traffics and behaviors.

Our work is motivated by the following research ques-
tion: “how to launch effective, stealthy, and practical adver-
sarial attacks against black-box commercial APIs and voice-
controlled devices without any queries to the target SRS when
constructing adversarial voices (i.e., query-free)?”. A straight-
forward idea is to exploit the transferability of adversarial
examples, i.e., crafting adversarial examples on a surrogate
SRS (a local white-box SRS owned by the adversary) and
then transferring them to the target SRS. However, until now,
adversarial attacks in SR suffer from limited transferability
since adversarial voices are easy to overfit the surrogate SRS
and consequently become ineffective on the target SRS. This
is because there are various aspects that the target SRS may
differ in with the surrogate SRS (e.g., acoustic feature [15]
and scoring method [39]) and a large number of updatable
values of a seed voice due to a high audio sample rate. Indeed,
we find that the transfer attack success rate (ASR) to most
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Table 1: An overview of the state-of-the-art adversarial attacks to SRSs.

Method Threat Scenario Knowledge #Queries Enrollment Commercial Attack Type Attack Media ASR (Digital) ASR (Physical)

[49, 52] White-box Gradient N/I Same 7 Untargeted Digital 41%-69% N/A
[40, 44] White-box Gradient N/I N/A 7 Untargeted Digital 40%-100% N/A

AS2T [30] White-/Black-box Gradient/Scores ∼ 5000 Same 7 Targeted, Untargeted Digital, Physical ∼ 100% 89.4%-100%
FakeBob [27] Black-box Scores ∼ 2500 Same TalentedSoft [9], Azure [18] Targeted, Untargeted Digital, Physical 100% 70%

SirenAttack [38] Black-box Scores ∼ 7500 N/A 7 Targeted, Untargeted Digital ∼ 100% N/A
Kenansville [22] Black-box Decision ∼ 15 Same Azure Untargeted Digital 5%-37% N/A

Occam [84] Black-box Decision ∼ 10000 Same Azure, Jingdong [17] Targeted Digital 100% N/A

QFA2SR
(Ours) Black-box None 0

Different,
Same

TalentedSoft, Azure, iFlytek [4],
Jingdong, Google Assistant [11],
Apple Siri [7], TMall Genie [14]

Targeted, Untargeted Digital, Physical 27.4%-99.5% 46%-70%

Note: (i)“While-box”/“Black-box”: the adversary has complete/no knowledge of the target SRS. (ii) “Gradient”/“Scores”/“Decisions”: the adversary requires the gradient information/the
similarity scores/the identified speaker; “None”: the adversary has no access to the target SRS when crafting adversarial voices. (iii) #Queries: the number of queries used for creating
adversarial voices, which is not important (N/I) for white-box attacks, and “∼” denotes approximation. (iv) Same (Different): the enrollment voices used by the adversary are the same as
(different from) the ones used for enrolling the target SRS, while N/A denotes that there is no enrollment voices. (v) “7": commercial SRSs are not considered as a target SRS. (vi)
“Untargeted" (“Targeted"): untargeted (resp. targeted) attack where the attack succeeds if the adversarial voice is misclassified as one of the enrolled speakers (resp. the target speaker). (vii)
“Digital": adversarial voices are directly fed to SRSs in the form of audio file via exposed API; “Physical": adversarial voices are played and recorded by hardware and transmitted in the
air. (viii) “ASR”: attack success rate on commercial SRSs (if considered otherwise open-source SRSs).

target SRSs is less than 6% even the surrogate SRS shares
the same architecture, training dataset, acoustic feature, and
scoring method with the target SRSs (cf. Appendix G of [28]).
Thus, the main problem is how to improve the transferability
of adversarial voices without reducing imperceptibility.

In this work, we address the above problem by proposing
an attack called Query-Free Adversarial Attack to Speaker
Recognition (QFA2SR). QFA2SR features three novel meth-
ods: Tailored Loss Functions, SRS Ensemble, and Time-Freq
Corrosion, to improve the transferability of adversarial voices
without reducing imperceptibility. The first one is proposed
to find optimal loss functions, for which we design and empir-
ically study various loss functions. Remarkably, we find that
the commonly-adopted Cross Entropy Loss [41] and Margin
Loss [26] for crafting adversarial images lead to less transfer-
able adversarial voices than ours. The second one combines
multiple surrogate SRSs via two novel strategies, so that ad-
versarial voices crafted on the ensemble of surrogate SRSs
can deceive as many surrogate SRSs as possible. The last one
incorporates various well-designed time-/frequency-domain
modification functions into surrogate SRSs to simulate and
approximate unknown distribution of the target SRS and dis-
tortions introduced during over-the-air attacks [30].

We implement our approach in a tool and thoroughly eval-
uate the performance of QFA2SR on various open-source
SRSs, commercial APIs, and voice assistants. The results
confirm the effectiveness of our three novel methods and
QFA2SR. For instance, QFA2SR on four commercial APIs,
i.e., (Microsoft) Azure, Jingdong, iFlytek, and TalentedSoft,
improves the targeted transfer ASR by 20.9%-70.7%, sig-
nificantly outperforming the state-of-the-art attacks in the
query-free setting, with negligible effect on the imperceptibil-
ity in terms of both perceptual objective metric and subjective
human study. In particular, QFA2SR achieves 89.6%/99.6%
targeted/untargeted transfer ASR to Azure, and 96% targeted
transfer ASR to Jingdong (within 4 queries when launching
QFA2SR). QFA2SR on three voice assistants, i.e., Google

Assistant, Apple Siri, and Alibaba TMall Genie, achieves
46%-70% targeted transfer ASR when launched over the air.

In summary, the main contribution of our work includes:

• We study various loss functions and find better loss func-
tions for transferability. We showcase that the promising
Cross Entropy loss and Margin loss in the image domain
are sub-optimal for the transfer attack in SR.

• We propose two novel strategies for the ensemble of the
surrogate SRSs which outperforms the model ensemble for
crafting adversarial images [56].

• We propose time-freq corrosion to enhance transferability,
accompanied with diverse modification functions for simu-
lating and approximating decision boundary of the target
SRS and distortions introduced during over-the-air attacks.

• We propose QFA2SR, a query-free black-box adversarial
attack against SRSs, by leveraging the transferability of ad-
versarial voices, and aided by novel methods and strategies
to boost the transferability, towards a truly usable transfer
attack in the physical world.

• We extensively evaluate QFA2SR on 9 open-source SRSs,
4 commercial APIs, and 3 voice assistants, covering 3 attack
scenarios, 2 recognition tasks, 2 attack types, 2 attack me-
dias, and 3 settings of available voices to the adversary, with
more than 144,800 adversarial voices in total. We find that
QFA2SR can boost the transferability by a large margin
with negligible effect on imperceptibility.

Abbreviations and Acronyms. For convenient reference, we
summarize the abbreviations and acronyms in Table 2.

2 Ethical Considerations

We make the following ethical considerations:
Strictly controlled experiments. For commercial APIs, the
target speakers in experiments are enrolled by us, so they
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Table 2: Abbreviation and Acronym

Acronym Meaning Acronym Meaning
SR Speaker recognition SRS(s) Speaker recognition system(s)
SV Speaker verification OSI Open-set speaker identification

AT
OSI Targeted attack on OSI TD-SV Text-dependent speaker verification

AUT
OSI Untargeted attack on OSI AT

TD-SV Targeted attack on TD-SV

Same-enroll
Surrogate & target SRSs have

the same enrollment voices Differ-enroll
Surrogate & target SRSs have

different enrollment voices
ASRt Targeted attack success rate ASRt -s/ASRt -d ASRt under enroll-/differ-enroll
ASRu Untargeted attack success rate ASRu-s/ASRt -d ASRu under enroll-/differ-enroll
RD Reverberation-distortion Sum-Global Summation-based global score ranking
NF Noise-flooding Vote-Global Voting-based global score ranking
SA Speed-alteration CD Chunk-dropping
FD Frequency-dropping TW Time-warping
TM Time-masking FM Frequency-masking

do not associate with any real-world financial or social ac-
counts in the applications that exploit the APIs. For voice as-
sistants, where target speakers associate with accounts, when
launching our attack against them, we stopped once the at-
tack bypassed the authentication of the target speaker. We
did not take any further malicious actions, e.g., accessing the
service exclusive to the target speaker. Additionally, all the
used voice-controlled devices are our own facilities.
Responsible disclosure. We contacted the vendor Talented-
Soft by email and other six vendors (Microsoft, iFlytek, Jing-
dong, Apple, Google, and Alibaba) with their official security
vulnerability report websites, to report the vulnerabilities we
found. We submitted reports with attack details, reproducibil-
ity of our attack using attached code, demonstration audios
and videos, security risks brought by our attack, reason for the
vulnerabilities, and suggested countermeasures. All vendors
express their gratitude to our research and disclosure to keep
their services, systems, and users secure. For instance, iFlytek
has identified our reported vulnerability as a moderate risk
level and awarded us a bounty of 1,000 RMB as recognition
for our vulnerability report, and TalentedSoft replied that they
will develop a plan to fix the vulnerability.

3 Background & Related Work

3.1 Speaker Recognition System (SRS)
Speaker recognition. Speaker recognition (SR) is the task
of automatically recognizing individual speakers from their
voices, typically representing acoustic characteristics as fixed-
dimensional vectors via speaker embedding [75]. An archi-
tecture of generic speaker recognition systems (SRSs) is
shown in Fig. 1, comprising three stages: training, enroll-
ment, and recognition. All of them extract acoustic features
from raw speech signals via an acoustic feature extraction
module, yielding the acoustic characteristics. Common acous-
tic features include speech spectrogram [42], fBank [64], and
MFCC [60]. The training stage trains a background model
which learns a mapping from training voices to embeddings.
Classic background model utilizes Gaussian Mixture Model
(GMM) [68], to produce identity-vector (ivector) embed-
dings [34]. Recent promising background model utilizes deep

Train

Unknown 
Speaker

Recognition stage

Extract

Threshold

Result

Training 
Speakers

Training stage

Enrollment
Embedding

Testing
Embedding

Scoring
Module

Acoustic
Feature

Extraction
Decision
Module

Extract

Background             
Model

Enroll 
Speaker

Enrollment stage

Fig. 1: Framework of SRSs.

neural networks (DNNs) to produce deep embeddings, e.g.,
xvector [71]. The enrollment stage maps a voice uttered by
an enrolling speaker to an enrollment embedding using the
background model. The recognition stage first retrieves the
testing embedding of a given voice x from the background
model and then measures the similarity between the enroll-
ment and testing embeddings via the scoring module. The
scoring module produces a score vector S(x) based on which
the decision module produces the result. Probabilistic Linear
Discriminant Analysis (PLDA) [62] and COSine Similarity
(COSS) [33] are two widely-adopted scoring methods.
SR task. The SR can be classified into two major tasks:
speaker identification and speaker verification (SV), where
the former can be further classified into open-set identifica-
tion (OSI) and close-set identification (CSI) both allowing
multiple speakers to be enrolled forming a speaker group G.
OSI determines if a given voice is uttered by either one of the
enrolled speakers or imposter (i.e., an unenrolled speaker),
according to the scores of all the enrolled speakers and a pre-
defined score threshold θ. Formally, assuming G= {1, · · · ,n},
given a voice x, the decision module outputs D(x):

D(x) =

{
argmax

i∈G
[S(x)]i, if max

i∈G
[S(x)]i ≥ θ;

imposter, otherwise.

where [S(x)]i denotes the i-th entry of the score vector S(x),
namely, the score of the voice x that is likely uttered by the
enrolled speaker i. Intuitively, the speaker i that gives the max-
imal score is assigned as the speaker of the voice x, if [S(x)]i is
no less than the threshold θ. Otherwise, the voice x is rejected,
regarding it as being uttered by an imposter. In contrast, CSI
always identifies the speaker that gives the maximal score as
the speaker of the voice x, i.e., the decision module outputs
D(x) = argmaxi∈G [S(x)]i, and SV is a restricted case of OSI,
which has exactly one enrolled speaker.
Text dependency. SR can be text-dependent (TD) and text-
independent (TID). TD requires speakers to utter some prede-
fined phrases or words during both the enrollment and recog-
nition stages while TID does not pose any such constraints.
TD can achieve good performance on short voices, but needs
a large number of training voices with the same phrases or
words, thus it is only used in the SV task, called TD-SV. TID
needs longer voices to achieve good performance, but is more
convenient and can be used in all tasks.
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3.2 Attacks on SRS

Adversarial attack. An adversarial attack on SRS aims to
craft an adversarial voice from a given voice uttered by a
source speaker, so that the SRS under attack misclassifies it as
one of the enrolled speakers (untargeted attack) or the target
speaker (targeted attack), but ordinary users do not determine
it as the recognized speakers by the SRS (imperceptibility).

The problem of finding such an adversarial voice x′ from a
voice x can be formalized as the optimization problem:

argminx′ f (x
′) subject to d(x′,x)≤ ε and x′ ∈ [−1,1]

where f is a loss function measuring the effectiveness of the
attack, d(x′,x) is a distance metric quantifying the similar-
ity between x′ and x (imperceptibility), and ε is the budget
of added adversarial perturbation to ensure imperceptibility.
The most widely adopted distance metric is Lp norm [26],
i.e., d(x′,x) = p

√
∑i |x′i− xi|p. Under the white-box setting

where the adversary has full knowledge of the target SRS,
the optimization problem can be solved by gradient de-
scent using the exact gradient obtained by backpropaga-
tion [30, 40, 44, 49, 52, 53]. Under the black-box setting
where the exact gradient is not available, the attack either
estimates the gradient (e.g., FakeBob [27] and AS2T [30]) or
utilizes gradient-free optimization approaches (e.g., SirenAt-
tack [38], Kenansville [22], and Occam [84]). All these black-
box attacks access the target SRS as an oracle, i.e., providing
a series of carefully crafted inputs to the model and observing
its outputs (either scores [27, 30, 38] or decisions [22, 84]).
Hidden voice and spoofing attacks. Hidden voice attack [20]
perturbs given a voice uttered by a target speaker so that the
resulting voice is treated as mere noise by humans, but still
correctly recognized as the target speaker by the SRS. The
spoofing attack [79] (e.g., replay attack [70] and voice cloning
attack [78]) aims to obtain a voice that is correctly classified
as the target speaker by the SRS and also sound like the target
speaker listened to by ordinary users. Specifically, a replay
attack aims to bypass the SRS using pre-recorded voices
surreptitiously captured from the target speaker, and is usually
used for attacking text-independent SV, as the collected voices
usually do not contain the required text by text-dependent SV.
In contrast, given a few voices of a speaker and the desired
text, voice cloning attack creates a voice that sounds like the
speaker and contains the specified speech content, thus can
be exploited to attack text-dependent SV.

Hidden voice and spoofing attacks have different attack
purposes and scenarios from adversarial attacks [27, 31, 78].
The perception of human listeners is inconsistent with that of
the SRS under adversarial and hidden voice attacks, while it is
consistent under the spoofing attack (cf. § 6.3). Furthermore,
we will show that our adversarial attack QFA2SR achieves
a higher attack success rate than hidden voice and spoofing
attacks in the query-free setting (cf. § 6.3).

4 Methodology of QFA2SR

4.1 Threat model

We consider so far the most practical threat model concerning
the knowledge of the target SRS and attack capability in the
adversarial speaker recognition domain.
Target SRS. Regarding the target SRS, we assume that the
adversary neither has white-box access to any of its inter-
nal information (e.g., architecture, parameters, training algo-
rithm, and dataset), nor perform queries to the SRS during the
generation of adversarial voices, so-called query-free block-
box setting. First, it is almost impossible for the adversary
to acquire internal information of a strictly protected propri-
etary SRS in the real life, e.g., commercial service APIs and
voice controlled devices, thus preventing from white-box at-
tacks [30, 40, 44, 49, 52]. Second, query-free is necessary
and significant for achieving truly practical attacks in the real
world considering that: (1) Voice assistants can only be inter-
acted via the air channel, while the generation of adversarial
voices via air channels would be difficult and time-consuming
as the generation is an iterative process, and at each iteration,
intermediate voices have to be played by loudspeakers. (2)
Commercial APIs usually pose a limit on the query frequency,
e.g., Jingdong SRS resticts 2 queries per second with a max-
imum of 500 queries per day. The limit can be solved by
using time slots between queries, but making attacks time-
consuming. (3) Commercial APIs may charge on the query,
e.g., JingDong SRS charges 500 RMB for 1,000 queries, mak-
ing attacks expensive. (4) Voice assistants and some commer-
cial APIs only return final decision without any scores, thus
stopping all the score-based black-box attacks [27, 30, 38].
Query-free attacks overcome all the above limitations.
Voice resources. Regarding voice resources, we assume that
the adversary: (1) has a large number of voices for training
the surrogate SRS but could be different from those used
for training the target SRS and (2) knows all the enrolled
speakers of the target SRS and has some voices for each
of them which are used to enroll surrogate SRSs but also
could be different from those used for enrolling the target
SRS. The first assumption is reasonable thanks to many large-
scale open-source speech corpora, e.g, Librispeech [63] and
VoxCeleb1 [61]. The second assumption is also reasonable as
the adversary can either use enrolled speakers’ public videos
on social media or record their speeches via social engineering.
In § 6.5, we will relax the second assumption by considering
that the adversary only has the target speaker’s voice instead
of all the enrolled speakers of the target SRS. In contrast, prior
works [22, 27, 30, 38, 40, 44, 49, 52, 84] are either white-
box or query-based black-box attacks, thus require neither
voice datasets to train surrogate SRSs nor voices of enrolled
speakers of the target SRS to enroll surrogate SRSs, but used
the same enrollment speakers and the same voices between
the surrogate and target SRSs when launching transfer attacks.
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Attack scenarios and risks. Regarding attack scenarios, dif-
ferent combinations of source/target speaker, and recognition
task enables the adversary to achieve different goals, e.g.,
unauthorized access, denial-of-service, anonymous access,
evasion, and privacy protection [30]. In this work, we con-
sider three combinations, denoted by AT

OSI, AUT
OSI, and AT

TD-SV,
all of which attempt to craft an adversarial voice from a given
benign voice uttered by an imposter such that the adversarial
voice is accepted by the target SRS. Both AT

OSI and AUT
OSI focus

on the OSI task, but AT
OSI is a targeted attack that specifies

an enrolled speaker as the target speaker, while AUT
OSI is an

untargeted attack that succeeds when the adversarial voice
is accepted as any enrolled speaker. AT

TD-SV focuses on the
text-dependent SV task (i.e., TD-SV), where the adversary
has target speakers’ voices not containing the desired text but
knows the text in advance. It is practical as systems should
inform customers of the text, e.g., “Hey Siri”. Adversary can
use voices of imposters with such text to craft adversarial
voices. We found our attack rarely alters the text as it focuses
on identity instead of speech content. Since SV is a binary
classification problem with only one enrolled speaker, the
target speaker of AT

TD-SV is the unique enrolled speaker. We
do not consider the CSI task since the OSI task is more dif-
ficult to attack than the CSI task [30], and to the best of our
knowledge, no commercial SRSs use the CSI task.

Our attack exposes the following risks. (1) SR has been
used for access control in smart home [12], smartphones [3],
and mobile applications [74]. Our attack may enable unautho-
rized access, e.g., controlling over critical appliances, unlock-
ing and logging target speakers’ smartphones and applications.
(2) Speaker recognition has been used for identity verification
in banks’ telephone-communication [2, 10] and password-
free payment [13], so our attack may lead to property damage.
(3) Speaker recognition has been used in key-word detection
of voice assistants [11], so our attack can activate assistants
and then issue malicious instructions (e.g., reading messages,
deleting reminders, circumventing the confidentiality and in-
tegrity of data), or launch follow-up attacks targeting speech-
to-text, e.g., Dolphin-attack [83] and CommanderSong [82].
Readers are recommended to watch recorded videos on our
website [8]. However, our attack cannot achieve certain ob-
jectives, e.g., (i) denial-of-service to the target speaker, or (ii)
actively hiding the identity of the target speaker to achieve
anonymous access to illegal services, protect personal privacy,
or evade being detected [30]. Realizing these purposes re-
quires crafting adversarial voices from the target speaker’s
benign voices such that they are rejected or recognized as
other speakers by the target SRS, which is beyond the scope
of AT

OSI, AUT
OSI, and AT

TD-SV.

4.2 Technical Challenges

Under the query-free black-box setting, all the prior attacks
cannot be directly mounted, as they are either white-box or

query-based black-box attacks. To tackle this issue, one has
to exploit the intriguing property of adversarial examples, i.e.,
transferability – an adversarial example crafted with respect
to one model is often found effective against other models
as well. Thus, the adversary can first craft an adversarial
voice on a local surrogate SRS and then transfer it to the
target SRS. While advanced transfer attacks against computer
vision systems have been extensively studied in the literature
(e.g., [37, 54, 56, 58]), current transfer attacks on SRSs are
considerably limited (e.g., the targeted/untargeted transfer
attack success rate to most target SRSs is less than 6% (cf.
Appendix G of [28]) due to the following technical challenges.
Challenge CH-I. The target SRS may be different from
the surrogate SRS in various aspects, such as dataset and
hyper-parameters for training background model, architec-
ture (e.g., GMM and DNN), acoustic feature (e.g., fBank
and MFCC), scoring method (e.g., PLDA and COSS), and
input pre-processing, all of which can largely affect the trans-
ferability [27, 30]. More specifically, different datasets may
obey different voice distributions due to different recording
environments, hardware, and subjects, while different voice
pre-processing can change the voice distributions in different
ways. Thus, SRSs trained with different datasets and input
pre-processing may learn different voice distributions. As a re-
sult, an adversarial voice crafted from a surrogate SRS would
be highly sensitive to the voice distribution of the surrogate
SRS, leading to low transferability. A piece of evidence is that
adversarial voices are more likely to be destroyed by some
input transformation [29, 31]. Similarly, SRSs with differ-
ent training hyper-parameters, architectures, acoustic features
and scoring methods may learn different voice distributions
and decision boundaries. For instance, removing an MFCC
acoustic feature extraction module from the surrogate sys-
tem improves the transferability in the speech recognition
domain [21]. We highlight that in the audio domain, the sur-
rogate system may differ from the target one in more aspects
than in the image domain because audio systems are usu-
ally more complicated and own several unique components
and pipelines, e.g., acoustic feature extraction module and
scoring method, making the transfer attacks more challeng-
ing [23, 38, 84].
Challenge CH-II. The iterative generation process of adver-
sarial examples can be seen as the “training" of the input data
with a fixed model, in contrast to the standard training where
the model is trained with a fixed input dataset. Due to the
high audio sampling rate (e.g., 16 khz), an audio has a large
number of trainable variables, leading to the curse of dimen-
sionality. For instance, a 1-second audio with 16k Hz sampling
rate has totally 16,000 updatable variables, much larger than
784 (28×28) and 3072 (32×32×3) variables of an image
from MNIST and CIFAR-10, respectively. As a result, similar
to significant overfitting and poor generalization of training
DNNs with a larger number of parameters [51, 72], the crafted
adversarial voices are easy to over-fit to the surrogate SRS,
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resulting in ineffective transfer attacks [37, 76]. This phe-
nomenon has been reported in the image domain [56], where
targeted transfer attacks that are effective on low-resolution
images (e.g., MNIST or CIFAR-10) become significantly less
effective on high-resolution images (e.g., ImageNet).
Challenge CH-III. To attack voice-controlled devices, adver-
sarial voices should be played by loudspeakers, transmitted
over the air, and recorded by microphones, during which loud-
speakers and microphones will induce distortions to voices
due to their non-uniform frequency selectivity [53]. Even
worse, different loudspeakers and microphones may exhibit
distinct frequency responses, thus incurring distinct distor-
tions [53]. Moreover, both ambient noise and reverberation
could distort adversarial voices and undermine the attack as
well, and their impacts depend on the specific attack environ-
ments [30]. Therefore, over-the-air transfer attacks undergo
additional challenges, compared to pure API transfer attacks.

4.3 Overview of QFA2SR
A straightforward idea to improve the transferability is to
enlarge the perturbation budget or increase the confidence
of adversarial voices [27, 30]. However, it not only makes
the adversarial voices less imperceptible, thus much easier to
increase the awareness of human, but only is almost ineffec-
tive when there is a large gap between the surrogate and the
target SRSs, as SRS-specific factors (e.g., architecture) are
dominant factors over attack-specific ones (e.g., perturbation
budget and confidence) [30]. We also note that confidence is
not a good tool to increase the transferability in commercial
computer vision platforms (cf. [58, Observation 9]).

In this work, we propose an effective and imperceptible
adversarial transfer attack on SRSs, named QFA2SR, address-
ing all the above three challenges. The overview of QFA2SR
is depicted in Fig. 2, which consists of three key components:
tailored loss functions, time-frequency (time-freq) corrosion
and SRS ensemble, designed to increase the transferability
without sacrificing imperceptibility, where the latter two are
proposed to address the above three challenges.
Tailored loss functions. We study and evaluate various loss
functions for achieving the optimal transferability for each
attack scenario (i.e., AT

OSI, AUT
OSI and AT

TD-SV) (cf. § 5.1). It is
essential to explore different loss functions for improving the

transferability, as their effectiveness may vary in different
attack scenarios (cf. Appendix E of [28]). The evaluation
leads to the best tailored loss function for each attack scenario.
SRS ensemble. Inspired by the ensemble-based approach for
improving the transferability in the image domain [56], we
propose SRS ensemble (cf. § 5.2), which builds a surrogate
SRS zoo with multiple surrogate SRSs. To alleviate the over-
fitting problem of adversarial voices to a single surrogate SRS,
adversarial voices are crafted to fool as many as surrogate
SRSs simultaneously, so they will be more transferable to an
unknown target SRS. We emphasize that our SRS ensemble
differs from the one in the image domain [56] (cf. § 5.2).
Time-freq corrosion. We propose time-frequency corrosion
(cf. § 5.3), which randomly manipulates voice signals in the
time domain and acoustic features in the frequency domain
using well-designed modification functions. These functions
are inserted into proper positions of the surrogate SRSs (be-
fore the acoustic feature extraction for time-domain modifi-
cation functions and after the acoustic feature extraction for
frequency-domain modification functions). During the gener-
ation of adversarial voices, intermediate voices are randomly
modified in both the time and frequency domains. Each modi-
fication function is intentionally designed to be random and
changes the distribution of the surrogate SRS in a different
way, thus we can simulate and approximate as many distribu-
tions as possible. The adversarial voices crafted in this way
will be more robust against different distributions (e.g., the
unknown distribution of the target SRS) and the distortions
introduced during over-the-air attacks, thus more transferable
to an unknown target SRS even being played over the air.

5 Design of QFA2SR

In this section, we present the details of our attack QFA2SR.

5.1 Tailored Loss Functions

We study various loss functions for the attack scenarios AT
OSI,

AUT
OSI, and AT

TD-SV whose effectiveness will be thoroughly eval-
uated to choose the best one for better transferability.
Attack scenario AT

OSI. Given a benign voice uttered by an
imposter s, the adversarial attack in AT

OSI aims to craft a voice
such that the OSI SRS recognizes it being uttered by a given
target speaker t ∈ G. We define the following loss functions:

fCE(x) =− log[Softmax(S(x))]t f1(x) =−[S(x)]t
fM(x) = maxi∈G,i6=t [S(x)]i− [S(x)]t
f2(x) = max{θ,maxi∈G,i 6=t [S(x)]i}− [S(x)]t

where θ is a preset score threshold, fCE and fM are respec-
tively the Cross Entropy Loss [41] and the Margin Loss [26]
that have been widely used to craft adversarial images. f1 is
designed to increase the score of the target speaker t only, in
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contrast to the loss function fM which is designed to simulta-
neously increase the score of the target speaker t and reduce
the scores of the other enrolled speakers. f2 is designed such
that f2(x)≤ 0⇔D(x) = t, when minimized, the score [S(x)]t
of the target speaker t is maximized to exceed θ and the scores
of all the other enrolled speakers. Note that θ is the threshold
of the surrogate SRS, which is known to the adversary.
Attack scenario AUT

OSI. Given a benign voice x0 uttered by an
imposter s′, the adversarial attack in AUT

OSI aims to craft a voice
such that it is accepted as an arbitrary enrolled speaker t ∈ G
by the OSI SRS. We define the following loss functions:

f s
CE(x) =− log[Softmax(S(x))]s
f s
2(x) = max{θ,maxi∈G,i6=s[S(x)]i}− [S(x)]s

f s
M(x) = maxi∈G,i 6=s[S(x)]i− [S(x)]s
f s
1(x) =−[S(x)]s f3(x) = θ−maxi∈G[S(x)]i

where s = argmaxi[S(x0)]i and x0 is the input voice. The loss
functions f s

CE(x), f s
1(x), f s

M(x) and f s
2(x) are defined the same

as fCE(x), f1(x), fM(x) and f2(x) except that the enrolled
speaker s giving the maximal score on the input voice x0 is
used as the target speaker. f3 is designed such that f3(x) ≤
0⇔ D(x) = any enrolled speaker. Minimizing f3 makes the
maximal score among all the enrolled speakers exceed the
threshold θ, thus the adversarial voice is accepted. Unlike
the others which always optimize towards the speaker s that
gives the maximal score on the input voice x0 throughout the
optimization, f3 dynamically adjusts the target speaker based
on the scores of each intermediate voice.
Attack scenario AT

TD-SV. Given a benign voice uttered by an
imposter, the adversarial attack in AT

TD-SV aims to craft a voice
that is recognized as the enrolled speaker by the SV SRS. We
consider the following two loss functions for this goal:

fBCE(x) =− log(ϕ(S(x))) f3B(x) = θ−S(x)

where ϕ denotes the sigmoid function. Intuitively, fBCE is the
binary Cross Entropy Loss function, and f3B(x) is the special
case of f3(x) for the binary classification task SV. We note
that f3B(x) is also equivalent to the loss functions f1, fM and
f2 when only one speaker is enrolled.

5.2 SRS Ensemble

Ensemble of multiple SRSs. To combine multiple SRSs, a
straightforward idea is to adopt loss-level fusion [56], origi-
nally proposed for the ensemble of image classification mod-
els. The loss-level fusion computes the loss of the ensemble
model using the weighted sum of losses of multiple SRSs.
Formally, the loss function of the ensemble model is defined
as fens = ∑

K
k=1 wk× f (x;Rk), where K is the number of surro-

gate models, f (x;Rk) is the loss function of the k-th surrogate
model Rk with the ensemble weight wk.

We tried uniform weights, i.e., wk =
1
K for k = 1, · · · ,K,

which works well for the ensemble of multiple image clas-
sification models [56]. However, it has limited effectiveness
and sometimes even reduces the transferability compared to
the attack using a single surrogate SRS (cf. Appendix G of
[28]), probably because different SRSs produce scores with
different ranges and scales. For example, the scoring method
PLDA produces unconstrained scores, while COSS outputs
scores within the range [−1,1]. The loss function also varies
with SRSs in the range and scale, due to its dependency on
the scores. Thus, uniform weights cause the optimization
to concentrate more on the SRSs with large losses than the
SRSs with small losses, definitely reducing the effect of SRS
ensemble. An intuitive way to address this issue is to treat
the weights as hyper-parameters and manually tune them.
But, searching for (approximately) optimal weights is pro-
hibitively expensive and difficult with the increase of surro-
gate SRSs [46]. Moreover, the weights obtained via tuning
depend on both the surrogate and subjunctive target SRSs,
thus may have to be re-tuned when either the surrogate SRSs
or target SRSs change.

We propose to craft adversarial voices using multiple sur-
rogate SRSs as multi-task learning [46] and use the following
method to automatically and adaptively choose appropriate
weights (called dynamic weighting) for balancing different
loss terms. During each iteration of crafting adversarial voices,
we normalize the loss of the k-th SRS fk = f (x;Rk) by its
mean µk and standard derivative σk, i.e., f ′k =

fk−µk√
σk

. Remark
that both µk and σk are SRS-specific and are iteratively up-
dated via µk = µk +

fk−µk
n and σk = σk +

1
n (( fk−µk)

2−σk),
where n is the current iteration. Finally, the loss function of
the ensemble model is defined as fens = ∑

K
k=1 f ′k.

Global ranking for untargeted attack. We now face another
problem when combining the surrogate SRSs for untargeted
attack (i.e., scenario AUT

OSI). Recall that the loss functions for
AUT
OSI (i.e., f s

1 , f s
M, f s

2 and f3) depend on the maximal score
among the enrolled speakers. Due to the diversity, the ranking
of the enrolled speakers according to their scores on each
surrogate SRS (called local rank) may differ from that of the
others. If we solely use the maximal scores based on the local
ranks in the loss functions, the optimization directions on the
surrogate SRSs may differ, definitely reducing the effect of
SRS ensemble. This is in contrast to the targeted attack (i.e.,
AT
OSI and AT

TD-SV) where the target speaker is the same in all
the surrogate SRSs. To solve this problem, instead of using
local ranks, we utilize the global rank which aggregates the
local ranks of all the surrogate SRSs. We define the following
two different global ranks, i.e., summation and voting.

Consider the surrogate SRS zoo {R1, · · · ,RK} that has
the same group G of enrolled speakers. Let rnkk,x be the
local rank of the SRS Rk on a voice x that maps enrolled
speakers to ranks according to their scores, i.e., speaker
i ∈ G has the rnkk,x(i)-th maximal score in the score vector
S(x) of the SRS Rk. We define the summation-based global
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ranking (Sum-Global) as rnkx(i) = ∑
K
k=1 rnkk,x(i), where

the global rank of the speaker i is rnkx(i). We define the
voting-based global ranking (Vote-Global) as rnkx(i) =
argmax j∈G\{rnkx(1),··· ,rnkx(i−1)}∑1≤k≤K I(rnkk,x( j)≤ i),
where I(rnkk,x( j)≤ i) is 1 if rnkk,x( j)≤ i otherwise 0.

The loss functions f s
CE(x), f s

1(x), f s
M(x), f s

2(x) and f3 for
untargeted attacks against the ensemble of the surrogate SRSs
are now generalized as follows:

f s
CE(x) =− log[Softmax(S(x))]s f s

1(x) =−[S(x)]s
f s
2(x) = max{θ,maxi∈G,i6=s[S(x)]i}− [S(x)]s

f s
M(x) = maxi∈G,i 6=s[S(x)]i− [S(x)]s f3(x) = θ− [S(x)]s′

where x0 is the input voice, s = argmini[rnkx0(i)] and s′ =
argmini[rnkx(i)] for Sum-Global, and s = rnkx0(1) and s′ =
rnkx(1) for Vote-Global. Finally, the loss function of the
ensemble model fens = ∑

K
k=1 f ′k is defined the same as above.

Remark that the above loss functions, adapted by replacing
the local rank with a global rank, only differ from the original
loss functions for AUT

OSI in the enrolled speaker (i.e., s or s′).
Attack with multiple SRSs. An adversarial attack with SRS
ensemble is shown in Alg. 1. It first initializes the means µ
and derivatives σ for each surrogate SRS (Line 1). The second
for-loop (Lines 2–12) iteratively searches for an adversarial
voice starting from a seed voice x0. In each iteration, the third
for-loop (Lines 4–10) iteratively computes the loss of each
surrogate SRS, normalizes them by their individual means and
standard derivatives, based on which we compute SRS ensem-
ble loss fens as the sum of these normalized losses (Line 10).
Since the surrogate SRSs may introduce some randomness
(e.g., the randomized pre-processing), we independently draw
a randomness r for each surrogate SRS β times (Lines 6–7)
and obtain the loss using the average of the β losses (Line 8).
We found that this leads to better transferability. Next, the
intermediate voice xn−1 is updated according to the gradient
sign of fens w.r.t. xn−1 and the step size α (Line 11), which
is further clipped into the L∞ ε-neighbourhood of the seed x0
and the valid range of voices [−1,1] (Line 12).

5.3 Time-Freq Corrosion
Due to the time-varying non-stationary property, voices are
not resilient enough to noises and other variations, and wave-
form signals themselves cannot effectively represent speaker
characteristics [66]. Thus, to achieve better performance [81],
a raw input voice is often transformed into a two-dimensional
time-frequency representation via an acoustic feature extrac-
tion (cf. Fig. 1). This motivates us to design functions for
manipulating voices in both the time and frequency domains.

5.3.1 Time Domain Modification Functions

We consider the following five modification functions for
manipulating voice signals in the time domain.

Algorithm 1: SRS Ensemble
Input: seed voice x0; L∞ perturbation budget ε; number of steps N;

step size α; surrogate SRS zoo {R1, · · · ,RK}; sampling size
β; loss function f (·)

Output: adversarial voice
1 for k from 1 to K do µk ← 0; σk ← 1;
2 for n from 1 to N do
3 fens← 0;
4 for k from 1 to K do
5 fk ← 0;
6 for r from 1 to β do . Rr

k denotes the SRS Rk with
7 fk ← fk + f (xn−1;Rr

k); . the sampled randomness r
8 fk ← fk

β
;

9 µk ← µk +
fk−µk

n ; σk ← σk +
1
n (( fk−µk)

2−σk);
10 fens← fens+

fk−µk√
σk

; . SRS ensemble loss

11 xn← xn−1−α×sign(∇xn−1 fens);
12 xn←max{min{xn,1,x0 + ε},−1,x0− ε};
13 return xN ;

Reverberation-distortion (RD) [48]. Reverberation occurs
when a signal propagates through multiple paths (direct and
reflected paths) in a room, where the direct sound and reflec-
tions overlap with each other. Room Impulse Response (RIR),
denoted by r, can characterize the acoustic properties of a
room regarding sound transmission and reflection. Given an
input voice x, the reverberant voice is created by convolving
r with x. Given a list of RIRs (R ), each of which models a
room configuration, RD randomly applies one RIR each step.
Noise-flooding (NF) [43]. NF modifies a voice by superim-
posing it with a random white Gaussian noise. The magnitude
of the noise is controlled via the signal-to-noise ratio (SNR)
10log10

Pv
Pn

, where Pv and Pn are the power of the input voice
and the noise, respectively. The SNR is randomly chosen
from [SNRl ,SNRh] during each step, where SNRl and SNRh
denote the lower bound and upper bound of the SNR.
Speed-alteration (SA) [47]. Given a voice x(t) and the speed
ratio α between the new and original speeds, SA produces the
time-scaled voice x(αt), which sounds faster (resp. slower)
when α > 1 (resp. α < 1). SA changes the duration of the
utterance, thus affects the number of frames of the voice. The
randomized version of SA selects a one-speed ratio from a
candidate list of speed ratios (A) each step.
Chunk-dropping (CD) [67]. Given a voice with T sample
points, CD sets the magnitudes of the sample points within
[t0, t0 + t) to zero, where t and t0 are randomly chosen from
[Tl ,Tu] and [0,T − t], respectively. Tl and Tu are the lower and
upper bounds of the chunk lengths to be dropped. In addition,
given the lower Cl and upper Cu bounds of the number of the
chunks to be dropped, the process is independently repeated
c times where c is randomly selected from [Cl ,Cu].
Frequency-dropping (FD) [67]. A voice signal can be de-
composed into multiple pure tones with different frequencies.
Given the lower Fl and upper Fu bounds of the frequencies
to be dropped, FD applies a notch filter to remove the pure
tone with frequency f which is randomly chosen from [Fl ,Fu].
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This process can also be independently repeated c times for a
randomly chosen number c between the lower Cl and upper
Cu bounds of the number of the frequencies to be dropped.

5.3.2 Frequency Domain Modification Functions

We consider three modification functions for manipulating
voice signals in the frequency domain which was used for
voice data augmentation in [65]. We denote by M ∈ RT×F

the acoustic feature matrix, where T and F are the number of
time frames and frequency channels, respectively.
Time-warping (TW). TW introduces deformations in the
time frame dimension of M. First, an entry p of M is selected
such that its horizontal coordinate is the center and the vertical
coordinate P is randomly chosen from [W,T −W ] where W
is the time warping parameter. Then, the sub-region above
the horizontal line passing p with the size P×F is scaled to
the size w×F , while the sub-region below the horizontal line
passing p with the size (T −P)×F is scaled to the size (T −
w)×F , where w is randomly chosen from [P−W,P+W ].
Time-masking (TM). TM introduces deformations in the
time frame dimension of M by applying zero masking to t
consecutive time frames [t0, t0+t) where t is randomly chosen
from [0, t ′] for a given TM parameter t ′ and t0 is randomly
chosen from [0,T − t].
Frequency-masking (FM). FM introduces deformations in
the frequency channel dimension of M by replacing the coef-
ficients of f consecutive frequency channels [ f0, f0 + f ) with
0 where f is randomly chosen from [0, f ′] for a given FM
parameter f ′, and f0 is randomly chosen from [0,F− f ].

5.3.3 Combination of Modification Functions

We explore the combinations of the above modification func-
tions to improve transferability. Denoting the individual mod-
ification functions by m1, · · · ,mK , we consider two combi-
nation strategies: serial and parallel. Consider the indices
i1, · · · , iK ∈ {1, · · · ,K} such that if mi j is a time domain modi-
fication function, then mi1 , · · · ,mi j−1 are all time domain mod-
ification functions. The serial composite modification func-
tion Ms(·) = miK (miK−1(· · ·mi1(·))) sequentially applies the
functions mi1 , · · · ,miK either at signal-level or feature-level
depending on the function. Ms is achieved by building the
simulated SRS RMs from a given surrogate SRS R where all
the modification functions mi of Ms are inserted at proper po-
sitions, i.e., before (resp. after) the acoustic extraction module
if mi is a time (resp. frequency) domain function. The parallel
composite modification function Mp(·) = M1|| · · · ||MK mod-
ifies an input voice by applying the functions M1, · · · ,MK
in parallel, leading to K different modified voices and K
loss values v1, · · · ,vK . Note that Mi in Mp could be a serial
composite modification function. Mp is achieved by build-
ing K simulated SRSs {RM1 , · · · ,RMK} from a given surro-
gate SRS R where RMi is the simulated SRS of the surrogate

Algorithm 2: QFA2SR
Input: seed voice x0; modification functions M = {· · · ,M j, · · ·};

sampling size β; surrogate SRS zoo R = {· · · ,Ri, · · ·};
number of steps N; the step size α; L∞ perturbation budget ε;
the optimal loss function for the attack scenario fopt(·)

Output: adversarial voice xadv

1 Z←{RM | R ∈ R ,M ∈M } if M 6= /0 else R ;
2 xadv← invoke Alg. 1 with the surrogate SRS zoo Z and parameters

(x0, β, N, α, ε, and fopt(·));
3 return xadv;

SRS R for the modification functions Mi. The K simulated
SRSs {RM1 , · · · ,RMK} can be combined using our ensemble
method (cf. § 5.2). In this work, we consider three serial
composite modification functions: RD+NF, SA+FD+CD, and
TW+TM+FM. For parallel combination, we consider the com-
bination of these three serial composite functions. We leave
other composite functions as future work.

5.4 QFA2SR: Our Final Attack
QFA2SR for one seed voice is shown in Alg. 2, where
M is a set of (serial composite) modification functions
{M1, · · · ,MK} and used as a parallel composite modification
function Mp(·) = M1|| · · · ||MK if k ≥ 2. Alg. 2 first builds
a simulated surrogate SRS zoo Z by combining each surro-
gate SRS R ∈ R with each modification function M ∈M ,
to get rid of modification functions. Then, it invokes Alg. 1
with Z as the surrogate SRS zoo and other necessary input
parameters to craft an adversarial voice. We note that the sur-
rogate SRSs {RM | R ∈ R ,M ∈M } are combined using our
ensemble method (cf. § 5.2) when crafting adversarial voices.

In practice, the adversary can generate many adversarial
voices but can only query the target SRS few times during
transfer attack. Thus, we propose a method to select the ad-
versarial voices which are the most likely transferable to the
target SRS, thus largely improves the success rate of QFA2SR
with few allowed queries. Details refer to Appendix A of [28].

6 Evaluation of Attack

6.1 Experimental Setting and Design
Enrollment settings. The enrollment voices used in the target
SRS may be the same as (resp. different from) that used by the
adversary to enroll surrogate SRSs, called same-enroll (resp.
differ-enroll). Note that all the prior works consider same-
enroll only which is less realistic than differ-enroll. Here we
consider both same-enroll and differ-enroll except for text-
dependent verification in the scenario AT

TD-SV for which we
consider differ-enroll only where the target speaker’s voices
available to the adversary do not contain the desired text.
Datasets. Our evaluation is mainly based on eight datasets,
the details of which are shown in Table 3.
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Table 3: Details of Datasets.

Name #Voices Voice Source & Attack Scenario Description
Spk10-enroll-P1 10 × 5 Provided by SEC4SR [29] that are

derived from LibriSpeech [63],
for AT

OSI and AUT
OSI

Used to enroll OSI surrogate and target SRSs for same-enroll
Spk10-enroll-P2 10 × 5 Same speakers but different voices as Spk10-enroll-P1, used to enroll OSI target SRSs for differ-enroll

Spk10-test 10 × 100 Same speakers but different voices as Spk10-enroll-P1&P2, used to test the performance of SRSs
Spk10-imposter 10 × 100 Speakers different from Spk10-test, used to test the performance of SRSs and as seeds for crafting adversarial voices

Spk5-TD-P1 5 × 10 × 4 Recruiting volunteers
to record voices for AT

TD-SV

Ten different sentences in Appendix A, used to enroll TD-SV target SRSs and as seeds for crafting adversarial voices
Spk5-TD-P2 5 × 10 × 1 Ten sentences from [78], same speakers but different texts as Spk5-TD-P1, used to enroll surrogate SRSs

Spk1000-enroll-P1 1000 × 5 Derived from LibriSpeech,
for AT

OSI and AUT
OSI

Expand Spk10-enroll-P1 with 990 speakers, used to enroll OSI surrogate and target SRSs for same-enroll
Spk1000-enroll-P2 1000 × 5 Same speakers but different voices as Spk1000-enroll-P1, used to enroll OSI target SRSs for differ-enroll

Note: In the #Voices column, x × y denotes x speakers and y voices per speaker, and x × y × z denotes x speakers, y different texts, and z voices per text and per speaker.

Table 4: Results on commercial APIs in AT
OSI.

Microsoft Azure TalentedSoft IFlytek
ASRt -s ASRt -d SNR PESQ ASRt -s ASRt -d SNR PESQ ASRt -s ASRt -d SNR PESQ

SirenAttack 1 2.1 8.02 1.12 1.4 1.3 10.07 1.18 0 0 8 1.12
Kenansville 0 0 16.23 1.75 0 0 16.23 1.75 0 0 16.23 1.75

FakeBob 4.2 3.1 12.23 1.22 5.0 2.4 12.50 1.23 0 0 12.16 1.24
FakeBob + 1 6.2 4.1 12.23 1.23 5.6 2.7 12.51 1.24 1.9 1.9 12.16 1.23

FakeBob + 1 2 17.5 17.2 12.22 1.24 9.3 4.7 12.22 1.24 9.1 8.8 12.22 1.24
FakeBob + 1 2 3 3.8 2.7 12.71 1.28 4.0 2.5 12.71 1.28 0.6 0.6 12.71 1.28

BIM 18.9 12.7 11.49 1.18 8.9 6.5 11.28 1.19 16 15.5 11.50 1.18
BIM + 1 27.2 21.8 11.50 1.18 9.3 6.6 11.28 1.19 24 17.5 11.52 1.19

BIM + 1 2 42.8 34.2 11.29 1.18 16.9 12.5 11.29 1.18 25.9 21.6 11.29 1.18
BIM + 1 2 3

(QFA2SR)
89.6
↑ 70.7

82.8
↑ 70.1 10.85 1.18

40.1
↑ 31.2

27.4
↑ 20.9 10.85 1.18

46.1
↑ 30.1

39.5
↑ 24 10.85 1.18

Table 5: Results of QFA2SR on commercial APIs in AUT
OSI.

Microsoft Azure TalentedSoft IFlytek
ASRu-s ASRu-d SNR PESQ ASRu-s ASRu-d SNR PESQ ASRu-s ASRu-d SNR PESQ

SirenAttack 16.67 8.25 8.16 1.12 23.9 18.7 10.07 1.18 0 0 8.07 1.12
Kenansville 0 0 16.97 1.8 7 4 17.58 1.84 0 0 16.66 1.77

Hidden 21.4 23 -2.84 1.14 22.9 21.9 -2.9 1.18 0 0 -2.95 1.15
FakeBob 33.33 15.46 12.24 1.23 26.8 24 12.41 1.24 11.5 5.8 12.12 1.23

FakeBob + 1 33.33 15.46 12.24 1.23 26.8 24 12.41 1.24 11.5 5.8 12.12 1.23
FakeBob + 1 2 47.92 37.11 12.22 1.22 31 26.7 12.22 1.22 19.2 13.5 12.22 1.22

FakeBob + 1 2 3 15.42 6.41 12.55 1.27 11.7 7.2 12.55 1.27 5.0 2.7 12.55 1.27
BIM 61.22 47.21 11.55 1.18 17.8 16.2 11.37 1.18 60 58 11.53 1.17

BIM + 1 68.4 50.8 11.54 1.18 22.7 19.9 11.37 1.19 64 61.9 11.54 1.18
BIM + 1 2 80.62 66.53 11.37 1.19 30.1 23.5 11.37 1.19 69 62.9 11.37 1.19

BIM + 1 2 3
(QFA2SR)

99.49
↑ 38.27

92.39
↑ 45.18 11.01 1.19

55
↑ 28.2

39.6
↑ 15.6 11.01 1.19

70
↑ 10

68
↑ 10 11.01 1.19

Note: 1 , 2 , 3 denote Tailored Loss Functions, SRS Ensemble, and Time-Freq Corrosion, respectively. ↑ is the improvement of QFA2SR over the most effective baseline.

SRSs. We use 9 open-source SRSs: Ivector-PLDA (IV) [16],
ECAPA-TDNN (ECAPA) [35], Xvector-PLDA (XV-P) [19],
Xvector-COSS (XV-C) [67], Resnet18 trained for OSI (Res18-
I) and SV (Res18-V) [25], Resnet34 trained for OSI (Res34-I)
and SV (Res34-V) [32], and AutoSpeech (Auto) [36]. We
also include four commercial APIs: (Microsoft) Azure [18],
TalentedSoft [9], iFlytek [4], and Jingdong [17], and three
voice assistants: Google Assistants [11], Apple Siri [7], and
TMall Genie [14]. Details of these SRSs, and their threshold
θ and performance are given in Appendix B.

Metrics. We use transfer attack success rate (ASR) to mea-
sure attack effectiveness, and denote by ASRu (resp. ASRt)
the untargeted (resp. targeted) ASR, which refers to the pro-
portion of adversarial voices that are misrecognized as any
enrolled speakers (resp. target speaker) by the target SRS. Let
ASRu-s (resp. ASRu-d) denote ASRu under the same-enroll
(resp. differ-enroll) setting. ASRt-s and ASRt-d are defined
similarly. The ASR improvement x% by our attack compared
over a baseline is calculated as x = b− a, where b% (resp.
a%) is the ASR of our attack (resp. baseline). To quantify im-
perceptibility, we use Signal-to-Noise Ratio (SNR) [31] and
Perceptual Evaluation of Speech Quality (PESQ) [69]. SNR
is defined as 10log10

Px
Pδ

, where Px and Pδ are the power of
the original voice and the perturbation. PESQ is an objective
perceptual measure that simulates the human auditory sys-
tem [80]. Higher SNR/PESQ indicates better imperceptibility.

Experimental design. We first summarize the results of
tuning parameters of QFA2SR (§ 6.2). We then evaluate
QFA2SR on commercial APIs where adversarial voices are
directly fed to the exposed APIs as audio files (§ 6.3) and
voice assistants where adversarial voices are played over the

air to attack voice assistants (§ 6.4). We finally study the effect
of adversarial knowledge on the enrolled speakers of target
SRSs (§ 6.5), and the attack scalability of QFA2SR (§ 6.6).

6.2 Tuning Parameters of QFA2SR
We tune the parameters of QFA2SR on open-source SRSs,
simulating a real-world adversary who tunes parameters
within the surrogate SRS zoo, and attacks commercial SRSs
in § 6.3 and § 6.4 using the resulting parameters. Due to space
limit, here we only summarize the results of parameter tuning.
Details are given in Appendixes E, F, and G of [28].
Tailored loss functions. The losses f1 and f2 are comparable
and outperform the others for AT

OSI, f3 in general performs
better than the others for AUT

OSI, and fBCE and f3B have the same
performance for AT

TD-SV. The comparison results among loss
functions keep consistent across different surrogate and target
SRSs, and between a single surrogate SRS and the ensemble
of multiple SRSs with adapted losses (cf. § 5.2). Thus, we
will use f1 for AT

OSI, f3 for AUT
OSI, and f3B for AT

TD-SV for all
systems and settings, rather than performing the comparison
and selection repeatedly. Note that f1 is preferable than f2
since f1 depends only on the score of the targeted speaker.
SRS ensemble. Our dynamic weighting outperforms the uni-
form weighting used in the image domain [56]. Summation-
based global ranking (Sum-Global) and voting-based global
ranking (Vote-Global) are comparable, and both of them per-
form better than the local ranking. Hence, we will use our
dynamic weighting and Sum-Global for SRS ensemble.
Time-freq corrosion. All individual modification functions
can improve transferability. The serial composite functions
(RD+NF, SA+FD+CD, and TW+TM+FM) achieve higher
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transferability than individual functions. Their parallel com-
bination yields the best transferability, hence will be utilized
as the default modification function for time-freq corrosion.

6.3 QFA2SR against Commercial APIs

Setting. For OSI task (i.e., AT
OSI and AUT

OSI), we attack 3 com-
mercial SRSs: Azure, TalentedSoft, and iFlytek. For TD-SV
task (i.e., AT

TD-SV), we attack 2 commercial SRSs: Azure and
Jingdong. Note that Jingdong does not support OSI while
TalentedSoft and iFlytek do not support TD-SV. For surrogate
SRSs, we only consider IV, ECAPA, XV-P, and XV-C since
they yield the best transferability in general according to the
results in Appendix G of [28]. We compare QFA2SR with
baselines: Basic-Iterative-Method (BIM) [50], FakeBob, Sire-
nAttack, and Kenansville. Occam is not available and AS2T is
based on BIM and FakeBob, thus are not compared. In AUT

OSI,
we also compare with the hidden voice attack [20], where
100 voices are randomly selected from Spk10-test as the seed
voices. Note that the hidden voice attack can neither launch
targeted attack (cf. § 3) nor change the speech content, so
is not applicable to AT

OSI and AT
TD-SV. In AT

TD-SV, we also com-
pare with the voice cloning attack using the few-shot voice
cloning toolkit Real-Time-Voice-Cloning [5, 45]. It produces
a voice with the desired speech content given a set of the tar-
get speaker’s voice samples and a speech content. We use the
voices in Spk5-TD-P2 as voice samples and the ten sentences
from Azure (cf. Appendix A) as the desired contents.

We set L∞ perturbation budget ε = 0.02, step size α = ε

5 =
0.004, number of steps N = 300, and sampling size β = 5
for QFA2SR, and detailed setups of the baselines refer to
Appendix C. As we focus on query-free attacks (i.e., no query
to target SRSs during adversarial voice generation), all the
baselines are used to launch transfer attacks. We report the
best transferability among different surrogate SRSs for them.
Results of scenario AT

OSI. The results are shown in Table 4.
QFA2SR achieves 20.9%-70.7% higher ASRt than BIM
which is generally the most effective one among the base-
lines. QFA2SR can achieve more than 82% ASRt on Azure.
Results of scenario AUT

OSI. The results for AUT
OSI are shown in

Table 5. Compared with the most effective baseline, QFA2SR
improves the ASRu by 10%-45.1%, achieving more than 92%
ASRu on Azure. It also achieves much higher ASRu than the
hidden voice attack, probably because the least incomprehen-
sible hidden voices crafted with respect to the source SRS are
difficult for the target to correctly recognize.
Results of scenario AT

TD-SV. The results for AT
TD-SV are shown

in Table 6. Compared to the best baseline, QFA2SR improves
the ASRt by 48.85% and 54% on Azure and Jingdong, re-
spectively. QFA2SR also achieves 26%-51.86% higher ASRt
than the voice cloning attack. It is because the voice cloning
attack generates artificially fake voices, which usually contain
artifacts and suffer from low quality, e.g., the characteristic
prosody is lost [45]. As a result, the cloned voice does not

have sufficient acoustic similarity with the genuine enrollment
voice of the target speaker and thus fails to bypass the SRS.
In contrast, QFA2SR starts from genuine voices of an im-
poster and only add to them imperceptible perturbations that
sound like background noise to improve the score of the target
speaker, thus the adversarial voices crafted by QFA2SR have
sufficient acoustic similarity to bypass the target SRS.
Imperceptibility. In AT

OSI, AUT
OSI, and AT

TD-SV, QFA2SR has
higher SNR and PESQ than SirenAttack and hidden voice
attack. Kenansville and FakeBob have better imperceptibility
than QFA2SR, but their transferability is too low to effec-
tively mislead the target SRS and thus far from being practical.
The SNR of QFA2SR is slightly lower than BIM, but PESQ
is the same or even larger in most cases. Note that PESQ
is an objective perceptual measure that simulates human au-
ditory system, but SNR is not, we believe PESQ can better
characterize the imperceptibility.

As SNR and PESQ may not fully measure human imper-
ceptibility, we conduct a human study on MTurk [1] with
approval from the Institutional Review Board (IRB) of our
institute. The participants are presented with a pair of voices
and asked to tell after listening whether they are uttered by
the same speaker, provided with three options: same, different,
and not sure. We compare the imperceptibility of QFA2SR
with BIM and voice cloning attack, while other attacks are
excluded since their transfer success rates are too low to be
practical. Furthermore, we conduct the human study in AT

TD-SV
because voice cloning attack is text-dependent. Specifically,
we build 24 pairs: 4 normal pairs (two clean voices from
distinct speakers), 10 adversarial pairs (one adversarial voice
from an imposter and one clean voice from the target speaker;
5 pairs are from QFA2SR and 5 pairs are from BIM), and
10 cloning pairs (one voice generated by voice cloning and
one clean voice from the target speaker). To guarantee the
quality of the answers and validity of the results, we filter
out the answers that are randomly chosen by participants. In
particular, we insert 6 special voice pairs (two clean voices
from different speakers with opposite gender) as the concen-
tration test. All the submitted answers from a participant will
be excluded as long as she/he does not choose the different
option for any one of the special pairs.

After excluding 14 participants who failed to pass our con-
centration tests, we finally received the answers from 126
participants. The results of human study is shown in Fig. 3.
76.7% of participants think that the adversarial voices crafted
by QFA2SR do not sound like the target speaker, merely 6%
lower than that of the normal pairs and even 4.6% higher than
that of BIM. This demonstrates that QFA2SR enhances the
transferability without harming the human imperceptibility.
Interestingly, 39.3% of participants choose the same option
for the cloning pairs, very close to the ASRt against Jingdong
SRS in Table 6 and much higher than that for adversarial pairs.
In contrast, only 20% of participants choose the same option
for QFA2SR, although QFA2SR achieves more than 60%

USENIX Association 32nd USENIX Security Symposium    2447



Table 6: Results on commercial APIs in AT
TD-SV.

Microsoft Azure Jingdong
differ-enroll SNR PESQ differ-enroll SNR PESQASRt (dB) ASRt (dB)

SirenAttack 0.49 8.97 1.15 0 10.15 1.18
Kenansville 0 20.64 2.11 0 20.64 2.11

Voice Cloning 10 - - 40 - -
FakeBob 0.52 13.16 1.28 8 13.32 1.28

FakeBob + 1 0.52 13.16 1.28 8 13.32 1.28
FakeBob + 1 2 16.67 13.14 1.28 11 13.14 1.28

FakeBob + 1 2 3 0.1 13.45 1.30 3 13.45 1.30
BIM 13.01 12.40 1.24 12 12.21 1.23

BIM + 1 13.01 12.40 1.24 12 12.21 1.23
BIM + 1 2 27.78 12.21 1.23 23.5 12.21 1.23

BIM + 1 2 3
(QFA2SR)

61.86
↑ 48.85 11.84 1.24

66
↑ 26 11.84 1.24
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Fig. 3: Results of human
study. VC=voice cloning.
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Fig. 4: Results on voice as-
sistants.

ASRt against target SRSs in Table 6. This confirms the differ-
ence between adversarial and voice cloning attacks regrading
the human-machine perception consistency.

Summary: QFA2SR significantly improves transferability
under all the three attack scenarios, with negligible effect on
imperceptibility in terms of both perceptual objective metric
and subjective human study, compared to the best baseline.
Ablation Study. To understand the contributions of tai-
lored loss functions, SRS ensemble, and time-freq corro-
sion, we perform ablation study by gradually incorporat-
ing them into BIM and FakeBob, which are in general the
most effective baselines. Note that QFA2SR bases on BIM.
From Tables 4–6, we observe that: all the three methods
improve transferability, and in general, time-freq corrosion
contributes the most, while tailored loss functions contribute
the least, regardless of attacks, scenarios, and enrollment
settings, with the following two exceptions.

First, the tailored loss function f3B (resp. f3) does not en-
hance the transferability of BIM and FakeBob on AT

TD-SV (resp.
FakeBob on AUT

OSI). This is because FakeBob uses the same
loss f3B and f3 for AT

TD-SV and AUT
OSI, respectively, and BIM

uses the loss function fBCE that has the same performance as
f3B for AT

TD-SV (see § 6.2). Second, time-freq corrosion does
not improve or even worsens the transferability of FakeBob. It
is because the black-box attack FakeBob estimates gradients
instead of using exact gradients as BIM, and the randomness
introduced by time-freq corrosion makes the estimated gradi-
ents uninformative and hence the optimization direction unre-
liable, consistent with the finding in [31]. We try to address
this by enlarging the parameter of FakeBob that is positively
correlated with the precision of estimated gradients from 50 to
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Fig. 6: Effect of knowledge on enrolled speakers of target
SRSs.

1,000, but the improvement is rather limited, and the computa-
tion cost is totally unacceptable (1000 × 4 surrogate SRSs ×
50 steps = 2e5 queries for a single adversarial voice). These
suggest that time-freq corrosion is more compatible with
white-box attacks that utilize exact gradients. To confirm this,
we perform additional ablation study using two white-box
attacks: Carlini and Wagner’s attack (CW) [26] and Projected
Gradient Descent (PGD) attack [57] (cf. Appendix C). The
results are shown in Fig. 5. All the three methods enhance
the transferability, demonstrating their generalizability for
incorporating into white-box attacks. Note that we also per-
form the ablation study on open-source SRSs in Appendix
I of [28], where we can draw the same conclusion on the
contributions of individual methods of QFA2SR.

6.4 QFA2SR against Voice Assistants
Settings. For AT

TD-SV, we consider three voice assistants sup-
porting speaker recognition, i.e., Google Assistant in Google
Pixel 5 [11], Siri in Apple iPad Pro 10.5 [7], and TMall Genie
in smart speaker X5 [14]. For AT

OSI (when the adversary only
has voices of target speakers), we only consider TMall Genie
as the others do not support speaker identification. AUT

OSI is
omitted since it is easier than AT

OSI and AT
TD-SV. To be diverse,

we adopt JBL clip3 portable loudspeaker [6], TMall smart
speaker X5, and iPad Pro 10.5 as the loudspeaker to play ad-
versarial voices when attacking Google Assistant, Apple Siri,
and TMall Genie, respectively. We conduct experiments in
a meeting room with air-conditioner noise and the distance
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between voice assistants and loudspeakers is set to 1.5 meters.
The enrollment and test voices of these voice assistants

are text-dependent, so we recruited six volunteers (four male
and two female) to utter the desired phrases. To cover the
differ-enroll setting, we also ask them to utter the ten English
sentences used in Spk5-TD-P2 for Google Assistant and Apple
Siri, and five Chinese quotes for TMall Genie, which are used
to enroll surrogate SRSs. Details refer to Appendix D.

The results are depicted in Fig. 4. QFA2SR achieves 60%,
46%, and 70% ASRt in AT

TD-SV on Google Assistant, Apple
Siri, and TMall Genie, respectively, indicating that different
voice assistants have different frangibility to adversarial at-
tacks. For TMall Genie, the ASRt for AT

OSI is lower than that
for AT

TD-SV, because without the voices of other enrolled speak-
ers in AT

OSI, the crafted adversarial voices may be recognized
as another enrolled speaker whose voiceprint is similar to the
target speaker. These results demonstrate the effectiveness of
QFA2SR in crafting transferable adversarial voices which
can be played over the air against popular voice assistants.

6.5 Effect of Knowledge on Enrolled Speakers
We show that QFA2SR is still effective when the surrogate
SRS is only enrolled with the target speaker, which relaxes the
assumption that the adversary knows and has some voices of
all the enrolled speakers of a target SRS. AT

TD-SV is not consid-
ered as only one speaker is enrolled for speaker verification.

We conduct experiments on commercial APIs in the same
settings as § 6.3. The results are depicted in Fig. 6. We ob-
serve that whether knowing and having voices of the other
enrolled speakers have almost no effect for AT

OSI, and the mi-
nor difference in ASRt is due to the randomness in crafting
adversarial voices. It is no surprising as the optimal loss func-
tion ( f1(x) =−S[(x)]t ) only depends on the score of the target
speaker which are independent on the scores of the other en-
rolled speakers. For AUT

OSI, the ASRu decreases moderately if
the adversary only knows the target speaker. It is because
the optimal loss function of AUT

OSI ( f3(x) = θ−maxi∈G[S(x)]i)
can dynamically select the most transferable enrolled speaker
as the optimization direction when the enrolled speakers of
surrogate and target SRSs are the same, but when only the
target speaker is enrolled in the surrogate SRS, f3 becomes
θ− [S(x)]t that always optimizes towards the “target speaker”
which may not be the most transferable one. This problem
also occurs in the most effective baseline attack (BIM), and
QFA2SR still improves its transferability by a large margin.

6.6 Scalability of QFA2SR
We have shown that QFA2SR is effective in attacking target
SRSs with no more than 10 enrolled speakers. Now we evalu-
ate attack scalability by increasing the enrolled speakers to
1,000, while the surrogate SRS is only enrolled with the target
speaker. We use all the nine open-source SRSs as target SRSs
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Fig. 7: The scalability of QFA2SR.

and Spk1000-enroll-P1&P2 as enrollment voices. Fig. 7 com-
pares the ASR of QFA2SR between 10 and 1,000 enrolled
speakers. With the increase of enrolled speakers, the ASRt of
AT
OSI decreases slightly on some target SRSs, while the ASRu

of AUT
OSI increases, indicating the scalability of QFA2SR. It is

because those adversarial voices, optimized towards the target
speaker and successfully transferring to the target SRS, often
have higher scores on the target speaker than on other enrolled
speakers, thus rarely get recognized as other enrolled speakers
when increasing enrolled speakers. Thus, the ASRt of AT

OSI

does not decrease too much. On the other hand, those that fail
to transfer to the target SRS are more likely to be recognized
as other enrolled speakers by the target SRS when increasing
enrolled speakers, thus, the ASRu of AUT

OSI increases.

7 Countermeasures

We discuss and evaluate possible countermeasures by consid-
ering transformation-based defenses and liveness detection.

7.1 Transformation-based Defenses
Transformation-based defenses apply some transformations to
input voices to disrupt adversarial perturbations. We consider
the seven most efficient such defenses in [31], i.e., Quantiza-
tion (QT), Audio Turbulence (AT), Average Smoothing (AS),
Median Smoothing (MS), Down Sampling (DS), Low Pass
Filter (LPF), and Band Pass Filter (BPF), some of which are
reported promising for mitigating existing adversarial attacks.
We incorporate each of them to target SRSs and check the ac-
curacy of normal voices of enrolled speakers (Spk10-test) and
imposters (Spk10-imposter), and the accuracy of adversarial
voices crafted from Spk10-imposter. We use XV-P and Res18-
V as target SRSs which have different architectures, and all
nine open-source SRSs except for the target SRS are used as
surrogate SRSs. We conduct the evaluation in AT

OSI and set per-
turbation budget ε = 0.02, step size α = ε/5, number of steps
N = 300, and sampling size β = 5. The results are shown in
Table 7. We find that they are either effective in defending
QFA2SR but significantly sacrificing the accuracy on the
normal voices of enrolled speakers, or ineffective, thus are
not suitable for mitigating QFA2SR regarding the trade-off
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Table 7: The accuracy (%) of normal voices and adversarial
voices crafted by QFA2SR on target SRSs with defenses.

Baseline QT AT AS MS DS LPF BPF

XV-P
Enrolled 97.2 75.3 71.4 91.5 29.6 44.8 62.8 70.6
Imposter 97.4 99.6 99.5 96.4 100 100 99.8 99.6
QFA2SR 10.4 16.5 26.8 12.1 84.6 88.6 47.2 42

Res18-V
Enrolled 92.5 46 6.4 7.1 3.9 8.1 10.6 0
Imposter 92.6 92.2 100 99.9 98.4 100 100 100
QFA2SR 85.3 91.5 97.9 99.8 100 100 100 100

(1) Baseline: target SRS without any defense. (2) Enrolled/imposter: normal voices from en-
rolled speakers/imposters. (3) Only differ-enroll is considered, an easier setting for defenses.

Table 8: Results of liveness detection.

Detector
Benign voices Adversarial voices

TNR FPR Physical Digital
TPR FNR TPR FNR

Void 79.1% 20.9% 80.2% 19.8% 11.0% 89.0%
LFCC-LCNN 59.2% 40.8% 59.3% 40.7% 15.5% 84.5%
LFCC-GMM 61.8% 38.2% 61.6% 38.4% 25.0% 75.0%

between normal and adversarial accuracy. This is because
they mitigate QFA2SR by lowering the scores of adversarial
voices to fall below the threshold θ of target SRSs, which also
incurs the same side-effect on normal voices.

7.2 Liveness Detection
By exploiting the different characteristics of the voices gener-
ated by human vocal tract and electronic loudspeakers, live-
ness detection predicts whether or not input voices are ut-
tered by humans. Such defense can be used to defend against
QFA2SR when launched over the air, e.g., when attacking
voice assistants deployed in voice-controlled devices.

We use three recent liveness detectors that are open sourced
and reported promising in the ASVspoof challenge [24, 55]:
Void [24], LFCC-LCNN [77], and LFCC-GMM [55]. These
detectors are trained using the physical access dataset of
ASVspoof. Following [55], we compute True/False Posi-
tive/Negative Rate (i.e., TPR, TNR, FPR, and FNR) on the
adversarial and benign voices used in § 6.4 (i.e., experiments
on voice assistants). To void confusing, we use Physical to
refer the adversarial voices that are played and recorded with
3 loudspeakers (JBL clip3 portable loudspeaker, TMall Ge-
nie smart speaker X5, and DELL laptop) and 3 microphones
(Google Pixel 5 and iPhone 6 Plus, and iPad Pro 10.5), leading
to 9 different hardware setups, and use Digital to refer the ad-
versarial voices that are directly fed to the detector using the
audio files. The average results are shown in Table 8. These
detectors can detect adversarial voices in the physical world
(i.e., played over the air) at the cost of falsely rejecting many
benign voices (more than 20%). Unsurprisingly, they have a
remarkably high FNR (at least 75%) on adversarial voices
in the digital world, indicating that liveness detection cannot
defeat our attack when adversarial voices are launched via
APIs. This is no surprising since these adversarial voices do
not contain the characteristics of loudspeakers.

8 Discussion

We discuss the generalizability of our methods for improving
transferability and interesting future works.
Generalizability of the three methods. The optimal loss
functions we selected are scenario-dependent, so they may
not be optimal for other scenarios other than AT

OSI, AUT
OSI, and

AT
TD-SV. It is interesting to consider other scenarios and de-

sign specific loss functions for them in future. SRS ensemble
and time-freq corrosion are scenario-independent, but their
effectiveness should still be evaluated in other scenarios.
How to further improve QFA2SR? While QFA2SR signif-
icantly improves the transferability, there is still space for
improvement. Possible directions include using more ad-
vanced optimization methods (e.g., momentum-based gra-
dient [37, 73] and Nesterov accelerated gradient [54]) and
adopting more effective loss balancing strategies for SRS
ensemble, (e.g., uncertainty-based balancing [46]).
How to launch effective transfer attack without voices
of the target speaker? It is challenging to craft adversarial
voices on surrogate SRSs when the adversary has no voices
of the target speaker, due to the lack of optimization guidance
by the embedding of the target speaker. One potential solution
is dictionary attack [59], which creates a master voice that
matches the identity of a large population such that it is likely
to bypass the authentication of the target speaker. However,
this attack is extremely limited in the query-free black-box
setting. Future works can address this by incorporating the
methods of QFA2SR into dictionary attack.

9 Conclusion

We proposed QFA2SR, so far the most effective query-free
black-box adversarial attacks against SRSs. It leverages the
transferability of adversarial voices and features three novel
methods, i.e., tailored loss functions, SRS ensemble, and time-
freq corrosion, which significantly improves the transferabil-
ity. From the adversary perspective, our work unveils the fea-
sibility of launching realistic and practical adversarial attacks
against strictly protected proprietary commercial SRS APIs
and voice-controlled devices in a complete black-box manner
without queries them when crafting adversarial voices, thus
enabling lots of follow-up attacks, e.g., those targeting speech
recognition systems. From the perspective of SRSs maintain-
ers and inspectors, our attack can serve as a strong baseline
for measuring adversarial robustness under a realistic setting.
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A Phrases for Text-Dependent SV

We use the following ten phrases supported by Microsoft
Azure [18]:

• I am going to make him an offer he cannot refuse.
• Houston we have had a problem.
• My voice is my passport verify me.
• Apple juice tastes funny after toothpaste.
• You can get in without your password.
• You can activate security system now.
• My voice is stronger than passwords.
• My password is not your business.
• My name is unknown to you.
• Be yourself everyone else is already taken.

B More Detail about SRSs

The details of the nine adopted open-source SRSs are shown
in Table 9. They cover three architectures, i.e., the typical
GMM [34] and the state-of-the-art deep neural networks
(TDNN [35] and CNN [25]). GMM is a generative model,
while the others are discriminative models. Auto is an au-
tomatically searched architecture by [36] while the others
are manually designed by the existing works. They also
cover three most popular acoustic features [15] (i.e., spectro-
gram [42], fBank [64], and MFCC [60]), and two commonly-
used scoring methods (i.e., PLDA [62] and COSS [33]). They
are trained using two datasets, i.e., VoxCeleb1 [61] and Vox-
Celeb2 [32], which have different number of speakers, utter-
ances, and subjects background (e.g., ethnicities, accents, age,
and profession).

We tune the threshold θ of the open-source SRSs listed in
Table 9 based on the Equal Error Rate (EER) meaning the
same FAR and FRR, where False Acceptance Rate (FAR) is
the proportion of voices that are uttered by unenrolled speak-
ers but accepted by the SRS, and False Rejection Rate (FRR
is the proportion of voices that are uttered by enrolled speak-
ers but rejected. The tuned threshold and the performance of
SRSs are shown in Table 11 where column (IER) denotes
Identification Error Rate, i.e., the proportion of voices uttered
by enrolled speakers which should not be rejected but incor-
rectly classified by the SRS [27].

For the commercial SRSs, the responses from Microsoft
Azure, TalentedSoft, and iFltek only contain the scores given
by the enrolled speakers without the final decision results,
which should be determined by the developers to adapt to the
specific applications. Therefore, we tune the threshold θ of
these commercial SRSs the same as for open-source SRSs. In
contrast, Jingdong, Google Assistant, Apple Siri, and TMall
Genie only provide the decision result without any scores, so
there is no need to tune the threshold θ.
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Table 9: Details of the 9 open-source SRSs where Arch denotes architecture.
Arch Name #Params Acoustic feature Training dataset Scoring Backend

GMM Ivector-PLDA (IV) [16] 80.37M MFCC VoxCeleb1&2 PLDA

TDNN
ECAPA-TDNN (ECAPA) [35] 20.77M fBank VoxCeleb1 COSS

Xvector-PLDA (XV-P) [19] 5.79M MFCC VoxCeleb1&2 PLDA
Xvector-COSS (XV-C) [67] 4.21M fBank VoxCeleb1 COSS

CNN

Res18-Identification (Res18-I) [25] 11.17M spectrogram VoxCeleb1 COSS
Res18-verification (Res18-V) [25] 11.17M spectrogram VoxCeleb1 COSS

Res34-Identification (Res34-I) [32] 21.28M spectrogram VoxCeleb1 COSS
Res34-Verification (Res34-V) [32] 21.28M spectrogram VoxCeleb1 COSS

AutoSpeech (Auto) [36] 15.11M spectrogram VoxCeleb1 COSS

Table 10: The datasets used for enrolling and
attacking voice assistants.

Voice Assitant Activation Phrase Number
Google Assitant Ok Google 5

Apple Siri

Hey Siri 1
Hey Siri, send a message 1

Hey Siri, how’s the weather today 1
Hey Siri, set a timer for three minutes 1

Hey Siri, play some music 1

TMall Genie TMall Genie (Chinese) 3
TMall Genie, who am I (Chinese) 5

Table 11: The threshold and performance of SRSs.

SRS
SV OSI

EER (%) θ EER (%) IER (%) θ

IV 1.40 10.41 6.50 0 12.90
ECAPA 1.43 0.40 3.01 0 0.48

XV-P 1.12 12.64 3.02 0 16.23
XV-C 6.10 0.60 11.57 0 0.69

Res18-I 1.92 0.45 6.91 0 0.57
Res18-V 2.83 0.41 6.80 0 0.55
Res34-I 1.50 0.46 9.60 0 0.57
Res34-V 2.80 0.43 5.83 0 0.56

Auto 1.52 0.29 5.61 0 0.38

Microsoft Azure 0.72 0.49 1.6 0 0.53
Talentedsoft - - 5.1 0 0.19

iFlytek - - 14 0 0.64
Jingdong 0.5] 0\ - - -

Google Assistant 0.8] 0\ - - -
Apple Siri 1.2] 0\ - - -

TMall Genie 0.4] 0\ 0.5] 0 0\

Note: the number with “]” and “\” superscript denote FAR and FRR, respectively.
“-” means unsupported, i.e., Jingdong, Google Assistant, Apple Siri do not support
OSI, and TalentedSoft and iFltek do not support TD-SV.

C Details of the Compared Attacks

Adversarial attacks. We set L∞ perturbation budget ε = 0.02,
step size α = ε

5 = 0.004, number of steps N = 300, and sam-
pling size β = 5 for QFA2SR, and discard those seed voices
that are falsely accepted by the target commercial SRSs. BIM
is implemented as a special case of QFA2SR with only one
surrogate SRS but without time-freq corrosion. For FakeBob
(resp. SirenAttack), we set the number of iterations (resp.
maximum number of epochs) to 1500 (resp. 100), which is
sufficient for the attacks to converge according to our ex-
periments, while other parameters are the same as the origi-
nal work[27, 38]. Additionally, we set the confidence value
κ = 5×θ in FakeBob and SirenAttack where θ is the thresh-
old of the surrogate SRS. This enables the attacks to continue
searching for high-confident adversarial voices instead of
early-stopping, which may benefit the transferability [26, 27].
For Kenansville, we use the Fast Fourier Transform (FFT)
method to perturb a voice with 15 maximal number of itera-
tions (the same as the original work [22]), while the Singular
Spectrum Analysis method is not considered since it is com-
parable with FFT method regarding the transferability, but is
much less efficient. PGD is the same as the BIM attack except
that it starts from a randomly perturbed example, which may
help the attack find a better local optimum. We run the ran-
dom start 10 times and select the adversarial voice with the
minimal loss that is more likely to transfer, and other settings

are the same as BIM. For CW attack, we adopt its L∞ version,
set the confidence value κ = 5× θ, and adopt the efficient
implementation in [57].
Hidden voice attack. We exploit Time Domain Inversion
(TDI) to perturb a voice since it is one of the most effec-
tive method [20]. TDI features the parameter window size w,
where the smaller w, the less comprehensible the voices for
human and the harder the voices to be correctly recognized
by the SRS. To produce the least understandable voices for
human when ensuring the correct recognition of the SRS, we
start from w = 1 milliseconds (ms), gradually increase to 10
ms with step of 0.5 ms,

D More Details of Experimental Setting on At-
tacking Voice Assistants

Datasets. The activation phrase as well as the recording num-
ber is shown in Table 10. For Google Assistant and Apple
Siri, these activation phrases are used for both the enrollment
voices and the seed voices for the attack. For TMall Genie,
“TMall Genie” is used for enrolling and “TMall Genie, who
am I” is used as the attack seed voices. The reason is that
the activation of TMall Genie by “TMall Genie” is speaker-
independent, and we have to ask the TMall Genie “who am I”
to determine the identity of the speaker.
Attack success rate. For Google Assistant and Apple Siri,
we count a successful attack only when the voice assistants
are activated within the number of allowed queries to the tar-
get SRS. For TMall Genie, there are three kinds of response
to “TMall Genie, who am I”, each reflecting the confidence
that TMall Genie recognizes the voice as from the speaker
SPK_ID, namely, “Hello, SPK_ID, happy to serve you.” (high-
confidence), “I think you are SPK_ID, am I right?” (medium
confidence), and “I am unfamiliar with your voice.” (low con-
fidence). We regard an attack as a successful attack when one
of the following conditions holds: (1) The seed voice receives
the low-confidence response or the other two responses where
SPK_ID is different from the target speaker, and the adversar-
ial voice receives the medium or high confidence response
where SPK_ID is identical to the target speaker. (2) The seed
voice receives the medium confidence response, the adversar-
ial voice receives the high confidence response, and both of
their SPK_ID are identical to the target speaker.
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