
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Voodoo: Memory Tagging, Authenticated Encryption,
and Error Correction through MAGIC

Lukas Lamster, Martin Unterguggenberger, David Schrammel,
and Stefan Mangard, Graz University of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/lamster

Voodoo: Memory Tagging, Authenticated Encryption, and Error Correction
through MAGIC

Lukas Lamster
Graz University of Technology

Martin Unterguggenberger
Graz University of Technology

David Schrammel
Graz University of Technology

Stefan Mangard
Graz University of Technology

Abstract
Confidentiality, authenticity, integrity of data, and runtime
security are ubiquitous concerns in modern computer sys-
tems. However, these security concerns have traditionally
been addressed by separate mechanisms. Error-correcting
codes (ECC) detect and correct DRAM errors, ensuring the
integrity of stored data. Authenticated memory encryption
provides data confidentiality and authenticity. Memory tag-
ging enforces memory safety, thereby improving runtime se-
curity. The lack of a combined primitive increases system
complexity, memory overheads, and the overall performance
impact. In this work, we present Voodoo, the first combined
scheme for authenticated encryption, DRAM error correc-
tion, and memory tagging. Our design extends the MAGIC
mode for authenticated encryption and error correction pro-
posed by Kounavis et al. [31]. With Voodoo, DRAM data
is encrypted, and a tag-dependent message authentication
code protects the integrity of the stored data while simultane-
ously allowing for the correction of DRAM faults. Thus, we
can implement a wide range of tagged memory architectures
without introducing additional memory requests or storage
overheads. We present three tag encoding schemes providing
up to 36 tag bits per cache line. Using the gem5 simulator,
we implement and benchmark our design. Our evaluation
shows a low runtime overhead of 1.4% on average compared
to a system without any of the provided security features.
We use a Monte-Carlo simulation of a DRAM fault model
based on real-world DRAM fault behavior to demonstrate
the corrective capabilities of Voodoo. Our results show that
we consistently outperform traditional single-error correction,
double-error detection (SEC-DED) codes in terms of error
correction and detection. For multi-chip faults, Voodoo offers
stronger error detection than commodity Chipkill solutions.

1 Introduction

Security is of utmost importance in modern computing sys-
tems. Data confidentiality, authenticity, and integrity are es-
sential, especially in server and cloud systems where multiple

mutually distrusted parties share the same hardware. How-
ever, only protecting data in DRAM is not sufficient. Memory
safety vulnerabilities constantly threaten system security, as
security-critical software is predominantly written in memory-
unsafe C/C++ code. Traditionally, the security of systems is
increased by layering security primitives over each other. This
approach may work at the moment, but it ultimately increases
system complexity, and the overheads introduced by each new
layer accumulate.

At the DRAM level, server-grade systems implement in-
tegrity protection. In DRAM chips, memory cells store infor-
mation as an electrical charge. These cells suffer from leakage
currents, causing unwanted data alterations. External distur-
bances, like radiation or high temperatures, can cause large-
scale failures that corrupt multiple bits. Without integrity
protection, DRAM errors would cause silent data corruption
and, subsequently, erroneous computations or system crashes.
Thus, error-correcting codes (ECC) are used to detect and cor-
rect DRAM errors. An ECC computes and stores a checksum
of the stored data. When reading from memory, the checksum
can restore the original data if an error is detected. Commod-
ity single-error correction, double-error detection (SEC-DED)
codes, for example, can correct one erroneous bit per 64 bits
in a cache line. Thus, ECC provides integrity for DRAM data.

On top of integrity, keeping data secret and protecting
against deliberate data modification is necessary. Memory
encryption technologies of major hardware vendors like In-
tel [22] or AMD [2, 29] provide data confidentiality through
encryption. Encryption protects against attacks like bus snoop-
ing or cold boot attacks [17, 18]. Moreover, memory encryp-
tion provides cryptographic isolation for virtual machines in
cloud environments. Encrypting the data of co-located tenants
isolates them from each other and protects against a poten-
tially malicious hypervisor. Intel’s trust domain technology,
Intel TDX [11], provides authenticated encryption by extend-
ing the encryption with a message authentication code (MAC)
based on SHA-3 [15]. A MAC generates a fingerprint of the
input data using a secret key. Data modifications are detected
by recomputing and comparing the MAC to a stored version.

USENIX Association 33rd USENIX Security Symposium 7159

Only a party possessing the correct key can compute a MAC
for a given input. Thus, the MAC provides authenticity and
integrity of DRAM data.

While authenticated encryption is a crucial component for
safeguarding DRAM data, runtime safety is equally impera-
tive. As data is processed unencrypted at runtime, additional
measures must be taken to protect it from vulnerabilities and
threats. Studies by Microsoft found that the most prominent
sources of security-relevant bugs in their products are memory
safety issues [45]. Memory safety violations allow attackers
to read or modify allocated data, tamper with heap metadata,
or perform other security-critical operations [6, 9, 20, 23, 56].
Memory tagging mitigates memory safety issues by associ-
ating each allocation with a tag. A tag holds metadata for
the allocation and is used to enforce a security policy that
protects against memory safety violations at runtime. ARM
and Oracle provide commercial ISA extensions using tagged
memory. ARM MTE [50] and SPARC ADI [51] implement
hardware-supported tagging for memory protection. While
tagged memory architectures offer strong protection against
software-based attackers, they introduce performance and
memory overheads since tags must be fetched frequently. Fur-
thermore, tags must be stored in DRAM, thus reducing the
amount of usable memory.

Recently, the idea of combined primitives offering a more
holistic protection is gaining traction. MACs and ECC, for
example, are conceptually similar as they both detect data
modifications. However, combining the strong detection ca-
pabilities of MACs with the error correction of ECCs is chal-
lenging. In 2020, Kounavis et al. proposed MAGIC [31], a
combined mode for authenticated encryption and error cor-
rection. The MAGIC mode is a generic construct facilitating
authenticated memory encryption while allowing the correc-
tion of errors that affect a bounded number of bits in a single
granule using a specially tailored MAC function.

In this work, we present Voodoo, the first combined scheme
for DRAM error detection and correction, authenticated en-
cryption, and memory tagging. Building on MAGIC, we de-
velop three novel tag encodings that allow us to seamlessly
combine memory tagging with authenticated encryption and
error correction. Thus, Voodoo overcomes the limitations
of existing tagged memory architectures, which incur non-
negligible performance and memory overheads. We can offer
up to 36-bit tags without introducing additional memory re-
quests or storage overheads. We implement our design using
gem5 [7] and evaluate its performance. Our results underline
the practicability of our design as we reach a performance
overhead of 1.4% on average compared to a system with-
out any additional protection. Furthermore, we implement
a Monte-Carlo simulation of DRAM errors and benchmark
the correction capabilities of our design. We find that we can
reach an error correction rate of 99% and an error detection
rate of 100% for errors confined to a single DRAM chip. This

is a significant improvement compared to SEC-DED, which
has a correction rate of approximately 62%.
Contributions. We make the following key contributions:

1. We present Voodoo, the first combined primitive for au-
thenticated encryption, DRAM error correction, and mem-
ory tagging.

2. We develop three tag encoding schemes, providing up to
36 tag bits while facilitating reliable error detection and
correction.

3. We implement a prototype of our design and evaluate the
performance using the SPEC CPU 2017 benchmark suite,
yielding a geomean overhead of just 1.4%

4. We implement a Monte-Carlo simulation of a DRAM fault
model. Voodoo reaches a 99% error correction rate for
single-chip errors, significantly improving on commodity
SEC-DED codes.

Outline. The paper is structured as follows: Section 2 dis-
cusses the required background. Section 3 elaborates on
combining integrity protection, authenticated encryption, and
memory tagging. Section 4 presents our novel tag encodings
and their properties. Section 5 discusses and simulates the er-
ror detection and correction capabilities of Voodoo. Section 6
details our implementation and showcases the advantages of
our combined mode through benchmarking. Section 7 dis-
cusses related work, and Section 8 summarizes our findings.

2 Background

This section provides background on authenticated encryp-
tion, DRAM structure and faults, memory tagging, and MAGIC.

2.1 Authenticated Encryption

Encrypting data grants confidentiality for the data, as only
a party possessing the correct key can encrypt and subse-
quently read the data. However, an adversary can still modify
encrypted data. Altering a single bit of a ciphertext will cause
the resulting plaintext to deviate from the originally encrypted
plaintext. Even though such an attack cannot change the plain-
text precisely, it can still entail security issues [37, 61].

With authenticated encryption (AE), unprivileged cipher-
text modifications are detected. Authenticated encryption pro-
vides integrity and authenticity through a message authentica-
tion code (MAC). A MAC is a mappingM : F∗2 ×Fk

2 → F t
2 .

An arbitrarily sized input and a secret k-bit key map to a t-bit
checksum as the output. Only a party possessing the key can
compute a correct MAC for a given input. When accessing
data, recomputing the MAC and comparing it with a stored
version allows for the detection of data modifications.

7160 33rd USENIX Security Symposium USENIX Association

64 Data Bits fFrom CPU

ECC Computation

Chip
1

Chip
2

Chip
3

Chip
4

Chip
5

Chip
6

Chip
7

Chip
8

Chip
9DRAM

72-bit Bus

Figure 1: Writing data using an ECC DRAM. The function
f computes ECC bits that are stored alongside the data on a
separate chip on the DRAM module.

2.2 DRAM Structure and Faults

DRAM modules store data in memory cells. Each cell holds
one bit in the form of a charged or discharged capacitor. Mem-
ory cells are organized in rows and columns, forming a mem-
ory array. Multiple (sub-)arrays are combined to banks, which
are further organized in bank groups. Banks operate in paral-
lel, thus improving the performance of the memory. A single
DRAM chip can host multiple banks. We distinguish between
x4, x8, and x16 DRAM chips [25]. The number defines the
amount of data pins of the chip. Multiple DRAM chips form
a rank, and, in the case of DDR4 DRAM, the overall data
bus width is 64 bits. DRAM accesses are performed in bursts
where each burst yields 512 bits of data. For DDR4 DRAM
with a 64-bit bus width, each burst consists of 8 subsequent
accesses called beats.

Memory cells are inherently error-prone as the stored
charges are subject to leakage [24, 46]. Thus, they must be re-
freshed periodically [25]. Excessive leakage causes the charge
to be unrecoverably lost. Hence, the stored data can become
faulty. Besides leakage, external disturbances can influence
the charge stored in DRAM cells [4, 38]. While single-bit
faults are the most common fault, multiple bits read from a
single DRAM chip may be erroneous [5, 36, 49, 53].

To mitigate the effects of DRAM faults, error-correcting
codes (ECC) are used [14, 24]. An ECC extends the data
with redundancy to restore the data in the case of a fault. For
DDR4 memory with ECC, each 64-bit memory word is ac-
companied by 8 ECC bits, resulting in a storage overhead of
12.5%. The redundant data is stored in additional chips on the
DRAM module. ECC DRAM modules have a 72-bit wide bus
to allow simultaneous fetching of data and redundancy. Fig-
ure 1 illustrates how the data and the redundant information
is stored to a DRAM module using nine x8 chips. One class
of commodity ECC are single-error correction, double-error
detection (SEC-DED) codes [19]. With SEC-DED, correct-
ing one and detecting two errors per 64-bit word is possible.
Faults affecting more than two bits in a 64-bit word are not
guaranteed to be detected. Undetected faults may be miscor-
rected and cause the system to process faulted data. Chipkill
codes offer stronger protection, as they can correct up to a
complete chip failure [14].

2.3 Memory Tagging

Tagged memory [26] enforces different security policies for
memory safety [50, 51, 58], memory isolation [48, 52, 59, 62,
64], capability systems [8, 63], or dynamic information-flow
tracking (DIFT) [13, 28, 54]. Every memory location is asso-
ciated with metadata, the so-called memory tag, which has a
specific tag size and tag granularity. Capability architectures,
such as the M-Machine [8] and CHERI [63], use a single-bit
tag to mark and protect capabilities in memory. CHERI asso-
ciates a single-bit tag with every 16 or 32 bytes of memory.

Commercial products like the ARM memory tagging exten-
sion (MTE) [50] associate each 16-byte granule with a 4-bit
tag [51], allowing fine-grain policies. A pseudorandomly gen-
erated tag is encoded into the upper bits of each pointer. The
dedicated tag is associated with the corresponding memory
location through the tagged memory architecture. Access to
the memory location is only granted if the pointer tag matches
the tag of the location. Similarly, SPARC application data in-
tegrity (ADI) [1] uses a 4-bit memory tag at the granularity
of 64 bytes for memory access checks [51].

Memory tagging can also be used for isolation. Mon-
drian [62] uses 2-bit tags per word, while Loki [64] uses up
to 32 bits per word to enforce memory isolation. HDFI [52]
enforces data-flow isolation with a single-bit memory tag.
Furthermore, memory tagging can be used to design enclave
architectures. SPEAR-V [48], for example, uses memory tag-
ging on page granularity to isolate enclave memory. TIMBER-
V [59] allows for stack interleaving based on fine-grain mem-
ory tagging using 2-bit tags per word.

While tagged memory architectures are versatile and help
to improve runtime security, they share common drawbacks
if implemented naïvely. Tags require additional storage space
that scales with the tag size and granularity. Thus, the size of
usable system memory declines. Furthermore, the tags must
be fetched and propagated by the tagged memory architecture.
This causes additional pressure on the DRAM bus, resulting in
a loss of performance [27]. Especially for workloads typically
encountered in servers and cloud systems, additional DRAM
traffic has a strong performance impact [27, 52].

2.4 The MAGIC Mode

In 2020, Kounavis et al. proposed the MAGIC mode for au-
thenticated encryption and error correction, bridging the gap
between authenticated encryption and DRAM fault protec-
tion [31]. MAGIC computes an N-bit checksum T over n N-bit
ciphertext blocks Ci and an N-bit block of authenticated data
D. During the computation, MAGIC uses a blinding cipher
EK , where K denotes the key used by the encryption. Simi-
lar to GMAC, MAGIC uses a secret N-bit hash key H [43]. The
checksum is computed as

T = EK
(
D+∑

n
i=1 Ci ·H i) (1)

USENIX Association 33rd USENIX Security Symposium 7161

using finite field arithmetic in GF(2N). When reading from
memory, MAGIC computes an N-bit syndrome S as

S = E−1
K (T)+D+∑

n
i=1 C′i ·H i

where C′i denotes the ciphertext block read back from
DRAM. If one of the ciphertext blocks at index j was
modified, then C j 6= C′j and the syndrome will evaluate to
S = (C j +C′j) ·H j = e j ·H j. MAGIC corrects errors with a
Hamming weight less than or equal to a chosen threshold Tth
and confined to a single ciphertext block. Tth determines the
maximum number of correctable bits. Checksum differences
with a Hamming weight below Tth are considered to be an
error on the checksum and are corrected by replacing the
faulted checksum. Values for H are selected such that

(∀e : e 6= 0,HW(e)≤ Tth)∧ (∀i ∈ [1,n−1]) :

HW
(
H i · e

)
> Tth,HW

(
H−i · e

)
> Tth (2)

holds. When performing error correction, MAGIC locates the
erroneous ciphertext block by computing the error location
indicators Si as Si = S ·H−i. Equation (2) guarantees that
HW(Si)≤ Tth holds only if i equals the index of the faulted
ciphertext block. The error can be corrected by XORing the
error location indicator to the faulted block.

The error correction of MAGIC stems from carefully select-
ing H, which is not randomly drawn but chosen according
to Equation (2). This condition limits the number of permis-
sible values of H. Let H be the set of values H that fulfill
Equation (2). The cardinality ofH can be estimated as

|H| ≥ 2N− n(n−1)
2

(
Tth

∑
t=1

(
N
t

))2

. (3)

Equation (3) helps to estimate whether some valid H values
are guaranteed to exist. A positive result guarantees the ex-
istence of permissible values for H. In general, one can find
permissible values by sampling a value at random and as-
serting that Equation (2) holds. With N = 64 bits, n = 8 bits
and Tth = 7 bits, for example, the setH contains at least 261.9

values.

3 Combining Integrity Protection, Authenti-
cated Encryption, and Memory Tagging

In this section, we detail how Voodoo extends on MAGIC to
implement tagged memory through the output produced by
the MAC computation. First, we identify the requirements
for a combined authenticated encryption, error correction,
and memory tagging scheme. Then, we discuss the principle
design of Voodoo. We elaborate on the functionality and the
involved hardware components that process the data and the
memory tag. Finally, we discuss the drawbacks and pitfalls
of a naïve memory tagging implementation without sufficient
tag encoding.

M1 M2 ... Mn MT

ED ED ED...

·H ·H2 ·Hn

DRAM:

From CPU:

C1 C2 ... Cn T

+ +...

EK

+

Figure 2: Overview of the Voodoo hardware architecture.
The data M1, · · · ,Mn is first encrypted and then used as the
input for the MAC computation. The encoded memory tag
MT is added to ∑

n
i=1(Ci ·H i), thus forming the intermediate

of the MAC computation.

For the sake of clarity we will refer to the output of the
MAC computation as the checksum. The metadata used for
memory tagging is referred to as the memory tag or tag. When
including a memory tag MT into the checksum T we must con-
sider how the memory tag may interact with the other features
of our scheme. We identify the following three requirements
that we aim to fulfill.
Accesses with a wrong tag must be detected. Memory tag-
ging aims to improve the runtime security of a system. A
fundamental property of tagged memory architectures is that
memory accesses with an incorrect tag are detected. Thus,
Voodoo must reliably detect tag mismatches. As tagging im-
plements security-critical policies, a tag mismatch will termi-
nate the process that encounters the error.
Error detection and correction are not weakened signifi-
cantly. Using the checksum T to hold metadata for memory
tagging influences error detection and correction. Thus, the
encoding must not significantly weaken the error detection
and correction abilities.
The memory tag can be read. For certain use cases, such
as swapping and process migration, it is necessary to read
the tag associated with a memory location. As the memory
allocator usually performs tagging, we cannot assume that
the operating system has knowledge of which memory is
associated with which tag. Thus, we aim to support extracting
memory tags from checksums.

3.1 Design Overview
Voodoo consists of two key components. The first component
is the hardware architecture depicted in Figure 2. The second
component is the memory tag encoding discussed in Section 4.
The encoding does not necessarily require a hardware building
block. Unless stated otherwise, MT is already encoded when
written to memory.
Checksum and Syndrome Computation. In general, we
compute the checksum when writing to memory as

T = EK
(
MT +∑

n
i=1 Ci ·H i) . (4)

7162 33rd USENIX Security Symposium USENIX Association

We denote the value passed to the blinding cipher EK as the
intermediate. When reading from memory, we compute the
syndrome as

S = E−1
K (T)+M′T +

n

∑
i=1

C′i ·H i . (5)

Here, M′T denotes the memory tag provided during the read
operation, and C′i represents the ciphertext blocks as read from
memory. All operations are performed in GF(2N).

The checksum computation is depicted in Figure 2. First,
the data written to memory is split into n N-bit blocks and
encrypted using a data encryption cipher ED. ED can be any
suitable cipher whose output matches the block size of N bits.
The encrypted data C1 to Cn and the memory tag MT are then
used to generate the intermediate value of the MAC compu-
tation. Applying the blinding cipher EK to the intermediate
yields the checksum T . We assume that an ECC DRAM is
used. Hence, the ciphertext and the checksum can be stored
and fetched within one access. Using a tweakable block ciper
such as QARMA [3] for ED allows to include the physical ad-
dress as an encryption tweak. Thus, the same data at different
locations in memory yields different ciphertexts and different
checksums. AMD SEV-SNP, for example, uses this technique
to protect againt attacks moving ciphertext in memory [61].

The values of H are secret and must fulfill Equation (2).
However, we tighten the condition by requiring the products
e ·H i with exponents up to n to produce a Hamming weight
strictly above Tth. The condition is modified to

(∀e : e 6= 0,HW(e)≤ Tth)∧ (∀i ∈ [1,n]) :

HW
(
H i · e

)
> Tth,HW

(
H−i · e

)
> Tth (6)

The condition used by MAGIC (Equation (2)) does not ensure
HW(S)> Tth, as i never reaches n. With Equation (6), every
syndrome from a correctable error has a Hamming weight
above Tth.
Error Detection and Correction. When reading from mem-
ory, the syndrome is computed as given in Equation (5). A
non-zero syndrome indicates a data error or a tag mismatch.
In the case of a data error, the error correction procedure is the
same as for MAGIC. We compute the error location indicators
as ∀i ∈ [1,n] : Si = S ·H−i. An error is deemed correctable iff
precisely one of the error location indicators has a Hamming
weight that is not above Tth. Let j denote the index of the er-
roneous block identified through the error location indicators.
The error is fixed by computing C j = C′j + S ·H− j. If more
than one error location identifier shows a Hamming weight
that is in range, we consider this to be an uncorrectable error.
If no index j is found, we also treat the error as an uncor-
rectable error.

Errors that affect the checksum T can be corrected by com-
puting the Hamming weight of the difference between the
fetched and the computed checksum. If the Hamming weight

Table 1: The misinterpretation probability of a naïve tag
encoding w.r.t. the number of correctable bits. N and Tth are
given in bits.

N Tth 1 2 3 4 5 6 7

64 2−55 2−49 2−45 2−41 2−38 2−34 2−31

128 2−119 2−112 2−107 2−102 2−97 2−93 2−89

is less than a pre-defined threshold, we assume that the check-
sum suffered a fault and restore the correct checksum by
overwriting it with the computed checksum.

3.2 Naïve Tag Encoding
In general, MAGIC supports the authentication of additional
data when computing T . However, this additional data without
any encoding is not suitable for implementing memory tag-
ging. Assume that MT can be freely selected from {0,1}N . We
denote this encoding as f -Unbounded. The modified check-
sum is computed as described in Equation (4). Including the
memory tag in the checksum guarantees that an access with a
wrong memory tag causes a non-zero syndrome. Assume the
case in which we perform an access using a wrong memory
tag M′T . The syndrome will evaluate to S = MT +M′T = eT .
This value is equal to the difference between the two memory
tags and will never be zero. Thus, the mismatch is detected.
However, the syndrome cannot be distinguished from a syn-
drome that is due to errors in the ciphertext blocks.

A tag mismatch is identified correctly if S = eT is not
interpreted as a correctable error. An eT that causes exactly
one error location indicator to have a Hamming weight less
than or equal to Tth will be treated as a correctable error. We
denote the case in which a memory tag mismatch causes error
correction as a misinterpretation. Let C f be the set of error
location indicators that will be misinterpreted as a correctable
error due to their low Hamming weight. Given an N-bit block
size, the cardinality of C f is given as

|C f |=
Tth

∑
t=1

(
N
t

)
. (7)

For a misinterpretation, exactly one error location identifier
must have a Hamming weight less than or equal to Tth. Using
Equation (7), we can compute the misinterpretation probabil-
ity. Given a memory tag error, the probability PMis that the
mismatch is interpreted as a correctable error is

PMis = n ·
(
|C f |
2N

)
·
(

1−
|C f |
2N

)n−1

. (8)

Memory tag errors with a Hamming weight lower than or
equal to Tth will never be falsely interpreted due to Equa-
tion (6). Table 1 lists the misinterpretation probabilities for

USENIX Association 33rd USENIX Security Symposium 7163

Table 2: The aliasing probability of f -Pattern for X tag bits
for N = 64 bits and N = 128 bits, respectively. Tth is the
Hamming weight threshold in bits.

N Tth
X 1 2 4 8 16 32

64 7 0 0 0 2−63 2−48 2−32

128 14 0 0 0 0 2−123 2−96

different Tth. As the cardinality of C f increases, so does the
misinterpretation probability. Due to the chance of misin-
terpretation, this encoding cannot be used for deterministic
memory tagging. Even worse, some tag mismatches can cause
silent data corruption.
Memory Tag Extraction. In the case that no error occurs
in the ciphertext blocks, we can extract the memory tag from
the checksum. Let M′T denote the memory tag that we extract
from T . We can compute M′T = E−1

K (T)+∑
n
i=1 C′i ·H i = MT .

It is, however, impossible to extract the correct tag in the case
that an error occurred. Assume that the ciphertext block with
index j is faulty and let e j denote the error of the block. Per-
forming the above computation will yield M′T = MT +e j ·H j.
Thus, the extracted memory tag will not equal the previously
encoded tag but contain the error as well. As the possible
range for memory tags is not constrained, it is impossible to
detect this error.

4 Encoding Tags for Voodoo

Based on the requirements and architecture given in Sec-
tion 3, we develop novel memory tag encodings that meet
the requirements while avoiding the issues and pitfalls of
f -Unbounded. We introduce three novel encoding schemes
called Check Pattern Encoding (f -Pattern), Encrypted Tag En-
coding (f -Encrypt), and Bounded Hamming Weight Encoding
(f -Bounded). For each encoding, we analyze the impact on
the error detection and correction of Voodoo. Furthermore, we
discuss how memory tags can be extracted from the checksum,
even in the presence of errors. In the following, we denote
the set of possible memory tags asMT . We denote memory
tag differences as eT and the encoded memory tag as MT . For
tag extraction, we denote the extracted memory tag as M′T .

4.1 Check Pattern Encoding

In the naïve encoding, tags can be drawn from the full N-bit
range. Most tagged memory architectures do not require such
a wide range of tags. ARM MTE, for example, uses 16 tag bits
for 512 data bits distributed over four 128-bit granules [51].
As our underlying encoding approach allows for N tag bits,
48 bits would remain unused in the case of MTE for N = 64
bits. We can use these spare bits to encode a fixed pattern
into the memory tag. When accessing data with a wrong tag,

the fixed pattern cancels out when computing eT . Thus, the
syndrome S will only be non-zero in the bits that are actually
used by the tagged memory architecture.

The pattern does not directly decrease the odds of a misin-
terpretation. However, we can modify the correction proce-
dure such that a misinterpretation of tag errors is impossible.
In the original correction procedure, we search for the error
location using the error location indicators. We modify the
procedure by initially checking whether the upper bits of the
syndrome are zero. If all upper bits (i.e., the unused bits of the
tag encoding) are zero, we assume the error to be a memory
tag error. Such errors are treated as uncorrectable errors. The
modified procedure will never misinterpret a tag mismatch as
the error correction is aborted. Thus, a spurious correction of
data that did not experience a fault is impossible. However,
we experience an increased rate of uncorrectable errors.

Assume an encoding where only X bits out of N bits are
used for the actual tag. The remaining bits are set to a fixed
pattern. With an X-bit tag, we can express at most 2X tag
differences with a maximum Hamming weight of X . Thus,
a syndrome that fulfills S≥ 2X is never caused by a tag mis-
match. Let U denote the subset of all possible tags with a
Hamming weight that is less than or equal to Tth. The ele-
ments of U are unproblematic as no correctable error will
ever map to this subset due to Equation (6). The cardinality
of U is |U|= ∑

Tth
t=0

(X
t

)
.

The syndrome produced by a correctable error can be one of
2N−∑

Tth
t=0

(N
t

)
possible values, as the syndrome will always

have a Hamming weight above Tth. Then, the probability
Palias that a correctable error maps to one of the remaining
(problematic) values can then be given as

Palias =
2X −|U|

2N−∑
Tth
t=0

(N
t

) . (9)

Note that if X is less than Tth bits, the aliasing probability
becomes 0, as no error will ever map to a valid tag differ-
ence. Table 2 lists the aliasing probabilities for N = 64 bits
and N = 128 bits depending on the desired tag size X . The
values chosen for Tth are the largest possible values for their
respective N such that valid H values are guaranteed to exist
(c.f. Equation (3)). This encoding allows for deterministic
memory tagging without aliasing if the chosen tag size is
small enough to be covered by the correction threshold. For
large tag sizes, however, the encoding may become unsuitable
as the probability of uncorrectable errors increases.
Memory Tag Extraction. With f -Pattern, it is possible to
extract the memory tag even in the case of a data error that
is present in one of the ciphertext blocks. Due to the distinct
pattern of valid tags, we can most likely identify faults dur-
ing the tag-read operation. The probability that a data error
has the shape of a valid tag is equal to the aliasing prob-
ability defined in Equation (9). If X ≤ Tth, this probability
equals 0, indicating that a data error cannot be confused with

7164 33rd USENIX Security Symposium USENIX Association

a memory tag. If a data error aliases to a valid tag, the tag ex-
traction will produce a faulty memory tag. When a data error
is correctly identified as such, we can try to restore the tag
and correct the fault. Computing M′T = E−1

K (T)+∑
n
i=1 C′i ·H i

yields M′T = e j ·H j +MT . The error e j can be corrected by
applying all 2X possible tag values to this intermediate result
and performing the regular error correction procedure. For
the correct memory tag, it is guaranteed that the correction
procedure will succeed. However, multiple memory tag val-
ues may lead to correctable errors. To avoid miscorrection,
we always test all possible memory tags and only correct the
fault if precisely one of the memory tags leads to a successful
error correction. Once the data error is corrected, the memory
tag can be extracted by reading out the syndrome.

4.2 Encrypted Tag Encoding
A different approach to improve the shortcomings of the naïve
encoding is by applying an additional encryption on the mem-
ory tag MT before encoding it into the checksum T . With
f -Encrypt, we encrypt the memory tag using a suitable block
cipher, and Equation (4) is transformed to

T = EK
(
ET (MT)+∑

n
i=1 Ci ·H i) . (10)

We eliminate the case of data corruption due to tag mis-
matches by imposing an additional constraint on how the
values of MT are conditioned. We limit the memory tags
only to values that have either low or high Hamming weights.
Formally, we specify that HW(MT)≤ LL∨HW(MT)≥ LU
must hold where LL and LU denote the lower and upper Ham-
ming weight limits, respectively. The size of the available
tag space can be computed as |MT |= ∑

LL
t=0

(N
t

)
+∑

N
t=LU

(N
t

)
.

Encrypting a memory tag from this tag space will lead to a
ciphertext uniformly drawn from {0,1}N . In the case of a tag
mismatch, the resulting difference will again be uniformly
drawn. The probability that such a difference is misinter-
preted as a correctable error is the same as for f -Unbounded.
However, we can use the fact that actual memory tags have
either low or high Hamming weights to distinguish between
memory tag mismatches and actual data errors. Assume a
tag difference eT causes an error location indicator to have
a Hamming weight less than or equal to Tth. We can now
compute M′T = E−1

T
(
E−1

K (T)+∑
n
i=1 C′i ·H i

)
in an attempt to

restore the memory tag. In the case of an actual data error, the
computation will evaluate to M′T = E−1

T
(
ET (MT)+ e j ·H j

)
.

In the most probable case, the result of this computation has
a Hamming weight above LL and below LU . The probability
PHW that a non-zero syndrome originating from an error in
the data maps to a valid tag when decrypted can be given as

PHW =

(
∑

LL
t=0

(N
t

)
+∑

N
t=LU

(N
t

))
2N . (11)

The unlikely case that the result suggests an error due to a
tag mismatch is treated as an uncorrectable error. With this

modification, it is impossible for a tag mismatch to lead to
miscorrection, and every tag mismatch is guaranteed to be
detected. As a tradeoff, we increase the probability that a
correctable error is interpreted as a tag mismatch and treated
as an uncorrectable error. Equation (11) allows us to tune
this probability by adjusting LU and LL. While the encryp-
tion of the memory tag adds additional latency, the actual
performance impact is low. Memory tags are encrypted when
writing to memory, which can happen parallel to the encryp-
tion of the plaintext data. Thus, encrypting the memory tag
does not add latencies to the MAC computation. Decrypting
the encrypted memory tag is only necessary if the syndrome
does not evaluate to zero. No additional latency is introduced
for read accesses without tag mismatches or errors, which is
the common case.
Memory Tag Extraction. When using f -Encrypt, we com-
pute M′T = E−1

T
(
E−1

K (T)+∑
n
i=1 C′i ·H i

)
. In the error-free

case, this will always yield the correct tag value. Given that
a data error occurred, the result of the outermost decryption
will be a uniformly drawn, random value. The probability
that this decryption leads to a valid tag is equivalent to the
probability given in Equation (11). As with f -Pattern, we can
try to correct the error and then restore the memory tag by
iteratively searching for the correct memory tag and perform-
ing the error correction procedure. If precisely one memory
tag leads to a correctable error, we have found the erroneous
ciphertext block and can extract the tag.

4.3 Bounded Hamming Weight Encoding

We can completely avoid misinterpretation and aliasing
by limiting the values of MT such that the condition
HW(eT)≤ Tth is fulfilled for all possible memory tag differ-
ences eT . Such memory tags can never alias to correctable er-
rors due to Equation (6). Contrary to f -Pattern and f -Encrypt,
we do not need to modify the error correction procedure to
distinguish between tag mismatches and data errors. Instead,
searching for the error location will yield an inconclusive
result as the Hamming weight of eT is always less than or
equal to Tth. Legitimate errors in data blocks will always lead
to Hamming weights above Tth, as the selection of H ensures
this property. Thus, by encoding the memory tags such that
HW(eT)≤ Tth is fulfilled for all possible tags, we can deter-
ministically distinguish between memory tag mismatches and
actual errors in the ciphertext blocks. However, the encoding
limits the possible set of memory tags to guarantee that the
difference between two memory tags is always within the
threshold.

Assuming that each block in the MAC computation is N
bits wide, we can compute the number of possible tag values
given the value of Tth. Each memory tag may have a maximum
Hamming distance of Tth to any other memory tag; hence the
maximum number of set bits per memory tag equals bTth/2c.

USENIX Association 33rd USENIX Security Symposium 7165

Table 3: The available tag space in bits (Equation (12))
for N = 64 bits and N = 128 bits, respectively, when using
f -Bounded. Tth is the Hamming weight threshold in bits.

N Tth 2 4 6 8 10 12 14
64 6 11 15.4 - - - -
128 7 13 18.4 23.3 28 32.4 36.5

It follows that

|MT |=
bTth/2c

∑
t=0

(
N
t

)
. (12)

Table 3 shows how the available tag space increases with an
increasing Tth. While bounding the Hamming weight limits
the tag space, it allows us to encode tags without the chance
of misinterpretation or aliasing. Thus, we deterministically
detect every tag mismatch without increasing the probability
of uncorrectable errors.

Memory Tag Extraction. For f -Bounded, it is impossible
that a data error assumes the shape of a tag error. Memory tags
have a maximum Hamming weight of bTth/2c. According to
Equation (6), errors in the ciphertext blocks will always lead
to a product with a Hamming weight strictly above Tth. When
computing M′T = MT + e j ·H j we can always detect the pres-
ence of an error. When adding two elements a,b ∈ GF(2N)
with HW(a)> HW(b) the Hamming weight of the result is
at least HW(a)−HW(b) The resulting Hamming weight of
M′T is, thus, guaranteed to be at least bTth/2c+1. Hence, the
result can never have the shape of a valid tag difference. Like
f -Pattern, we can recover the tag and correct the error by test-
ing all possible tag values and performing the error correction
procedure. If precisely one tag leads to a correctable error, we
have successfully restored the tag and corrected the data. If
multiple tags would lead to an error correction, we consider
the data to be uncorrectable.

Comparison of Encodings. Table 4 summarizes the capa-
bilities of the presented encoding schemes. f -Unbounded
is not suitable to implement tagged memory. Memory tag
mismatches are not guaranteed to be detected and can cause
miscorrection, thus violating data integrity. Furthermore, it is
impossible to read the memory tag in the presence of a data
error. All other encoding schemes guarantee that tag errors
are detected and never cause miscorrection. They each pro-
vide a mechanism to read tags, even in the presence of data
errors. However, f -Pattern and f -Encrypt may return a faulty
tag in the case that a data error is present during tag extraction.
With f -Bounded, we reach the strongest capabilities, as this
scheme offers determinism in all analyzed aspects. It is im-
possible that f -Bounded returns a faulty memory tag during
tag extraction.

Table 4: A summary of the capabilities of the different encod-
ing schemes and their success probabilities.

Encoding Detect Mismatch Correct Error Read Tag w. Error
f -Unbounded P = 1−Pmis 3 7 read wrong tag
f -Pattern 3 P = 1−Palias P = 1−Palias

f -Encrypt 3 P = 1−PHW P = 1−PHW

f -Bounded 3 3 3

isTagMismatch(S) =
HW (S)≤ Tth, if f -Bounded.
S < 2X , if f -Pattern.
HW (E−1

T (S+ET (M′T))) /∈]LL,LU [, if f -Encrypt.
⊥, if f -Unbounded.

(13)
Figure 3 shows the generic flow of a read operation with
Voodoo. Depending on the encoding pattern, Equation (13)
decides if a S value looks like a tag, which indicates that a
tag mismatch happened, in which case we do not correct the
error.

Compute syndrome S

S = 0

isTagMismatch(S)

Search for j such that HW
(
S ·H− j

)
≤ Tth

No correction possible

No error.

Uncorrectable. Likely tag mismatch.

Correct error: C j =C′j +S ·H− j

No

No

No or more than one j found

Yes

Yes

Exactly one j found

Figure 3: Flow of a DRAM read operation with Voodoo.

4.4 Case Study on Tagged Architectures

In this section, we present a case study that demonstrates
Voodoo’s applicability. We investigate which tagged memory
architectures can be implemented with our encodings. Our
findings indicate that Voodoo is suitable for a wide range of
academic and commercial tagged architectures. We consider a
tag encoding suitable if the available tag space can accommo-
date the required tag size of the memory tagging scheme. For
f -Encrypt, we assume a configuration in which Tth is set to
the maximum value for the respective block size N. We select
LU and LL such that the available tag space is minimized but
large enough to cover the required tag space. For f -Pattern,
we assume that X is chosen to equal the required tag size of
the memory tagging scheme. In addition to existing architec-

7166 33rd USENIX Security Symposium USENIX Association

tures, we analyze models with theoretical tag sizes to show
the limitations of our approach.
Supported Tag Sizes. Several architectures, including
CHERI [63], DIFT [26], and HDFI [52], implement a single-
bit tag per granule. f -Bounded presents an ideal solution for
schemes requiring a small tag space. CHERI’s 256-bit and
128-bit version yield 2-bit and 4-bit tags per 64 B cache line,
respectively. Both variants can be deterministically imple-
mented using f -Bounded. If the parameters are set accord-
ingly, f -Pattern also offers deterministic tagging without alias-
ing for both granularities. With f -Encrypt, there is always the
possibility that data errors alias to tag mismatches. Thus, we
can implement both variants but must accept a slight increase
in the rate of uncorrectable errors.

Other single-bit memory tagging schemes, such as DIFT
or HDFI, operate at a word level of granularity. With 64-bit
words, this results in 8-bit memory tags per 64 B cache line.
While this tag space is still deterministically covered by f -
Bounded, configurations of f -Pattern with N = 64 already
experience aliasing with a small probability. With f -Encrypt
and N = 64, we cannot select the threshold values to reach
a tag space of exactly 8 bits. Instead, we must use the next
larger size of 11 bits. This comes with the downside of an
increased rate of uncorrectable errors. For N = 128 bits we
can select LU and LL to reach a tag space of 8.01 bits.

Memory safety countermeasures like ARM MTE [50] and
SPARC ADI [1] rely on multi-bit memory tags. MTE and ADI
utilize a 4-bit memory tag with a respective granularity of 16 B
and 64 B. Thus, SPARC ADI requires four tag bits per cache
line, and ARM MTE needs a larger 16-bit tag space. While
f -Bounded can cover the tag space of SPARC ADI, it is not
possible to provide all tags needed by ARM MTE in the case
of N = 64 bits. With N = 128 bits, both architectures can be
implemented deterministically. Also, both architectures can
be implemented using f -Pattern and f -Encrypt while offering
a reasonably low probability of aliasing.

Some memory isolation schemes [12, 48] require larger
memory tags. SPEAR-V [48], for example, uses 24-bit mem-
ory tags on page granularity. As our design operates on cache
line granularity, we need to encode the memory tag in every
cache line, resulting in a tag size of 24 bits. The f -Bounded
mode is not applicable here for N = 64 bits. However, with
N = 128 bits we can deterministically encode the tag. With
f -Pattern and f -Encrypt, we can encode the complete 24-bit
tag but suffer an increased probability of uncorrectable errors.

Both f -Pattern and f -Encrypt offer a tradeoff between de-
terministic detection of tag mismatches and error correction
capabilities. Depending on the expected rate at which data
errors occur, a slight increase in uncorrectable errors might
be acceptable. However, the encodings may not be suitable
for architectures with large tag sizes, as the rate will be too
high, and the system will become unreliable.
Supported Architectures. Depending on the tagged memory
architecture, memory accesses either carry a tag value that is

Table 5: Case study of our tag encodings. The numbers in-
dicate the probability that a tag mismatch maps to an uncor-
rectable error. indicates deterministic tagging and indi-
cates an impossible configuration. Architectures that present
a tag on every access are marked with $, architectures that
require tag extraction are marked with ü. All block sizes are
given in bits. For architectures that do not present a tag on
every access, we give the additional latency that occurs when
reading the tag from an erroneous location.

Architecture Tag Bits f -Bounded f -Pattern f -Encrypt Latency
per 64 B N=64 N=128 N=64 N=128 N=64 N=128 in ns

CHERI ISA (256) [63]$ 2-bit 0 0 2−57 2−120 -
CHERI ISA (128) [63]$ 4-bit 0 0 2−57 2−120 -
SPARC ADI [1]$ 4-bit 0 0 2−57 2−120 -
DIFT [26]ü,M-Machine [8]$, 8-bit 2−63 0 2−52 2−119 0.1 ·103

HDFI [52]$,Shakti-T [44]$
Model 1 A$ / Bü 15-bit 2−49 2−128 2−48 2−109 14 ·103

MTE [50]$,Mondrian [62]ü 16-bit 2−48 2−123 2−47 2−109 29 ·103

SPEAR-V [48]ü 24-bit 2−40 2−106 2−37 2−103 7 ·106

lowRISC [39]ü,$ 32-bit 2−32 2−96 2−31 2−95 2 ·109

Model 2 A$ / Bü 36-bit 2−28 2−92 2−26 2−91 30 ·109

used for comparison, or the tag value must be extracted from
the syndrome. Voodoo supports both types of tagged memory
architecture, as our encodings allow for tag extraction, even
in the presence of errors. However, architectures that do not
present a tag on each access (e.g., , DIFT) may suffer from
additional latencies when accessing memory locations that
suffered a data error. The additional latency is determined
by the number of possible memory tags, as they are restored
using an iterative approach. For the latency computation, we
multiply the size of the tag space with the latency of a single
trial computation, which we approximate with 0.44 ns [3]. We
find that most tagged architectures are feasible to implement
with Voodoo. For architectures that use large tags, such as
SPEAR-V, the latency can become rather high. As this la-
tency is only present in the first access to an erroneous data
block, the overall impact is still low. For architectures such as
lowRISC or Model 2B, the reconstruction latency is infeasi-
bly high. Thus, architectures with large tags are expected to
perform better if the tag is present on each memory access.

Table 5 provides a concise case study overview. Tagged
memory architectures are sorted according to their tag sizes.
All exponents given for the aliasing probabilities are rounded
towards higher probabilities. For f -Bounded, a full circle indi-
cates that we can offer deterministic tagging, while an empty
circle indicates that the encoding is unsuitable. For f -Pattern
and f -Encrypt, we list the corresponding aliasing probabil-
ities for the optimal parameterization described above. As
f -Encrypt does not allow us to specify the tag size directly,
we must select the parameters such that the available tag space
covers the required tag space.

USENIX Association 33rd USENIX Security Symposium 7167

5 DRAM Error Detection and Correction

This section discusses the DRAM error detection and correc-
tion of Voodoo. We introduce a fault model based on DRAM
faults in DDR4 devices. We then discuss the error detection
and correction capabilities for single-block and multi-block
errors. By bounding chip errors to single ciphertext blocks, we
show how to improve the error correction of Voodoo. Further-
more, we implement a Monte-Carlo simulation to showcase
the error detection and correction capabilities. Lastly, we com-
pare the error correction performance to that of commodity
and academic error correction schemes.

5.1 Fault Model

We base our fault model on real-world data produced by a
large-scale DDR4 fault study of Beigi et al. [5]. Their work
identifies sixteen fault modes that affect DDR4 devices. Ta-
ble 6 lists a coarse-grain overview of the modes we consider
in our analysis. The combined fault modes are derived from
the fault modes identified by Beigi et al. [5]. We assume that a
burst consists of 8 beats where each beat transfers 64 data bits
over the bus [25]. We assume that each rank on the DIMM
hosts 16 x4 DRAM devices (cf. Section 2) storing data and
two x4 DRAM devices for storing redundancy, as this is the
setup used in the study of Beigi et al. [5]. Thus, each x4
DRAM device will contribute exactly 32 data bits to the 512
data bits that comprise a cache line. We consolidate modes
that will affect the same worst-case number of bits together
for simplicity. We identify four fault classes ranked according
to the maximum number of affected bits.
Single-Bit Faults. Single-bit faults are the most common
faults observed in modern DRAM devices. Here, the content
of a single memory cell is corrupted, and only a single bit of
the data read from the DRAM device is erroneous.
Multi-Bit Faults. Multi-bit faults affect two to four bits in a
single burst. This fault class combines single-word faults and
single-column faults.
Subsequent Faults. The class of subsequent faults captures
all faults where two of the beats in a burst yield faulted data.
The maximum number of faulty bits in this fault mode is 8,
as each beat yields 4 bits of data in the case of DRAM chips
with four data pins. This fault class consists of two-column
faults and single-pin faults.
Large-Scale Faults. Large-scale faults are faults that affect
up to 32 bits in the burst. Such faults may be due to full-, half-,
and quarter-device faults, all row-related faults, single-bank
faults, and single-lane faults.

We compute the expected probability for each class by sum-
ming the percentages of the faults. The distribution suggests
that 55% of faults are single-bit faults, 4% are multi-bit faults,
4% are subsequent faults, and 37% are large-scale faults.

As we base our fault model on DRAM faults encountered
in a production environment, we consider naturally occurring

Table 6: The fault classes that we consider in our analysis.
Fault classes are ranked by the maximum number of affected
bits per burst. The rate describes the percentage of faults that
fall in the given class.

Class Combined Faults Bits Rate
Single-bit Single-bit 1 55%
Multi-bit Single-word, Single-column 4 4%
Subsequent Two-column, Single-Pin 8 4%
Large-scale Row, Single-bank, Single-lane, Device 32 37%

faults to be the main target of the error correction procedure.
Rowhammer attacks [30] induce targeted bit flips in DRAM.
As shown by Cojocar et al. [10], Rowhammer can bypass
and exploit error-correcting codes. Voodoo would also be
able to correct Rowhammer-induced errors as long as they
are confined to a single block. We expect Voodoo to offer
stronger protection than existing linear codes, as they can be
reverse engineered and exploited [10]. However, we consider
Rowhammer and hardware fault attacks out of scope as they
are best mitigated at their source [41, 42].

5.2 Detection and Correction Capabilities

Real-world DRAM errors may violate the assumption that
errors are confined to a single ciphertext block. Thus, it is
essential to analyze the behavior of Voodoo under such faults.
Detection of Multi-Block Faults. A requirement for our
error correction is that only one ciphertext block out of all
n input blocks is faulty. However, it is necessary to reason
about the behavior of Voodoo in the presence of faults spread
over multiple blocks.

Assume the case in which two or more ciphertext blocks
experience an error simultaneously. The syndrome will be
the sum of all faults multiplied by their respective power of
H. During the error correction procedure, we compute n er-
ror location indicators. Two critical events can cause data
corruption. First, the syndrome may evaluate to 0 as the com-
bined errors cancel each other out. Given that the possible
range of products between errors and hash key exponents
is {0,1}N \ {x : HW(x) ≤ Tth}, the probability of this case
is 2Tth−N . Data corruption can also occur when exactly one
error location indicator suggests a correctable error. Aliasing
occurs when HW

(
S ·H− j

)
≤ Tth is fulfilled. The probability

for aliasing is, thus, equal to the misinterpretation probability
of the f -Unbounded encoding. Table 1 shows how the aliasing
probability increases with an increasing number of correctable
bits. This type of aliasing is unlikely to occur for a configura-
tion with a block size of 128 bits. Even if Tth = 14 bits, the
theoretical maximum for the given N, the misinterpretation
probability is 2−65 (cf. Equation (8)). Thus, multi-block errors
are likely to be correctly reported as uncorrectable errors.
Error Correction Capabilities. According to the fault model
introduced in Section 5, the majority of faults are single-bit

7168 33rd USENIX Security Symposium USENIX Association

C1
C2
...

C8

C1
C2
...

C8

D1D1

D9D9

D2D2

D10D10

D3D3

D11D11

D4D4

D12D12

D5D5

D13D13

D6D6

D14D14

D7D7

D15D15

D8D8

D16D16

TT

C1 C5

D1D1

D9D9

D2D2

D10D10

C2 C6

D3D3

D11D11

D4D4

D12D12

C3 C7

D5D5

D13D13

D6D6

D14D14

C4 C8

D7D7

D15D15

D8D8

D16D16
TT

Figure 4: Two variants of how ciphertext blocks are placed
in DRAM. Our approach uses the second variant (below).

faults. Every instantiation of Voodoo can handle this fault
type, as Tth is at least 1. When considering multi-bit faults,
Tth must be at least 4 to handle all possible faults. The config-
uration with N = 64 bits is not guaranteed to find a suitable
hash key H such that Equation (6) is fulfilled for all possible
errors. Thus, if we implement the selection of H as described
for MAGIC, we are not guaranteed to correct subsequent faults.
Even worse, it is improbable that there exists any H that
would allow us to correct the large-scale faults as defined in
Section 5. However, we find that we can improve the error
detection and correction procedure such that some of the sub-
sequent faults and, more importantly, large-scale faults can
be detected and corrected.
Bounding Errors to Blocks. Due to Equation (6), we must
assume that it is infeasible to search for a H that allows for
the guaranteed correction of arbitrary errors with Hamming
weights above 7 or 14 bits, depending on N. We can, however,
exploit the fact that erroneous bits are usually not arbitrar-
ily distributed. Instead, the physical structure and layout of
the memory cause them to follow specific patterns. It is, for
example, rather unlikely that two DRAM chips experience
a fault at the same time [5, 53]. Thus, we arrange the cipher-
text blocks so that one block is confined to two x4 DRAM
chips for N = 64 bits and four x4 chips for N = 128 bits. This
ensures that only one ciphertext block is affected even if a
complete chip failure occurs.

Figure 4 illustrates two variants of how the ciphertext
blocks can be distributed over the DRAM chips. In the first
configuration, a single beat transmits a complete ciphertext
block. However, the data of a ciphertext is distributed over
all DRAM chips. When a chip experiences a subsequent or
large-scale fault, multiple ciphertext blocks are affected.

The second configuration solves this by ensuring that even a
complete chip fault is bounded to one ciphertext block. Thus,
we only experience a multi-block fault if multiple DRAM
chips in different blocks experience a fault simultaneously.
Stuck-Pin Correction. Considering the physical structure
of DRAM chips for error correction allows us to extend the
error detection and correction capabilities. Assume that a chip
experiences a single stuck pin. As each DRAM chip is ac-
cessed eight times, the maximum number of influenced bits is

8. Thus, a maximum of 8 erroneous bits is found in a single
block. For N = 64 bits, it is not guaranteed that we find a H
with which we can correct 8-bit errors as the maximum Tth is
limited to 7. However, the eight erroneous bits of a single pin
fault are not randomly distributed. Due to the chip’s structure,
each faulted bit is equally spaced over the 32 bits read from
the chip with the broken pin. Hence, instead of increasing Tth
to 8 bits, it is sufficient to consider 4 · (28− 1) ≈ 210 error
values. Note that a subset of these errors is already contained
in the initially considered errors with a Hamming weight less
than or equal to Tth. For Tth = 7 bits, there are only four er-
rors where all 8 bits are affected that need to be considered
in addition to what is covered by the regular error correc-
tion. For two stuck pins, we have

(4
2

)(
28−1

)2 ≈ 218 errors
that need to be considered. For comparison, the number of
errors that must be considered when N = 64 and Tth = 7 is
approximately 229. Let ESP denote the set of additional errors
due to stuck pin faults. The overall set of possible errors is
then E = ESP∪{e ∈ {0,1}N : HW(e) ≤ Tth}. We can adopt
Equation (3) to include all possible errors, thus yielding

|H| ≥ 2N− n(n+1)
2

(E)2 .

With this estimation, we can determine if there exists a H that
is guaranteed to fulfill Equation (6) for all considered errors.
We find no significant reduction of the cardinality ofH, even
when the errors stemming from single- and double-pin faults
are included.
Permanent Fault Correction. For larger faults that cor-
rupt even more bits, it is impossible to use a pattern-based
approach to include them in E . We can, however, reach
Chipkill-level protection for permanent faults. According to
Beigi et al. [5], most large-scale faults are permanent or in-
termittent. Reading from a location with a permanent fault
always yields erroneous data. When performing error correc-
tion, we first identify the block that needs to be corrected.
Initially, this is done by searching for an error with low Ham-
ming weight. However, we can locate a permanently faulted
chip without any computation. It is sufficient to perform two
additional write and read operations to check if a chip is faulty.
We can identify all permanent faults that affect the cache line
by writing and reading back a known pattern and the corre-
sponding anti-pattern. Once the faulted block is identified, we
can restore the original value, just like in the case of regular
error correction.

5.3 Monte-Carlo Simulation
We build a simulation showcasing the error correction and de-
tection performance of Voodoo. Two configurations simulate
the fault model defined in Section 5.1.

In the first configuration, all faults are confined to a single
chip in one ciphertext block. This mode measures the per-
centage of correctable, miscorrected, and uncorrectable faults.

USENIX Association 33rd USENIX Security Symposium 7169

1 5 10 15 20 25 30
0%

25%

50%

75%

100%

Tth

Voodoo Correctable SEC-DED Correctable SEC-DED Detectable

Figure 5: The percentage of correctable errors w.r.t. the
threshold Tth assuming that a single block experiences faults.
After an optimum at Tth = 19, the rate declines drastically.

1 5 10 15 20 25 30
0%

25%

50%

75%

100%

Tth

Voodoo Detectable SEC-DED Detectable Chipkill Detectable

Figure 6: The percentage of detectable errors for faults in
multiple blocks. Voodoo offers almost 100% error detection.

We compare our results to SEC-DED ECC. With SEC-DED,
we consider an error correctable if only one faulted bit per
ECC granule is detected. Furthermore, we consider errors as
guaranteed SEC-DED detectable if the Hamming weight of
the error in the ECC granule does not exceed two. While the
ciphertext is confined to two chips, we assume the linear ECC
checksum is computed over all 16 chips. Thus, SEC-DED can
also correct errors due to single stuck pins and other errors
that only affect one bit per granule. We model the distribution
of faults according to [5].

The second configuration generates multi-block faults ex-
ceeding the corrective capabilities of Voodoo. This config-
uration measures the detection rate for multi-block faults.
We measure detected and miscorrected faults. Our simula-
tion always injects errors in two or more ciphertext blocks.
Thus, none of the simulated errors are correctable. The results
are compared to SEC-DED ECC and Chipkill. We assume a
single-symbol-correction, double-symbol-detection Chipkill
code. Hence, an error is considered Chipkill detectable if at
most two chips are affected.

Both configurations use a block size of N = 64 bits. Fur-
thermore, we assume a cache line size of 512 bits, resulting in
n = 8 blocks. Each simulated access is erroneous to speed up
the simulation. We draw 200 unique values for H and simu-
late 10 000 errors for each H. According to the data reported
by Beigi et al. [5], this approximates 244 years of continuous
DRAM operation.

Figure 5 illustrates the percentage of correctable errors
w.r.t. the selected threshold value Tth. Note that the percent-
age of correctable errors increases even when exceeding the
theoretical maximum of Tth = 7. This behavior suggests that
one error aliasing to another correctable error is very unlikely,
even with a high Tth. Hence, miscorrections are also extremely
rare. We are far more likely to deem an error uncorrectable
because the error location is not uniquely identifiable. We find
that small values of Tth already allow us to surpass the correc-
tive capabilities of SEC-DED ECC. With Voodoo, every error
confined to a single block is guaranteed to be detected.

Figure 6 illustrates the detection rate of Voodoo for multi-
block errors. Voodoo correctly identifies nearly all multi-
block errors as uncorrectable for low values of Tth. For
Tth = 27 the miscorrection rate reaches its maximum at 39%.
At this optimum, the aliasing probability from multi-block
errors to single-block errors is the highest. Further increasing
Tth will decrease the miscorrection rate, as the likelihood that
a multi-block error aliases to two or more single-block errors
increases. This behavior is also reflected by Equation (8),
which has an optimum at Tth = 27 bits.

In summary, our Monte-Carlo simulation results underline
the applicability of Voodoo for error detection and correction.
As expected, the threshold Tth strongly influences the correc-
tive capabilities of Voodoo. When setting Tth appropriately,
we can correct almost all errors produced by the fault model
defined in Section 5.1. This strong correction performance is
due to most errors being limited in the number of erroneous
bits, and the rarity of large-scale errors affecting many bits.

5.4 Error Correction Latency

As Voodoo performs a fixed number of steps on each error
correction, we can estimate the time needed for a single cor-
rection. The correction latency only depends on the time it
takes to correctly identify the faulted block. In a configuration
with n N-bit blocks, the number of error location indicators
equals n. These error location indicators are computed as
∀i ∈ [1,n] : Si = S ·H−i and the error correction succeeds if
HW (Si) ≤ Tth holds for exactly one location indicator. We
can consider two approaches for this search. First, we can
perform the computation and the check iteratively, resulting
in n subsequent computations. Assuming a 0.44 ns latency for
each multiplication [3] and n= 8 ciphertext blocks, the overall
search latency equals 3.52 ns. Contrarily, a fully parallelized
search only takes 0.44 ns. Before locating the error, Voodoo
decrypts the stored checksum, thus imposing an additional
latency of 2.2 ns when using QARMA.
Latency Comparison. We compare our correction latency
with the latencies of commodity ECC, HashTag [33], and
MUSE ECC [40]. This selection of schemes allows us to
gauge the performance of Voodoo compared to commod-
ity error correction, iterative error correction, and correction
based on residual codes. According to Cojocar et al. [10] and

7170 33rd USENIX Security Symposium USENIX Association

1 2 3 4

100
101
102
103
104

Faulty Bits

Voodoo Voodoo iterative MUSE ECC SEC-DED ECC HashTag

Figure 7: The error correction latencies of different error
detection and correction schemes in ns.

Kwong et al. [32], the correction latencies of ECC DDR4
DRAM can range from 0.9 ns to 9 ms. Manzhosov et al. [40]
report a correction latency of 0.38 ns for an RS(144,128) code.
We use this latency as the lower bound of commodity error
correction. For HashTag, we assume that errors are confined
to a single 64-bit block and the search is limited to the affected
block. We assume that HashTag uses SPEEDY with a latency
of 0.3 ns per invocation. For MUSE ECC, we consider a con-
figuration with Chipkill error correction. The error detection
and correction latencies of MUSE ECC range from 0.856 ns
to 1.179 ns, with the average being 1.03 ns.

Figure 7 shows the error correction latency of Voodoo,
MUSE ECC, HashTag, and a commodity ECC solution in
direct comparison. The latency of Voodoo is reasonable low at
2.64 ns and 5.72 ns for the parallel and the iterative approach,
respectively. This places our latency within the reported range
of latencies for commodity ECC [10, 32, 33]. MUSE ECC
outperforms Voodoo in terms of correction latency. Note that
the main latency of error correction with parallel Voodoo
comes from the decryption of the stored checksum. Using a
faster block cipher will, thus, result in a lower error correction
latency. Both implementations of Voodoo’s search outperform
the error correction of HashTag. Furthermore, the latency of
HashTag grows as the number of faulty bits increases while
Voodoo and MUSE ECC offer error correction in a fixed
amount of time.

6 Evaluation

In this section, we evaluate Voodoo. While the Monte-Carlo
simulation presented in Section 5 allows us to evaluate the
error correction performance, we also implement Voodoo us-
ing the gem5 full-system simulator [7] to measure the over-
all performance impact. For comparison, we implement an
MTE-like tagged memory architecture that is implemented
independently from the authenticated encryption and error
correction provided by Voodoo.

6.1 Implementation in gem5

We implement our proof-of-concept prototype using the gem5
system simulator (version 22.1.0.0) to provide an accurate
hardware model of our design. Additionally, we implement
an authenticated encryption engine based on the structure
shown in Figure 2. We implement an MTE-like tagged mem-
ory architecture to measure the performance overheads of
traditional memory tagging.
Voodoo Mode. We implement Voodoo as described in Sec-
tion 3.1 as an extension to the gem5 simulator. We include
a module with configurable encryption and decryption la-
tencies in our implementation. This allows us to parameter-
ize the model according to the selection of the underlying
block ciphers. This model measures the overheads generated
by adding the encryption layer and the logic for the MAC
computation. We assume that instances of the QARMA block
cipher are used for encryption. According to Avanzi [3], the
latency of QARMAx-64 can range from 2.2 ns to 3.6 ns. The
delay of a 64-bit GF(264) multiplication is listed at 0.44 ns.
Leander et al. [35], however, list their minimum achieved
latency for QARMAx-64 at approximately 0.4 ns. We make a
conservative estimation of the combined forward and back-
ward latencies that we impose on each memory request. When
writing to memory, we add a forward latency of 4.04 ns to
each write access. This latency is the estimated time it will
take to compute the MAC for the provided data. When read-
ing from memory, we impose a 3.6 ns delay, as the checksum
is decrypted while the fresh checksum is computed.
Memory Tagging. We implement a memory tagging model
that integrates a tagged memory architecture for storing and
propagating tags in hardware. We co-locate the tag meta-
data with the data for every cache line. Additional memory
requests are required for every cache miss to fetch the associ-
ated tag metadata from a dedicated DRAM region. This mode
represents a naïve tagged memory implementation.
Authenticated Encryption and Memory Tagging. This
mode implements memory tagging and authenticated encryp-
tion as two disjunct system features. Each memory access is
delayed, as described above. Additionally, memory accesses
trigger additional loads from DRAM.

6.2 Performance Evaluation

We evaluate our hardware models using gem5 and the SPEC
CPU2017 benchmark suite running on Linux v5.15. Similar
to existing work [33, 40, 58, 60] and to avoid infeasible simu-
lation times, we use the TimingSimpleCPU model at 3 GHz.
The cache hierarchy is configured to a private 8-way set asso-
ciative L1i and L1d cache with 16 kB and 64 kB, respectively.
The L1 and L2 access latency is configured to 1 and 10 cycles,
respectively. We use a 8 MB shared 16-way set-associative
L2 and an 8 GB DDR4 DRAM module.

USENIX Association 33rd USENIX Security Symposium 7171

600.perlbench_s

605.mcf_s

619.lbm_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

638.im
agick_s

644.nab_s

657.xz_s

500.perlbench_r

505.mcf_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

523.xalancbmk_r

525.x264_r

531.deepsjeng_r

538.im
agick_r

544.nab_r

557.xz_r

Geomean SPEC
0
5

10
15
20
25
30

0.
1% 3.

6% 7.
2%

0.
3%

0.
6% 2.

2%

1.
3%

0.
0% 0.
9%

0.
1% 3.

6%

0.
3% 1.
1%

0.
0%

4.
7%

0.
3%

0.
4%

0.
5% 1.
4%

0.
0% 1.
1%

1.
4%

0.
1% 2.

9%

14
.5

%

0.
4%

0.
5%

8.
7%

1.
4%

0.
0%

5.
0%

0.
1% 2.

9%

0.
2% 1.
0%

0.
0%

5.
3%

0.
3%

0.
5% 1.
4%

1.
4%

0.
0%

5.
2%

2.
4%

0.
1%

6.
4%

21
.5

%

0.
9%

0.
9%

10
.3

%

2.
7%

0.
0%

6.
0%

0.
1%

6.
4%

1.
5%

1.
7%

0.
1%

9.
8%

0.
8%

0.
9% 1.
8% 2.
7%

0.
0%

6.
3%

3.
7%

Pe
rf

or
m

an
ce

O
ve

rh
ea

d
[%

]

Voodoo Memory Tagging Auth. Enc. + Memory Tagging

Figure 8: Simulated performance overhead using the SPEC CPU2017 benchmark suite.

Simulation Results. Figure 8 illustrates the simulated per-
formance overhead. The baseline performance is determined
by measuring the runtime of the benchmarks on a system that
does not implement authenticated encryption or memory tag-
ging. We excluded the benchmarks that encounter toolchain
issues, compilation failures, or runtime errors.

The simulated performance results of our design show an
overhead of 1.4% compared to the baseline system. The over-
head is caused by the delays due to the memory encryption.
For traditional memory tagging, we measure an average per-
formance overhead of 2.4%. The additional DRAM requests
cause this overhead and it increases for benchmarks with
high memory pressure. for the authenticated encryption with
separate memory tagging, we find that the geomean of the
performance overhead is 3.7%.
Performance Comparison. We compare the performance of
Voodoo to the reported performance numbers of commodity
memory encryption schemes and a commodity tagged mem-
ory implementation. We compare Voodoo against AMD’s
memory encryption engine, the memory encryption of Intel
TDX, and ARM’s MTE implementation. AMD’s memory
encryption engine uses an optimized AES implementation
and imposes a reported geomean performance overhead of
1% across workloads [34]. New and upcoming Intel CPUs in-
corporate a memory encrpytion engine using AES-XTS with
128-bit keys. The reported maximum performance overhead
of Intel TME-MK is given at 2.2% [21]. For ARM MTE, a re-
cent study reports a geomean performance overhead of 1.5%
for the SPEC CPU2006 benchmark suite [16]. These results
highlight the competitive performance of Voodoo compared
to other implementations of memory encryption and tagging.
Note that the performance given for Voodoo in Figure 8 is
achieved with an in-order CPU model while the reported
performance numbers given above stem from commodity
hardware.

6.3 Area Estimation

We estimate the area overhead using the available data for
QARMA presented by Avanzi [3]. The area overhead of a sin-

gle multiplication in GF(264) is listed at 17 kGE (924.6µm2).
Assuming an unoptimized implementation with n = 8 mes-
sage blocks of N = 64 bits each, we end up with 8 instances
of the 64-bit multipliers, summing up to 136 kGE (7397µm2).
On top of the multiplication, we must also account for the
block cipher instances. The choice of the block cipher has a
strong impact on the overall area overhead. Assuming a fully-
unrolled QARMA-64 with 22kGE (1238µm2) as the underly-
ing block cipher and no further optimizations, we require 9 in-
stances of the block cipher, resulting in 198kGE (11 142µm2).
Thus, we reach an overall area overhead of approximately
220kGE (18 539µm2) for Voodoo. Using the same compar-
ison as [33], we reach a relative overhead of 0.007% when
considering the area of a Raptor Lake CPU [57].

7 Related Work

Several academic designs propose using ECC DRAM mod-
ules to encode metadata or increase system performance for
tagged architectures. However, none of the related research
proposes a combined primitive for authenticated encryption,
error correction, and memory tagging.

HashTag [33] replaces Hamming codes with truncated
hashes and stores the memory tags in free bits of the ECC
chip. While this approach eliminates additional fetches, the er-
ror correction procedure suffers from increased latencies due
to a brute-force search. Furthermore, large tag sizes reduce
the error detection and correction capabilities significantly.
Voodoo offers a larger tag space without compromising on
error correction. Furthermore, our error correction approach
does not rely on an iterative search.

MUSE ECC [40] uses residue codes to protect DRAM
integrity. The unused states of the code provide spare bits that
can be used for memory tagging. The number of spare bits
depends on the size of the code and the error detection and
correction capabilities. Contrary to Voodoo, MUSE ECC only
protects data integrity.

Implicit Memory Tagging (IMT) [55] uses alias-free tagged
ECC for memory tagging, where they integrate the tag meta-
data within the check bits of the ECC chip. IMT detects tag

7172 33rd USENIX Security Symposium USENIX Association

mismatches while maintaining single-bit error correction. It is,
however, impossible to extract a tag encoded into the tagged
ECC. Thus, tag-read operations are not supported.

SYNERGY [47] uses ECC DRAM to co-locate MACs
from authenticated encryption with data, effectively remov-
ing additional DRAM requests and providing error correction
through externally stored redundancy. Thus, SYNERGY does
not reduce the memory overhead but eliminates the perfor-
mance overhead of MAC fetches in the error-free case.

8 Conclusion

In this paper, we present Voodoo, the first combined scheme
for authenticated encryption, DRAM integrity protection, and
memory tagging. We extend MAGIC and develop three novel
encodings for memory tags to allow for memory tagging
without additional memory requests or storage requirements.
We thus address the limitations of conventional tagged archi-
tectures, which incur non-negligible performance and mem-
ory overheads. We showcase that a wide variety of existing
tagged memory architectures can be realized using our de-
sign. Moreover, we analyze our scheme’s robustness based on
real-life DRAM fault data. Our gem5 prototype implementa-
tion demonstrates the advantages of our approach when com-
pared to a conventional tagged memory implementation. Com-
pared to a system without any additional security features,
our Voodoo prototype incurs a low performance overhead of
1.4% on average. In addition, our Monte-Carlo simulation
shows the advantages of Voodoo over SEC-DED codes as we
reach an error correction rate of 99% for single-chip errors.
Furthermore, we reach a higher detection rate for multi-block
faults than Chipkill.

Acknowledgments

We thank the anonymous reviewers and our shepherd for
their valuable feedback that greatly improved this work. This
project has received funding from the Austrian Research Pro-
motion Agency (FFG) via the SEIZE project (FFG grant
number 888087) and the AWARE project (FFG grant number
891092).

References

[1] Kathirgamar Aingaran, Sumti Jairath, Georgios K. Kon-
stadinidis, Serena Leung, Paul Loewenstein, Curtis
McAllister, Stephen Phillips, Zoran Radovic, Ram
Sivaramakrishnan, David Smentek, and Thomas Wicki.
M7: Oracle’s Next-Generation Sparc Processor. IEEE
Micro, 2015.

[2] AMD. Strengthening VM isolation with integrity
protection and more. https://www.amd.com/

content/dam/amd/en/documents/epyc-business-
docs/solution-briefs/amd-secure-encrypted-
virtualization-solution-brief.pdf, 2020.
Accessed: 2023-07-02.

[3] Roberto Avanzi. The QARMA Block Cipher Family -
Almost MDS Matrices Over Rings With Zero Divisors,
Nearly Symmetric Even-Mansour Constructions With
Non-Involutory Central Rounds, and Search Heuristics
for Low-Latency S-Boxes. IACR Cryptol. ePrint Arch.,
2016.

[4] Robert Baumann. Soft Errors in Advanced Computer
Systems. IEEE Des. Test Comput., 2005.

[5] Majed Valad Beigi, Yi Cao, Sudhanva Gurumurthi,
Charles Recchia, Andrew C. Walton, and Vilas Srid-
haran. A Systematic Study of DDR4 DRAM Faults in
the Field. In HPCA, 2023.

[6] Bruno Bierbaumer, Julian Kirsch, Thomas Kittel, Au-
rélien Francillon, and Apostolis Zarras. Smashing the
Stack Protector for Fun and Profit. In SEC, 2018.

[7] Nathan L. Binkert, Bradford M. Beckmann, Gabriel
Black, Steven K. Reinhardt, Ali G. Saidi, Arkaprava
Basu, Joel Hestness, Derek Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muham-
mad Shoaib Bin Altaf, Nilay Vaish, Mark D. Hill, and
David A. Wood. The gem5 simulator. SIGARCH Com-
put. Archit. News, 2011.

[8] Nicholas P. Carter, Stephen W. Keckler, and William J.
Dally. Hardware Support for Fast Capability-based Ad-
dressing. In ASPLOS, 1994.

[9] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas
Nyman, Haipeng Cai, Trent Jaeger, N. Asokan, and Dan-
feng (Daphne) Yao. Exploitation Techniques for Data-
oriented Attacks with Existing and Potential Defense
Approaches. ACM Trans. Priv. Secur., 2021.

[10] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting Correcting Codes: On the Effec-
tiveness of ECC Memory Against Rowhammer Attacks.
In S&P, 2019.

[11] Intel Corporation. Intel Trust Domain Extensions (Intel
TDX). https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-
trust-domain-extensions.html, 2020. Accessed:
2022-09-01.

[12] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptol. ePrint Arch., 2016.

[13] Jedidiah R. Crandall, Shyhtsun Felix Wu, and Frederic T.
Chong. Minos: Architectural support for protecting
control data. ACM Trans. Archit. Code Optim., 2006.

USENIX Association 33rd USENIX Security Symposium 7173

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

[14] Timothy J Dell. A white paper on the benefits of chipkill-
correct ECC for PC server main memory. IBM Micro-
electronics division, 11(1-23):5–7, 1997.

[15] Morris Dworkin. SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, 2015-08-04
2015.

[16] Floris Gorter, Taddeus Kroes, Herbert Bos, and Cristiano
Giuffrida. Sticky Tags: Efficient and Deterministic Spa-
tial Memory Error Mitigation using Persistent Memory
Tags. In S&P, May 2024.

[17] Shay Gueron. Memory Encryption for General-Purpose
Processors. IEEE Secur. Priv., 2016.

[18] J. Alex Halderman, Seth D. Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A. Calandrino,
Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest We Remember: Cold Boot Attacks on
Encryption Keys. In USENIX, 2008.

[19] Richard W Hamming. Error detecting and error correct-
ing codes. The Bell system technical journal, 29(2):147–
160, 1950.

[20] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-Oriented Programming: On the Expressiveness of
Non-control Data Attacks. In S&P, 2016.

[21] Intel. Runtime Encryption of Memory with Intel® Total
Memory Encryption–Multi-Key (Intel® TME-MK).
https://www.intel.com/content/www/us/en/
developer/articles/news/runtime-encryption-
of-memory-with-intel-tme-mk.html. Accessed:
2024-02-16.

[22] Intel. Intel Architecture Memory Encryp-
tion Technologies. https://www.intel.com/
content/www/us/en/content-details/679154/
intel-architecture-memory-encryption-
technologies-specification.html, 2022. Re-
vision 1.4, Accessed: 2023-01-31.

[23] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block Oriented Programming: Au-
tomating Data-Only Attacks. In CCS, 2018.

[24] Bruce L. Jacob, Spencer W. Ng, and David T. Wang.
Memory Systems: Cache, DRAM, Disk. 2008.

[25] JEDEC. DDR4 SDRAM STANDARD. JESD79-4, Sep,
2012.

[26] Samuel Jero, Nathan Burow, Bryan C. Ward, Richard
Skowyra, Roger Khazan, Howard E. Shrobe, and Hamed
Okhravi. TAG: Tagged Architecture Guide. ACM Com-
put. Surv., 2023.

[27] Alexandre Joannou, Jonathan Woodruff, Robert Kovac-
sics, Simon W. Moore, Alex Bradbury, Hongyan Xia,
Robert N. M. Watson, David Chisnall, Michael Roe,
Brooks Davis, Edward Napierala, John Baldwin, Khilan
Gudka, Peter G. Neumann, Alfredo Mazzinghi, Alex
Richardson, Stacey D. Son, and A. Theodore Markettos.
Efficient Tagged Memory. In ICCD, 2017.

[28] Hari Kannan, Michael Dalton, and Christos Kozyrakis.
Decoupling Dynamic Information Flow Tracking with
a dedicated coprocessor. In DSN, 2009.

[29] David Kaplan, Jeremy Powell, and Tom
Woller. AMD Memory Encryption. https:
//www.amd.com/content/dam/amd/en/documents/
epyc-business-docs/white-papers/memory-
encryption-white-paper.pdf, 2021. Accessed:
2023-02-26.

[30] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin,
Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ISCA, 2014.

[31] Michael E. Kounavis, David Durham, Sergej Deutsch,
Krystian Matusiewicz, and David Wheeler. The MAGIC
Mode for Simultaneously Supporting Encryption, Mes-
sage Authentication and Error Correction. IACR Cryptol.
ePrint Arch., 2020.

[32] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading Bits in Memory With-
out Accessing Them. In S&P, 2020.

[33] Lukas Lamster, Martin Unterguggenberger, David
Schrammel, and Stefan Mangard. HashTag: Hash-
based Integrity Protection for Tagged Architectures. In
USENIX, 2023.

[34] Michael Larabel. AMD Secure Memory En-
cryption "SME" Performance With 4th Gen EPYC
Genoa. https://www.phoronix.com/review/amd-
sme-genoa/5, 2022. Accessed: 2024-02-16.

[35] Gregor Leander, Thorben Moos, Amir Moradi, and
Shahram Rasoolzadeh. The SPEEDY Family of Block
Ciphers Engineering an Ultra Low-Latency Cipher from
Gate Level for Secure Processor Architectures. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021.

[36] Scott Levy, Kurt B. Ferreira, Nathan DeBardeleben,
Taniya Siddiqua, Vilas Sridharan, and Elisabeth Base-
man. Lessons learned from memory errors observed
over the lifetime of Cielo. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage, and Analysis, SC 2018, Dallas, TX,
USA, November 11-16, 2018, 2018.

7174 33rd USENIX Security Symposium USENIX Association

https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.intel.com/content/www/us/en/content-details/679154/intel-architecture-memory-encryption-technologies-specification.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.phoronix.com/review/amd-sme-genoa/5
https://www.phoronix.com/review/amd-sme-genoa/5

[37] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin.
CrossLine: Breaking "Security-by-Crash" based Mem-
ory Isolation in AMD SEV. In CCS, 2021.

[38] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson,
and Onur Mutlu. An experimental study of data reten-
tion behavior in modern DRAM devices: implications
for retention time profiling mechanisms. In ISCA, 2013.

[39] lowRISC Team. Tag support in the rocket
core. https://lowrisc.org/docs/minion-v0.4/
tag_core/, 2017.

[40] Evgeny Manzhosov, Adam Hastings, Meghna Pancholi,
Ryan Piersma, Mohamed Tarek Ibn Ziad, and Simha
Sethumadhavan. Revisiting Residue Codes for Modern
Memories. In MICRO, 2022.

[41] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh
Razavi. ProTRR: Principled yet Optimal In-DRAM
Target Row Refresh. In S&P, 2022.

[42] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo
Takashi, and Kaveh Razavi. REGA: Scalable Rowham-
mer Mitigation with Refresh-Generating Activations. In
S&P, 2023.

[43] David McGrew and John Viega. The Galois/counter
mode of operation (GCM). submission to NIST Modes
of Operation Process, 20:0278–0070, 2004.

[44] Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel
Gala, and Kamakoti Veezhinathan. Shakti-T: A RISC-V
Processor with Light Weight Security Extensions. In
HASP, 2017.

[45] Microsoft. Trends, challenges, and strategic shifts
in the software vulnerability mitigation landscape.
https://github.com/Microsoft/MSRC-Security-
Research/blob/master/presentations/
2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%
20-%20Trends%2C%20challenge%2C%20and%
20shifts%20in%20software%20vulnerability%
20mitigation.pdf, 2019. Accessed: 2023-02-26.

[46] Phillip J Restle, JW Park, and Brian F Lloyd. DRAM
variable retention time. IEDM Tech. Dig, pages 807–
810, 1992.

[47] Gururaj Saileshwar, Prashant J. Nair, Prakash Ram-
rakhyani, Wendy Elsasser, and Moinuddin K. Qureshi.
SYNERGY: Rethinking Secure-Memory Design for
Error-Correcting Memories. In HPCA, 2018.

[48] David Schrammel, Moritz Waser, Lukas Lamster, Martin
Unterguggenberger, and Stefan Mangard. SPEAR-V:
Secure and Practical Enclave Architecture for RISC-V.
In ASIACCS, 2023.

[49] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. DRAM errors in the wild: a large-scale field
study. In SIGMETRICS, 2009.

[50] Kostya Serebryany. ARM Memory Tagging Extension
and How It Improves C/C++ Memory Safety. login
Usenix Mag., 2019.

[51] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyap-
nikov, Vlad Tsyrklevich, and Dmitry Vyukov. Memory
Tagging and how it improves C/C++ memory safety.
CoRR, 2018.

[52] Chengyu Song, Hyungon Moon, Monjur Alam, Insu
Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and
Yunheung Paek. HDFI: Hardware-Assisted Data-Flow
Isolation. In S&P, 2016.

[53] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard,
Kurt B. Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly. In ASPLOS, 2015.

[54] G. Edward Suh, Jae W. Lee, David Zhang, and Srini-
vas Devadas. Secure program execution via dynamic
information flow tracking. In ASPLOS, 2004.

[55] Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer
Jaleel, and Stephen W. Keckler. Implicit Memory Tag-
ging: No-Overhead Memory Safety Using Alias-Free
Tagged ECC. In ISCA, 2023.

[56] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. SoK: Eternal War in Memory. In S&P, 2013.

[57] TechPowerUp. Intel "Raptor Lake" Core i9-13900 De-
lidded, Reveals a 23% Larger Die than Alder Lake.
https://www.techpowerup.com/297506/, 2022. Ac-
cessed: 2022-10-01.

[58] Martin Unterguggenberger, David Schrammel, Pascal
Nasahl, Robert Schilling, Lukas Lamster, and Stefan
Mangard. Multi-Tag: A Hardware-Software Co-Design
for Memory Safety based on Multi-Granular Memory
Tagging. In ASIACCS, 2023.

[59] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja
Malenko, Stefan Mangard, and Ahmad-Reza Sadeghi.
TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V. In NDSS, 2019.

[60] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization. In USENIX, 2019.

[61] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No Security Without

USENIX Association 33rd USENIX Security Symposium 7175

https://lowrisc.org/docs/minion-v0.4/tag_core/
https://lowrisc.org/docs/minion-v0.4/tag_core/
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.techpowerup.com/297506/

Integrity : Breaking Integrity-Free Memory Encryption
with Minimal Assumptions. In S&P, 2020.

[62] Emmett Witchel, Josh Cates, and Krste Asanovic. Mon-
drian memory protection. In ASPLOS, 2002.

[63] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert M. Nor-
ton, and Michael Roe. The CHERI capability model:
Revisiting RISC in an age of risk. In ISCA, 2014.

[64] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and
Christos Kozyrakis. Hardware Enforcement of Applica-
tion Security Policies Using Tagged Memory. In OSDI,
2008.

A Appendix

A.1 DRAM Error Simulation
Table 7 lists the fault types given in Table 6 in more detail.
As the study by Beigi et al. measures fault rates for two
different DRAM vendors, we average over the reported rates.
Our Monte-Carlo simulation samples from the given set of
faults. After deciding the fault type, we generate the number of
faulted bits depending on the fault type. For single-word and
single-column faults, we uniformly draw a number between 1
and 4 deciding how many bits are faulted. We discard zero-
bit results. We then sample an error that has the previously
sampled number of bits set. For larger faults such as row
faults, we draw the number of faulted columns according to
the fault type. We then proceed to draw the number of faulted
bits per faulted column. The number of faulted columns in the
same burst window is decided by computing the probability
that we see only one faulted column in the burst and sampling
from this distribution. If multiple columns are present, we
draw the number of affected columns uniformly and allow for
up to 8 faulted columns in the burst window. Thus, row faults
that affect multiple columns are slightly exaggerated, as the
number of faulted columns per burst window would follow a
hypergeometric distribution.

A.2 Glossary of Terms
Table 8 lists the symbols and terms used in this paper.

Table 7: The detailed fault classes that we consider in our
analysis.

Class Fault Bits Rate
Single-bit Single-bit 1 55.06%

Multi-bit Single-word 4 0.325%
Single-column 4 3.85%

Subsequent Two-column 8 2.84%
Single-pin 8 0.67%

Large-scale

Partial row 32 24.345%
Single row 32 0.26%
Single row + single bit 32 0.975%
Two row 32 4.125%
Consecutive row 32 0.555%
Cluster row 32 5.7%
Single bank 32 0.065%
Quarter device 32 0.135%
Half device 32 0.09%
Full device 32 0.605%
Single lane 32 0.4%

Table 8: Table of symbols

n Number of message blocks
X Tag Size
N Ciphertext Block Size
P Probability
S Syndrome (Equation (5))
T Checksum (Equations (1), (4) and (10))
e j Error in j-th block
eT Error between stored and supplied memory tag
HW Hamming Weight
Tth Hamming weight threshold for error correction
LL,LU Hamming weight bounds for f -Encrypt
M j Message block j
MT Encoded Memory Tag
M′T Encoded Memory Tag supplied during the mem-

ory access
Ci Ciphertext block i
C′i Ciphertext block i read from DRAM
H Secret hash key
H i i-th exponent of hash key
H Set of feasible hash keys (Equation (3))
C f Set of misinterpreted error location indicators

(Equation (7))
MT Set of tags for f -Bounded (Equation (12))
ED Data encryption cipher
EK Blinding cipher for MAC

7176 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Authenticated Encryption
	DRAM Structure and Faults
	Memory Tagging
	The MAGIC Mode

	Combining Integrity Protection, Authenticated Encryption, and Memory Tagging
	Design Overview
	Naïve Tag Encoding

	Encoding Tags for Voodoo
	Check Pattern Encoding
	Encrypted Tag Encoding
	Bounded Hamming Weight Encoding
	Case Study on Tagged Architectures

	DRAM Error Detection and Correction
	Fault Model
	Detection and Correction Capabilities
	Monte-Carlo Simulation
	Error Correction Latency

	Evaluation
	Implementation in gem5
	Performance Evaluation
	Area Estimation

	Related Work
	Conclusion
	Appendix
	DRAM Error Simulation
	Glossary of Terms

