
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

CO3: Concolic Co-execution for Firmware
Changming Liu, Alejandro Mera, and Engin Kirda, Northeastern University;

Meng Xu, University of Waterloo; Long Lu, Northeastern University
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-changming

CO3: Concolic Co-execution for Firmware

Changming Liu
Northeastern University

Alejandro Mera
Northeastern University

Engin Kirda
Northeastern University

Meng Xu
University of Waterloo

Long Lu
Northeastern University

Abstract
Firmware running on resource-constrained embedded micro-
controllers (MCUs) is critical in this IoT era, yet their security
is under-analyzed. At the same time, concolic execution has
proven to be a successful program analysis technique on con-
ventional workstation platforms. However, porting it to the
MCUs faces challenges, such as incomplete and inaccurate
emulation of hardware peripherals, reliance on customized
hardware, and low execution speed.

CO3 is a firmware-oriented concolic executor attempting to
address these limitations. CO3 runs the firmware concretely
on a real MCU to utilize its fidelity. Unlike previous designs,
CO3 gets rid of the slow or proprietary debugging interfaces
for synchronization between the MCU and workstation. In-
stead, CO3 instruments the firmware source code to strategi-
cally report runtime information via a basic serial port to a
workstation where symbolic constraints are constructed and
solved. We further combine CO3 with a semi-hosted firmware
fuzzing framework to create a hybrid fuzzer (SHACO).

The evaluation shows that CO3 outperforms state-of-the-
art (SoTA) firmware-oriented concolic executors by three or-
ders of magnitude while incurring mild memory and runtime
overheads. It is also faster than SymCC, a general concolic
executor. When evaluated on the existing benchmark, SHACO
finds all known bugs in a much shorter time. It also found
seven bugs from three new firmware samples. All new bugs
have been confirmed and patched responsibly.

1 Introduction

In this era of Internet-of-Things (IoT), firmware running
on resource-constrained microcontrollers (MCUs) are fun-
damental components of the cyberspace infrastructure [5].
MCU-based firmware controls essential facilities like power
grids, factory machines, and smart homes. The security of the
firmware is of paramount importance [29].

Unfortunately, the security situation for firmware is dire.
Attacks exploiting vulnerabilities in firmware have raised seri-
ous concerns [36, 41, 44]. This is primarily because firmware

runs on constrained devices for efficiency and cost reduction
purposes. As a result, they do not have access to the security
features (e.g., ASLR) shipped with conventional operating
systems (e.g., Linux). MCU devices also lack the necessary
hardware support (e.g., MMU) on which many security mech-
anisms depend. Recent research [59] shows that attack mitiga-
tion techniques on MCUs are significantly lagging compared
to their desktop counterparts. Consequently, detecting bugs
in the firmware before deployment is imperative to mitigate
these security threats.

On the front of vulnerability detection, concolic execution—
a prominent software testing technique—has seen tremendous
success and demonstrated great edges over traditional sym-
bolic execution in workstation applications (e.g., desktop and
server programs), especially in identifying critical security
risks [26, 27, 49, 52, 56, 60]. Different from classic symbolic
executors (e.g., [10, 55]) which aim to explore all execution
paths at the same time, a concolic executor requires an con-
crete input to bootstrap [26]. Through maintaining both sym-
bolic and concrete states as the program-under-test executes,
a concolic executor gains more flexibility in using different
states to explore different parts of the program, taking the ad-
vantages of both sides. As an example, a majority of program
states can be explored concretely (e.g., by a fuzzer) in a cost-
effective manner, while the symbolic engine is only engaged
to break through “narrowly guarded” conditions. This forms
the logical foundation of hybrid fuzzing [56, 60, 63].

Besides this intrinsic synergy with fuzzing, concolic execu-
tion also addresses a scalability limitation in classic symbolic
execution, modeling the execution environment (e.g., system
calls or even hardware). Concolic execution typically uses
taint tracking to distinguish symbolic values from concrete
ones at runtime. This allows a concolic executor to observe
whether interactions through an environment interface are
symbolic. If not, there is no need to symbolically model this
interface. In comparison, determining this information stati-
cally is intractable for classic symbolic executors.

In firmware testing, recent years have seen a plethora of
bug detection techniques tailored towards firmware, as evident

USENIX Association 33rd USENIX Security Symposium 5591

by the extensive list of fuzzers [9, 24, 38, 42, 43, 50, 51, 64]
and symbolic executors [4, 13, 15, 20, 28, 40, 61]. Due to the
resource-constrained nature of MCUs, performing fuzzing or
symbolic execution entirely on the MCU is impractical. As
a result, recent works tend to rehost the firmware from its
native environments (i.e., the MCU) to a much more powerful
platform (i.e., a workstation) either through emulation [20,33]
or hardware-in-the-loop [4,13,17,35,45,61] (HiL). Emulation
inherently does not meet the concolic execution’s requirement,
which requires an authentic execution environment (e.g., the
real hardware), while MCU emulators are rarely complete nor
accurate in their modeling [23].

On the other hand, while existing HiL approaches [17, 28,
35] engage the real hardware using debugging interfaces, they
have not yet formed into a firmware-oriented concolic execu-
tor. Specifically, HiL-based symbolic executors are used as
a standalone system instead of being combined with fuzzing.
Moreover, they rely on versatile yet complex debugging fa-
cilities for synchronization between the MCU and worksta-
tion. Unfortunately, established research shows that this de-
bugging interface is often the bottleneck of HiL-based sys-
tems [17, 35, 61]. This is because a complex procedure is
involved to perform simple functionalities. For example, as
illustrated in SURROGATES [35], seven steps are typically in-
volved to perform a simple MCU hardware access. Each step
further involves multiple gdb messages. As a result, as low as
five hardware accesses can be performed per second. Many
works strived to crack this bottleneck. One popular theme of
solution is to use expensive or even commercially unavail-
able FPGA-based debugging interfaces [17, 35]. However,
the sheer cost and customization required by such approaches
deeply undermine their applicability. Besides, HiL approaches
cannot support all hardware features available on a MCU. For
example, they require halting the MCU’s processor for state
synchronization. This violates the real-time requirement that
firmware commonly relies on.

Instead of accelerating the debugging process, we took a
different route: to avoid the debugging interface completely.
We designed a system, CO3, to reduce the synchronization
cost between MCU and workstation, making CO3 a practical
concolic execution for firmware testing. More specifically,
CO3 faithfully executes firmware on the MCU with real hard-
ware but keeps all hardware events local to the MCU without
forwarding them. Instead, CO3 instruments firmware source
code strategically which instructs the firmware to report and
only report concrete execution states that are relevant to sym-
bolic reasoning to the workstation at runtime. The workstation
handles resource-demanding tasks such as building and solv-
ing symbolic constraints by receiving firmware states from
the MCU instead of emulating the firmware. This design com-
bines key features of MCU and workstation, i.e., full-fidelity
concrete execution and powerful symbolic reasoning with
low communication cost. CO3 does not need any debugging
interface or customized hardware to bridge MCU and work-

station; only a basic serial port is sufficient, warranting good
applicability.

We evaluate CO3 as being three orders of magnitude faster
than the state-of-the-art (SoTA) HiL approach. It is even faster
than SymCC [49], a SoTA workstation concolic executor.
We further experimented with hybrid fuzzing, another bene-
fit of concolic execution, through combining with SHiFT, a
SoTA semihosted firmware fuzzer. We named this combina-
tion SHACO. We compare SHACO with various bug detection
tools for firmware. SHACO outperforms all of them in iden-
tifying all known bugs in a much shorter time. SHACO also
found previously unknown bugs, including three undefined
behaviors and four buffer overflows in three actively main-
tained firmware samples, all confirmed and patched by the
developer.

In summary, we make the following contributions:
• We introduce a novel design of concolic executor for

firmware, CO3, which engages the MCU without resort-
ing to debugging interface. While utilizing MCU’s hard-
ware, CO3 greatly outperforms the traditional HiL-based
design, achieving workstation-level performance.

• We combined CO3 with a semi-hosted firmware fuzzer,
SHiFT, to build the first hybrid fuzzer for firmware test-
ing (SHACO) which outperformed all SoTA works. Addi-
tionally, SHACO found seven previously unknown bugs
in three new firmware samples.

• Artifacts and source code of CO3 are available at https:
//github.com/Lawliar/CO3

2 Background

2.1 Architectural Features of the MCUs

MCUs are self-contained and resource-constrained by design
for economical and energy-saving reasons [2]. These design
goals make them ubiquitous in critical infrastructure such as
medical and industrial devices, aerospace, defense, and auto-
motive [1]. Typical MCUs implement a single address space
with designated RAM, FLASH, and peripheral areas. The
peripherals’ blackbox nature and diversity make them hard
and tedious to model [23] in an emulated environment. The
core processor interacts with these components in three ways:
MMIO, interrupts, and DMA [24]. Thus, an ideal firmware
concolic executor should support these three channels without
modeling the peripherals.

Previous work [46] categorized embedded systems into
three types (I, II, and III) according to their software architec-
ture. This paper focuses on firmware running on Type II (i.e.,
RTOS-based) and Type III (i.e., bare-metal) MCUs. Type I
MCUs support general OSes (e.g., Linux) and have more com-
putation power, making running existing concolic executors
(e.g., SymCC) on these systems feasible.

5592 33rd USENIX Security Symposium USENIX Association

https://github.com/Lawliar/CO3
https://github.com/Lawliar/CO3

 symbolicconcrete
(e.g., unit test, fuzzing)

static analysis

state exploration
(e.g., KLEE, Mayhem)

[concolic execution]

verification
(e.g., SeaHorn)

abstract interp.
(e.g., KeY)

constraint concretization
(e.g., DART, CUTE, S2E)

emulated symbolic exec
(e.g., SAGE, Driller, QSYM)

native symbolic exec
(e.g., SymCC)

co-execution
(CO3 – our work)

Figure 1: Program analysis techniques that intersect with
symbolic and concolic execution and how CO3 is positioned.

2.2 Symbolic and Concolic Execution

Despite being prominent program analysis techniques, both
terms (i.e., symbolic and concolic execution) are overloaded
and are sometimes used interchangeably. In this section, we
pin down the definition and distinction of these terms for this
paper, build a knowledge map on this topic (see Figure 1),
and position CO3 on the map.

The concept of symbolic execution is proposed to differ-
entiate it from concrete execution. In a concrete execution, a
program runs on a concrete test case, and a single execution
path is explored. In contrast, symbolic execution can simulta-
neously explore multiple, if not all, paths that a program could
take — by marking partial or all inputs as symbolic. A sym-
bolic engine follows the program control flow and produces
symbolic formulae representing the flow. These symbolic
formulae are fed to a solver to answer queries about the pro-
gram’s properties, such as whether the program can take a
particular path or reach a specific (buggy) state.

Classic symbolic executors (e.g., KLEE [10], AEG [6],
and angr [55]) aim to symbolically track all sources of non-
deterministic input. This makes them static despite the name
“executor”. In fact, for classic symbolic execution, its abilities
to check property violations on all execution paths create a
nice synergy in the domain of software verification and ab-
stract interpretation(e.g., SeaHorn [30], KeY [3]). However,
such an exhaustive exploration strategy faces two major chal-
lenges: incomplete environment modeling and path explosion.
A concolic executor mainly differs from a symbolic one in
addressing these two challenges.

A classic symbolic executor needs to soundly model the
execution environment to capture the program’s interaction
with it. This is particularly hard in the MCU as its environ-
ment is composed of highly diverse peripherals. Modeling
them has been proven to be infeasible [23]. Even worse, for
completeness reasons, the modeling is needed even when the
interaction with a peripheral rarely involves symbolic input.
To ease the manual modeling efforts, DART [26], CUTE [52],

and S2E [15] proposed using concrete values, instead of sym-
bolic ones, to interact with the environment. This convenience
comes with the expense of potential unsoundness and incom-
pleteness; luckily, the benefit outweighs the cost in practice.
Needless to say, concretization requires the availability of en-
vironments (e.g., the actual hardware) and faithful interactions
with them.

In addressing path explosion, unlike classic symbolic ex-
ecutors that explore a program in a breadth-first manner, a con-
colic executor uses a depth-first strategy. It collects symbolic
constraints along the path dictated by a concrete input and
generates new inputs based on that single execution [27, 52].
Doing so enables better synergy with fuzzing [56], arousing
extensive research interests [14, 60, 63].

Also, concolic execution is not to be confused with the
hybrid execution proposed in Mayhem [11]. Although hybrid
execution does use concrete execution to alleviate the work-
load of symbolic exploration, its main purpose, however, is
to approximate path segments instead of being an indepen-
dent input generator. This makes it less intuitive to combine
with fuzzing. And yet, like Driller [56], Mayhem is emulation-
based and requires binary rewriting for concrete execution and
RPC for communication — features not commonly available
and rather limited on the MCU [8, 47].

As highlighted in two concolic executors (i.e., Qsym and
SymCC), a major impediment to concolic execution is speed.
Qsym [60] shows that symbolic tracking can be accelerated
using dynamic binary instrumentation. SymCC [49] further
reveals that even dynamic binary instrumentation is slow: the
compiler can implant the symbolic tracking logic directly into
the binary — enabling symbolic tracking at native speed!

Figure 1 summarizes the flavors of symbolic execution and
the evolution of concolic execution. Built upon the power of
native symbolic execution enabled by SymCC, CO3 lifts its
reliance on a UNIX-like system for the purpose of placing
the concrete execution on the MCU. CO3 channels concrete
execution with symbolic tracking on the workstation through
our carefully designed protocol, achieving native execution
on both sides (hence the name, co-execution).

2.3 Symbolic Execution for Firmware

Most symbolic executors built for firmware did not improve
the symbolic execution itself, e.g., they adopt the same path-
exploration, symbolic tracking strategies, etc., as their work-
station counterparts. The major efforts in building such a
system have been to resolve the hardware dependencies, as
they all adopted the rehosting method.

As shown in Figure 2, where we summarize all rele-
vant solutions, no matter it is (a), the binary solutions (e.g.,
Avatar [61], SURROGATES [35], Symbion [28]) where the
firmware is rehosted in an emulator or (b), the source code
solutions (FIE [20], Inception [17]) where the source code is
interpreted in a symbolic engine, they address this problem in

USENIX Association 33rd USENIX Security Symposium 5593

Firmware

Binary

Workstation

Firmware

Source
code

Emulator

Emulated
MMIO & Interrupt

Handled

MMIO & Interrupt

Symbolic
Interpreter

IR

MCU

Real MMIO & Interrupts

Symbolic

Handler

Symbolic

Solver

New

 Testcases

a b

a1 a2
b1 b2

Figure 2: Existing design of symbolic execution for firmware.

the same way. Specifically, they either engage the real hard-
ware through the HiL design (denoted in Figure 2 by (a1) and
(b1)) or emulate the hardware through heuristic-based rules
or symbolic values (denoted by (a2) and (b2)). FIE [20], for
example, follows (b2). It symbolically interprets the source
code of the firmware and handles its MMIO by symboliz-
ing them while firing interrupts according to a pre-defined
specification.

Binary and source code solutions address very different
problems. Source code solutions have richer semantics but
are dependent on the availability of source code, while binary
solutions are, in theory, more universal but have a harder time
locating and distinguishing components in MCU’s address
space. Nonetheless, these works have severe limitations. The
HiL approaches require highly customized connectivity inter-
faces due to outrageous synchronization latency between the
MCU and the workstation. For example, SURROGATES [35]
and Inception [17] use tailored, commercially unavailable
FPGA-based debugging interfaces to connect the MCUs to
the workstation. Such expensive customization deeply under-
mines their applicability. Yet, they are still slow (i.e., slower
than KLEE) and fail to support all hardware features (e.g.,
real-time operation). To use the emulated hardware, the mod-
els proposed by the emulation approaches are inaccurate and
incomplete. This leads to various problems caused by the lack
of fidelity [23]. In contrast, using a better model, or even the
real hardware, can prune the symbolic exploration [17] and
mitigate state explosion and false positives [43]. In summary,
existing solutions are limited in fidelity, speed, or applicability.
Hence, these solutions have difficulties finding more, deeper,
and real bugs in firmware.

3 Reflection on Hardware-in-the-Loop (HiL)

At the expense of physically engaging the hardware, HiL-
based techniques excel over emulation-based approaches in
reducing false positives. However, in current HiL designs,
hardware is only involved in a very passive manner. Specifi-

cally, HiL requires a cumbersome procedure to communicate
messages and commands with the MCU. For example, to re-
quest MMIO data on behalf of the firmware-under-test, the
workstation has to: 1) pause the MCU, 2) set a hardware
breakpoint at a specific address on the MCU, 3) command to
resume the execution, 4) wait for the breakpoint to be hit, and
finally, 5) retrieve data from the MCU. This process happens
every time a hardware interaction occurs. It relies heavily on
debugging protocols and facilities which, even when publicly
available, are not intended for speedy testing.

In this paper, we challenge this “intrusive” debugging prac-
tice by asking whether we can make the MCU work with
the workstation cooperatively and voluntarily. Drawing an
analogy to hypervisor technology, CO3 is an experimental
solution that transits from full virtualization to paravirtual-
ization for smooth and accelerated analysis on firmware. In
the context of concolic execution for firmware, “paravirtual-
ization” means that the firmware running on MCU is fully
aware that it is executed concolicly and will proactively re-
port all necessary information for symbolic tracking to the
workstation.

This idea is partially inspired by SymCC, which instru-
ments and compiles the target program to implant concolic
execution capability into the program itself. The instrumented
code allows the program to actively taint-track symbolic val-
ues and instructions instead of waiting for an interpreter to
passively single-step it. In CO3, we take this concept to the
next level by enabling concrete execution on the MCU plat-
form, and channeling it with the symbolic execution on the
workstation, realizing native executions on both platforms.

This results in three major benefits:

1. It assures the highest fidelity of all hardware features
available on the MCU without having to model them,
thanks to the nature of concolic execution.

2. There is no need to forward any hardware event (e.g.,
MMIO), as they all happen inside the MCU. In doing
this, we do not need to host firmware emulation and can
directly construct symbolic formulae on the workstation.

3. It takes advantage of the plentiful computing resources
on the workstation for heavy symbolic tracking.

However, CO3 does require source code for instrumentation.
For MCU vendors and firmware developers who intend to
boost the security assurance of their firmware, source code
access is not a limitation. However, we acknowledge that CO3
is not a solution for blackbox testing for firmware.

Remaining Challenges Although the above concept already
shows noticeable advantages over the HiL design (e.g., sup-
port all hardware features, no need for firmware emulation
and heavy synchronization), two major challenges and ques-
tions remain: 1). how does the workstation interact with the
MCU and how to minimize the impact of this interaction?
2). how can we symbolize the physical input channels on the
MCU due to the lack of a common abstraction layer? The

5594 33rd USENIX Security Symposium USENIX Association

former is particularly important, as the existing HiL works
engage the MCU through a cumbersome debugging protocol
which forces them to use prohibitively expensive debugging
interfaces. CO3 needs to come up with a lightweight protocol
that can sustain the most commonly available interface—the
serial port [43]. In CO3, we achieved this via conservative
compile-time analysis to extract (1) a skeleton of the sym-
bolic formulae which we termed symbolic value flow graph
(SVFG), and (2) as many constants in the formulae as possi-
ble.

4 Design

To demonstrate how SVFG works, take Figure 3 as an exam-
ple. The left side depicts the instrumented firmware running
on the MCU in the form of LLVM IR. The right side depicts
the symbolic handler on the workstation with the knowledge
gained from compile-time analysis of the firmware. Through
compile-time static analysis, we already know all symbolic
operations to build the symbolic formulae and some values
for the operands (i.e., values in green). Reporting these opera-
tions and operands is redundant. Instead, the firmware only
needs to communicate missing pieces from the MCU to the
workstation (i.e., underlined red values), and the firmware
should report them at runtime when they are known. Inter-
ested readers may refer to Appendix A.1 for a verbose reading
of this example.

At CO3’s very core is a compiler that can be abstracted
into the following interface:

compile(src)→ bin∗ (MCU) + SV FGs (workstation)
Specifically, CO3 takes in the source code of the firmware
and produces two outputs:

• bin∗: an executable binary of the firmware for the MCU
with instrumented value reporting;

• SV FGs: SVFGs on how to build symbolic constraints
by consuming reported values from the MCU.

The actual process of a single concolic execution round is
distributed across two platforms, as abstracted below:
[on MCU]:
execute(bin∗, input)→ result + trace (reported on-the-fly)
[on workstation]
build(SV FGs, trace)→ constraints

solve(constraints)→ input # send to execute() on MCU

Interested readers may also consult Figure 4 for a more
complete and graphical overview of this process. The rest of
this section focuses on the design details of the SVFG, and
symbolizing MCU physical input channels.

4.1 Symbolic Value Flow Graph (SVFG)

In CO3, an SVFG is a collection of data-flow slices obtained
at compile-time. Each data-flow slice captures how symbolic

SymSolveConstraint(_, _)

ReadSymMem(, 4)

SymAdd

SymPara 1SymPara 1

SymLessThanSymLessThan

WorkstationMCU

SymBuildInt(_, 4)SymBuildInt(0x40, 4)

SymSolveConstraint(_, true)

Symbolic Handler

@modbusProcess(i32 %0){
 %1 = SymPara(1)
 %2 = load i32, i32* @var
 %3 = ReadSymMem(@var, 4)
 %4 = add i32 %0, %2
 %5 = SymAdd(%1, %3)
 %6 = load i32, i32* MMIO_PTR
 %7 = SymBuildInt(%6, 4)
 %8 = icmp slt i32 %4, %6
 %9 = SymLessThan(%5,%7)
 SymSolveConstraint(%9, %8)
 br i1 %8, label %10, label %11
... Instrumented Target Program

ReadSymMem(0x24007ab0, 4)

SymAdd

Figure 3: A simplified example of symbolically-instrumented
firmware running on the MCU and the SVFG on the work-
station. Shaded lines are the instrumentation code in LLVM
IR, unshaded lines are the original instructions. Values in
green are already known at compile-time. Values in red are
unknown until runtime and, thus, need to be reported.

values flow through a fraction of the firmware execution at
runtime. The right side of Figure 3 is a sample SVFG.

Symbolic value flow stems from three different places,
namely, 1 constant literals, 2 memory reads, and 3 function
parameters. These nodes are named leaf nodes in an SVFG.
Through a series of computations (via computation nodes X),
these value flows will end up in one of two places: 1 passing
to solver, or 2 memory write. These two places are known
as root nodes in an SVFG, and represent how constructed
symbolic formulae are ultimately used.

Multiple SVFGs can be connected in two ways: (1) via
a memory write then read at the same memory address, or
(2) via a function call where the caller passes the value as
an argument. On the compiler side, the process of extracting
SVFGs is to convert the firmware source code into a static
single assignment (SSA) form that encodes the data-flow
information. In marking symbolic nodes, the rule of thumb
is to treat 1) every memory read (i.e., the load instruction
in LLVM IR) as a leaf symbolic read, and 2) every memory
write (i.e., the store instruction) as a root memory write;
unless the compiler can decide the values are compile-time
constant.

The task on the workstation side is quite straightforward.
Information reported by the MCU in real-time instructs which
SVFGs to construct together with:

• concrete values for non-symbolic operands in compu-
tation and pass-to-solver nodes (e.g., the true value in
SymSolveConstraint in Figure 3).

• memory addresses where the content is symbolic when
accessed at runtime to link SVFGs via 2 → 2 flow. (e.g.,
address 0x24007ab0 in ReadSymMem in Figure 3).

• function calls at runtime to select which SVFGs to build
and link SVFGs via function call→ 3 flow.

The workstation only needs to backtrack the SVFGs from
their roots to the leaves to reconstruct the symbolic formula.

USENIX Association 33rd USENIX Security Symposium 5595

4.2 Runtime Operations on MCU

In this part, we focus on how the firmware is instrumented
to properly track and report information that the workstation
needs to construct symbolic constraints.
1 Constant literals. It is common to build symbolic formu-
lae containing values already known at compile-time. For this
type of leaf node, CO3 directly embeds their literal values
inside the SVFGs stored at the workstation; thus, the MCU
does not need to report them.
2 Memory reads and 2 writes. MCUs implement a single
address space where RAM, FLASH, and MMIO are mapped
into different regions that are predetermined per architecture.
For example, on ARM Cortex-M, the most popular archi-
tecture for MCUs, FLASH is in [0x00000000,0x20000000),
RAM is in [0x20000000,0x40000000), and MMIO is in
[0x40000000,0x60000000). This allows the firmware to dis-
tinguish which memory region its memory access is about by
examining the value of the address.

RAM functions like a working memory where the firmware
can read and write arbitrary values, including values control-
lable by user input (i.e., symbolic values) and supplied at
runtime by the environment, such as peripherals (i.e., con-
crete values). As a result, two SVFGs can be connected in
two ways:

1. A root node of SVFG1 writes a concrete value to address
X and a leaf node on SVFG2 reads from X .

2. A root node of SVFG1 writes a symbolic value to address
X and a leaf node on SVFG2 reads from X .

Note that case 1) is not interesting to CO3. Although it can,
the firmware does not need to report the concrete value nor
the memory address because they does not involve any sym-
bolic operation. Also this information can be subsumed by a
reporting of non-symbolic operands of the computation node.
Case 2) on the other hand, is crucial in building the symbolic
constraint because this allows two SVFGs to be merged and
the continuation of formula building without the need for a
symbolic memory model.

In order to track the mapping between memory address and
symbolic values, conventional concolic executors use shadow
memory [49]. The shadow memory essentially stores sym-
bolic values indexed by their corresponding addresses. CO3
incorporates the same idea, but needs to make one decision:
where to host the shadow memory?

Since the MCU is too limited, the expensive shadow mem-
ory has to be hosted on the workstation. However, separating
the shadow memory from the concrete execution requires
the MCU to report the memory address when executing ev-
ery ReadSymMem and WriteSymMem instruction. In doing so,
the workstation is informed with all interactions between
the firmware and RAM, and thus can keep its shadow mem-
ory up to date as the concrete execution goes on the MCU.
However, this approach would incur much traffic since the
firmware interacts with RAM intensively. Furthermore, if the

user-controlled input is narrowly scoped, most of the report-
ing would not be interesting to the workstation as they fall
into case 1).

Therefore, in CO3, we task the MCU to keep track of the
symbolic state of the RAM. This is done by implanting an-
other shadow memory at the MCU side. Instead of storing the
real symbolic values of each byte like its workstation counter-
part, this shadow memory only stores the symbolic state for
them, i.e., each bit in this shadow memory indicates the sym-
bolic state of one byte in the RAM of the MCU. Through the
MCU-side shadow memory, we enable the MCU to memorize
the symbolic state of every byte on RAM. This allows report-
ing only for the store and load operations that would affect
the shadow memory on the workstation. For example, when
CO3 tries to read from RAM, the MCU can quickly check
if this needs to be reported by checking the shadow memory
and only report the address when any of the bytes being read
is symbolic. This reduces unnecessary traffic significantly.

For 2 memory writes, the MCU will examine the sym-
bolic state of the value to store and the piece of memory being
written. If both are concrete, i.e., writing a concrete value to
a concrete memory, no action needs to be taken. However, if
any of them is symbolic, the MCU will report to the worksta-
tion about the address it is writing to, and update its shadow
memory accordingly. The workstation will use this to execute
the write operation, and update its shadow as well.
Other memory-mapped regions. For FLASH, due to its
read-only nature, no symbolic value will be written to it, and
no symbolic value will come from it. Thus, the MCU will
always treat its read as concrete and do nothing. On the other
hand, MMIOs, which the firmware uses to interact with the
environment, are complex and hard to model. Thus, CO3 uses
concrete values to interact with the MMIOs to use the real
peripheral hardware. In writing to MMIO, the firmware will
simply write the concrete runtime values to it; any symbolic
taint of that value, if exists, will be lost. The only exception
on MMIO handling is the data register (DR) which serves as
a source of symbolic input and is discussed in detail in 4.4.
3 Function Parameters. Like RAM, the symbolic taints
for function parameters and return values must be properly
set when executing the call instruction. More specifically, the
caller needs to update the symbolic state of the parameters so
that they can be correctly referred to in the callee. To that end,
we designate another static section of RAM on the MCU to
keep track of the symbolic states of the function parameters
when executing the call instruction. This is only to properly
propagate the symbolic states of the parameters between the
caller and the callee; thus, no reporting is needed. The work-
station does the same, except it passes the real symbolic values
instead of the symbolic states.
X Non-symbolic operands in computation nodes. A ma-
jor source of reporting is when a computation node involves
operands in contrasting symbolic states. To illustrate, con-
sider a SymAdd operation that reads its left-hand side (LHS)

5596 33rd USENIX Security Symposium USENIX Association

operand from RAM and the right-hand side (RHS) operand
from MMIO. According to the MCU-side shadow memory,
the LHS operand is symbolic. And the RHS is concrete. Thus,
there is address reporting for the LHS and no address report-
ing for the RHS. As a result, the workstation will read the
symbolic values from its shadow memory for the LHS and
mark the RHS as concrete. However, to successfully build
this SymAdd operation, the concrete value for the RHS also
needs to be reported. The instrumented firmware is aware of
this situation due to taint tracking. Hence, it will report the
concrete value of the RHS to the workstation.
X Taint tracking for computation nodes. After establish-
ing the sources of the SVFG, these symbolic values will go
through a series of computations. From the MCU’s perspec-
tive, this process serves merely as the propagation of the
symbolic states. Like taint tracking, the result is just a logical
disjunction of the taint states of all its operands. Thus, we re-
place these symbolic operation instructions all with a simple
logical disjunction instruction at compile time, reducing the
binary size.
1 Pass-to-solver nodes. This type of node corresponds to a
conditional branch that can be toggled to generate new input.
In such a case, the MCU will report to the workstation which
branch the concrete execution took, and the workstation will
negate this formula to pass to the symbolic solver to generate
new input that goes to a different branch than the one taken
by this concrete execution.

4.3 Complication of the SVFG

Although Figure 3 shows a tree-like structure for SVFG, it
is actually a graph because of the existence of φ-node in
SSA [19]. Code in SSA form uses φ-node to choose between
different values according to different control flows, and it
is common to use φ-node on loop boundaries. Regarding the
SVFG, a φ-node can introduce a back edge to its tree-like
structure — making it a graph. For example, depending on
whether the control flow comes before the loop (i.e., the first
iteration) or inside the loop (i.e., the subsequent iterations),
such φ-node will take its initial value, which is defined before
the loop or the incremented one defined inside the loop. This
requires CO3 to embed control flow information in the SVFG,
as we need it to inform which value the φ-node chooses on
the side of the workstation.

To that end, we group computation nodes by the basic
block (BB) they belong to. The naive solution would be for
the firmware to report every BB executed. In doing so, we
inform all φ-nodes on the workstation about which value they
should choose, as this can be quickly checked by looking at
the immediate preceding BB. Furthermore, the workstation
is also informed about the loop, e.g., how many times it has
been iterated and which branch it took inside the loop, if any.

Straightforward as this solution might sound, it has a se-
vere drawback: if all operands of a φ-node are not symbolic,

this reporting is redundant—this is similar to why reporting
operands of a SymAdd is redundant when both operands are
concrete. Reporting those BBs ramps the traffic up but is not
interesting to the workstation. Therefore, before reporting it
to the workstation, the instrumented firmware needs to check
if the BB contains any symbolic operation. To achieve this,
CO3 instruments an instruction in the firmware that aggre-
gates the symbolic states of all nodes within the BB through
logical disjunction in compile-time at the end of each BB.
The resulting bit indicates if this BB contains any meaningful
symbolic operation and should be reported at runtime.

While this fix eliminates the unnecessary traffic, it intro-
duces another problem which we call symbolic residual. To
illustrate, consider an in-loop BB that contains one read oper-
ation from the shadow memory. When it is first executed, this
read can be symbolic (i.e., the memory cell contains symbolic
value). As a result, such a read and the BB it belongs to will
be reported to the workstation. However, when that BB is
executed again, the read shifts address, and becomes concrete.
Worse still, the other operations within the same BB are also
concrete. Neither the read nor the BB would be reported in
such a case. Hence, their symbolic states will not be updated
on the workstation side. Subsequently, if any formula depends
on such a read, it will wrongfully use its symbolic expression
that remains on the workstation.

As a result, we also report the BB to the workstation once
it switches wholly from symbolic to concrete to eliminate this
residual. Note that only the state switch will be reported. If the
BB stays concrete, it will not be reported. Although the read
is not reported in the previous case, the BB will report a state
switch. As a result, the workstation will execute the nodes
within the BB again. When it executes the read operation, it
will know that the read does not come from a read reporting.
Hence, it will know that this read is concrete and mark it
as such, keeping it up-to-date. Also, on the MCU side, to
memorize the state of the previous execution of every in-loop
BB, we allocate one bit per in-loop BB on the function’s stack.

After we switch from reporting every BB to only “symbolic”
BBs, we cannot inform the φ-node on the workstation in the
old way, i.e., by checking the immediate preceding BB, as
there is no guarantee that either the preceding BB or the BB
containing the φ-node would be reported. However, following
the same idea of reporting only the symbolic BBs, we do not
have to report for every φ-node, i.e., we only need to report
and construct symbolic ones. Thus, what we do instead is to
instrument right after each φ-node to check which value is
chosen and only report when the chosen value is symbolic.
Also, the φ-node has the same issue of symbolic residual, i.e.,
it switches from symbolic to concrete, but the workstation
is unaware. We adopted the same solution as the loop to
eliminate its residual.

USENIX Association 33rd USENIX Security Symposium 5597

4.4 MCU Physical Input Channels

As mentioned in Section 2.1, unlike the workstation with
well-defined abstracted interfaces (e.g., the POSIX-like API),
the MCU uses raw physical channels. MMIO, interrupts, and
DMA were identified, summarized, and recognized as phys-
ical input channels by previous works [23, 24]. Unlike em-
ulation approaches that use manually crafted heuristics to
dynamically identify the input channels, CO3 can easily lo-
cate these channels in the source code based on the insight
that the firmware always configures the input channel before
using it. To handle these channels, CO3 introduces a monitor
to direct the input from the workstation to the physical chan-
nel used by the firmware. This monitor receives input from
the workstation, feeds it to the specified physical channel and
starts executing the instrumented code. We discuss these three
channels in more detail as follows.

Memory-Mapped IOs (MMIOs) The core processor ac-
cesses the MMIO region to interact with the peripherals. The
data registers (DRs) are the main channel through which raw
data flows from peripherals to firmware [24]. To support these
DRs, emulation-based fuzzing approaches, such as P2IM, first
locate them inside the MMIO region dynamically; then when-
ever these DRs are read inside the emulator, fuzzer-generated
input data is provided.

Following P2IM, CO3 also directly feeds input data to the
DR through the monitor. However, unlike P2IM using pattern
matching to identify the DRs, CO3 automatically locates the
DR through a static code scanning and configures the monitor
to feed data to it. During online testing, as the workstation
sends input to the monitor, the monitor will feed such input to
the DR for the firmware to execute upon. Meanwhile, since
the workstation also has symbolic memory that needs up-
dating, the firmware must also communicate the DR to the
workstation. Specifically, the firmware reports the address
and subsequently every read of the DR as it executes. This
enables the workstation to feed input data to the DR’s address
on its end for consumption whenever it receives the message.

Direct Memory Access (DMA) DMA allows data trans-
mission through a DMA controller without the processor’s
intervention. DICE [42] observes that to use the DMA for re-
ceiving inputs, the DMA controller has to be configured with
an input source and a destination buffer. After configuration,
the DMA controller automatically moves the data from the
input source to the destination buffer for consumption.

Following this observation, CO3 directly symbolizes the
destination buffer of the DMA. Specifically, the user first
specifies CO3 to use the DMA channel. Then, CO3 will auto-
matically locate the destination buffer during symbolic com-
pilation. When the testing starts, the workstation sends input
to the monitor; the monitor will feed input data to the config-
ured buffer, symbolize it and start executing the instrumented
firmware. To properly update the workstation, the firmware

Symbolic
Compilation

1. Input Msg
2. Input Addr

Msg

n. End Msg

Workstation
MCU

SVFG

Symbolic
HandlerSerial

Port
Symbolic

Solver

USB
CDC/
UART

Monitor

Instrumented Target Task
DMA INT MMIO

Used
Channel

Source
Code

Offline Preparation
Online Execution

Symbolic
Binary

Seed
Input

New
Inputs

......

Figure 4: CO3’s system overview and communication proto-
col between the workstation and the MCU in action.

reports the address of the destination buffer. Then, the work-
station will know where the input data will be consumed and
symbolize it on its end.

Interrupt Service Routines (ISRs) Firmware follows an
interrupt-driven design for efficiency and power-saving pur-
poses. Supporting their service routines is essential [61].

Emulation-based approaches usually fire interrupt accord-
ing to a pre-defined heuristic due to the inaccessibility of
real interrupt-firing information. HiL approaches generally
rely on a proxy to broker the triggered interrupt. This turns
out to be slow. In CO3, since we run firmware directly on
the MCU, we only need to instrument the ISRs and let them
execute when triggered. The instrumented ISRs behave just
like an instrumented function. Meanwhile, since the interrupt
can be raised at any time during firmware’s execution, it can
arrive in the middle of CO3’s updating the shadow memory,
making it unstable. To solve this problem, CO3 dynamically
disables the interrupt when the firmware enters the CO3 run-
time and re-enables it when the firmware exits it, protecting
its integrity.

Designated Buffer Last but not least, to make the CO3
more flexible, besides supporting all the physical channels
mentioned above, we also support the designated buffer as an
input source. This is based on our observation that, regardless
of what physical channel the firmware uses, it tends to gather
them, place them in a buffer, and begin the main processing
logic, which is of much testing interest. In contrast, the part
of firmware that moves the data from the physical channel
to such a buffer is much less interesting. To support such a
case, the user just needs to specify which buffer to use before
the symbolic compilation. Then, in the testing phase, the
monitor will symbolize such a buffer, report its address to the
workstation, and start executing the instrumented code. After
receiving the address, the workstation will also symbolize the
buffer on its end.

5598 33rd USENIX Security Symposium USENIX Association

Vendor MCU CPU Connectivity FLASH RAM
STM32 F429ZI Cortex-M4 @ 180 MHz UART @ 7.5 Mbauds 2MB 260KB
STM32 L4R5ZI Cortex-M4 @ 120 MHz USB 2.0 @ 12Mbps 2MB 640KB
STM32 H743ZI Cortex-M7 @ 480 MHz USB 2.0 @ 12Mbps 2MB 1024KB

NXP K66F Cortex-M4 @ 180 MHz USB 2.0 @ 12Mbps 2MB 256KB
Microchip SAMD51 Cortex-M4 @ 120 MHz USB 2.0 @ 12Mbps 512KB 256KB

Table 1: List of MCU platforms

4.5 MCU-Workstation Communication

To put everything together, we show the overall workflow in
Figure 4. First, in the offline phase, the user specifies which
input channel the firmware-under-test will use. With this infor-
mation, CO3 automatically locates and configures the input
channel in the monitor. Meanwhile, CO3 symbolically instru-
ments the firmware and performs the compile-time analysis to
produce the symbolic binary and generate the SVFGs. Then,
we feed the SVFG to the workstation and flash the binary on
the MCU.

In the online testing phase, the symbolic handler will initi-
ate the CO3 protocol by sending the seed input. In response,
the MCU sends back a message telling how the input is con-
figured. This is followed by all the formulae-building mes-
sages, finally ending with an End message indicating no more
message to send. In parallel with receiving the messages,
the workstation constructs the formulae, passing them to the
solver to produce new inputs. The newly generated inputs can
be fed back to the MCU to continue the symbolic exploration.

5 Implementation

Symbolic Compilation The symbolic compilation is
through an LLVM pass based on LLVM-14. Thanks to
LLVM’s modular design, we only need to instrument at the
LLVM IR level, and can then lower the IR into arbitrary ar-
chitecture supported by LLVM. In this LLVM pass, we first
use the user-specified input channel to configure the CO3
monitor. Then, we conduct use-def chain and loop analysis
based on SymCC’s instrumentation and output SVFG. We
use the DOT language 1 for recording thanks to its flexibility
and portability. The whole analysis and SVFG add 2K LoC
to the SymCC’s compiler. According to our evaluation, the
generated SVFGs are typically very small in size, ranging
from 60B to 160KB for each function.

MCU Specification As listed in Table 1, we implemented
CO3 on MCUs from STM32 2, Microchip 3, and NXP 4.
We chose these vendors because they are among the most

1https://graphviz.org/doc/info/lang.html
2STM32 MCU Selector, https://www.st.com/content/st_com/en

/stm32-mcu-product-selector.html
3Microchip Product Selection Tool, https://www.microchip.com/en

-us/products/selection-tools
4NXP Product Selector, https://www.nxp.com/products/product

-selector:PRODUCT-SELECTOR.

prominent MCU providers [1].
Note that we use a virtual serial port over USB 2.0 (USB

CDC device) or a physical serial port (e.g., UART) as com-
munication channel connecting the MCU and the workstation.
Users can easily choose the one that fits their needs. Ac-
cording to a survey in SHiFT [43], these are the two most
widely-available communication channels across all surveyed
MCUs. We consider this a significant improvement in applica-
bility as the previous HiL works depend on debugging probes
that are highly customized or even commercially unavailable.

MCU-side Monitor and Runtime We built the monitor
based on FreeRTOS 10.4.2. We chose FreeRTOS because it
is arguably the most popular RTOS for Type II devices [5].
Besides, we only use its basic task-scheduling functionalities.
Any other RTOS that provides such functionalities is also
compatible. For example, we also ported to ChibiOS later in
the evaluation.

As shown in Figure 4, the monitor receives inputs from the
workstation, feeds them to the specified input channel, and
then executes the target program. The instrumented target will
then send back messages to the workstation. For this process,
we designed 35 messages in total, with each ranging from 2
bytes to 13 bytes in length. We further buffer these messages
in a 64-byte data structure on the MCU before sending them
to exploit the 64-byte-sized frame that USB 2.0 uses. We
developed the runtime functions and monitor from scratch in
C. The code comprises only 2.1K LoC in total.

Symbolic Engine CO3’s symbolic engine, as shown in Fig-
ure 4, renders the SVFGs using the boost library 5. It then
sends and receives messages through the libserialport 6, a
cross-platform library for communication between the work-
station’s symbolic engine and the MCU serial port. Based on
the SVFGs and the messages from the MCU, CO3 calls to
the backend of SymCC to construct and solve the symbolic
constraints. The symbolic solver is based on Z3. We set the
same time-out for the symbolic solver as SymCC to align
with the SoTA.

6 Hybrid Fuzz Testing

CO3 explores an firmware program state concolically through
generational search [27]. However, for bug-finding purposes,
concolic execution alone has two inherent limitations:

• Concolic execution is significantly slower than fuzz test-
ing, especially when exploring easy-to-reach states [56],

• State exploration implies bugs only when there is a bug
oracle to decide whether a state is undesired. To illus-
trate, for conventional desktop/server programs, a bug
oracle for out-of-bound (OOB) access can be as simple
as page fault (enabled by MMU) or backed by com-

5Boost C++ Libraries, https://www.boost.org/
6libserialport - sigrok, https://sigrok.org/wiki/Libserialport.

USENIX Association 33rd USENIX Security Symposium 5599

https://graphviz.org/doc/info/lang.html
https://www.st.com/content/st_com/en/stm32-mcu-product-selector.html
https://www.st.com/content/st_com/en/stm32-mcu-product-selector.html
https://www.microchip.com/en-us/products/selection-tools
https://www.microchip.com/en-us/products/selection-tools
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR.
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR.
https://www.boost.org/
https://sigrok.org/wiki/Libserialport.

Workstation SHiFT MCU

Bug
OracleConcolic

Exec
CO3 MCU

CO3 SHiFT

Exchange
Inputs Input

Crash/
Coverage

Input

Formula
Msgs

Figure 5: SHACO’s overview.

piler instrumentation (e.g., AddressSanitizer [53]). For
firmware, however, even OOB might not be observable
due to the lack of MMU and kernel support. This lack
of observability issue of the MCU has been extensively
investigated in wycinwyc [46].

CO3’s bug-detection capability can thus be greatly en-
hanced when combined with a fast fuzzing system that also
solves the bug observability issue for the MCU. This is where
SHiFT comes in. SHiFT facilities feedback-based fuzz testing
(e.g., AFL/AFL++ [25]) natively on the MCU while hosting
input mutation on the workstation. It also ported desktop sani-
tizers to the MCU to address the observability issue. We name
this combination SHACO, a hybrid fuzzing framework.

As depicted in Figure 5, SHACO runs SHiFT on one MCU
and CO3 on another of the same configuration. They both
communicate with their workstation component through a
serial port. SHiFT is responsible for fast testing and collecting
crashes, while CO3 toggles branches for the inputs deemed
interesting by the fuzzer. The input exchange happens on
the workstation through a simple file copy. Note that we
combine SHiFT and CO3 in a rather primitive way; as this
paper focuses on concolic execution, we leave topics such as
a more sophisticated hybrid fuzzer and merging fuzzing and
concolic execution to one board for future work.

7 Evaluation

In this section, we evaluate CO3 to answer the following
research questions:

• RQ1: How does CO3 minimizes the MCU interaction
and how does this contribute to the end-to-end perfor-
mance compared to the SoTA regarding speed and code
coverage?

• RQ2: What overhead can a developer expect when using
CO3 for the firmware under development?

• RQ3: How is SHACO’s bug detection effectiveness com-
pared to other bug detection works for firmware?

Experiment setup. We perform the evaluation on a work-
station with Intel Core i5-7260U CPU, 64 GB of RAM, and
Ubuntu 22.04. Details of the MCU used in the evaluation are
discussed in Section 5. In fairness, we run all comparison tar-
gets using the same workstation, MCU, and communication
channel setup. All targets are natively built without patching
or modification.

7.1 RQ1: Concolic Execution Performance
Experiment Setup In evaluating RQ1, we select
Avatar2 [45], the SoTA multi-target program state transfer
framework based on traditional HiL design. Although Avatar2
is not exclusive to testing MCUs, it has built-in support for
various debugging probes (e.g., J-Link 7, OpenOCD 8) com-
monly used by MCUs. As Avatar2 does not implement fuzz
testing nor symbolic execution, we thus compare CO3 against
Symbion [28] which integrates Avatar2 into symbolic execu-
tion (i.e., Angr). To be specific, we run both systems against
seven real-world firmware samples introduced by P2IM and
DICE [42]. These benchmarks are chosen because they have
been used extensively by existing works (e.g., Fuzzware,
uAFL, and SHIFT). They are Steering_Control, PLC, Drone,
CNC, Console from P2IM; Midi, Modbus from DICE. For a
fair comparison with Symbion, we configured it to perform
concolic execution like CO3 and SymCC. This avoids bias
from the path exploration component 9 in angr.

Since CO3 uses multiple optimizations to minimize the
“footprint” of MCU-workstation interaction, we also evaluate
how each technique contributes to this reduction. Specifically,
CO3 employs two major techniques: 1 replacing a majority
of symbolic operations with a logic disjunction instruction on
the MCU, and 2 MCU-side shadow memory to keep track
of the symbolic states of the RAM on the MCU. To see how
each technique performs, we have three modes of CO3:
• Report-All, where the MCU reports every executed instruc-

tion without any symbolic states tracking (i.e., disable both
1 and 2),

• Shadowless, where the MCU performs symbolic state track-
ing but always treats RAM as symbolic (i.e., disable 2).

• Full-on, where both 1 and 2 are enabled.
Intuitively, Shadowless relieves the MCU from having to
allocate a piece of RAM as shadow; Report-ALL further frees
the MCU from keeping any symbolic state. To quantify MCU
interactions, we treat the MCU as an IO device and study its
impact on the workstation. Specifically, we evaluate 1) how
many bytes are transmitted for each run over the wire, and 2)
how much time the workstation spends waiting for the MCU
to evaluate its impact on the overall performance. These are
considered as the “footprint” of an interaction.

Besides the experiment with Symbion, we also compare
with SymCC, a SoTA concolic executor. Although SymCC
is not designed for firmware, and cannot solve its hardware
dependencies like CO3, we chose it because both systems
follow the compilation-based design. Specifically, SymCC
packages symbolic and concrete execution into one binary,
while CO3 further decouples concrete and symbolic execution
to heterogeneous platforms and connects them via a serial

7https://www.segger.com/downloads/jlink/
8https://openocd.org/
9Simulation Managers - angr documentation,https://docs.angr.io

/en/latest/core-concepts/pathgroups.html#exploration-techn
iques

5600 33rd USENIX Security Symposium USENIX Association

https://www.segger.com/downloads/jlink/
https://openocd.org/
https://docs.angr.io/en/latest/core-concepts/pathgroups.html#exploration-techniques
https://docs.angr.io/en/latest/core-concepts/pathgroups.html#exploration-techniques
https://docs.angr.io/en/latest/core-concepts/pathgroups.html#exploration-techniques

port. Comparing with SymCC allows us to assess the value
of this decoupling.

In the experiment comparing with SymCC, we use the CGC
benchmark with the proof of vulnerability (POV) inputs [48]
as seeds. We chose this benchmark because it has been heav-
ily used in SymCC and Qsym for the same evaluation purpose.
SymCC and Qsym mentioned many benefits of using CGC
programs to evaluate workstation concolic executors. In ad-
dition to these benefits, they are also valuable for firmware
because of their independence from libc, as firmware also
typically uses customized libc (e.g., newlib). We evaluated
5 CGC programs in alphabetical order since these programs
need refactoring to run on the MCU and do not represent the
real firmware. We consider 5 is enough to understand how
CO3 is compared with SymCC.

Execution Time We measure CO3’s execution time be-
tween the first Input Address message (Figure 4) arriving at
the workstation until the last call to the symbolic solver fin-
ishes. SymCC measures the time between the start of program
execution until the last call to the symbolic solver finishes.
Both CO3 and SymCC use the time measurement module
from Qsym. Symbion is slightly different since it relies on
the debugger; we measure its time from when the debugger
connection is established until all constraints are solved. We
continue to loop the generated inputs back as new inputs to
the system. We keep running for 24 hours and take the aver-
age as results. Although we run all three modes of CO3 for
each experiment, we will focus on Full-On mode to compare
with SymCC and Symbion while showing data for the other
two. We will systematically discuss the differences between
different modes in answering RQ2.

In comparing with Symbion, from Figure 6.(2), we can see
that without the physical debugging probe, CO3 outperforms
Symbion by three orders of magnitude. The reason for this
advantage is three-fold: Firstly, CO3’s optimization of traffic.
Figure 6.(3) shows that for the tested firmware, Symbion
transmits about 150KB per execution, while CO3 transmits
less than 8KB.

Secondly, CO3 parallelizes MCU-workstation interactions.
As mentioned in Section 3, in a traditional debug-based solu-
tion (e.g., Symbion), the workstation has to send command,
wait for the MCU to take action and send back the result ev-
ery time a hardware event occurs. The workstation cannot do
anything besides waiting in this process. Whereas in CO3,
the MCU just puts the data on the wire and does not wait for
confirmation. This enables the workstation to interact with the
MCU in a separate thread. The workstation may process what
has been sent by the MCU while waiting for the next mes-
sage. Figure 6.(6) shows that, in CO3, the MCU-workstation
interaction has about 1% impact on the end-to-end execution
time, resulting in a mere 0.0001s to 0.001s waiting; whereas
in Symbion, waiting for MCU has about 23% impact with
time ranging from 3s to 7s. From 3-7s to 0.0001-0.001s, CO3

significantly minimizes the MCU’s impact on the workstation.
Lastly, using a debugging protocol to synchronize hardware

events is detrimental to performance. This design implicitly
requires the firmware to be emulated on the workstation since
only the emulator can make use of such hardware events. As
a result, the symbolic engine must be placed on top of the
emulator. CO3, in contrast, instructs the firmware to directly
report values for symbolic formulae. This enables us to di-
rectly host symbolic engine, removing firmware emulation
entirely. As a highlight of the benefits of removing firmware
emulation the hardware events forwarding, according to a
survey from SHiFT, if used solely to communicate data (e.g.,
through the m and M packets10), the GDB protocol is only
about 50% slower than using the raw physical channel [43].
This means that even if we use the GDB protocol to imple-
ment CO3, the result would fetch around 50% throughput of
the current CO3, which is still significantly faster than the tra-
ditional schemes that rely on synchronizing hardware events
and firmware emulation.

As for comparing with SymCC, from Figure 6.(1), we can
see that CO3 is even faster than SymCC. This result shows
that although CO3’s offloading concrete execution onto the
MCU incurs extra serial communication overhead and a slow-
down on the concrete exeucution, the benefit of this paral-
lelization still outweights the disadvantages.

Conceptual formulation To put the benefits of CO3’s de-
sign into more perspectives, we formulize all three systems in
Figure 7 where we denote A as the cost of concrete execution
and concreteness checking [49], and B as the cost of sym-
bolic constraint building and solving. Then we can formulize
SymCC as

SymCC = A+B (1)
Since CO3 offloads A to the MCU and incurs serial commu-
nication overhead, CO3 can be formulized as:

CO3 = max(xA,B,C) (2)
where x is how much a commodity CPU (e.g., Intel-i5) is
faster than a MCU (e.g., ARM Cortex-M7) and C is the se-
rial communication overhead. From Eq 2, we can see that,
although CO3 slows down A by x and incurs C, these three
components run in parallel, making CO3 outperform SymCC
in most cases. Lastly, we formulize Symbion as

Symbion = E(A)+ I(B)+C′ (3)
where E(A) and I(B) represent emulated execution and
interpretation-based symbolic execution as compared to na-
tive ones and C′ denotes the communication cost plus the
MCU action time. We can see that, Symbion not only suffers
from delayed MCU communication, it also has slower and
highly sequential components.

Furthermore, although the execution time of CO3 shown in
this experiment is reasonable, there is still plenty of room for
improvement. Interested readers may refer to Appendix A.2

10https://sourceware.org/gdb/current/onlinedocs/gdb.html
/Packets.html#index-m-packet

USENIX Association 33rd USENIX Security Symposium 5601

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Packets.html#index-m-packet
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Packets.html#index-m-packet

Full On
Shadowless

Report AllSymcc

(1) SymCC-CO3 Time per Execution

0.2

0.4

Ti
m

e
(s

)

Full On
Shadowless

Report All
Symbion

(2) Symbion-CO3 Time per Execution

1e-3
1e-2

0.1
1.0
10

Ti
m

e
(s

)

Full On
Shadowless

Report All
Symbion

(3) MCU Access: Traffic per Execution

0

100

200

Tr
af

fic
 (K

B)

Full On
Shadowless

Report AllSymcc

(4) SymCC-CO3 Number of Edges

100

200

of

 E
dg

es

Full On
Shadowless

Report All
Symbion

(5) Symbion-CO3 Number of Edges

50

100

of

 E
dg

es

Full On
Shadowless

Report All
Symbion

(6) MCU Access: Time per Execution

1e-5
1e-4
1e-3
0.01
0.1
1.0

10.0

Ti
m

e
(s

)

Time
Impact

0.01
0.1
1.0
10.0
100.0

Ov
er

al
l I

m
pa

ct
 (%

)

Figure 6: Comparison between CO3, SymCC and Symbion for execution speed, edge coverage, and MCU I/O.

workstation MCU
E(A) + I(B)

C
MCU's

Action Time
C

E(A) + I(B)

workstation MCU

B
xA

C

Symbion CO3
workstation

A+B

SymCC

Figure 7: Visualized formulation of SymCC, Symbion and
CO3

for more information.

Code Coverage To evaluate code coverage, in the above ex-
periments, we also collect all the generated alternative inputs
by all systems. We measure control-flow edges covered by
these inputs accumulatively by feeding them to an indepen-
dent edge-reporting binary. The edge coverage follows AFL’s
algorithm 11.

As we can see from Figure 6.(4) and 6.(5), for all the tested
benchmarks, CO3 covers more edges. This highlights the effi-
ciency of CO3 for generating high-quality inputs compared
to the SoTA given the same amount of time.

7.2 RQ2: Overheads
This subsection systematically evaluates, in using CO3, how
much runtime and memory overheads a developer can ex-
pect based on all 12 firmware (CGC and P2IM firmware)
mentioned above. For each firmware, we prepare the origi-
nal unmodified firmware and apply three modes of CO3. We
used STM32-H743, NXP-K66F, and Atmel-SAMD51 from
Table 1 as MCU platforms. We focus on CO3 instead of other

11AFL-technical_details.txt https://github.com/google/AFL/blob
/master/docs/technical_details.txt#L23

Full On
Shadowless

Report All
Original

(1)Memory Footprint

50

75

100
Fo

ot
pr

in
t (

KB
yt

es
) FLASH

RAM

Full On
Shadowless

Report All

(2)Time Overhead

0

500

1000

1500

Figure 8: CO3’s memory footprint and time overhead com-
pared to the original unmodified firmware.

systems because these traditional HiL approaches run original
firmware on the MCU, theoretically imposing no memory and
runtime overhead. Thus, we run the unmodified firmware as
the baseline. CO3 adds multiple components to the firmware.
The overheads of such components are vital to evaluate the
practicability of CO3 as the MCU is resource-constrained.
Based on the overheads, we also evaluate the trade-off be-
tween different modes of CO3.

Regarding memory, CO3 introduces instrumentation, run-
time, and the monitor into the firmware. The footprint analysis
is presented in Figure 8.(1). From the figure we can see that
the original firmware has a median FLASH and RAM foot-
print of 46.1KB and 52.46KB respectively. Full-On mode
introduces 12.67KB FLASH overhead, a 27% increase; how-
ever, its RAM overhead is 66.1KB, a whopping 125% in-
crease. Shadowless mode introduces 12.45KB FLASH over-
head, also a 27% increase to FLASH; however, since it does
not require one-eighth of the whole RAM as shadow, it only
has 1.5KB RAM overhead, i.e., 2.9% increase. Lastly, Report-
All has a 19.65KB FLASH overhead, a 42% increase. This is
because, in this mode, we instrument the original symbolic
instructions instead of replacing most of them with a simple

5602 33rd USENIX Security Symposium USENIX Association

https://github.com/google/AFL/blob/master/docs/technical_details.txt#L23
https://github.com/google/AFL/blob/master/docs/technical_details.txt#L23

logical disjunction instruction, resulting in a bloated binary.
Its RAM overhead is consistent with Shadowless, a 1.5KB
overhead, as it also does not require shadow memory.

Regarding time overhead, the result is presented in Fig-
ure 8.(2). From this figure we can see that Full-On mode has
a 121x time overhead, while Shadowless and Report-All’s
time overheads are 449x and 1324x. We attributed this to
our efforts to minimize the traffic, as serial communication
is slower than the MCU’s processing speed by far. For exam-
ple, a simple logic disjunction instruction in Full-On can be
transmitting 3B in Report-All. Note that, for all three modes,
the MCU is only responsible for reporting data, it does not
perform expensive symbolic operations. We consider Full-On
and Shadowless time overhead mild compared to the 1000x
slow-down from a normal concolic execution engine [49].

Considering the overheads and performances of all three
modes, although Full-On has a 66.1KB RAM overhead, all
three modes of CO3 fit into the three MCU platforms that
we experimented on. This is partly because we use relatively
high-end MCUs as experimental platforms. In practice, we
do foresee cases where the one-eighth RAM overhead from
the shadow memory can be expensive. For such a case, we
recommend Shadowless for its mere 1.5KB RAM overhead.

In conclusion: Full-On mode has the best speed and edge
coverage performances but its RAM overhead can be pro-
hibitive making it not applicable to all MCUs. Shadowless
has slightly worse speed and edge coverage performance com-
pared to Full-On, but its memory overhead makes it generally
applicable if a 449x time overhead on the MCU is tolerable.
Report-All not only has much worse speed and coverage per-
formance compared to the first two, but its memory and time
overheads also make it less desirable.

7.3 RQ3: Bug-Detection Capability

In RQ3, we evaluate the bug-detection capability of SHACO.
The SoTAs in bug detection for firmware are primarily
emulation-based. We select Fuzzware [51], P2IM, and DICE
as targets systems. Fuzzware and P2IM are chosen for their
popularity and bug-finding capability; DICE is chosen for its
unique ability to support the DMA feature. Since SHACO
combines CO3 with SHiFT, we also evaluate against SHiFT
alone to evaluate what CO3 contributes in addition to SHiFT.

Benchmark We evaluate the bug detection capabilities of
the selected targets from two different angles: 1. the ability to
detect known, documented bugs, and 2. the ability to detect
unknown, new bugs. For the former, due to the lack of a well-
known benchmark (e.g., LAVA [21]) for MCUs, we chose
the firmware samples with well-documented bugs that were
widely used in the literature. P2IM and DICE, the two seminal
emulation-based approaches, suggested such samples with
detailed bug reports; these buggy firmware samples have also
been used by other works (e.g., uAFL, Fuzzware). Besides,

SHiFT provides firmware samples with bugs that emulation-
based approaches cannot find [43]. Thus, as Table 2 shows,
we select PLC (4 bugs) from P2IM, Modbus (3 bugs) and Midi
(2 bugs) from DICE, Shelly Dimmer (3 bugs) and Synthetic
(11 bugs) from SHiFT to make a benchmark. Modbus and
Midi use DMA as the input channel which Fuzzware does not
support out-of-the-box. For a fair comparison, we manually
identify the static DMA buffer from the binary with debugging
information and annotate in fuzzware’s config file 12. We run
CO3 and related works for 24 hours, manually triage all the
crashing inputs (UC row of Table 2), and measure how long
they took to identify all the known bugs (TP row of Table 2)
of each firmware to evaluate their bug-detection capabilities.

In addition to the firmware with known bugs, SHACO
additionally found new bugs in other firmware. As shown
in the SHACO column of Table 2, these are: CANopen: an
open-source firmware of the controller area network (CAN),
Stepper: a firmware that drives a stepper machine, and bldc:
a firmware for real-world motor controller. In CANopen,
SHACO finds three undefined behaviors. In Stepper, SHACO
finds two buffer overflows (BOFs). In bldc, SHACO finds two
BOFs. These bugs have all been confirmed and patched by the
developers. We also run related works on these firmware to
test their ability to find unknown bugs via manually triaging
their crashing inputs.

Detecting All Known Bugs With as simple a strategy as
exchanging inputs between SHiFT and CO3, the time taken to
detect all the bugs in the benchmark is reduced significantly.
This confirms the effectiveness of SHACO in detecting bugs
in real-world firmware. In some cases, the improvement is
insignificant, such as the 1.9x speedup in Modbus. This is due
to Modbus’s small code base and search space, e.g., only 230
LoC. For such small firmware, fuzzing is usually enough. In
Midi, SHACO is almost identical to SHiFT. This is because
Midi employs a state-machine-based design. As a result, the
execution of an input is dependent on the previously executed
inputs. In such a case, the input generated by concolic exe-
cution can easily be rendered invalid due to the change of
state. We refer interested readers to papers (e.g., SGFuzz [7])
addressing this issue.

However, this is just to compare SHACO with SHiFT, as
these two approaches both run natively on the MCU and
utilize real hardware. The contrast is much sharper when
comparing SHACO against emulation-based approaches. As
shown in Table 2, SHACO generally outperforms them by two
to three orders of magnitude in terms of bug-detection capabil-
ity. The emulation approaches not only failed to boot (marked
with NB) due to the incorrect model (e.g., Shelly Dimmer for
P2IM) when they did boot, their inaccurate MMIO interaction
leads to unauthentic program state (e.g., Fuzzware’s MMIO

12https://github.com/fuzzware-fuzzer/fuzzware-emulator/bl
ob/4ee7228ceda140cf2e0d7575ad25dcb7dfa142da/README_config.
yml#L67

USENIX Association 33rd USENIX Security Symposium 5603

https://github.com/fuzzware-fuzzer/fuzzware-emulator/blob/4ee7228ceda140cf2e0d7575ad25dcb7dfa142da/README_config.yml#L67
https://github.com/fuzzware-fuzzer/fuzzware-emulator/blob/4ee7228ceda140cf2e0d7575ad25dcb7dfa142da/README_config.yml#L67
https://github.com/fuzzware-fuzzer/fuzzware-emulator/blob/4ee7228ceda140cf2e0d7575ad25dcb7dfa142da/README_config.yml#L67

Ref # Firmware OS MCU SHACO SHiFT P2IM/DICE Fuzzware
Time(s) UC TP FP Time(s) SUF UC TP FP Time(s) SUF UC TP FP Time(s) SUF UC TP FP

P2IM [24] 1 PLC F h743 38 8 4 0 165 4.3x 8 4 0 3873 101.9x 183 4 2 73980 1946x 30 4 2

DICE [42] 2 Modbus F h743 20 4 3 0 38 1.9x 4 3 0 29881 1494x 71 3 2 I n/a 25 0 1
3 Midi F h743 126 20 2 0 129 1.02x 20 2 0 25413 201x 4 2 0 I n/a 104 0 2

SHiFT [43] 4 Synthetic F h743 26 20 11 0 340 13.1x 23 11 0 I n/a 8 3 1 I n/a 486 0 10
5 Shelly Dimmer F h743 40 6 3 0 262 6.5x 7 3 0 NB n/a 0 0 0 I n/a 1496 0 1

SHACO
6 CANopen F l4r5 164 7 3 0 525 3.2x 8 3 0 NB n/a 0 0 0 I n/a 0 0 0
7 Stepper F l4r5 187 7 2 0 691 3.7x 7 2 0 NB n/a 0 0 0 I n/a 2355 1 3
8 Bldc C f429 376 4 2 0 2068 5.5x 4 2 0 NB n/a 0 0 0 NB n/a 0 0 0

Table 2: Fuzz testing campaigns of SHACO compared to other SoTA. Time: How much time it takes for this work to identify all
the known bugs. F: FreeRTOS. C: ChibiOS. SUF: SHACO’s speedup factor compared to this work. UC: # of Unique Crashes.
TP: # of True Positive bugs. FP: # of False Positive bugs. I: Incomplete detection, i.e., it does not detect all bugs in 24h. NB: No
Bootstrap, i.e., the firmware fails to boot.

model returns practically impossible values). This prevents
them from finding all the true bugs (marked with I). Adding
up to the vast false positives, the situation even worsens con-
sidering the bug observability issue (i.e., the triggered bugs
usually take a long time to observe) they have.

Detecting New Bugs Due to the hardware and software
dependency of the newly introduced firmware, we ported
SHACO to two new MCUs (i.e., stm32l4r5 and stm32f429)
and one new RTOS (i.e., ChibiOS). P2IM cannot boot due
to poor emulator support for these MCUs 13 14. Fuzzware
avoids this issue by using Unicorn instead of QEMU as the
emulator; however, it still fails to support the FPU 15, which
bldc configures in assembly.

After the fuzzing campaign, the selected systems exhibit
similar behaviors as in the known bugs detection experiment
(i.e., SHACO outperforms SHiFT three to five times while
Fuzzware is trapped by the unauthentic program states and
fail to detect the same bugs).

Case Study In Stepper, for example, we found an undefined
behavior (UB) bug. This UB is inside a callback function
triggered from a multiplexed timer’s interrupt service routine.
Since CO3 has access to the real timer’s hardware, the timer
just normally incremented and triggered different multiplexed
callback functions as expected. In both P2IM and Fuzzware,
however, since they are at the NVIC’s level which triggers
each interrupt service routine in a round-robin fashion, they
are not aware of this multiplexing. As a result, in all of their
executions, they failed to execute this callback function.

Also, in CANopen, a buffer overflow where a hard-coded
offset is indexed into the variable length input buffer was
identified. However, in this firmware, the returned value of
HAL_GetTick() was used as the divisor. In the real-world
setting, such a function would never return zero. However,
both P2IM and Fuzzware uses a simple incrementing strategy
to model the Systick, which starts from zero. This crashed the

13https://github.com/RiS3-Lab/p2im/blob/master/qemu/src/q
emu.git/hw/arm/stm32-mcus.c

14https://www.qemu.org/docs/master/system/arm/stm32.html
15https://github.com/fuzzware-fuzzer/fuzzware#floating-p

oint-unit

firmware early on and prevented it from exploring deeper.

8 Discussion

Support for Other Architectures We demonstrate the com-
patibility of CO3 with the popular ARM architecture. How-
ever, MCUs are well-known for the diverse architectures they
use. Hence, supporting as many other different architectures
as possible would be desirable. In this regard, similar to what
the rehosting works do, i.e., using QEMU’s ability to lift var-
ious architectures to its own intermediate representation 16,
CO3 relies on LLVM’s modular design to lower the LLVM
IR into a wide range of architectures supported by LLVM 17.
There is one small exception: CO3 also needs to dynamically
disable/re-enable interrupts to protect its runtime’s integrity.
This is done by architecture-specific inline assembly code
(e.g., cpsid if in ARM). Fortunately, such code is usually
very small and lightweight by design. Thus, it does not harm
the portability of CO3.

Support for Other RTOSes In the evaluation, we ported
CO3 to FreeRTOS and ChibiOS. However, compared to the
relatively small number of popular desktop OSes, embedded
RTOSes are much more diverse. It would be desirable to
support these RTOSes too.

Since CO3 does not have any RTOS-specific reliance, it
is viable to support any RTOS or even desktop OS. That
is, regardless of what type of interface the RTOS provides
(e.g., POSIX-compliant like NuttX, CMSIS-compliant like
Zephyr, or even the ones not compliant with any standard like
FreeRTOS kernel), they all have APIs that accomplish basic
OS primitives. Porting to these RTOSes can be as simple as
replacing the APIs with the ones that perform the same OS
primitive. For CO3, these primitives are task creation/deletion
and semaphore. In other words, as long as these primitives
are implemented, CO3 can be RTOS-less (i.e., baremetal).

16Documentation Platforms - QEMU, https://wiki.qemu.org/Docu
mentation/Platforms

17LLVM Architecture & Platform Information for Compiler Writers, ht
tps://llvm.org/docs/CompilerWriterInfo.html

5604 33rd USENIX Security Symposium USENIX Association

https://github.com/RiS3-Lab/p2im/blob/master/qemu/src/qemu.git/hw/arm/stm32-mcus.c
https://github.com/RiS3-Lab/p2im/blob/master/qemu/src/qemu.git/hw/arm/stm32-mcus.c
https://www.qemu.org/docs/master/system/arm/stm32.html
https://github.com/fuzzware-fuzzer/fuzzware#floating-point-unit
https://github.com/fuzzware-fuzzer/fuzzware#floating-point-unit
https://wiki.qemu.org/Documentation/Platforms
https://wiki.qemu.org/Documentation/Platforms
https://llvm.org/docs/CompilerWriterInfo.html
https://llvm.org/docs/CompilerWriterInfo.html

Meanwhile, CO3 utilizes USB-CDC or UART for data
transmission. Different MCU vendors have different hardware
and driver implementations for the two peripherals, however,
they all follow the USB and UART standard, and they are
among the most universal peripherals across all vendors [43].
To use these peripherals for CO3, one can simply follow the
official source code examples provided by the vendors 18.

Future Works CO3 makes it much more efficient to sym-
bolically and authentically explore the firmware on the MCU.
Going forward, two directions can be further explored to uti-
lize this capability.

The first one is to construct symbolic formulae under CO3’s
framework not just for toggling the branches but also for bug
detection. Many works [18,39,58] tried to symbolically model
various types of bugs and pass to the solver to see if the bug-
triggering condition can be met. CO3 has inherent synergy
with these works. The second one is to use CO3 purely as a
state explorer. With methods such as generational search [27],
CO3 makes it much more efficient to authentically reach
certain points of interest than the traditional HiL works (e.g.,
Avatar2). After reaching that point, the program state can be
transferred to the emulator for more dynamic analysis.

9 Related Work

CO3 improves the SoTA symbolic execution for firmware
through the inspiration of recent research advancements in
symbolic execution and firmware rehosting.

Symbolic Execution Symbolic execution, as discussed in
detail in Section 2.2, has seen success in various aspects of bug
detection [12,32,37,39,58,62] and program testing [14,56,60]
for desktop programs. CO3 builds upon the compilation-based
design proposed in SymCC [49] and pushes it forward by
applying it to the firmware through our co-execution design.

Firmware Rehosting Firmware rehosting is the technique of
migrating firmware from its native environment to a usually
more powerful environment for better visibility and more
computing resources. They can be categorized into 1). pure
emulation either through symbolic abstraction [31, 33, 51, 54]
which uses symbolic values to model the hardware accesses,
or heuristic-based methods [16, 24, 42, 64, 65] which uses
heuristic-based rules for the same purpose. 2). HiL [22, 34,
35, 45, 50, 57, 61] where the emulator engages the MCU to
utilize its real hardware.

The most related work of CO3 in this line of research is
SHiFT [43], as they both follow the semihosting philosophy.
Semihosting emphasizes that the MCU should actively invoke
the resources from the workstation instead of the other way
around, which is followed by most HiL-based works. Thus,

18https://github.com/STMicroelectronics/STM32CubeF4/tree
/master/Projects/STM32F429I-Discovery/Examples/UART/UART_Tw
oBoards_ComIT

SHiFT runs most of the fuzzing infrastructure on the MCU
and actively consumes the input mutation from the worksta-
tion. Similarly, CO3 runs concrete execution on the MCU and
actively consumes the symbolic tracking from the worksta-
tion. SHiFT’s fuzzing and CO3’s concolic execution generate
an excellent synergy, which results in SHACO.

10 Conclusion

This paper presents CO3, a novel concolic executor for
firmware. CO3 features high hardware fidelity, applicability,
and performance. Built upon the compilation-based idea from
SymCC, CO3 places the concrete execution on the MCU and
channels it with the symbolic execution on the workstation.

Evaluated against the SoTA concolic executors for both
the MCUs and the workstations, CO3 achieved workstation-
level performance. In combination with a fuzz testing sys-
tem, SHACO outperformed emulation-based bug detection
approaches and found seven new bugs.

11 Acknowledgement

The authors would like to thank the anonymous reviewers
and our shepherd for their insightful comments. This project
was partially-supported by the National Science Foundation
(Grant#: 2031390, “Rethinking Fuzzing for Security”). We
would also like to thank the DAC Convoy Security project
for its support. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

References

[1] Microcontroller Market Size, Share & Trends Report,
2030. URL: https://www.grandviewresearch.co
m/industry-analysis/microcontroller-market.

[2] Microcontroller, May 2023. URL: https://en.wikip
edia.org/w/index.php?title=Microcontroller.

[3] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel,
Reiner Hähnle, Peter H Schmitt, and Mattias Ulbrich.
Deductive software verification–the KeY book. Lecture
notes in computer science, 10001, 2016.

[4] Chengwei Ai, Weiyu Dong, and Zicong Gao. A Novel
Concolic Execution Approach on Embedded Device. In
Proceedings of the 2020 4th International Conference
on Cryptography, Security and Privacy, ICCSP 2020.
Association for Computing Machinery, January 2020.

[5] Aspencore. 2019 Embedded Markets Study, March
2019. URL: https://www.embedded.com/wp-conte
nt/uploads/2019/11/EETimes_Embedded_2019_E
mbedded_Markets_Study.pdf.

USENIX Association 33rd USENIX Security Symposium 5605

https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM32F429I-Discovery/Examples/UART/UART_TwoBoards_ComIT
https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM32F429I-Discovery/Examples/UART/UART_TwoBoards_ComIT
https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM32F429I-Discovery/Examples/UART/UART_TwoBoards_ComIT
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://en.wikipedia.org/w/index.php?title=Microcontroller
https://en.wikipedia.org/w/index.php?title=Microcontroller
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

[6] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J Schwartz, Maverick Woo, and David Brumley.
Automatic exploit generation. Communications of the
ACM, 57(2):74–84, 2014.

[7] Jinsheng Ba and Manuel Rigger. Testing database en-
gines via query plan guidance. In The 45th International
Conference on Software Engineering (ICSE’23), May
2023.

[8] Christiaan Banister. Low overhead remote procedure
call system for saturn dsp. Master’s thesis, EECS De-
partment, University of California, Berkeley, May 2022.

[9] Matthias Börsig, Sven Nitzsche, Max Eisele, Roland
Gröll, Jürgen Becker, and Ingmar Baumgart. Fuzzing
Framework for ESP32 Microcontrollers. In 2020 IEEE
International Workshop on Information Forensics and
Security (WIFS), December 2020. ISSN: 2157-4774.

[10] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08. USENIX
Association, December 2008.

[11] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing Mayhem on Binary
Code. In 2012 IEEE Symposium on Security and Pri-
vacy, May 2012.

[12] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque,
Huangyi Ge, Aniket Kate, Cristina Nita-Rotaru, and
Ninghui Li. SymCerts: Practical Symbolic Execution
for Exposing Noncompliance in X.509 Certificate Vali-
dation Implementations. In 2017 IEEE Symposium on
Security and Privacy (SP), May 2017.

[13] Ting Chen, Xiao-Song Zhang, Xiao-Li Ji, Cong Zhu,
Yang Bai, and Yue Wu. Test generation for embedded
executables via concolic execution in a real environment.
IEEE Transactions on Reliability, 64(1):284–296, 2015.

[14] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Tao Wei, and Long Lu. SAVIOR:
Towards Bug-Driven Hybrid Testing. In 2020 IEEE
Symposium on Security and Privacy (SP), May 2020.

[15] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: a platform for in-vivo multi-path anal-
ysis of software systems. ACM SIGARCH Computer
Architecture News, 39(1), March 2011.

[16] Abraham A. Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. HALucinator: Firmware Re-hosting Through
Abstraction Layer Emulation. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[17] Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: System-Wide Security Testing
of Real-World Embedded Systems Software. In 27th

USENIX Security Symposium (USENIX Security 18),
2018.

[18] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang.
Verifying systems rules using rule-directed symbolic
execution. ACM SIGPLAN Notices, 48(4), 2013.

[19] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N
Wegman, and F Kenneth Zadeck. Efficiently computing
static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 13(4):451–490, 1991.

[20] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. FIE on Firmware: Finding Vulnerabil-
ities in Embedded Systems Using Symbolic Execution.
In 22nd USENIX Security Symposium, 2013.

[21] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-
rich, and Ryan Whelan. LAVA: Large-Scale Automated
Vulnerability Addition. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, May 2016.

[22] Max Eisele, Daniel Ebert, Christopher Huth, and An-
dreas Zeller. Fuzzing Embedded Systems using Debug
Interfaces. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis. ACM, July 2023.

[23] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, Davide Balzarotti, and William Robertson. SoK:
Enabling Security Analyses of Embedded Systems via
Rehosting. In Proceedings of the 2021 ACM Asia Con-
ference on Computer and Communications Security. As-
sociation for Computing Machinery, May 2021.

[24] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable
and Hardware-independent Firmware Testing via Auto-
matic Peripheral Interface Modeling. In 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[25] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining incremental steps of
fuzzing research. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). USENIX Association,
August 2020.

[26] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI
’05. Association for Computing Machinery, June 2005.

[27] Patrice Godefroid, Michael Y. Levin, and David Molnar.
SAGE: whitebox fuzzing for security testing. Commu-
nications of the ACM, 55(3), March 2012.

[28] Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio
Pagani, Andrea Continella, Christopher Kruegel, and
Giovanni Vigna. Symbion: Interleaving symbolic with
concrete execution. In 2020 IEEE Conference on Com-
munications and Network Security (CNS), June 2020.

5606 33rd USENIX Security Symposium USENIX Association

[29] Barr Group. Embedded Systems Market Surveys, June
2016. URL: https://barrgroup.com/embedded-s
ystems/market-surveys.

[30] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komurav-
elli, and Jorge A. Navas. The SeaHorn Verification
Framework. In Daniel Kroening and Corina S. Păsăre-
anu, editors, Computer Aided Verification, Lecture Notes
in Computer Science. Springer International, 2015.

[31] Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian,
Tuba Yavuz, and Kevin R.B. Butler. FirmUSB: Vet-
ting USB Device Firmware using Domain Informed
Symbolic Execution. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’17. ACM, October 2017.

[32] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe
Wang, Xiaohan Zhang, Xinyu Xing, Min Yang, and
Zhemin Yang. PDiff: Semantic-based Patch Presence
Testing for Downstream Kernels. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security. ACM, October 2020.

[33] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted Firmware Rehosting for
Embedded Systems. In 30th USENIX Security Sympo-
sium (USENIX Security 21), 2021.

[34] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: peripheral proxying supported em-
bedded code testing. In Proceedings of the 9th ACM sym-
posium on Information, computer and communications
security, ASIA CCS ’14. Association for Computing
Machinery, June 2014.

[35] Karl Koscher, Tadayoshi Kohno, and David Molnar.
SURROGATES: Enabling Near-Real-Time Dynamic
Analyses of Embedded Systems. In 9th USENIX Work-
shop on Offensive Technologies (WOOT 15), 2015.

[36] Abraham Peedikayil Kuruvila, Ioannis Zografopoulos,
Kanad Basu, and Charalambos Konstantinou. Hardware-
assisted detection of firmware attacks in inverter-based
cyberphysical microgrids. International Journal of Elec-
trical Power & Energy Systems, 132, 2021.

[37] Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo.
On the Feasibility of Automated Built-in Function Mod-
eling for PHP Symbolic Execution. In Proceedings of
the Web Conference 2021. ACM, April 2021.

[38] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin,
Wei Wang, and Le Guan. uAFL: Non-intrusive feedback-
driven fuzzing for microcontroller firmware. In Proceed-
ings of the 44th international conference on software
engineering, ICSE ’22, 2022.

[39] Changming Liu, Yaohui Chen, and Long Lu. KUBO:
Precise and Scalable Detection of User-triggerable Un-
defined Behavior Bugs in OS Kernel. In Proceedings
2021 Network and Distributed System Security Sympo-
sium, 2021.

[40] Yingtong Liu, Hsin-Wei Hung, and Ardalan Amiri Sani.
Mousse: a system for selective symbolic execution of
programs with untamed environments. In Proceedings
of the Fifteenth European Conference on Computer Sys-
tems. Association for Computing Machinery, 2020.

[41] Federico Maggi, Marcello Pogliani, and P Milano. At-
tacks on Smart Manufacturing Systems. Trend Micro
Research: Shibuya, Japan, 2020.

[42] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
DICE: Automatic Emulation of DMA Input Channels
for Dynamic Firmware Analysis. In 2021 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, May 2021.

[43] Alejandro Mera, Changming Liu, Ruimin Sun, Engin
Kirda, and Long Lu. SHiFT: Semi-hosted Fuzz Testing
for Embedded Applications. In 33th USENIX Security
Symposium (USENIX Security 24), 2024.

[44] Charlie Miller and Chris Valasek. Remote exploita-
tion of an unaltered passenger vehicle. Black Hat USA,
2015(S 91), 2015.

[45] Marius Muench, Dario Nisi, Aurélien Francillon, and
Davide Balzarotti. Avatar2: A Multi-Target Orchestra-
tion Platform. In Proceedings 2018 Workshop on Binary
Analysis Research. Internet Society, 2018.

[46] Marius Muench, Jan Stijohann, Frank Kargl, Aurelien
Francillon, and Davide Balzarotti. What You Corrupt Is
Not What You Crash: Challenges in Fuzzing Embedded
Devices. In Proceedings 2018 Network and Distributed
System Security Symposium. Internet Society, 2018.

[47] JinSeok Oh, Sungyu Kim, Eunji Jeong, and Soo-Mook
Moon. OS-less dynamic binary instrumentation for
embedded firmware. In 2015 IEEE Symposium in Low-
Power and High-Speed Chips, April 2015.

[48] Sebastian Poeplau and Aurélien Francillon. Systematic
comparison of symbolic execution systems: intermedi-
ate representation and its generation. In Proceedings of
the 35th Annual Computer Security Applications Con-
ference. ACM, December 2019.

[49] Sebastian Poeplau and Aurélien Francillon. Symbolic
execution with SymCC: Don’t interpret, compile! In
29th USENIX Security Symposium (USENIX Security
20). USENIX Association, 2020.

[50] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced Wireless
Fuzzing to Exploit New Bluetooth Escalation Targets.
In 29th USENIX Security Symposium, 2020.

[51] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using Precise mmio Modeling for Effective Firmware
Fuzzing. In 31st USENIX Security Symposium, 2022.

[52] Koushik Sen, Darko Marinov, and Gul Agha. CUTE:
a concolic unit testing engine for C. ACM SIGSOFT
Software Engineering Notes, 30(5), September 2005.

USENIX Association 33rd USENIX Security Symposium 5607

https://barrgroup.com/embedded-systems/market-surveys
https://barrgroup.com/embedded-systems/market-surveys

[53] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12). USENIX As-
sociation, June 2012.

[54] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice
- Automatic Detection of Authentication Bypass Vul-
nerabilities in Binary Firmware. In Proceedings 2015
Network and Distributed System Security Symposium.
Internet Society, 2015.

[55] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SOK: (State of) The
Art of War: Offensive Techniques in Binary Analysis.
In 2016 IEEE Symposium on Security and Privacy (SP).

[56] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Proceedings 2016 Network and
Distributed System Security Symposium, 2016.

[57] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating Dynamic Analysis
of Device Drivers of Mobile Systems. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[58] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and Scalable De-
tection of Double-Fetch Bugs in OS Kernels. In 2018
IEEE Symposium on Security and Privacy (SP).

[59] Ruotong Yu, Francesca Del Nin, Yuchen Zhang, Shan
Huang, Pallavi Kaliyar, Sarah Zakto, Mauro Conti, Geor-
gios Portokalidis, and Jun Xu. Building Embedded
Systems Like It’s 1996. In Proceedings 2022 Network
and Distributed System Security Symposium. Internet
Society, March 2022.

[60] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM : A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of
the 27th USENIX Security Symposium (Security), 2018.

[61] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and
Davide Balzarotti. Avatar: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’
Firmwares. In Proceedings 2014 Network and Dis-
tributed System Security Symposium, 2014.

[62] Yizhuo Zhai, Yu Hao, Zheng Zhang, Weiteng Chen,
Guoren Li, Zhiyun Qian, Chengyu Song, Manu Sridha-
ran, Srikanth V. Krishnamurthy, Trent Jaeger, and Paul
Yu. Progressive Scrutiny: Incremental Detection of UBI
bugs in the Linux Kernel. In Proceedings 2022 Network
and Distributed System Security Symposium, 2022.

[63] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send

Hardest Problems My Way: Probabilistic Path Prioritiza-
tion for Hybrid Fuzzing. In Proceedings 2019 Network
and Distributed System Security Symposium, 2019.

[64] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. FIRM-AFL: High-
Throughput Greybox Fuzzing of IoT Firmware via Aug-
mented Process Emulation. In 28th USENIX Security
Symposium (USENIX Security 19), 2019.

[65] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing
Zhang. What Your Firmware Tells You Is Not How You
Should Emulate It: A Specification-Guided Approach
for Firmware Emulation. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’22. Association for Computing
Machinery, November 2022.

A Appendix

A.1 Verbose interpretation of the example
In Figure 3, based on compile-time analysis, CO3 can stat-
ically determine that this symbolic formula reads 4 bytes
from RAM; it then adds the read value to the parameter of
the function and compares the result with a 4-byte integer
from MMIO (as the firmware only concretely interacts with
MMIO). The comparison result is then used as a branch condi-
tion. In order to build this formula, instead of reporting every
executed instruction and its operands, the firmware running
on the MCU only needs to fill in the missing pieces, which
is known at runtime. Upon receiving the missing pieces, the
workstation can construct the symbolic formula and call the
symbolic solver. Otherwise, if the MCU does not send any in-
formation, this would mean that this formula does not involve
any symbolic value. Thus, it will not be built.

A.2 Further Optimizations
Symbolic backends such as Qsym employs instruction prun-
ing (i.e., skipping symbolic construction for repeatedly-
executed instructions). Although it is viable to do this at the
MCU side to further reduce the USB traffic – which warrants
even better performance – doing so would tightly couple the
MCU runtime with the symbolic backend on the workstation,
making the runtime much less generic. Since the end-to-end
performance was evaluated to be satisfactory, we chose not to
sacrifice simplicity and generality for performance gains.

Similarly, there are also engineering practices that we can
adopt to improve the performance further. For example, we
can parallelize the construction of independent symbolic vari-
ables (i.e., symbolic variables that have no dependency on
each other). We can also use dual buffers on the MCU side for
sending messages so that the firmware execution will be less
affected by the USB transmission. We chose not to implement
these for the same reason of simplicity.

5608 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Architectural Features of the MCUs
	Symbolic and Concolic Execution
	Symbolic Execution for Firmware

	Reflection on Hardware-in-the-Loop (HiL)
	Design
	Symbolic Value Flow Graph (SVFG)
	Runtime Operations on MCU
	Complication of the SVFG
	MCU Physical Input Channels
	MCU-Workstation Communication

	Implementation
	Hybrid Fuzz Testing
	Evaluation
	RQ1: Concolic Execution Performance
	RQ2: Overheads
	RQ3: Bug-Detection Capability

	Discussion
	Related Work
	Conclusion
	Acknowledgement
	Appendix
	Verbose interpretation of the example
	Further Optimizations

