
CO3: Concolic Co-execution for Firmware

Changming Liu*, Alejandro Mera*, Engin Kirda*, Meng Xu^, Long Lu*

*Northeastern University, ^ University of Waterloo

• Microcontrollers (MCUs):

• Highly efficient and optimized (firmware and hardware).

• Resourced-constrained.

• Widely-deployed.

• Single-chip computers.

Embedded Systems and firmware

2

Dire security situation.

3

4

Problems with securing the firmware on the MCUs

1. Resource constrained.

2. Highly heterogenous physical environment.

1. A lot of peripherals (types, vendors)[1].

2. Function like a black-box.

Code

0x0000,0000

0x2000,0000

SRAM

0x4000,0000

Memory-mapped

Peripherals

0x6000,0000

…

Various, 1-2 MB Max

Various, usually smaller than FLASH

USB/USART/GPIO/Timer

[1] Fasano, Andrew, et al. "Sok: Enabling security analyses of embedded systems via rehosting." Proceedings of the 2021 ACM Asia conference on computer and communications security . 2021.

Problems with securing the firmware on the MCUs- Cont

Concolic

Executor

Expensive

Hardware

Firmware

Device

Firmware

Concolic

Executor

Modeled

Hardware
Emulator

PC

Hardware

Firmware
Device

Concolic

Executor

PC

Firmware

EmulatorCPU/RAM

GDB

Hardware Events

• For the past decade, almost all works rehost the firmware.

• Hardware-in-the-loop:
• Expensive (7 hardware access per second).

• Hard to support all hardware (e.g., DMA).

• CPU halting (breaks real-time operation).

• GDB interface (high in price)

• Emulation: modeled hardware is bad.
Hardware-in-the-loop Emulation-based

Objectives

Hardware

Firmware

Device

Concolic

Executor

PC

Report Serial Port

• High-quality peripheral access.

• Performant concolic execution.

• Universally applicable.

• Support All peripherals and hardware.

1. Simpler Communication.

• No hardware events.

2. No emulator.

3. only need Serial Port (i.e., USART/USB-CDC)

• No GDB.

• No CPU Halting.

4. Real hardware and peripherals.

How to achieve this?

Compile-time analysis + instrumentation.

How to achieve this- Cont

Firmware

Source

Instrumented

Binary (ARM

Cortex-M)

Unfilled

Graph

Offline Compilation

ARM

Device

Instrumented

Binary

Hardware

x64 PC

Unfilled

Graph

Concolic

Executor

Serial Port

Online Testing

LLVM

Compilation &

Analysis

x64 PC

Hybrid Fuzzing

x64 PC

Unfilled

Graph

Concolic

Executor

(symcc)

AFL

Mutator

Input

Exchange

SHACO

Serial

Port

CO3

ARM
Device

Instrumented

Binary

Hardware

Concolic Execution

SHiFT

ARM
Device

Instrumented

Binary

Hardware

Serial

Port

Crash/

Code

Cov

Fuzzing

Evaluation

• Speed:
• 1.3-1.7x faster than SymCC (SotA concolic executor)
• 1000x faster than Avatar2 (Classic hardware-in-the-loop)

• Cover more code within 24 hours.
• 1.2x more than Symcc

• 2x more than Avatar2

• Overhead:
• 27% FLASH overhead

• 2.9% RAM overhead. (different modes)

Evaluation: bug detection

• Compare SHACO with P2IM/Fuzzware
• 1000x speed up in detecting all known bugs.

• Eliminates hundreds of false positives per firmware.

• Found 3 new bugs.

Demo

Thank you!

• Code available: www.github.com/Lawliar/co3
• MCU is needed to experiment with the firmware.

• Workstation program (e.g., CGC) supported.

• Contact:
• @Law1iar
• charley.ashbringer@gmail.com

http://www.github.com/Lawliar/co3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Problems with securing the firmware on the MCUs- Cont
	Slide 6: Objectives
	Slide 7: How to achieve this?
	Slide 8: How to achieve this- Cont
	Slide 9: Hybrid Fuzzing
	Slide 10: Evaluation
	Slide 11: Evaluation: bug detection
	Slide 12: Demo
	Slide 13: Thank you!

