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• Microcontrollers (MCUs): 

• Highly efficient and optimized (firmware and hardware).

• Resourced-constrained.

• Widely-deployed. 

• Single-chip computers.

Embedded Systems and firmware
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Dire security situation. 

3



4

Problems with securing the firmware on the MCUs

1. Resource constrained. 

2. Highly heterogenous physical environment.

1. A lot of peripherals (types, vendors)[1]. 

2. Function like a black-box.  
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[1] Fasano, Andrew, et al. "Sok: Enabling security analyses of embedded systems via rehosting." Proceedings of the 2021 ACM Asia conference on computer and communications security . 2021.
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• For the past decade, almost all works rehost the firmware. 

• Hardware-in-the-loop: 
• Expensive (7 hardware access per second). 

• Hard to support all hardware (e.g., DMA). 

• CPU halting (breaks real-time operation).

• GDB interface (high in price)

• Emulation: modeled hardware is bad. 
Hardware-in-the-loop Emulation-based



Objectives
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• High-quality peripheral access.

• Performant concolic execution. 

• Universally applicable. 

• Support All peripherals and hardware. 

1. Simpler Communication. 

• No hardware events. 

2. No emulator.

3. only need Serial Port (i.e., USART/USB-CDC)

• No GDB. 

• No CPU Halting. 

4. Real hardware and peripherals.



How to achieve this?

Compile-time analysis + instrumentation. 



How to achieve this- Cont
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Hybrid Fuzzing
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Evaluation

• Speed:
• 1.3-1.7x faster than SymCC (SotA concolic executor)
• 1000x faster than Avatar2 (Classic hardware-in-the-loop)

• Cover more code within 24 hours. 
• 1.2x more than Symcc

• 2x more than Avatar2

• Overhead:
• 27% FLASH overhead

• 2.9% RAM overhead. (different modes)



Evaluation: bug detection

• Compare SHACO with P2IM/Fuzzware
• 1000x speed up in detecting all known bugs. 

• Eliminates hundreds of false positives per firmware.

• Found 3 new bugs.   



Demo



Thank you!

• Code available: www.github.com/Lawliar/co3
• MCU is needed to experiment with the firmware.  

• Workstation program (e.g., CGC) supported. 

• Contact:
• @Law1iar
• charley.ashbringer@gmail.com

http://www.github.com/Lawliar/co3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Problems with securing the firmware on the MCUs- Cont
	Slide 6: Objectives
	Slide 7: How to achieve this?
	Slide 8: How to achieve this- Cont
	Slide 9: Hybrid Fuzzing
	Slide 10: Evaluation
	Slide 11: Evaluation: bug detection
	Slide 12: Demo
	Slide 13: Thank you!

