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Abstract 

 
 

Image registration is an optimization problem that, while ill-posed, has useful 
applications in medical analysis, criminology, and geomatics. In this paper, I present a number of 
the criteria and methodologies used in this optimization problem, with a particular focus on 
Modersitzki and Fischer’s curvature-based non-linear registration technique.  I present some 
minor exploration of alternatives using intensity scaling, using markers and, finally, the steepest 
descent.   While the intensity scaling modification worked, it had little notable effect.   Markers 
proved to be more useful but it is clear that alternate approaches, such as handling the markers in 
a pre-processing step or applying their penalty as part of the differential operators, could grant 
improvements.  Finally, steepest descent held little promise; to have a hope of decent running 
time and useful deformations, the gradient and approximations used may need more investigation.
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1.  INTRODUCTION 

 Image registration is an optimization problem that, while ill-posed, has useful applications in 

many sciences.  Medical analysis, criminology, and geomatics are merely a few fields that can make 

use of automated or semi-automated image registration.  In this paper, we present a number of the 

criteria and methodologies used in this optimization problem, with a particular focus on Modersitzki 

and Fischer’s curvature-based non-linear registration technique (Fischer and Modersitzki, 2003).  

Furthermore, we present some minor exploration of alternatives to the particular optimization 

method used by Modersitzki and Fischer. 

 

2.  PROBLEM 

The core idea of image registration is straightforward.  Given as input a reference image R 

and a deformable template image T, an image registration algorithm outputs a deformation u.  This 

deformation gives displacements for the vector of locations X and, when these displacements are 

applied to the template T, the modified template should more closely match the reference R.  This is 

an optimization problem, aiming to minimize the difference between the deformed template T(X-

u(X)) and the original reference R(X).  In subsequent examples, X will be used to represent all indices 

in the image simultaneously.  In other examples, x will be used for a single location in the image, with 

u(x) being the deformation at that location.  When the single-point notation is used, Ω is the 

applicable region – the set of points in the image.  In discussions of the deformation u outside 

formulae, boldface has been used for emphasis. 

 Despite the shared model, different methods of image registration will vary in optimization 

methods and, more importantly, the metric used to determine the difference.  Some algorithms will 

place strict restrictions on the deformation u, some will seek to focus on specific aspects of the 

image, and others will include a regularization term to ensure smoothness of the deformation.  Some 

of these methods are reviewed in Chapter 2 of this report. 

 Applications for image registration range from medical to geographical.  One medical 

application is three-dimensional modeling of the human brain, achieved through amalgamating and 
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adjusting slices of a paraffin-soaked slice.  Another is present in radiology, automatically adjusting 

images for faster comparison; if applied to mammograms, for instance, cancerous cases could be 

identified more quickly.  Image registration also has applications in identification; by matching faces 

or retinas to a database of references, rapid identification of a person could be achieved.  Shamir et al. 

(Shamir, Ling, Rahimi, Ferrucci & Goldberg, 2009) have recently attempted analogous work with 

knees.  Although the rate of success is low, the technique holds promise.  Finally, image registration 

has been used in geomatics.  Photogrammery is the technique of aligning aerial or satellite images to 

form a complete map, and an obvious use for image registration techniques. 

 While we acknowledge the wide variety of solution methods available to this problem, and 

discuss several of them in this report, image registration algorithms have not been exhausted.  This 

paper examines the framework leading to the curvature-based non-parametric image registration 

problem as defined by Fischer and Modersitzki, and presents some extensions or replacements for 

their solver of the Euler-Lagrange conditions based on Discrete Cosine Transforms (DCT). 

 

3.  BACKGROUND 

 In order to find a useful deformation of the template, we must first determine what a 'good' 

deformation is.  In general, two requirements must be satisfied.  First, the deformed template and the 

reference image should match in some fashion.  The type of matching depends on the algorithm 

used; spatial parameters of the image, specific points, or total differences are some of the possible 

measures of closeness.  

 The second requirement is some form of regularity in the deformation.  Left unchecked, a 

deformation could be found that changes every pixel of the template to match every pixel of the 

reference, but such a process would be useless for analysis.  The regularizer can require that the 

deformation be gradual, tend towards simple linear shifts of the entire template, or otherwise be 

smooth and semi-continuous in its application.  It can take the form of either a hard constraint, 

permitting only certain types of deformation, or a softer penalty function, penalizing deformations 

for abnormalities. 
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 Unfortunately, as presented, this problem is ill-posed.  Much like the heat equations, there 

are too many equally valid solutions to the deformation.  Even in simple cases, requiring only 

movement to make elements match, the question of transition versus rotation remains open.  Which 

solution can be considered ‘best’ is uncertain, due to vague definitions in the problem.  While the 

regularization terms help somewhat, most image registration implementations simply seek a 'good' 

deformation, rather than try for a badly defined 'best'. 

 

3.1  Parametric Image Registration 

 Parametric image registration consists of techniques based on finite sets of parameters and/or 

image features.  Foremost among these techniques is landmark-based image registration.  A number of 

markers are specified in both the reference and the template, and a transformation is sought that 

allows these to align.  This transformation could be a linear registration, a quadratic one, or ideally 

some other type of smooth registration. 

Simply matching the markers and nothing else, however, can result in ill-formed solutions, as 

explained later.  Evaluating the smoothness of the transformation could be more useful, and a 

modified landmark-based registration is presented later in this paper.  Landmarks, however, are 

difficult to automatically locate.  While some automation of marker finding is possible, human 

intervention may still be needed, reducing the autonomy of this method drastically. 

Principal axes are put forward as an alternative; the centre of an image, along with the 

vectors along which its main axes lie, are easily found through basic numerical analysis.  Finding a 

transformation between the axes of the reference and the template is easy, but has its weaknesses.  In 

particular, the principal axes method holds too much ambiguity.  With even different rectangles 

sharing the same features by this measure, the ability of the principal axes method to match images is 

limited at best. 

 Alternatively, the image features could be expanded to include the whole image, and the 

parameters to optimize could be restrained.  Several methods restrict themselves to affine linear 

transformations, aiming to optimize only a few terms.  Among these are some intensity-based 
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schemes using Gauss-Newton methods, and a few schemes using new distance measures.  While 

intriguing, these go beyond the scope of this paper. 

 

3.2  Non-Parametric Image Registration 

 In non-parametric image registration, by contrast, we neither focus on specific points nor 

demand an affine linear transformation.  While such a transformation may be preferred, non-linear 

deformations are possible.  As such, we aim to minimize the metric 

J[R,T; u] := D[R,T; u] + αS[u] 

where D is a metric for the difference between the reference and the deformed template, and S is a 

measure of the deformation’s smoothness.  For the difference, the sum of squared differences is a 

popular metric which can be quickly computed over Ω.   

D[R,T; u] := 1/2 || R – Tu ||2 = 1/2 ∫Ω(T(x-u(x)) – R(x))2 dx 

The smoothness measure, on the other hand, varies widely with the specific non-parametric 

method used.  Finally, depending on the problem to be resolved, appending a penalty term is possible 

if particular solutions are to be avoided. 

 

3.2.1  Elastic 

 The elastic smoothness measure is motivated by the physics of objects being deformed.  For 

this method, the smoothness measure 

Selas[u] := ∫Ω µ/4 ∑j,k(δxjuk + δxkuj)2 + λ/2 (div u)2 dx 

is used, where λ and µ are the so-called Lamé constants, reflecting material properties.  The smoother 

in this case represents the stress on each point in the simulated object.  This method is used in fields 

where the images being registered are drawn from objects with elastic properties, such as slices of a 

brain used for 3D reconstruction. 

 Elastic-based registration has its advantages and its disadvantages.  It has rapid 

implementations, making it quick to use, and its physical motivations make it useful in some cases.  

However, any deformations will be small and local, as opposed to more global transformations such 
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as an overall displacement. Lastly, it can be too rigid for some images.  If the object being modeled is 

more mutable, then elastic smoothness is too constraining. 

 

3.2.2  Fluid 

 In some cases, elastic registration is too rigid for the problem.  For cases where the material 

imaged is more prone to change, the fluid smoothness parameter is used.  This is relatively 

straightforward to understand; instead of directly taking the smoothness of a deformation u, the fluid 

smoothness measure finds the velocity v of the displacement field u, and takes the elastic 

smoothness of v.  To resolve this velocity, an arbitrary time step is implemented, with time 

represented as t.  This step can be matched to subsequent iterations. 

Sfluid[u] := Selas[v] 

v(x,t) = δtu(x,t) + u(x,t)v(x,t) 

 This fluid model was proposed by Christensen (Christensen, 1994), and is used in cases where 

the object being modeled is fluid-like; it does not accurately represent elastic objects, and can be used 

to obtain deformations completely altering the nature of an image.  Some classical examples include 

turning a hand into a disc, or a circle into the letter C. 

 

3.2.3  Diffusion 

 Switching entirely from the physically motivated model, we come to diffusion registration.  

Rather than attempt to emulate physical properties as in the elastic or fluid models, this method 

attempts to evaluate more closely the smoothness of the displacement itself.  The regularization 

term for this, as introduced by Fischer and Modersitzki, is the sum of the norm of the gradients of u 

in each dimension. 

Sdiff[u] := ½ ∑j ∫Ω || uj ||2 dx 

 This regularizer, ideally, reduces penalties for smooth deformations.  Furthermore, its setup 

allows easily computed Euler-Lagrange equations.  This makes several optimization methods more 

useful; the conditions are as follows. 
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f(x,u(x)) + αΔu(x) = 0, x ϵ Ω 

f(x,u(x)) := (R(x) – Tu(x))Tu(x) 

 The diffusion registration method is named as such because the partial differential equations it 

approximates can be viewed as a generalized diffusion equation.  Furthermore, these PDEs can be 

solved through an iterative process. Beyond this, variants exist.  The Thirion’s demons method for 

matching of images can be implemented, or the basis of the regularizer can be focused on velocity 

rather than displacement – a fluid-like model, as opposed to an elastic-like one. 

 This method is not without its drawbacks.  While evaluating the gradients is sensible, the 

resulting method is not physical.  Each component of the resulting displacement is akin to a solution 

to a heat equation, but a unified model for the resulting displacement field is not clear.  Fortunately, 

the non-physicality is seldom significant in most real-world applications. 

 Diffusion registration has its advantages as well.  Spatial directions are decoupled, allowing 

block diagonalization.  Additive operator splitting, as proposed by Fischer and Modersitzki, permits a 

linear-complexity solution technique for each block.  Hence, diffusion registration is quick, 

particularly on high-dimensional data. 

 

3.2.4  Curvature 

 Modersitzki and Fischer were motivated to look beyond diffusion registration by desire for a 

measure with a certain kernel.  As affine linear transformations involve no deformation of the 

image, the smoothness measure should not penalize their use.  As such, a measure with a kernel 

including such linear transforms was desired.  As such transforms resulted in nonzero smoothness 

under diffusion, Modersitzki and Fischer needed a new measure. 

Scurv[u] := ½ ∑j ∫Ω (Δuj )2 dx 

 By taking the Laplacian of u instead of the gradient, a Cx+b transform has a smoothness 

measure of zero, fulfilling the stated goal.  This measure shares several properties with diffusion 

registration, not the least of which is its computational efficiency. 
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3.2.5  Other  

Other options exist beyond the unified model presented here.  Droske and Ring (Droske & 

Ring, 2006) present a level-set method based on segmentation and edge-alignment, while Keeling 

(Keeling, 2007) has done work with optical flow and new intensity-scaling distance measures.  Most 

of these fall outside the scope of this paper, and our focus will be on the diffusion and curvature-based 

methods.  

 

4.  SOLVING THE SYSTEM 

 Once our measure has been determined, the goal of image registration is to solve for the best 

deformation u that can minimize the distance measure while fulfilling certain properties.  The 

measure and properties, to some extent, determine how this problem will be solved.  The parametric 

measures mentioned above can sometimes be solved directly, while other measures sometimes require 

more procedural algorithms. 

 Most parametric measures, by design, lend themselves easily to direct solution of a system.  

With a fixed number of variables, solutions can be straightforward.  Axes-based registration in 

particular is fast to solve; after finding the principal axes of the template and reference, an affine 

linear transformation to make the axes match is simple to solve.  Likewise, landmark-based methods 

constrained to linear or quadratic deformations can quickly be solved for the required variables.  

However, the faults of the parametric methods show themselves here.  Quadratic transformations in 

particular can technically satisfy the requirements of landmark-based registration while being 

otherwise useless for image registration. While the example below matches the fingertip landmarks 

exactly, the rest of the deformed image is in no state to be compared to a reference. 
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(Citation: Modersitzki, J.  Numerical methods for Image Registration.  Page 31.) 

 

 Another approach, used in an implementation of curvature-based registration by Fischer and 

Modersitzki, involves solving the Euler-Lagrange conditions for the image registration metric.  With 

the gradient of the objective function and some approximation, the deformation can theoretically be 

solved for a gradient of zero.  In practice, too much approximation is necessary to obtain an ideal 

deformation.  To resolve this, a fixed point iteration is used, using the gradient of the objective 

function on a given deformation to obtain the next one.  This is repeated until various conditions are 

met.  If the calculation of the various deformations can be done efficiently, this method can be fast.  

It is not without its disadvantages, however; in particular, any critical points of the objective 
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function can be traps for the algorithm.  As the Euler-Lagrange conditions are the only ones 

checked, the iteration would stop upon reaching any stationary point. 

 Steepest descent is another optimization technique with some use in this field.  It requires 

several iterations, like fixed-point.  Instead of solving the Euler-Lagrange equations at each step, 

however, the algorithm finds a direction in which to improve the deformation, calculates how far in 

that direction to go, and produces an updated deformation that results in a lower objective value.  

This process is repeated until sufficient progress has been made.  Steepest descent methods, however, 

have two weaknesses.  The first is that the algorithm, while less prone to the weaknesses of the 

earlier fixed-point iteration, can still fall prey to critical points.  The second is that steepest descent 

will sometimes take steps that are too small.  While the algorithm could reach the same result as 

another method in this scenario, it would take much longer. 

 One novel approach for image registrations is Thirion’s demons.  Inspired by Maxwell’s 

demons from thermodynamics, the idea is to place several ‘demons’ at various locations on the 

template.  These demons then decide whether moving a given particle of the template would reduce 

the difference between the reference and the template.  Over multiple iterations, the demons 

effectively sort the elements of the template to produce a final deformation.  In practice, a force 

field is often computed to decide on the direction of movement, and diffusion registration is often 

used to regularize the smoothness of the method.  This approach is akin to a piecewise steepest 

descent.  The main drawbacks are the smoothness of the method, and the difficulty in choosing some 

of the parameters.  

 

5.  FISCHER-MODERSITZKI APPROACH  

 As mentioned above, we characterize all deformations of an image by a measure 

J[u] := D[R,T;u] + αS[u] 

where D is a distance measure between the reference and deformed template, and S is a measure of the 

deformation.  We seek to minimize this joint measure, using any of a number of numberical schemes.  

A simple necessary condition for a minimizer u is that the Gâteaux derivative of the objective 
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function vanishes.  The derivative of the joint functional splits into a sum, with the derivative of the 

distance measure being –f(x,u(x)). 

f(x,u(x)) := (R(x) – Tu(x))Tu(x) 

The derivative of the smoothness parameter depends on the smoothness measure used.  Diffusion and 

curvature smoothness were designed with this in mind.  For diffusion, the derivative of the 

smoothness is simply the Laplacian of u.  For curvature, it is the Laplacian squared.  The Laplacian 

can be approximated with a discrete operator.  The diffusion example, being more straightforward, is 

as follows for two dimensions. 

Δuj (X) ≈ Sdiff,d * uj (X) 

Sdiff,2 := ( 0  1 0 ) 

( 1 -4 1 ) 

( 0  1 0 ) 

 This stencil can be generalized into a matrix Adiff,d applied to U, a vector of values of u. 

Δ[uj ](X) ≈ Adiff,d Uj  

 The curvature extension of this is in turn straightforward. 

Acurv,d := ( Adiff,d )2 

 Finally, we have modified Euler-Lagrange conditions for the diffusion case and, by replacing 

A, the curvature case. 

f(X,U) + αId ⊗ Adiff,d U = 0 

With the derivative approximated, the next logical step is to use some form of numerical 

methods to approach such a minimizer.  One option, as proposed by Henn (1997), is a gradient-based 

steepest descent method.  Using the gradient of the distance measure, projecting it as appropriate, 

the permutation ideally approaches an optimal state.  We present an attempt to apply this method 

to curvature-based image registration. 

 Another scheme, first proposed by Thirion in 1995, is a demons-based approach, as outlined 

earlier in this paper. 
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 Finally, the approaches principally used by Fischer and Modersitzki are based on the Euler-

Lagrange equations as discussed above.  Rather than following the gradient, this scheme attempts to 

solve the conditions directly, using fixed-point iteration. Representing our differential operator with 

A, and starting with some initial guess such as u(0) = 0, u(k+1) is defined by 

αA[u(k+1)](x) = -f(x,u(k)(x)) for all x 

This scheme can be further stabilized with a parameter τ as follows.  With F(k) defined as 

f(X,U(k)) and n being the number of points to be considered, the curvature approach can be modified 

to become 

( In + ατ Acurv,d )Uj
(k+1) = Uj

(k) + τ Fj
(k)  

The most computationally intensive step of this scheme is, as expected, finding a way to 

solve (In + ατ Acurv,d )-1 or otherwise solve for Uj
(k+1).  Where curvature-based registration is 

concerned, Fischer and Modersitzki present a clever solution to this dilemma.  By using a Discrete 

Cosine Transform on U and F, the revised effects of Acurv effectively form a diagonal matrix, making 

inversion trivial. 

Ddiff,2 := diag(dj1,j2, j1 = 1…n1, j2 = 1…n2) 

dj1,j2 = -4 + 2 cos( ( j1 - 1 ) π / n1 ) + 2 cos( ( j2 – 1 ) π / n2 ) 

Dcurv,2 = ( Ddiff,2 )2. 

Piecing these elements together, the following straightforward algorithm can be used. 

Inputs: R, T, α, τ.   Assumptions: U(0) = 0.  j covers all dimensions. 

For k = 0,…  

 Fj
(k) = (T(X – U(k)(X)) – R(X)) δxj T(X – U(k)) 

 Gj = DCT(Uj
(k) + τFj

(k)) 

 For p=1..d, ip = 1…np 

  Vj, i1,…,ip = Gi1,…,ip [1 + ταd2
i1,…,ip]-1 

 End, 

 Uj
(k+1) = DCT-1(Vj) 

End. 
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MATLAB code implementing this is presented in the appendix, terminating after a certain number 

of iterations or when the difference between iterations is trivial. 

 

6.  MODIFICATIONS 

 In order to further explore this algorithm, we attempted several modifications based on our 

research.  

 

6.1  Intensity scaling 

 The first was a simple extension implementing basic intensity scaling.  Before starting the 

curvature based registration process, the reference image had its values scaled so that average 

intensities of reference and template were on par.  This simple correction was easy to implement, but 

had negligible effect on the end result.  While more involved methods are possible, global intensity 

scaling seems largely unnecessary.  A ‘correct’ deformation of the image seems to have a minimal 

sum of squared differences from the template, with or without a scaling of intensity.  

6.2  Landmarking 

Another modification of Fischer and Modersitzki’s algorithm was parametrically motivated.  

While landmark-based registration was not implemented as presented, a penalty term was applied to 

the objective function.  This would allow a user to specify markers for the reference and template.  

Our choice of penalty term to implement this regularizing variable times the squared norm of the 

distance between the reference marker and the deformed template marker.  This is a geometric 

distance, as opposed to a difference in pixel intensity; as a result it can be compared directly with the 

deformation u, but must be scaled carefully.  Denoting the marker locations with arrays Rm and Tm: 

 P(u) := ( β/2 || (Rm – Tm) – u(Tm) ||2 ) 

The gradient of this penalty term, as required in the Euler-Lagrange equations, is the distance 

between deformed template marker and reference marker, in each dimension.  As the Euler-Lagrange 

equations apply at each point, this penalty term is applied at the location of the template marker, 

for each pair of markers specified. 
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d/dxj P(u) = β * [(Rmj – Tmj) – u(Tm)j ] 

As presented, this gradient consists of a constant term and a simple linear term based on the 

deformation.  This allows rapid computation of this penalty term when added directly to the distance 

function. 

Testing of this implementation revealed the need to specify β carefully.  In cases with a 

marker close to the edge of the image, the modified fixed point iteration overcompensated and 

exhibited divergent behaviour.  With careful selection of markers and regularizing constants, 

however, the resulting deformations closely matched the markers in question.  The resulting 

deformed templates matched the references more closely at those points, but the smoothness of the 

deformation suffered as a result. 

A second attempt was made to achieve greater smoothness.  Rather than apply the penalty 

term to the distance function, it was applied to the smoothness.  Adjusting the Euler-Lagrange 

equations to include the penalty on the left side was difficult.  The constant part of the gradient of 

the penalty – Rm-Tm – was included on the right hand side, added to the distance function.  On the 

left, β was added to the differential operator on u at the marker locations.  This, however, added 

difficulties in the inversion – with this modification, the diagonalization of A under DCT was not 

certain.  By applying the Sherman-Morrison-Woodbury formula, however, the DCT formula could be 

preserved and simply adjusted for the markers. 

(A + UCV)-1 = ( I + A-1U( C-1 + VA-1U )-1V) A-1 

UCV = β on diagonal at markers, 0 elsewhere 

The results of this second attempt again revealed the need to select β carefully, while 

considering the other parameters.  Varying the locations of markers made significant differences as 

well.  In the following test cases, markers were used on the thumb, pinky finger, and either side of the 

wrist.  In successful cases, this resulted in the markers being dragged closer to their correct locations, 

as constrained by the curvature-based smoothness.  The first two tests were terminated after 400 

iterations; the other three were allowed to run for 20000 iterations in case convergent behaviour 

emerged.  In the final case presented here, convergence to a small tolerance was achieved after 
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12969 iterations of the algorithm.  That said, useful results tend to present themselves quickly; the 

tolerance currently used in testing needs reformulating. 

    

Reference R  Template T  α=1 τ=2 β=4  α=1 τ=2 β=0.4 

   

α=1 τ=2 β=4  α=50 τ=0.02 β=40 α=10 τ=0.2 β=1 

Evidence seems to indicate that β must be set relatively small compared to α, in order to prevent 

overly disrupting the differential operator.  Furthermore, it can be shown that α has a significant 

effect on the smoothness of the image, as anticipated.  However, the markers as implemented show 

promise.  Further tweaking could be of use, along with automation of the marker selection.  At 

present, human intervention is still required.  Furthermore, the marker term includes an extra matrix 

inversion of size k by k, where k is the number of markers.  Despite this slowdown, the landmarks 

show promise and could be of use for stabilization of image registration. 

 

6.3  Steepest Descent 

Finally, an effort was made to construct a curvature based steepest descent solver.  We used 

the gradient approximation from the Euler-Lagrange conditions of the basic fixed point iterations, 

and a simple line search method to determine the severity of the descent at any given iteration.  This 

line search required sufficient descent, based on the joint functional of curvature based registration.  

For simplicity, an approximation of the Lagrangian of the deformation was used.  Using the same 
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convergence requirements as in our implementation of fixed point iteration, we set to testing the 

steepest descent method. 

After some experimentation, the steepest descent method proved suboptimal.  The best test 

run came by setting α to 0.01, so that smoothness of the deformation would be a secondary concern 

at best.  At present, the steepest descent seems to rate smoothness too highly; even with a low α, the 

process terminated after five iterations with little significant change. 

   

Reference  Template  Steepest Descent, α=0.01 

Alternate methods of calculating gradient, direction of descent, and sufficient descent are 

almost certainly required.  The current methods of approximation seem insufficient.  Furthermore, 

when directly compared with standard curvature-based image registration, steepest descent is slower.  

On the 60x60 image used above, the time taken for five iterations of steepest descent was equivalent 

to the time required for three hundred iterations of fixed-point solving. 

 

7.  DISCUSSION AND CONCLUSIONS 

Some of our modifications to the curvature based implementation achieved greater success 

than others.  The initial test of intensity scaling proved less than fruitful; while the modification 

works, it had little effect on the end result.  While more involved methods could be used, the ability 

of the basic algorithm to overcome simple intensity problems seems sufficient.  Markers proved to 

be more useful; while the basic implementation had problems, the idea seems sound.  Alternate 

approaches, such as handling the markers in a pre-processing step, could grant improvements.  

Finally, steepest descent held only minor promise; to have a hope of decent running time and useful 

deformations, the gradient needs to be redone, with a different approximation used. 
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 Some of these results show that there is room for improvement.  More elaborate intensity 

scaling could be used, and more complicated test cases should be examined.  In photography cases 

where one photo is overexposed, average brightness could vary across the photo.  An intensity 

algorithm looking for such cases could improve curvature registration.  For markers, a worthwhile 

area of research could be the automation of landmark selection.  If such processes are combined with 

a penalty term on curvature registration, the result could be a relatively smooth deformation that 

matches up the most important features of the images.  Shifting the focus of the penalty to the 

differential operator helped the algorithm in resolving the penalties more directly; this second 

attempt requires further testing, particularly in conjunction with automated marker selection.  

Thirdly, steepest descent could work if the gradient were computed in some fashion other than the 

approximation used for the normal DCT-based algorithm. 

Outside our three extensions, other modifications could be made to the curvature algorithm.  

Although steepest descent gave disappointing results, modifications to it combined with a Thirion’s 

demons approach could prove interesting when used with curvature-based registration.  Modifications 

to use curvature smoothness on a fluid-based velocity field have been explored by Fischer and 

Modersitzki, but could possibly be combined with other penalty terms or a secondary smoothness 

function.  Alternate difference measures could be examined, as well.  While these are only ideas, the 

successes thus far show that room remains for exploration of further extensions to curvature-based 

registration. 
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APPENDIX A: 
MATLAB CODE 

 
%  CurvImgReg – Takes reference and template as parameters, along with 
regularization constants, outputs the curvature-based deformation used. 
function [q,uFinal] = curvImgReg(R,T,alpha,tau) 
    [sizex,sizey] = size(R); 
    [verx,very] = size(T); 
    uFinal = zeros(sizex,sizey,2); 
    if (sizex ~= verx) || (sizey ~= very) 
        print('Error: Images must be the same size.'); 
        return 
    end 
    udiff = 1; tol = 0.0001; maxit = 300; %% Initialization; tolerance here 
    q = 1; %% Counter for number of iterations 
    while udiff > tol && q <= maxit 
        uOld = uFinal; 
        uFinal = Mcurv3(R,T,uOld,alpha,tau); 
        udiff = 0; 
        for i = 1:sizex 
            for j=1:sizey 
                for k=1:2 
                    udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2; 
                end 
            end 
        end %% This loop should be reworked, but it's serviceable. 
        if mod(q,20) == 0 
        %    uFinal - this would allow output of intervening steps for 
        %    testing. 
        end 
        q = q+1; 
    end 
    return 
end 
 
% Mcurv3 – Runs one step of the fixed-point iteration. 
function newU = Mcurv3(R,T,u,alpha,tau) 
    [sizex,sizey] = size(R); 
    newU = zeros(sizex,sizey,2); 
    Fgrad = feval3(R,T,u); 
     
    for l = 1:2 
        temp = u(:,:,l) + tau*Fgrad(:,:,l); 
         
        G = dct2(temp); 
  
        V = zeros(sizex,sizey); 
  
        for i = 1:sizex 
            for j = 1:sizey 
                d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey); 
                V(i,j) = G(i,j) * (1 + tau*alpha*(d^2))^-1; 
            end 
        end 
        newU(:,:,l) = idct2(V); 
         
    end 
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    return 
end 
 
% feval3 – Computes the gradient of the distance function. 
function f = feval3(R,T,u) 
    [sizex,sizey] = size(R); 
    f = zeros(sizex,sizey,2); 
    temp = zeros(sizex,sizey); 
    tempx = zeros(sizex,sizey); 
    tempy = zeros(sizex,sizey); 
     
    for i = 1:sizex 
        for j=1:sizey 
            temp(i,j) = interpolate2(T,(i-u(i,j,1)),(j-u(i,j,2))) - R(i,j); 
            [tempx(i,j),tempy(i,j)] = intergrad(T,(i-u(i,j,1)),(j-u(i,j,2))); 
            [s1,s2] = intergrad(T,i-0.5,j-0.5); 
            [s3,s4] = intergrad(T,i+0.5,j+0.5); 
            if u(i,j,1) == 0 
                tempx(i,j)=(s1+s3)/2; 
            end 
            if u(i,j,2) == 0 
                tempy(i,j) = (s2+s4)/2; 
            end 
        end 
    end 
%%    f(:,:,1) = temp*tempx; An earlier misunderstanding. 
%%    f(:,:,2) = temp*tempy; Depreciated code. 
    for i = 1:sizex 
        for j=1:sizey 
            f(i,j,1) = temp(i,j) * tempx(i,j); 
            f(i,j,2) = temp(i,j) * tempy(i,j); 
        end 
    end 
     
    return; 
end 
 
% interpolate2 – Implementation of bilinear interpolation. 
function bilin = interpolate2(T, x, y) 
  
    [maxx, maxy] = size(T); 
    if (x > maxx)  
        x = maxx; 
    end 
    if (x < 1) 
        x = 1; 
    end 
    if (y > maxy) 
        y = maxy; 
    end 
    if (y < 1) 
        y = 1; 
    end 
    %% The boundval was stupid.  If it's outside the boundaries, use the 
    %% closest point.  Fixed. 
    bilin = 0; 
    if (x < maxx) && (y < maxy) 
        bilin = bilin + (x - floor(x))*(y - floor(y))*(T(floor(x)+1, 
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floor(y)+1)); 
    end 
    if (x < maxx) 
        bilin = bilin + (x - floor(x))*(floor(y)+1-y)*(T(floor(x)+1, 
floor(y))); 
    end 
    if (y < maxy) 
        bilin = bilin + (floor(x)+1-x)*(y - floor(y))*(T(floor(x), 
floor(y)+1)); 
    end 
    bilin = bilin + (floor(x)+1-x)*(floor(y)+1-y)*(T(floor(x), floor(y))); 
    return; 
     
% intergrad – Takes the derivative of bilinear interpolation. 
function [gradx, grady] = intergrad(T, x, y) 
    constvar = 0; 
    [maxx, maxy] = size(T); 
    if (x > maxx) || (x < 1) || (y > maxy) || (y < 1) 
        gradx = constvar; 
        grady = constvar; 
        return; 
    end 
    gradx = 0; grady=0; 
    if (x < maxx) && (y < maxy) 
        grady = grady + (x - floor(x))*(1)*(T(floor(x)+1, floor(y)+1)); 
        gradx = gradx + (1)*(y - floor(y))*(T(floor(x)+1, floor(y)+1)); 
    end 
    if (x < maxx) 
        gradx = gradx + (1)*(floor(y)+1-y)*(T(floor(x)+1, floor(y))); 
        grady = grady + (x - floor(x))*(-1)*(T(floor(x)+1, floor(y))); 
    end 
    if (y < maxy) 
        gradx = gradx + (-1)*(y - floor(y))*(T(floor(x), floor(y)+1)); 
        grady = grady + (floor(x)+1-x)*(1)*(T(floor(x), floor(y)+1)); 
    end 
    gradx = gradx + (-1)*(floor(y)+1-y)*(T(floor(x), floor(y))); 
    grady = grady + (floor(x)+1-x)*(-1)*(T(floor(x), floor(y))); 
    return; 
     
% CurvIntReg – Simple implementation of intensity scaling. 
% Uses the same subroutines as normal curvature based registration. 
function [q,uFinal,uOld] = curvIntReg(R,T,alpha,tau) 
    [sizex,sizey] = size(R); 
    [verx,very] = size(T); 
    uFinal = zeros(sizex,sizey,2); 
    %uFinal = 0.5*ones(sizex,sizey,2); 
    if (sizex ~= verx) || (sizey ~= very) 
        print('Error: Images must be the same size.'); 
        return 
    end 
    udiff = 1; tol = 0.001; maxit = 300; %% Initialization; tolerance here 
     
    Rtot = 0; Ttot = 0; %% Begin intensity correction. 
    for i=1:sizex 
        for j=1:sizey 
            Rtot = Rtot + R(i,j); 
            Ttot = Ttot + T(i,j); 
        end 
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    end 
     
    R2 = (Ttot/Rtot)*R;  
    %% I'm not really happy with this yet; I'm going to get 'darker than 
    %% dark' pixels in some cases. 
    %% A more dynamic setup would be better, but that'd require redoing 
    %% most of the algorithm - the gradient of the new difference function 
    %% alone would be a pain and a half to compute. 
     
    q = 1; %% Counter for number of iterations 
    while udiff > tol && q <= maxit 
        uOld = uFinal; 
        uFinal = Mcurv3(R2,T,uOld,alpha,tau); 
        udiff = 0; 
        for i = 1:sizex 
            for j=1:sizey 
                for k=1:2 
                    udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2; 
                end 
            end 
        end 
        if mod(q,20) == 0 
        %    uFinal - Use for intermediate steps. 
        end 
        q = q+1; 
    end 
    return 
end 
 
% CurvMark – Landmarks-based penalty term.  Takes a 
% pair of lists of locations, one each for Reference and Template. 
% Beta is a parameter for the importance of markers; setting with care. 
function [q,uFinal,uOld] = curvMark(R,T,markR,markT,alpha,tau,beta) 
    [sizex,sizey] = size(R); 
    [verx,very] = size(T); 
    [nummarks,d] = size(markR); 
    [vermarks,verd] = size(markT); 
    uFinal = zeros(sizex,sizey,2); 
    %uFinal = 0.5*ones(sizex,sizey,2); 
    if (sizex ~= verx) || (sizey ~= very) || (nummarks ~= vermarks) || (d ~= 
verd) 
        print('Error: Images must be the same size.'); 
        return 
    end 
    udiff = 1; tol = 0.0001; maxit = 400; %% Initialization; tolerance here 
    q = 1; %% Counter for number of iterations 
    while udiff > tol && q <= maxit 
        uOld = uFinal; 
        uFinal = McurvMark(R,T,uOld,markR,markT,nummarks,alpha,tau,beta); 
        udiff = 0; 
        for i = 1:sizex 
            for j=1:sizey 
                for k=1:2 
                    udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2; 
                end 
            end 
        end 
        if mod(q,20) == 0 
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        %    uFinal – use for intervening steps. 
        end 
        q = q+1; 
    end 
    return 
end 
 
% McurvMark – Landmark variant of Mcurv3. 
function newU = McurvMark(R,T,u,markR,markT,nummarks,alpha,tau,beta) 
    [sizex,sizey] = size(R); 
    newU = zeros(sizex,sizey,2); 
    Fgrad = feval2marks(R,T,u,markR,markT,nummarks,beta); 
     
    for l = 1:2 
        temp = u(:,:,l) + tau*Fgrad(:,:,l); 
         
        G = dct2(temp); 
  
        V = zeros(sizex,sizey); 
  
        for i = 1:sizex 
            for j = 1:sizey 
                d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey); 
                V(i,j) = G(i,j) * (1 + tau*alpha*(d^2))^-1; 
            end 
        end 
        newU(:,:,l) = idct2(V); 
         
    end 
    return 
end 
 
% feval2marks – gradient of the distance function with new penalty. 
function f = feval2marks(R,T,u,Rmarks,Tmarks,nummarks, beta) 
    [sizex,sizey] = size(R); 
    f = zeros(sizex,sizey,2); 
    temp = zeros(sizex,sizey); 
    tempx = zeros(sizex,sizey); 
    tempy = zeros(sizex,sizey); 
  
     
    for i = 1:sizex 
        for j=1:sizey 
            temp(i,j) = interpolate2(T,(i-u(i,j,1)),(j-u(i,j,2))) - R(i,j); 
            [tempx(i,j),tempy(i,j)] = intergrad(T,(i-u(i,j,1)),(j-u(i,j,2))); 
            [s1,s2] = intergrad(T,i-0.5,j-0.5); 
            [s3,s4] = intergrad(T,i+0.5,j+0.5); 
            if u(i,j,2) == 0 
                tempx(i,j)=(s1+s3)/2; 
            end 
            if u(i,j,2) == 0 
                tempy(i,j) = (s2+s4)/2; 
            end 
        end 
    end 
  
    for i = 1:sizex 
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        for j=1:sizey 
            f(i,j,1) = temp(i,j) * tempx(i,j); 
            f(i,j,2) = temp(i,j) * tempy(i,j); 
        end 
    end 
     
    for i = 1:nummarks 
        diffx = (Tmarks(i,1) - u(Tmarks(i,1),Tmarks(i,2),1) - Rmarks(i,1)); 
        diffy = (Tmarks(i,2) - u(Tmarks(i,1),Tmarks(i,2),2) - Rmarks(i,2)); 
        dist = diffx^2 + diffy^2;  %% Derivative of this would be the 
distance in each direction.  So: 
        f(Tmarks(i,1),Tmarks(i,2),1) = f(Tmarks(i,1),Tmarks(i,2),1) - 
beta*diffx; 
        f(Tmarks(i,1),Tmarks(i,2),2) = f(Tmarks(i,1),Tmarks(i,2),2) - 
beta*diffy; 
    end 
     
    return; 
 
 
%% curvMark2: Completely implements the second landmark-based method. 
%% Oversight in subsequent code effectively doubles beta; left unfixed 
%% because beta's more an estimate at this point anyway. 
  
function [q,uFinal] = curvMark2(R,T,markR,markT,alpha,tau,beta) 
    [sizex,sizey] = size(R); 
    [verx,very] = size(T); 
    [nummarks,d] = size(markR); 
    [vermarks,verd] = size(markT); 
    uFinal = zeros(sizex,sizey,2); 
    %uFinal = 0.5*ones(sizex,sizey,2); 
    if (sizex ~= verx) || (sizey ~= very) || (nummarks ~= vermarks) || (d ~= 
verd) 
        print('Error: Images must be the same size.'); 
        return 
    end 
    udiff = 1; tol = 0.0001; maxit = 400; %% Initialization; tolerance here 
    q = 1; %% Counter for number of iterations 
    [markin1,markin2,markin3] = 
MarkInversion(sizex,sizey,nummarks,markT,tau,alpha,beta); 
    while udiff > tol && q <= maxit 
        uOld = uFinal; 
        uFinal = 
McurvMark2(R,T,uOld,markR,markT,nummarks,alpha,tau,beta,markin1,markin2,marki
n3); 
        udiff = 0; 
        for i = 1:sizex 
            for j=1:sizey 
                for k=1:2 
                    udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2; 
                end 
            end 
        end 
        if mod(q,20) == 0 
        %    uFinal - Use for intervening steps. 
        end 
        q = q+1; 
    end 
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    return 
end 
 
 
%% MarkInversion: This function works out the basics of the Sherman- 
%% Morrison-Woodbury formula, and produces a matrix by which we multiply  
%% A^-1 to get (A + 2*beta*markers)^-1.  Code differs from algorithm in 
%% paper, on request - effectively doubles beta here and elsewhere.  It 
%% scales. 
  
function [AiU,B,V] = MarkInversion(sizex,sizey,nummarks,markT,tau,alpha,beta) 
    C = eye(nummarks); 
    U = zeros(sizex*sizey,nummarks); 
    V = zeros(nummarks,sizex*sizey); 
     
    for i=1:nummarks 
        U((markT(i,1)-1)*sizey+markT(i,2),i) = sqrt(2*beta); 
        V(i,(markT(i,1)-1)*sizey+markT(i,2)) = sqrt(2*beta); 
    end 
     
    DU = dct2(U); 
    for i = 1:sizex 
        for j = 1:sizey 
            d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey); 
            DU((i-1)*sizey+j,:) = DU((i-1)*sizey+j,:) * (1 + 
tau*alpha*(d^2))^-1; 
        end 
    end 
     
    AiU = idct2(DU); 
  
    block = C + (V * AiU); 
    B = inv(block);  
    %% curvmod = - AiU * inv(block) * V;   Code depreciated 
    return 
end 
 
 
% McurvMark2: Second attempt at landmarks, splits the penalty function to F 
% and to S.  Uses the matrix stencil calculated elsewhere to save time - 
% time probably lost by unraveling and raveling U.  A more efficient way to 
% handle this would be nice. 
  
function newU = 
McurvMark2(R,T,u,markR,markT,nummarks,alpha,tau,beta,markin1,markin2,markin3) 
    [sizex,sizey] = size(R); 
    newU = zeros(sizex,sizey,2); 
    Fgrad = feval3marks(R,T,u,markR,markT,nummarks,beta); 
     
    for l = 1:2 
        temp = u(:,:,l) + tau*Fgrad(:,:,l); 
         
        G = dct2(temp); 
  
        V = zeros(sizex,sizey); 
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        for i = 1:sizex 
            for j = 1:sizey 
                d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey); 
                V(i,j) = G(i,j) * (1 + tau*alpha*(d^2))^-1; 
            end 
        end 
        newU(:,:,l) = idct2(V); 
         
    end 
    %% If there's a better way to unravel and reravel U, I'd love to hear 
    %% it. 
    AU = zeros(sizex*sizey,2); 
    for i=1:sizex 
        for j=1:sizey 
            AU((i-1)*sizey+j,:) = newU(i,j,:); 
        end 
    end 
    AU = AU - markin1*(markin2*(markin3*AU)); 
    for i=1:sizex 
        for j=1:sizey 
             newU(i,j,:) = AU((i-1)*sizey+j,:); 
        end 
    end 
    return 
end 
 
 
% feval3marks: Further modification of f(x,u(x)); this applies only the  
% constant part of the landmark penalty function. 
function f = feval3marks(R,T,u,Rmarks,Tmarks,nummarks, beta) 
    [sizex,sizey] = size(R); 
    f = zeros(sizex,sizey,2); 
    temp = zeros(sizex,sizey); 
    tempx = zeros(sizex,sizey); 
    tempy = zeros(sizex,sizey); 
  
     
    for i = 1:sizex 
        for j=1:sizey 
            temp(i,j) = interpolate2(T,(i-u(i,j,1)),(j-u(i,j,2))) - R(i,j); 
            [tempx(i,j),tempy(i,j)] = intergrad(T,(i-u(i,j,1)),(j-u(i,j,2))); 
            [s1,s2] = intergrad(T,i-0.5,j-0.5); 
            [s3,s4] = intergrad(T,i+0.5,j+0.5); 
            if u(i,j,2) == 0 
                tempx(i,j)=(s1+s3)/2; 
            end 
            if u(i,j,2) == 0 
                tempy(i,j) = (s2+s4)/2; 
            end 
        end 
    end 
  
    for i = 1:sizex 
        for j=1:sizey 
            f(i,j,1) = temp(i,j) * tempx(i,j); 
            f(i,j,2) = temp(i,j) * tempy(i,j); 
        end 
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    end 
     
    for i = 1:nummarks 
        diffx = (Tmarks(i,1) - Rmarks(i,1)); 
        diffy = (Tmarks(i,2) - Rmarks(i,2)); 
        dist = diffx^2 + diffy^2;  %% Derivative of this would be the 
distance in each direction.  So: 
        f(Tmarks(i,1),Tmarks(i,2),1) = f(Tmarks(i,1),Tmarks(i,2),1) - 
2*beta*diffx; 
        f(Tmarks(i,1),Tmarks(i,2),2) = f(Tmarks(i,1),Tmarks(i,2),2) - 
2*beta*diffy; 
    end 
     
    return; 
 
 
% CurvSteep – implementation of Steepest Descent.  Needs work. 
function [q,uFinal] = curvSteep(R,T,alpha) 
    [sizex,sizey] = size(R); 
    [verx,very] = size(T); 
    uFinal = zeros(sizex,sizey,2); 
    %uFinal = 0.5*ones(sizex,sizey,2); 
    if (sizex ~= verx) || (sizey ~= very) 
        print('Error: Images must be the same size.'); 
        return 
    end 
    udiff = 1; tol = 0.0001; maxit = 40; %% Initialization; tolerance here 
    %% Tolerated number of iterations is low; if it's working, 
    %% it doesn't get even that far. 
    q = 1; %% Counter for number of iterations 
    while udiff > tol && q <= maxit 
        uOld = uFinal; 
        [uFinal] = McurvSteep(R,T,uOld,alpha); 
        udiff = 0; 
        for i = 1:sizex 
            for j=1:sizey 
                for k=1:2 
                    udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2; 
                end 
            end 
        end 
        if mod(q,20) == 0 
        %    uFinal - Intervening steps can be output here. 
        end 
        q = q+1; 
    end 
    return 
end 
 
% McurvSteep – one step of the steepest descent algorithm. 
function [newU] = McurvSteep(R,T,u,alpha) 
    [sizex,sizey] = size(R); 
    Fgrad = feval2(R,T,u); 
    Adiff = Adiff2(sizex,sizey); 
    A = Adiff'*Adiff; 
    tempU = zeros(sizex*sizey,2); 
    desc = zeros(sizex,sizey,2); 
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    for i = 1:sizex 
        for j=1:sizey 
            tempU((i-1)*sizey+j,:) = u(i,j,:); 
        end 
    end 
         
    AU = A*tempU; 
    cond = 0; 
    for i = 1:sizex 
        for j = 1:sizey 
            for l = 1:2 
                desc(i,j,l) = alpha*AU((i-1)*sizey+j,l) - Fgrad(i,j,l); 
                % Still not sure about the direction of descent... 
            end 
            cond = cond - desc(i,j,1)^2 - desc(i,j,2)^2; 
        end 
    end 
     
    theta = 0.9;%%2/(1 + sqrt(5)); 
    rho = 10; 
     
    j = Jfunct(R,T,u,alpha); 
    newU = u - rho*desc; 
    j2 = Jfunct(R,T,newU,alpha); 
    if j2-j > rho*cond/4 
        while j2-j > rho*cond/4 && rho > 0.0001 
            rho = rho*theta; 
            newU = u - rho*desc; 
            j2 = Jfunct(R,T,newU,alpha); 
        end 
    else 
        while j2-j <= rho*cond/4 && rho < 10000 
            rho = rho/theta; 
            newU = u - rho*desc; 
            j2 = Jfunct(R,T,newU,alpha); 
        end 
        rho = rho*theta; 
    end 
    newU = u - rho*desc; 
rho 
    return 
end 
 
% Adiff2 – Using the matrix stencil, creates a matrix to approximate 
% the differential operators on u.  The square of this is the curvature 
% version.  Legacy code from earlier direct attempts before DCT 
% was implemented. 
function A = Adiff2(n1,n2) 
    M1 = zeros(n1,n1); 
    M2 = zeros(n2,n2); 
    M1(1,1) = 1; 
    M1(n1,n1) = 1; 
    for i = 2:n1 
        M1(i-1,i) = 1; 
        M1(i,i-1) = 1; 
    end 
    M2(1,1) = 1; 
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    M2(n2,n2) = 1; 
    for i = 2:n2 
        M2(i-1,i) = 1; 
        M2(i,i-1) = 1; 
    end 
    n1n2 = n1 * n2; 
    A = -4*eye(n1n2) + kron(eye(n2),M1) + kron(M2,eye(n1)); 
end 
 
% Jfunct – calculates the joint functional under curvature 
% registration.  Reworking of the smoothness operator may be 
% required – I don’t like where the math’s going. 
function Jfin = Jfunct(R,T,u,alpha) 
    [sizex, sizey] = size(R); 
    D = 0; 
    S = 0; 
     
    for i=1:sizex 
        for j=1:sizey 
            D = D + (R(i,j) - interpolate2(T,i-u(i,j,1),j-u(i,j,2)))^2; 
        end 
    end 
     
    uExt = [u(1,1,:) u(1,1:sizey,:) u(1,sizey,:);  
        u(1:sizex,1,:) u(1:sizex,1:sizey,:) u(1:sizex,sizey,:); 
        u(sizex,1,:) u(sizex,1:sizey,:) u(sizex,sizey,:)]; 
    udiff = -4*uExt(2:sizex+1,2:sizey+1,:) + uExt(1:sizex,2:sizey+1,:) + 
uExt(3:sizex+2,2:sizey+1,:) + uExt(2:sizex+1,1:sizey,:) + 
uExt(2:sizex+1,3:sizey+2,:); 
    ucurv = udiff.*udiff; 
    S = sum(sum(sum(ucurv))); 
     
    %% Below is loop-based implementation of the same. Replaced for speed. 
%    for i=1:sizex 
%        for j=1:sizey 
%            for l=1:2 
%                a=4*u(i,j,l);  %% Using diff,2. 
%                if i>=2 
%                    a=a-u(i-1,j,l); 
%                 else 
%                     a=a-u(i,j,l); 
%                 end 
%                 if i<=sizex-1 
%                     a=a-u(i+1,j,l); 
%                 else 
%                     a=a-u(i,j,l); 
%                 end 
%                 if j>=2 
%                     a=a-u(i,j-1,l); 
%                 else 
%                     a=a-u(i,j,l); 
%                 end 
%                 if j<=sizey-1 
%                     a=a-u(i,j+1,l); 
%                 else 
%                     a=a-u(i,j,l); 
%                 end 
%                 S = S+a^2; %% Because curvature, that's why. 
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%             end 
%         end 
%     end 
     
    Jfin = D + alpha*S;            
     
end 
 
 

 


