

Curvature-based Image Registration:

Review and Extensions

By

Stuart Alexander MacGillivray

An essay
presented to the University of Waterloo

in fulfillment of the
essay requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2009

 2

Abstract

Image registration is an optimization problem that, while ill-posed, has useful
applications in medical analysis, criminology, and geomatics. In this paper, I present a number of
the criteria and methodologies used in this optimization problem, with a particular focus on
Modersitzki and Fischer’s curvature-based non-linear registration technique. I present some
minor exploration of alternatives using intensity scaling, using markers and, finally, the steepest
descent. While the intensity scaling modification worked, it had little notable effect. Markers
proved to be more useful but it is clear that alternate approaches, such as handling the markers in
a pre-processing step or applying their penalty as part of the differential operators, could grant
improvements. Finally, steepest descent held little promise; to have a hope of decent running
time and useful deformations, the gradient and approximations used may need more investigation.

 3

Acknowledgements

This paper would not have been possible without the help of many people along the way. First, I
would like to thank my supervisor Dr. Stephen Vavasis for introducing me to this problem,
providing me with ideas, and helping to ensure that I graduate.

Second, I would like to thank Levent Tuncel and Justin Wan for their helpful suggestions as
readers.

Third, I’d like to thank Joanne for sticking with me through this chapter of my life. It’s been
rough, but thanks to her I’ve had the motivation to keep going.

Fourth, I’d like to thank Joan and Robert Meade. They introduced me to the joys of the creative
arts. Their expertise in teaching theatre arts has helped me immeasurably.

Fifth, I’d like to thank my aunt Elizabeth for her advice over the years on essay-writing and
presentations, along with being an audience for my attempts to explain math.

Finally, I’d like to thank all of my relatives. They’ve provided me with encouragement, cookies,
and threats of doom to get this done!

This essay is dedicated to my Mom, who always believed in me, and encouraged me to laugh and
keep on track through the tricky times.

 4

 5

TABLE OF CONTENTS

1. INTRODUCTION 6

2. PROBLEM 6

3. BACKGROUND 7

 3.1 Parametric Image Registration 8

3.2 Non-parametric Image Registration 9

3.2.1 Elastic 9

3.2.2 Fluid 10

3.2.3 Diffusion 10

3.2.4 Curvature 11

3.2.5 Other 12

4. SOLVING THE SYSTEM 12

5. FISCHER-MODERSITZKI APPROACH 14

6. OUR MODIFICATIONS 17

6.1 Intensity Scaling 17

6.2 Landmarks 17

6.3 Steepest Descent 19

7. DISCUSSION AND CONCLUSIONS 20

REFERENCES 22

APPENDIX A 24

 6

1. INTRODUCTION

 Image registration is an optimization problem that, while ill-posed, has useful applications in

many sciences. Medical analysis, criminology, and geomatics are merely a few fields that can make

use of automated or semi-automated image registration. In this paper, we present a number of the

criteria and methodologies used in this optimization problem, with a particular focus on Modersitzki

and Fischer’s curvature-based non-linear registration technique (Fischer and Modersitzki, 2003).

Furthermore, we present some minor exploration of alternatives to the particular optimization

method used by Modersitzki and Fischer.

2. PROBLEM

The core idea of image registration is straightforward. Given as input a reference image R

and a deformable template image T, an image registration algorithm outputs a deformation u. This

deformation gives displacements for the vector of locations X and, when these displacements are

applied to the template T, the modified template should more closely match the reference R. This is

an optimization problem, aiming to minimize the difference between the deformed template T(X-

u(X)) and the original reference R(X). In subsequent examples, X will be used to represent all indices

in the image simultaneously. In other examples, x will be used for a single location in the image, with

u(x) being the deformation at that location. When the single-point notation is used, Ω is the

applicable region – the set of points in the image. In discussions of the deformation u outside

formulae, boldface has been used for emphasis.

 Despite the shared model, different methods of image registration will vary in optimization

methods and, more importantly, the metric used to determine the difference. Some algorithms will

place strict restrictions on the deformation u, some will seek to focus on specific aspects of the

image, and others will include a regularization term to ensure smoothness of the deformation. Some

of these methods are reviewed in Chapter 2 of this report.

 Applications for image registration range from medical to geographical. One medical

application is three-dimensional modeling of the human brain, achieved through amalgamating and

 7

adjusting slices of a paraffin-soaked slice. Another is present in radiology, automatically adjusting

images for faster comparison; if applied to mammograms, for instance, cancerous cases could be

identified more quickly. Image registration also has applications in identification; by matching faces

or retinas to a database of references, rapid identification of a person could be achieved. Shamir et al.

(Shamir, Ling, Rahimi, Ferrucci & Goldberg, 2009) have recently attempted analogous work with

knees. Although the rate of success is low, the technique holds promise. Finally, image registration

has been used in geomatics. Photogrammery is the technique of aligning aerial or satellite images to

form a complete map, and an obvious use for image registration techniques.

 While we acknowledge the wide variety of solution methods available to this problem, and

discuss several of them in this report, image registration algorithms have not been exhausted. This

paper examines the framework leading to the curvature-based non-parametric image registration

problem as defined by Fischer and Modersitzki, and presents some extensions or replacements for

their solver of the Euler-Lagrange conditions based on Discrete Cosine Transforms (DCT).

3. BACKGROUND

 In order to find a useful deformation of the template, we must first determine what a 'good'

deformation is. In general, two requirements must be satisfied. First, the deformed template and the

reference image should match in some fashion. The type of matching depends on the algorithm

used; spatial parameters of the image, specific points, or total differences are some of the possible

measures of closeness.

 The second requirement is some form of regularity in the deformation. Left unchecked, a

deformation could be found that changes every pixel of the template to match every pixel of the

reference, but such a process would be useless for analysis. The regularizer can require that the

deformation be gradual, tend towards simple linear shifts of the entire template, or otherwise be

smooth and semi-continuous in its application. It can take the form of either a hard constraint,

permitting only certain types of deformation, or a softer penalty function, penalizing deformations

for abnormalities.

 8

 Unfortunately, as presented, this problem is ill-posed. Much like the heat equations, there

are too many equally valid solutions to the deformation. Even in simple cases, requiring only

movement to make elements match, the question of transition versus rotation remains open. Which

solution can be considered ‘best’ is uncertain, due to vague definitions in the problem. While the

regularization terms help somewhat, most image registration implementations simply seek a 'good'

deformation, rather than try for a badly defined 'best'.

3.1 Parametric Image Registration

 Parametric image registration consists of techniques based on finite sets of parameters and/or

image features. Foremost among these techniques is landmark-based image registration. A number of

markers are specified in both the reference and the template, and a transformation is sought that

allows these to align. This transformation could be a linear registration, a quadratic one, or ideally

some other type of smooth registration.

Simply matching the markers and nothing else, however, can result in ill-formed solutions, as

explained later. Evaluating the smoothness of the transformation could be more useful, and a

modified landmark-based registration is presented later in this paper. Landmarks, however, are

difficult to automatically locate. While some automation of marker finding is possible, human

intervention may still be needed, reducing the autonomy of this method drastically.

Principal axes are put forward as an alternative; the centre of an image, along with the

vectors along which its main axes lie, are easily found through basic numerical analysis. Finding a

transformation between the axes of the reference and the template is easy, but has its weaknesses. In

particular, the principal axes method holds too much ambiguity. With even different rectangles

sharing the same features by this measure, the ability of the principal axes method to match images is

limited at best.

 Alternatively, the image features could be expanded to include the whole image, and the

parameters to optimize could be restrained. Several methods restrict themselves to affine linear

transformations, aiming to optimize only a few terms. Among these are some intensity-based

 9

schemes using Gauss-Newton methods, and a few schemes using new distance measures. While

intriguing, these go beyond the scope of this paper.

3.2 Non-Parametric Image Registration

 In non-parametric image registration, by contrast, we neither focus on specific points nor

demand an affine linear transformation. While such a transformation may be preferred, non-linear

deformations are possible. As such, we aim to minimize the metric

J[R,T; u] := D[R,T; u] + αS[u]

where D is a metric for the difference between the reference and the deformed template, and S is a

measure of the deformation’s smoothness. For the difference, the sum of squared differences is a

popular metric which can be quickly computed over Ω.

D[R,T; u] := 1/2 || R – Tu ||2 = 1/2 ∫Ω(T(x-u(x)) – R(x))2 dx

The smoothness measure, on the other hand, varies widely with the specific non-parametric

method used. Finally, depending on the problem to be resolved, appending a penalty term is possible

if particular solutions are to be avoided.

3.2.1 Elastic

 The elastic smoothness measure is motivated by the physics of objects being deformed. For

this method, the smoothness measure

Selas[u] := ∫Ω µ/4 ∑j,k(δxjuk + δxkuj)2 + λ/2 (div u)2 dx

is used, where λ and µ are the so-called Lamé constants, reflecting material properties. The smoother

in this case represents the stress on each point in the simulated object. This method is used in fields

where the images being registered are drawn from objects with elastic properties, such as slices of a

brain used for 3D reconstruction.

 Elastic-based registration has its advantages and its disadvantages. It has rapid

implementations, making it quick to use, and its physical motivations make it useful in some cases.

However, any deformations will be small and local, as opposed to more global transformations such

 10

as an overall displacement. Lastly, it can be too rigid for some images. If the object being modeled is

more mutable, then elastic smoothness is too constraining.

3.2.2 Fluid

 In some cases, elastic registration is too rigid for the problem. For cases where the material

imaged is more prone to change, the fluid smoothness parameter is used. This is relatively

straightforward to understand; instead of directly taking the smoothness of a deformation u, the fluid

smoothness measure finds the velocity v of the displacement field u, and takes the elastic

smoothness of v. To resolve this velocity, an arbitrary time step is implemented, with time

represented as t. This step can be matched to subsequent iterations.

Sfluid[u] := Selas[v]

v(x,t) = δtu(x,t) + u(x,t)v(x,t)

 This fluid model was proposed by Christensen (Christensen, 1994), and is used in cases where

the object being modeled is fluid-like; it does not accurately represent elastic objects, and can be used

to obtain deformations completely altering the nature of an image. Some classical examples include

turning a hand into a disc, or a circle into the letter C.

3.2.3 Diffusion

 Switching entirely from the physically motivated model, we come to diffusion registration.

Rather than attempt to emulate physical properties as in the elastic or fluid models, this method

attempts to evaluate more closely the smoothness of the displacement itself. The regularization

term for this, as introduced by Fischer and Modersitzki, is the sum of the norm of the gradients of u

in each dimension.

Sdiff[u] := ½ ∑j ∫Ω || uj ||2 dx

 This regularizer, ideally, reduces penalties for smooth deformations. Furthermore, its setup

allows easily computed Euler-Lagrange equations. This makes several optimization methods more

useful; the conditions are as follows.

 11

f(x,u(x)) + αΔu(x) = 0, x ϵ Ω

f(x,u(x)) := (R(x) – Tu(x))Tu(x)

 The diffusion registration method is named as such because the partial differential equations it

approximates can be viewed as a generalized diffusion equation. Furthermore, these PDEs can be

solved through an iterative process. Beyond this, variants exist. The Thirion’s demons method for

matching of images can be implemented, or the basis of the regularizer can be focused on velocity

rather than displacement – a fluid-like model, as opposed to an elastic-like one.

 This method is not without its drawbacks. While evaluating the gradients is sensible, the

resulting method is not physical. Each component of the resulting displacement is akin to a solution

to a heat equation, but a unified model for the resulting displacement field is not clear. Fortunately,

the non-physicality is seldom significant in most real-world applications.

 Diffusion registration has its advantages as well. Spatial directions are decoupled, allowing

block diagonalization. Additive operator splitting, as proposed by Fischer and Modersitzki, permits a

linear-complexity solution technique for each block. Hence, diffusion registration is quick,

particularly on high-dimensional data.

3.2.4 Curvature

 Modersitzki and Fischer were motivated to look beyond diffusion registration by desire for a

measure with a certain kernel. As affine linear transformations involve no deformation of the

image, the smoothness measure should not penalize their use. As such, a measure with a kernel

including such linear transforms was desired. As such transforms resulted in nonzero smoothness

under diffusion, Modersitzki and Fischer needed a new measure.

Scurv[u] := ½ ∑j ∫Ω (Δuj)2 dx

 By taking the Laplacian of u instead of the gradient, a Cx+b transform has a smoothness

measure of zero, fulfilling the stated goal. This measure shares several properties with diffusion

registration, not the least of which is its computational efficiency.

 12

3.2.5 Other

Other options exist beyond the unified model presented here. Droske and Ring (Droske &

Ring, 2006) present a level-set method based on segmentation and edge-alignment, while Keeling

(Keeling, 2007) has done work with optical flow and new intensity-scaling distance measures. Most

of these fall outside the scope of this paper, and our focus will be on the diffusion and curvature-based

methods.

4. SOLVING THE SYSTEM

 Once our measure has been determined, the goal of image registration is to solve for the best

deformation u that can minimize the distance measure while fulfilling certain properties. The

measure and properties, to some extent, determine how this problem will be solved. The parametric

measures mentioned above can sometimes be solved directly, while other measures sometimes require

more procedural algorithms.

 Most parametric measures, by design, lend themselves easily to direct solution of a system.

With a fixed number of variables, solutions can be straightforward. Axes-based registration in

particular is fast to solve; after finding the principal axes of the template and reference, an affine

linear transformation to make the axes match is simple to solve. Likewise, landmark-based methods

constrained to linear or quadratic deformations can quickly be solved for the required variables.

However, the faults of the parametric methods show themselves here. Quadratic transformations in

particular can technically satisfy the requirements of landmark-based registration while being

otherwise useless for image registration. While the example below matches the fingertip landmarks

exactly, the rest of the deformed image is in no state to be compared to a reference.

 13

(Citation: Modersitzki, J. Numerical methods for Image Registration. Page 31.)

 Another approach, used in an implementation of curvature-based registration by Fischer and

Modersitzki, involves solving the Euler-Lagrange conditions for the image registration metric. With

the gradient of the objective function and some approximation, the deformation can theoretically be

solved for a gradient of zero. In practice, too much approximation is necessary to obtain an ideal

deformation. To resolve this, a fixed point iteration is used, using the gradient of the objective

function on a given deformation to obtain the next one. This is repeated until various conditions are

met. If the calculation of the various deformations can be done efficiently, this method can be fast.

It is not without its disadvantages, however; in particular, any critical points of the objective

 14

function can be traps for the algorithm. As the Euler-Lagrange conditions are the only ones

checked, the iteration would stop upon reaching any stationary point.

 Steepest descent is another optimization technique with some use in this field. It requires

several iterations, like fixed-point. Instead of solving the Euler-Lagrange equations at each step,

however, the algorithm finds a direction in which to improve the deformation, calculates how far in

that direction to go, and produces an updated deformation that results in a lower objective value.

This process is repeated until sufficient progress has been made. Steepest descent methods, however,

have two weaknesses. The first is that the algorithm, while less prone to the weaknesses of the

earlier fixed-point iteration, can still fall prey to critical points. The second is that steepest descent

will sometimes take steps that are too small. While the algorithm could reach the same result as

another method in this scenario, it would take much longer.

 One novel approach for image registrations is Thirion’s demons. Inspired by Maxwell’s

demons from thermodynamics, the idea is to place several ‘demons’ at various locations on the

template. These demons then decide whether moving a given particle of the template would reduce

the difference between the reference and the template. Over multiple iterations, the demons

effectively sort the elements of the template to produce a final deformation. In practice, a force

field is often computed to decide on the direction of movement, and diffusion registration is often

used to regularize the smoothness of the method. This approach is akin to a piecewise steepest

descent. The main drawbacks are the smoothness of the method, and the difficulty in choosing some

of the parameters.

5. FISCHER-MODERSITZKI APPROACH

 As mentioned above, we characterize all deformations of an image by a measure

J[u] := D[R,T;u] + αS[u]

where D is a distance measure between the reference and deformed template, and S is a measure of the

deformation. We seek to minimize this joint measure, using any of a number of numberical schemes.

A simple necessary condition for a minimizer u is that the Gâteaux derivative of the objective

 15

function vanishes. The derivative of the joint functional splits into a sum, with the derivative of the

distance measure being –f(x,u(x)).

f(x,u(x)) := (R(x) – Tu(x))Tu(x)

The derivative of the smoothness parameter depends on the smoothness measure used. Diffusion and

curvature smoothness were designed with this in mind. For diffusion, the derivative of the

smoothness is simply the Laplacian of u. For curvature, it is the Laplacian squared. The Laplacian

can be approximated with a discrete operator. The diffusion example, being more straightforward, is

as follows for two dimensions.

Δuj (X) ≈ Sdiff,d * uj (X)

Sdiff,2 := (0 1 0)

(1 -4 1)

(0 1 0)

 This stencil can be generalized into a matrix Adiff,d applied to U, a vector of values of u.

Δ[uj](X) ≈ Adiff,d Uj

 The curvature extension of this is in turn straightforward.

Acurv,d := (Adiff,d)2

 Finally, we have modified Euler-Lagrange conditions for the diffusion case and, by replacing

A, the curvature case.

f(X,U) + αId ⊗ Adiff,d U = 0

With the derivative approximated, the next logical step is to use some form of numerical

methods to approach such a minimizer. One option, as proposed by Henn (1997), is a gradient-based

steepest descent method. Using the gradient of the distance measure, projecting it as appropriate,

the permutation ideally approaches an optimal state. We present an attempt to apply this method

to curvature-based image registration.

 Another scheme, first proposed by Thirion in 1995, is a demons-based approach, as outlined

earlier in this paper.

 16

 Finally, the approaches principally used by Fischer and Modersitzki are based on the Euler-

Lagrange equations as discussed above. Rather than following the gradient, this scheme attempts to

solve the conditions directly, using fixed-point iteration. Representing our differential operator with

A, and starting with some initial guess such as u(0) = 0, u(k+1) is defined by

αA[u(k+1)](x) = -f(x,u(k)(x)) for all x

This scheme can be further stabilized with a parameter τ as follows. With F(k) defined as

f(X,U(k)) and n being the number of points to be considered, the curvature approach can be modified

to become

(In + ατ Acurv,d)Uj
(k+1) = Uj

(k) + τ Fj
(k)

The most computationally intensive step of this scheme is, as expected, finding a way to

solve (In + ατ Acurv,d)-1 or otherwise solve for Uj
(k+1). Where curvature-based registration is

concerned, Fischer and Modersitzki present a clever solution to this dilemma. By using a Discrete

Cosine Transform on U and F, the revised effects of Acurv effectively form a diagonal matrix, making

inversion trivial.

Ddiff,2 := diag(dj1,j2, j1 = 1…n1, j2 = 1…n2)

dj1,j2 = -4 + 2 cos((j1 - 1) π / n1) + 2 cos((j2 – 1) π / n2)

Dcurv,2 = (Ddiff,2)2.

Piecing these elements together, the following straightforward algorithm can be used.

Inputs: R, T, α, τ. Assumptions: U(0) = 0. j covers all dimensions.

For k = 0,…

 Fj
(k) = (T(X – U(k)(X)) – R(X)) δxj T(X – U(k))

 Gj = DCT(Uj
(k) + τFj

(k))

 For p=1..d, ip = 1…np

 Vj, i1,…,ip = Gi1,…,ip [1 + ταd2
i1,…,ip]-1

 End,

 Uj
(k+1) = DCT-1(Vj)

End.

 17

MATLAB code implementing this is presented in the appendix, terminating after a certain number

of iterations or when the difference between iterations is trivial.

6. MODIFICATIONS

 In order to further explore this algorithm, we attempted several modifications based on our

research.

6.1 Intensity scaling

 The first was a simple extension implementing basic intensity scaling. Before starting the

curvature based registration process, the reference image had its values scaled so that average

intensities of reference and template were on par. This simple correction was easy to implement, but

had negligible effect on the end result. While more involved methods are possible, global intensity

scaling seems largely unnecessary. A ‘correct’ deformation of the image seems to have a minimal

sum of squared differences from the template, with or without a scaling of intensity.

6.2 Landmarking

Another modification of Fischer and Modersitzki’s algorithm was parametrically motivated.

While landmark-based registration was not implemented as presented, a penalty term was applied to

the objective function. This would allow a user to specify markers for the reference and template.

Our choice of penalty term to implement this regularizing variable times the squared norm of the

distance between the reference marker and the deformed template marker. This is a geometric

distance, as opposed to a difference in pixel intensity; as a result it can be compared directly with the

deformation u, but must be scaled carefully. Denoting the marker locations with arrays Rm and Tm:

 P(u) := (β/2 || (Rm – Tm) – u(Tm) ||2)

The gradient of this penalty term, as required in the Euler-Lagrange equations, is the distance

between deformed template marker and reference marker, in each dimension. As the Euler-Lagrange

equations apply at each point, this penalty term is applied at the location of the template marker,

for each pair of markers specified.

 18

d/dxj P(u) = β * [(Rmj – Tmj) – u(Tm)j]

As presented, this gradient consists of a constant term and a simple linear term based on the

deformation. This allows rapid computation of this penalty term when added directly to the distance

function.

Testing of this implementation revealed the need to specify β carefully. In cases with a

marker close to the edge of the image, the modified fixed point iteration overcompensated and

exhibited divergent behaviour. With careful selection of markers and regularizing constants,

however, the resulting deformations closely matched the markers in question. The resulting

deformed templates matched the references more closely at those points, but the smoothness of the

deformation suffered as a result.

A second attempt was made to achieve greater smoothness. Rather than apply the penalty

term to the distance function, it was applied to the smoothness. Adjusting the Euler-Lagrange

equations to include the penalty on the left side was difficult. The constant part of the gradient of

the penalty – Rm-Tm – was included on the right hand side, added to the distance function. On the

left, β was added to the differential operator on u at the marker locations. This, however, added

difficulties in the inversion – with this modification, the diagonalization of A under DCT was not

certain. By applying the Sherman-Morrison-Woodbury formula, however, the DCT formula could be

preserved and simply adjusted for the markers.

(A + UCV)-1 = (I + A-1U(C-1 + VA-1U)-1V) A-1

UCV = β on diagonal at markers, 0 elsewhere

The results of this second attempt again revealed the need to select β carefully, while

considering the other parameters. Varying the locations of markers made significant differences as

well. In the following test cases, markers were used on the thumb, pinky finger, and either side of the

wrist. In successful cases, this resulted in the markers being dragged closer to their correct locations,

as constrained by the curvature-based smoothness. The first two tests were terminated after 400

iterations; the other three were allowed to run for 20000 iterations in case convergent behaviour

emerged. In the final case presented here, convergence to a small tolerance was achieved after

 19

12969 iterations of the algorithm. That said, useful results tend to present themselves quickly; the

tolerance currently used in testing needs reformulating.

Reference R Template T α=1 τ=2 β=4 α=1 τ=2 β=0.4

α=1 τ=2 β=4 α=50 τ=0.02 β=40 α=10 τ=0.2 β=1

Evidence seems to indicate that β must be set relatively small compared to α, in order to prevent

overly disrupting the differential operator. Furthermore, it can be shown that α has a significant

effect on the smoothness of the image, as anticipated. However, the markers as implemented show

promise. Further tweaking could be of use, along with automation of the marker selection. At

present, human intervention is still required. Furthermore, the marker term includes an extra matrix

inversion of size k by k, where k is the number of markers. Despite this slowdown, the landmarks

show promise and could be of use for stabilization of image registration.

6.3 Steepest Descent

Finally, an effort was made to construct a curvature based steepest descent solver. We used

the gradient approximation from the Euler-Lagrange conditions of the basic fixed point iterations,

and a simple line search method to determine the severity of the descent at any given iteration. This

line search required sufficient descent, based on the joint functional of curvature based registration.

For simplicity, an approximation of the Lagrangian of the deformation was used. Using the same

 20

convergence requirements as in our implementation of fixed point iteration, we set to testing the

steepest descent method.

After some experimentation, the steepest descent method proved suboptimal. The best test

run came by setting α to 0.01, so that smoothness of the deformation would be a secondary concern

at best. At present, the steepest descent seems to rate smoothness too highly; even with a low α, the

process terminated after five iterations with little significant change.

Reference Template Steepest Descent, α=0.01

Alternate methods of calculating gradient, direction of descent, and sufficient descent are

almost certainly required. The current methods of approximation seem insufficient. Furthermore,

when directly compared with standard curvature-based image registration, steepest descent is slower.

On the 60x60 image used above, the time taken for five iterations of steepest descent was equivalent

to the time required for three hundred iterations of fixed-point solving.

7. DISCUSSION AND CONCLUSIONS

Some of our modifications to the curvature based implementation achieved greater success

than others. The initial test of intensity scaling proved less than fruitful; while the modification

works, it had little effect on the end result. While more involved methods could be used, the ability

of the basic algorithm to overcome simple intensity problems seems sufficient. Markers proved to

be more useful; while the basic implementation had problems, the idea seems sound. Alternate

approaches, such as handling the markers in a pre-processing step, could grant improvements.

Finally, steepest descent held only minor promise; to have a hope of decent running time and useful

deformations, the gradient needs to be redone, with a different approximation used.

 21

 Some of these results show that there is room for improvement. More elaborate intensity

scaling could be used, and more complicated test cases should be examined. In photography cases

where one photo is overexposed, average brightness could vary across the photo. An intensity

algorithm looking for such cases could improve curvature registration. For markers, a worthwhile

area of research could be the automation of landmark selection. If such processes are combined with

a penalty term on curvature registration, the result could be a relatively smooth deformation that

matches up the most important features of the images. Shifting the focus of the penalty to the

differential operator helped the algorithm in resolving the penalties more directly; this second

attempt requires further testing, particularly in conjunction with automated marker selection.

Thirdly, steepest descent could work if the gradient were computed in some fashion other than the

approximation used for the normal DCT-based algorithm.

Outside our three extensions, other modifications could be made to the curvature algorithm.

Although steepest descent gave disappointing results, modifications to it combined with a Thirion’s

demons approach could prove interesting when used with curvature-based registration. Modifications

to use curvature smoothness on a fluid-based velocity field have been explored by Fischer and

Modersitzki, but could possibly be combined with other penalty terms or a secondary smoothness

function. Alternate difference measures could be examined, as well. While these are only ideas, the

successes thus far show that room remains for exploration of further extensions to curvature-based

registration.

 22

References

Christensen, G.E. (1994). Deformable Shape Models for Anatomy. PhD thesis, Sever
Institute of Technology, Washington University.

Droske, M. & Ring, W. (2006). A Mumford-Shah level-set approach for geometric image
registration. SIAM Journal on Applied Mathematics, 66(6), 2127-2148.

Fischer, B. & Modersitzki, J. (2008) Ill-posed medicine - an introduction to image
registration. Inverse Problems, 24(3), Art. No. 034008.

Fischer, B. & Modersitzki, J. (2004). A unified approach to fast image registration and a
new curvature based registration technique. Linear Algebra and its Applications, 380,
107-124.

Fischer, B. & Modersitzki, J. (2003) Curvature based image registration. J.
Mathematical Imaging and Vision, 18, 81-85.

Henn, S. (2006). A translation and rotation invariant Gauss-Newton like scheme for
image registration. BIT Numerical Mathematics, 46(2), 325-344.

Henn, S. (2006). A full curvature based algorithm for image registration. Journal of
Mathematical Imaging and Vision, 24(2),195-208.

Henn, S. (2005). A multigrid method for a fourth-order diffusion equation with
application to image processing. SIAM Journal on Scientific Computing, 27(3), 831-
849.

Henn, S. & Witsch, K. (2005). Image registration based on multiscale energy
information. Multiscale Modeling & Simulation, 4(2), 584-609.

Keeling, S. L. (2007). Generalized rigid and generalized affine image registration and
interpolation by geometric multigrid. Journal of Mathematical Imaging and Vision, 29(2-
3), 163-183.

Keeling, S.L.(2007). Image similarity based on intensity scaling. Journal of Mathematical
Imaging and Vision, 29(2), 21-34.

Knobbly ID. (2009). The Economist, 390 (8625), pp.83-84.

Larrey-Ruiz, J., Verdu-Monedero, R., & Morales-Sanchez, J. (2008). A Fourier domain
framework for variational image registration. Journal of Mathematical Imaging and
Vision, 32(1), 57-72.

 23

Larrey-Ruiz, J. & Morales-Sanchez, J. (2006). Optimal parameters selection for non-
parametric image registration methods in Advanced Concepts for Intelligent Vision
Systems, Proceedings, 4179, 564-575.

 Modersitzki, J. (2003). Numerical Methods for Image Registration, Oxford University
Press.

Mumford, D. & Shah, J. (1989). Optimal approximation by piecewise smooth functions
and associated variational problems. Communiciations on Pure and Applied
Mathematics 42(5), 577-685.

Shamir, L., Ling, S., Rahimi, S., Ferrucci, L., & Goldberg, I.G. (2009). Biometric
identification using knee X-rays. International Journal of Biometrics, 1(3), 365-370.

Vercauteren, T.,Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons:
Efficient non-parametric image registration. NeuroImage 45, S61–S72.

 24

APPENDIX A:
MATLAB CODE

% CurvImgReg – Takes reference and template as parameters, along with
regularization constants, outputs the curvature-based deformation used.
function [q,uFinal] = curvImgReg(R,T,alpha,tau)
 [sizex,sizey] = size(R);
 [verx,very] = size(T);
 uFinal = zeros(sizex,sizey,2);
 if (sizex ~= verx) || (sizey ~= very)
 print('Error: Images must be the same size.');
 return
 end
 udiff = 1; tol = 0.0001; maxit = 300; %% Initialization; tolerance here
 q = 1; %% Counter for number of iterations
 while udiff > tol && q <= maxit
 uOld = uFinal;
 uFinal = Mcurv3(R,T,uOld,alpha,tau);
 udiff = 0;
 for i = 1:sizex
 for j=1:sizey
 for k=1:2
 udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2;
 end
 end
 end %% This loop should be reworked, but it's serviceable.
 if mod(q,20) == 0
 % uFinal - this would allow output of intervening steps for
 % testing.
 end
 q = q+1;
 end
 return
end

% Mcurv3 – Runs one step of the fixed-point iteration.
function newU = Mcurv3(R,T,u,alpha,tau)
 [sizex,sizey] = size(R);
 newU = zeros(sizex,sizey,2);
 Fgrad = feval3(R,T,u);

 for l = 1:2
 temp = u(:,:,l) + tau*Fgrad(:,:,l);

 G = dct2(temp);

 V = zeros(sizex,sizey);

 for i = 1:sizex
 for j = 1:sizey
 d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey);
 V(i,j) = G(i,j) * (1 + tau*alpha*(d^2))^-1;
 end
 end
 newU(:,:,l) = idct2(V);

 end

 25

 return
end

% feval3 – Computes the gradient of the distance function.
function f = feval3(R,T,u)
 [sizex,sizey] = size(R);
 f = zeros(sizex,sizey,2);
 temp = zeros(sizex,sizey);
 tempx = zeros(sizex,sizey);
 tempy = zeros(sizex,sizey);

 for i = 1:sizex
 for j=1:sizey
 temp(i,j) = interpolate2(T,(i-u(i,j,1)),(j-u(i,j,2))) - R(i,j);
 [tempx(i,j),tempy(i,j)] = intergrad(T,(i-u(i,j,1)),(j-u(i,j,2)));
 [s1,s2] = intergrad(T,i-0.5,j-0.5);
 [s3,s4] = intergrad(T,i+0.5,j+0.5);
 if u(i,j,1) == 0
 tempx(i,j)=(s1+s3)/2;
 end
 if u(i,j,2) == 0
 tempy(i,j) = (s2+s4)/2;
 end
 end
 end
%% f(:,:,1) = temp*tempx; An earlier misunderstanding.
%% f(:,:,2) = temp*tempy; Depreciated code.
 for i = 1:sizex
 for j=1:sizey
 f(i,j,1) = temp(i,j) * tempx(i,j);
 f(i,j,2) = temp(i,j) * tempy(i,j);
 end
 end

 return;
end

% interpolate2 – Implementation of bilinear interpolation.
function bilin = interpolate2(T, x, y)

 [maxx, maxy] = size(T);
 if (x > maxx)
 x = maxx;
 end
 if (x < 1)
 x = 1;
 end
 if (y > maxy)
 y = maxy;
 end
 if (y < 1)
 y = 1;
 end
 %% The boundval was stupid. If it's outside the boundaries, use the
 %% closest point. Fixed.
 bilin = 0;
 if (x < maxx) && (y < maxy)
 bilin = bilin + (x - floor(x))*(y - floor(y))*(T(floor(x)+1,

 26

floor(y)+1));
 end
 if (x < maxx)
 bilin = bilin + (x - floor(x))*(floor(y)+1-y)*(T(floor(x)+1,
floor(y)));
 end
 if (y < maxy)
 bilin = bilin + (floor(x)+1-x)*(y - floor(y))*(T(floor(x),
floor(y)+1));
 end
 bilin = bilin + (floor(x)+1-x)*(floor(y)+1-y)*(T(floor(x), floor(y)));
 return;

% intergrad – Takes the derivative of bilinear interpolation.
function [gradx, grady] = intergrad(T, x, y)
 constvar = 0;
 [maxx, maxy] = size(T);
 if (x > maxx) || (x < 1) || (y > maxy) || (y < 1)
 gradx = constvar;
 grady = constvar;
 return;
 end
 gradx = 0; grady=0;
 if (x < maxx) && (y < maxy)
 grady = grady + (x - floor(x))*(1)*(T(floor(x)+1, floor(y)+1));
 gradx = gradx + (1)*(y - floor(y))*(T(floor(x)+1, floor(y)+1));
 end
 if (x < maxx)
 gradx = gradx + (1)*(floor(y)+1-y)*(T(floor(x)+1, floor(y)));
 grady = grady + (x - floor(x))*(-1)*(T(floor(x)+1, floor(y)));
 end
 if (y < maxy)
 gradx = gradx + (-1)*(y - floor(y))*(T(floor(x), floor(y)+1));
 grady = grady + (floor(x)+1-x)*(1)*(T(floor(x), floor(y)+1));
 end
 gradx = gradx + (-1)*(floor(y)+1-y)*(T(floor(x), floor(y)));
 grady = grady + (floor(x)+1-x)*(-1)*(T(floor(x), floor(y)));
 return;

% CurvIntReg – Simple implementation of intensity scaling.
% Uses the same subroutines as normal curvature based registration.
function [q,uFinal,uOld] = curvIntReg(R,T,alpha,tau)
 [sizex,sizey] = size(R);
 [verx,very] = size(T);
 uFinal = zeros(sizex,sizey,2);
 %uFinal = 0.5*ones(sizex,sizey,2);
 if (sizex ~= verx) || (sizey ~= very)
 print('Error: Images must be the same size.');
 return
 end
 udiff = 1; tol = 0.001; maxit = 300; %% Initialization; tolerance here

 Rtot = 0; Ttot = 0; %% Begin intensity correction.
 for i=1:sizex
 for j=1:sizey
 Rtot = Rtot + R(i,j);
 Ttot = Ttot + T(i,j);
 end

 27

 end

 R2 = (Ttot/Rtot)*R;
 %% I'm not really happy with this yet; I'm going to get 'darker than
 %% dark' pixels in some cases.
 %% A more dynamic setup would be better, but that'd require redoing
 %% most of the algorithm - the gradient of the new difference function
 %% alone would be a pain and a half to compute.

 q = 1; %% Counter for number of iterations
 while udiff > tol && q <= maxit
 uOld = uFinal;
 uFinal = Mcurv3(R2,T,uOld,alpha,tau);
 udiff = 0;
 for i = 1:sizex
 for j=1:sizey
 for k=1:2
 udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2;
 end
 end
 end
 if mod(q,20) == 0
 % uFinal - Use for intermediate steps.
 end
 q = q+1;
 end
 return
end

% CurvMark – Landmarks-based penalty term. Takes a
% pair of lists of locations, one each for Reference and Template.
% Beta is a parameter for the importance of markers; setting with care.
function [q,uFinal,uOld] = curvMark(R,T,markR,markT,alpha,tau,beta)
 [sizex,sizey] = size(R);
 [verx,very] = size(T);
 [nummarks,d] = size(markR);
 [vermarks,verd] = size(markT);
 uFinal = zeros(sizex,sizey,2);
 %uFinal = 0.5*ones(sizex,sizey,2);
 if (sizex ~= verx) || (sizey ~= very) || (nummarks ~= vermarks) || (d ~=
verd)
 print('Error: Images must be the same size.');
 return
 end
 udiff = 1; tol = 0.0001; maxit = 400; %% Initialization; tolerance here
 q = 1; %% Counter for number of iterations
 while udiff > tol && q <= maxit
 uOld = uFinal;
 uFinal = McurvMark(R,T,uOld,markR,markT,nummarks,alpha,tau,beta);
 udiff = 0;
 for i = 1:sizex
 for j=1:sizey
 for k=1:2
 udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2;
 end
 end
 end
 if mod(q,20) == 0

 28

 % uFinal – use for intervening steps.
 end
 q = q+1;
 end
 return
end

% McurvMark – Landmark variant of Mcurv3.
function newU = McurvMark(R,T,u,markR,markT,nummarks,alpha,tau,beta)
 [sizex,sizey] = size(R);
 newU = zeros(sizex,sizey,2);
 Fgrad = feval2marks(R,T,u,markR,markT,nummarks,beta);

 for l = 1:2
 temp = u(:,:,l) + tau*Fgrad(:,:,l);

 G = dct2(temp);

 V = zeros(sizex,sizey);

 for i = 1:sizex
 for j = 1:sizey
 d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey);
 V(i,j) = G(i,j) * (1 + tau*alpha*(d^2))^-1;
 end
 end
 newU(:,:,l) = idct2(V);

 end
 return
end

% feval2marks – gradient of the distance function with new penalty.
function f = feval2marks(R,T,u,Rmarks,Tmarks,nummarks, beta)
 [sizex,sizey] = size(R);
 f = zeros(sizex,sizey,2);
 temp = zeros(sizex,sizey);
 tempx = zeros(sizex,sizey);
 tempy = zeros(sizex,sizey);

 for i = 1:sizex
 for j=1:sizey
 temp(i,j) = interpolate2(T,(i-u(i,j,1)),(j-u(i,j,2))) - R(i,j);
 [tempx(i,j),tempy(i,j)] = intergrad(T,(i-u(i,j,1)),(j-u(i,j,2)));
 [s1,s2] = intergrad(T,i-0.5,j-0.5);
 [s3,s4] = intergrad(T,i+0.5,j+0.5);
 if u(i,j,2) == 0
 tempx(i,j)=(s1+s3)/2;
 end
 if u(i,j,2) == 0
 tempy(i,j) = (s2+s4)/2;
 end
 end
 end

 for i = 1:sizex

 29

 for j=1:sizey
 f(i,j,1) = temp(i,j) * tempx(i,j);
 f(i,j,2) = temp(i,j) * tempy(i,j);
 end
 end

 for i = 1:nummarks
 diffx = (Tmarks(i,1) - u(Tmarks(i,1),Tmarks(i,2),1) - Rmarks(i,1));
 diffy = (Tmarks(i,2) - u(Tmarks(i,1),Tmarks(i,2),2) - Rmarks(i,2));
 dist = diffx^2 + diffy^2; %% Derivative of this would be the
distance in each direction. So:
 f(Tmarks(i,1),Tmarks(i,2),1) = f(Tmarks(i,1),Tmarks(i,2),1) -
beta*diffx;
 f(Tmarks(i,1),Tmarks(i,2),2) = f(Tmarks(i,1),Tmarks(i,2),2) -
beta*diffy;
 end

 return;

%% curvMark2: Completely implements the second landmark-based method.
%% Oversight in subsequent code effectively doubles beta; left unfixed
%% because beta's more an estimate at this point anyway.

function [q,uFinal] = curvMark2(R,T,markR,markT,alpha,tau,beta)
 [sizex,sizey] = size(R);
 [verx,very] = size(T);
 [nummarks,d] = size(markR);
 [vermarks,verd] = size(markT);
 uFinal = zeros(sizex,sizey,2);
 %uFinal = 0.5*ones(sizex,sizey,2);
 if (sizex ~= verx) || (sizey ~= very) || (nummarks ~= vermarks) || (d ~=
verd)
 print('Error: Images must be the same size.');
 return
 end
 udiff = 1; tol = 0.0001; maxit = 400; %% Initialization; tolerance here
 q = 1; %% Counter for number of iterations
 [markin1,markin2,markin3] =
MarkInversion(sizex,sizey,nummarks,markT,tau,alpha,beta);
 while udiff > tol && q <= maxit
 uOld = uFinal;
 uFinal =
McurvMark2(R,T,uOld,markR,markT,nummarks,alpha,tau,beta,markin1,markin2,marki
n3);
 udiff = 0;
 for i = 1:sizex
 for j=1:sizey
 for k=1:2
 udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2;
 end
 end
 end
 if mod(q,20) == 0
 % uFinal - Use for intervening steps.
 end
 q = q+1;
 end

 30

 return
end

%% MarkInversion: This function works out the basics of the Sherman-
%% Morrison-Woodbury formula, and produces a matrix by which we multiply
%% A^-1 to get (A + 2*beta*markers)^-1. Code differs from algorithm in
%% paper, on request - effectively doubles beta here and elsewhere. It
%% scales.

function [AiU,B,V] = MarkInversion(sizex,sizey,nummarks,markT,tau,alpha,beta)
 C = eye(nummarks);
 U = zeros(sizex*sizey,nummarks);
 V = zeros(nummarks,sizex*sizey);

 for i=1:nummarks
 U((markT(i,1)-1)*sizey+markT(i,2),i) = sqrt(2*beta);
 V(i,(markT(i,1)-1)*sizey+markT(i,2)) = sqrt(2*beta);
 end

 DU = dct2(U);
 for i = 1:sizex
 for j = 1:sizey
 d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey);
 DU((i-1)*sizey+j,:) = DU((i-1)*sizey+j,:) * (1 +
tau*alpha*(d^2))^-1;
 end
 end

 AiU = idct2(DU);

 block = C + (V * AiU);
 B = inv(block);
 %% curvmod = - AiU * inv(block) * V; Code depreciated
 return
end

% McurvMark2: Second attempt at landmarks, splits the penalty function to F
% and to S. Uses the matrix stencil calculated elsewhere to save time -
% time probably lost by unraveling and raveling U. A more efficient way to
% handle this would be nice.

function newU =
McurvMark2(R,T,u,markR,markT,nummarks,alpha,tau,beta,markin1,markin2,markin3)
 [sizex,sizey] = size(R);
 newU = zeros(sizex,sizey,2);
 Fgrad = feval3marks(R,T,u,markR,markT,nummarks,beta);

 for l = 1:2
 temp = u(:,:,l) + tau*Fgrad(:,:,l);

 G = dct2(temp);

 V = zeros(sizex,sizey);

 31

 for i = 1:sizex
 for j = 1:sizey
 d = -4 + 2*cos((i-1)*pi/sizex) + 2*cos((j-1)*pi/sizey);
 V(i,j) = G(i,j) * (1 + tau*alpha*(d^2))^-1;
 end
 end
 newU(:,:,l) = idct2(V);

 end
 %% If there's a better way to unravel and reravel U, I'd love to hear
 %% it.
 AU = zeros(sizex*sizey,2);
 for i=1:sizex
 for j=1:sizey
 AU((i-1)*sizey+j,:) = newU(i,j,:);
 end
 end
 AU = AU - markin1*(markin2*(markin3*AU));
 for i=1:sizex
 for j=1:sizey
 newU(i,j,:) = AU((i-1)*sizey+j,:);
 end
 end
 return
end

% feval3marks: Further modification of f(x,u(x)); this applies only the
% constant part of the landmark penalty function.
function f = feval3marks(R,T,u,Rmarks,Tmarks,nummarks, beta)
 [sizex,sizey] = size(R);
 f = zeros(sizex,sizey,2);
 temp = zeros(sizex,sizey);
 tempx = zeros(sizex,sizey);
 tempy = zeros(sizex,sizey);

 for i = 1:sizex
 for j=1:sizey
 temp(i,j) = interpolate2(T,(i-u(i,j,1)),(j-u(i,j,2))) - R(i,j);
 [tempx(i,j),tempy(i,j)] = intergrad(T,(i-u(i,j,1)),(j-u(i,j,2)));
 [s1,s2] = intergrad(T,i-0.5,j-0.5);
 [s3,s4] = intergrad(T,i+0.5,j+0.5);
 if u(i,j,2) == 0
 tempx(i,j)=(s1+s3)/2;
 end
 if u(i,j,2) == 0
 tempy(i,j) = (s2+s4)/2;
 end
 end
 end

 for i = 1:sizex
 for j=1:sizey
 f(i,j,1) = temp(i,j) * tempx(i,j);
 f(i,j,2) = temp(i,j) * tempy(i,j);
 end

 32

 end

 for i = 1:nummarks
 diffx = (Tmarks(i,1) - Rmarks(i,1));
 diffy = (Tmarks(i,2) - Rmarks(i,2));
 dist = diffx^2 + diffy^2; %% Derivative of this would be the
distance in each direction. So:
 f(Tmarks(i,1),Tmarks(i,2),1) = f(Tmarks(i,1),Tmarks(i,2),1) -
2*beta*diffx;
 f(Tmarks(i,1),Tmarks(i,2),2) = f(Tmarks(i,1),Tmarks(i,2),2) -
2*beta*diffy;
 end

 return;

% CurvSteep – implementation of Steepest Descent. Needs work.
function [q,uFinal] = curvSteep(R,T,alpha)
 [sizex,sizey] = size(R);
 [verx,very] = size(T);
 uFinal = zeros(sizex,sizey,2);
 %uFinal = 0.5*ones(sizex,sizey,2);
 if (sizex ~= verx) || (sizey ~= very)
 print('Error: Images must be the same size.');
 return
 end
 udiff = 1; tol = 0.0001; maxit = 40; %% Initialization; tolerance here
 %% Tolerated number of iterations is low; if it's working,
 %% it doesn't get even that far.
 q = 1; %% Counter for number of iterations
 while udiff > tol && q <= maxit
 uOld = uFinal;
 [uFinal] = McurvSteep(R,T,uOld,alpha);
 udiff = 0;
 for i = 1:sizex
 for j=1:sizey
 for k=1:2
 udiff = udiff + (uOld(i,j,k)-uFinal(i,j,k))^2;
 end
 end
 end
 if mod(q,20) == 0
 % uFinal - Intervening steps can be output here.
 end
 q = q+1;
 end
 return
end

% McurvSteep – one step of the steepest descent algorithm.
function [newU] = McurvSteep(R,T,u,alpha)
 [sizex,sizey] = size(R);
 Fgrad = feval2(R,T,u);
 Adiff = Adiff2(sizex,sizey);
 A = Adiff'*Adiff;
 tempU = zeros(sizex*sizey,2);
 desc = zeros(sizex,sizey,2);

 33

 for i = 1:sizex
 for j=1:sizey
 tempU((i-1)*sizey+j,:) = u(i,j,:);
 end
 end

 AU = A*tempU;
 cond = 0;
 for i = 1:sizex
 for j = 1:sizey
 for l = 1:2
 desc(i,j,l) = alpha*AU((i-1)*sizey+j,l) - Fgrad(i,j,l);
 % Still not sure about the direction of descent...
 end
 cond = cond - desc(i,j,1)^2 - desc(i,j,2)^2;
 end
 end

 theta = 0.9;%%2/(1 + sqrt(5));
 rho = 10;

 j = Jfunct(R,T,u,alpha);
 newU = u - rho*desc;
 j2 = Jfunct(R,T,newU,alpha);
 if j2-j > rho*cond/4
 while j2-j > rho*cond/4 && rho > 0.0001
 rho = rho*theta;
 newU = u - rho*desc;
 j2 = Jfunct(R,T,newU,alpha);
 end
 else
 while j2-j <= rho*cond/4 && rho < 10000
 rho = rho/theta;
 newU = u - rho*desc;
 j2 = Jfunct(R,T,newU,alpha);
 end
 rho = rho*theta;
 end
 newU = u - rho*desc;
rho
 return
end

% Adiff2 – Using the matrix stencil, creates a matrix to approximate
% the differential operators on u. The square of this is the curvature
% version. Legacy code from earlier direct attempts before DCT
% was implemented.
function A = Adiff2(n1,n2)
 M1 = zeros(n1,n1);
 M2 = zeros(n2,n2);
 M1(1,1) = 1;
 M1(n1,n1) = 1;
 for i = 2:n1
 M1(i-1,i) = 1;
 M1(i,i-1) = 1;
 end
 M2(1,1) = 1;

 34

 M2(n2,n2) = 1;
 for i = 2:n2
 M2(i-1,i) = 1;
 M2(i,i-1) = 1;
 end
 n1n2 = n1 * n2;
 A = -4*eye(n1n2) + kron(eye(n2),M1) + kron(M2,eye(n1));
end

% Jfunct – calculates the joint functional under curvature
% registration. Reworking of the smoothness operator may be
% required – I don’t like where the math’s going.
function Jfin = Jfunct(R,T,u,alpha)
 [sizex, sizey] = size(R);
 D = 0;
 S = 0;

 for i=1:sizex
 for j=1:sizey
 D = D + (R(i,j) - interpolate2(T,i-u(i,j,1),j-u(i,j,2)))^2;
 end
 end

 uExt = [u(1,1,:) u(1,1:sizey,:) u(1,sizey,:);
 u(1:sizex,1,:) u(1:sizex,1:sizey,:) u(1:sizex,sizey,:);
 u(sizex,1,:) u(sizex,1:sizey,:) u(sizex,sizey,:)];
 udiff = -4*uExt(2:sizex+1,2:sizey+1,:) + uExt(1:sizex,2:sizey+1,:) +
uExt(3:sizex+2,2:sizey+1,:) + uExt(2:sizex+1,1:sizey,:) +
uExt(2:sizex+1,3:sizey+2,:);
 ucurv = udiff.*udiff;
 S = sum(sum(sum(ucurv)));

 %% Below is loop-based implementation of the same. Replaced for speed.
% for i=1:sizex
% for j=1:sizey
% for l=1:2
% a=4*u(i,j,l); %% Using diff,2.
% if i>=2
% a=a-u(i-1,j,l);
% else
% a=a-u(i,j,l);
% end
% if i<=sizex-1
% a=a-u(i+1,j,l);
% else
% a=a-u(i,j,l);
% end
% if j>=2
% a=a-u(i,j-1,l);
% else
% a=a-u(i,j,l);
% end
% if j<=sizey-1
% a=a-u(i,j+1,l);
% else
% a=a-u(i,j,l);
% end
% S = S+a^2; %% Because curvature, that's why.

 35

% end
% end
% end

 Jfin = D + alpha*S;

end

