DEPARTMENT OF MATHEMATICS

Programme: M.Sc., Mathematics

PO No.	Programme Outcomes	
	Upon completion of the M.Sc. Degree Programme, the graduate will be able to	
PO-1	innovate and design complex Mathematical problems and solutions using Pure and Applied Mathematics	
PO-2	equip the students to think in critical and logical manner	
PO-3	Analyze the contemporary issues in the field of Mathematics and applied sciences	
PO-4	opportunity of employment in schools and colleges as Mathematical Teachers and Professors, Analysts in Software Industries, Research and Development Organizations	
PO-5	crack lectureship and fellowship exams approved by CSIR – NET and SET	

PSO No.	Programme Specific Outcomes
	Upon completion of these courses the student would
PSO-1	magnify the logical skills and furnish the students for research with professional and
	ethical responsibility
PSO-2	enhance the abstract intelligence in solving problems in analysis and algebra
PSO-3	curriculum profound the base for scientific and technological computations
PSO-4	reinforce the mathematical ability and imparting practical knowledge through
	mathematical software
PSO-5	substantiate the students attitude to evolve new concepts in emerging fields

Course Title	LINEAR ALGEBRA	
CODE	22MSPC101	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of linear transformations and its representation by matrices	K2
CO-2	Discuss the concepts of polynomials and prime factorization of a polynomial	K2
CO-3	Demonstrate the properties of determinants and characteristics values	К3
CO-4	Analyze the concept of triangulation, diagonalization and decomposition	K4
CO-5	Evaluate the concepts of various bilinear forms	K5

Course Title	REAL ANALYSIS	
CODE	22MSPC102	
CO No.	Course Outcomes	Knowledge Level
CO-1	Acquire the knowledge of countable sets, uncountable sets and compact sets in metric spaces	K2
CO-2	Apply the concept of continuity and compactness in metric spaces	K3
CO-3	Demonstrate Riemann Stieltjes integral and examine theproperties of integration and differentiation	K4
CO-4	Analyze the convergence in sequences and series	K4
CO-5	Evaluate the concepts of linear transformation in vector spaces	K5

Course Title	ORDINARY DIFFERENTIAL EQUATIONS	
CODE	22MSPC103	
CO No.	Course Outcomes	Knowledge Level
CO-1	Obtain series solutions for second order ordinary differential equations both at ordinary and regular singular points	K2
CO-2	Construct systems of linear differential equations and identify the uniqueness	K3
CO-3	Demonstrate the solution of non-homogeneous linear systems and the properties linear system with constant and periodic coefficients	K3
CO-4	Analyze the existence and uniqueness solution of initial value problems	K4
CO-5	Determine the oscillations of second order equations	K5

Course Title	NUMBER THEORY	
CODE	22MSPC104	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of divisibility and primes	K2
CO-2	Solve the congruences of different degrees	K2
CO-3	Demonstrate about power residue, multiplicative groups, rings and fields	K3
CO-4	Discuss the ideas about quadratic residues and Jacobi symbol	K4
CO-5	Analyze the concepts of greatest integer function and recurrence functions	K5

Course Title	MATHEMATICAL PROGRAMMING	
CODE	22MSPC105	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of Graphical, Simplex and Dual methods.	K2
CO-2	Obtain solutions for Integer Programming and Gomory cutting plane Algorithm.	K2
CO-3	Solve integer linear programming and dynamic programming problems.	K3
CO-4	Analyze the concepts of constrained and unconstrained problems.	K4
CO-5	Compare the algorithms of constrained and unconstrained in non-linear programming problems.	K5

Course Title	ALGEBRA	
CODE	22MSPC206	
CO No.	Course Outcomes	Knowledge Level
CO-1	Identify the basic ideas of algebra including the concepts of groups and direct products.	K2
CO-2	Understand the concept of a particular Euclidean ring and other forms of polynomial rings.	K2
CO-3	Demonstrate knowledge of the structures of fields and extension fields	K3
CO-4	Appreciate the concept of Galois theory and finite fields	K4
CO-5	Compose clear and accurate proofs using the concepts of linear transformations	K5

Course Title	COMPLEX ANALYSIS	
CODE	22MSPC207	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand analytic functions, rational functions and elementary Riemann surfaces.	K2
CO-2	Apply Cauchy's theorem for a rectangle and disk.	K2
CO-3	Derive the calculus of residues and harmonic functions.	K3
CO-4	Determine series and product development, partial fractions and factorization.	K4
CO-5	Evaluate Riemann mapping, conformal mapping of polygons and rectangle.	K5

Course Title	PARTIAL DIFFERENTIAL EQUATIONS	
CODE	22MSPC208	
CO No.	Course Outcomes	Knowledge Level
CO-1	Obtain solutions for non-linear partial differential equations using Cauchy's, Charpit's and Jacobi's Method.	K2
CO-2	Understand the concept of differential equations with constant and variable coefficients and solve them.	K2
CO-3	Demonstrate the knowledge of linear hyperbolic equations and the method of integral transforms.	K3
CO-4	Analyze the boundary value problems and solve them by using separation of variables.	K4
CO-5	Compose clear and accurate proofs using the concepts of Partial Differential Equations	K5

Course Title	MATHEMATICAL STATISTICS	
CODE	22MSPC209	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of marginal and conditional distributions	K2
CO-2	Apply the ideas of mathematical expectation and chebyshev's inequality to solve problems	K3
CO-3	Determine the Poisson, Binomial, Normal and Gamma distributions	K4
CO-4	Analyze chi-square, t distributions and their applications	K4
CO-5	Evaluate significance test and theory of estimation	K5

Course Title	PROGRAMMING IN PYTHON	
CODE	22MSPCP01	
CO No.	Course Outcomes	Knowledge Level
CO-1	Solve the given system of equations	K2
CO-2	Find solution of given algebraic equation	K3
CO-3	Reflect given equation with graphs	K4

Course Title	ADVANCED MULTI – SKILL DEVELOPMENT PAPER	
CODE	22MSPS201	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of General Awareness and Scientific Aptitude.	K2
CO-2	Apply Logical Reasoning	K3
CO-3	Analyze Numerical Reasoning and Quantitative Aptitude	K4
CO-4	Identify and improve the skills in PPT, interview, abstract writing and counseling	K3
CO-5	Discuss the movement and gestures to be avoided in Group Discussion and study about online services.	K4

Course Title	MEASURE THEORY AND INTEGRATION	
CODE	21MSPC310	
CO No.	Course Outcomes	Knowledge Level
CO-1	Acquire the Knowledge of Lebesgue measure in measurable sets and non – measurable sets	K2
CO-2	Discuss the concept of lebesgue integral of a bounded measurable function and measurable non negative function	K2
CO-3	Apply differentiation and integration in monotone functions	K3
CO-4	Analyze integration of measurable functions over general measure spaces	K4
CO-5	Evaluate the construction of product measures and Lebegue measure on Euclidean space	K5

Course Title	TOPOLOGY	
CODE	22MSPC311	
CO No.	Course Outcomes	Knowledge Level
CO-1	Learn open basis and open sub basis, weak topologies, the function algebras $C(X, R)$ and $C(X, C)$	K2
CO-2	Apply continuous functions and homeomorphisms to understand the structure of topological spaces	K2
CO-3	Understand countability and separation axioms in Urysohn Metrization and Tietz's extension theorem	K3
CO-4	Discuss Tychonoff's theorem, locally compact spaces, compactness of metric spaces and Ascoli's theorem	K4
CO-5	Analysing a function is metric, verify a given family is a topology and check a given set is open, closed, dense, compact, connected	K5

Course Title	NUMERICAL ANALYSIS	
CODE	21MSPC312	
CO No.	Course Outcomes	Knowledge Level
CO-1	Acquire the knowledge numerical differentiation and integration	K2
CO-2	Apply the concept of solution of system of equation and method of iteration	K2 & K4
CO-3	Analyze the boundary value problems and characteristic value problems	K3 & K4
CO-4	Demonstrate Euler and Runge Kutta method and examine the Adams Moulton method	K4
CO-5	Evaluate the concepts Poisson equation, Laplace's equation, explicit method and wave equation by finite differences	K5

Course Title	FUZZY SETS AND THEIR APPLICATIONS	
CODE	21MSPE311	
CO No.	Course Outcomes	Knowledge Level
CO-1	Calculate support, height, normal alpha cuts and strong alpha cuts from the Membership Functions and manipulate standard fuzzy operations such as Complement–norm and t– conforms	K2
CO-2	Compute fuzzy relations for equivalence and compatibility	K2
CO-3	Analyse the concepts of possibility theory and fuzzy logic	K3
CO-4	Construct the membership value for fuzzy sets in direct and indirect methods	K4
CO-5	Apply the applications of fuzzy theory in engineering ,biology, medicine, economics and many other disciplines	K5

Course Title	FLUID DYNAMICS	
CODE	21MSPE321	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand laws of discrete mechanics to continuous systems	K2
CO-2	Derive basic principles of multi-variable calculus, differential equations and complex variables to fluid dynamic problems	K2
CO-3	Analyze fluid flow problems with the application of the momentum and energy	K3
CO-4	Apply modeling approximations in finding exact solutions	K4&K5
CO-5	Derive boundary layer equations by logical reasoning	K5

Course Title	FUNCTIONAL ANALYSIS	
CODE	21MSPC413	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the basic and simple examples in Banach spaces	K2
CO-2	Analyze the Determinants and spectrum of an operator in finite dimensional spectral theory	К3
CO-3	Demonstrate the adjoint of an operator and examine the normal and unitary operators	K4
CO-4	Apply the concept of Hilbert Spaces	K4
CO-5	Evaluate the concepts of Banach algebra and solve its problems	K5

Course Title	MATHEMATICAL METHODS	
CODE	21MSPC414	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of Fourier Transforms and its applications	K2
CO-2	Discuss the properties of Hankel transforms and Dirichlet Problems	K2
CO-3	Analyze the types of integral equations	K3
CO-4	Apply the concepts of initial Value and boundary Value problems	K4
CO-5	Demonstrate the method of variations with fixed Boundaries	K5

Course Title	MECHANICS	
CODE	21MSPC415	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of D'Alembert's principle and Lagrange's equations	K2
CO-2	Discuss the concepts of Lagrange's equations from Hamilton's principle and properties	K2
CO-3	Analyze the canonical equations of Hamilton and conservation theorems	K3
CO-4	Demonstrate the concept of Poisson brackets and other canonical invariants	K4
CO-5	Evaluate the concepts of Hamilton–Jacobi equation	K5

Course Title	GRAPH THEORY	
CODE	21MSPE412	
CO No.	Course Outcomes	Knowledge Level
CO-1	Understand the concepts of graphs and subgraphs	K2
CO-2	Discuss the Euler tours and Hamilton cycles of the graph	K3
CO-3	Discuss about matching and edge coloring of the graph	K3
CO-4	Analyze the ideas of independent sets and vertex coloring	K4
CO-5	Evaluate the concepts of planner graphs and directed graphs	K5

Course Title	DIFFERENTIAL GEOMETRY	
CODE	21MSPE422	
CO No.	Course Outcomes	Knowledge Level
CO-1	Develop arguments in the geometric description of curves and surfaces in order to establish basic properties of geodesics	K 1
CO-2	Understand the normal curvature of a surface, its connection with the first and second fundamental form and Euler's theorem	К3
CO-3	Compute the curvature and torsion of space curve	K2
CO-4	Analyze the curvilinear coordinates in space and Gauss and Codazzi Equations	K4
CO-5	Apply the Gauss & Codazzi Equations and geodesics concept in solving the problems	K5