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ABSTRACT
We study the fundamental problem of frequency estimation under

both privacy and communication constraints, where the data is

distributed among 𝑘 parties. We consider two application scenarios:

(1) one-shot, where the data is static and the aggregator conducts a

one-time computation; and (2) streaming, where each party receives

a stream of items over time and the aggregator continuously moni-

tors the frequencies. We adopt the model of multiparty differential

privacy (MDP), which is more general than local differential privacy

(LDP) and (centralized) differential privacy. Our protocols achieve

optimality (up to logarithmic factors) permissible by the more strin-

gent of the two constraints. In particular, when specialized to the

𝜀-LDP model, our protocol achieves an error of

√
𝑘/(𝑒Θ(𝜀) − 1) us-

ing 𝑂 (𝑘 max{𝜀, log
1

𝜀 }) bits of communication and 𝑂 (𝑘 log𝑢) bits
of public randomness, where 𝑢 is the size of the domain.
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1 INTRODUCTION
Providing formal (differential) privacy guarantees for sensitive data

in different forms has been a major focus for the data management

community in recent years, e.g., [6, 10, 40, 49, 52, 54, 55]. Consider a

distributed database with 𝑘 parties, where each party has some data.

We study two settings for privacy-preserving data analysis where

an aggregator wants to obtain some aggregated statistics over all

data held by the parties: (1) one-shot, where the data is static and the

parties conduct a one-time computation; and (2) streaming, where

each party receives a stream of items over time and the aggregator

wants to monitor the aggregated statistics continuously. These

settings are motivated by real-world applications. For example,

where each hospital holds some medical records which some third-

party public health organization wishes to analyze, and it is the

responsibility of the hospital to protect the privacy of their patients.
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As another example in the distributed streaming model, from the

browsing activities of many users, a search engine would like to

continually monitor the most popular URLs over the past week

without privacy breach [13]. In addition to the privacy constraint,

the communication cost often becomes a major bottleneck which

limits the scalability of distributed machine learning tasks. For

instance, in federated computing, the data is distributed among

manymobile devices connected by bandwidth-limitedwireless links

and the communication is expensive and unreliable [38]. This poses

a dual-challenge to the design of the protocol. Recently, there has

been a lot of interest in designing protocols under both constraints

[1–3, 17, 34, 50]. The most important result obtained in this paper is

that, for the frequency estimation problem, it is possible to achieve

optimality permissible by the more stringent of the two constraints,

or equivalently, the less stringent constraint can be satisfied for
free.

1.1 Problem Formulation
Multiparty Differential Privacy. In the settings above where multiple

parties each possess some data, the standard notion of privacy is

multiparty differential privacy (MDP) [13, 41, 44, 47]. Denote the
parties as 𝑃1, . . . , 𝑃𝑘 , and the aggregator as 𝑃0. Suppose each party

𝑃𝑖 , 𝑖 ≥ 1, has a multiset D𝑖 of 𝑛𝑖 ≥ 1 items, drawn from a universe

U of size 𝑢. Let 𝑁 =
∑𝑘
𝑖=1

𝑛𝑖 . We use [𝑛] to denote {1, . . . , 𝑛}.

Definition 1 (Multiparty Differential Privacy [47]). Let
𝑃 be a protocol involving parties (𝑃0, 𝑃1, . . . , 𝑃𝑘 ), where 𝑃𝑖 has input
dataset D𝑖 ∈ U𝑛𝑖 , 𝑖 ∈ [𝑘], while 𝑃0 has no input. Consider any
party 𝑃𝑖 , 𝑖 = 0, 1, . . . , 𝑘 , and let 𝐴 be an adversary controlling 𝑃−𝑖 =
{𝑃0, . . . , 𝑃𝑘 } − {𝑃𝑖 }. We use View𝑃−𝑖 (𝑃−𝑖 ↔ (𝑃0, . . . , 𝑃𝑘 ) (D)) to
denote the random variable that includes everything that𝐴 sees when
participating in the protocol on input dataset D = (D1, . . . ,D𝑘 ). We
say that 𝑃 is 𝜀-differentially private if for every 𝑖 ∈ [𝑘] and every
two neighboring datasetsD,D ′ ∈ (U𝑛1 , . . . ,U𝑛𝑘 ) that differ on one
item in 𝑃𝑖 ’s input, the following holds for every set 𝑇 :

Pr[View𝑃−𝑖 (𝑃−𝑖 ↔ (𝑃0, . . . , 𝑃𝑘 ) (D)) ∈ 𝑇 ]
≤ 𝑒𝜀 · Pr[View𝑃−𝑖 (𝑃−𝑖 ↔ (𝑃0, . . . , 𝑃𝑘 ) (D ′)) ∈ 𝑇 ] .

The MDP definition above allows arbitrary interactions among

the parties. All the protocols designed in this paper, however, only

use one-way communications from the parties to a designated

aggregator, who can be any particular party. On the other hand,

the lower bounds we match under communication or privacy con-

straints hold even for protocols using arbitrary interactions.
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Connections between MDP and DP/LDP. The MDP model is more

general than other popular privacy models such as local differen-
tial privacy (LDP) and (central) differential privacy (DP): Setting
𝑛𝑖 = 1 for all 𝑖 ∈ [𝑘] yields the former while setting 𝑘 = 1 yields

the latter. It also generalizes the two-party (i.e., 𝑘 = 2) model [41].

Compared with LDP, MDP more generally applies to the situation

where each party holds more than one item, and ensures item-level

privacy (the sanitized messages are insensitive to the change of

a single item on any party). One can run an LDP protocol in the

MDP model, but it would result in Ω(
√
𝑁 ) error (for constant 𝜀) and

Ω(𝑁 ) communication. In the MDP model, we are mostly interested

in the case 𝑁 ≫ 𝑘 . As we will see, our protocol can achieve𝑂 (
√
𝑘)

error with 𝑂 (𝑁 ) communication, or 𝑂 (
√
𝑁 ) error with 𝑂 (

√
𝑁𝑘)

communication, both of which are much better than the compa-

rable LDP protocols, and the improvement is more significant for

smaller 𝑘 (with respect to 𝑁 ). Furthermore, the streaming version

of MDP naturally corresponds to the event-level privacy model in

the streaming setting studied in [13, 14, 28]. Section 9 of [47] gives

a more extensive review of MDP.

Frequency Estimation.Denote the frequency of item 𝑗 ∈ [𝑢] on party
𝑖 by 𝑥𝑖, 𝑗 , which we call the local count. In the frequency estimation
problem, the aggregator wishes to obtain a synopsis, which can be

used to extract an estimate of the global count 𝑦 𝑗 =
∑𝑘
𝑖=1

𝑥𝑖, 𝑗 for

any 𝑗 ∈ [𝑢]. As with prior work [7, 22, 50], we aim at an additive

error guarantee that holds for a single query with probability 1 − 𝛽 .

A vectorized view of the problem is to consider the local counts

{𝑥𝑖, 𝑗 } 𝑗 at party 𝑖 as a vector x𝑖 ∈ N𝑢 , and we want to obtain a ỹ
that minimizes ∥ỹ−y∥∞, where y =

∑
𝑖 x𝑖 . Setting 𝛽 = 𝑂 (1/𝑢) plus

a union bound converts any error guarantee of the former into one

of the latter. Table 1 summarizes the notations used in the paper.

Table 1: Notations used in the paper.

Notation Meaning

𝜀 Differential privacy budget

𝑘 Number of parties

𝑢 Domain size

𝑠 Average message size

𝑥𝑖, 𝑗 Frequency of item 𝑗 held by party 𝑖

𝑛𝑖 Number of items held by party 𝑖

𝑦 𝑗 Total frequency of item 𝑗

𝑁 Total number of items

𝜂, 𝜁 Noises drawn from geometric distribution

𝑔, ℎ Hash functions used in count-sketch

𝑅 Number of rows in count-sketch

𝑆hi

𝑖
/𝑆 lo

𝑖
Local heavy/light hitters at party 𝑖

𝑤 Size of the sliding window

𝑚 Number of epochs in the stream

𝑏 Number of time steps in each epoch

𝛽 Failure probability

1.2 Our Results and Prior Work
We describe our results below and compare them with prior work.

We often use the �̃� notation to suppress polylogarithmic factors.

Please also see Figure 1 for an overview of the results.

One-shot Protocols. Our main one-shot result is an MDP protocol

that achieves an error of �̃� (𝑁 /(
√
𝑘𝑠)) +

√
𝑘/(𝑒Θ̃(𝜀) − 1) with �̃� (𝑘𝑠)

communication, for any given 𝜀 > 0 and 𝑠 ≥ 1, which controls the

communication-utility trade-off. Observe that the first error term is

communication-dependent while the second term is privacy-bound.

Setting 𝑠 = 𝑁 /𝑘 reduces the first term to �̃� (
√
𝑘), and the total

error is dominated by the second term for 𝜀 = 𝑂 (1). Note that,

regardless of the communication cost, the error has to be Ω(
√
𝑘/𝜀)

for 𝜀 = 𝑂 (1) [9], even for the special case where each party has

just one item (i.e., the LDP model). For applications where saving

communication is important, such as collecting data from sensor

networks and mobile phones, we may use a smaller 𝑠 . In this case,

the communication-bound term dominates, which also matches

the lower bound in the non-private, blackboard communication

model under the �̃� (𝑘𝑠) communication constraint [37]. Thus, our

one-shot MDP protocol achieves the optimal error subject to the

both the communication and the privacy constraint for the case

𝜀 = 𝑂 (1).
In the LDP model, which is a degenerate case of MDP, we are

able to refine the analysis of our MDP protocol. The refined analysis

removes the communication-bound term, as well as the logarith-

mic factor in the exponent Θ̃(𝜀) in the privacy-bound term. More

precisely, we show that our LDP protocol achieves an error of

�̃�

(√
𝑘/(𝑒𝜀/4 − 1)

)
with 𝑂 (𝑘 max{𝜀, log

1

𝜀 }) bits of communication

while using𝑂 (𝑘 log𝑢) bits of public randomness
1
. This matches the

recent result of [32]
2
in terms of error, while further improving on

the communication cost, which is𝑂 (𝑘 max{log𝑢, 𝜀, log
1

𝜀 }) bits. We

also prove a lower bound of Ω(
√
𝑘/𝑒𝜀/2) for 𝜀 = 𝑂 (log𝑘), regard-

less of communication cost, improving the previous lower bound

Ω̃(𝑘1/3) [33]. Now, combined with the lower bound Ω(
√
𝑘/𝜀) for

the 𝜀 = 𝑂 (1) case [9], we have essentially closed the gap for the

problem for all meaningful values of 𝜀 (note that 𝜀 ≥ Ω(log𝑘) offers
almost no meaningful privacy protection), up to a constant-factor

difference in 𝜀.

Frequency estimation under the LDP model has been extensively

studied in the literature. The earliest protocol, RAPPOR [31, 50],

achieves error𝑂 (
√
𝑘/(𝑒𝜀/4 − 1)) with a communication cost𝑂 (𝑘𝑢).

Such a large communication cost, which is proportional to the

universe size, cannot be used for situations such as estimating the

frequencies of popular English words (in this case, 𝑢 = 26
ℓ
where

ℓ is the maximum length of keywords). Subsequent works have

aimed at reducing the communication cost to be logarithmic or

even independent of 𝑢. The Hadamard Randomized Response (HRR)
algorithm [4, 43] reduces it to𝑂 (𝑘) bits while using𝑂 (𝑘 log𝑢) bits
of public randomness, but the error becomes �̃�

(√
𝑘/min{𝜀, 1}

)
,

which is optimal only for the high privacy regime 𝜀 < 1 [9]. For the

general privacy regime 𝜀 = Ω(1) [2, 39], Chen et al. [17] present an

1
These random bits can be communicated if public randomness is not available.

2
In fact, we obtained our result concurrently and independently of [32] via a very

different approach. Furthermore, [32] does not work in the MDP model, which is our

main focus.
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MDP, one-shot

Error: N
s
√
k
+

√
k

eΘ̃(ε)−1
Comm.: ks

DP, sliding-window
Error: w

s + 1
eΘ̃(ε)−1

Space: s
Upadhyay [46]:

Error: w3/4

ε
Space:

√
w

DP, full stream
Error: n

s + 1
eΘ̃(ε)−1

Space: s
Chan et al. [15]:
Error: 1

ε
Space: u

k := 1 w := n

Used as a building block

refined
analysis

intra-epoch
not needed

LDP
Error:

√
k

eε/4−1 , Comm: kmax{ε, log 1
ε} bits.

Feldman and Talwar [32]’s Error:
√
k

eε/4−1 ,

Comm: kmax{log u, ε, log 1
ε} bits.

Basic RAPPOR [50]’s Error:
√
k

eε/4−1 , Comm: ku bits.

MDP, sliding-window

Error:
√
kw

s·min{ε,1} +
√
k

eΘ̃(ε)−1
Comm.: ks · n/w
Space: s
Chan et al. [13]:
for s ≤

√
εw,

Error: kw
s

Comm. & Space: Ditto

Figure 1: Overview of our results, where 𝑠 can be any positive integer. All bounds suppress polylogarithmic factors.

improved algorithm that achieves error 𝑂

(√
𝑘/𝜀

)
using 𝑂 (𝑘𝜀) bits

of communication. Finally, the optimal error has been achieved by

our protocol and the one in [32] as mentioned above, using 𝑂 (𝑘𝜀)
bits and 𝑂 (𝑘 (𝜀 + log𝑢)) bits of communication, respectively.

Streaming Protocols. The MDP model has a natural streaming ver-

sion. As with prior work [13, 23, 24], we adopt a synchronous timing

model, where time is divided into discrete steps, and one item ar-

rives at each party in every time step. Messages sent within a time

step all arrive before the next time step. In practice, the parties’

clocks might be out-of-sync and messages can be delayed. In this

case, we can include timestamps in the messages to simulate the

execution, which is particularly easy for our protocol as it only uses

one-way messages from the parties to the aggregator. The assump-

tion that one item must arrive at each time step is also without loss

of generality. If nothing arrives at a party in a time step, this can

be treated as a dummy item.

Perhaps the most useful streaming model is the sliding-window
model. Here, the goal is for the aggregator to maintain a synopsis

such that the global count of any item 𝑗 , counting all items that

have arrived in the last𝑤 time steps, can be estimated. However,

all messages sent during the entire streaming period, not just those

sent in the sliding window, must collectively be 𝜀-DP as in the one-

shot MDP model. We present an 𝜀-MDP protocol for this problem

that, for any integer 𝑠 ≥ 1, achieves error �̃� (𝑤
√
𝑘/(𝑠 ·min{𝜀, 1})) +√

𝑘/(𝑒Θ̃(𝜀) − 1) with �̃� (𝑘𝑠 ·𝑛/𝑤) communication, while using �̃� (𝑠)
space on each party, where 𝑛 is the total number of time steps.

Note that the one-shot problem is a special case of this problem,

by just setting 𝑛 := 𝑤, 𝑁 := 𝑘𝑤 , and asking for the synopsis only

at the end of the stream. Compared with our one-shot result, the

only difference is that the communication-bound error term has

an extra 1/min{𝜀, 1} factor. Thus, the communication-error trade-

off of our sliding window protocol is still optimal for 𝜀 = 𝑂 (1).
For 𝜀 = Θ(1), the previous result for this problem [13] gave an

error of �̃� (𝑘𝑤/𝑠) under the same communication budget, which

is a

√
𝑘-factor from optimal. More importantly, the largest 𝑠 that

can be supported by the protocol of [13] is 𝑂 (
√
𝑤), which means

that the minimum error achievable (regardless of communication)

is �̃� (𝑘
√
𝑤). This is a

√
𝑘𝑤-factor from �̃� (

√
𝑘), the smallest error

permissible by the privacy constraint, which can be achieved by

our protocol by setting 𝑠 := 𝑤 .

For (private or non-private) streaming algorithms, an important

measure of complexity is space. To see that our space-error trade-

off is also optimal, simply consider the degenerate case where

𝑘 = 1. This particular case has actually been recently studied by

[46], where an algorithm with error �̃� (𝑤3/4/𝜀) and space �̃� (
√
𝑤)

is presented. When degenerated to the 𝑘 = 1 case, our protocol

achieves �̃� ( 𝑤𝑠 ) + 1/(𝑒Θ̃(𝜀) − 1) error with �̃� (𝑠) space. To compare

with [46], just set 𝑠 =
√
𝑤 , which yields �̃� (

√
𝑤) +1/(𝑒Θ̃(𝜀) −1) error.

In fact, the protocol in [13] yields the same space-error trade-off as

ours (but with a limited range 𝑠 ≤
√
𝜀𝑤 ) for the 𝑘 = 1 case, which

was overlooked in [46]. In an analogy to the communication-error

trade-off, the space-error trade-off is also determined by space or

privacy, whichever is more stringent. The space-bound term �̃� ( 𝑤𝑠 )
is optimal (assuming 𝑢 ≥ 𝑤 ) by well-known lower bounds in the

(non-private) streaming literature [11], while the optimality of the

privacy-bound term follows from the centralized DP lower bound

Ω̃( 1

𝜀 ) for 𝜀 = 𝑂 (log𝑢), even for the one-shot problem [47]. Thus,

our protocol achieves the optimal space-error trade-off for the full

range 1 ≤ 𝑠 ≤ 𝑤 for 𝜀 = 𝑂 (log𝑢). On the other hand, [13] achieved

optimality only for a partial range 1 ≤ 𝑠 ≤
√
𝜀𝑤 , while the results

of [46] are not optimal. Finally, our protocol spends �̃� (1) time to

process each item, so it is time-optimal as well.

Further Applications. Similar to [7, 18, 20], by using our frequency

estimation protocol with a dyadic decomposition of the universe,

we can also solve many related problems such as heavy hitters,

quantiles, and orthogonal range counting (in constant dimensions),

at the cost of some extra polylogarithmic factors.

1.3 Other Related Work
We briefly mention results in other models of privacy that are rele-

vant to our study. Most closely related are the notions of continual
observation, and pan privacy, which consider privacy against an

adversary who may observe a snapshot of the algorithm’s internal

state (pan privacy), or when the algorithm continually publishes
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updates based on new readings (continual observation). The latter

of these most closely matches our (distributed) streaming results,

and we leverage similar techniques, such as expressing partial ag-

gregations within a tree structure [15, 28]. More specifically, by

setting 𝑤 := 𝑛, the sliding-window model degenerates into the

problem of monitoring the full stream, i.e., continual observation.

Existing solutions for this problem achieves �̃� (1/𝜀) error with �̃� (𝑢)
space [15]. Our protocol achieves the same error with space �̃� (𝑛),
which can be much smaller than �̃� (𝑢). In addition, we provide a

full-range space-error trade-off.

We havementioned themodel of Local Differential Privacy (LDP),

which corresponds to MDP with 𝑛𝑖 = 1 for all 𝑖 in the one-shot

setting. The most impactful work in this model is concerned with

frequency estimation, and finding heavy hitters, based on building

“frequency oracles” from each site’s message to estimate item fre-

quencies, as in our setting [4, 8, 27, 31]. Further work has studied

a wide variety of data analysis and ML tasks, such as multidimen-

sional statistics, language models and classifiers; we refer the reader

to surveys on this topic [19, 51, 53].

Most recently, additional models have been proposed which

aim to achieve improved privacy-accuracy tradeoffs by making

stronger assumptions. The shuffle model assumes that the identity

of the sender can be fully disassociated from the messages sent,

either by a trusted “shuffler” entity, or through a cryptographic mix

network [5, 30].

2 PRELIMINARIES
2.1 Differential Privacy
The standard (centralized) differential privacy model is a special

case ofMDP, but we state its definition again for clarity. LetD ∼ D ′

denote two neighboring datasets, which differ by one item.

Definition 2 (Differential Privacy [29]). For 𝜀 > 0, an al-
gorithm M is 𝜀-differentially private (DP) if for any neighboring
datasets D ∼ D ′ and any 𝑆 ⊆ Range(M),

Pr[M(D) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[M(D ′) ∈ 𝑆] .

Note that theMDPmodel degenerates to this definition by setting

𝑘 := 1: 𝑃1 runs M on D1 and sendsM(D1) to 𝑃0.

For a numeric query 𝑞, one common DP mechanism is to add

noise drawn from a symmetric geometric distribution (also referred

to as “discrete Laplace”) [12, 35] calibrated to GS𝑞 := maxD∼D′

|𝑞(D) − 𝑞(D ′) |, which is known as the (global) sensitivity of 𝑞.

Definition 3 (Symmetric Geometric Distribution [12, 35]).

Let 𝛼 > 1. We denote by Geom(𝛼) the symmetric geometric distribu-
tion that takes integer values such that the probability mass function
at 𝑙 is 𝛼−1

𝛼+1
· 𝛼−|𝑙 | .

The following properties of the symmetric geometric distribution

are useful. Let 𝑋 ∼ Geom(𝛼):
(1) E[𝑋 ] = 0; Var[𝑋 ] = 2𝛼/(𝛼 − 1)2 = 𝑂 (1/log

2 𝛼).
(2) For every 𝑑 > 0, Pr[|𝑋 | > 𝑑] ≤ 𝛼−𝑑 .
(3) The mechanism M(D) := 𝑞(D) + 𝑋 is 𝜀-DP by setting 𝛼 =

exp(𝜀/GS𝑞). Note that in this case, Var[𝑋 ] = 𝑂 ((GS𝑞/𝜀)2).
The LDP model is another special case of MDP by setting 𝑛𝑖 = 1

for all 𝑖 ∈ [𝑘]. TheHadamard Randomized Response (HRR) algorithm

[4, 43] can be used to solve the frequency estimation problem under

LDP. Assume, without loss of generality, that 𝑢 is a power of 2, and

recall that the Hadamard matrix can be defined recursively as

𝐻𝑢 =

[
𝐻𝑢/2

𝐻𝑢/2

𝐻𝑢/2
−𝐻𝑢/2

]
,

where 𝐻1 = [1]. Each party 𝑖 samples an index 𝑟𝑖 u.a.r. from [𝑢],
encodes her item 𝑣𝑖 into a single bit 𝐻 [𝑟𝑖 , 𝑣𝑖 ], and then sends it

to the aggregator via randomized response. Specifically, each user

sends a one-bit message M(𝑣𝑖 ) to the aggregator (if there is no

shared randomness, the random index 𝑟𝑖 should also be sent using

log𝑢 bits), where

M(𝑣𝑖 ) =
{
𝐻 [𝑟𝑖 , 𝑣𝑖 ], w.p.

𝑒𝜀

𝑒𝜀+1
;

−𝐻 [𝑟𝑖 , 𝑣𝑖 ], otherwise.

The frequency estimator (at the aggregator side) for any item

𝑣 is
𝑒𝜀+1

𝑒𝜀−1

∑𝑘
𝑖=1

M(𝑣𝑖 ) · 𝐻 [𝑟𝑖 , 𝑣]. The error guarantee of HRR is

𝑂 (
√
𝑘 log(1/𝛽)/min{𝜀, 1}) which holds for a single query with

probability 1 − 𝛽 .

Note that the MDP/LDP model allows arbitrary interactions

among the parties, and the lower bounds [9] hold under this setting.

However, most of existing protocols (including ours) use one-way

messages, except for broadcasting some public parameters to all

parties before the protocol starts. In this case, it is sufficient for

each party to run a 𝜀-DP mechanismM on her datasetD𝑖 and send

M(D𝑖 ) to the aggregator. The resulting protocol then trivially sat-

isfies MDP/LDP against active adversaries. It is worth pointing out

that one can relax the MDP model by only allowing the adversary

to control a smaller number of parties. In this case, one may achieve

errors lower than the LDP lower bound of Ω(
√
𝑘/𝜀) with interactive

protocols [45].

2.2 Count Sketch
The count sketch [16] of a vector x of size 𝑢 is another vector 𝐶 (x)
of size 𝑠 ,

𝐶 (x) [ 𝑗] =
∑

𝑖∈[𝑢 ]:ℎ (𝑖)=𝑗
𝑔(𝑖)𝑥𝑖 , 𝑗 = 1, . . . , 𝑠,

whereℎ : [𝑢] → [𝑠] and 𝑔 : [𝑢] → {−1, +1} are two hash functions.
For our analysis, we assume ℎ is pairwise-independent while 𝑔 is

truly random. In some cases, the latter assumption can also be

relaxed to pairwise-independence.

The count sketch can be used to extract point estimates. For any
𝑖 ∈ [𝑢], an estimator for 𝑥𝑖 is 𝑥𝑖 = 𝑔(𝑖) ·𝐶 (x) [ℎ(𝑖)]. It is known that

E[𝑥𝑖 ] = 𝑥𝑖 and Var[𝑥𝑖 ] ≤ ∥x∥2

2
/𝑠 . So by the Chebyshev inequality,

the error |𝑥𝑖 −𝑥𝑖 | is𝑂 (∥x∥2/
√
𝑠) with constant probability, which is

an ℓ2 error guarantee. Meanwhile, the count-sketch also enjoys an ℓ1
error guarantee that |𝑥𝑖−𝑥𝑖 | = 𝑂 (∥x∥1/𝑠) with constant probability
(Chapter 3.5 in [26]). Note that these two error bounds are in general

incomparable. The success probability can be amplified to 1−𝛽 via a

standard median trick: creating𝑂 (log(1/𝛽)) independent instances
and returning themedian of the estimators. This way, a count sketch

can be viewed as a matrix of 𝑂 (log(1/𝛽)) rows and 𝑠 columns.
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3 ONE-SHOT FREQUENCY ESTIMATION
In this section, we build up our approach. The starting point is a

relatively simple protocol based on gathering a carefully configured

sketch from each party (Section 3.1). This is sufficient to give an

accurate result for the general MDP case (𝑛𝑖 ≥ 1). However, sending

a large sketch can be costly when parties have few items, so we

show how to reduce the sketch size for the LDP (𝑛𝑖 = 1) case in

Section 3.2, and to achieve a better communication cost in the case

of variable input sizes with an improved protocol in Section 3.3.

3.1 Our Basic Protocol
In addition to the privacy parameter 𝜀 and the failure probability 𝛽 ,

our protocol uses a parameter 𝑠 ≥ 1, which determines the average

message size of each party.

Algorithm on Each Party. On each party 𝑖 , from the local counts x𝑖
we build a count sketch𝐶𝑖 of 𝑅 rows and 𝑠𝑖 := ⌈𝑘𝑠 ·𝑛𝑖/𝑁 ⌉ columns,

where 𝑅 is the nearest odd number to log
3𝑘
𝛽
. Next, the party per-

turbs each counter𝐶𝑖 [𝑟, 𝑐], 𝑟 ∈ [𝑅], 𝑐 ∈ [𝑠𝑖 ] in the sketch by adding

noise 𝜂
(𝑖)
𝑟,𝑐 drawn from Geom(𝑒𝜀/(2𝑅) ), to preserve privacy. Then

the party sends this noisy count sketch 𝐶𝑖 to the aggregator. The

communication cost (the total size of all count sketches) is∑𝑘
𝑖=1

𝑠𝑖𝑅 = 𝑂

(∑𝑘
𝑖=1

𝑘𝑠 · 𝑛𝑖
𝑁

log
𝑘
𝛽

)
= 𝑂

(
𝑘𝑠 log

𝑘
𝛽

)
.

If there is no public randomness, each party 𝑖 also needs to send

the hash functions used in the count sketch ℎ
(𝑖)
𝑟 , 𝑔

(𝑖)
𝑟 , 𝑟 ∈ [𝑅] to the

aggregator, which takes 𝑂 (𝑘𝑅) = 𝑂 (𝑘 log
𝑘
𝛽
) communication.

Privacy Guarantee. It is clear that a count sketch of 𝑅 rows has

a sensitivity of 2𝑅, so adding noise drawn from Geom(𝑒𝜀/(2𝑅) ) is
sufficient to preserve 𝜀-DP for each party.

Algorithm on Aggregator. After the aggregator has collected the

noisy count sketch 𝐶𝑖 from each party, for any 𝑗 ∈ [𝑢], we use

𝑦 𝑗 :=
∑
𝑖 median𝑟 ∈[𝑅 ] {𝑔

(𝑖)
𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)]} as the estimator for

𝑦 𝑗 :=
∑
𝑖 𝑥𝑖, 𝑗 .

Accuracy.We use a lemma from [48],

Lemma 1 ([48]). If {𝑋𝑖 }𝑖∈[𝑛] are independent random variables,
each of which has a symmetric PDF around zero, and 𝑛 is an odd
number, then E

[
median𝑖∈[𝑛] {𝑋𝑖 }

]
= 0.

To see that E[𝑦 𝑗 ] = 𝑦 𝑗 , first we show that the frequency estimator

from each row of 𝐶𝑖 is unbiased. For any 𝑟 ∈ [𝑅],

E
[
𝑔
(𝑖)
𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗

]
= E

[
𝑔
(𝑖)
𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗

]
+ E

[
𝑔
(𝑖)
𝑟 ( 𝑗) · 𝜂 (𝑖)

𝑟,ℎ
(𝑖 )
𝑟 ( 𝑗)

]
= 0.

Moreover, since 𝑔
(𝑖)
𝑟 is a truly random hash function which maps 𝑗

to ±1 with equal probability, each random variable

𝑔
(𝑖)
𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗

has a symmetric PDF around zero. Then, by Lemma 1, we have

E
[
𝑦 𝑗 − 𝑦 𝑗

]
=

∑
𝑖

E
[
median𝑟 ∈[𝑅 ] {𝑔

(𝑖)
𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗 }

]
= 0.

Next, we analyze the error |𝑦 𝑗 − 𝑦 𝑗 |. Due to the ℓ1 error guarantee

of the count sketch and the Chebyshev inequality for the Geometric

noise, for any 𝑖 ∈ [𝑘] and 𝑟 ∈ [𝑅], we have���𝑔 (𝑖)𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗

���
≤

���𝑔 (𝑖)𝑟 ( 𝑗) ·𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗

��� + ����𝑔 (𝑖)𝑟 ( 𝑗) · 𝜂 (𝑖)
𝑟,ℎ

(𝑖 )
𝑟 ( 𝑗)

����
= 𝑂

(
𝑛𝑖

𝑠𝑖
+ 1

𝑒𝜀/(4𝑅) − 1

)
with a constant probability, say, 0.95.

Note that the frequency estimator from 𝐶𝑖 is the median of the

estimators from 𝑅 = log
3𝑘
𝛽

independent rows. We say that each

estimate is good if it satisfies the above error bound, which happens

with probability 0.95. Let 𝑌 be the number of estimates that are not

good. The median estimator fails to be good with probability

Pr

[
𝑌 ≥ 1

2
log

3𝑘

𝛽

]
≤ exp

(
−81/80 log

3𝑘

𝛽

)
≤ 𝛽/(3𝑘)

by the Chernoff bound. Thus, the success probability of the above

error guarantee is amplified to 1− 𝛽/(3𝑘). Applying a union bound,

this error guarantee holds for every party 𝑖 ∈ [𝑘] with probabil-

ity 1−𝛽/3— let 𝐸1 denote this event. Conditioned upon the event 𝐸1,

and since across𝑘 parties the randomvariablesmedian𝑟 ∈[𝑅 ] {𝑔
(𝑖)
𝑟 ( 𝑗)·

𝐶𝑖 [𝑟, ℎ (𝑖)𝑟 ( 𝑗)] − 𝑥𝑖, 𝑗 } are independent and bounded by 𝑂 (𝑁 /(𝑘𝑠) +
1/(𝑒𝜀/(4𝑅) − 1)), applying a Hoeffding bound we conclude that

|𝑦 𝑗 − 𝑦 𝑗 | = 𝑂

(
𝑁

√
log

1

𝛽
/(
√
𝑘𝑠) +

√
𝑘 log

1

𝛽
/(𝑒𝜀/(4𝑅) − 1)

)
with probability 1 − 𝛽/3. Finally by the law of total probability,

this error guarantee holds unconditionally with probability at least

1 − 𝛽 .

Theorem 1. For 𝑠 ≥ 1 and 𝜀 > 0, our 𝜀-MDP one-shot frequency
estimation protocol returns an unbiased estimator for the frequency
of any item that with probability at least 1 − 𝛽 has error

𝑂

((
𝑁
√
𝑘𝑠

+
√
𝑘

𝑒
𝜀/(4 log

3𝑘
𝛽
) − 1

)
·
√

log

1

𝛽

)
.

Its expected communication cost is 𝑂
(
𝑘𝑠 log

𝑘
𝛽

)
.

Comparison to a simple baseline. The way we combine the sketches

is quite different from the standard way of “merging” sketches in

the MDP/LDP model. Consider a baseline method, which follows

the convention of using linear sketches in the non-private setting:

Each party transmits a noisy count sketch of a fixed size to the

aggregator, then the aggregator merges all noisy count sketches

and takes the median estimator from all rows. The common practice

(e.g., [7]) is to use the mergeability property of linear sketches, i.e.,

the aggregator merges the noisy sketches (so all parties must use

the same hash functions and the same sketch size) and makes the

estimate from the merged sketch. Instead, we make a separate

estimate from each noisy sketch and add up the estimates. Thus the

parties do not use the same hash functions; actually, as shown in

our analysis above, it is critical for the parties to use independent

hash functions, as they allow for a higher degree of concentration.

Technically, our analysis is mainly based on the unbiasedness of
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the median from an odd number of symmetric random variables.

Moreover, we use different sketch sizes according to the cardinality

of each party, allowing us to utilize the ℓ1 bound of count sketch in

the analysis. We also empirically compare with this basic sketching

approach as a baseline in Section 5.

Comparison to PMG. Chan et al. [13] proposed a one-shot MDP al-

gorithm PMG, which privatizes the MG algorithm [42] by injecting

appropriate noise. For a sketch size 𝑠 , PMG incurs a bias of 𝑂 ( 𝑤𝑠 )
on each party, so the resulting protocol has an error proportional

to 𝑘 , in contrast to the factor-

√
𝑘 in our error bound. Moreover, MG

has sensitivity of 𝑠 , so the error of the streaming protocol in [13] is

at least Ω̃(𝑘
√
𝑤) (for any 𝑠 and a constant 𝜀); while count sketch

has sensitivity �̃� (1), and our protocol can achieve an error �̃� (
√
𝑘).

Comparison to FreqOracle. The frequency oracle used in [7] com-

bines the idea of count-sketch with the HRR protocol. It uses a

Hadamard matrix of size 𝑠 ′, where 𝑠 ′ = �̃� (
√
𝑘), and two hash func-

tions ℎ : [𝑢] → [𝑠 ′], 𝑔 : [𝑢] → {−1, +1}. Each party sends one

bit 𝑔(𝑣𝑖 ) · 𝐻 [𝑟𝑖 , ℎ(𝑣𝑖 )] via randomized response to the aggregator,

where 𝑟𝑖 is uniformly drawn from [𝑠 ′]. The error of FreqOracle is
the same as HRR asymptotically when restricted to the case 𝜀 < 1.

3
;

their use of the count-sketch is to reduce the running time of iden-

tifying the heavy hitters from �̃� (𝑘1.5) to �̃� (𝑘). Our protocol differs
from FreqOracle in the following aspects: (1) we do not need a

Hadamard matrix to reduce the communication; (2) the width of

the count-sketch is �̃� (
√
𝑘) in [7], while it is proportional to 𝑛𝑖 on

each party in our protocol; (3) we combine the count sketches on

the aggregator side in a different manner from [7]. On the other

hand, the use of geometric noise instead of randomized response is

not crucial: Both can be used to achieve error 1/(𝑒Θ(𝜀) − 1)).

3.2 A Refined Analysis under LDP
Under LDP, which is a special case of MDP, by a more refined

analysis based on the ℓ2 bound of the count sketch, we show that

it is sufficient for each party to construct a count sketch of only

one row and 𝑠 = ⌈(𝑒𝜀/2 − 1)2/𝑒𝜀/2⌉ columns, and only the non-zero

entries of the noisy sketch need to be sent to the aggregator. In

addition, it suffices for ℎ and 𝑔 to both be pairwise-independent

hash functions.

Theorem 2. For 𝜀 > 0, our 𝜀-LDP frequency estimation protocol
returns an unbiased frequency estimator for any item with a variance
of 𝑂 (𝑘𝑒𝜀/2/(𝑒𝜀/2 − 1)2), or an error of

𝑂

(
max

{√
𝑘 log

1

𝛽
/(𝑒𝜀/4 − 1), log

1

𝛽

})
with probability 1 − 𝛽 . It uses 𝑂 (𝑘 · max{𝜀, log

1

𝜀 }) bits of communi-
cation in expectation and 𝑂 (𝑘 log𝑢) bits of public randomness.

The proof of the theorem is presented in the full version of

the paper [36]. Recently, Feldman and Talwar [32] present a gen-

eral compression scheme to reduce the communication cost of any

LDP protocol under standard cryptographic assumptions. When

3
More precisely, the error is 𝑂 (

√
𝑘 · (𝑒𝜀 + 1)/(𝑒𝜀 − 1)) = 𝑂 (

√
𝑘/min{𝜀, 1}) The

reason is that in FreqOracle or HRR each party uniformly selects an entry of the

Hadamard matrix (for reducing communication cost), so even if 𝜀 → ∞ the error

is still𝑂 (
√
𝑘) . Chen et al. [17] improve the error to𝑂 (

√
𝑘/

√
𝜀) for 𝜀 > 1, by using

multiple samples from the Hadamard matrix to reduce the variance.

applied to the frequency estimation problem, that 𝜀-LDP protocol

achieves the same error as in Theorem 2. However, it is interesting

to note that our approach is completely different to the compression

scheme. Furthermore, the communication cost using this compres-

sion approach is 𝑂 (𝑘 max{log𝑢, 𝜀, log
1

𝜀 }), which is higher than

ours for the most common privacy regime 1/𝑢−Ω (1) < 𝜀 < log𝑢.

Comparison to OLH. The OLH algorithm [50] improves over HRR

for the case 𝜀 > 1, although asymptotically it has the same error

bound as HRR, i.e., the error is Ω(
√
𝑘) for 𝜀 > 1

4
. The first step of

OLH is similar to ours, where each party hashes the item to [𝑠] for
𝑠 = 𝑒𝜀 + 1, but without a sign hash function. However, the crucial

difference is the perturbation step. OLH perturbs the resulting hash

value over [𝑠] using randomized response, i.e., reporting the true

value with probability 𝑒𝜀/(𝑒𝜀 + 𝑠 − 1) = 1/2, otherwise a value u.a.r.

over [𝑠]. In our algorithm, we treat the hash value as the location

in the count sketch. We perturb each counter with geometric noise,

and employ the expected sparsity of the noisy sketch to bound the

communication cost.

A Lower Bound. To complement our upper bound, we prove (proof

in the full version of the paper [36]) a lower bound for 𝜀 = 𝑂 (log𝑘)
by a reduction to the 1-bit sum problem under LDP, where each

party holds a bit, and the aggregator wishes to estimate the number

of 1’s.

Theorem 3. Any LDP protocol for the 1-bit sum problem must
have an error of Ω(

√
𝑘/𝑒𝜀/2) for 𝑘 = Ω(𝑒𝜀 ).

Note that the lower bound on the 1-bit sum problem also holds

for the frequency estimation problem (𝑢 ≥ 2), since any frequency

estimation protocol can be used to solve the 1-bit sum problem.

For 𝜀 = 𝑂 (log𝑘), Ghazi et al. [33] prove a lower bound of Ω̃(𝑘1/3)
(Equation (11) in Theorem 3.3) that is independent of 𝜀. In contrast,

our lower bound characterizes the dependency on 𝜀 and can be

much better than the one in [33], for example, when 𝜀 = 1

4
log𝑘 the

new bound is Ω(𝑘3/8) ≫ Ω̃(𝑘1/3). Combined with the lower bound

of Ω(
√
𝑘/𝜀) for 𝜀 = 𝑂 (1) in [9], this implies our LDP protocol is

optimal for all 𝜀 ≤ 𝑂 (log𝑘), up to a constant-factor difference in 𝜀.

3.3 Further Improvement by Frequency
Separation

In the protocol described in Section 3.1, the sketch size 𝑠𝑖 is pro-

portional to 𝑛𝑖 on each party, even if it has only one item with

local count 𝑛𝑖 . This results in a large number of informationless

noisy counters to be sent to the aggregator. In this subsection, we

describe a method to reduce the communication cost, which works

particularly well on skewed data while providing the same worst

case guarantee as Theorem 1. The idea is to divide the local counts

into “heavy” and “light” groups. We use an importance sampling

based method for the heavy items, while dealing with the rest using

count sketch as before. We also demonstrate its effectiveness in the

experiments.

More precisely, we separate the local counts {𝑥𝑖, 𝑗 } 𝑗 into local
heavy hitters and local light hitters. To preserve privacy, we do

so probabilistically, as follows: (1) draw a noise vector 𝜉𝑖 ∈ R𝑢 ,
4
Note that Wang et al. [50] focus on Var∗ , which is only one part of the true variance

(see Equation (3) in their paper). While Var∗ decreases exponentially fast in 𝜀 , the full

variance does not.
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where each coordinate is i.i.d. from Geom(𝑒𝜀/4), and perturb x𝑖 as
x̃𝑖 := x𝑖 + 𝜉𝑖 ; (2) extract entries 𝑗 ∈ [𝑢] such that 𝑥𝑖, 𝑗 > 𝑇 as the

local heavy hitters, for some threshold 𝑇 = Θ( 1

𝜀 log(𝑘𝑢)), while
the others are the local light hitters. We denote the identities of the

local heavy and light hitters at party 𝑖 as 𝑆hi

𝑖
and 𝑆 lo

𝑖
, respectively.

All error analyses below hold for any fixed separation of the local

heavy/light hitters, i.e., conditioned upon 𝑆hi

𝑖
and 𝑆 lo

𝑖
for all 𝑖 ∈

[𝑘]; by the law of total probability the error guarantee will hold

unconditionally.

In order to avoid running time proportional to 𝑢, the above

procedure for separating [𝑢] into 𝑆hi
and 𝑆 lo

can be equivalently

done as follows [25]:

(1) Add i.i.d. noise drawn from Geom(𝑒𝜀/4) to the non-zero

entries of x𝑖 , and extract the entries with noisy count above

the given threshold 𝑇 as 𝑆hi
.

(2) For the zero entries of x𝑖 , first draw 𝑚𝑖 ∼ Binomial(𝑢 −
𝑛𝑖 , 𝑝𝑇 ), where 𝑝𝑇 = exp((−𝑇 + 1)𝜀/4)/(exp(𝜀/4) + 1) is the
probability that a zero entry has a noisy count above𝑇 . Then,

uniformly at random select𝑚𝑖 locations from the zero entries

of x𝑖 and add them to 𝑆hi
.

It is safe for each party to release 𝑆hi

𝑖
and 𝑆 lo

𝑖
. This is because the

local counts {𝑥𝑖, 𝑗 } 𝑗 have a sensitivity of 2, thus adding noise drawn

from Geom(𝑒𝜀/4) is sufficient to preserve 𝜀/2-DP. Then by the post-

processing property of DP, the separation results are 𝜀/2-DP. In

the following, we present DP mechanisms for the local heavy and

light hitters respectively. The input to these mechanisms are the

identities of the local heavy/light hitters and their (original) local

counts. Since the locations of the local heavy and light hitters are

disjoint, by the parallel composition theorem, it suffices for these

two mechanisms to be 𝜀/2-DP.

3.3.1 Local Heavy Hitters.
Algorithm on Each Party. For each 𝑗 ∈ 𝑆hi

𝑖
at party 𝑖 , we perturb 𝑥𝑖, 𝑗 ,

with fresh noise 𝜁𝑖, 𝑗 drawn from Geom(𝑒𝜀′/2), as 𝑥𝑖, 𝑗 := 𝑥𝑖, 𝑗 + 𝜁𝑖, 𝑗 ,

where 𝜀 ′ = 𝜀/log
1

𝛽
. Still, sending all such items would consume

a lot of communication so instead we send these perturbed local

counts by importance sampling. More precisely, party 𝑖 sends each

pair ( 𝑗, 𝑥𝑖, 𝑗/𝑝), 𝑗 ∈ 𝑆hi

𝑖
to the aggregator with probability 𝑝 ( |𝑥𝑖, 𝑗 |),

where 𝑝 (𝑥) = min{𝑘𝑠 · 𝑥/𝑁, 1}. This procedure (perturb and im-

portance sampling) is repeated by
1

2
log

1

𝛽
times.

Privacy Guarantee. Because the frequency vector has a sensitivity

of 2, adding noise drawn from Geom(𝑒𝜀′/2) provides the guarantee
of 𝜀 ′-DP. By the basic composition theorem across all repetitions,

the whole procedure preserves 𝜀/2-DP.

Communication. The expected communication cost in each repeti-

tion is

E


𝑘∑
𝑖=1

∑
𝑗 ∈𝑆hi

𝑖

𝑝 (𝑥𝑖, 𝑗 )
 = E

E

𝑘∑
𝑖=1

∑
𝑗 ∈𝑆hi

𝑖

𝑝 (𝑥𝑖, 𝑗 )

������� 𝑆hi




≤ E

E

𝑘∑
𝑖=1

∑
𝑗 ∈𝑆hi

𝑖

𝑘𝑠 · |𝑥𝑖, 𝑗 |/𝑁

������� 𝑆hi




≤ 𝑘𝑠

𝑁
· E

E

𝑘∑
𝑖=1

∑
𝑗 ∈𝑆hi

𝑖

𝑥𝑖, 𝑗 + |𝜁𝑖, 𝑗 |

������� 𝑆hi




=
𝑘𝑠

𝑁
· E


𝑘∑
𝑖=1

∑
𝑗 ∈𝑆hi

𝑖

𝑥𝑖, 𝑗 +
𝑘∑
𝑖=1

𝑂

(
1

𝜀

)
· |𝑆hi

𝑖 |


≤ 𝑘𝑠 + 𝑘𝑠

𝑁
·𝑂

(
1

𝜀

)
· E

[
𝑘∑
𝑖=1

|𝑆hi

𝑖 |
]
.

To bound E
[∑𝑘

𝑖=1
|𝑆hi

𝑖
|
]
, let 𝐸 denote the event that |𝜉𝑖, 𝑗 | =

𝑂 ( 1

𝜀 log(𝑘𝑢)) simultaneously for every 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑢]. Then we

have Pr[𝐸] ≥ 1 − 1/(𝑘𝑢) by the tail property of the Geometric

distribution and applying a union bound. Furthermore, conditioned

upon 𝐸, every local heavy hitter has a frequency of Ω( 1

𝜀 log(𝑘𝑢)).
Then, we have

E

[
𝑘∑
𝑖=1

|𝑆hi

𝑖 |
]
≤ Pr[𝐸] · E

[
𝑘∑
𝑖=1

|𝑆hi

𝑖 |
�����𝐸

]
+ Pr[𝐸] · 𝑘𝑢

≤ 𝑂

(
𝑁

1

𝜀 log(𝑘𝑢)

)
.

Thus the expected communication cost is 𝑂 (𝑘𝑠 log
1

𝛽
) across all

repetitions.

Algorithm on Aggregator. In each repetition, let 𝑔𝑖, 𝑗 denote the HT

estimator for 𝑥𝑖, 𝑗 . More precisely, if the aggregator received 𝑥𝑖, 𝑗 ,

we use 𝑔𝑖, 𝑗 = 𝑥𝑖, 𝑗/𝑝 ( |𝑥𝑖, 𝑗 |), otherwise 𝑔𝑖, 𝑗 = 0. The aggregator

uses 𝑦hi

𝑗
:=

∑
𝑖 𝑔𝑖, 𝑗 as the estimate for 𝑦hi

𝑗
:=

∑
𝑖:𝑗 ∈𝑆hi

𝑖
𝑥𝑖, 𝑗 in each

repetition, and takes themedian of these estimates across all
1

2
log

1

𝛽

repetitions as the final estimator.

Accuracy. It suffices to show that the estimate in each repetition

satisfies the desired error guarantee with a constant probability,

say, 0.99, then the success probability of the median estimate from

all
1

2
log

1

𝛽
repetitions can be amplified to 1 − 𝛽 by the Chernoff

bound. First, we show that 𝑦hi

𝑗
is an unbiased estimator of 𝑦hi

𝑗
, let 𝑥

denote {𝑥𝑖, 𝑗 }𝑖:𝑗 ∈𝑆hi

𝑖
,

E[𝑦hi

𝑗 ] = E

[
E

[∑
𝑖

𝑔𝑖, 𝑗

�����𝑥
] ]

= E


∑

𝑖:𝑗 ∈𝑆hi

𝑖

𝑥𝑖, 𝑗

 =
∑

𝑖:𝑗 ∈𝑆hi

𝑖

𝑥𝑖, 𝑗 .

Next, we analyze the error |𝑦hi

𝑗
− 𝑦hi

𝑗
|, which is composed of two

parts:

(1)

∑
𝑖 𝑔𝑖, 𝑗 approximates

∑
𝑖:𝑗 ∈𝑆hi

𝑖
𝑥𝑖, 𝑗 .

(2)

∑
𝑖:𝑗 ∈𝑆hi

𝑖
𝑥𝑖, 𝑗 approximates

∑
𝑖:𝑗 ∈𝑆hi

𝑖
𝑥𝑖, 𝑗 .

For part (1), let 𝛽 ′ = 0.01, we first show that the error is𝑂 (𝑁 /(
√
𝑘𝑠))

with probability at least 1 − 𝛽 ′/2 for any fixed choice of 𝑥 , i.e.,

conditioned upon the randomness of 𝑥 , then by the law of total

probability the same error guarantee holds unconditionally. It suf-

fices to consider the worst case that for all 𝑖 ∈ [𝑘], 𝑝 ( |𝑥𝑖, 𝑗 |) < 1,

otherwise 𝑔𝑖, 𝑗 = 𝑥𝑖, 𝑗 which is already correct. Let 𝐹 denote the

event that |∑𝑖 𝑔𝑖, 𝑗 −
∑
𝑖:𝑗 ∈𝑆hi

𝑖
𝑥𝑖, 𝑗 | = 𝑂 (𝑁 /(

√
𝑘𝑠)). Since E[∑𝑖 𝑔𝑖, 𝑗 |
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𝑥] =
∑
𝑖:𝑗 ∈𝑆hi

𝑖
𝑥𝑖, 𝑗 and |𝑔𝑖, 𝑗 | ≤ 𝑁 /(𝑘𝑠), by a Hoeffding bound we

have Pr[𝐹 | 𝑥] ≥ 1 − 𝛽 ′/2. Then, by the law of total probability,

Pr[𝐹 ] = ∑
𝑥 Pr[𝐹 | 𝑥] · 𝑝 (𝑥) ≥ ∑

𝑥 (1 −
𝛽′

2
) · 𝑝 (𝑥) = 1 − 𝛽′

2
.

We conclude that the error for part (1) is 𝑂 (𝑁 /(
√
𝑘𝑠)) with proba-

bility at least 1 − 𝛽 ′/2.

For part (2), since each 𝜁𝑖, 𝑗 is drawn from Geom(𝑒𝜀/(2 log
1

𝛽
) ),

by the Chebyshev inequality, it is easy to see that |∑𝑖 𝜁𝑖, 𝑗 | =

𝑂 (
√
𝑘/(𝑒𝜀/(4 log

1

𝛽
) − 1)) with probability at least 1 − 𝛽 ′/2.

Finally, applying a union bound, the error |𝑦hi

𝑗
− 𝑦hi

𝑗
| is 𝑂 (𝑁 /

(
√
𝑘𝑠) +

√
𝑘/(𝑒𝜀/(4 log

1

𝛽
) − 1)) with probability at least 1− 𝛽 ′ = 0.99.

3.3.2 Local Light Hitters. We apply our count sketch based method

(with privacy parameter 𝜀/4 and 𝑅 = 1

4
log

3𝑘
𝛽
) over the local light

hitters. Let 𝑛lo

𝑖
denote the total (true) frequency of the local light

hitters. Recall that the sketch size is proportional to 𝑛lo

𝑖
, which in

this case is sensitive information and cannot be directly released. So

we use 𝑠𝑖 := ⌈𝑘𝑠 · �̃�lo

𝑖
/𝑁 ⌉ as the sketch size, where �̃�lo

𝑖
= min{𝑛lo

𝑖
+

8

𝜀 log
2𝑘
𝛽
+Geom(𝑒𝜀/4), 𝑛𝑖 } is an upper bound of 𝑛lo

𝑖
for every 𝑖 with

probability 1 − 𝛽/2. Conditioned upon �̃�lo

𝑖
≥ 𝑛lo

𝑖
, the error bound

in Theorem 1 holds for local light hitters with probability 1 − 𝛽/2.

Then by a union bound, this error guarantee holds unconditionally.

Moreover, since �̃�lo

𝑖
≤ 𝑛𝑖 , the communication bound in Theorem 1

also holds.

Privacy Guarantee. Note that ∥xlo

𝑖
∥1 has a sensitivity of 1, then

adding Geom(𝑒𝜀/4) noise to it is sufficient to preserve 𝜀/4-DP. And

our count sketch based method provides a guarantee of 𝜀/4-DP.

Then by the basic composition theorem, the protocol applied on

the local light hitters preserves 𝜀/2-DP.

3.4 Applications
A frequency estimation protocol can be used as a basic building

block to solve the heavy hitter identification problem, i.e., finding

items whose frequency exceeds a threshold 𝜙𝑁 , for some given

0 < 𝜙 < 1. The most direct approach is to obtain a frequency

estimate for every item in the universe [𝑢], but this would be too

slow for a large universe, e.g., all keywords up to a certain length.

To make it more efficient, a standard technique [7, 18, 20, 26] is

to impose a 𝑑-adic decomposition over the universe [𝑢], which
can also be understood as a complete 𝑑-ary tree of log𝑑 𝑢 levels.

Specifically, on each level 𝑗 , the universe [𝑢] is partitioned into

𝑢/𝑑 𝑗 intervals of length 𝑑 𝑗 each: [1, 𝑑 𝑗 ], (𝑑 𝑗 , 2𝑑 𝑗 ], . . . , (𝑢 −𝑑 𝑗 , 𝑢]. A
frequency estimation protocol is applied on each level such that the

frequency of any 𝑑-adic interval (i.e., the number of items falling

inside this interval) can be estimated. This allows a recursive top-

down search procedure to be applied to find the heavy hitters

efficiently. Note that to ensure privacy, we need to split the privacy

budget 𝜀 equally across all levels. We state the following theorem,

whose proof follows a rather standard analysis, hence omitted.

Theorem 4. Given an 𝜀-MDP frequency estimation protocol using
communication C such that the frequency of any item can be esti-
mated in timeT within error E(𝜀, 𝛽) with probability 1−𝛽 , then if𝜙 >

2E(𝜀/log𝑑 𝑢, 𝑁 𝛽/log𝑑 𝑢)/𝑁 , there exists an 𝜀-MDP protocol such that

all 𝜙-heavy hitters can be found in time 𝑂 ( 𝑑
𝜙

log𝑑 𝑢 · T ) and their
frequencies can be estimated within error E(𝜀/log𝑑 𝑢, 𝑁 𝛽/log𝑑 𝑢)
with probability 1− 𝛽 . The total communication cost is𝑂 (log𝑑 𝑢 · C).

Similar techniques can also be used to solve the orthogonal range

counting problem based on a given frequency estimation protocol.

In particular, all results in [20] carry over to the MDP model by

replacing their LDP frequency estimation protocol with ours.

4 STREAMING PROTOCOLS
In the streaming MDPmodel, each of the 𝑘 parties receives a stream

of items, one at each time step. Let 𝑛 be the total number of time

steps. For simplicity, we assume that 𝑛 is known to the protocol

in advance; standard techniques can be used to remove this as-

sumption, while incurring some extra logarithmic factors in the

error and costs [15]. Let 𝑣𝑖,𝑡 denote the item received by party 𝑖 at

time step 𝑡 , and 𝑓 (𝑣 ; 𝑡1, 𝑡2) the frequency of a given item 𝑣 received

across all parties between time step 𝑡1 and 𝑡2 (inclusive). In the

following, we present a protocol that maintains a synopsis from

which an estimate of 𝑓 (𝑣 ; 1, 𝑡) can be extracted for any 𝑣 at each

time step 𝑡 ; and in the full version of the paper [36] we extend it to

the sliding-window model, i.e., we estimate 𝑓 (𝑣 ; 𝑡 −𝑤 + 1, 𝑡) where
𝑤 is the window length.

4.1 Full-stream Protocol
Let 𝑠 ≥ 1 and Δ := ⌈𝑛/𝑠⌉ ·

√
𝑘 . We divide the stream into𝑚 :=

√
𝑘 ·

𝑛/Δ = min{𝑛, 𝑠} epochs of 𝑏 := Δ/
√
𝑘 time steps each. We say that

an epoch is complete if items in all time steps in this epoch have been

received, otherwise we say that it is active. Express the current time

as 𝑡 = 𝑞 · 𝑏 + 𝑟 where 𝑞, 𝑟 ∈ Z and 0 ≤ 𝑟 < 𝑏. To estimate 𝑓 (𝑣 ; 1, 𝑡),
we estimate 𝑓 (𝑣 ; 1, 𝑞𝑏) (i.e., over all complete epochs) and 𝑓 (𝑣 ;𝑞𝑏 +
1, 𝑡) (i.e., over the current active epoch) separately using different

methods. The intra-epoch protocol, which estimates 𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡),
operates on a per time step basis, so its error (variance) grows

linearly as time goes on and would be too large beyond one epoch.

The inter-epoch protocol works on the epoch level; it responds

slower to the stream but its error only grows logarithmically.

4.1.1 Intra-epoch protocol. First of all, note that we only need to

run the intra-epoch protocol when 𝑏 > 1, or 𝑠 < 𝑛.

Algorithm on Each Party. Each party samples each time step 𝑡 with

probability 𝑝 = 𝑏−1 =
√
𝑘/Δ independently. If 𝑡 is sampled, the

party encodes the item 𝑣𝑖,𝑡 as M(𝑣𝑖,𝑡 ) using HRR (with privacy

parameter 𝜀/2) and sends it to the aggregator.

Algorithm on Aggregator. The aggregator collects the messages

received during the current active epoch and calculates

˜𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡) = 1

𝑝 · ∑𝑖

∑
𝑡 ′∈𝑆𝑖

˜𝑓M(𝑣𝑖,𝑡′ ) (𝑣)

as the estimation for 𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡), where 𝑆𝑖 denotes the time steps

sampled at each party 𝑖 during this epoch, and ˜𝑓M(𝑣𝑖,𝑡′ ) (𝑣) denotes
the frequency estimator for item 𝑣 used in the HRR protocol.

Communication. Since in each epoch of size 𝑏 each party samples

an item with probability 𝑝 = 𝑏−1
, the expected communication cost

in each epoch is 𝑂 (𝑘 · 𝑏 · 𝑏−1) = 𝑂 (𝑘), and across all epochs the

total is 𝑂 (𝑘𝑚) = 𝑂 (𝑘𝑠).
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Accuracy. We first show that the estimator is unbiased. Let the

random variable 𝑍𝑖,𝑡 ′ ∈ {0, 1} indicate whether the time step 𝑡 ′

gets sampled, and let 𝑋𝑖,𝑡 ′ := ˜𝑓M(𝑣𝑖,𝑡′ ) (𝑣) denote the frequency

estimator used in the HRR protocol. Then the estimator can be

written as

˜𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡) = 1

𝑝 · ∑𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡 𝑍𝑖,𝑡 ′𝑋𝑖,𝑡 ′ .

Note that we have E[𝑋𝑖,𝑡 ′] = 𝑥𝑖,𝑡 ′ , where 𝑥𝑖,𝑡 ′ ∈ {0, 1} indicates
whether 𝑣𝑖,𝑡 ′ is identical to 𝑣 . By the independence of 𝑍𝑖,𝑡 ′ and

𝑋𝑖,𝑡 ′ , we conclude that ˜𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡) is an unbiased estimator for

𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡).
Since our algorithm essentially runs HRR over the sampled time

steps, the error consists of two parts: the error due to sampling and

the error due to HRR:

| ˜𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡) − 𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡) |

=

������ 1𝑝 ·
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

𝑍𝑖,𝑡 ′𝑋𝑖,𝑡 ′ −
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

𝑥𝑖,𝑡 ′

������
≤

������ 1𝑝 ·
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

𝑍𝑖,𝑡 ′ · (𝑋𝑖,𝑡 ′ − 𝑥𝑖,𝑡 ′)

������
+

������ 1𝑝 ·
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

𝑍𝑖,𝑡 ′𝑥𝑖,𝑡 ′ −
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

𝑥𝑖,𝑡 ′

������ .
We first bound the first error term. Denote the number of items

sampled during this epoch as𝑍 (𝑞𝑏:(𝑞+1)𝑏)
:=

∑
𝑖

∑
𝑞𝑏<𝑡 ′≤(𝑞+1)𝑏 𝑍𝑖,𝑡 ′ .

Observe that E[𝑍 (𝑞𝑏:(𝑞+1)𝑏) ] = 𝑘 ·𝑏 ·𝑝 = 𝑘 and Var[𝑍 (𝑞𝑏:(𝑞+1)𝑏) ] ≤
𝑘 . Hence, by the Bernstein inequality, we have 𝑍 (𝑞𝑏:(𝑞+1)𝑏) =

𝑂 (max{𝑘, log
1

𝛽
}) with probability at least 1 − 𝛽/3. Conditioned

upon this event and by the accuracy guarantee of HRR, with proba-

bility at least 1 − 𝛽/3, the first error term is bounded by

𝑂

(
1

𝑝

√
max{𝑘, log

1

𝛽
} log

1

𝛽
/min{𝜀, 1}

)
= 𝑂 (Δ log

1

𝛽
/min{𝜀, 1}) .

Then the same error guarantee holds unconditionally with proba-

bility at least 1 − 2𝛽/3.

For the second error term, we first bound the variance

Var


1

𝑝
·
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

𝑍𝑖,𝑡 ′𝑥𝑖,𝑡 ′

 =
∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

E

[(
1

𝑝
· 𝑍𝑖,𝑡 ′𝑥𝑖,𝑡 ′ − 𝑥𝑖,𝑡 ′

)
2

]
=

∑
𝑖

∑
𝑞𝑏<𝑡 ′≤𝑡

1 − 𝑝

𝑝
𝑥2

𝑖,𝑡 ′

≤ 𝑘 · Δ
√
𝑘
· 1 − 𝑝

𝑝

≤ Δ2 .

Note that each | 1

𝑝 · 𝑍𝑖,𝑡 ′𝑥𝑖,𝑡 ′ − 𝑥𝑖,𝑡 ′ | is bounded by𝑂

(
1

𝑝

)
= 𝑂

(
Δ√
𝑘

)
.

By the Bernstein inequality, we conclude that the error for the

second part is 𝑂 (Δ log
1

𝛽
) with probability at least 1 − 𝛽/3.

Finally, applying a union bound, with probability at least 1 − 𝛽 ,

the error of the estimator
˜𝑓 (𝑣 ;𝑞𝑏 + 1, 𝑡) is

𝑂

(
Δ log

1

𝛽
/min{𝜀, 1}

)
= 𝑂

(
𝑛
√
𝑘 log

1

𝛽
/(𝑠 · min{𝜀, 1})

)
.

Privacy Guarantee. Observe that the sampling procedure is data-

independent and the information of each item is released only once.

So the intra-epoch protocol guarantees 𝜀/2-DP, as provided by the

HRR protocol.

Space/time. Observe that each party does not need store any his-

torical information before time step 𝑡 , so the intra-epoch protocol

needs 𝑂 (1) space on each party. Sampling and running HRR take

𝑂 (1) time per time step.

4.1.2 Inter-epoch protocol. To obtain estimation for 𝑓 (𝑣 ; 1, 𝑞𝑏), we
make use of a dyadic structure, which naturally corresponds to a

tree representation, imposed over all epochs. Specifically, we build

log𝑚 levels, and for each level 𝑙 the epoch’s time steps are divided

into 𝑛/(2𝑙 · 𝑏) consecutive blocks of size 2
𝑙 · 𝑏 each. More precisely,

for 0 ≤ 𝑙 < log𝑚, 1 ≤ 𝑗 ≤ 𝑛/(2𝑙 · 𝑏), let 𝐵𝑙, 𝑗 = {𝑡 | ( 𝑗 − 1) · 2
𝑙 · 𝑏 <

𝑡 ≤ 𝑗 · 2
𝑙 · 𝑏} denote the 𝑗-th block at level 𝑙 . Note that each block

on level 0 corresponds to an epoch. Essentially, the inter-epoch

protocol runs our one-shot algorithm for each block, but using

different parameters.

Algorithm on Each Party. Each party 𝑖 maintains a count sketch

of 𝑅 = 1

2
log

2𝑘 log𝑚

𝛽
rows and 𝑠

√
log𝑚 · |𝐵 |/𝑛 columns for the

items within each block 𝐵, where 𝑙 denotes the level of this block

and |𝐵 | = 2
𝑙 · 𝑏 denotes the number of time steps in 𝐵. After 𝐵

completes, we add i.i.d. noise draw from Geom(𝑒𝜀/(4𝑅 log𝑚) ) to
each counter in the count sketch, then send this noisy count sketch

to the aggregator.

Algorithm onAggregator.As in our one-shot protocol, from the noisy

count sketches (across all parties) corresponding to each block, the

aggregator can obtain a frequency estimator for any item within

this block. Furthermore, we know that the interval [1, 𝑞𝑏] can be

decomposed into at most log𝑚 disjoint dyadic blocks, at most one

from each level. Thus, to obtain an estimation for 𝑓 (𝑣 ; 1, 𝑞𝑏), we
just add up the frequency estimates for 𝑣 from these blocks.

The analysis for accuracy, communication, privacy and space of

the inter-epoch algorithm is presented in the full version [36].

Combining the intra-epoch and inter-epoch algorithm, we obtain

the following result.

Theorem 5. For 𝜀 > 0 and 𝑠 ≥ 1, our 𝜀-MDP streaming frequency
estimation protocol is able to return, at each time step, an unbiased
estimator for the frequency of any item. With probability at least
1 − 𝛽 , the error of the estimator is

𝑂
©«
𝑛
√
𝑘 log

1

𝛽

𝑠 · min{𝜀, 1} +

√
𝑘 log 𝑠 log

1

𝛽

𝑒
𝜀/(4 log 𝑠 log

𝑘 log𝑠

𝛽
) − 1

ª®®¬
for 𝑠 < 𝑛, or

𝑂
©«
𝑛
√
𝑘 log

1

𝛽

𝑠
+

√
𝑘 log𝑛 log

1

𝛽

𝑒
𝜀/(4 log𝑛 log

𝑘 log𝑛

𝛽
) − 1

ª®®¬
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for 𝑠 ≥ 𝑛 (in this case the intra-epoch algorithm is not needed). Its
expected communication cost is𝑂 (𝑘𝑠 · log

1.5 𝑠 log
𝑘 log 𝑠

𝛽
), and it takes

𝑂 (𝑠 ·
√

log 𝑠 log
𝑘 log 𝑠

𝛽
) space and 𝑂 (log 𝑠 log

𝑘 log 𝑠

𝛽
) time to process

each item on each party.

The streaming MDP model degenerates into the continual ob-

servation model with 𝑘 := 1. In this case, each epoch has 𝑏 = ⌈𝑛/𝑠⌉
items, so we may just discard them, and only run the inter-epoch

algorithm.We then obtain a streaming algorithmwith the following

space-error trade-off:

Corollary 1. For 𝑠 ≥ 1, our 𝜀-DP frequency estimation algorithm
runs on a single stream using space 𝑂 (𝑠 ·

√
log 𝑠 log

log 𝑠

𝛽
). At any

time, an estimate for the frequency of any item can be extracted that,
with probability 1 − 𝛽 , has error

𝑂
©«
𝑛
√

log
1

𝛽

𝑠
+

√
log 𝑠 log

1

𝛽

𝑒
𝜀/(4 log 𝑠 log

log𝑠

𝛽
) − 1

ª®®¬ .
We remark that the results in Section 3.4 also hold in the stream-

ing model.

Comparison with Chan et al. There are two major differences be-

tween our protocol with Chan et al. [13]: (1) the choice of frequency

summary technique (the MG algorithm v.s. count sketch); and (2)

the introduction of an intra-epoch protocol. (1) is important as we

explained in Section 3.1. (2) is important to achieve optimal error:

the protocol in [13] doesn’t need such an intra-epoch component,

because that one-shot algorithm already has an error proportional

to 𝑘 , so it can simply ignore all items inside an epoch. We aim at

the optimal error proportional to

√
𝑘 , which requires a more careful

handling of the intra-epoch items.

5 EXPERIMENTS
In this section, we perform experiments to evaluate our methods

on frequency estimation and finding heavy hitters.

5.1 Frequency Estimation
We compare our methods with the simple baseline method (denoted

as Noisy-CS) mentioned in Section 3.1, where the aggregator simply

merges all noisy count sketches and extract point estimates. We

also compare with running OLH [50] in MDP, where we apply the

OLH randomizer to each item. This can be equivalently viewed as

an 𝑁 -party LDP protocol. We use Ours-CS to denote denote our

basic protocol described in Section 3.1 and Ours the method based

on frequency separation described in Section 3.3.

For frequency estimation, we utilize synthetic datasets generated

from Zipf distribution with skewness 1.5 and 2.0, and measure the

error for the frequent items which jointly take over 85% of the

total cardinality. We set the number of parties 𝑘 to 1000, the total

cardinality 𝑁 to 1 million, and the privacy parameter 𝜀 to 1.0. In

Figure 2, we report the communication-error trade-off. Note that

the communication cost of OLH-MDP is fixed to 𝑁 . We can observe

that OLH-MDP is impractical in the MDP setting, as it has an error

Ω(
√
𝑁 ) which can be much larger than

√
𝑘 . It can be observed

that Ours offers over 3× improvement in communication while

achieving the same error with other methods. We can also observe
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Figure 2: Relative Error vs. communication on Zipf datasets.
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Figure 3: Accuracy vs. 𝜀 on Zipf datasets with skewness 1.5.
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Figure 4: Accuracy vs. 𝜀 on Zipf datasets with skewness 2.0.

that, beyond a certain threshold, increasing communication does

not lead to a smaller error, since the privacy constraint dominates

the error in this case. In Figure 3 and 4, we perform the experiments

by varying 𝜀 and fixing the communication budget. As expected, the

error decreases when 𝜀 increases. Ours achieves the lowest error,
while, for instance, using 4× less communication than Noisy-CS.

5.2 Identifying Heavy Hitters
We utilize two real-world datasets, the Kosarak dataset

5
and the

2006 AOL search queries
6
. The Kosarak dataset consists of 990,002

clicks over 41,270 unique web pages. We assume that these web

pages are known in advance, so the universe size𝑢 is 41,270, and we

obtain the frequency estimates of all web pages to find the heavy

hitters. The AOL dataset consists of both the search queries by the

users and the URL of the web pages they clicked. We extracted

5
http://fimi.ua.ac.be/data/.

6
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/.
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1,890,569 click records over 184,304 unique URLs. We consider

these URLs as unknown, simulating the case of a larger universe.

More precisely, as in [21], we strip the URLs of the leading domain

prefixes such as “www.” and “https://”, and truncate all URLs to a

length of 6 characters. The alphabet size of a single character in the

AOL dataset is 49, so the universe size 𝑢 is 49
6
. We use the dyadic

decomposition method as described in Section 3.4 to find heavy

hitters on the AOL dataset, and the branching factor 𝑑 is set to 49.

We evaluate the results using the following standard metrics

(see e.g., [18]): (1) Recall, i.e., the number of true heavy hitters

reported over the number of all true heavy hitters; (2) precision,

i.e., the number of true heavy hitters reported over the number of

answers reported; and (3) the average relative error of the reported

frequencies, measured separately for the true heavy hitters and the

false positive answers. For some experiments, we report the F-score,

which is the harmonic mean of precision and recall. All experimen-

tal results are averaged over 5 repetitions. We use MurmurHash3

as the hash functions in the Count Sketch.

5.2.1 One-Shot Results. In the one-shot experiments, we use the

following default values of of parameters: the frequency threshold

𝜙 is 0.001, the (expected) message size 𝑠 is 5/(𝜙
√
𝑘) (note that this

leads to an error guarantee of 𝜙𝑁 /5), the privacy parameter 𝜀 is 2,

the number of parties 𝑘 is 100, and the number of rows of the Count

Sketch is 3. For the Kosarak dataset, we uniformly partition the

data across all parties. We partition the AOL dataset non-uniformly,

where the largest party may have 10 times of the data than that of

the smallest party.
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Figure 5: Accuracy vs. Communication on Kosarak.

In Figure 5 and 6, we perform the experiments by varying 𝑠 and

report the communication-error trade-off. We observe that Ours
outperforms Ours-CS and Noisy-CS, that is, Ours uses less com-

munication while achieving same error guarantee in practice. This

improvement in communication is more pronounced for skewed

dataset, as suggested by our theoretical analysis.
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Figure 6: Accuracy vs. Communication on AOL.
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Figure 7: Accuracy vs. 𝜙 on Kosarak.
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Figure 8: Accuracy vs. 𝜙 on AOL.

Figure 7 and 8 show the accuracy results for varying 𝜙 from 10
−4

to 10
−2

and 𝜀 = 0.5, 2, 8, while other parameters remain fixed. It

is shown that our method usually has high accuracy in practice

for various frequency thresholds. It is also expected that the error

becomes smaller when the privacy parameter 𝜀 is larger.

Figure 9 is performed by varying 𝑘 from 100 to 1, 600, while other

parameters like 𝜙 remain fixed. As we set the average message size

𝑠 to 5/(𝜙𝑁 ) by default, our theory suggests that the error guarantee
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Figure 9: Accuracy/Communication vs. 𝑘 on Kosarak.

of our method is �̃� (𝜙𝑁 ), while the communication cost is �̃� (
√
𝑘/𝜙).

We plot the curve of the communication versus 𝑘 in Figure 9b.

It shows that the communication cost of our method is indeed

grow sublinearly with 𝑘 , which confirms our theoretical analysis.

Moreover, the accuracy shown in Figure 9a slightly degrades as

𝑘 increases, because the error (

√
𝑘/𝜀) due to privacy constraint

becomes larger.

5.2.2 Streaming. For the streaming experiments, we use the fol-

lowing default values of parameters: the number of parties 𝑘 = 100,

the privacy parameter 𝜀 = 4, the frequency threshold 𝜙 = 0.005, the

width of count sketch is 5. We set the window size𝑤 = 𝑛/10 on the

Kosarak dataset and 𝑤 = 𝑛 (i.e., it degenerates to the full stream

case) on the AOL dataset, where 𝑛 is the length of the stream.
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Figure 10: Accuracy over time on Kosarak.

We compare our method with the PDCH protocol [13] using the

same 𝑠 , which leads to the same asymptotic communication bound.

We report the accuracy measures every𝑤/6 timestamps in Figure

10 and 12, when the time elapsed from 0 to𝑤 . We also report the

accuracy measures vs. the actual communication cost in Figure 11

and 13. Observe that increasing 𝑠 does not always result in better
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Figure 11: Accuracy vs. communication on Kosarak
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Figure 12: Accuracy over time on AOL.
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Figure 13: Accuracy vs. communication on AOL

accuracy in practice. In our method, this is because increasing 𝑠

also leads to more epochs, making the noise magnitude required in

the inter-epoch part larger, which grows polylogarithmically with

𝑠 . In PDCH, the accuracy may drop significantly when increasing

𝑠 , due to the large sensitivity of the PMG summary used in their

protocol. More precisely, for a MG summary of size 𝑠 , PMG injects

noises of magnitude Θ̃(𝑠/𝜀) onto it to preserve differential privacy.

In practice, the noises can even be orders of magnitudes larger

than the real frequencies, making PDCH impractical. Specifically,

in our setting, the noise in PDCH is roughly 10 times larger than

the real frequencies, so a 0-frequency item can be easily reported

as a frequent item, making the ARE (false positive) infinite.
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